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Abstract

For nearly a century, the quest to accurately describe the correlation of electrons has
been pursued by scientists. However, the challenging task of recovering both dynamic
and static electron correlation, which is crucial for systems dominated by multiple con-
figurations, has been encountered. In the last few decades, researchers have developed
a multitude of methods carefully tailored to capture both types of correlation. Among
the techniques capable of addressing this challenge are quantum Monte Carlo methods,
known for their ability to provide accuracy beyond mean-field theory. The objective of
this work is to explore the effectiveness and accuracy of the multi-reference diffusion
Monte Carlo (MR-DMC) approach for various systems exhibiting multi-reference char-
acter. In the first part of this work, we focus on the late transition metal compounds, uti-
lizing initial full valence complete active space self-consistent field wave functions. Ac-
curate bond dissociation energies are reported for a variety of transition metal dimers,
demonstrating close agreement with experimental results. The optimization of molecu-
lar orbitals using variational Monte Carlo in the presence of a Jastrow correlation func-
tion is identified as a key factor contributing to this success. Additionally, spectroscopic
constants are investigated by fitting a Morse potential to the recorded MR-DMC poten-
tial energy curves, resulting in a good agreement with experimental and theoretical
data. In the second part, we shift our attention to selected configuration interaction
approaches, with a primary emphasis on a rigorous investigation of the ground state of
the carbon dimer using truncated CIPSI*-Jastrow wave functions. The influence of the
Jastrow factor on the redistribution of importance among the different configurations
is discussed. Furthermore, accurate MR-DMC absolute energies and bond dissociation
energies for the carbon dimer are presented. Lastly, a selected configuration interaction
algorithm in conjunction with a Jastrow correlation function is introduced.

*configuration interaction using a perturbative selection made iteratively
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1 Introduction

"NOTHING IN LIFE IS TO BE FEARED, IT IS ONLY TO BE UNDERSTOOD. NOW IS THE

TIME TO UNDERSTAND MORE, SO THAT WE MAY FEAR LESS." – Marie Curie

The chemistry and physics of a system are fully determined by quantum mechan-
ics, that is—in the non-relativistic approximation—by the solutions to the Schrödinger
equation. Unfortunately, the exact solutions are only known for very few systems, so
that for the majority of quantum chemical problems, we have to make do with approx-
imate descriptions. The source of all "evil" here is the simultaneous interaction of all
particles involved, the so-called many-body problem. In this thesis, we concentrate on
the solutions to the stationary, electronic Schrödinger equation, which means that we
can limit our focus to the electronic many-body problem, also known as the electron
correlation. The approximation of the electron correlation is an unavoidable aspect of
quantum chemical calculations and typically constitutes the largest source of error.[1]

The first calculations for homonuclear bonds involving electron correlation were pub-
lished by Walter Heitler and Fritz London[2] in 1927. The authors were able to provide a
correct description of the covalent bond in H2 only after including electron correlation
into the wave function. In his work on the ground state of the helium atom in 1929,
Egil A. Hylleraas[3] accounted for the electron correlation by means of an explicitly
correlated wave function. Since these first attempts to include electronic correlation
in electronic structure calculations, nearly a century of research has been invested in
obtaining an accurate description of the electron correlation.

For fermionic systems, there are two different types of correlation: the Fermi and the
Coulomb correlation. The former arises from the symmetry requirements of the ex-
act wave function imposed by the Pauli exclusion principle, while the latter is due to
electron repulsion. The Fermi correlation can be accounted for exactly if the symmetry
requirements of the wave function are satisfied, which is achieved, for example, by us-
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1 Introduction

ing an SD as the wave function ansatz. The Coulomb interaction, on the other hand,
must be approximated and is usually described by a linear combination of SDs.

The Coulomb correlation can be further divided into static and dynamic electron cor-
relation. Consider, for example, the boron atom in its ground state. The 2p electron can
occupy any of the triply degenerate p orbitals, and all three configurations, i.e. 2p1

x, 2p1
y,

and 2p1
z, contribute equally to the wave function. This type of correlation, in which

several important configurations must be retained in the wave function for an accurate
description, is called static electron correlation, while the systems are usually referred
to as multi-reference systems. The dynamic correlation then comprises the remainder
of the correlation resulting from the dynamics of the electrons. The MCSCF method is
a conventional approach used for handling static electron correlation. The first MCSCF
calculations of atoms were published in 1939 by Douglas R. Hartree and co-workers.[4]

Nowadays, CASSCF—belonging to the MCSCF approaches—is the method of choice
when studying multi-reference systems. Despite intensive algorithmic development
and enormous advancements in computer hardware in recent decades, CASSCF cal-
culations are still "only" feasible today for small actives spaces correlating 20 electrons
in 20 orbitals (≈ 4 × 109 SDs)[5], using massively parallel implementations. However,
Head-Gordon and co-workers[6] have shown that CASSCF-like calculations are possi-
ble with approximate FCI solvers for about 50 electrons in 50 active orbitals.

Dynamic electron correlation is always required in order to achieve high accuracy,
whereas static electron correlation is only important for systems dominated by more
than one configuration. However, both types of correlation are physically equivalent
and result from Coulomb interactions. Therefore, a strict separation of static and dy-
namic electron correlation is generally not possible. Nevertheless, much research has
been invested in a rigorous partitioning of these correlation types.[7–9]

The aim of this work is to achieve an accurate representation of multi-reference systems
using QMC methods, more specifically VMC and DMC. Unlike conventional ab initio
electronic structure methods, these techniques are vastly parallel and exhibit favorable
scaling with the system size.[10,11] First, we will turn to a thorough investigation of
transition metal dimers. The accuracy of the MR-DMC approach using full valence
CASSCF initial wave functions will be evaluated in terms of bond dissociation ener-
gies. The performance of single-, which include common methods such as DFT and CC,
but also DMC, and multi-reference approaches is discussed for a selection of transition
metal dimers. Further assessment of the applied method is derived from spectroscopic

2



constants obtained from a Morse fit to MR-DMC potential energy curves. The second
part of this thesis focuses on different sCI approaches in the framework of QMC. First, a
statistical analysis of CI coefficients optimized with VMC is performed. Then, different
Jastrow-sCI ansatzes are evaluated in terms of applicability and accuracy. Finally, an
exhaustive analysis of the ground state of C2 using truncated CIPSI-Jastrow wave func-
tions is performed. This investigation includes a discussion of the effects of the Jastrow
factor on the CI picture. Additionally, the CIPSI-Jastrow-DMC absolute and bond dis-
sociation energies of C2 are compared with highly accurate data from the literature. The
influence of the choice of the initial orbitals for the generation of the CIPSI wave func-
tions is evaluated. Eventually, a Jastrow-sCI scheme based on an energy contribution
criterion is presented.
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2 Introducing Quantum Mechanics

"THE TASK IS NOT TO SEE WHAT HAS NEVER BEEN SEEN BEFORE, BUT TO THINK WHAT

HAS NEVER BEEN THOUGHT BEFORE ABOUT WHAT YOU SEE EVERYDAY." – Erwin
Schrödinger

Scientists, at the end of the 19th century, felt that everything had been manifested in the
realm of physics. Little did they know, however, that trying to, amongst others, solve
the mysteries of the black body radiation and the photoelectric effect would open a new
world: the world of quantum theory. Within the scope of about 25 years, the world
went from the separate realms of particles and waves to the formulation of modern
quantum mechanics.

A quantum system can be described by the quantum states that it can assume. These
quantum states are mathematically represented by state vectors |Ψ⟩ that are elements
of an abstract vector space. The position space analog to a state vector is called wave
function:

⟨x|Ψ⟩ ≡ Ψ(x). (2.1)

According to the Copenhagen interpretation of quantum mechanics, and more pre-
cisely Born’s rule[12], the probability density corresponds to the square of the absolute
value of the wave function:

p = |Ψ(x)|2 = Ψ∗(x)Ψ(x) (2.2)

In this probabilistic interpretation, the measurement outcome of a system is always
given with a certain probability, which is linked to p and thus to the wave function
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2 Introducing Quantum Mechanics

describing the system.

The postulates of quantum mechanics entail that not all wave functions are allowed.
The wave functions used throughout this work originate from the L2—ensuring square
integrability—Hilbert space with the following inner product

⟨ f |g⟩ =
∫

f ∗(x)g(x)dx. (2.3)

2.1 The Schrödinger Equation

The wave function—being a central quantity in quantum mechanics—can be obtained
as a solution to the Schrödinger equation for stationary states[13]

ĤΨ = EΨ, (2.4)

with the Hamiltonian Ĥ as total energy operator. Eq. (2.4) corresponds to an eigenvalue
problem with Ψ as the eigenvector to the corresponding eigenvalue E.

The Hamiltonian—in the non-relativistic framework—describes the kinetic and poten-
tial energy of the system at hand:

Ĥ = T̂ + V̂. (2.5)

The kinetic and potential energy operators for the electrons and nuclei are defined
(in a.u.) in Eqs. (2.6) and (2.7), respectively. The vectors r and R describe the Carte-
sian coordinates of the individual particles. The Laplace operator ∆ corresponds to
the sum of the second partial derivatives with respect to the Cartesian coordinates:
∆ =

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
.
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2.1 The Schrödinger Equation

T̂ = T̂e + T̂n (2.6)

= −1
2 ∑

i
∆i −

1
2 ∑

I

1
mI

∆I

V̂ = V̂en + V̂ee + V̂nn (2.7)

= −∑
I

∑
i

ZI

|ri − RI |
+ ∑

i
∑
j>i

1
|ri − rj|

+ ∑
I

∑
J>I

ZIZJ

|RI − RJ |

The derivation of the Schrödinger equation, which is considered a fundamental con-
cept in quantum chemistry, will be briefly discussed in the following. The discovery
that a particle also exhibits wave-like properties is central to the rationale. In his rea-
soning, Schrödinger probably[14] started with the standing wave equation with Ψ as
wave amplitude:

d2Ψ
dx2 +

4π2

λ2 Ψ = 0. (2.8)

By inserting de Broglie’s relation between a particle’s momentum p and its wavelength
λ = h/p into Eq. (2.8), one obtains:

d2Ψ
dx2 +

4π2 · p2

h2 Ψ = 0. (2.9)

Through the connection between the momentum p and the total energy E (via the ki-
netic energy T)

p2 = 2mT = 2m(E − V), (2.10)

the energy is introduced into the wave equation:
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2 Introducing Quantum Mechanics

d2Ψ
dx2 +

1
h̄2 [2m(E − V)]Ψ = 0. (2.11)

By rearranging Eq. (2.11), one obtains the (one-dimensional) time-independent Schrödinger
equation:

[
− h̄2

2m
d2Ψ
dx2 + V

]
Ψ = EΨ (2.12)

2.2 The Born-Oppenheimer Approximation

The Schrödinger equation is a high-dimensional partial differential equation that can
only be exactly solved—in its original form—for very few systems and some toy sys-
tems. Max Born and J. Robert Oppenheimer proposed in 1927[15] to reduce the dimen-
sionality of the problem by separating the motion of the electrons and the nuclei.

In the clamped nuclei approximation, the kinetic energy operator of the nuclei is removed
from the Hamiltonian, justified by the large mass difference between electrons and nu-
clei. The resulting Hamiltonian

Ĥelec = T̂e + V̂ (2.13)

is usually referred to as electronic Hamiltonian.

The exact solution to the Schrödinger equation—including electrons and nuclei—can
be written in the basis of the eigenfunctions of the electronic Hamiltonian ψn(r; R):

Ψ(r, R) =
∞

∑
n=0

ψn(r; R) fn(R), (2.14)

with the respective coefficients fn(R). In the Born-Oppenheimer approximation, the
sum in Eq. (2.14) is reduced to the first term, the wave function thus being simplified to
(omitting the subscript 0)

8



2.3 The Variational Principle

Ψ(r, R) ≡ ψ(r; R) f (R), (2.15)

which achieves the separation of the electronic and nuclear motion. The eigenfunc-
tions of the electronic Schrödinger equation ψ thus only depend parametrically on the
nuclear coordinates. In the second part of the Born-Oppenheimer approximation, the
Schrödinger equation for the nuclear motion is retrieved.

2.3 The Variational Principle

The electronic Schrödinger equation is still very complex which is why mathematical
tools are needed to find approximate solutions. One approach is the Rayleigh-Ritz
method which makes use of the variational principle.

The Ritz quotient gives the expectation value of the Hamiltonian

E[Ψ] =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ ≥ E0, (2.16)

transforming Eq. (2.4) from a partial differential equation into an integral problem.

The variational principle states that one always obtains an upper bound to the exact
ground state energy E0. Additionally, E0 is only attained if Ψ corresponds to the exact
ground state wave function.

In the Rayleigh-Ritz (variational) method, the wave function Ψ(r; c) is parametrized
and the Ritz quotient is minimized with respect to the parameter vector c. The lowest
possible energy is reached for the optimal set of parameters copt:

E(copt) = minc(E(c)). (2.17)
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3 Hartree-Fock Theory

"ARITHMETIC IS BEING ABLE TO COUNT UP TO TWENTY WITHOUT TAKING OFF YOUR

SHOES." – Mickey Mouse

The electron-electron interaction V̂ee in Eq. (2.7) spoils the separation of the electronic
Hamiltonian into a sum of one-particle operators, which would reduce the dimension-
ality of the Schrödinger equation—from 3N (including the spin: 4N) dimensions—to
N three- (four-) dimensional equations. In the Hartree-Fock (HF) theory, pioneered
shortly after the formulation of quantum mechanics by Douglas R. Hartree[16] and
Vladimir Fock[17], this challenge is addressed by introducing an independent-particle
model, which assumes that the electrons move in a mean-field, independently of the
positions of all other electrons. By accounting for the electron-electron interaction in
an averaged manner, it becomes possible to express the Hamiltonian as a sum of one-
electron operators, the Fock operators.

Mathematically, this can be achieved by employing a Slater determinant (SD) as an
approximation for the exact wave function. This is the only approximation in the HF
formalism. An important advantage of using an SD as wave function lies in its inherent
anti-symmetric nature, essential for the description of fermions. The anti-symmetry
of the wave function emerges from the Pauli exclusion principle, which states that,
upon the exchange of the coordinates of two identical particles, the wave function must
change sign. Additionally, another attribute of the exact wave function is retained: the
SD prevents two same spin electrons from approaching one another—known as the
Fermi hole—since this would result in the determinant, and thus also the probability
density, becoming zero. In the HF theory, the SD is constructed from orthonormal spin
orbitals.

The constraint—ensuring the orthonormality of the spin orbitals—minimization (via
the Lagrange multipliers method) of the energy, a functional of the SD, by means
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3 Hartree-Fock Theory

of the variational method results in the Hartree-Fock equations. They constitute a
pseudo-eigenvalue problem, since the molecular orbitals (MOs)—solutions to the HF
equations—are needed to construct the Fock operators. Thus, an iterative approach,
known as the self-consistent field (SCF) method, is needed to solve the equations. The
HF equations provide the ideal orbitals for a Slater determinant.

The MOs that represent the solutions to the HF equations are, as of yet, not known.
One way to tackle this problem is to expand these unknown functions into linear com-
binations of (known) basis functions. Applying this technique to the HF formalism,
using atomic orbitals as basis functions, is attributed to Clemens C. J. Roothaan[18] and
George G. Hall[19]. The resulting Roothaan-Hall equations transform the original cou-
pled integro-differential problem into a generalized matrix eigenvalue problem, mak-
ing the solution by means of a computer feasible. Since the use of a finite basis is
unavoidable for practical applications, a further approximation is introduced by the
Roothaan-Hall formalism.

Since the HF method makes use of the variational principle, extending the basis set size
must lead to lower energies. In the limit of a complete basis, the lowest possible HF
solution is obtained. This is called the Hartree-Fock limit. The correlation energy is
defined as the difference between the HF limit and the exact, non-relativistic solution
to the Schrödinger equation.
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4 The Pursuit of Electronic Correlation

"HUMANS THINK IN STORIES, AND WE TRY TO MAKE SENSE OF THE WORLD BY

TELLING STORIES." – Yuval Noah Harari

Despite being able to retrieve 99% of the total energy, the HF formalism falls short
of recovering the remaining 1% that is essential for the description of chemically and
physically relevant properties. Nearly a century has, hitherto, been devoted to this
task. One distinguishes between two types of correlation: static and dynamic electron
correlation. The former comes into play in case a system comprises degenerate or quasi-
degenerate configurations, while the latter arises from the electronic motion itself. This
distinction is rather arbitrary, it is, however, often a helpful conceptual tool. In this
part of the thesis, different approaches that aim at retrieving the correlation energy are
discussed.

4.1 Post-Hartree-Fock Methods

The ambition of post-Hartree-Fock methods is to account for the missing electron corre-
lation in the HF theory. The approaches, described below, all have in common that they
a) abide by the variational principle and b) aim at including the electron correlation
through linear combinations of SDs.

4.1.1 Configuration Interaction

The configuration interaction (CI) method is a straightforward approach to include dy-
namic correlation in quantum chemical calculations. In this method, the wave func-
tion is expressed as a linear combination of configuration state functions (CSFs) (as

13



4 The Pursuit of Electronic Correlation

described in section 5.2.2), with the CI coefficients optimized to obtain a minimum en-
ergy. Each configuration corresponds to an n-tuple excitation from the HF reference.
Unlike the HF theory, the MOs are not optimized in the CI formalism.

This form of the wave function is—in theory—able to provide the exact solution to
the Schrödinger equation. In practice, the necessary introduction of a basis puts the
exact solution out of reach. The CI method suffers from slow convergence due to the
exponential growth in the number of determinants with the number of electrons and
basis set size. As a result, including all possible excitations (limited by a finite basis) in
the wave function, which is referred to as full configuration interaction (FCI), is only
feasible for small systems and small basis sets. This approach would recover 100% of
the correlation energy within the given basis set. The result of a CI calculation can only
be as "good" as the zeroth-order wave function.

To apply the CI method in practice, it is necessary to reduce the number of excited de-
terminants. One common approach is to truncate the CI basis by limiting the excitation
level. Including only singly excited determinants in the expansion does not improve
upon the HF determinant, as the matrix elements between the reference and the singly
excited determinants are—according to the Brillouin theorem—equal to zero. The dou-
ble excitations, which are the first excitations connected to the HF reference, contribute
the most to the correlation energy, making the CISD method the preferred choice in
practice. Truncating CI expansions comes, however, at the cost of losing size consis-
tency, arising from an unequal treatment of a system and its respective fragments.

4.1.2 Multi-Reference Configuration Interaction

The multi-reference configuration interaction (MRCI) method is based on excitations
out of a reference space, similar to the single-reference CI approach. However, the
main difference between the two methods lies in the definition of the reference space.
In MRCI, the reference space is typically built from a linear combination of SDs. This
allows for a more accurate description of systems with degenerate or quasi-degenerate
ground states, for which a single-determinant zeroth-order wave function cannot pro-
vide a correct characterization.

The reference wave functions for MRCI can for example be obtained from multi-configuration
self-consistent field (MCSCF) calculations, see next section. Often even singles and dou-
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4.1 Post-Hartree-Fock Methods

bles MRCI already yields more configurations than can be computationally handled.
Further truncations or approximations are therefore required. One strategy is to only
take into consideration a pre-defined set of orbitals for the generation of the excited
determinants.

4.1.3 Multi-Configurational Self-Consistent Field

The general MCSCF theory was introduced by Roy McWeeny[20] in 1955.

The MCSCF method allows for the treatment of static correlation by incorporating dom-
inant electron configurations in the wave function, resulting in qualitatively correct
wave functions. Unlike the CI method, not only the expansion coefficients but also the
MOs are optimized in the MCSCF method to avoid any biases toward a specific con-
figuration. Orbital rotations are used to optimize the orbital parameters because they
ensure the orthogonality of the orbitals during the optimization process.[21]

The MCSCF method requires selecting the configurations that are relevant to the prob-
lem, which is a challenge in itself. One approach to address this challenge is through
the complete active space self-consistent field (CASSCF) method—pioneered by Roos,
Taylor, and Siegbahn[22]—which necessitates a classification of the orbitals. The inac-
tive MOs are doubly occupied in all configurations, while all possible excitations are
carried out for the active orbitals. The approach is called complete active space because
all possible configurations are included in the active space. This concept is important
for the treatment of static electron correlation. Since no occupation restrictions apply
to the active orbitals (usually a set of degenerate or quasi-degenerate orbitals), they are
included in the wave function with all possible occupation patterns, with the conse-
quence that all important configurations are retained in the wave function.[14,21] The
virtual orbitals remain empty in all configurations. The CASSCF technique is schemat-
ically depicted in Fig. 4.1.
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4 The Pursuit of Electronic Correlation

Fig. 4.1: Partition of CAS orbitals with the allowed excitations. The graph is taken from Ref. 23.

The CASSCF method can—in principle—capture static and dynamic electron correla-
tion. However, the FCI nature of the active space limits calculations to a small number
of electrons and orbitals (in the active space). Since retrieving the dynamic correlation
requires excitations into higher-lying orbitals, CASSCF mostly accounts for the static
electron correlation. The CAS(n, m) notation—meaning that n electrons are distributed
to m orbitals—will be used throughout this thesis for the CASSCF calculations.

4.1.4 Selected Configuration Interaction

In the (multi-reference) methods presented above, the selection of configurations was
either done via excitation criteria or via the choice of orbitals a scientist deems impor-
tant. These techniques undoubtedly include configurational "deadwood"[24], symbol-
izing configurations that do not significantly contribute to the correlation energy.

The selected configuration interaction (sCI) methods—while relying on the usual prin-
ciples of CI—constitute an alternative class of methods that iteratively probe the FCI
space (within a given basis) and choose important configurations based on different
criteria, such as determinant amplitudes or energy contributions. sCI methods have
gained increasing interest over the last decades, with popular approaches including
full configuration interaction quantum Monte Carlo (FCIQMC)[25], adaptive sampling
CI (ASCI)[26], and semi-stochastic heat-bath CI (SHCI)[27].
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4.2 Density Functional Theory

In this thesis, the configuration interaction using a perturbative selection made itera-
tively (CIPSI) method, which was pioneered by Huron, Malrieu, and Rancurel[28,29], is
used. CIPSI determines the energy contribution of a determinant α (absent from the
reference space) via second-order perturbation theory using an Epstein-Nesbet[30,31]

zeroth-order Hamiltonian

δe(2)α =
⟨Ψ(n)

0 |Ĥ|α⟩
E(n)

0 − ⟨α|Ĥ|α⟩
, (4.1)

with E(n)
0 and Ψ(n)

0 as the n-th iteration ground state energy and wave function, re-
spectively. A more detailed description of the CIPSI algorithm can be found in ap-
pendix A.

4.2 Density Functional Theory

Density functional theory (DFT) is, today, the most applied method in electronic struc-
ture theory. The methods, presented above, all draw on wave functions, which are
high-dimensional objects with at least 3N degrees of freedom, to solve the Schrödinger
equation. Falling back on the three-dimensional electronic density to characterize the
ground state would severely reduce the complexity of the problem. Pierre Hohenberg
and Walter Kohn[32] proved in 1964 that the ground state of a system can be fully and
equivalently described as well by the ground state wave function as by the ground
state electronic density. In other words, the information required for the construction
of the Hamiltonian, namely the number of electrons and nuclei, as well as the nuclear
positions and atomic numbers, can be extracted from the electronic density.[14] All the
information enshrined in the high-dimensional wave function is thus also present in
the electronic density. As a consequence, the exact ground state energy can be written
as a functional of the exact ground state electronic density.

In a second theorem, Hohenberg and Kohn proved a variational principle for the den-
sity

EHK[ρ] ≥ EHK[ρ0] ≡ E0, (4.2)
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4 The Pursuit of Electronic Correlation

with the exact ground state electronic density ρ0 and its corresponding energy E0. The
key problem of DFT is, however, that the mathematical form of this energy functional
remains unknown.

It was only with the development of the Kohn-Sham (KS) formalism that DFT became
important in chemistry. In its original, orbital-free form, DFT struggled to describe
the electronic kinetic energy, which is—following the virial theorem—as large in value
as the total energy of a system, and should, therefore, be determined accurately. The
KS formalism, which was developed by Walter Kohn and Lu J. Sham[33], assumes that
the electronic density of a real system with interacting electrons is equivalent to the
electronic density of a fictitious system with non-interacting electrons. Orbitals, more
precisely Kohn-Sham spin orbitals {ϕi}, are then re-introduced for the description of
the kinetic energy functional. The DFT energy EDFT[ρ] is defined as

EDFT[ρ] = TKS[{ψi}] +
∫

v(r)ρ(r)dr + J[ρ] + Exc[ρ], (4.3)

where TKS[{ψi}] corresponds to the kinetic energy functional of the non-interacting
electrons, J[ρ] to the Coulomb energy, and Exc[ρ] to the exchange-correlation energy
functional, which includes exchange and correlation effects, a correction for the kinetic
energy (for interacting electrons), as well as the correction of the self-interaction error
(hidden in J[ρ]). The second term on the right-hand side of Eq. (4.3), also known as
the external potential, is system dependent and describes the electron-nucleus interac-
tion.

The exact form of the exchange-correlation functional is, unfortunately, not known. The
pursuit of accurate approximations constitutes a highly active field of research with a
wide range of functionals tailored to all kinds of problems having been developed to
date. One class of functionals, known as hybrid functionals, include the (exact) HF
exchange EHF

x to some extent:

Ehybrid
xc = (1 − a)Ex + aEHF

x + Ec (4.4)

In this thesis, the B3LYP[34–36] and the PBE0[37,38] functionals with a = 0.2 and a = 0.25,
respectively, are employed.
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4.3 Explicit Treatment

Similar to the HF theory, the Kohn-Sham equations are solved iteratively by means of
the SCF approach. The Ritz method is employed to minimize the energy, the final DFT
energy is, however, not variational due to the approximations made in the exchange-
correlation functional, resulting in an alteration of the Hamiltonian. A major drawback
of DFT is that its accuracy can—in contrast to wave function-based methods—not be
systematically improved.

4.3 Explicit Treatment

Another ansatz to account for the electron correlation is based on explicitly including
the electron-electron distance in the wave function. This approach is able to provide
highly accurate results, the explicit treatment complicates, however, the evaluation of
the integrals enormously, limiting it to small systems.

The idea of including the inter-electronic distance in the wave function was first applied
by Egil A. Hylleraas in 1929—shortly after the formulation of quantum mechanics—
to describe, and very successfully so, the ground state of the helium atom.[3] This
Hylleraas-CI method has, however, to date only been applied to systems with a maxi-
mum of ten electrons[39] due to the very high numerical complexity of the problem.

When one intends to include the inter-electronic distance rij in the wave function, which
has the greatest effect—in terms of the Coulomb interaction—for small distances, one
must discuss the behavior of the wave function for the coalescence of (charged) parti-
cles. Kato, who analyzed this in 1957 for the coalescence of two particles[40], deduced
(from the Schrödinger equation) the singular character of the many-body wave function
at these coalescence points. This discontinuity of the derivative of the wave function
for the coalescence of two electrons is described by

∂Ψ̂
∂rij

∣∣∣∣∣
rij=0

=
1
2

Ψ(rij = 0), (4.5)

with Ψ̂ denoting spherical averaging.

Tackling the problems that follow from the explicit treatment of electron correlation has
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4 The Pursuit of Electronic Correlation

been subject to intense research with considerable progress having been made since the
mid-2000s, see review by Kong et al.[41] for details. Promising R12/F12 methods in-
clude MP2-R12[42] as well as various coupled cluster (CC) (e.g. CCSD(R12)[43,44], CCSD-
F12x[45]), and multi-reference (e.g. R12-MRCI[46,47], MRMP2-F12[48]) approaches.

Another class of methods that can—rather easily—employ explicitly correlated wave
functions are the quantum Monte Carlo (QMC) methods, since the required integrals
are evaluated in a stochastic way, see next section. The explicit treatment of electron-
electron interactions is usually accounted for in QMC by so-called Jastrow correlation
functions (defined below) and allows for very accurate results. A similar approach
employing a transcorrelated Hamiltonian in FCIQMC was recently developed.[49,50]
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5 Quantum Monte Carlo Methods

"THIS WILL ALL MAKE SENSE WHEN I AM OLDER." – Olaf

In QMC, the use of random number sequences (Monte Carlo) is paired with quantum
mechanics to tackle quantum chemical and physical problems. Quantum Monte Carlo
methods distinguish themselves from (most) methods, presented above, through their
stochastic—contrary to deterministic—nature. They can, on the one hand, be employed
to simulate truly random processes and, on the other hand, to stochastically evaluate
multi-dimensional integrals. For the latter application, they offer a way to solve prob-
lems with very high dimensionality (very large Hilbert spaces), where standard analyt-
ical and numerical approaches fail.

QMC methods are among the most rigorous techniques when an accuracy beyond
mean-field theory is required. They have some advantages compared to traditional
electronic structure methods. First of all, QMC scales favorably with the system size
as O(N3) and is inherently parallel. Furthermore, the memory requirements for QMC
calculations are comparably low. And, finally, the accuracy—in terms of the statistical
uncertainty—of QMC calculations can be tuned by means of the sample size.[11]

Various reviews about QMC methods[10,11,51,52] are readily available in the literature,
which is why only the concepts relevant to this thesis will be presented in this part.

5.1 Underlying Foundations

The foundations for both QMC methods used in this thesis, namely variational Monte
Carlo (VMC) and diffusion Monte Carlo (DMC), will be provided below. Both tech-
niques correspond to real-space QMC methods.
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5 Quantum Monte Carlo Methods

5.1.1 Statistical Analysis of Random Variables

The expectation value of a (one-dimensional) function f (x), distributed according to
the probability density function p(x), can be calculated as follows

⟨ f ⟩p ≡
∫

f (x)p(x)dx. (5.1)

A probability density function is uniquely defined by its moments

⟨xk⟩p ≡
∫

xk p(x)dx, (5.2)

with the first moment (k = 1) describing the mean value of x. The expectation values
in Eq. (5.3) correspond to the central moments of p.

⟨(x − x̄)k⟩p ≡
∫
(x − x̄)k p(x)dx (5.3)

The second central moment (k = 2) is also known as the variance σ2 of the probabil-
ity density function. The standard deviation σ is obtained as the square root of the
variance.

If the form of probability density is not known—which is often the case—the expecta-
tion value of Eq. (5.1) can be obtained as the mean of the f (Xi) values, with the {Xi}
corresponding to a set of random variables that are distributed according to p(x):

⟨ f ⟩p = lim
M→∞

1
M

M

∑
i=1

f (Xi) (5.4)

Let us imagine a (finite) sample {X1, X2, . . . , XM} of size M, again distributed as p(x).
The arithmetic mean can be used as an estimator for the sample mean

SM ≡ 1
M

M

∑
i=1

Xi. (5.5)
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5.1 Underlying Foundations

The sample mean SM is itself a random variable. The central limit theorem states that—
for large M—the sample mean distribution converges toward a Gaussian distribution,
independent of the form of the initial probability density function. For N independent
sample means Si, one can thus write

x̄ =
1
N

N

∑
i=1

Si, (5.6)

which corresponds to the mean value of x, denoted as x̄. The variance of the mean of
the samples σ2

x̄ can then be calculated—using Bessel’s correction—as

σ2
x̄ =

σ2

N − 1
, (5.7)

with σ2 corresponding to the variance of the Si. The standard deviation is then defined
as

σx̄ =
σ√

N − 1
. (5.8)

The central limit theorem is fundamental for the Monte Carlo methods since the stan-
dard deviation can only be interpreted as an approximation error if the sample mean
is normally distributed. As a consequence (for large enough independent samples), the
probability of finding the Si within one standard deviation (of the mean value) cor-
responds to 68%, within two standard deviations to 95%, and within three standard
deviations to 99.7%.[51]

5.1.2 Monte Carlo Integration

Monte Carlo integration can be employed to evaluate a definite integral of the following
form

I =
∫

Ω
f (x)p(x)dx. (5.9)
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5 Quantum Monte Carlo Methods

p(x) can act as a probability density function if p(x) ≥ 0 over the domain Ω and

∫
Ω

p(x)dx = 1. (5.10)

By drawing a sample (of size M) out of p(x), the value of I can be estimated using
Eq. (5.5):

SM =
1
M

M

∑
i=1

f (xi) (5.11)

Using the sample mean as an estimator for the expectation value of the integral in
Eq. (5.9) is known as Monte Carlo integration. The law of large numbers ensures that

lim
M→∞

SM = I. (5.12)

As can be seen from Eq. (5.8), the statistical uncertainty of I can be reduced by increas-
ing the sample size or by reducing the sample variance.

5.1.3 Importance Sampling

Importance sampling paves the way to reduce the sample variance. In the Monte Carlo
integration described above, sampling can be inefficient since areas with both large and
small integrand values are equally sampled. In importance sampling Monte Carlo, a
new probability density function p̃(x) is introduced. Eq. (5.9) is then altered to

I =
∫

Ω

f (x)p(x)
p̃(x)

p̃(x)dx. (5.13)

The density p̃(x) is chosen such that the fluctuations of the fraction in Eq. (5.13) are
minimal, leading to a reduction of the variance. The expectation value of I can then be
estimated as
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S̃M =
1
M

M

∑
i=1

f (xi)p(xi)

p̃(xi)
. (5.14)

This weighting of the sample results in a higher density of the sample points in regions
where f is large and a lower one where f is small. The reduction in variance directly
implies that a smaller sample can be utilized to achieve the desired level of accuracy.

5.1.4 Metropolis-Hastings Algorithm

The question that remains, until now, unanswered is how to draw a sample out of an
arbitrary density function. This can be achieved by means of the Metropolis-Hastings
algorithm[53,54] which makes use of a Markov chain. In a Markov process, the proba-
bility of moving to a new state only depends on the current state, not on the history of
the states that have been visited. This process requires only two components: an initial
state and a matrix that describes the transition probability from the initial state Ri to
the final state R f .

The detailed balance condition is imposed to construct the transition matrix (here
A(R f |Ri)T(R f |Ri)), with ρ(R) as its stationary distribution (that one wishes to sam-
ple):

A(R f |Ri)T(R f |Ri)ρ(Ri) = A(Ri|R f )T(Ri|R f )ρ(R f ). (5.15)

In Eq. (5.15), a two-step process is adopted for the transition matrix. The matrix T is
used to propose a new step, while A describes the probability with which this new step
is accepted. The acceptance matrix A is defined as follows:

A(R f |Ri) = min

{
1,

T(Ri|R f )

T(R f |Ri)

ρ(R f )

ρ(Ri)

}
. (5.16)

The choice of the proposal matrix T is less straightforward, but one has a higher degree
of freedom. T should be chosen such that the proposed moves are large without, how-
ever, dispensing with high acceptance probabilities. Additionally, reducing the serial
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correlation between the sample points should be considered for the choice of T.

In the original work by Metropolis et al.[53], T was chosen to be symmetric, i.e. T(R f |Ri) =

T(Ri|R f ). Hastings[54] later generalized the algorithm to T(R f |Ri) ̸= T(Ri|R f ), result-
ing in an improved efficiency.

Translated to our real-space methods, the distribution ρ(R) corresponds to the proba-
bility density function Ψ2

T(R)/
∫

Ψ2
T(R)dR and an approximate Green’s function, see

Ref. 55, is employed for the proposal matrix T.

A disadvantage of the Metropolis-Hastings algorithm is the serial correlation of the
sample points. The importance of having independent samples was shown in 5.1.1.

5.2 Wave Function Form

QMC methods usually rely on having—in terms of accuracy and efficiency—suitable
approximate wave functions. The advantage of stochastically evaluating integrals is,
however, that one is rather flexible in the choice of the wave function form.

In this work, so-called Slater-Jastrow-type trial wave functions, constructed from a Jas-
trow correlation function eU(R) and a linear combination of CSFs |Φi⟩, are employed:

ΨT(R) = eU(R) · ∑
i

ciΦi(R). (5.17)

5.2.1 Jastrow Correlation Function

The name of the Jastrow factor can be traced back to the physicist Robert Jastrow who
introduced the idea of using functions that include the inter-electronic distances in or-
der to capture the electron correlation.[56]

The product approach in Eq. (5.17) together with the exponential form of the Jastrow
factor—making it totally symmetric with respect to electron permutations—entail that
it does not change the nodes of the wave function. The Jastrow factor describes the
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correlated motion of electrons, thus accounting for the short-range dynamic electron
correlation. It is usually expanded into different many-body terms

U = U(2)
ee + U(2)

en + U(3)
een + . . . , (5.18)

with "e" denoting the electrons and "n" the nuclei. The superscripts indicate how
many particles are involved for each term. It has been shown that the improvement
which is achieved by including Jastrow terms of an even higher order (than indicated
in Eq. (5.18)) is minor compared to the increase in computational expenditure.[57]

The ee term yields the highest contribution to the electron correlation. However, it also
introduces an excessive repulsion of the electrons, especially near the nuclei where the
electron density is large. This effect is corrected by the en term. The three-body term
provides a much smaller, yet non-negligible, contribution to the electron correlation.

The potential energy diverges if two particles coalesce due to its inverse dependence on
the inter-particle distances ( 1/rij and 1/riI). The correct behavior of the wave function
at the coalescence points of two particles is determined by the cusp conditions. The
condition for the coalescence of two electrons has been introduced in section 4.3. A
similar condition can be formulated for the coalescence of an electron with a nucleus,
the slope of the wave function being proportional to the atomic number Z:

∂Ψ̂
∂riI

∣∣∣∣
riI=0

= −ZIΨ(riI = 0). (5.19)

When accurate MOs are used for the construction of the SD, the electron-nucleus cusp
condition is approximately fulfilled. Since the U(2)

ee and U(2)
en terms describe the respec-

tive cusps, the three-body term U(3)
een should be constructed cusp-less.

The Jastrow factor is obtained as sums over all pairs with the functions f , gI , and hI

corresponding to polynomials that depend on the inter-particle (scaled) distances:

U = ∑
i<j

f (r̄ij) + ∑
I,i

gI(R̄Ii) + ∑
I,i<j

hI(R̄ij, R̄Ii, r̄I j). (5.20)
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For the Jastrow factor employed in this work, the polynomials are expressed as power
series using the scaled distances, first introduced by Boys and Handy[58]:

r̄ =
αr

1 + αr
. (5.21)

Eq. (5.21) is used for both, the electron-electron and electron-nucleus distances. The pa-
rameter α is kept fixed at a value of one. The Jastrow factor will be denoted as smFGH
throughout this thesis, with F, G, and H corresponding to the order of the electron-
electron, the electron-nucleus, and the electron-electron-nucleus polynomials, respec-
tively. "sm" stands for Schmidt and Moskowitz, since the generic Jastrow, used in this
thesis[59,60], is based on their work.[61] Further details on the Jastrow factor employed
in this thesis are given in Ref. 60.

Concerning the wave function optimization, see below, not all Jastrow parameters have
to be optimized, some are fixed due to the cusp conditions.

5.2.2 Configuration State Functions

The CSFs constitute the anti-symmetric part of the Slater-Jastrow wave function. A
configuration state function corresponds to a linear combination of SDs. The coeffi-
cients of the determinants are determined by the spin and, where applicable, spatial
symmetry of the considered state. The SDs are in turn constructed from orthonormal
single-particle orbitals. Each MO ϕi is expanded into a basis of single-particle functions
χµ:

ϕi =
Nbf

∑
µ=1

ai,µχµ. (5.22)

The basis functions employed in this work are either Slater-type orbitals (STOs) (for
all-electron calculations) or Gaussian-type orbitals (GTOs) (for effective core potential
(ECP) calculations). The former have the advantage that they intrinsically impose the
electron-nucleus cusp.

A correct wave function has to be an eigenfunction of both the Ŝ2 and Ŝz operators for
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5.2 Wave Function Form

Fig. 5.1: Spin quantum number S as a function of the number of electrons N. The number of independent
spin eigenfunctions, for a given number of electrons and the resultant spin quantum number, is
indicated within the circle. The diagram is taken from Ref. 63.

any stationary state. If a wave function is not an eigenfunction of the square of the total
spin operator, the wave function does not correspond to a pure spin state and is said to
be spin contaminated. CSFs are inherently eigenfunctions of Ŝ2 and Ŝz.

One way to construct these spin eigenfunctions is through a genealogical construction,
introduced by Kotani and co-workers.[62] In this scheme, the spin functions X(N, S, MS; k)
are obtained by successively coupling electron spins. When adding an electron to a
state with quantum number S, the addition theorem of angular momenta allows for two
final states with quantum numbers S + 1

2 and S − 1
2 , respectively. In order to achieve

an N electron state with quantum number S, one can either start from an (N − 1) elec-
tron spin function with S + 1

2 (substraction) or from an (N − 1) electron spin function
belonging to S − 1

2 (addition).[63]

A branching diagram[64], see Fig. 5.1, can be used to visualize the spin function con-
struction procedure. The figure in the circle indicates the number of independent spin
functions (or CSFs) for given N and S values. Note that the number of independent spin
functions grows very fast with the number of electrons. The number of degenerate spin
functions for a given (N, S) tuple corresponds to the possible routes that lead from the
origin to the desired point in the branching diagram. For instance, two independent
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spin functions can be constructed for N = 4 and S = 0 (singlet state), the moving pat-
terns being as follows ("/" stands for moving up, while "\" designates moving down in
the diagram):

"/\/\" and "//\\"

It is sufficient to perform the construction of the spin functions for the highest spin
component (MS = S) of each state.[63] The addition formula—corresponding to moving
up in the branching diagram—is then given as

X(N, S, S; k) = X(N − 1, S − 1
2 , S − 1

2 ; k′)α(N). (5.23)

The construction of the spin eigenfunctions using the substraction formula—equivalent
to moving down in the branching diagram—is a bit more tedious, see Eq. (5.24).

X(N, S, S; k) = [− X(N − 1, S + 1
2 , S − 1

2 ; k′)α(N) (5.24)

+ (2S + 1)1/2X(N − 1, S + 1
2 , S + 1

2 ; k′)β(N)](2S + 1)−1/2

The genealogy of the construction scheme is reflected in the Eqs. (5.23) and (5.24) since
they display which (N − 1) spin function is used to generate the N electron function.
As for the construction of the (N − 1) spin function, one can tell from which (N − 2) it
originates, and so on.[63]

In practice, within the framework of spin-free quantum mechanics, a product of spin-
up and spin-down determinants is used in order to reduce the computational cost. This
is possible since the Slater matrix of an SD can always be subjected to a block diago-
nalization into spin-up and spin-down sub-matrices without loss of general validity.[65]

The employed Hamiltonian, and thus the propagators in QMC, have no explicit spin
dependence. The spins ms,i of the n electrons can, therefore, be chosen randomly as
long as their sum equals the total quantum number MS:

n

∑
i

ms,i = MS. (5.25)
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As a consequence, one can equivalently assign the spins to the individual electrons and
evaluate the spin functions α(ms) and β(ms) for the given ms values:

α(ms) =

{
1 if ms = 1/2

0 if ms = −1/2
, β(ms) =

{
0 if ms = 1/2

1 if ms = −1/2
.

The product form is then obtained by a re-labelling of the electron indices.[65]

5.3 Variational Monte Carlo

All the ingredients needed for VMC have been introduced in the previous sections.
Let us define a mathematical entity, called walker, that corresponds to a 3n-dimensional
vector R = (r1, r2, . . . , rn) containing the Cartesian coordinates of all n electrons, with
ri = (xi, yi, zi).

In the VMC method, the Ritz quotient, see Eq. (2.16), is evaluated by means of Monte
Carlo integration. The VMC energy is given as

EVMC(R) =
⟨ΨT(R)|Ĥ|ΨT(R)⟩
⟨ΨT(R)|ΨT(R)⟩ =

∫
|ΨT(R)|2 ĤΨT(R)

ΨT(R)
dR∫

|ΨT(R)|2dR
=

∫
EL(R)ρT(R)dR, (5.26)

with ρT(R) = |ΨT(R)|2/
∫
|ΨT(R)|2dR corresponding to the probability density and EL(R) =

ĤΨT(R)/ΨT(R) to the local energy. If ΨT(R) is an eigenfunction of the Hamiltonian, the
local energy is constant.

A sample of size M, {Rk}k=1,...,M, is drawn out of the probability density with the
Metropolis-Hastings algorithm and the VMC energy is obtained as the sample mean
of the local energy

EVMC(R) = lim
M→∞

1
M

M

∑
k=1

EL(Rk) ≈
1
M

M

∑
k=1

EL(Rk). (5.27)
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Note that the only requirements the trial wave function needs to satisfy for the evalua-
tion of the energy are that it needs to be quadratically integrable and additionally, the
quantities ΨT,∇ΨT, and ∆ΨT must be continuous.

5.4 Wave Function Parametrization and Optimization

The trial wave function can be optimized within the VMC framework. The wave func-
tion does not only depend on the positions of the electrons but also on the parameter
vector p = {α, c, κ} which involves the Jastrow parameters α, the CI coefficients c, and
the orbital rotation parameters κ. The parametrized wave function is given as[66]

|ΨT(α, c, κ)⟩ = Ĵ(α)eκ̂(κ)
NCSF

∑
i=1

ci |Ci⟩ , (5.28)

where eκ̂(κ) corresponds to the orbital rotation operator, see e.g. Ref. 21. κ̂ is an anti-
Hermitian operator, which makes the orbital rotation operator unitary, preserving the
orthogonality of the orbitals (although that is not necessary for QMC). This parametriza-
tion for the optimization of the molecular orbitals is, amongst others, also used in MC-
SCF.

The MO coefficients are the most challenging to optimize within VMC, since they are
not linearly independent, resulting from the invariance of the SD when rows or columns
(or multiples thereof) are exchanged. The MOs of a single-determinant ansatz are
classified into closed (doubly occupied), open (singly occupied), and virtual (unoccu-
pied) orbitals, with the only non-redundant orbital rotations involving closed → open,
closed → virtual, and open → virtual. On the other hand, for a CASSCF wave function,
the non-redundant rotations are inactive → active, inactive → virtual, and active → vir-
tual.[66] For sCI wave functions, some active → active orbital rotations are additionally
non-redundant. Only rotations between orbitals that transform according to the same
irreducible representation have to be considered.

During a VMC calculation these different sets of parameters are optimized in order to
minimize either the variance of the trial wave function’s local energy or the mean of
the local energy itself. For the exact wave function, both the variance and the energy
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minimization yield the same result.

5.4.1 Variance Minimization

The variance of the local energy (see Eq. (5.3) for k = 2) is given by Eq. (5.29) in a
simplified form, with Eref as an estimate of the mean of the energy, usually obtained
from lower level ab initio calculations.

σ2
n(p) =

1
n

n

∑
k=1

(EL(Rk, p)− Eref)
2 (5.29)

The variance minimization corresponds to a non-linear least-squares minimization prob-
lem. In our code AMOLQC[67], the algorithm NL2SOL, developed by Dennis et al.[68], is
used. The variance minimization is a very stable optimization because the variance is
bounded from below (the exact wave function has a variance of zero). This is why it is
usually used as a pre-optimization step for the energy minimization. The variance min-
imization requires a much smaller sample size, making it overall less time-consuming
than the energy minimization.

5.4.2 Energy Minimization

Although the energy minimization is computationally more demanding, it is able to
provide more accurate energy differences than the variance minimization.[69]

There are different methods suitable for the minimization of the energy with respect to
the different parameters. One distinguishes between the linear, Newton, and pertur-
bative methods, which will be described in more detail in the following sections. The
notation from the work of Toulouse and Umrigar[66] is mostly adopted for the presen-
tation of the optimization methods.

Efficient (stochastic) optimization methods are not only assessed by the number of iter-
ations needed to reach convergence but also by the computational effort per iteration. It
is thus of fundamental importance to have estimators with low variances for the com-
putation of the quantities—such as the derivatives of the wave function and the local
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energy with respect to the parameters—required for each optimization step. Low vari-
ance estimators allow for fewer evaluations, resulting in a reduced the computational
effort.

5.4.2.1 Linear Method

For wave functions that only depend linearly on parameters—as in CI—the energy
minimization is obtained, straightforwardly, by diagonalizing the Hamilton matrix in
the space spanned by the parameters. In QMC, the linear method has been successfully
applied to the optimization of linear parameters by Nightingale and Melik-Alaverdian.[70]

The method was later extended by Umrigar and co-workers[66,71] to also optimize non-
linear parameters. This can be achieved by expanding the parameter-dependent wave
function to the first order in the parameters p:

Ψ̃lin(p) = Ψ̃lin(p0 + ∆p) = Ψ̃(p0) +
Nopt

∑
i=1

∆piΨ̃i(p0). (5.30)

The Ψ̃i describe the derivatives—orthogonal to Ψ̃(p0)—of Ψ̃(p) with respect to the pa-
rameters pi. The wave function and parameter derivatives in Eq. (5.30) are normal-
ized

Ψ̃(p) =
1√

⟨Ψ(p)|Ψ(p)⟩
Ψ(p), (5.31)

with the normalization constant depending on the parameter change. In the linear
method, the eigenvalues Elin and eigenvectors ∆p (parameter changes) are the solutions
to the following generalized matrix eigenvalue problem:

H · ∆p = ElinS · ∆p. (5.32)

The Hamiltonian H is diagonalized in the basis spanned by the current wave function
Ψ̃(p0) and its parameter derivatives Ψ̃i(p0). S corresponds to the overlap matrix.

Nightingale and Melik-Alaverdian have shown that using a non-symmetric Hamilton

34



5.4 Wave Function Parametrization and Optimization

matrix is advantageous since it satisfies the zero-variance property.[70]

The linear method efficiently optimizes the Jastrow, CSF, and orbital parameters.[66]

For linear parameters, convergence is achieved within one iteration, while for the op-
timization of non-linear parameters, the process has to be repeated iteratively until
convergence is reached.

The optimal parameter variations are obtained by solving Eq. (5.32) for the lowest phys-
ical eigenvalue. In practice, for finite Monte Carlo samples, the lowest eigenvalue may
not provide the sought parameter change since spurious solutions can occur. This is
prevented by recalculating the sample and its energy—with a much smaller sample—
for a set of eigenvectors using the new parameters. For large sets of parameters (up to
tens of thousands), storing the Hamilton and overlap matrices becomes cumbersome.
With their blocked linear method, Zhao and Neuscamman[72] were able to circumvent
this memory bottleneck by blocking the Hamilton and overlap matrices.

5.4.2.2 Newton Method

The Newton method was first applied to energy minimization in VMC by Lin, Zhang,
and Rappe in 2000.[73] It was later improved in terms of robustness and efficiency by
Umrigar and co-workers[66,74], as well as by Sorella[75]. The key challenge for efficient
Newton methods lies in developing low variance estimators for the gradient and the
Hessian.

In the Newton method, as described in Ref. 66, the energy is expanded in a Taylor series
to the second-order around the current parameter vector p0

E(2)(p) = E0 +
Nopt

∑
i

gi∆pi +
1
2

Nopt

∑
i,j

hij∆pi∆pj. (5.33)

E0 corresponds to the VMC energy for the current parameter set, while the gi and hij

constitute the elements of the energy gradient and Hessian, respectively:

gi =
∂E(2)(p)

∂pi

∣∣∣∣∣
p=p0

, hij =
∂2E(2)(p)

∂pi∂pj

∣∣∣∣∣
p=p0

. (5.34)
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The parameter change is then given as

∆p = −h−1 · g. (5.35)

In practice, one usually solves the numerically more stable form h ·∆p = g of Eq. (5.35),
which corresponds to a system of inhomogeneous linear equations.

Newton-like algorithms often suffer from limited convergence radii. The method, pre-
sented above, can for example be stabilized by updating the Hessian as follows

h′ = h + νI, (5.36)

with the positive constant ν adapted throughout the optimization. This approach en-
sures that the Hessian is positive definite. By increasing ν, one smoothly moves toward
a steepest descent step.[74]

The Newton method efficiently optimizes the Jastrow, CSF, and MO parameters.[66]

5.4.2.3 Perturbative Method

The perturbative optimization method[66] and the energy fluctuation potential method[76]

are both variants of the stochastic reconfiguration method.[77] In the approach formu-
lated by Toulouse and Umrigar[66], the parameter change is obtained as

∆p(1)i = − 1
∆Ei

Nopt

∑
j
(S−1)ijHj0, (5.37)

with

Hj0 = ⟨Ψj|Ĥ|Ψ0⟩ =
gj

2
. (5.38)

Eq. (5.37) is closely related to the Newton parameter variations, see Eq. (5.35), with an
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approximate Hessian hpert
ij = ∆Ei/(S−1)ij. The energy denominators ∆Ei are determined

as follows:

∆Ei =
⟨Ψi|Ĥ|Ψi⟩
⟨Ψi|Ψi⟩

− E0 =
Hii

Sii
− H00. (5.39)

In both the linear and the Newton method, the parameter derivatives of the local energy
EL,i are needed, which is especially demanding when ECPs are used. These derivatives
are only needed in the perturbative optimization method for the computation of the
energy denominators. It has been shown[66,78] that rough estimates for the energy de-
nominators are sufficient. In practice, they are thus only computed in the first step (with
a smaller sample size) and then kept fixed throughout the subsequent iterations. For
the parameter changes using the perturbative optimization method, only the overlap
matrix and the gradient need to be calculated, which considerably reduces the compu-
tational effort. The perturbative optimization technique can be used to optimize the CI
and orbital parameters, not however the Jastrow factor.[66]

5.5 Diffusion Monte Carlo

The notation of Hammond, Lester, and Reynolds[51] is mostly adopted here. The DMC
technique is a stochastic projector method that solves the time-dependent Schrödinger
equation—with a time-independent Hamiltonian—in imaginary time to extract the ground
state

−∂Ψ(R, τ)

∂τ
= (Ĥ − ET)Ψ(R, τ), (5.40)

where ET is an arbitrary energy offset, see below. The time t has been replaced by an
imaginary time variable τ = i · t. The formal solution of Eq. (5.40) can be expanded into
a set of eigenfunctions ψk(R) of the Hamiltonian

Ψ(R, τ) =
∞

∑
k=0

Cke−τ(Ek−ET)ψk(R), (5.41)
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where the Ck = ⟨ψk|Φ(t = 0)⟩ depend on the initial condition. Note that the time and
space variables have been separated in Eq. (5.41). Additionally, it becomes apparent
why the time variable has been exchanged for an imaginary time. Using the original
time variable, Eq. (5.41) would display an (undesired) oscillatory time behavior, while
in the form presented here, an exponential time behavior is obtained. The ground state
is projected out in the long time limit (τ → ∞) since the excited states—having higher
energy eigenvalues Ek—decay much faster. The rate at which convergence toward the
ground state occurs is determined by the energy difference between the two lowest
eigenstates.[79]

In order to make the imaginary time-dependent Schrödinger equation feasible for Monte
Carlo methods, it has to be transformed to an integral form (see appendix B):

Ψ(R′, τ + δτ) =
∫

G(R′, R; δτ)Ψ(R, τ)dR (5.42)

with the Green’s function defined as

G(R′, R; δτ) = ⟨R′|e−(Ĥ−ET)δτ|R⟩ . (5.43)

The operator in Eq. (5.43) is called the time evolution operator. The Green’s function
corresponds to the position representation of the time evolution operator and describes
the propagation between two electron arrangements in imaginary time.

The idea of DMC is to exploit the close resemblance of the time-dependent Schrödinger
equation to a diffusion process. This connection becomes clear when rewriting Eq. (5.40)
using the explicit form of the Hamiltonian.

∂Ψ(R, τ)

∂τ
=

1
2

∆Ψ(R, τ) + (ET − V(R))Ψ(R, τ) (5.44)

The first term on the right-hand side of Eq. (5.44) is closely related to Fick’s second law,
while the second term can be interpreted as a first-order rate equation or branching
process. Both processes can be simulated separately with QMC.[51] To achieve this, the
operator in Eq. (5.43) has to be factorized into a kinetic and a potential energy part:
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e−(T̂+V̂−ET)τ ≈ e−T̂τe−(V̂−ET)τ ≡ GdiffGb, (5.45)

with Gdiff and Gb describing the Green’s functions for both processes, respectively.
This approach, called short time approximation, makes use of the Trotter-Suzuki for-
mula[80,81] and is only valid for small time steps because T̂ and V̂ do not commute. The
first correction term corresponds to

G − GdiffGb =
1
2
[
V̂, T̂

]
τ2 +O(τ3), (5.46)

introducing an error O(τ3), called time step bias. By performing several DMC calcula-
tions with different (small) time steps, the time step error can be removed by extrapo-
lating the DMC energy to a zero time step.

Both processes provide exact solutions to their respective differential equations:

−∂Gdiff(R′, R; τ)

∂τ
=

1
2

∆Gdiff(R′, R; τ) (5.47)

−∂Gb(R′, R; τ)

∂τ
= (ET − V)Gb(R′, R; τ). (5.48)

The solutions for the diffusion and the branching processes are given by the following
equations:

Gdiff(R′, R; τ) = (2πδτ)−3N/2e−(R′−R)2/2τ (5.49)

Gb(R′, R; τ) = e−( 1
2 [V(R)+V(R′)]−ET)τ. (5.50)

Eq. (5.49) corresponds to a 3N-dimensional Gaussian distribution with variance τ. The
diffusion part of Eq. (5.42) can thus be solved by a random walk process with the walk-
ers being Gaussian distributed with a variance of τ.

The branching process, Eq. (5.50), on the other hand, is used to attribute a weight to
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each walker. After a long propagation time, the weight differences between the walk-
ers become substantial. To rectify this, a birth-death algorithm, which duplicates walk-
ers with high weights (at the same position) while killing walkers with low weights,
is adopted.[11,55] Since the number of walkers can now fluctuate, a population control
has to be introduced to prevent the population from either collapsing or exploding.[82]

To regulate the fluctuation of the walker population around a mean value, the refer-
ence energy ET is utilized. However, its adjustment during the calculation leads to a
population control error.[55]

It was previously mentioned that the ground state is only projected out in DMC in the
long time limit. Eq. (5.45) is, however, only valid for τ → 0. Luckily, the time evolution
operator, see Eq. (5.43), possesses the composition property. The long time is achieved
by subsequently using the short-time functions multiple times.[51]

5.5.1 Importance Sampling DMC

The technique presented above is also referred to as simple DMC and suffers from
inefficiency mostly due to the divergence of the potential energy term in the branch-
ing process. This can be circumvented by using importance sampling, see section 5.1.3.
Eq. (5.44) is multiplied by a guide function ΨG(R), introducing the distribution
f (R, τ) = Ψ(R, τ)ΨG(R), which replaces the wave function.[65] One then obtains the
modified time-dependent Schrödinger equation

∂ f (R, τ)

∂τ
=

1
2

∆ f (R, τ)− 1
2
∇ · ( f (R, τ)FQ(R)) + (ET − EL(R)) f (R, τ), (5.51)

with FQ(R) = 2∇ΨG/ΨG corresponding to a vector field, called quantum force. This
quantity directs the movement away from areas where |ΨG|2 is small.[51] For the diffu-
sion and branching processes, the Green’s functions are modified accordingly:

G̃dd(R′, R; δτ) = (2πδτ)−3N/2e−(R′−R−1/2δτFQ(R′))2/2δτ (5.52)

G̃b(R′, R; δτ) = e−( 1
2 [EL(R)+EL(R′)]−ET)δτ. (5.53)
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By introducing the guide function, an additional drift term occurs in the diffusion pro-
cess, the subscript on the left-hand side of Eq. (5.52) being altered to drift-diffusion. As
for the branching term, the potential energy has been replaced by the local energy, lead-
ing to a suppression of the branching process since EL(R) is nearly constant and does
not fluctuate as strongly as the potential energy.[11,52] Importance sampling, resulting
in an elevated walker density in regions where the guide function is large due to the
drift velocity, increases the efficiency and reduces the variance.

5.5.2 Fermion Sign Problem

So far, the function is assumed to be strictly positive, arising from the comparison of the
time-dependent Schrödinger with a diffusion process. As a consequence, following the
spin-statistics theorem, the DMC method is only exact for bosons which are described
by nodeless wave functions. In contrast to bosons, fermions necessitate the use of anti-
symmetric wave functions, resulting in an approximation that introduces nodes. This
approximation, in which the guide function ΨG(R) is used to enforce its nodes onto
Ψ(R, τ), is referred to as fixed-node diffusion Monte Carlo (FN-DMC). The distribution
f (R, τ) is only strictly positive if both ΨG(R) and Ψ(R, τ) share the same nodes. Note
that, without constraints, DMC converges to the bosonic ground state since this is the
mathematical ground state of the electronic Hamiltonian.

The fixed-node approach introduces a systematic error, known as the node location
error, since the exact nodes are only known for a few systems. The accuracy of the
DMC solution, with the time step bias removed, solely depends on the nodes of the
guide function.

The DMC energy is determined using a mixed estimator and calculated as a weighted
average of the local energy over the walker sample.[79]

Both the VMC and DMC methods obey the variational principle within the limit of
all-electron calculations. Moreover, the VMC energy approaches the DMC energy by
optimizing the Jastrow factor.
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5.6 Effective Core Potentials

QMC methods are capable of producing energies within the "chemical accuracy" bound-
ary (1 kcal/mol), as defined by John A. Pople[83], at a reasonable computational cost.[11]

However, when dealing with systems that involve transition metals, the computational
effort increases significantly since QMC methods scale less favorably with the atomic
number, ranging from O(Z5.5) to O(Z6.5).[51,84] For heavy atoms, where the atomic
number is large, two issues arise. First, the high kinetic energy of the core electrons
requires their time step to decrease in order to obtain accurate results. Second, the fluc-
tuation of the local energy near the nucleus becomes significant as the atomic number
increases, leading to a considerable amount of computing time being required for elec-
trons that only play a secondary role in describing chemically relevant quantities such
as bond dissociation or excitation energies.[10,52]

One solution to this problem is to exclude the core electrons from the calculation us-
ing ECPs, which reduce the effective atomic number of an element by the number of
electrons replaced by the ECP, and allow for easy inclusion of scalar relativistic effects.
The ECP is designed to capture the effect of the core electrons and nuclei on the valence
electrons.[52]

To introduce a pseudopotential, the wave function must be separated into a product
of core and valence functions, as shown in Eq. (5.54). The anti-symmetry operator Â
ensures the anti-symmetry of the product, thereby satisfying the Pauli exclusion prin-
ciple.

Ψ ≈ ÂΨcoreΨval (5.54)

The Schrödinger equation is then reduced to only include the valence electrons

ĤvalΨval = EvalΨval, (5.55)

with the pseudo-Hamiltonian (in a.u.) for the valence electrons defined as
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Ĥval = −1
2 ∑

i
∆i + ∑

i<j

1
rij

+ ∑
i,I

Vloc(RiI) + Ŵ. (5.56)

The Vloc(RiI) terms correspond to the local part of the ECP and depend on the electron-
nucleus distances. The operator Ŵ is an angular momentum-dependent non-local op-
erator which ensures the orthogonality of the valence states to the core states:

Ŵ = ∑
i,I

∑
l,m

Vl(RiI) |Ylm⟩ ⟨Ylm| . (5.57)

The operator in Eq. (5.57) is a projection operator with the spherical harmonics Ylm (cen-
tered at a given nucleus) as simultaneous eigenfunctions of the L̂2 and the L̂z operators.
The operator projects the different angular momentum components (s, p, d, ...) out of a
function (e.g. orbital), thereby allowing the different channels to be treated individu-
ally, or in other words: the different components see separate potentials.[51] The opera-
tor Ŵ should thus at the least include all the angular momentum quantum numbers of
the removed electrons. There is, however, no constraint for the higher channels.

The actual form of the ECP corresponds to a sum of Gaussians, which facilitates the
integration and have the advantage of not exhibiting singularities at the nuclei

V(r) = ∑
k

Akr−2+nk e−αkr2
, (5.58)

with the parameters nk, Ak, and αk optimized to fulfill certain requirements. Various
types of ECPs are available, including shape- and energy-consistent ECPs. The shape-
consistent ECPs aim to accurately reproduce the core orbitals[85,86], while the energy-
consistent ones aim to reproduce the orbital energies of the valence electrons for an
all-electron ansatz[87].

The non-locality of the ECP poses a significant problem for QMC methods, as they are
fully local approaches.[88] This can be solved by using the trial wave function to localize
the non-local operator:
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Wloc =
ŴΨval

Ψval
. (5.59)

In VMC, no approximation is made, since Ŵ is applied to Ψval anyway for the eval-
uation of the local energy. The random walk simulation will converge to the correct
distribution |Ψval|2 even with Ŵ as part of the Hamiltonian.[51]

In the DMC formalism, the picture is rather different. A correct localization of the ECP
would require the exact fixed-node solution. Since the exact wave function is usually
not known, employing ECPs within DMC introduces an additional error, the ECP lo-
calization error. The exponential form of the propagator, see Eq. (5.43), complicates
things; the non-local operator Ŵ can neither be included in the diffusion process, it is
not necessarily positive and, thus, cannot be interpreted as a probability density, nor
can it be integrated into the branching process because the random walk is local.[88]

One way to tackle this problem is to remove it from the propagator by localizing it on
the guide function, which is done within the locality approximation.[88] The accuracy of
the approximation depends on the quality of the guide function.

In both VMC and the locality approximation, the following integrals have to be calcu-
lated

⟨Ylm(θk, ϕk)|Ψval(r1, ..., rn)⟩ =
x

Y∗
lm(θk, ϕk)Ψval(r1, ..., rk, θk, ϕk, ..., rn)r2

k sin θkdθkdϕk.
(5.60)

These integrals on the surface of a sphere with radius rk are evaluated by means of
Lebedev integration[89,90] which can exactly integrate spherical harmonics up to a cer-
tain degree. The numerical integration is performed for several points—in this thesis:
12 for VMC and 18 for DMC[88]—on a polyhedron. Note that, if one excludes the Jas-
trow factor from the localization of the ECP, the integrals in Eq. (5.60) can be solved
analytically, as described by Hammond and co-workers[91], which substantially low-
ers the computational expenditure. It has, however, been shown that by including the
Jastrow factor in the localization procedure, better results in terms of energy can be
obtained.[92,93]

The drawback of the locality approximation is that, since the Hamiltonian is modified
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(through the omission of a term), the DMC energy is not necessarily an upper bound to
the exact ground state energy.[88,94] The T move approach[95,96] makes the DMC energy
variational again, however, it does not eliminate the localization error. The error of the
energy, introduced in DMC by the localization of the ECP, is quadratic in the accuracy
of the guide wave function: ∝ (Ψval − Φ0)

2.[88]

In this thesis, the energy-consistent HF ECPs by Burkatzki, Filippi, and Dolg[97,98] and
their respective triple-ζ basis sets are employed. Mitas and co-workers[99,100] recently
developed a new generation of ECPs that are constructed from correlated calculations.
These correlation-consistent effective core potentials (ccECPs) are designed to attain
isospectrality between the ECP and the all-electron Hamiltonians and are able to
include—to some degree—core-core and core-valence (CV) correlation.[101] The ccECPs
are used in this thesis as well.

Bachelet et al.[102] proposed in 1989 an alternative approach for removing the core
electrons which is based on a pseudo-Hamiltonian with a position-dependent effective
mass tensor in the kinetic energy term, forgoing the use of non-local operators. How-
ever, the generation of this class of pseudopotentials proved numerically difficult[103]

and their use in QMC has therefore been rather sparse. In a recent study by Bennet et
al.[104], the authors successfully constructed a pseudo-Hamiltonian for cobalt and pro-
vided accurate atomic excitation energies, as well as rigorous binding energies for CoO
at DMC level, which will undoubtedly renew the interest into this class of pseudopo-
tentials.
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6 Transition Metal Compounds

"THE COLD NEVER BOTHERED ME ANYWAY." – Elsa

Parts of this chapter are published in a condensed form in Ref. 105.

Reprinted (adapted) with permission from J. Ludovicy, K. Haghighi Mood, A. Lüchow, Full

Wave Function Optimization with Quantum Monte Carlo—A Study of the Dissociation Ener-

gies of ZnO, FeO, FeH, and CrS, J. Chem. Theory Comput. 2019, 15, 5221-5229. Copyright 2019

American Chemical Society.

Transition metals and their compounds are chemical systems that are of great inter-
est for catalytic processes, electrochemistry and biochemistry.[106–109] These metals are
particularly interesting systems due to their open d-shells, ability to exhibit multiple ox-
idation states, and tendency to possess magnetic properties. The high density of states
surrounding these species renders an accurate description rather laborious.

An accurate understanding of how catalysts work is of great importance when it comes
to elucidating and predicting catalytic processes. The study of transition metal com-
pounds with high-level quantum chemical methods is justified since the bond-breaking
of the metal and main group element plays a primary role for these processes. To
achieve an accurate theoretical understanding of bond-breaking processes, it is impor-
tant to study transition metal dimers as a first step, even though the ultimate goal may
be to investigate bulk material properties or complete catalytic cycles. However, study-
ing these small compounds with electronic structure theory is already challenging due
to their strong correlation and complex electronic structures.[110–115] For the late transi-
tion metals, being of great interest especially for catalysis, the static electron correlation
yields an important contribution to their properties. The development of efficient meth-
ods that are able to capture this part of the correlation thus constitutes a highly active
field of research. Progress has been made by designing suitable DFT functionals[116,117]

as well as by further developing multi-reference wave function-based methods, such
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as multi-reference coupled cluster (MRCC)[118].

Transition metal compounds have been thoroughly studied with various exhaustive
benchmark studies providing accurate bond dissociation energies for most systems. In
2013, Zhang et al.[112] tested 42 exchange-correlation functionals on a set of 70 molecules
containing 3d transition metals. In another study, Xu et al.[113] compared the perfor-
mance of CC and KS DFT on bond dissociation energies of 20 transition metal dimers.
Cheng et al.[114] investigated the same 20 compounds by means of scalar relativistic
CC calculations, focusing on the effects of electron correlation and basis set choice. At
about the same time, Fang et al.[119] published CCSD(T)/CBS bond dissociation ener-
gies and heats of formation for the same set of dimers. Additionally, Aoto et al.[115]

explored the dissociation energies as well as spectroscopic constants of 60 transition
metal dimers using CC methods, discussing the impact of i.a. relativistic and multi-
reference effects.

Transition metal compounds have, however, also been successfully studied with QMC
in the past. Wagner and Mitas[120] investigated transition metal oxides with FN-DMC.
Petz and Lüchow[121] reported accurate dissociation energies and ionization potentials
for sulfide compounds with FN-DMC. Diedrich et al.[122] studied transition metal car-
bonyls with regard to their dissociation energies with FN-DMC. Horváthová et al.[123]

presented energetics for transition metal organometallics employing QMC methods.
Doblhoff-Dier et al.[124] published dissociation energies of 3d transition metal com-
pounds calculated with DMC. Finally, Haghighi Mood and Lüchow[125] have shown
that a multi-reference ansatz in combination with the optimization of the orbital pa-
rameters is necessary to predict the right ground state for and to reproduce the disso-
ciation energy of FeS. In their study, the authors found that the re-optimization of the
MOs in the presence of a Jastrow correlation function was the key to obtaining accurate
results.

For several transition metal compounds, a rather large discrepancy between the the-
oretical and the experimental bond dissociation energies can still be observed. These
compounds are believed to exhibit prominent multi-reference character, implying that
the single-determinant approach is not capable of correctly describing them. In this
part of the thesis, several of these transition metal dimers are therefore revisited with
multi-reference diffusion Monte Carlo (MR-DMC). With this approach, the possibility
to obtain sufficiently accurate DMC energies by retaining compact trial wave functions
and by varying the nodal surface through orbital and CI optimization in the presence
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of a Jastrow factor is to be explored.

6.1 With Hydrogen

6.1.1 FeH

Scientists have shown a great interest—both theoretically and experimentally—in molec-
ular iron monohydride since the 1970s.[126–128] FeH is ubiquitous in our universe with a
rigorous understanding of its properties being especially important to astrophysicists,
trying to model stellar atmospheres.[129,130] Theoretical investigations on FeH have
proven rather complex, with several studies[129,131,132] even suggesting a breakdown
of the Born-Oppenheimer approximation.

FeH is revisited in this work because of the results of Truhlar and co-workers[113], who
performed DFT and CC calculations for a set of 20 transition-metal dimers. They re-
ported a significant discrepancy in the experimental dissociation energy for, amongst
others, FeH with both methods. The authors of that work also state a prominent multi-
reference character for FeH. Additionally, Doblhoff-Dier et al.[124] performed DMC cal-
culations using KS orbitals for FeH and found a significant deviation to the experi-
mental dissociation energy, suggesting that a single-reference approach is not able to
correctly describe this system.

The 4∆ ground state of FeH was first determined by Beaton et al.[133] with far-infrared
laser magnetic resonance. The valence electronic configuration of FeH corresponds to
σ2π4δ2σ1.

In order to determine the equilibrium bond distance of FeH, a potential energy curve
was recorded at the MR-DMC level for several bond distances, see Fig. 6.1. A fixed time
step of τ = 0.001 a.u., resulting in an acceptance ratio of 99% in DMC, was used for each
data point. For every bond distance, the initial (full valence) CAS(9,7) wave functions—
the active space being constructed from the 4s and 3d orbitals of the iron, and the 1s
orbital of the hydrogen atoms—were optimized with respect to the VMC energy. All
wave function parameters (Jastrow, MO, and CI) were included in the optimization.
A more detailed description of the procedure and framework conditions is given in
section 6.5. The potential energy curve was fitted with a Morse potential function[134],
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the minimum of which yields the equilibrium bond distance, corresponding to 1.567 Å
for FeH. Other spectroscopic constants, that can be extracted from the Morse fit as well,
are discussed in section 6.4.

Fig. 6.1: FeH MR-DMC potential energy curve at the Jas+MO+CI optimization level with the correspond-
ing Morse fit. A time step of τ = 0.001 a.u. was employed for each data point. An sm666 Jastrow
factor was used.

One aim of this chapter is to investigate the accuracy of a single-reference—in contrast
to a multi-reference—ansatz for transition metal compounds in the context of QMC.
For the single-determinant results, HF and KS orbitals were employed, while CASSCF
wave functions were chosen for the multi-reference approach. The VMC and time step
extrapolated DMC energies, computed for the above-determined equilibrium bond dis-
tance of 1.567 Å are given in Tab. 6.1. The Slater-Jastrow wave functions were optimized
alternately with respect to the Jastrow, MO, and CI parameters in order to minimize the
variational energy. The parameters that are not optimized with VMC are taken from
their respective ab initio calculations. ECPs were employed for all calculations, see sec-
tion 6.5 for details about the computational approach.
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Tab. 6.1: FeH VMC and DMC energies in Eh at various optimization levels, using different starting or-
bitals and BFD-VTZ/sm666.

Ansatz Orbitals Optimization level VMC energy DMC energy

Single det
HF Jas -124.2815(2) -124.3443(5)

B3LYP Jas -124.2923(2) -124.3519(5)
opt Jas+MO -124.2948(2) -124.3519(5)

CAS(9,7)
CAS Jas -124.2940(2) -124.3548(5)
CAS Jas+CI -124.3030(2) -124.3647(5)
opt Jas+MO+CI -124.3252(2) -124.3802(5)

First of all, Tab. 6.1 shows that a systematic lowering of the VMC energies—at the Jas-
trow optimization level—is achieved from HF over KS B3LYP to CAS orbitals. The op-
timization of the molecular orbitals results in lower VMC energies for both, the single-
and the multi-reference ansatzes, with the gain in energy being greater for the CAS
orbitals. Optimizing the MOs in the presence of a Jastrow factor enables the coupling
between the static and the dynamic electron correlation, which, as can be deduced from
Tab. 6.1, has a significant impact on the energies. The change in energy is much smaller
when KS orbitals are used, implying that they capture this effect at least to some extent.
For the multi-reference ansatz, the optimization of the CI coefficients lowers the energy
considerably, however, the effect is much smaller compared to the MO optimization.
The quality of the nodal surface of the wave functions can be assessed through the
DMC energies. For the single-determinant ansatz, the optimization of the MOs does
not improve the nodal surface when KS orbitals are employed, indicating that these
orbitals are already ideal before the optimization. Without the optimization of the anti-
symmetric part of the wave function (MO and CI parameters), the Jastrow correlation
function has no impact on the nodal surface. The optimization of the CI coefficients
lowers the DMC energy of the CAS(9,7) initial wave function by about 10 mEh. The
fully optimized wave function yields the best nodal surface with an energy that is low-
ered by another 15 mEh, revealing the effect of the Jastrow correlation function, and
thus of the dynamic correlation, on the nodal surface.

Tab. 6.2 contains the DMC bond dissociation energies for FeH for different ansatzes.
The dissociation energies are obtained as the difference between the atomic and dimer
energies in their respective ground states. The energies of the atomic species can be
found in appendix D. Their DMC energies only differ within the statistical uncertainty
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for the different starting orbitals and optimization levels. Throughout this chapter,
only dissociation energies at the DMC level of theory are evaluated since it has been
shown[78] that their VMC counterparts are not competitive. Since the dissociation en-
ergies are to be compared to experimental data, it is important to include relativistic
effects, the zero-point energy (ZPE), as well as the correlation between the core and
valence electrons. This correlation effect—deemed important by other studies[113,115]

as well—is lost since ECPs, removing the core electrons, are used for the calculations.
Scalar relativistic effects are intrinsically included through the ECP while the first-order
spin-orbit (SO) coupling is taken from the literature. The SO correction for the atomic
species is derived from experimental splittings[135], see Tab. D.1 in the appendix. For
FeH, the first-order SO correction is taken from Ref. 113 and amounts to −0.048 eV. The
first-order SO coupling is always negative, thereby providing a stabilizing contribution
to the energy. The ZPE is derived from the Morse fit and corresponds to 0.114(2) eV. Fi-
nally, the CV correlation contribution, see section 6.5 for details, amounts to 0.0675 eV.

Tab. 6.2: DMC dissociation energies of FeH in eV at various optimization levels, using different starting
orbitals and BFD-VTZ/sm666. The energies are CV and SO corrected and the ZPE is included.

Ansatz Orbitals Optimization level D0

Single det
HF Jas 0.81(2)

B3LYP Jas 1.02(2)
opt Jas+MO 1.02(2)

CAS
CAS Jas 1.10(2)
CAS Jas+CI 1.37(2)
opt Jas+MO+CI 1.79(2)

The optimization levels in Tab. 6.2 refer to optimized parameters for the dimer. The dis-
sociation energy for the KS nodes is significantly higher compared to the one for the HF
nodes at the Jastrow optimization level. The optimization of the molecular orbital pa-
rameters shows no improvement of the dissociation energy when initial KS orbitals are
used. For the multi-reference approach, even when dispensing with the re-optimization
of the anti-symmetric part of the complete active space (CAS) guide function, a more
accurate dissociation energy is obtained compared to the one from the fully optimized
single-reference wave function, corroborating the multi-reference character of FeH. Ad-
ditionally, a systematic improvement of the dissociation energy can be observed when
including more sets of parameters in the optimization with VMC. The MO optimization
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of the CAS wave function in the presence of a Jastrow correlation factor has the largest
effect on the bond dissociation energy, it is increased by about 0.4 eV. This shows that
the fixed-node error in DMC can be systematically reduced when accurate (optimized)
wave functions are used.

Tab. 6.3: Calculated and measured bond dissociation energies (in eV) for FeH. The D0 data refers to
values obtained for 0 K.

Investigators Method De D0

This work MR-DMC/BFD-VTZ (SO+CV) 1.90(2) 1.79(2)
This work MR-DMC/ccECP-aug-cc-pVTZ (SO) 1.91(2) 1.80(2)

Schultz and Armentrout[136] Mass Spectrometry 1.60(8)a

Jensen et al.[137]
DFT/B3LYP 2.10
DFT/BP86 2.41
DFT/PBE 2.30

Xu et al.[113]
CCSDT(2)Q/apTZ-DK(3)-CV(3-DK)‘b 1.79

DFT/B97-1-DK 2.00
DFT/M06-L-DK 2.17

Aoto et al.[115] CCSD(T)(CV)/CBS+∆DK 1.95c

Cheng et al.[114] CCSD(T)/CBS+∆T+∆Q+∆CV+∆SOd 1.95
Revised H abstraction reactionse 1.79(7) 1.69(7)

Fang et al.[119] Revised H abstraction reactionse 1.72(13)
CCSD(T)/PW91 1.95

DeYonker and Allen[138] FPA using CC (up to H excitations) 1.87

Shee et al.[139] ph-AFQMC/CCcbs 1.81(7)

a Derived using the thermal correction 0.032 eV from DeYonker and Allen.[138]

b From Table 10 of Ref. 113.
c Best estimate value.
d See Table 2 in Ref. 114. Value corresponds to cal−∆geo.
e See text for details.

In Tab. 6.3, the best estimate of the dissociation energy of FeH, computed in this work, is
compared to various experimental and theoretical data from the literature. For several
of the systems, discussed in this work, a novel type of ECP was employed, in addi-
tion to the one from Burkatzki, Filippi, and Dolg (BFD). This new generation of ECPs,
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denoted as ccECP, stems from correlated calculations and thus accounts for core-core
and—to some degree—core-valence correlation.[99,100] The dissociation energy com-
puted with this ECP is therefore only SO corrected. For FeH, both ECPs yield simi-
lar results. In 1991, Schultz and Armentrout[136] determined the dissociation enthalpy
(at 298.15 K) of FeH by means of guided-ion beam mass spectrometry and reported a
value of 1.63(8) eV. Using the thermal correction, derived by DeYonker and Allen[138],
the dissociation enthalpy can be converted to the dissociation energy and a value of
1.60(8) eV is obtained. The MR-DMC bond dissociation energies overestimate the ex-
perimental one by about 0.2 eV. Several studies suggest, however, that the experimental
bond dissociation energies for some transition metal compounds might be in need of
revision.[113,114,119,138] The dissociation energy of metal hydrides can be derived from
hydrogen abstraction reactions:

D0(M–H) = D(R+–H−) − IP(M) − EA(H) −Ethreshold,

with the reaction energy Ethreshold being obtained from mass spectrometric experiments.
The ionization potentials (IPs) and the electron affinities (EAs) have been known ac-
curately for many years[114,119], so the quantity that needs revising is the heterolytic
dissociation energy of the RH species, with RH corresponding to small organic com-
pounds. Two research groups took on this task at about the same time: Cheng et al.[114]

revised some hydride transfer reactions by using updated Active Thermochemical Ta-
bles (ATcT)[140] data while Fang et al.[119] computed the heterolytic RH dissociation
energies at the G3MP2[141] level. The updated experimental dissociation energies for
FeH are given in Tab. 6.3. The reported values are very similar and, what is more,
they are in much better agreement with the MR-DMC ones. As for other theoretical
approaches, DFT—using various functionals—severely overestimates the dissociation
energy while the CC ones are in good agreement with the ones computed in this work.
Furthermore, the focal point analysis (FPA) of DeYonker and Allen[138] as well as the
phaseless auxiliary-field QMC approach of Shee et al.[139] yield dissociation energies
that agree well with the MR-DMC ones.

Xu et al.[113] confirmed the multi-reference character of FeH using different diagnostics.
However, they obtained an accurate dissociation energy with CCSDT(2)Q, including
scalar relativistic effects and the core-valence correlation contribution, while their re-
ported DFT dissociation energies deviate considerably from the experimental value.
Nonetheless, they argued that KS DFT yields overall comparable results to CC theory
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for the twenty transition metal compounds that they investigated. Finally, the break-
down of the Born-Oppenheimer approximation, which was mentioned in several stud-
ies[129,131,132], can be refuted by the accurate MR-DMC results.

6.1.2 CoH

In the previous section, the absolute as well as bond dissociation energies of FeH were
thoroughly discussed and it was established that the best results were obtained for MR-
DMC using fully (Jas+MO+CI) optimized Slater-Jastrow wave functions with initial full
valence CAS orbitals. This is corroborated by previous studies.[105,125] In the following
sections, the evaluation will, therefore, be limited to the discussion of the dissociation
energies computed for the fully optimized multi-reference guide functions, unless a
novel approach was tried. The energies for CoH, as well as for the respective atomic
species, are listed in appendix D.

Xu et al.[113] included CoH in their database because a previous study[142] reported
large discrepancies for the dissociation energy of CoH, computed using a variety of
DFT exchange-correlation functionals, compared to the experiment. This motivates
the investigation of CoH with MR-DMC. Additionally, CoH is an interesting system,
especially for astrophysicists, due to its expected presence in stars and the interstellar
medium.[143,144]

The electronic ground state of CoH was determined to be 3Φ[133] and its first electronic
spectrum was recorded by Heimer[145] as early as 1937.

The potential energy curve of CoH, see appendix D, was computed at the MR-DMC
level using a fixed time step of τ = 0.001 a.u. with the Morse fit providing an equilib-
rium bond distance of 1.514 Å and a ZPE of 0.120(11) eV. The CV correlation contribu-
tion corresponds to 0.0729 eV, while the first-order SO correction of CoH, taken from
Ref. 113 and estimated at the CASSCF level, amounts to -0.091 eV.

Tab. 6.4 compares the MR-DMC dissociation energy of CoH to experimentally and the-
oretically available data from the literature. Firstly, all of the results reported are sub-
stantially larger than the dissociation energy of Kickel and Armentrout[146], obtained
from guided-ion mass spectrometric experiments. This bond dissociation energy cor-
responds to a weighted average of dissociation energies, evaluated for various hy-
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Tab. 6.4: Calculated and measured bond dissociation energies (in eV) for CoH. The D0 data refers to
values obtained for 0 K.

Investigators Method De D0

This work MR-DMC/BFD-VTZ (SO+CV) 2.31(2) 2.19(2)

Kickel and Armentrout[146] Mass Spectrometry 1.95(5)a

Cheng et al.[114] CCSD(T)/CBS+∆T+∆Q+∆CV+∆SOb 2.40
Revised H abstraction reactionsc 2.23(13) 2.11(13)

Fang et al.[119] CCSD(T)/PW91 2.32
Revised H abstraction reactionsc 2.19(13)

Aoto et al.[115] CCSD(T)(CV)/CBS+∆DK 2.30d

Xu et al.[113]
CCSDT(2)Q/apTZ-DK(3)-CV(3-DK)‘e 2.19

DFT/B97-1-DK 2.46
DFT/M06-L-DK 2.88

Shee et al.[139] ph-AFQMC/CCcbs 2.39(4)
a Weighted average, see text.
b See Table 2 in Ref. 114. Value corresponds to cal−∆geo.
c See discussion of FeH.
d Best estimate value.
e From Table 10 of Ref. 113.

drogen abstraction reactions (see previous section) using ethane, propane, isobutane,
cyclopropane, and silane. The authors of this work argue that the presence of com-
petition reactions would provide dissociation energies that are too low. In the same
study, they determined the dissociation energy of CoH by means of the reaction of Co+

with silane, where such competition reactions are suppressed, and reported a value of
D0 = 2.05(4) eV, which is much closer to the theoretical ones. The revised dissociation
energies from Cheng et al.[114] and Fang et al.[119] are in good agreement. However,
since the uncertainties of the data are rather large, the need for accurate experimental
data persists. The different CC results are spread over a sizeable range of 0.2 eV, with
the dissociation energy from Aoto et al.[115] being closest to the MR-DMC one from this
work. DFT yields dissociation energies that are—as was the case for FeH—larger than
the CC and the MR-DMC ones. Finally, the ph-AFQMC dissociation energy of Shee et
al.[139], extrapolated to the basis set limit based on CCSD(T) calculations from Aoto et
al.[115], agrees well with the one computed in this work.
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6.2 With First-Row Elements

6.2.1 NiC

Transition metal carbides are of great interest in different areas of research, ranging
from heterogeneous and homogeneous catalysis[147–150] to astrophysics[151]. The transi-
tion metal-carbon bond plays an important role in catalysis since it is often formed and
broken during a catalytic cycle, justifying the need for highly accurate bond dissocia-
tion energies. In this work, NiC and FeC are investigated.

The 1Σ+ ground state of NiC has been confirmed theoretically and experimentally.[151–153]

The electronic valence configuration of NiC corresponds to δ4σ2π4σ2. The equilibrium
bond distance is obtained via a potential energy curve (see appendix D), computed at
the MR-DMC level with a fixed time step of τ = 0.001 a.u., and amounts to 1.633 Å.

The bond dissociation energy of NiC was evaluated for different ansatzes. Let us start
by discussing the absolute energies of NiC, see Tab. 6.5. The CAS(12,9) approach cor-
responds to the full valence active space which is constructed from the 4s and 3d or-
bitals of the nickel atom and the 2p ones of the carbon counterpart. Both, the VMC
and DMC energies are substantially lower (about 0.8 Eh) for the HF pseudopotentials
from Burkatzki, Filippi, and Dolg compared to the ones for the ccECPs. For the DMC
energies, the fixed-node, the ECP localization, as well as the ECP model error remain.
As for the former two sources of error, they can be reduced by the use of accurate
trial wave functions.[154] The ECP model error—always present if the actual core elec-
trons are replaced by potentials—is much harder to assess and might be the reason
for the difference in the energies. Additionally, the two types of ECPs are—for their
construction—fitted to different parameters which could explain the energy discrepan-
cies. The ccECPs from Mitas and co-workers are for example fitted to excitation ener-
gies and do not take into account absolute energies.[101] The BFD ECPs, on the other
hand, are constructed using absolute (valence) energies of various excited configura-
tions.[97]

For the CAS(14,10) ansatz, the active space has been enlarged by the 2s orbital of the
carbon atom. Due to the "missing" 1p orbitals, the 2s and 2p orbitals are close in energy
since the 2p electrons experience less shielding from the core. The 2s electrons are
therefore estimated to provide a non-negligible contribution to the correlation energy.
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The enlargement of the active space yields a lower VMC energy as well as an improved
nodal surface for NiC. The energies for the atomic species are listed in appendix D.

Tab. 6.5: NiC VMC and DMC energies in Eh at the Jas+MO+CI optimization level, using different ECPs
and an sm666 Jastrow factor.

Ansatz ECP VMC energy DMC energy

CAS(12,9) BFD-VTZ -175.6200(5) -175.6912(5)
ccECP -174.8014(5) -174.8775(5)

CAS(14,10) BFD-VTZ -175.6267(5) -175.6960(5)

The CV correlation contribution of NiC amounts to 0.126 eV[23], while its first-order
SO correction is equal to zero due to the 1Σ+ ground state. The ZPE is obtained from
the Morse fit and corresponds to 0.0532(7) eV. The bond dissociation energies of NiC—
computed for the different approaches—are displayed in Tab. 6.6, together with data
from the literature. First, the comparison between the MR-DMC dissociation energies
shows that, for the CAS(12,9) approach, both ECPs provide similar results, although the
absolute energies deviated considerably. Going beyond the full valence active space—
with the CAS(14,10) ansatz—leads only to a slight increase in the dissociation energy.

Michael D. Morse and his research group have been able, over the past years, to pro-
vide highly accurate dissociation energies for metal diatomics as well as for various
transition metal dimers by means of predissociation measurements.[155–161] With this
technique[161], they derive bond dissociation energies that are an order of magnitude
more precise compared to the ones from established methods, such as Knudsen effu-
sion measurements, with the uncertainty being well below the threshold of "chemical
accuracy" (1 kcal/mol ≈ 0.04 eV). The key of this technique lies within the high den-
sity of electronic states for open d shell comprising compounds, resulting in a rapid
predissociation as soon as the ground-separated atom limit is energetically exceeded
(through excitation). An upper bound for the dissociation energy can be determined
from the R2PI spectrum, as a sharp drop in signal (predissociation threshold) occurs
once the dissociation limit is exceeded. The predissociation threshold is, however, not
only an upper limit, it was shown to also be a very accurate measure of the dissociation
energy itself.[161]

Tab. 6.6 illustrates that the MR-DMC bond dissociation energies underestimate the one
from Morse and co-workers[158] by about 0.2 eV. By adding the CV correlation con-
tribution to the dissociation energy computed with the ccECP, one obtains a value of
4.05(2) eV, which is much closer to the experimental one. However, since the ccECP al-
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ready accounts for parts of the CV correlation, it remains questionable whether adding
this quantity to the dissociation energy is sensible. This will be discussed in more detail
below, within the framework of the bond dissociation energy of FeO. Since the ccECP
accounts—in contrast to the BFD one–for the core-core correlation and both types of
pseudopotentials yield similar results, this contribution can thus not explain the devi-
ation from the experiment. The fixed-node as well as the ECP localization errors are
reduced since fully optimized wave functions with large Jastrow factors are employed.
It has been shown[52,92,162] that the localization error of the pseudopotential is smaller
than the fixed-node error, especially when small core ECPs are used. The model er-
ror of the pseudopotential, judged to be much smaller than 0.2 eV, cannot justify the
discrepancy. It is therefore much more probable that the large deviation to the exper-
iment can be traced back to the chosen ansatz (CAS initial wave function) not being
suitable. To further investigate this and analyze which orbitals should be included
(beyond full valence) in the active space, an AUTOCAS[8,163,164] calculation, which is
based on the density matrix renormalization group (DMRG), was performed in order
to evaluate which orbitals are entangled. The entanglement measure is entropy-based
and the threshold, indicating which orbitals should be included in the active space,
is determined by means of the single-orbital entropy.[163] The AUTOCAS calculation
was performed using the ANO-RCC-VTZP[165,166] basis set. All virtual orbitals (of an
initial HF calculation) were included in the DMRG calculation. The entanglement anal-
ysis suggests an active space with seven orbitals, which is smaller than the full valence
equivalent, leaving out the two δ orbitals, arising from the dxy and dx2−y2 atomic orbitals
of Ni, respectively. This indicates that an accurate description of NiC necessitates ex-
cited configurations which include many different virtual orbitals, rather than only the
ones generated from a small active space. Later in this work, in chapter 7, we will see
that employing initial sCI wave functions can provide more accurate results compared
to initial CAS ones.

The MR-DMC dissociation energies agree well with the MRCI ones from Lau et al.[167]

and from Tzeli and Mavridis[168]. The MRCI calculation (based on CASSCF) from Borin
and de Macedo[169] provides a bond dissociation energy that is more than 1 eV be-
low the experiment. The DFT data are spread over a very broad range and either
substantially over- or underestimate the bond dissociation energy of NiC. Further re-
search is therefore needed to develop exchange-correlation functionals that are suit-
able to properly describe transition metal compounds. The CC energy shows the best
agreement with the experimental value of Matthew et al.[158] and it is similar to the
MR-DMC/ccECP one with added CV correlation (4.05(2) eV).
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Tab. 6.6: Calculated and measured bond dissociation energies (in eV) for NiC. The D0 data refers to
values obtained for 0 K.

Investigators Method De D0

This work MR-DMC/CAS(12,9)/BFD-VTZ (SO+CV) 3.96(2) 3.91(2)
This work MR-DMC/CAS(14,10)/BFD-VTZ (SO+CV) 4.00(2) 3.95(2)
This work MR-DMC/CAS(12,9)/ccECP-aug-cc-pVTZ (SO) 3.97(2) 3.92(2)

Matthew et al.[158] Predissociation threshold (R2PI) 4.167(3)
Brugh and Morse[153] Lack of predissociation (R2PI) ≥3.34
Brugh and Morse data[153] Morse potential extrapolation 4.357

Goel and Masunov[170]
DFT/BMK:DKH 5.59
DFT/M05:DKH 5.20

DFT/M05-2x:DKH 2.73

Borin and de Macedo[169] MRCI-CASSCF 2.98

Lau et al.[167] MRCI+Q/cc-pV5Z-DK 3.91
CCSDTQ(Full)/CBS-DK 4.048

Tzeli and Mavridis[168] C-MRCI+DKH2+Q/C5Z 4.08 3.95

6.2.2 FeC

Similar to NiC, the electronic spectroscopy of FeC has interested researchers for many
years[171–173], with the first gas phase spectrum being reported by Balfour et al.[174] in
1995.

The established electronic ground state of FeC corresponds to a 3∆ term symbol[175,176],
with the configuration of the valence electrons being σ2π4δ3σ1.

The equilibrium bond distance used for the calculations was determined by Balfour et
al.[174] via laser-induced fluorescence spectroscopy and corresponds to 1.596 Å. The CV
correlation contribution and the first-order SO correction of FeC amount to 0.176 eV[23]

and -0.0206(2) eV, respectively. The latter quantity is taken from Ref. 177. The ZPE
equals 0.0535 eV and is derived from the work of Aiuchi et al.[178] The energies for FeC,
as well as for the respective atomic species, are listed in appendix D.

Experimental as well as theoretical bond dissociation energies for FeC are given in
Tab. 6.7. The uncertainty of the dissociation energy from Matthew et al., determined
via a predissociation threshold, is one order of magnitude larger compared to one of
NiC, which the authors trace back to the sparsity of the FeC spectrum.[158] The experi-
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mental result D0 = 3.8(3) eV derived using data from Chang et al.[176] as well as from
Hettich and Freiser[179] has a relatively large uncertainty but is in agreement with the
R2PI one. The MR-DMC dissociation energy agrees well with the experimental value
from Chang et al.[176] However, as was the case for NiC, it is substantially lower than
the dissociation energy determined by Matthew et al.[158] Trying out similar approaches
to NiC in order to improve the dissociation energy was dispensed with for FeC since
the calculations (especially the optimizations) for this one approach already proved
rather cumbersome due to the large number of CSFs. This is also the reason why the
potential energy curve was not computed at the MR-DMC level of theory. The MRCI
and CC bond dissociation energies agree well with the MR-DMC one, while the DFT
calculations by Goel and Masunov[170] yield dissociation energies that underestimate,
both, the experimentally and theoretically available data.

Tab. 6.7: Calculated and measured bond dissociation energies (in eV) for FeC. The D0 data refers to
values obtained for 0 K.

Investigators Method De D0

This work MR-DMC/BFD-VTZ (SO+CV) 3.81(2) 3.75(2)

Matthew et al.[158] Predissociation threshold (R2PI) 3.961(19)
Chang et al.[176] D0(Fe+–C)+IE(FeC)-IE(Fe)a 3.8(3)

Tzeli and Mavridis[180] MRCI 3.705
Lau et al.[181] CCSDTQ(Full)/CBS 3.778
Tzeli and Mavridis[182] C-MRCI+DKH8+Q 3.87 3.81

Goel and Masunov[170] DFT/M05:DKH 3.45
DFT/M05-2x:DKH 2.06

a The D0(Fe+–C) value is taken from Ref. 179

6.2.3 FeO

Iron oxides constitute highly tunable systems property-wise and are, therefore, inter-
esting for a wide variety of applications, ranging from catalysis[183,184], over batter-
ies[185–187] to photovoltaics[188,189].

The ground state of FeO was confirmed to be 5∆—corresponding to an electronic con-
figuration of σ2π4σ2δ3σ1π2—by means of laser-induced fluorescence[190] as well as
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through anion-zero kinetic energy photoelectron (anion-ZEKE) spectroscopy[191].

The equilibrium bond distance re = 1.623 Å and the ZPE of 0.0537 eV were derived
from a Morse fit to an MR-DMC potential energy curve, computed for fully optimized
guide functions, see Ref. 105. The first-order SO correction of FeO (-0.0558 eV), as well
as the CV correlation contribution (0.126 eV), are taken from this study, which was
mostly performed by this author[105], as well. The energies for FeO, as well as for the
respective atomic species, are listed in appendix D.

Tab. 6.8 summarizes theoretically and experimentally availably bond dissociation ener-
gies for FeO. The experimental data are in excellent agreement among themselves. Let
us first compare the dissociation energy from this work with the MR-DMC one from Lu-
dovicy et al.[105] Employing a ccECP provides a slightly lower dissociation energy com-
pared to the one obtained using a BFD pseudopotential, the latter yielding an energy
that agrees better with the experiment. By adding the CV correlation to the MR-DMC
dissociation energy from this study, it is increased to D0 = 4.15(2) eV which agrees very
well with the experiment. However, as for NiC, the question remains whether the CV
correlation contribution can—in case of the ccECP—be seen as an additive quantity that
can be included in the dissociation energy. It is difficult to quantify how much of the CV
correlation is accounted for by the ccECP. In their work, Mitas and co-workers[101] com-
pare valence properties (atomic and ionic excitations) computed with their ccECPs to
the ones obtained for all-electron calculations with uncorrelated cores. Finding a higher
(or equal) accuracy for the properties when the ccECPs are employed, they argue that
some of the core-core and core-valence correlation effects are captured. If one were to
argue that most of the correlation accounted for by the ccECPs can be traced back to
the core-core correlation effects, adding the CV contribution to the bond dissociation
energy would be justifiable.

In their work, Krogel et al.[192] employed Slater-Jastrow wave functions with LDA* or-
bitals (from periodic DFT calculations) and neon-core pseudopotentials. Their DMC
calculations were performed within the T move approach. The DMC dissociation en-
ergy that they report slightly overestimates the experimental ones. The CC bond disso-
ciation energy from Aoto et al.[115] is in good agreement with the MR-DMC/BFD one,
while it is 0.1 eV larger than the MR-DMC/ccECP counterpart. Surprisingly, the MRCI
result, computed by Sakellaris et al.[193], is substantially lower than the experimental
one. The authors reported numerous MRCI dissociation energies with various correc-

*local density approximation
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tions, ranging from relativistic effects (DKH2), over core correlation effects (C) to the
Davidson correction (Q). For their MRCI calculations, based on CASSCF calculations,
they also varied the reference spaces, including e.g. the 4p orbitals for Fe. All of the
dissociation energies that they computed underestimate the experiment. It should be
noted, that the authors also presented bond distances for the individual approaches, all
of which are smaller than the experimental one as well. As has been observed for the
other transition metal dimers, DFT cannot reproduce the dissociation energy of FeO.

Tab. 6.8: Calculated and measured bond dissociation energies (in eV) for FeO. The D0 data refers to
values obtained for 0 K.

Investigators Method De D0

This work MR-DMC/ccECP-aug-cc-pVTZ (SO) 4.08(2) 4.02(2)

Chestakov et al.[194] Velocity map imaging 4.18(1)
Li et al.[195] Collision-induced dissociation 4.18(1)
Smoes and Drowart[196] Mass spectrometry 4.16(8)

Ludovicy et al.[105] MR-DMC/BFD-VTZ(SO+CV) 4.17(2) 4.11(2)
Krogel et al.[192] DMC 4.25(1)
Aoto et al.[115] CCSD(T)(CV)/CBS+∆DK 4.21a

Sakellaris et al.[193] C-MRCI+DKH2+Q 3.72

Jensen et al.[137]
DFT/B3LYP 3.96
DFT/BP86 5.21
DFT/PBE 5.31

a Best estimate value.

6.3 With Second-Row Elements

6.3.1 CrS

Chromium sulfide compounds have recently gained interest, especially in electrochem-
istry.[197,198] The isovalence of transition metal sulfides to their oxide counterparts,
which are known to be present e.g. in M-type stars, makes them also highly interesting
for astronomers.[199]
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In 2011, Petz and Lüchow[121] investigated transition metal sulfides with single-reference
DMC. The largest deviations were found for FeS and CrS. Since then, FeS has been suc-
cessfully revisited by means of MR-DMC.[125] In this work, CrS will, therefore, also be
re-examined with MR-DMC.

The 5Π ground state[200] of CrS is described by the valence electron configuration
σ2π4σ1δ2π1. The calculations for CrS were performed with the experimental bond
length of 2.0781 Å, as determined by Pulliam and Ziurys.[200] The first-order SO correc-
tion for CrS is taken from the same study[200] and amounts to -0.0118(5) eV. The CV cor-
relation contribution corresponds to 0.00515 eV. The ZPE—amounting to 0.02913(7) eV—
is derived from the vibrational frequency reported in a very recent study[201], the au-
thors of which investigated CrS by means of laser-induced fluorescence spectroscopy.
The energies for CrS, as well as for the respective atomic species, are listed in ap-
pendix D.

A slightly modified initial wave function compared to the usual CAS ansatz is chosen
for the CrS system due to the inability to converge the MO parameters with QMC when
starting from orbitals generated by a CASSCF(10,9) calculation. The active orbitals of
the CAS wave function are further relaxed by performing a restricted active space self-
consistent field (RASSCF) calculation with single and double excitations into a set of
virtual orbitals. The original CAS(10,9) corresponds to the RAS2, where all possible
excitations are performed while a RAS3 with 11 virtual orbitals is created for the single
and double excitations from the RAS2. The RAS1 remains empty. The RASSCF calcu-
lation will henceforth be referred to as RAS(10,9;2,11). This approach aims at obtaining
better initial orbitals that can then be further optimized in a QMC energy minimization
calculation. The CAS (=RAS2) orbitals are optimized in the partial presence of dynamic
correlation through excitations to the RAS3. The RAS2 orbitals are hence expected to
be closer to the converged orbitals in a full multi-reference VMC optimization. The
CAS for the QMC calculations is, however, built similarly to the one of the other com-
pounds, namely from the 4s and the 3d orbitals of chromium, and from the 3p orbitals
of sulfur.

The dissociation energies of CrS for the different approaches are listed in Tab. 6.9. Sim-
ilar to the other compounds, see also Refs. 125 and 105, a systematic improvement of
the dissociation energy can be observed for the different methods and optimization
levels. The KS nodes appear ideal since the MO optimization does not improve the
dissociation energy. The ansatz with CAS orbitals yields a lower dissociation energy
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compared to the one obtained with KS orbitals at the same optimization level. Relaxing
the initial active orbitals through a RAS(10,9;2,11) calculation has a substantial effect on
the dissociation energy. Not only are the dissociation energies significantly improved
when comparing them to the ones obtained with CAS initial orbitals but, more impor-
tantly, the molecular orbital parameters could be successfully optimized with VMC.
At a given optimization level, the dissociation energies for the different CAS guide
functions differ by about 0.3 eV. When further optimizing the orbitals, initially taken
from the RASSCF calculation, the dissociation energy can be improved by 0.05 eV. The
RAS ansatz, presented here, nicely shows the potential of this approach. However, it
should not be considered as a replacement for the traditional CAS approach, since the
excitation into 11 orbitals is rather arbitrary and would become even more so for the
computation of larger systems. What one should take away from these results is the im-
portance of going beyond a full valence CAS approach for the generation of the initial
wave functions.

Tab. 6.9: DMC dissociation energies of CrS in eV at various optimization levels, using different starting
orbitals and BFD-VTZ/sm666. The energies are CV and SO corrected.

Ansatz Orbitals Optimization level D0

Single det
HF Jas 2.05(2)

B3LYP Jas 2.77(2)
opt Jas+MO 2.77(2)

CAS

CAS Jas 2.43(2)a

CAS Jas+CI 2.70(2)a

RAS2 Jas 2.80(2)
RAS2 Jas+CI 3.04(2)
opt Jas+MO+CI 3.10(2)b

a Taken from Ref. 105.
b Taken from Ref. 23.

Tab. 6.10 yields experimental and theoretical dissociation energies for CrS. With the
ansatz chosen here, the dissociation energy of CrS is improved by 0.1 eV compared to
the single-determinant DMC counterpart from Petz and Lüchow[121]. The MR-DMC
dissociation energy is larger than the CCSD(T)[202] value, but it is still smaller than the
experimental D0 of Drowart et al.[203] Assessing the accuracy of the MR-DMC result
proves challenging due to the large experimental error bar. Our dissociation energy is
about 0.1 eV below the lower bound of Drowart and co-workers. In order to estimate
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the accuracy of the obtained MR-DMC result, experimental data with smaller uncer-
tainties are needed. Finally, the DFT dissociation energy is in excellent agreement with
the experiment. However, due to the poor performance of DFT for all other transition
metal compounds discussed in this work, this agreement should be considered with
care.

Tab. 6.10: Calculated and measured bond dissociation energies (in eV) for CrS. The D0 data refers to
values obtained for 0 K.

Investigators Method D0

This work MR-DMC/BFD-VTZ (SO+CV) 3.10(2)

Drowart et al.[203] Mass Spectrometry 3.36(15)

Petz and Lüchow[121] DMC/PPII 2.969(9)
Bauschlicher and Maitre[202] CCSD(T) 2.89
Liang and Andrews[204] DFT/BPW91 3.33

6.3.2 NiSi

Doped silicon materials play an important role in modern electronic devices and the
precise understanding of the transition metal-silicon bond becomes essential, especially
as an ever-present goal is to reduce the device size to a minimum.[205]

The ground state of NiSi has been established to be of 1Σ+ symmetry.[206] The equilib-
rium bond distance and the ZPE are derived from the potential energy curve, recorded
at MR-DMC level using a fixed time step of τ = 0.001 a.u., see appendix D, by means
of a Morse fit and correspond to 2.051 Å and 0.0274(87) eV, respectively. The accurate
computation of the potential energy curve, see next section, shows that MR-DMC is also
applicable to compounds involving second-row elements, although the computational
expenditure is more involved. The MR-DMC approach has also been successfully ap-
plied to FeS in a previous study.[125] The first-order SO correction of NiSi is zero due to
the Σ symmetry of the ground state. The energies for NiSi, as well as for the respective
atomic species, are listed in appendix D.

NiSi is valence iso-electronic to NiC. Computing the potential energy curve of NiSi
proved, however, much more elaborate since silicon is a second-row element. A neon-
core pseudopotential was employed for Si for all the calculations. The computation
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of NiSi being considerably more expensive than the one of NiC, although the same
number of electrons are involved, bears witness to the substantial effort needed for
the localization of the ECP. The neon core of the Si pseudopotential means that an
additional non-local channel (for the 2p electrons) needs to be considered in contrast to
the helium-core ECP of the carbon atom.

The CV correlation contribution of NiSi, computed at the complete active space second-
order perturbation theory (CASPT2) level, amounts to 0.905 eV, which is notably large
and implies that the 3s and 3p electrons probably contribute greatly to the dissociation
energy. This sizable value of the correlation contribution could be attributed to the
large core ECP for the Si atom: by removing the 2s and 2p electrons, only four electrons
remain, implying that the core is polarizable and thus cannot be well described by a
rigid, spherical pseudopotential. As we will see below, this is also mirrored by the
bond dissociation energy.

Tab. 6.11: Calculated and measured bond dissociation energies (in eV) for NiSi. The D0 data refers to
values obtained for 0 K.

Investigators Method De D0

This work MR-DMC/BFD-VTZ (SO+CV) 3.81(2) 3.78(2)
This work MR-DMC/BFD-VTZ (SO) 2.90(2) 2.88(2)
This work MR-DMC/ccECP-aug-cc-pVTZ (SO) 3.15(2) 3.12(2)

Sevy et al.[159] Predissociation threshold (R2PI) 3.324(3)
Vander Auwera-Mahieu et al.[207] Mass spectrometry 3.26(18)

Lindholm et al.[206] Morse potential extrapolationa 3.31
DFT/B3P86 2.49

Wu and Su[208] DFT/B3LYP 2.33
Shim and Gingerich[209] CASSCF 2.35

Schoendorff et al.[210] CCSD(T) 1.96b

CCSD(2)T 3.33b

a Obtained from dispersed fluorescence spectroscopy measurements.
b all correlated value from Table 3 in Ref. 210.

Tab. 6.11 summarizes the bond dissociation energies for NiSi computed in this work,
together with experimentally and theoretically available data. First of all, the MR-DMC
dissociation energies are spread rather widely. Without the CV contribution, the exper-
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imental dissociation energy of Sevy et al.[159] is severely underestimated if the BFD ECP
is used. Adding the core-valence correlation results in an overestimation of the experi-
mental dissociation energy. As mentioned above, the neon-core pseudopotential, or at
least the one derived from HF calculations, is probably not suitable for silicon, since it
cannot accurately describe the polarization of the core, arising from the formation of a
bond. With the neon-core correlation-consistent pseudopotential (ccECP), the dissocia-
tion energy is substantially improved, although is is still 0.2 eV below the experiment.
One approach to further improve the results would be to employ a helium-core ECP
for Si, which entails, however, a substantial increase in computational cost. An al-
ternative involves the use of core-polarization potentials (CPPs)—which characterize
core-valence correlation effects—together with pseudopotentials, as e.g. described for
Si by Lee and Needs.[211]

In a previous study[125], the same approach (MR-DMC with the BFD ECP) was em-
ployed to FeS and an excellent dissociation energy was reported, the difference be-
tween S and Si being that the latter has only four valence electrons while the former
has six. Sulfur can thus, in contrast to silicon, be accurately described by a neon-core
pseudopotential, its core being less polarizable.

The bond dissociation energy from Vander Auwera-Mahieu et al.[207], derived from
mass spectrometry in 1969, agrees with the R2PI one, its uncertainty is, however, very
large. The CASSCF and DFT dissociation energies underestimate the experimental one
from Sevy et al. by up to 1 eV. The data of Schoendorff et al.[210] shows that one needs
a perturbative second-order correction to CCSD in order to reproduce the experimen-
tal dissociation energy. Finally, the bond dissociation energy of NiSi, obtained from a
Morse potential extrapolation[206], agrees well with the experiment.

6.4 Spectroscopic Constants

The potential energy curves of FeH, CoH, NiC, and NiSi were computed at the MR-
DMC level—using fully optimized guide functions—and fitted to a Morse potential
function[134] from which spectroscopic constants, such as the equilibrium bond distance
(minimum of the Morse curve), the harmonic frequency, as well as the anharmonicity
could be deduced. The evaluation of those constants allows a further assessment of
the accuracy of the employed method. Tab. 6.12 illustrates the obtained quantities and
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compares them for different theoretical and experimental methods.

Tab. 6.12: Spectroscopic constants for the different transition metal compounds. The equilibrium bond
distance is given in Å, the harmonic frequency ωe and the anharmonicity ωexe in cm−1.

System Investigators Method re ωe ωexe

FeH

This work MR-DMC/BFD-VTZ 1.567 1842(27) 38.9(9)

Philips et al.[212] Near IR Spectrum 1826.86 31.96

Dulick et al.[213] MRCI-CASSCF 1831.8(19) 34.9(9)

DeYonker and Allen[138] CCSDT 1.5660 1798.8 37.8

Jensen et al.[137] DFT/B3LYP 1.57

CoH

This work MR-DMC/BFD-VTZ 1.514 1932(92) 43(3)

Beaton et al.[143] Far-infrared laser magnetic resonance 1.5138

Lipus at al.[214] Laser magnetic resonance spectroscopy 1926.7487(4) 34.6

Gordon et al.[215] Near-infrared emission spectrum 1.5327 1924.5256(21)

Cheng et al.[114] SFX2C-1e-CCSD(T)/aug-cc-pwCVQZ 1.502

NiC

This work MR-DMC/BFD-VTZ 1.633 858(6) 5.20(5)

Brugh and Morse[153] R2PI spectroscopy 1.6273 875.155 5.38

Brewster and Ziurys[151] Millimeter-wave spectrum 1.6308a

Tzeli and Mavridis[168]

C-MRCI+DKH2/C5Z 1.621 916.1

RCCSD(T)/5Z 1.634 851

CASSCF/5Z 1.658 796.4

NiSi

This work MR-DMC/BFD-VTZ 2.051 441(70) 2.1(5)

Lindholm et al.[206] R2PI & fluorescence spectroscopy 2.0316(4)a 467.43(30) 2.046(21)

DFT/B3P86 2.004 512.21

Wu and Su[208] DFT/B3LYP 2.015 500

Schoendorff et al.[210] CCSD(2)T 2.059 418

a r0 value.

For FeH, the MR-DMC bond distance and harmonic frequency are in excellent agree-
ment with the theoretical and—where available—experimental results. The anhar-
monicity, computed in this work, agrees well with the CC one, it is, however, slightly
larger than the experimental one from Philips et al.[212]
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The MR-DMC equilibrium bond length of CoH agrees well with the experimental value
of Beaton et al.[143], while it is lower than the one obtained from near-infrared emission
spectra[215]. The CC[114] bond distance of re = 1.502 Å is 0.01 Å smaller than the one
computed in this work. The harmonic frequency, deduced from the MR-DMC poten-
tial energy curve, is in good agreement with the experimental counterparts, while the
anharmonicity is slightly overestimated compared to the one from laser magnetic reso-
nance spectroscopy[214].

All three MR-DMC quantities for NiC are in satisfying agreement with the data from
Brugh and Morse[153], measured by means of R2PI spectroscopy. The theoretically de-
termined bond lengths and harmonic frequencies from Tzeli and Mavridis[168], com-
puted for various methods, are widely spread. The MR-DMC results agree best with
the CC ones.

As for NiSi, the harmonic frequency and the anharmonicity at MR-DMC level show the
highest uncertainties among all four compounds, which can be attributed to only five
(in contrast to seven or eight) bond distances being chosen for the computation of the
potential energy curve due to the enhanced expenditure of the calculations. Nonethe-
less, these quantities agree well with the experimental ones obtained from dispersed
fluorescence measurements[206]. The MR-DMC harmonic frequency is also in good
agreement—mostly due to its large uncertainty—with the DFT and CC ones. Finally,
the MR-DMC equilibrium bond length of NiSi is larger than the experimental and DFT
counterparts. It agrees, however, well with the CC bond distance reported by Schoen-
dorff et al.[210]

All in all, these results show that the MR-DMC approach is able to accurately describe
different properties of transition metal compounds.

6.5 Computational Approach

Some insight on the problems, more precisely on the handling of the symmetry, that
arise for the computation of diatomic systems is given in appendix C. The trial wave
functions were generated with the MOLPRO[216] package. The initial wave functions
were obtained from ab initio calculations, namely HF, KS DFT (using the B3LYP[34–36]

functional with the VWN(III)[217] local correlation energy), and CASSCF. The active

70



6.5 Computational Approach

space for the latter included the 4s and 3d orbitals of the metals and the valence p
orbitals of the main group elements (1s for H). The QMC calculations were performed
with the program AMOLQC[67], developed in our group. A 69-term Jastrow correlation
function (denoted as sm666 in ref. 60) with cusp-less three-particle terms was used
for all the calculations.[59] The wave function parameters—Jastrow, MO, and CI—were
optimized with VMC in order to minimize the variational energy. If more than one
set of parameters was optimized, the optimization was performed in an alternating
way, which was found to be more effective when pseudopotentials are used.[78] The
optimized wave functions were then used as guide functions for the DMC calculations,
performed for different time steps. The extrapolation to a zero time step was performed
using a quadratic model.[218]

All calculations were performed using either the ECPs of Burkatzki, Filippi, and Dolg[97,98]

with the respective triple-ζ basis sets, referred to as BFD-VTZ, or using the correlation-
consistent ECPs by Mitas and co-workers[99,100], denoted as ccECP, with the corre-
sponding aug-cc-pVTZ basis. The non-local part of the pseudopotentials was localized
in QMC on a spherical grid using the trial wave function.[88,219] Neon-core ECPs were
used for the second-row elements.

The dissociation energies were first-order spin-orbit corrected, and the core-valence
correlation contribution was added. The first-order SO corrections for the atoms were
derived from experimental splittings.[135] The ones for the molecules were taken from
the literature. The CV correlation contribution was estimated either by means of multi-
reference second-order perturbation theory (MRMP2),[220] as implemented in GAMESS,[221]

or with CASPT2 using MOLPRO.[216] The core-valence basis set TK+NOSeC-V-QZP
with all diffuse functions[222,223] was used for these calculations. By calculating the dis-
sociation energy with and without correlating the core electrons, one can determine the
CV correlation contribution. The same active spaces as for the QMC calculations were
chosen. The ZPEs of the compounds, for which a MR-DMC potential energy curve was
recorded, were derived from the Morse fit. For all other compounds, the ZPEs were
taken from the literature.
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"MY METHODS ARE REALLY METHODS OF WORKING AND THINKING; THIS IS WHY

THEY HAVE CREPT IN EVERYWHERE ANONYMOUSLY." – Emmy Noether

Parts of this chapter are published in a condensed form in Ref. 224.

Reprinted (adapted) with permission from J. Ludovicy, R. Dahl, A. Lüchow, Toward Compact

Selected Configuration Interaction Wave Functions with Quantum Monte Carlo—A Case Study

of C2, J. Chem. Theory Comput. 2023, 19, 2792-2803. Copyright 2023 American Chemical Soci-

ety.

Since the beginning of modern quantum mechanics in the 1920s, the scope and perfor-
mance of quantum chemistry have vastly grown. The progress in this field of research
has been impressive which is in part due to—but not limited to—the always improv-
ing computational architecture. There are a plethora of quantum chemical methods,
tailored to the careful description of various problems. A tradeoff has, however, al-
ways to be made between a satisfactory accuracy and an affordable computational ex-
penditure with the accuracy having to inevitably be forfeited with increasing system
size. Post-HF methods, such as CC and perturbation theory as well as DFT are pow-
erful when it comes to characterizing systems with dynamic correlation but they often
fail when the static correlation is non-negligible, e.g. for chemical reactions includ-
ing bond breaking processes or for open shell systems with partially filled degenerate
orbitals. Such multi-reference systems still pose a key challenge for quantum chem-
istry with intense research efforts striving toward finding a way to both accurately
describe static and dynamic electron correlation. This problem is traditionally tack-
led by multi-reference methods, such as MRCI[225,226], CASPT2[227], or second-order
n-electron valence state perturbation theory (NEVPT2)[228,229]. The last two methods
employ multi-configurational zeroth-order wave functions and perform on top of that
perturbation theory to correct for the dynamic electron correlation, arising from elec-
tronic motion. All of these methods have various drawbacks, ranging from relying on
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chemical intuition to choose the orbitals that need to be correlated to an exponential
scaling with the number of electrons and the basis set size, as well as suffering from se-
vere memory requirements. Although it has been shown in the previous chapter, that
the MR-DMC approach using CASSCF initial wave functions is able to describe transi-
tion metal bonding very accurately, the pursuit of trying to investigate larger systems
necessitates the move beyond CASSCF.

In order to circumvent the problems presented above, a different class of methods,
namely the sCI approaches—initially pioneered about 50 years ago[28,230,231]—has re-
experienced an increased focus of research since the beginning of the 21st century due
to the shift toward a more parallel programming regime. Some of the more recently
developed sCI techniques include FCIQMC[25], adaptive sampling CI (ASCI)[26], and
semi-stochastic heat-bath CI (SHCI)[27]. The method of choice in this work is CIPSI
which was pioneered by Malrieu and co-workers[28,29] and later revived by Caffarel
and co-workers[232]. The combination of CIPSI wave functions together with the highly
accurate QMC methods, more specifically DMC, has proven to be very promising for
ground state as well as for excited state energetics.[233–243] Additionally, the use of a Jas-
trow correlation function, responsible for the short-range dynamic electron correlation,
within QMC has long been established. In related work, a transcorrelated Hamiltonian
is employed in FCIQMC.[49,50]

7.1 Statistical Analysis of CI Coefficients

The physical quantities that can be extracted from QMC calculations are necessarily
subject to statistical noise due to the stochastic nature of these methods. By optimizing
wave functions within the VMC framework, one question that comes to mind is how
statistically accurate the optimized CI coefficients are. This issue will be addressed
here.

The investigation was carried out for the 1Σ+
g ground state of C2, using an equilib-

rium bond distance of 1.24 Å, as determined by Haghighi Mood[78] from a potential
energy curve computed at MR-DMC level. A CAS(8,8) calculation was performed with
the Slater-type triple-ζ all-electron basis set TZPae[244] by van Lenthe and Baerends.
Each Slater-type basis function was expanded into 14 primitive Gaussian-type func-
tions[245,246] for the CASSCF calculation with MOLPRO[216], resulting in an initial wave
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function containing 168 CSFs. The true Slater basis was employed for the QMC calcula-
tions with AMOLQC[67]. Three different Jastrow factors[59], as described in Ref. 60, were
appended to the initial CAS(8,8) wave function and the Jastrow and CI parameters were
simultaneously optimized with respect to the variational energy. The absolute values
of the CI coefficients are averaged over five calculations with varying seeds. The data
is listed in full in appendix E.

In Figs. 7.1 (CSFs 1 to 25) and 7.2 (CSFs 84 to 168), the absolute values of the CI coef-
ficients are shown for optimized Slater-Jastrow wave functions with different Jastrow
factors, together with the CAS(8,8) counterpart. Only the conclusions relevant to the
investigation here will be discussed since a more detailed analysis of the impact of the
Jastrow correlation function on the CI coefficients is conducted below, in section 7.3.5.
The CI coefficients are sorted such that the CSFs are identical for each index, see the
caption of the figures.

Fig. 7.1: Absolute values of the CSF coefficients for different wave functions with and without Jastrow
factor. The first three coefficients are depicted in the sub-plot. The original CAS coefficients
(black) are sorted from largest to smallest. For the Slater-Jastrow wave functions, the coeffi-
cients are sorted such that the CSFs are identical for each index, i.e. x-coordinate. The CSFs are
normalized for each approach.

First of all, both figures reveal that the coefficients of the Slater-Jastrow wave functions
are overall mostly lowered by the optimization which shows that the electron correla-
tion is accounted for by the Jastrow factor rather than by the expansions themselves.
Additionally, one can roughly observe that, for the individual CSFs, the coefficients are
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smaller the larger the Jastrow factor is, the difference being greatest when moving from
the sm444 to the sm666 Jastrow. Unsurprisingly, the CI coefficients of the first 25 CSFs
can be determined very accurately up to the third (sometimes fourth) decimal place,
see also Tab. 7.1.

Fig. 7.2: Absolute values of the CSF coefficients for different wave functions with and without Jastrow
factor. The original CAS coefficients (black) are sorted from largest to smallest. For the Slater-
Jastrow wave functions, the coefficients are sorted such that the CSFs are identical for each index,
i.e. x-coordinate. The CSFs are normalized for each approach.

For the last 84 CSFs, the picture is quite different. Although the CI coefficients of the
VMC optimized wave functions are smaller than the ones of the CAS(8,8) wave func-
tion, at least until about CSF 130, they are identical—within the statistical uncertainty—
for all three Jastrow factors. For approximatively the last 25 CSFs, the CI coefficients
are equivalent, irrespective of the chosen approach. What is more important, however,
is the fact the statistical errors of the coefficients are mostly of the same order of mag-
nitude as their value, rendering the meaningfulness of their optimization with QMC
questionable.

These findings are corroborated by Tab. 7.1, where the CI coefficients of the first ten and
last five CSFs are listed, together with their respective relative errors. The sorting of the
entries is equal to the one of Figs. 7.1 and 7.2. Tab. 7.1 illustrates that the absolute errors
of the CI coefficients are roughly of the same order of magnitude for all (depicted) CSFs,
while the relative errors tell a completely different story. From approximately CSF 60
onwards, see appendix E, the relative errors are predominately—for all three Jastrow
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factors—two-digit (sometimes even three-digit), which implies that the CI coefficients,
obtained from the VMC optimizations, are to some extent statistically not significant.

Tab. 7.1: Absolute values of the first ten and last five CI coefficients of Slater-Jastrow wave functions,
optimized for different Jastrow factors. The relative errors of the coefficients are given as well.
The Jastrow and CI parameters were simultaneously optimized with respect to the variational
energy. The coefficients are sorted such that the CSFs are identical for each row. The value in
parentheses indicates one standard deviation.

sm444 sm666 sm888

|ci| Relative Error [%] |ci| Relative Error [%] |ci| Relative Error [%]

0.878(2) 0.2 0.8789(9) 0.1 0.881(1) 0.1
0.350(3) 0.9 0.353(3) 0.9 0.347(3) 0.9
0.196(1) 0.6 0.197(2) 1.2 0.1972(8) 0.4
0.137(2) 1.3 0.1332(5) 0.4 0.134(1) 0.8
0.116(2) 1.4 0.116(3) 2.5 0.113(3) 2.7
0.086(1) 1.3 0.083(2) 0.2 0.084(1) 1.5
0.075(1) 1.3 0.0753(8) 1.1 0.0747(5) 0.7
0.046(1) 2.4 0.046(2) 3.9 0.046(1) 2.3
0.0432(5) 1.2 0.0381(5) 1.4 0.0385(6) 1.5
0.056(1) 2.0 0.0586(4) 0.6 0.0593(5) 0.9

...
...

...
...

...
...

0.0004(5) 114.3 0.000 17(4) 21.9 0.0006(3) 55.3
0.0002(2) 85.4 0.0003(2) 71.5 0.0003(2) 67.0
0.0007(4) 52.6 0.0006(2) 38.2 0.0005(5) 87.5
0.0004(4) 93.9 0.0004(2) 60.0 0.0004(1) 53.6
0.0004(3) 70.4 0.0003(2) 65.4 0.0002(2) 88.5

One question that remains is whether it is possible to dispense with the CI optimiza-
tion with VMC, if one were to reduce the CSF coefficients by a certain factor. This is,
in the following, exemplarily tested for an sm444 Slater-Jastrow wave function. The
coefficient ratio, obtained by dividing the absolute value of the optimized CI coeffi-
cient by the CAS(8,8) counterpart, can serve as an estimate for the multiplication factor.
To make this ansatz—if successful—feasible for practical applications, the factor that
is eventually used corresponds to the mean of the coefficient ratios, starting with the
second CSF since the coefficient of the first one is always increased by the addition of a
Jastrow factor. The ratios could not be determined for the CSFs that have a coefficient
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of zero in the original CAS(8,8) wave function. The ratios of these eight CSFs were not
considered for the averaging. A multiplication factor of 0.74 is obtained. For the first
CSF, the ratio amounts to 1.05. The original CAS(8,8) coefficients are multiplied by the
respective factors (0.74 for CSFs 2 to 168, and 1.05 for CSF 1), an sm444 Jastrow factor is
added and optimized with VMC. The resulting VMC and DMC energies, see Jas-all (al-
tered coefficients), are listed in Tab. 7.2. For the Jas entries, the wave function comprises
the original CAS(8,8) coefficients. The DMC calculations are performed using a time
step of τ = 0.001 a.u. The remaining entries will be discussed below.

Tab. 7.2: VMC and DMC energies in Eh for C2 Slater-Jastrow wave functions at different optimization
levels. An sm444 Jastrow factor was used.

Optimization level VMC energy DMC energy

Jas+CI -75.8567(3) -75.9090(3)
Jas -75.8452(3) -75.9062(3)

Jas-all (altered coefficients)a -75.8519(3) -75.9065(3)
Jas+CI-0.03 (altered coefficients)a,b -75.8550(3) -75.9079(3)
Jas+CI-0.02 (altered coefficients)a,c -75.8560(3) -75.9083(3)

a See text for details.
b Jas+CI optimization of an initial CAS(8,8) wave function containing only

CSFs with coefficients greater than 0.03). The coefficients of the remaining
CSFs are multiplied by 0.74.

c Jas+CI optimization of an initial CAS(8,8) wave function containing only
CSFs with coefficients greater than 0.02. The coefficients of the remaining
CSFs are multiplied by 0.74.

Within the VMC framework, one can see that the wave function, for which all coeffi-
cients have been altered manually (Jas-all), provides an energy that is much closer in
value to the Jas+CI energy than to the Jas one which makes the approach look promis-
ing. For the much more accurate DMC technique, the picture, unfortunately, looks
quite different. DMC allows for a direct assessment of the nodal surface quality of a
wave function. Tab. 7.2 shows that, in contrast to VMC, by altering all the coefficients
manually, one obtains a DMC energy that is similar to the one of the CAS(8,8) guide
function. By optimizing the CI coefficients together with the Jastrow factor, thereby in-
troducing the dynamic electron correlation into the nodes, the DMC energy is lowered
by 3 mEh. The nodes of a wave function being primarily determined by the CI coef-
ficients, the poor nodal surface quality of the manually altered wave function can be
attributed to the importance (magnitude of the coefficients) of the individual configu-
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rations not being reduced in an equal measure, with some configurations even gaining
in importance, when a Jastrow factor is introduced, see Figs. 7.1 and 7.2. Since we are
usually interested in the much more accurate DMC energies, we advise against altering
all coefficients manually.

To not completely abandon the approach yet, we constructed two more wave func-
tions by truncating the initial CAS(8,8) counterpart at cut-off values—corresponding to
the absolute value of the CI coefficients—of 0.02 (25 CSFs) and 0.03 (17 CSFs), respec-
tively. For both wave functions, the Jastrow and CI parameters were simultaneously
optimized with VMC. The remaining CSFs—143 for the 0.02 threshold, 151 for the 0.03
counterpart—were added to the optimized wave functions and their coefficients were
multiplied by 0.74, as discussed above. Finally, the Jastrow factors of these two wave
functions were re-optimized. With this approach, we aim at finding out whether it is
sensible to only optimize some of the CI coefficients with QMC, thereby reducing the
computation effort. And indeed, the results look promising. For the Jas+CI-0.03 wave
function, a substantial lowering of both, the VMC and DMC energies, compared to
the Jas-all counterpart, can be observed. As for the Jas+CI-0.02 wave function, which
comprises 25 VMC optimized CI coefficients, the VMC and DMC energies are close in
value to Jas+CI ones. This is remarkable since it shows that one can obtain a similar
VMC energy, but more importantly, a similar nodal surface quality by optimizing only
a fraction of the CI coefficients (25 vs 168). These results show that it is possible to forgo
the optimization of the CI coefficients. However, the procedure adopted here is tailored
to C2. In order to make this approach applicable in practice, further research is needed
to determine a multiplication factor that is valid for various systems and to identify a
universal coefficient threshold, below which the CI coefficients can be manually altered
in a reliable way.

Out of interest, the averaged coefficient ratios for the sm666 and the sm888 Jastrow
factors were computed as well and amount to 0.63 and 0.60, respectively. The ratio for
the first CSF (1.05) is the same for all three Jastrow correlation functions. The ratios
becoming smaller for larger Jastrow factors hints at the correlation being increasingly
captured by the Jastrows rather than by the configurations.
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7.2 Using the Linear Optimization Method

Later in this thesis, see 7.3, we will confirm the importance of the Jastrow correlation
function when it comes to choosing configurations. The assumption that the Jastrow
factor will influence the configuration selection is, however, rather intuitive. Our first
attempt of an sCI scheme in the presence of a Jastrow factor is based on the linear
optimization method, as described by Toulouse and Umrigar[66]. In order to assess
the energetic contribution of a given determinant to the current wave function, one
can compute the second-order perturbative change in energy (see Eq. (4.1))—an ap-
proach that originates from the CIPSI method. The physical quantities, needed for the
computation of the energy contribution, can be obtained as the matrix elements of the
Hamiltonian within the framework of the linear optimization method, applied to the
optimization of the CI coefficients. The linear method works within the basis spanned
by the current wave function and its first derivatives with respect to the wave function
parameters. For the CI parameters, this means that one obtains the individual CSFs as
derivatives. In their work, Toulouse and Umrigar[66] present expressions for the ele-
ments of the non-symmetric Hamilton matrix in the form of H̄i0, H̄0j, and H̄ij (Eqs. 54b,

54c, and 54d, respectively, in Ref. 66). The energy contribution δe(2)i of CSF i can be
obtained from these expressions as follows:

δe(2)i =
−H̄i0 · H̄0i

H̄ii − H̄00
, (7.1)

with H̄00 = ⟨EL(R)⟩. Eq. (7.1) illustrates that only the first column, the first row, as
well as the diagonal elements, of the Hamilton matrix are needed. Since the linear
optimization method is implemented in AMOLQC[67], this sCI approach in the presence
of a Jastrow factor can be tested with minor additional effort.

The ansatz was tested for the 1Σ+
g ground state of C2, using the experimental equilib-

rium bond distance of 1.243 Å from Huber and Herzberg[247]. A CAS(8,8) initial wave
function was employed. The procedure for the generation of the Slater-Jastrow wave
function was identical to the one described in the previous section, except that only
the Jastrow parameters were optimized with VMC. An sm444 Jastrow factor was used.
For the calculation of the δe(2)i , the coefficient of the first CSF was set to one, while all
remaining coefficients were set to zero. This approach allows for an assessment of the
energetic contribution of each CSF to the Slater-Jastrow wave function comprising only
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the HF determinant and should be considered as an attempted proof of concept.

The absolute values of the quantities of Eq. (7.1) were averaged over five calculations
using different seeds and a sample size of 128, 000, 000. The results are shown (for the
first ten CSFs) in Tab. 7.3. The remaining data is listed in appendix E. The H̄00 quantity
corresponds to −75.7403(2) Eh.

Tab. 7.3: Absolute values of the first ten (i = 1, ..., 10) Hamilton matrix elements together with the energy
contributions δe(2)i . The quantities are given in Eh. The value in parentheses indicates one
standard deviation.

i H̄0i × 103 H̄i0 × 103 H̄ii δe(2)i × 104

1 113.2(2) 112.5(2) 72.2(2) 36(2)
2 137.66(8) 137.2(2) 63.0(3) 14.8(4)
3 84.36(9) 84.1(1) 48.1(2) 2.56(2)
4 61.0(2) 60.9(3) 75.0(3) 51(14)
5 9.88(9) 10.0(2) 73.6(3) 0.46(5)
6 28.38(8) 28.3(2) 46.17(3) 0.272(2)
7 22.5(3) 22.3(3) 71.4(4) 1.16(9)
8 6.0(2) 6.2(2) 72.12(8) 0.104(5)
9 73.7(3) 73.7(2) 65.6(4) 5.3(2)

10 59.0(2) 59.01(6) 68.6(2) 4.9(1)

First of all, Tab. 7.3 shows the asymmetry of the Hamilton matrix since the H̄0i and the
H̄i0 are not identical. They are, however, close in value. Overall, the energy contribu-
tions δe(2)i are comparatively small, ranging from 10−3 to 10−10. The CSFs being sorted,
for the initial CAS(8,8) wave function, from largest to smallest with respect to the ab-
solute value of their coefficients, the energetic contributions become—as expected—
smaller the further one moves down the table. The decrease is, however, not mono-
tonic (in contrast to the CI coefficients), which hints at the Jastrow correlation function
influencing the importance of the individual CSFs in terms of their energy contribution
to the Slater-Jastrow wave function. The small magnitude of the energy contributions
(except for a few) can be traced back to the off-diagonal matrix elements of the Hamil-
tonian (H̄0i and H̄i0). Although they are larger in value (between 10−1 to 10−5) than
the δe(2)i , they enter, see Eq. (7.1), as a product in the numerator, explaining the scale
of the energy contribution results. The δe(2)i values being that small, especially for the
larger index CSFs, it is, unfortunately, not obvious which CSFs should be included in
the wave function for this first sCI iteration, except for the first, second, and fourth
entries, which provide substantial energy contributions of the order of several mEh.
All three CSFs correspond to double or mixed double excitations, known to yield large
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contributions to the HF determinant. By setting, exemplarily, a threshold of 0.1 mEh for
the selection, merely 11 CSFs would be chosen.

Additionally, the proposed ansatz faces various challenges. First, the sampling of |Ψ|2

might not provide a sufficiently accurate sample for the computation of the matrix el-
ements comprising the individual CSFs. This issue primarily affects the H̄ii values, as
well as the off-diagonal entries H̄0i and H̄i0. The large uncertainties observed in the H̄ii

energies, particularly in comparison to the highly accurate H̄00 value, suggest that the
strong zero-variance principle of the linear method may no longer hold. One way to
circumvent this is to re-weight the sample used for the computation of the individual
contributions by a factor of |Ψi|2/|Ψ|2. Another potential improvement lies in calculat-
ing the denominator using correlated sampling, which yields energy differences with
smaller statistical uncertainties compared to the individual energies themselves. The
use of a symmetric Hamilton matrix instead does not alter the picture, which is not
surprising since, even for the non-symmetric counterpart, the values were rather simi-
lar.

The prospect of a more promising approach for a Jas-sCI scheme based on correlated
sampling, as described by Per and co-workers[248], see section 7.4, combined with the
aforementioned assertions led us to discontinue further pursuit of this ansatz for an sCI
scheme in the presence of the Jastrow factor.

7.3 CIPSI-Jastrow Wave Functions

Parts of the following sections are published in a condensed form in Ref. 224.

Reprinted (adapted) with permission from J. Ludovicy, R. Dahl, A. Lüchow, Toward Compact

Selected Configuration Interaction Wave Functions with Quantum Monte Carlo—A Case Study

of C2, J. Chem. Theory Comput. 2023, 19, 2792-2803. Copyright 2023 American Chemical Soci-

ety.

In this part of the work, the 1Σ+
g ground state of C2 is investigated with truncated

CIPSI-Jastrow wave functions. The computational procedure is described in detail
in section 7.3.9. This molecule is well suited for this kind of analysis because it has
only a small number of electrons and displays multi-reference character at the ground
state level. For this reason, C2 is a popular benchmark system that has already been
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thoroughly investigated in the literature, both theoretically and experimentally.[249–260]

Two studies that have performed similar investigations to the ones discussed here are
highlighted in the following. Firstly, Clay and Morales[255] have investigated C2 in the
equilibrium and a stretched geometry with sCI-Jastrow wave functions with the CSFs
being generated using different approaches, not, however, the CIPSI scheme. They also
discussed the orbital set choice and found that both the CSF selection scheme and the
choice of initial orbitals have a severe impact on the FN-DMC energy. Secondly, Giner
et al.[235] studied CIPSI-Jastrow wave functions, re-optimized—Jastrow, MOs, and de-
terminant coefficients—with VMC, of various first-row atoms. They described the im-
portance of re-optimizing the CI coefficients when a Jastrow factor is used and argued
that the MO optimization has only a minor influence on the DMC energies (except for
the Be atom). They did not, however, extend their investigation to molecules and, more
importantly, to the computation of energy differences. Umrigar et al.[71] showed the im-
portance of re-optimizing the molecular orbital parameters in the presence of a Jastrow
factor for Si2 and C2 with CASSCF initial wave functions.

7.3.1 Truncated CIPSI-Jastrow Wave Functions

Post-Hartree-Fock methods aim at incorporating electron correlation in the wave func-
tion, which can be achieved in myriad ways. Within—amongst others—the CIPSI ap-
proach, this is traditionally realized through a linear combination of SDs, which in-
cludes the static as well as the dynamic electron correlation. Another way, which yields
much more compact wave functions, is to capture the dynamic correlation by adding a
Jastrow factor to the wave function. With this correlation function, the need for lengthy
determinant expansions vanishes, because in order to capture the short-range dynamic
correlation, excitations in higher-lying orbitals are necessary. This is demonstrated by
Fig. 7.3, where the truncated CIPSI wave functions are compared to Jastrow-optimized
ones.
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Fig. 7.3: VMC energies of truncated CIPSI wave functions with and without Jastrow factor as a function
of the number of determinants. The QP Limit (FC) corresponds to the estimated frozen core FCI
limit E + EPT2 in the given basis. The QP Limit (Full) includes the correlation of the 1s orbitals,
see text. The data points are connected as guidance for the eyes.

The energies of the truncated CIPSI wave functions (pink data) converge monotoni-
cally toward the FCI estimate (solid line in Fig. 7.3) for the given basis set. By including
a Jastrow correlation function, the energy is substantially lowered by about 0.2 Eh for
each threshold, respectively. The CIPSI wave function contains 1, 985, 516 determinants.
The QP (QUANTUM PACKAGE) Limit (FC) energy originates from a frozen core CIPSI
calculation. Since the QMC calculations with a Jastrow factor correlate all electrons,
the estimated CIPSI FCI limit, correlating all electrons, is calculated with QUANTUM

PACKAGE as well (dashed line in Fig. 7.3). Note that the CIPSI-Jastrow VMC energies
are substantially lower than this limit, already for 200 determinants. The higher-order
Jastrow factor provides lower energies due to more ample flexibility in the wave func-
tion.

The accuracy of VMC being limited by the wave function form and flexibility[11], we
intend to investigate how the CIPSI-Jastrow wave functions perform within the more
accurate DMC framework. This method allows—after a zero time step extrapolation—
to assess the quality of the nodal hypersurface of a given wave function, the accu-
racy being determined by the fixed-node error. This will be discussed below, see sec-
tion 7.3.3.
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7.3.2 Comparison of Determinant and CSF Expansions

Although QUANTUM PACKAGE[261] employs spin-adapted wave functions, we opted
for the use of CSFs in this work for two different reasons. Firstly, by cutting off the
CIPSI wave function, it can no longer be ensured that the truncated expansion is an
eigenfunction of the Ŝ2 operator and secondly, by constructing CSFs from determinants,
the length of the expansion can be substantially reduced—see Tab. 7.4—which leads to
computationally less demanding optimizations with VMC. For the CSFs, the thresholds
in Tab. 7.4 correspond to the determinant cutoffs. The CSFs are generated for all the
determinants that are above the respective thresholds. As for the missing determinants,
needed to complete the CSFs: their coefficients are obtained from the original CIPSI
wave function. The last column in Tab. 7.4 gives the number of determinants if the
CSFs are re-expanded into the SD basis.

Tab. 7.4: Number of determinants and CSFs for the different thresholds.

Threshold # Dets # CSFs # Dets (re-expanded)

0.0100 207 85 337
0.0075 343 138 575
0.0050 702 266 1090
0.0025 1438 528 2242

In Fig. 7.4, the VMC energies of SD and CSF expansions are compared for different
sets of optimized parameters. First of all, one can see that with every additional set
of parameters that are optimized, a significant decrease in energy can be observed for
each threshold, regardless of the choice of expansion. Furthermore, the VMC energies
decrease monotonically as a function of the expansion length, which is inherent since
the wave functions have higher flexibility due to more variational parameters being in-
cluded. The CIPSI-Jastrow wave functions with CSFs yield lower VMC energies com-
pared to the ones using SDs for all thresholds, irrespective of the optimization level.
After expanding the CSFs back to determinants—see last column in Tab. 7.4—the wave
functions contain more determinants than the original ones. Shorter CSF expansions
leading to lower energies, hence, usually implies computationally more demanding
calculations. The optimization of the CI coefficients—usually a very time-consuming
part of the VMC calculations—remains, nonetheless, cheaper for CSF wave functions.
The Jastrow correlation function having a non-zero overlap with the determinant ex-
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pansion, it is essential to re-optimize the expansion coefficients (as well as the MO pa-
rameters). This is corroborated by various other studies as well.[105,235,251,253,262] Note,
that the Jas+CI curves are much steeper than the ones for the fully optimized wave
functions, which seem to be close to convergence already.

Fig. 7.4: VMC energies of determinant and CSF CIPSI-Jastrow wave functions at various optimization
levels computed for different thresholds. An sm666 Jastrow factor was used. The data points
are connected as guidance for the eyes.

Since the DMC energies will be discussed in more detail in the next section, within
the framework of different Jastrow factors, it is dispensed, here, with an exhaustive
discussion. The DMC energies can be found in appendix E. In summary, the CSF-based
wave functions are slightly favored compared to the SD-based ones in terms of nodal
surface quality.

7.3.3 Influence of Different Jastrow Factors

Having established the importance of using a Jastrow correlation function, that explic-
itly handles electron correlation, the impact of the size of the Jastrow factor on the wave
function optimization with VMC as well as on the quality of the nodal surface, studied
with DMC, is to be investigated here. Fig. 7.5 introduces the VMC energies for two
Jastrow factors and different optimization levels. The Jastrow factors are denoted Jas-4
(for sm444) and Jas-6 (for sm666), respectively, throughout this study.
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Fig. 7.5: VMC energies of truncated CIPSI-Jastrow wave functions at various optimization levels as a
function of the number of CSFs. The order of the Jastrow factor is given by Jas-X. The data
points are connected as guidance for the eyes.

For the fully optimized wave functions, the energies appear converged, while for the
Jas and Jas+CI optimization levels, it is anticipated that lower energies are obtained
for larger expansions. Furthermore, the larger Jastrow factor (Jas-6) provides lower
VMC energies for each optimization level, which is expected, since a higher amount
of variational parameters goes hand in hand with a more flexible wave function. The
decrease in energy is largest when moving from the Jas to the Jas+CI optimization level,
which also yields the steepest energy curves. Giner et al.[235] investigated CIPSI-Jastrow
wave functions for several atoms using HF initial orbitals and they found no significant
improvement of their VMC energies by also optimizing the molecular orbitals. For C2,
this is clearly not the case. By also including the orbital optimization, the VMC energies
are lowered by 5 to more than 15 mEh, depending on the cutoff value.

In Fig. 7.6, the DMC energies of the optimized CIPSI-Jastrow wave functions are com-
pared to the DMC energies obtained with the truncated CIPSI wave functions. In the
DMC—in contrast to the VMC—framework, one does not necessarily observe a sys-
tematic lowering of the energy with an increasing expansion size. This has been re-
ported by various studies.[263–265] DMC provides the exact ground state energy of a
system with the nodes of the trial wave function as a boundary condition. There is no
guarantee that this energy is approached monotonically with growing expansion size.
Fig. 7.6 demonstrates, however, that the DMC energies reported here, and throughout
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this study, decrease monotonically within the statistical uncertainty with increasing ex-
pansion size—this is also the case for the CIPSI nodes—if the CI (and MO) parameters
are re-optimized in the presence of the Jastrow factor. This has already been observed
in a study by Giner et al.[235] Additionally, for each threshold, the CIPSI nodes yield sig-
nificantly higher energies than the nodes obtained by re-optimizing the CIPSI-Jastrow
wave functions. To ensure, however, a fair comparison between the CIPSI method—
unfolding its true potential only when using large expansions—and the CIPSI-Jastrow
procedure, the two approaches are compared in the next section. As for the different
optimization levels, the larger Jas-6 factor is superior for the Jas+CI optimization for
the smaller cutoff values. By also including the MO optimization, both Jastrow factors
provide similar energies for each threshold.

Although the VMC energies of the fully optimized wave functions appeared converged
for the larger expansions—see Fig. 7.5—the DMC results show that the nodal surfaces
are clearly not converged. Note that, although the VMC energies of the Jas-4+MO+CI
and the Jas-6+CI wave functions with the smallest cutoff coincide, see Fig. 7.5, the nodal
surface of the former wave function is much better. Thus, the performance of a given
approach within VMC cannot necessarily be translated to DMC.

Fig. 7.6: DMC energies of truncated CIPSI wave functions at various optimization levels as a function of
the number of CSFs. The order of the Jastrow factor—if used—is given by Jas-X. The data points
are connected as guidance for the eyes.
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7.3.4 Comparison to the Literature

Now, various methods are to be weighed against one another in order to evaluate the
potential of the CIPSI-Jastrow ansatz. In Fig. 7.7, the absolute energies of C2 are com-
pared for different methods. The J-VBSCF* DMC energy is taken from Ref. 253. The
DMC/CAS(8,8) and the MRCI(Q) energies originate from the works of Barnett et al.[266]

and Peterson et al.[267], respectively. The DMC/CAS(8,8) (Jas+MO+CI) energy was com-
puted in this work. The DMC/CIPSI value is obtained from Ref. 236, with the CIPSI
wave function comprising 173, 553 SDs. Toulouse and Umrigar[66] have extrapolated
their C2 DMC energies—obtained for several truncated wave functions—to the limit
that all CSFs (of the considered CI space) are included in the wave function. The extrap-
olated value corresponds to the DMC/RAS one in Fig. 7.7. This procedure, adopted in
several other works[71,255] as well, makes use of the fact that the original wave function
is normalized to one. By plotting the DMC energies of the fully optimized truncated
CIPSI-Jastrow wave functions with respect to the sum of the squares of the CI coeffi-
cients, one can extrapolate the DMC energy to one using a linear fit, see Fig. 7.8. Five
truncated CIPSI-Jastrow wave functions were used for the extrapolation. The addi-
tional DMC energy (computed for the discussion of the bond dissociation energy, see
below) of the fully optimized wave function using a cutoff value of 0.0010 (1766 CSFs)
corresponds to -75.9197(5) Eh. The energy is not displayed in Fig. 7.7 for clarity reasons.
The extrapolated DMC energy for the CIPSI-Jastrow approach is also given in Fig. 7.7.
The estimated exact value originates from Bytautas and Ruedenberg[250] and is derived
from Table X in Ref. 250 by adding the core correlations amount to the nonrelativistic
valence-correlated energy.

When studying Fig. 7.7, several observations can be made. First, the DMC/CIPSI (no
Jas) energy from Caffarel and co-workers[236] is about 10 to 15 mEh lower than the ones
computed for the truncated CIPSI wave functions (pink data, no Jas), which empha-
sizes that by truncating CIPSI expansions and dispensing with a Jastrow factor, one
loses a substantial amount of the correlation energy. Remarkably, the DMC energy of
the fully optimized CIPSI-Jastrow wave function with the largest threshold (85 CSFs,
dark blue) is lower than the DMC/CAS(8,8) (Jas+MO+CI) one which contains 168 CSFs.
This corroborates the fact that excitations beyond the full valence CAS are important,
which has been shown in other studies as well.[71,239] In addition, the energy of the
largest CIPSI-Jastrow wave function at the Jas+CI optimization level (528 CSFs, blue)

*valence bond self-consistent field
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Fig. 7.7: Comparison of CIPSI-Jastrow-DMC energies, computed in this work (pink and blue data), with
different methods and ansatzes from the literature. The data without indicated references was
computed in this work. See text for references. Error bars are indicated in grey. The data points
are connected as guidance for the eyes.

already equals the DMC/CIPSI energy of Caffarel and co-workers with 173, 553 de-
terminants. Furthermore, the fully optimized CIPSI-Jastrow wave function with the
largest expansion (528 CSFs, dark blue) provides a DMC energy that is considerably
lower than both the MRCI(Q) and the DMC/CIPSI data and that is close to the extrapo-
lated DMC/RAS energy from Toulouse and Umrigar. The DMC energy obtained for the
fully optimized wave function with a threshold of 0.0010 (see above) is slightly lower
than the extrapolated DMC/RAS one, which corresponds to -75.9191(5) Eh. The ex-
trapolated DMC/CIPSI-Jas-6+MO+CI energy amounts to -75.9204(5) Eh which is about
1 mEh lower than the one from the DMC/RAS ansatz. These findings illustrate that the
CIPSI-Jastrow-DMC approach is promising since it allows for accurate energies using
very compact wave functions.
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Fig. 7.8: Time step extrapolated DMC energies of fully optimized truncated CIPSI-Jastrow wave func-
tions as a function of the sum of the squares of the CI coefficients, together with the linear fit.
An sm666 Jastrow factor was used.

7.3.5 CI Coefficients

Having seen in the previous parts of this study that re-optimizing the CI coefficients
in the presence of a Jastrow correlation function has a considerable impact on both the
VMC and DMC energies, it is worth taking a look at how the coefficients are altered by
the optimization. The investigation is done exemplarily for the smallest wave function.
After the CI optimization, the sum of the squares of the CI coefficients is re-normalized
to one (ignoring the Jastrow factor). The results are presented in Fig. 7.9.

The absolute values of the CI coefficients are diminished—starting from the fifth one—
if a Jastrow factor is included in the wave function, see the left graph. This nicely cor-
roborates the effect of the Jastrow factor, namely that it—rather than the expansion—
accounts for the short-range dynamic electron correlation. The CI expansion being nor-
malized, the CI coefficients—and thus the weights—of the first few CSFs are necessarily
increased by adding a Jastrow factor. The decrease of the absolute value of the CI co-
efficients is even more distinct for the fully optimized wave function which shows that
the MO optimization has a major impact on the CI coefficients and hence on the nodal
surface. The right graph in Fig. 7.9 illustrates how the coefficients are altered by the
optimization for each CSF. For the Jas+CI optimization, the coefficients are much closer
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Fig. 7.9: Absolute values of the CSF coefficients for CIPSI wave functions with and without Jastrow factor
truncated at a threshold of 0.0100. The first three coefficients are depicted in the sub-plots. Left:
all coefficients are sorted from largest to smallest. Right: the original CIPSI coefficients (pink) are
sorted from largest to smallest. For the CIPSI-Jastrow wave functions, the coefficients are sorted
such that the CSFs are identical for each index, i.e. x-coordinate. The CSFs are normalized for
each approach.

in value to the original CIPSI coefficients than for the full optimization. Additionally,
the trend for the Jas-6+CI coefficient decrease is similar—with minor fluctuations—to
the one for the normalized CIPSI coefficients. Considering, now, also the optimization
of the MOs, the picture changes drastically, especially for the lower index CSFs, which
have—with a few exceptions—significantly smaller coefficients after the full wave func-
tion optimization. On the other hand, the coefficients of several CSFs are increased by
the Jas+MO+CI optimization. This shows that the selection of the CSFs is influenced
by the optimization which emphasizes that choosing configurations in the presence of
a Jastrow correlation function is important.

In order to investigate this in more depth, we decided to closer analyze the CSFs, whose
coefficients are drastically altered by the full optimization of the wave function, by
looking at which excitations are favored or, contrarily, less likely. We focused on the first
30 CSFs (of the fully optimized wave function) for the analysis of the excitations, the
coefficient changes being most prominent for those configurations. Fig. 7.10 comprises
the orbitals from which the excitations take place, while Fig. 7.11 shows the excited
orbitals.

First of all, no significant qualitative change—except for a few exceptions, see below—
can be observed between the HF and the optimized orbitals. Starting with the CSFs
that gain in importance by the optimization: all possible combinations—preserving the
symmetry—of π → π∗ excitations from 1b2u and 1b3u to 1b3g and 1b2g constitute the
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Fig. 7.10: The orbital on the left is always the HF orbital, while the one on the right corresponds to the
optimized (Jas-6+MO+CI) VMC orbital. Left: 2ag, middle: 2b1u, right: 1b2u. The orbitals are
ordered—from left to right—according to increasing energy eigenvalue. The molecule is dis-
played in the yz-plane with the z-axis being aligned with the CC bonding axis. Orbital 1b3u
(not shown) is degenerate to orbital 1b2u and oriented along the xz-plane. These four orbitals—
together with two σ orbitals, built from the respective carbon 1s orbitals—are doubly occupied
in the HF determinant.

Fig. 7.11: The orbital on the left is always the HF orbital, while the one on the right corresponds to the
optimized (Jas-6+MO+CI) VMC orbital. First row - Left: 3ag, right: 1b3g (with degenerate 1b2g
orbital along xz-plane, not shown). Second row - Left: 2b2u (with degenerate 2b3u, not shown),
right: 2b3g (with degenerate 2b2g, not shown). The orbitals are ordered—from left to right—
according to increasing energy eigenvalue. The molecule is displayed in the yz-plane with the
z-axis being aligned with the CC bonding axis.

most important ones. In addition, σ∗(2b1u) → σ(3ag) and σ∗(2b1u) → π∗(1b3g, 1b2g)

excitations are favored. Finally, different combinations of σ(2ag) → π(2b2u, 2b3u),
σ(2ag) → σ(3ag), and π(1b2u, 1b3u) → π(2b2u, 2b3u) excitations are more important in
the fully optimized wave function than in the original CIPSI one. All of the discussed
excitations correspond to either double (favored) or quadruple excitations. Consider-
ing, now, the CSFs with smaller coefficients for the optimized wave function than for
the original CIPSI expansion, the σ → σ excitation from 2ag to 3ag is strongly disfa-
vored. Furthermore, CSFs with excitations from the 2b1u, 1b2u, and 1b3u orbitals to the

93



7 Selected Configuration Interaction

3ag, 2b3g, and 2b2g orbitals lose in importance. Finally, mixed double excitations from
e.g. 1b2u to 1b3g and 2b3g are considered less favorable. The VMC optimized 2b3g (and
2b2g) orbitals are qualitatively very different from the HF orbitals, see Fig. 7.11. One can
observe a significant contribution from the dxz and dyz orbitals of both carbon atoms to
the π∗ orbitals, which is judged to be the reason why the coefficients of the CSFs that
include these orbitals are considerably reduced by the optimization. Generally, one can
see that the anti-bonding character, see e.g. orbital 1b3g, seems to be increased by the
optimization while the bonding one, see e.g. orbitals 3ag and 2b2u, slightly decreases,
which is rather surprising. All in all, it can be seen that the simultaneous optimization
of all wave function parameters significantly changes the CI picture. One can, however,
based solely on the excitations, not identify a systematic explanation for this change in
CI coefficients.

7.3.6 Bond Dissociation Energy

So far, it has been demonstrated that the CIPSI-Jastrow ansatz is able to provide ac-
curate absolute energies for C2. As chemists, we are, however, primarily interested in
computing molecular properties of a given system, which is why the focus will now be
put on how well the CIPSI-Jastrow-DMC method performs for the electronic dissocia-
tion energy De of C2. The CIPSI method, usually including several hundred thousand
up to more than a million determinants, depending on the system at hand, is quasi-size
consistent. A difficulty that arises for the truncated CIPSI-Jastrow approach is that it
probably suffers from size inconsistency since the chosen cutoffs are rather aggressive.
In order to assess this, different truncation schemes for the carbon atom wave function
were analyzed. The results are listed in Tab. 7.5. The VMC and DMC energies for the
carbon atom can be found in appendix E. The dissociation energies are first-order spin-
orbit (SO) corrected, the correction (for the carbon atom) being determined from exper-
imental splittings and amounting to -0.003669 eV.[135] Firstly, it should be noted that
the best estimate computed in this work is 6.39(2) eV. This value should thus be used
as a reference for the discussion of the truncation schemes. An additional (smaller)
threshold was added for the computation of the dissociation energy in order to as-
sess whether a convergence can be observed. For the first scheme, the same coefficient
threshold for the C atom wave function as for the dimer was employed. Apart from the
smallest cutoff, the dissociation energies (first De column) are not very accurate. This
is not surprising, since by choosing equal thresholds, a much better description of the
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atom, compared to the molecule, is achieved, which is mirrored by the dissociation en-
ergy being severely underestimated. In the second truncation scheme, the cutoff value
for the carbon atom wave function corresponds to the square root of the respective
threshold for C2. The dissociation energies are—apart from the smallest threshold—
overestimated by more than 0.1 eV, hinting at a poor description of the carbon atom,
corroborated by the rather aggressive truncation thresholds for the respective carbon
wave functions. Note that the first three dissociation energies are identical because the
same C wave functions were employed. In the last ansatz, the sum of the CSF weights
(squares of the CI coefficients) after the truncation was determined. The carbon atom
wave functions were truncated such that the normalization was as close as possible to
the one of C2. For this scheme, a nice convergence of the dissociation energy can be ob-
served. This approach is superior since a similar amount of correlation is recovered for
both, the atom and the molecule. It should be noted that, for the smallest C2 cutoff, the
dissociation energies for all three truncation schemes are in good agreement with each
other. In order to assess whether this is based on the expansions being large enough
to both accurately describe the atom and the molecule or whether this is a mere coinci-
dence, the dissociation energies should be evaluated for an even smaller C2 threshold
and the respective carbon thresholds. In a next step, the best estimate of the dissocia-
tion energy from this study is compared to data from the literature, see Tab. 7.6. The
ZPE, necessary for D0, is taken from Ref. 268 and amounts to 0.1146 eV.

Tab. 7.5: Computed DMC bond dissociation energies of C2 in eV at the Jas-6+MO+CI optimization level
with different truncation schemes for the carbon atom wave functions. The number of CSFs
for the different wave functions is given as well. The dissociation energies are first-order SO
corrected, see text for details.

Thres C2 Thres Ca #CSFs De Thres Cb #CSFs De Thres Cc #CSFs De

0.0100 0.0100 40 6.16(2) 0.1000 2 6.52(2)d 0.1000 2 6.52(2)d

0.0075 0.0075 46 6.18(2) 0.0870 2 6.52(2)d 0.0550e 5 6.68(2)
0.0050 0.0050 55 6.20(2) 0.0710 2 6.52(2)d 0.0380 13 6.37(2)
0.0025 0.0025 94 6.21(2) 0.0500e 5 6.67(2) 0.0340 19 6.40(2)
0.0010 0.0010 186 6.35(2) 0.0320 20 6.38(2) 0.0230 26 6.39(2)

a Same threshold for C and C2.
b C threshold corresponds to square root of C2 threshold.
c Sums of squared CI coefficients of the C wave functions were chosen such that they are as close as possible to

the sums of squared CI coefficients of the C2 wave functions.
d Same C atom wave functions.
e Same C atom wave functions.

There are myriad values in the literature for the bond dissociation energy of C2. In
this study, only the more recent and highly accurate experimental as well as theoretical
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data are considered. The dissociation energy from Borsovsky et al.[260] is, to the best of
my knowledge, the best experimental estimate currently available. Tab. 7.6 shows that
the dissociation energy from this work, fits well into the range of recent experimental
estimates and that it is in agreement with (most) theoretical values. The i-FCIQMC
approach underestimates the experimental dissociation energy. The procedure for the
computation of the DMC/CIPSI-Jastrow (this work) and the DMC/CAS(8,8) values is
the same, apart from the choice of expansion. By employing a CIPSI initial expansion—
in contrast to a CASSCF wave function—the bond dissociation energy of C2 could be
improved. What is more, the dissociation energy computed in this work agrees well
with the CASPT2 and the DMC/CAS(8,18) data. Toulouse and Umrigar[251] report a
DMC dissociation energy of 6.482(3) eV, obtained using a full valence CAS approach
with a fully optimized wave function, including the optimization of the basis func-
tion exponents. This bond dissociation energy overestimates the theoretical and exper-
imental ones. Finally, the CC value from Karton, keeping in mind the computational
expenditure needed for these calculations, shows an excellent agreement with the ex-
periment.

Tab. 7.6: Calculated or measured bond dissociation energies of C2 in eV, with and without ZPE. The D0
data refers to values obtained for 0 K. The horizontal line in the middle of the table separates
the theoretical data from the one relying on experimental results.

Investigators Method De D0

This work DMC/CIPSI(Jas-6+MO+CI)/TZPae 6.39(2) 6.28(2)
Karton[258] CCSDTQ567/CBS 6.248
Haghighi Mood[78] DMC/CAS(8,8)(Jas+MO+CI)/TZPae 6.433(16) 6.315(16)
Umrigar et al.[71] DMC/CAS(8,18)(Jas+MO+CI)/BFD-V5Z 6.36(1)
Toulouse and Umrigar[251] DMC/CAS(8,8)/CVB1 full optimizationa 6.482(3)
Cleland et al.[269] i-FCIQMC/VQZ+∆Eccsd(T)

F12 6.296(9)
Hermann et al.[257] CASPT2-F12/cc-pVTZ-F12 6.370 6.257

Ruscic[270] exp (ATcT) 6.245(3)
Borsovszky et al.[260] exp (VMI and MPI) 6.2476(3)
Urdahl et al.[249] exp (LIF) 6.30(2)
Visser et al.[259] exp (TC-RFWM)/icMRCI+Q/cc-pCVQZ-F12 6.36(2) 6.25(2)
Bytautas and Ruedenberg[250] exp (from ATcT, atomic ionization energies) 6.44(2)b 6.30(2)
a Optimization of the Jastrow, CSF, orbital, and basis exponent parameters.
b Non-relativistic estimate. Corresponds to the sum of nonrelativistic valence-correlated and core correlations values, see

Table X of Ref. 250. Relativistic estimate (D0+ ZPE) corresponds to 6.42(2) eV.
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7.3.7 Choice of Initial Orbitals

So far, all of the results that have been presented were obtained using HF orbitals.
Various studies have shown that the use of KS orbitals is favorable in combination
with quantum Monte Carlo.[66,120,125,248,271,272] Several studies[240,241,243], making use of
the CIPSI-Jastrow approach, employ CASSCF or even natural orbitals to construct the
CIPSI expansions. In this part of the study, the performance of different sets of initial
orbitals with respect to the DMC energies of C2, see Fig. 7.14, is analyzed. The QMC
calculations for this part of the work were conducted in the SD basis. Since only trends
are discussed, the results are judged to be alike for the CSF basis.

Fig. 7.12: VMC energies of truncated CIPSI-Jastrow wave functions as a function of the number of deter-
minants for different sets of initial orbitals. An sm666 Jastrow factor was used. The data points
are connected as guidance for the eyes.

The VMC energies of the Jas+CI and the fully optimized CIPSI-Jastrow wave functions
using different initial orbitals are shown in Fig. 7.12. The HF orbitals provide the high-
est VMC energies in every case. At the Jas+CI level, the B3LYP KS orbitals are slightly
favored while for the full optimization, the VMC energies are similar (except for HF),
irrespective of the initial orbital choice.

In 2019, Per and co-workers argued that an accurate density is important in order to
obtain good nodal surfaces.[273] They found that the PBE0 (followed by the B3LYP)
functional provided the best results for the systems that they investigated. Comparing
the DMC energies of C2 using initial PBE0 and B3LYP KS orbitals, respectively, it was
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found that B3LYP provided superior results, see Fig. 7.13. This is also the case for the
VMC energies, see Tab. E.6 in the appendix.

Fig. 7.13: DMC energies of truncated CIPSI-Jastrow wave functions as a function of the number of deter-
minants for different sets of initial orbitals. An sm666 Jastrow factor was used. The data points
are connected as guidance for the eyes.

The PBE0 results are not shown for the discussion of the DMC energies, see Fig. 7.14,
for clarity reasons. Several observations can be made regarding Fig. 7.14. Firstly, for a
given cutoff value, the size of the expansion is reduced—compared to HF—when us-
ing KS orbitals. This is even more prominent when CASSCF orbitals are employed.
By plotting the absolute value of the CI coefficients as a function of the determinant
indices, see Fig. 7.15, one observes a steeper descent of the CIPSI coefficients when us-
ing CASSCF orbitals than for the HF and B3LYP counterparts. This indicates that some
correlation is—compared to HF—already included in the orbitals, the expansion, there-
fore, being shorter for a given threshold. For wave functions constructed from the same
determinants, assuming that the optimization works well, the choice of initial orbitals
would make no difference to the final VMC and DMC energies. The differing number
of determinants for a given cutoff in Fig. 7.14 thus implies that different determinants
are chosen, depending on the choice of initial orbitals. Secondly, at the Jas+CI optimiza-
tion level, the expansions using B3LYP KS orbitals yield overall lower DMC energies
than the wave functions computed with the CASSCF counterparts. Remarkably, for
the largest expansion using KS orbitals, the energy is not improved by optimizing the
MO parameters. For larger systems, therefore, it seems promising to omit the costly
MO optimization when using KS orbitals. The fully optimized CIPSI-Jastrow approach
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with CASSCF orbitals provides the lowest energies for each threshold. This procedure
has, however, the disadvantage of needing to choose an active space for the generation
of the orbitals, which stands in the way of the CIPSI-Jastrow-DMC method becoming
a black box approach. It should be noted that, ideally, one would employ orbitals that
are optimized within the sCI framework, which has been studied by Yao and Umri-
gar.[274]

Fig. 7.14: DMC energies of truncated CIPSI-Jastrow wave functions as a function of the number of deter-
minants for different sets of initial orbitals. For each plot, the data points correspond to the |ci|
cutoff values of 0.0100, 0.0075, 0.0050, and 0.0025. An sm666 Jastrow factor was used. The data
points are connected as guidance for the eyes.

Clay and Morales[255] investigated C2 in both the equilibrium and a stretched geometry
with QMC using multi-Slater-Jastrow wave functions. They argued that using orbital
sets that already take into account electronic correlation for the generation of the con-
figurations is important, especially because one observes a faster convergence with the
number of included CSFs. This significance of the initial orbital choice is nicely corrob-
orated by the findings of this study. Cuzzocrea et al.[242] recently published excitation
energies for cyanine dyes using CIPSI-Jastrow wave functions. They found that the
use of different initial orbitals has no significant impact on the excitation energies. The
arguments that have been made above are only valid for the absolute energies of C2.
Whether the choice of initial orbitals has an impact on the dissociation energy of C2

necessitates further investigation.
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Fig. 7.15: Absolute values of the determinant coefficients for CIPSI-Jastrow wave functions truncated at
a threshold of 0.0025. The first three coefficients are depicted in the sub-plot. The coefficients
are sorted from largest to smallest. The plot only includes the first 125 determinants, for clarity
reasons.

7.3.8 Selected CI in the Presence of a Jastrow Factor

One goal of this study is to provide an approach that allows for the generation of com-
pact sCI wave functions. Having established the validity of the CIPSI-Jastrow-DMC
procedure above, the importance of moving beyond the original CIPSI selection will
be demonstrated in this part. Since the CI picture is substantially altered when simul-
taneously optimizing all the wave function parameters (see discussion of the CI coef-
ficients), the selection of the CSFs in the presence of a Jastrow factor is judged to be
of great importance. Before discussing this in more detail, however, let us first com-
pare the full valence CAS and the CIPSI expansions, see Tab. 7.7. The CAS(8,8) wave
function contains 168 CSFs, so, in order to compare both ansatzes, the CIPSI expan-
sion is truncated, after sorting with respect to |ci|, at 168 CSFs. Tab. 7.7 demonstrates
that, irrespective of the optimization level, CIPSI is superior—at least for C2—to CAS
in terms of energy. Additionally, the fully optimized CIPSI-Jastrow wave function has
a better nodal surface, demonstrated by the considerably lower DMC energy. These
findings are not surprising, since CAS is known to include various CSFs that do not
significantly contribute to the correlation energy. CIPSI, on the other hand, chooses
configurations based on their energy contribution. This was already shown by Dash
et al. in their work on 1,3-trans-butadiene.[275] The comparison between CIPSI and
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CAS justifies the transition from CAS initial wave functions—used in several previous
studies of our group[78,105,125]—to CIPSI expansions, leaving behind the limitations of
CASSCF and paving the way toward the investigation of larger systems.

Tab. 7.7: VMC and DMC energies in Eh for different wave function ansatzes. The CAS(8,8) wave function
contains 168 CSFs. The CIPSI expansion was truncated at 168 CSFs.

CAS(8,8) CIPSI

E −75.6381 a -75.6751(4)b

EVMC(Jas-6) −75.8594(3) -75.8707(3)
EVMC(Jas-6+CI) −75.8696(3) -75.8820(2)
EVMC(Jas-6+MO+CI) −75.8792(3) -75.8937(3)
EDMC(Jas-6+MO+CI) −75.9115(5) -75.9151(5)
a CASSCF energy.
b Calculated with VMC.

Let us, now, move on to the discussion of the sCI scheme in the presence of a Jastrow
correlation function (Jas-sCI). In this part, the selection of the CSFs is discussed—more
precisely, different selection schemes will be compared by discussing the effects of the
Jastrow factor and the molecular orbital. All the energies, portrayed in Tabs. 7.8, 7.9,
and 7.10, are obtained for wave functions with 168 CSFs. While sCI usually refers to
iterative selection schemes, in this study, only one CI selection step is presented which
may, in subsequent work, be the basis for a full iterative Jastrow-sCI algorithm.

First of all, the effect of adding a Jastrow factor and the choice of MOs are put in con-
trast. Tab. 7.8 reveals that the nodal surface is improved—for the same expansion size—
by using orbitals from a correlated (here CASSCF) calculation as opposed to using HF
orbitals in the CIPSI calculation. The effect is, however, much smaller compared to the
approach of adding a Jastrow correlation function to the CIPSI HF wave function and
optimizing the Jastrow and CI parameters. It should be mentioned that the CIPSI/HF
and CIPSI/CAS DMC energies were calculated with an optimized Jastrow factor in or-
der to increase the efficiency of the calculations. Note, however, that the Jastrow factor
does not change the nodes of the wave functions and thus the DMC energies.

In the next step, the CSFs are selected in the presence of the Jastrow factor, see Tab. 7.9.
For the Jas-sCI entries, we started with larger expansions (Initial cutoff ) at the Jas-6+CI
Initial opt level, truncated the wave functions (after the optimization and sorting) to 168
CSFs, and subsequently re-optimized the Jastrow and CI parameters. The HF orbitals
remain unaltered for this Jas-sCI procedure in order to limit the evaluation to the impact
of the Jastrow factor. For the smaller initial wave function (0.0050), a lower VMC energy
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Tab. 7.8: DMC energies in Eh for different wave function ansatzes. The expansions were truncated at
168 CSFs. The CIPSI entries correspond to pure CIPSI wave functions. For the CIPSI-Jas wave
function, the Jastrow and CI parameters were optimized. The initial orbitals—used for the CIPSI
calculation—are either HF or CASSCF orbitals.

EDMC

CIPSI/HF -75.9047(5)
CIPSI/CAS -75.9061(5)

CIPSI-Jas/HF (Jas-6+CI) -75.9121(5)

is obtained in the Jas-sCI scheme while the DMC energy is similar to the DMC CIPSI-
Jas one. As for the larger initial expansion, a decrease in energy is observed for both
the VMC and DMC energies compared to the CIPSI selection. This shows that one can
get lower energies (VMC and DMC) with the same expansion length if the CSFs are
chosen in the presence of a Jastrow correlation function. Since the optimization of the
molecular orbitals was dispensed with, these findings show that the selection is altered
when a Jastrow factor is present, justifying the need for a Jas-sCI scheme.

Tab. 7.9: VMC and DMC energies in Eh for different wave function ansatzes. The expansions were trun-
cated at 168 CSFs. For the CIPSI-Jas wave function, the Jastrow and CI parameters were op-
timized. For the Jas-sCI entries, the CIPSI wave functions for different thresholds (see Initial
cutoff ) were truncated (to 168 CSFs) and the Jastrow and CI parameters were re-optimized. The
initial orbitals—used for the CIPSI calculation—are Hartree-Fock orbitals.

Initial cutoff (# CSFs) Initial opt level EVMC(Jas-6+CI) EDMC(Jas-6+CI)

CIPSI-Jas/HF -75.8820(2) -75.9121(5)

Jas-sCI/HF
0.0050 (266) Jas-6+CI -75.8842(2) -75.9127(5)
0.0025 (528) Jas-6+CI -75.8849(3) -75.9145(5)

Lastly, the optimization of the MOs was also included in the Jas-sCI scheme in order
to evaluate the impact of improved orbitals on the selection, see Tab. 7.10. Again, for
the Jas-sCI entries, we started with larger expansions (Initial cutoff ) at different opti-
mization levels (Initial opt level), truncated the wave functions (after the optimization
and sorting) to 168 CSFs, and subsequently re-optimized the Jastrow, MO, and CI pa-
rameters. Let us start by discussing the results for the smaller initial wave function
(0.0050). Firstly, the fully optimized initial wave function provides lower VMC and
DMC energies than the CIPSI selection. For the Jas-6+CI initial wave function, no sig-
nificant improvement (for VMC and DMC) is observed. More importantly, though, is
the finding that when the CSFs are selected using improved orbitals, both lower VMC
and DMC energies—compared to the Jas-6+CI initial optimization level—are obtained.
This shows that the orbitals influence the selection of the CSFs. One last comparison
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7.3 CIPSI-Jastrow Wave Functions

for this smaller initial wave function will be made. The DMC energy for the fully op-
timized CIPSI-Jastrow wave function, truncated at a threshold of 0.0050 (266 CSFs) is
equal to -75.9158(5) Eh. Comparing this energy to the ones from Tab. 7.10 (third and
fourth row), one can see, firstly, that, for the (0.0050, Jas-6+CI) initial wave function, the
same—within the statistical error—DMC energy can be obtained with a more compact
wave function (168 vs 266 CSFs). Secondly, and more importantly, a lower DMC en-
ergy is attained (for a smaller expansion size) if one starts with a fully optimized wave
function (0.0050, Jas-6+MO+CI). Note, however, that the DMC energy of -75.9158(5) Eh

is not significantly better than the CIPSI-Jas (168 CSFs, Jas-6+MO+CI) DMC energy of
-75.9151(5) Eh although it contains more CSFs.

For the larger initial expansion (0.0025) at the Jas-6+CI Initial opt level, a Jas-sCI DMC
energy of -75.9161(5), that is lower than the DMC CIPSI-Jas energy (-75.9151(5)), but
that is similar to the one of the initially fully optimized Jas-sCI wave function (0.0025,
Jas-6+MO+CI) (-75.9162(5)), is obtained. This result shows that it might not be neces-
sary to make the CSF selection with improved orbitals, since the MO optimization after
the final Jas-sCI iteration might be able to compensate for the effect of improved initial
orbitals. This implies that it might be possible to design an iterative Jas-sCI algorithm
without needing to (costly) optimize the MOs at each iteration for the selection of the
CSFs.

Tab. 7.10: VMC and DMC energies in Eh for different wave function ansatzes. The expansions were
truncated at 168 CSFs. For the CIPSI-Jas wave function, the Jastrow, MO, and CI parameters
were optimized. For the Jas-sCI entries, the CIPSI wave functions for different thresholds (see
Initial cutoff ) as well as different optimization levels (see Initial opt level) were truncated (to 168
CSFs) and fully re-optimized. The initial orbitals—used for the CIPSI calculation—are Hartree-
Fock orbitals.

Initial cutoff (# CSFs) Initial opt level EVMC(Jas-6+MO+CI) EDMC(Jas-6+MO+CI)

CIPSI-Jas/HF -75.8937(3) -75.9151(5)

Jas-sCI/HF 0.0050 (266)
Jas-6+CI -75.8941(3) -75.9154(5)

Jas-6+MO+CI -75.8951(3) -75.9165(5)

Jas-sCI/HF 0.0025 (528)
Jas-6+CI -75.8941(3) -75.9161(5)

Jas-6+MO+CI -75.8946(3) -75.9162(5)

Having observed an improvement in the energy for some Jas-sCI approaches, the re-
spective wave functions are to be investigated in more detail, trying to gain more in-
sight into how the selections are different from one another. The CIPSI and the (0.0050,
Jas-6+MO+CI) Jas-sCI selections differ by 36 of the total 168 CSFs. When analyzing the
occupation of these CSFs, no systematic preference can be deduced. For the Jas-sCI se-
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lection, configurations that include excitations e.g. out of orbital 2ag are removed while
CSFs with excitations into orbitals 1b3g and 1b2g (primarily from 1b2u and 1b3u) are in-
troduced into the wave function. The orbitals are illustrated in Figs. 7.10 and 7.11.

Tailoring CIPSI expansions has been successfully done in various studies[235,239–243],
corroborating the promising nature of the CIPSI-Jastrow approach. In these studies,
it was yet never tried to go beyond the CIPSI selection. The findings of this study
emphasize, however, the importance of choosing the expansion in the presence of the
Jastrow factor, which is why, in a next step, further investigations, see 7.4, are based
on expanding (small) VMC optimized wave functions by generating new CSFs rather
than reducing the size of existing expansions.

7.3.9 Computational Approach

Some insight on the problems, more precisely on the handling of the symmetry, that
arise for the computation of diatomic systems is given in appendix C. The CIPSI cal-
culations were performed using the QUANTUM PACKAGE[261] software which works in
the basis of SDs. The use of CSFs is judged preferable because firstly, they have the ad-
vantage of being eigenfunctions of the Ŝ2 operator and secondly, the smaller expansions
allow for less expensive CI coefficient optimizations with VMC. The spatial symmetries
are included as well in the construction of the CSFs. It should be noted, however, that
QUANTUM PACKAGE works with spin-adapted wave functions which are obtained by
adding all missing determinants—needed to have eigenfunctions of Ŝ2—to the inter-
nal space. Since QUANTUM PACKAGE does not handle symmetry, which is necessary
for the generation of CSFs with spatial symmetry, the HF orbitals were generated with
GAMESS[221] in D2h. The 1s orbitals were kept frozen for the CIPSI calculations. The
experimentally derived equilibrium distance of 1.243 Å from Huber and Herzberg[247]

was used. All calculations were performed using the Slater-type triple-ζ all-electron
basis set TZPae[244] by van Lenthe and Baerends. Each Slater-type basis function was
expanded into 14 primitive Gaussian-type functions[245,246] for the GAMESS and QUAN-
TUM PACKAGE[261] calculations. The CIPSI wave function was truncated at different
thresholds, namely 0.0100, 0.0075, 0.0050, and 0.0025 (additional cutoff of 0.0010 for the
dissociation energy). The thresholds correspond to the absolute value of the CI coef-
ficients. The QMC calculations were performed within the Slater basis using the elec-
tronic structure program AMOLQC.[67] Two different Jastrow factors—denoted sm444
and sm666 in Ref. 60—with cusp-less three-particle terms were chosen for the calcula-
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tions.[59] The Jastrow factors are denoted Jas-4 and Jas-6, respectively, throughout this
study.

The Jastrow, MO, and CI parameters were partially and fully optimized within the
VMC framework using the linear[70] or the stabilized Newton[74] method as described
in Ref. 66. For the optimization of the molecular orbitals, the following rotations were
considered: doubly to partially occupied, doubly occupied to virtual, partially occu-
pied to virtual, as well as partially to partially occupied. Partially occupied refers to
orbitals that are occupied only in some of the CSFs (cf. active orbitals in CASSCF).

DMC calculations were performed with four different time steps (τ = 0.001, 0.002,
0.005, 0.007 a.u.) for each wave function and the energies were extrapolated to a zero
time step. The extrapolation was performed using a quadratic model.[218] The SDs were
converted to CSFs for each threshold and the calculations were repeated.

The bond dissociation energy of C2 was calculated for each cutoff at DMC level, using
the fully optimized guide functions for C and C2, respectively. The dissociation energies
were first-order spin-orbit corrected. The first-order SO correction for the carbon atom
was derived from experimental splittings.[135] C2 being a closed-shell system, its first-
order SO correction is equal to zero.

For the evaluation of the orbital choice, different sets of initial orbitals are compared,
namely Kohn-Sham (using the PBE0[37,38] and the B3LYP[34–36], with the VWN(III)[217]

local correlation energy, functionals) and CAS(8,8) orbitals. The computational proce-
dure is identical to the one described for the HF orbitals.

7.4 Jastrow-sCI Scheme

In this final part, an sCI scheme that selects the CSFs based on their energetic contri-
bution to the wave function in the presence of a Jastrow correlation function is intro-
duced.

In 2017, Per and Cleland[248] presented an energy-based truncation scheme for the use
in QMC. In their work, the authors focused on truncating large CI expansions and
testing—very successfully so—the truncation method for a variety of small systems
within the DMC framework. Our objective is to use the same truncation scheme as
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a basis for an sCI scheme in the presence of the Jastrow factor. We aim, however, at
extending—rather than reducing—the CI expansions.

In order to determine the energy contribution of the CSF ΦI , the following wave function—
with Ψ0 as the initial wave function—is defined:

ΨI = Ψ0 − cIΦI . (7.2)

In the sCI scheme presented in section 7.2, the second-order perturbative energy was
computed exclusively using the given CSF. The advantage of employing the wave func-
tion form presented in Eq. (7.2) for the evaluation of the energetic contribution lies
within Ψ0 and ΨI being very similar, they only differ by a single CSF. This enables a
very accurate determination of the energy contribution through correlated sampling
using QMC.

The energy of the initial wave function E0 as well as the one of ΨI , denoted as EI , are
determined—using a sample of size N—as follows:

E0 =
1
N

N

∑
i

ĤΨ0(xi)

Ψ0(xi)
(7.3)

EI =
1
N

N

∑
i

|ΨI(xi)|2
|Ψ0(xi)|2

ĤΨI(xi)

ΨI(xi)
. (7.4)

Finally, the energy contribution of the I-th CSF can be evaluated:

δeI = E0 − EI . (7.5)

The algorithm, adopted for the Jas-sCI scheme, can be outlined as follows:

1. Start with a determinant or a set of determinants.

2. Generate all possible single and double excitations, abiding by the symmetry re-
quirements of the considered state.
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3. Convert the determinants to CSFs (to avoid spin contamination).

4. Optimize the Jastrow and CI parameters with VMC.

5. Determine the energy contributions according to Eq. (7.5).

6. Retain the CSFs with an energy contribution larger than a certain threshold.

7. Re-expand the CSFs into determinants.

8. Go back to 2. and repeat until the stop criterion is reached.

The Jas-sCI scheme is tested for the 1Σ+
g ground state of C2, using the experimental

equilibrium bond distance of 1.243 Å from Huber and Herzberg[247]. The starting wave
function is the HF determinant, computed using the Slater-type triple-ζ all-electron
basis set TZPae[244] by van Lenthe and Baerends. Each Slater-type basis function was
expanded into 14 primitive Gaussian-type functions[245,246] for the HF calculation with
MOLPRO[216]. The Slater basis was used for the QMC calculations. An sm666 Jastrow
factor, see earlier, was employed. The core orbitals were excluded for the generation of
the excited determinants.

In the first sCI iteration, ten virtual orbitals (up to orbital 16) were used for the exci-
tations, resulting in a wave function with 86 CSFs. The energy contribution threshold
for the second iteration was set to 1 mEh, yielding a wave function containing 61 CSFs
(246 determinants). To maintain computational feasibility, only determinants with co-
efficients greater than 0.05 in absolute value (14 out of the 246) were considered for
generating the single and double excitations. Five additional virtual orbitals (up to
orbital 21) were included for the excitations. Following the basis transformation, the
resulting wave function comprised 1765 CSFs. The energy threshold for the third itera-
tion was kept at 1 mEh, resulting in a wave function with 471 CSFs (3080 determinants).
The same threshold (0.05) for the generation of the excited determinants was upheld for
the excitations, while five additional orbitals were included (up to orbital 26). The final
wave function comprised 3450 CSFs.

Tab. 7.11 compares the Jas-sCI VMC energies with the CIPSI-Jastrow counterparts for
different expansion sizes. The latter results are taken from section 7.3. First, it is im-
portant to note that the proposed Jas-sCI scheme, in contrast to the CIPSI approach, is
designed to undergo only very few iterations due to the computational expenses associ-
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ated with the QMC optimizations. Three iterations are considered sufficient as they—in
theory—already incorporate six-fold excitations. The energy of a CIPSI-Jastrow wave
function with 85 CSFs is about 15 mEh lower than the one obtained for the first Jas-sCI
iteration, despite both wave functions having similar expansion sizes. This discrepancy
is expected since the CSFs in CIPSI are chosen based on their energetic contributions,
whereas the first Jas-sCI step only includes singly and doubly excited determinants.
In the second iteration, a decrease in energy compared to the first iteration is observed.
However, the number of CSFs increases significantly and what is more, a CIPSI-Jastrow
wave function with only 266 CSFs provides a lower VMC energy. The difference in en-
ergy can be attributed to the occupancy of the virtual orbitals. In the Jas-sCI wave func-
tion, orbital 21 constitutes the highest occupied orbital, whereas in the CIPSI-Jastrow
counterpart, orbital 33 is already occupied.

Tab. 7.11: VMC energies in Eh for different wave function ansatzes. The Jastrow and CI parameters were
optimized. An sm666 Jastrow factor was used.

Ansatz # CSFs EVMC # CSFs EVMC

CIPSI-Jas 85 -75.8705(3) 266 -75.8863(3)

Jas-sCI Iteration 1 Iteration 2

86 -75.8568(2)a 1765 -75.8795(2)
a Only single and double excitations out of the HF determinant.

Let us, now, delve into the discussion of the two sCI schemes within the much more
accurate DMC framework. Tab. 7.12 presents the DMC energies for Jas-sCI and CIPSI-
Jastrow with different expansion sizes. As anticipated, when comparing the first Jas-
sCI iteration with the smallest CIPSI-Jastrow wave function, it is expected that the latter
would yield a superior nodal surface. This outcome aligns with the explanations pro-
vided during the discussion of the VMC energies. Moving on to the second iteration,
the DMC energy computed using the Jas-sCI scheme—now also energy-based—is ap-
proximately 2 mEh higher than the CIPSI-Jastrow counterpart, despite the latter having
a considerably smaller expansion size. This observation is consistent with the VMC re-
sults, indicating that excitations into higher-lying orbitals are important for achieving
accurate nodal surfaces.

We decided to dispense with the optimization of the final wave function (third iteration)
since it includes 3450 CSFs. The exponential growth in the number of CSFs constitutes
a major challenge and renders the presented Jas-sCI scheme impracticable. The aim
would be to design an algorithm that scales linearly or maybe quadratically with the
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Tab. 7.12: DMC energies in Eh for different wave function ansatzes. The Jastrow and CI parameters were
optimized. A time step of τ = 0.001 a.u. was used.

Ansatz # CSFs EDMC # CSFs EDMC

CIPSI-Jas 85 -75.9081(3) 266 -75.9145(3)

Jas-sCI Iteration 1 Iteration 2

86 -75.9026(3) 1765 -75.9121(3)

number of CSFs. And although it was shown that the Jas-sCI scheme—in principle—
works, the results, particularly when compared with the CIPSI selection of the CSFs,
are in need of improvement. The sheer amount of excited determinants, generated al-
ready in the second iteration step for a small number of selector determinants, leads
to computationally expensive CI optimizations with QMC for wave functions that con-
tain a lot of configurational "deadwood"[24], referring to CSFs that will ultimately be
discarded in the sCI process. A significant issue arises from the fact that these gen-
erated determinants lack coefficients, making it impossible to perform a pre-selection.
Consequently, energy contributions must be computed for numerous (unimportant)
CSFs, resulting in computationally intensive calculations since the sample has to be
re-evaluated for each energy contribution. Additionally, in order to keep the problem
size at bay, the number of virtual orbitals used for the excitations needs to be restricted,
leading to the omission of important excitations into higher-lying orbitals, as described
earlier. One potential solution to address these challenges is to employ the CIPSI deter-
minants instead of considering all possible singly and doubly excited determinants for
the Jas-sCI scheme. For example, in the case of C2, the CIPSI wave function contains—
in the given basis—roughly two million determinants. One could thus adapt the algo-
rithm to select determinants from this pool, which would correspond to a pre-selection
of the determinants based on their energetic contributions. This could potentially en-
hance the efficiency of the Jas-sCI scheme and one would not have to dispense with
the effect of the Jastrow factor on the configuration selection. Finally, one could make
use of the results presented in section 7.1 and only optimize parts of the CI coefficients
while scaling the remaining ones with a pre-determined factor, thereby reducing the
computational cost of the optimization steps.
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8 Conclusion

"ADVENTURE IS OUT THERE." – Up

This thesis is dedicated to the investigation of systems characterized by strong multi-
reference character. The goal is to evaluate how to best—in terms of method optimiza-
tion, but also method development—capture both, the static and dynamic electron cor-
relation, an endeavor that has engaged scientists since the early days of quantum me-
chanics. Quantum Monte Carlo (QMC) techniques, specifically variational Monte Carlo
(VMC) and diffusion Monte Carlo (DMC), are employed as the methods of choice in
this work.

In the first part of the thesis, an exhaustive study of transition metal dimers, including
hydrogen, first-row, and second-row elements, is conducted, with a particular empha-
sis on the electronic dissociation energy. Slater-Jastrow wave functions are constructed
based on initial full valence complete active space (CAS) wave functions, whereas HF
and KS determinants are utilized for the single-reference approaches. Partial or full
optimization of the Jastrow, orbital, and CI parameters is carried out to minimize the
variational energy, followed by DMC calculations. The results reveal that while the
single-reference approaches yield poor outcomes, the accuracy of both absolute and
dissociation energies in MR-DMC is improved by incorporating more sets of parame-
ters in the VMC optimization. The key factor contributing to this improvement is the
optimization of molecular orbitals (MOs) in the presence of the Jastrow factor. Addi-
tionally, a comparison is made between two different types of ECPs, which generally
result in similar dissociation energies. Overall, the MR-DMC dissociation energies ex-
hibit good agreement with highly accurate experimental data for the majority of the
systems investigated. Furthermore, it is found that MR-DMC mostly outperforms CC
and DFT in terms of accuracy. A further assessment of the MR-DMC approach is ac-
complished by evaluating spectroscopic constants extracted from Morse fits to the MR-
DMC potential energy curves. The MR-DMC constants agree well with experimental
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and theoretical data. These findings collectively demonstrate the ability of MR-DMC
to provide accurate dissociation energies and other properties of transition metal com-
pounds using compact wave functions.

The second part of the thesis focuses on evaluating existing and developing new se-
lected configuration interaction (sCI) approaches. Specifically, the C2 molecule is inves-
tigated in its 1Σ+

g ground state. First, the circumstances under which the optimization
of the CI coefficients with QMC can be avoided are discussed. In addition, an sCI
approach incorporating the Jastrow factor based on the linear optimization method is
explored. The ansatz presents, however, several challenges. Furthermore, a rigorous
analysis of C2 is conducted using VMC-optimized truncated CIPSI-Jastrow wave func-
tions, where the truncation is based on the absolute value of the CI coefficients. The
inclusion of the Jastrow correlation function results in lower VMC and DMC energies
compared to pure CIPSI expansions, demonstrating the legitimacy of using the Jastrow
factor to account for short-range dynamic electron correlation. Accurate absolute and
dissociation energies are obtained using the CIPSI-Jastrow-DMC approach. The study
reveals significant changes in the CI picture in the presence of the Jastrow factor. The
impact of the choice of initial orbitals, ranging from HF to KS and CASSCF, on the
VMC and DMC energies is also discussed. It is found that the CASSCF orbitals are
favored. The key finding of the study is, however, that by selecting CSFs in the pres-
ence of the Jastrow correlation function, lower energies can be achieved with the same
expansion size compared to the CIPSI selection. Finally, a new Jastrow-sCI scheme, uti-
lizing an energy contribution criterion, is proposed and its effectiveness is evaluated for
C2. The main difficulty of the approach lies in dealing with the substantial number of
excited determinants, generated in each iteration step. Different strategies to improve
the scheme are discussed.
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Acronyms

CAS complete active space
CASPT2 complete active space second-order perturbation

theory
CASSCF complete active space self-consistent field
CBS complete basis set
CC coupled cluster
ccECP correlation-consistent effective core potential
CCSD coupled cluster singles doubles
CCSD(T) coupled cluster singles doubles perturbative triples
CI configuration interaction
CIPSI configuration interaction using a perturbative se-

lection made iteratively
CISD configuration interaction singles doubles
CSF configuration state function
CV core-valence

DFT density functional theory
DMC diffusion Monte Carlo

ECP effective core potential

FCI full configuration interaction
FCIQMC full configuration interaction quantum Monte

Carlo
FN-DMC fixed-node diffusion Monte Carlo

GTO Gaussian-type orbital

HF Hartree-Fock
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Acronyms

KS Kohn-Sham

MCSCF multi-configuration self-consistent field
MO molecular orbital
MP2 Møller-Plesset second-order perturbation theory
MRCC multi-reference coupled cluster
MRCI multi-reference configuration interaction
MR-DMC multi-reference diffusion Monte Carlo
MRMP2 multi-reference second-order perturbation theory

QMC quantum Monte Carlo

RAS restricted active space
RASSCF restricted active space self-consistent field

SCF self-consistent field
sCI selected configuration interaction
SD Slater determinant
SO spin-orbit
STO Slater-type orbital

VMC variational Monte Carlo

ZPE zero-point energy
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Appendix A

CIPSI Algorithm

0. Start with a determinant or a set of determinants, defining a subspace S0:

|Ψ(0)
0 ⟩ = ∑

i∈S0

c(0)i |Di⟩ with E(0)
0 .

1. Collect determinants |α⟩ connected by Ĥ to |Ψ(n)
0 ⟩ (double excitations).

2. Calculate the second-order perturbative change in energy δe(2)α :

δe(2)α =
⟨Ψ(n)

0 | Ĥ |α⟩2

E(n)
0 − ⟨α| Ĥ |α⟩

.

3. Add determinant(s) with largest |δe| to the reference subspace:

Sn → Sn+1 = Sn ∪ {|α⟩}.

4. Diagonalize Ĥ within Sn+1 to obtain the ground state wave function and energy:

|Ψ(n+1)
0 ⟩ = ∑

i∈Sn+1

c(n+1)
i |Di⟩ with E(n+1)

0 .

5. Go back to 1. and repeat until stop criterion is reached.
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Appendix B

Integral Form of the Schrödinger
Equation

The derivation is performed using the notation of Hammond, Lester, and Reynolds.[51]

The formal solution of the time-independent Schrödinger equation can be obtained
as

|Ψ0⟩ = E0Ĥ−1 |Ψ⟩ . (B.1)

The operator Ĥ−1 (inverse of the Hamiltonian) is an integral operator. By inserting a
complete set of position states

∫
|R⟩ ⟨R|dR into Eq. (B.1) and multiplying (from the left)

by the position state ⟨R′|, one obtains:

⟨R′|Ψ0⟩ = E0

∫
⟨R′|Ĥ−1|R⟩ ⟨R|Ψ0⟩dR. (B.2)

Using the following definition of the Green’s function

G(R′, R) ≡ ⟨R′|Ĥ−1|R⟩ , (B.3)

Eq. (B.2) can be rewritten as follows:
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Appendix B Integral Form of the Schrödinger Equation

Ψ0(R′) = E0

∫
G(R′, R)Ψ0(R)dR. (B.4)

By applying the inverse of an operator succeeded by the operator itself on a state, the
state remains unchanged:

Ĥ(Ĥ−1)Ψ0 = Ψ0. (B.5)

Combining Eqs. (B.1) and (B.4), one can—using Eq. (B.5)—write

Ψ0(R′) = Ĥ(R′)Ĥ−1Ψ0(R′) =
∫

Ĥ(R′)G(R′, R)Ψ0(R)dR. (B.6)

From this equation follows

Ĥ(R′)G(R′, R) = δ(R − R′). (B.7)

Inserting Eq. (B.7) into Eq. (B.4) yields the Schrödinger equation in its original form. In
the Monte Carlo formalism, the Green’s function G(R′, R) is interpreted as a transition
probability, describing the probability of moving from R to R′. In its original (differ-
ential) form, the Schrödinger equation only includes information for a given position
(e.g. R), while in its integral form, see Eq. (B.4), the wave function at a given point
necessitates knowledge of all other positions as well.
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Appendix C

Symmetry of Diatomic Molecules

Computing high symmetry molecules is a cumbersome endeavor. The strategies and
challenges of the computation of diatomics will be briefly propounded here. In this
work, both homo- and heteronuclear dimers, belonging to the D∞h and C∞v symmetry
groups, respectively, are investigated. They need to be computed in lower order sym-
metry groups, giving rise to various problems. In this thesis, the homonuclear dimers
are computed in D2h while the C2v point group is used for the heteronuclear counter-
parts. Tab. C.1 displays the resolution of different electronic states into a lower order
symmetry. It becomes clear that one cannot distinguish e.g. between a Π and a Φ state
in C2v. Additionally, the Σ+ and ∆ states can be described by symmetry A1. Similarly,
for homonuclear molecules, the Πg and Φg electronic states cannot be discerned, while
e.g. Πg and Πu states do not share the same symmetries.

Tab. C.1: Examples of true linear symmetry states and their lower order counterparts (used for calcula-
tions). The z axis is chosen as the intermolecular axis.

C∞v Symmetry C2v Symmetry D∞h Symmetry D2h Symmetry

Σ+ A1 Σ+
g Ag

Π B1 + B2
Πg B2g + B3g
Πu B2u + B3u

∆ A1 + A2 ∆g Ag + B1g
Φ B1 + B2 Φg B2g + B3g

Let us now investigate the behavior of the atomic orbitals (basis functions) for the in-
dividual symmetries, focusing, for the sake of simplicity, on s, p, and d orbitals. This
is done exemplarily for the C∞v and C2v state symmetries. Note that in actual calcula-
tions, basis sets including f and g functions are necessary in order to accurately describe
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Appendix C Symmetry of Diatomic Molecules

transition metal compounds, which further complicates the situation. In Tab. C.2, the
classification of the spherical harmonics is given for the C∞v and C2v groups, respec-
tively.

Tab. C.2: Irreducible representations of the C2v group and the respective spherical harmonics, transform-
ing according to the different representations. The C∞v orbital symmetries are given in paren-
theses. The z axis is chosen as the intermolecular axis.

C2v Symmetry Spherical Harmonics

a1 s(σ) pz(σ) dz2(σ) dx2−y2(δ)

b1 px(π) dxz(π)
b2 py(π) dyz(π)
a2 dxy(δ)

For a wave function that adheres to the true C∞v symmetry of the molecule, a mix-
ing between different symmetry orbitals would not occur. However, the σ and the δ

(only dx2−y2) orbitals transform in C2v according to a1, allowing them to mix in the cal-
culation. In order to preserve the true symmetry of the molecule, the orbital mixing
and rotating should thus be restricted. Additionally, degenerate orbitals belonging to
different representations, such as the π orbitals in b1 and b2 as well as the δ orbitals
in a1 and a2, should be treated as equivalent. In practice, if one wants to perform a
CASSCF calculation on a ∆ (Π) state in C2v, the A1 and A2 (B1 and B2) state symmetries
should be optimized simultaneously (see Tab. C.1), which corresponds to a pseudo-
state-averaged calculation. Note that the resulting wave function will only describe
one of the two (degenerate) states.
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Appendix D

Transition Metal Compounds

VMC and DMC Energies

Tab. D.1: Ground states, ECPs, DMC energies in Eh, and first-order SO corrections in Eh for the different
atomic species. The wave functions were fully optimized (Jas+MO+CI) within VMC (Jas+MO
for the single configuration wave functions). An sm666 Jastrow factor was used.

Element Ground State ECP Ansatz Energy SO correction

Fe 5D
BFD-VTZ CAS(8,6) -123.8126(4)a

-0.00184ccECP-VTZ -123.3233(5)

Co 4F BFD-VTZ CAS(9,6) -145.7192(4) -0.00361

Ni 3F
BFD-VTZ CAS(10,6) -170.1212(5)b

-0.00443ccECP-VTZ -169.3161(5)

Cr 7S BFD-VTZ CAS(6,6) -86.9010(4)c n/a

H 2S / / -0.5000 n/a

C 3P
BFD-VTZ CAS(2,3) -5.4244(3)b

-0.000135BFD-VTZ CAS(4,4) -5.4278(2)
ccECP-VTZ CAS(2,3) -5.4108(3)

O 3P ccECP-VTZ CAS(4,3) -15.8709(5) -0.000355

Si 3P
BFD-VTZ CAS(2,3) -3.7674(3) -0.000682ccECP-VTZ -3.7596(4)

S 3P BFD-VTZ CAS(4,3) -10.1314(1)a -0.000892
a Taken from Ref. 125.
b Taken from Ref. 23.
c Taken from Ref. 276.
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Appendix D Transition Metal Compounds

Tab. D.2: VMC and DMC energies in Eh, number of CSFs, ECPs, and first-order SO corrections in Eh
for different transition metal dimers. The wave functions were fully optimized (Jas+MO+CI)
within VMC. An sm666 Jastrow factor was used.

System # CSFs ECP Ansatz VMC DMC SO correction

FeH 30 ccECP-VTZ CAS(9,7) -123.8342(5) -123.8932(5) -0.0018

CoH 40 BFD-VTZ CAS(10,7) -146.2455(5) -146.3018(5) -0.0034

NiC
445 BFD-VTZ CAS(12,9) -175.6200(5) -175.6912(5)

n/a851 BFD-VTZ CAS(14,10) -175.6267(5) -175.6960(5)
445 ccECP-VTZ CAS(12,9) -174.8014(5) -174.8775(5)

FeC 1384 BFD-VTZ CAS(10,9) -129.3082(5) -129.3717(5) -0.000755(6)

FeO 145 ccECP-VTZ CAS(12,9) -139.2582(5) -139.3441(5) -0.00205

NiSi 473 BFD-VTZ CAS(12,9) -173.9293(5) -174.0004(5) n/accECP-VTZ -173.1267(5) -173.1965(5)

Tab. D.3: CrS VMC and DMC energies in Eh at various optimization levels, using different starting or-
bitals and BFD-VTZ/sm666.

Ansatz Orbitals # CSFs Optimization level VMC energy DMC energy SO correction

Single det
HF

1
Jas -97.0284(2) -97.1041(5)

-0.000434(19)

B3LYP Jas -97.0543(2) -97.1304(5)
opt Jas+MO -97.0570(2) -97.1306(5)

CAS
RAS2

670
Jas -97.0655(2) -97.1318(5)

RAS2 Jas+CI -97.0778(2) -97.1406(5)
opt Jas+MO+CI -97.0822(3)a -97.1426(4)a

a Taken from Ref. 23.
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Potential Energy Curves

Fig. D.1: CoH MR-DMC potential energy curve at the Jas+MO+CI optimization level with the corre-
sponding Morse fit. A time step of τ = 0.001 was employed for each data point. An sm666
Jastrow factor was used.

Fig. D.2: NiC MR-DMC potential energy curve at the Jas+MO+CI optimization level with the corre-
sponding Morse fit. A time step of τ = 0.001 was employed for each data point. An sm666
Jastrow factor was used.
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Appendix D Transition Metal Compounds

Fig. D.3: NiSi MR-DMC potential energy curve at the Jas+MO+CI optimization level with the corre-
sponding Morse fit. A time step of τ = 0.001 was employed for each data point. An sm666
Jastrow factor was used.
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Appendix E Selected Configuration Interaction

Appendix E

Selected Configuration Interaction

Statistical Analysis of CI Coefficients

Tab. E.1: Absolute values of the CI coefficients for different wave functions with and without Jastrow
factor. The Error columns correspond to one standard deviation. If a Jastrow factor was used,
the Jastrow and CI parameters were simultaneously optimized with respect to the variational
energy. The coefficients of the CAS(8,8) column are sorted from largest to smallest. For the
remaining columns, the coefficients (and errors) are sorted such that the CSFs are identical for
each index. The CSFs are normalized for each approach.

CAS(8,8) sm444 sm666 sm888

|ci| |ci| Error |ci| Error |ci| Error

8.377E-01 8.781E-01 1.64E-03 8.789E-01 8.75E-04 8.812E-01 1.21E-03
3.779E-01 3.504E-01 3.06E-03 3.528E-01 3.00E-03 3.468E-01 3.24E-03
2.195E-01 1.960E-01 1.12E-03 1.970E-01 2.37E-03 1.972E-01 7.69E-04
1.659E-01 1.370E-01 1.75E-03 1.332E-01 5.14E-04 1.346E-01 1.09E-03
1.359E-01 1.160E-01 1.62E-03 1.156E-01 2.92E-03 1.127E-01 3.01E-03
1.071E-01 8.558E-02 1.11E-03 8.316E-02 2.01E-04 8.403E-02 1.30E-03
1.041E-01 7.494E-02 9.60E-04 7.528E-02 8.21E-04 7.469E-02 5.29E-04
6.685E-02 4.583E-02 1.10E-03 4.591E-02 1.80E-03 4.589E-02 1.04E-03
6.684E-02 4.320E-02 5.16E-04 3.808E-02 5.36E-04 3.854E-02 5.86E-04
6.503E-02 5.646E-02 1.15E-03 5.859E-02 3.53E-04 5.927E-02 5.42E-04
6.233E-02 6.514E-02 1.64E-03 5.716E-02 1.02E-03 5.610E-02 2.28E-03
5.267E-02 3.269E-02 4.11E-04 3.172E-02 4.36E-04 3.265E-02 9.59E-04
5.226E-02 3.588E-02 4.34E-04 3.472E-02 9.60E-04 3.350E-02 1.46E-03
4.729E-02 3.780E-02 8.99E-04 3.725E-02 1.09E-03 3.733E-02 1.04E-03
3.215E-02 1.586E-02 4.74E-04 1.426E-02 4.12E-04 1.421E-02 5.10E-04
3.129E-02 5.536E-02 6.04E-03 5.237E-02 6.74E-03 5.665E-02 5.30E-03
3.036E-02 2.034E-02 1.06E-03 2.076E-02 1.74E-03 2.153E-02 1.09E-03
2.893E-02 1.586E-02 1.23E-03 1.487E-02 4.45E-04 1.530E-02 7.65E-04
2.868E-02 1.419E-02 2.78E-04 9.866E-03 1.50E-04 8.201E-03 2.28E-04
2.789E-02 1.285E-02 7.85E-04 1.343E-02 3.17E-04 1.305E-02 3.21E-04
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Tab. E.1: Continued.

CAS(8,8) sm444 sm666 sm888

|ci| |ci| Error |ci| Error |ci| Error

2.711E-02 4.392E-03 3.76E-04 2.544E-04 1.96E-04 4.582E-04 3.15E-04
2.664E-02 1.826E-02 1.23E-03 2.086E-02 7.48E-04 1.812E-02 1.46E-03
2.546E-02 1.089E-02 7.51E-04 1.057E-02 6.86E-04 9.673E-03 4.57E-04
2.466E-02 1.166E-02 3.90E-04 1.143E-02 6.86E-04 1.203E-02 8.41E-04
2.064E-02 1.434E-02 8.87E-04 1.331E-02 6.38E-04 1.363E-02 8.62E-04
1.973E-02 1.647E-02 4.17E-04 1.449E-02 9.23E-04 1.413E-02 1.49E-04
1.689E-02 9.288E-03 5.33E-04 9.059E-03 5.18E-04 8.133E-03 7.50E-04
1.646E-02 1.412E-02 5.81E-04 1.396E-02 4.30E-04 1.365E-02 4.10E-04
1.617E-02 7.391E-03 2.82E-04 7.482E-03 2.92E-04 7.364E-03 4.47E-04
1.565E-02 1.165E-03 5.62E-04 4.420E-04 3.96E-04 4.075E-04 2.10E-04
1.502E-02 6.371E-03 3.80E-04 5.388E-03 3.28E-04 5.391E-03 6.32E-04
1.443E-02 1.576E-02 1.60E-03 1.601E-02 5.69E-04 1.570E-02 1.73E-03
1.405E-02 1.418E-02 4.90E-04 1.328E-02 5.07E-04 1.279E-02 5.59E-04
1.329E-02 1.073E-02 6.47E-04 1.001E-02 6.08E-04 9.850E-03 5.47E-04
1.277E-02 5.393E-03 2.30E-04 3.963E-03 3.37E-04 3.059E-03 5.46E-04
1.165E-02 5.662E-03 8.95E-04 6.262E-03 4.41E-04 5.990E-03 7.35E-04
1.155E-02 4.432E-03 2.12E-04 3.761E-03 2.30E-04 3.651E-03 4.94E-04
1.120E-02 8.625E-03 6.08E-04 7.986E-03 2.78E-04 7.864E-03 3.75E-04
1.102E-02 1.755E-03 4.06E-04 6.637E-04 2.98E-04 6.778E-04 7.56E-05
1.089E-02 6.774E-03 3.40E-04 6.895E-03 3.83E-04 7.219E-03 9.95E-04
1.080E-02 1.386E-02 5.40E-04 1.442E-02 1.51E-03 1.394E-02 4.83E-04
1.076E-02 3.547E-03 2.97E-04 2.945E-03 4.47E-04 3.057E-03 4.67E-04
1.062E-02 4.592E-03 1.89E-04 4.287E-03 2.57E-04 4.253E-03 3.46E-04
1.058E-02 1.031E-03 7.44E-04 2.579E-03 4.41E-04 2.626E-03 7.01E-04
1.056E-02 6.805E-03 8.27E-04 7.399E-03 9.00E-04 6.914E-03 5.06E-04
1.011E-02 3.222E-03 3.15E-04 3.304E-03 5.23E-04 2.975E-03 3.78E-04
1.011E-02 2.173E-04 1.82E-04 7.661E-04 2.87E-04 1.358E-03 5.97E-04
9.573E-03 3.276E-03 2.89E-04 2.372E-03 3.36E-04 3.309E-03 6.29E-04
9.558E-03 1.007E-02 8.21E-04 1.050E-02 1.51E-03 1.073E-02 1.31E-03
9.301E-03 3.617E-03 6.76E-04 3.286E-03 1.91E-04 3.036E-03 5.15E-04
9.161E-03 2.562E-03 2.40E-04 2.559E-03 5.34E-04 2.425E-03 2.70E-04
9.041E-03 2.212E-03 1.98E-04 2.021E-03 2.02E-04 2.204E-03 2.60E-04
8.814E-03 2.676E-03 4.05E-04 1.880E-03 3.86E-04 1.974E-03 1.58E-04
8.544E-03 4.309E-03 4.49E-04 3.509E-03 4.32E-04 3.390E-03 5.97E-04
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Tab. E.1: Continued.

CAS(8,8) sm444 sm666 sm888

|ci| |ci| Error |ci| Error |ci| Error

8.239E-03 4.419E-03 6.85E-04 4.546E-03 6.43E-04 4.607E-03 2.98E-04
8.187E-03 5.322E-03 5.16E-04 5.296E-03 6.46E-04 4.986E-03 2.81E-04
7.831E-03 1.197E-03 4.44E-04 7.335E-04 1.45E-04 7.027E-04 2.90E-04
7.712E-03 2.534E-03 3.52E-04 1.918E-03 2.99E-04 1.651E-03 4.02E-04
7.626E-03 3.895E-03 4.45E-04 4.165E-03 6.66E-04 4.428E-03 7.69E-04
7.475E-03 4.158E-03 4.21E-04 3.600E-03 1.39E-04 3.700E-03 3.46E-04
7.282E-03 2.548E-03 4.72E-04 1.583E-03 2.24E-04 1.986E-03 2.76E-04
7.067E-03 5.847E-04 3.79E-04 7.156E-04 2.80E-04 5.690E-04 3.57E-04
7.026E-03 6.316E-03 2.68E-04 5.700E-03 2.44E-04 5.369E-03 2.71E-04
6.420E-03 1.380E-03 3.29E-04 1.674E-03 5.26E-04 1.662E-03 9.90E-05
5.692E-03 1.657E-03 4.82E-04 1.331E-03 3.41E-04 1.279E-03 1.68E-04
5.690E-03 2.138E-03 4.93E-04 1.860E-03 5.02E-04 2.437E-03 6.14E-04
5.424E-03 1.500E-03 2.45E-04 1.279E-03 1.58E-04 1.365E-03 1.96E-04
5.286E-03 2.899E-03 2.64E-04 2.525E-03 3.53E-04 2.366E-03 2.53E-04
5.177E-03 1.106E-03 2.83E-04 9.658E-04 3.69E-04 5.273E-04 2.32E-04
5.113E-03 2.102E-04 1.79E-04 6.852E-04 5.15E-04 7.835E-04 4.25E-04
5.109E-03 1.390E-03 2.89E-04 1.064E-03 2.39E-04 9.121E-04 3.34E-04
4.910E-03 7.005E-03 7.68E-04 6.155E-03 1.90E-03 6.408E-03 6.88E-04
4.889E-03 1.916E-03 3.09E-04 1.162E-03 3.70E-04 1.031E-03 2.34E-04
4.796E-03 8.555E-04 6.48E-04 9.581E-04 2.59E-04 7.732E-04 4.82E-04
4.622E-03 5.635E-04 3.83E-04 1.116E-03 3.68E-04 1.021E-03 5.74E-04
4.613E-03 3.639E-04 2.01E-04 3.017E-04 1.94E-04 3.389E-04 2.06E-04
4.484E-03 1.001E-03 4.17E-04 5.727E-04 3.10E-04 4.988E-04 1.91E-04
4.339E-03 1.357E-03 3.18E-04 1.399E-03 3.77E-04 1.229E-03 4.71E-04
3.974E-03 1.334E-03 4.39E-04 1.818E-03 3.65E-04 1.778E-03 2.69E-04
3.810E-03 3.130E-03 4.85E-04 3.090E-03 4.93E-04 3.237E-03 4.17E-04
3.695E-03 1.105E-03 2.89E-04 1.071E-03 4.76E-04 1.469E-03 1.19E-04
3.539E-03 7.024E-04 2.71E-04 7.268E-04 4.82E-04 9.320E-04 1.93E-04
3.392E-03 1.155E-03 4.06E-04 6.383E-04 4.17E-04 5.428E-04 2.24E-04
3.389E-03 1.917E-03 3.49E-04 1.543E-03 2.02E-04 2.313E-03 4.53E-04
3.268E-03 6.364E-04 4.24E-04 5.785E-04 1.32E-04 4.499E-04 1.96E-04
3.096E-03 3.200E-04 2.03E-04 3.511E-04 1.47E-04 2.864E-04 3.47E-04
3.096E-03 1.059E-03 2.90E-04 4.885E-04 3.67E-04 5.037E-04 2.67E-04
3.068E-03 1.189E-03 8.95E-05 7.098E-04 3.56E-04 7.378E-04 3.92E-04
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Tab. E.1: Continued.

CAS(8,8) sm444 sm666 sm888

|ci| |ci| Error |ci| Error |ci| Error

3.068E-03 9.355E-04 4.77E-04 1.197E-03 2.42E-04 1.048E-03 2.14E-04
2.957E-03 2.090E-03 2.46E-04 2.130E-03 3.36E-04 2.236E-03 4.48E-04
2.912E-03 7.361E-04 2.40E-04 5.676E-04 3.41E-04 6.037E-04 4.79E-04
2.867E-03 2.057E-03 3.19E-04 1.907E-03 6.47E-04 1.972E-03 4.66E-04
2.850E-03 4.486E-04 2.59E-04 2.600E-04 1.39E-04 3.027E-04 6.08E-05
2.847E-03 1.943E-04 1.17E-04 4.134E-04 2.81E-04 3.834E-04 3.05E-04
2.659E-03 2.004E-03 3.11E-04 1.941E-03 4.48E-04 2.321E-03 3.39E-04
2.638E-03 5.094E-04 4.19E-04 3.686E-04 2.13E-04 4.342E-04 3.07E-04
2.586E-03 6.269E-04 1.97E-04 3.301E-04 2.97E-04 5.945E-04 2.31E-04
2.543E-03 6.745E-04 1.33E-04 3.356E-04 3.12E-04 4.255E-04 2.72E-04
2.540E-03 1.751E-03 2.94E-04 1.525E-03 2.97E-04 1.501E-03 4.18E-04
2.337E-03 5.839E-04 1.65E-04 2.858E-04 1.43E-04 3.478E-04 1.95E-04
2.302E-03 1.414E-03 4.00E-04 1.363E-03 2.77E-04 1.577E-03 2.46E-04
2.222E-03 1.471E-03 5.72E-04 8.784E-04 1.84E-04 1.012E-03 4.69E-04
2.189E-03 1.259E-03 1.07E-04 1.342E-03 4.45E-04 1.582E-03 3.41E-04
2.134E-03 3.920E-04 2.66E-04 1.727E-04 5.64E-05 4.841E-04 2.00E-04
2.080E-03 3.620E-04 1.79E-04 3.138E-04 3.03E-04 2.706E-04 1.44E-04
1.956E-03 5.954E-04 2.99E-04 2.753E-04 1.21E-04 1.579E-04 8.55E-05
1.930E-03 1.741E-03 1.95E-04 1.357E-03 3.08E-04 1.185E-03 6.15E-04
1.907E-03 2.104E-04 1.87E-04 1.705E-04 1.33E-04 2.491E-04 1.63E-04
1.885E-03 6.429E-04 3.47E-04 7.194E-04 3.41E-04 3.700E-04 2.14E-04
1.864E-03 5.627E-04 4.78E-04 2.844E-04 2.85E-04 3.542E-04 2.82E-04
1.856E-03 1.115E-03 3.23E-04 1.176E-03 3.45E-04 1.192E-03 3.94E-04
1.847E-03 6.385E-04 2.67E-04 3.866E-04 1.94E-04 3.681E-04 3.51E-04
1.795E-03 2.806E-04 1.27E-04 1.675E-04 8.49E-05 3.266E-04 1.17E-04
1.696E-03 1.735E-03 5.68E-04 1.323E-03 8.24E-04 1.116E-03 6.51E-04
1.655E-03 1.089E-03 2.47E-04 7.442E-04 3.86E-04 7.835E-04 3.98E-04
1.629E-03 1.106E-03 4.19E-04 9.059E-04 3.25E-04 5.939E-04 3.54E-04
1.598E-03 9.690E-04 3.89E-04 8.794E-04 2.77E-04 7.838E-04 2.65E-04
1.540E-03 1.253E-03 5.46E-04 1.024E-03 4.15E-04 1.188E-03 7.22E-05
1.520E-03 2.576E-04 1.62E-04 2.670E-04 2.05E-04 3.536E-04 2.31E-04
1.470E-03 4.814E-04 3.03E-04 3.554E-04 2.50E-04 2.553E-04 2.27E-04
1.467E-03 2.665E-04 1.94E-04 2.458E-04 1.78E-04 2.360E-04 1.30E-04
1.434E-03 8.636E-04 5.02E-04 1.151E-03 2.23E-04 7.758E-04 3.29E-04
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Appendix E Selected Configuration Interaction

Tab. E.1: Continued.

CAS(8,8) sm444 sm666 sm888

|ci| |ci| Error |ci| Error |ci| Error

1.417E-03 2.741E-04 1.73E-04 1.496E-04 1.80E-04 2.339E-04 1.16E-04
1.302E-03 3.405E-04 2.22E-04 2.991E-04 1.30E-04 3.343E-04 2.38E-04
1.219E-03 8.121E-04 4.66E-04 5.705E-04 1.22E-04 4.449E-04 2.17E-04
1.157E-03 2.641E-04 2.41E-04 4.255E-04 1.27E-04 1.846E-04 1.81E-04
1.152E-03 3.884E-04 3.18E-04 1.713E-04 1.19E-04 2.409E-04 2.26E-04
1.140E-03 5.410E-04 3.62E-04 4.385E-04 2.17E-04 2.637E-04 2.49E-04
1.015E-03 2.194E-04 2.13E-04 2.262E-04 1.54E-04 3.224E-04 2.20E-04
1.001E-03 2.431E-04 1.73E-04 3.862E-04 3.49E-04 1.373E-04 1.56E-04
9.883E-04 1.697E-04 9.47E-05 2.519E-04 1.89E-04 2.507E-04 1.47E-04
9.348E-04 8.328E-04 2.05E-04 1.058E-03 3.10E-04 7.411E-04 5.08E-04
8.581E-04 3.253E-04 2.43E-04 3.780E-04 7.78E-05 3.059E-04 1.88E-04
8.563E-04 4.847E-04 1.62E-04 3.203E-04 3.54E-04 2.142E-04 2.09E-04
8.540E-04 8.666E-04 1.76E-04 7.513E-04 2.31E-04 5.218E-04 2.86E-04
8.532E-04 7.151E-04 3.83E-04 3.339E-04 1.88E-04 7.797E-04 3.43E-04
8.344E-04 3.838E-04 2.82E-04 1.992E-04 1.79E-04 2.819E-04 2.80E-04
8.253E-04 1.035E-03 6.85E-04 1.003E-03 3.82E-04 1.107E-03 2.92E-04
7.649E-04 2.733E-04 1.83E-04 3.459E-04 1.93E-04 1.540E-04 7.63E-05
6.471E-04 5.907E-04 3.68E-04 2.028E-04 2.24E-04 3.460E-04 1.66E-04
6.457E-04 1.277E-03 4.63E-04 6.732E-04 3.17E-04 7.196E-04 3.60E-04
5.818E-04 7.298E-04 2.40E-04 8.402E-04 1.96E-04 9.998E-04 9.64E-05
5.580E-04 2.695E-03 3.94E-04 2.324E-03 2.95E-04 1.657E-03 2.15E-04
5.424E-04 4.244E-04 4.85E-04 4.783E-04 3.57E-04 3.252E-04 2.23E-04
5.102E-04 1.937E-04 1.89E-04 2.251E-04 1.01E-04 1.470E-04 1.16E-04
5.033E-04 6.299E-04 3.68E-04 6.475E-04 4.26E-04 5.538E-04 2.43E-04
4.869E-04 5.386E-04 2.15E-04 2.262E-04 2.33E-04 1.596E-04 1.29E-04
4.677E-04 2.527E-04 2.42E-04 1.563E-04 1.30E-04 3.134E-04 2.15E-04
4.187E-04 2.939E-04 1.66E-04 2.600E-04 2.73E-04 2.287E-04 3.32E-04
3.960E-04 2.526E-04 1.34E-04 2.613E-04 2.01E-05 1.577E-04 9.17E-05
3.526E-04 2.541E-04 2.65E-04 1.594E-04 1.28E-04 2.372E-04 2.11E-04
2.637E-04 6.212E-04 4.24E-04 9.211E-04 3.68E-04 3.427E-04 2.11E-04
2.328E-04 2.021E-04 1.63E-04 2.426E-04 2.03E-04 3.633E-04 1.56E-04
2.027E-04 4.010E-04 2.13E-04 6.438E-04 3.28E-04 8.158E-04 1.81E-04
1.396E-04 4.618E-04 2.52E-04 4.498E-04 2.42E-04 2.406E-04 1.95E-04
1.055E-04 4.457E-04 2.94E-04 2.929E-04 1.69E-04 2.084E-04 1.83E-04
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Tab. E.1: Continued.

CAS(8,8) sm444 sm666 sm888

|ci| |ci| Error |ci| Error |ci| Error

9.900E-05 4.230E-04 3.13E-04 2.548E-04 1.86E-04 2.262E-04 1.58E-04
7.000E-05 3.714E-04 3.14E-04 2.026E-04 1.30E-04 3.153E-04 1.94E-04
6.390E-05 3.324E-04 2.98E-04 2.028E-04 1.33E-04 2.266E-04 2.33E-04
0.000E+00 3.612E-04 2.90E-04 1.791E-04 7.62E-05 3.217E-04 2.35E-04
0.000E+00 4.658E-04 4.87E-04 3.975E-04 1.68E-04 2.661E-04 8.39E-05
0.000E+00 3.814E-04 3.53E-04 1.669E-04 2.24E-04 2.955E-04 1.76E-04
0.000E+00 3.247E-04 1.70E-04 2.237E-04 2.34E-04 2.530E-04 1.25E-04
0.000E+00 4.205E-04 4.81E-04 1.737E-04 3.81E-05 5.785E-04 3.20E-04
0.000E+00 2.390E-04 2.04E-04 2.817E-04 2.02E-04 2.621E-04 1.76E-04
0.000E+00 6.766E-04 3.56E-04 5.866E-04 2.24E-04 5.263E-04 4.60E-04
0.000E+00 4.342E-04 3.64E-04 4.103E-04 2.46E-04 3.842E-04 2.06E-04
0.000E+00 3.693E-04 2.60E-04 3.335E-04 2.18E-04 1.637E-04 1.45E-04
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Appendix E Selected Configuration Interaction

Using the Linear Optimization Method

Tab. E.2: Absolute values of Hamilton matrix elements together with the energy contributions δe(2)i . The
quantities are given in Eh. The Error columns correspond to one standard deviation.

H̄0i Error H̄i0 Error H̄ii Error δe(2)i Error

1.1316E-01 1.19E-04 1.1246E-01 1.24E-04 7.2249E+01 1.17E-01 3.6483E-03 1.30E-04
1.3766E-01 7.66E-05 1.3722E-01 1.42E-04 6.2969E+01 2.93E-01 1.4797E-03 3.28E-05
8.4355E-02 8.71E-05 8.4062E-02 9.70E-05 4.8082E+01 1.70E-01 2.5639E-04 1.50E-06
6.0992E-02 1.71E-04 6.0875E-02 2.15E-04 7.4973E+01 2.17E-01 5.1405E-03 1.35E-03
9.8826E-03 8.66E-05 9.9862E-03 1.29E-04 7.3570E+01 2.29E-01 4.5807E-05 4.04E-06
2.8377E-02 7.62E-05 2.8348E-02 1.39E-04 4.6167E+01 2.27E-02 2.7202E-05 1.82E-07
2.2542E-02 2.12E-04 2.2319E-02 2.61E-04 7.1363E+01 3.93E-01 1.1558E-04 9.00E-06
6.0203E-03 1.07E-04 6.2168E-03 1.68E-04 7.2122E+01 7.49E-02 1.0350E-05 4.41E-07
7.3663E-02 2.83E-04 7.3707E-02 1.30E-04 6.5569E+01 3.08E-01 5.3426E-04 1.92E-05
5.9004E-02 1.09E-04 5.9007E-02 5.13E-05 6.8565E+01 1.48E-01 4.8539E-04 9.47E-06
5.7737E-02 7.65E-05 5.7202E-02 9.98E-05 4.8777E+01 2.26E-01 1.2250E-04 1.14E-06
4.1468E-02 1.79E-04 4.1322E-02 1.50E-04 6.1284E+01 3.22E-01 1.1859E-04 3.41E-06
1.1927E-02 1.61E-04 1.1816E-02 1.74E-04 6.6371E+01 4.33E-01 1.5069E-05 7.88E-07
3.2218E-02 1.07E-04 3.2129E-02 6.15E-05 6.5780E+01 2.13E-01 1.0396E-04 2.55E-06
1.2018E-02 9.03E-05 1.1928E-02 1.75E-04 3.4204E+01 2.02E-01 3.4514E-06 6.86E-08
2.7402E-02 1.36E-04 2.7341E-02 1.00E-04 3.1591E+01 1.02E-01 1.6969E-05 9.36E-08
4.3006E-03 1.53E-04 3.8278E-03 1.16E-04 7.1693E+01 8.97E-02 4.0757E-06 3.29E-07
3.3248E-02 2.47E-04 3.2786E-02 1.09E-04 6.9247E+01 2.26E-01 1.6806E-04 6.68E-06
6.0945E-03 1.01E-04 6.0934E-03 5.24E-05 3.2291E+01 7.14E-02 8.5479E-07 2.17E-08
1.6770E-02 1.73E-04 1.6709E-02 1.68E-04 6.4041E+01 2.77E-01 2.3964E-05 7.55E-07
2.1627E-02 8.94E-05 2.1425E-02 1.71E-04 5.3616E+01 1.15E+00 2.0986E-05 1.04E-06
1.1683E-02 8.09E-05 1.1501E-02 1.28E-04 6.8767E+01 1.54E-01 1.9280E-05 6.54E-07
1.0339E-02 1.61E-04 1.1233E-02 2.47E-04 6.2068E+01 1.65E-01 8.4968E-06 3.19E-07
1.7031E-02 8.77E-05 1.6959E-02 1.24E-04 6.9479E+01 3.13E-01 4.6203E-05 1.87E-06
9.2641E-03 2.02E-04 9.2234E-03 1.40E-04 6.9146E+01 1.73E-01 1.2968E-05 5.60E-07
5.8864E-03 1.39E-04 5.9647E-03 1.88E-04 7.1827E+01 6.04E-01 9.1763E-06 1.63E-06
5.6708E-03 2.71E-04 5.6045E-03 7.74E-05 3.1285E+01 2.37E-01 7.1523E-07 4.31E-08
1.6895E-02 2.83E-04 1.7180E-02 1.99E-04 6.2067E+01 2.64E-01 2.1241E-05 8.44E-07
4.3035E-03 1.52E-04 4.4312E-03 1.92E-04 6.8635E+01 4.53E-01 2.7015E-06 3.37E-07
2.7398E-02 1.28E-04 2.7148E-02 2.10E-04 4.6905E+01 2.44E-01 2.5795E-05 2.37E-07
1.3929E-02 2.91E-04 1.3745E-02 1.32E-04 6.5533E+01 6.17E-01 1.8819E-05 1.37E-06
4.9113E-03 2.40E-04 4.8893E-03 1.22E-04 6.3007E+01 3.33E-01 1.8864E-06 1.02E-07
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Tab. E.2: Continued.

H̄0i Error H̄i0 Error H̄ii Error δe(2)i Error

1.6712E-02 1.20E-04 1.6735E-02 2.33E-04 6.0767E+01 3.60E-01 1.8686E-05 4.68E-07
2.8508E-02 6.15E-05 2.7973E-02 1.47E-04 3.3605E+01 6.69E-01 1.8929E-05 2.37E-07
1.2881E-02 1.78E-04 1.2858E-02 1.64E-04 6.3701E+01 4.82E-01 1.3776E-05 6.42E-07
3.8448E-03 2.87E-04 3.9743E-03 2.98E-04 6.6359E+01 3.80E-01 1.6368E-06 2.41E-07
1.4051E-02 1.02E-04 1.3996E-02 7.71E-05 5.1501E+01 1.47E+00 8.1394E-06 5.41E-07
8.1059E-03 1.03E-04 8.1434E-03 4.62E-05 6.7280E+01 9.60E-01 7.8936E-06 1.01E-06
7.1733E-03 1.82E-04 6.5899E-03 1.54E-04 6.3535E+01 3.35E-01 3.8791E-06 2.52E-07
2.6978E-02 1.24E-04 2.6664E-02 1.50E-04 4.3854E+01 1.83E-01 2.2561E-05 2.97E-07
4.5734E-03 1.63E-04 4.5701E-03 8.27E-05 6.5393E+01 3.82E-01 2.0227E-06 1.22E-07
3.1447E-03 1.52E-04 3.1946E-03 8.69E-05 6.5488E+01 3.66E-01 9.8244E-07 8.95E-08
3.0331E-03 1.75E-04 2.8804E-03 1.03E-04 7.0625E+01 4.20E-01 1.7275E-06 2.91E-07
5.5609E-03 2.42E-04 5.4932E-03 8.76E-05 4.3076E+01 2.11E-01 9.3587E-07 5.85E-08
1.2956E-02 3.04E-04 1.3037E-02 8.66E-05 6.0857E+01 3.34E-01 1.1358E-05 5.22E-07
6.1608E-03 3.30E-05 6.1301E-03 1.88E-04 4.6774E+01 1.13E+00 1.3063E-06 8.46E-08
6.1040E-03 3.96E-04 6.2085E-03 1.61E-04 6.0988E+01 2.10E-01 2.5710E-06 2.14E-07
8.9956E-03 3.40E-04 8.9052E-03 5.82E-05 6.5445E+01 7.06E-01 7.8208E-06 7.63E-07
2.2493E-03 1.27E-04 2.2650E-03 9.38E-05 7.4131E+01 7.39E-01 5.0249E-06 5.34E-06
1.7526E-02 1.82E-04 1.7441E-02 1.93E-04 6.4433E+01 3.08E-01 2.7044E-05 6.36E-07
2.3682E-03 8.45E-05 2.3528E-03 2.54E-04 4.9754E+01 4.18E+00 2.1634E-07 1.58E-08
7.9179E-03 2.53E-04 7.8314E-03 1.56E-04 5.9668E+01 3.50E-01 3.8622E-06 2.30E-07
4.5860E-03 3.04E-04 4.6725E-03 2.22E-04 6.6210E+01 1.52E+00 2.3026E-06 4.60E-07
6.9057E-03 1.91E-04 6.8861E-03 5.48E-05 4.2125E+01 3.14E-01 1.4145E-06 3.49E-08
2.0198E-03 2.13E-04 2.0694E-03 1.47E-04 6.5193E+01 2.92E-01 3.9768E-07 6.04E-08
9.6244E-03 1.66E-04 9.6016E-03 1.26E-04 6.5814E+01 2.89E-01 9.3179E-06 3.97E-07
1.2092E-03 2.32E-04 1.3383E-03 1.32E-04 6.9951E+01 5.99E-01 2.7661E-07 3.76E-08
5.2753E-03 2.94E-04 5.3566E-03 1.12E-04 6.4818E+01 2.77E-01 2.5889E-06 1.74E-07
8.3897E-03 1.53E-04 8.3760E-03 9.64E-05 5.8502E+01 2.85E-01 4.0764E-06 5.48E-08
1.0803E-02 1.04E-04 1.0734E-02 3.04E-04 5.6093E+01 1.74E-01 5.9043E-06 2.40E-07
3.2083E-03 1.14E-04 3.2372E-03 1.67E-04 6.7659E+01 5.13E-01 1.2930E-06 1.60E-07
6.4574E-03 1.42E-04 6.5297E-03 2.53E-04 6.5334E+01 4.79E-01 4.0556E-06 1.89E-07
1.2014E-02 2.45E-04 1.2210E-02 5.86E-05 6.1884E+01 3.09E-01 1.0592E-05 3.97E-07
6.8405E-03 1.77E-04 6.9054E-03 1.94E-04 6.3827E+01 5.01E-01 3.9668E-06 1.09E-07
1.4355E-02 1.06E-04 1.4589E-02 1.36E-04 6.7560E+01 8.31E-01 2.5868E-05 3.30E-06
3.3626E-03 2.01E-04 3.4761E-03 1.03E-04 4.5013E+01 2.88E-01 3.8052E-07 2.73E-08
2.0478E-04 8.54E-05 1.6243E-04 1.31E-04 6.6909E+01 4.76E-01 4.0447E-09 3.30E-09
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Appendix E Selected Configuration Interaction

Tab. E.2: Continued.

H̄0i Error H̄i0 Error H̄ii Error δe(2)i Error

9.6855E-03 9.59E-05 9.5679E-03 8.02E-05 6.9543E+01 3.17E-01 1.4982E-05 7.33E-07
7.4249E-03 2.04E-04 7.2866E-03 9.96E-05 6.1476E+01 2.57E-01 3.7941E-06 1.49E-07
6.4985E-03 2.89E-04 6.6875E-03 4.11E-05 6.3896E+01 3.55E-01 3.6752E-06 2.61E-07
3.1231E-03 3.25E-04 3.1536E-03 1.55E-04 6.3428E+01 3.76E-01 8.0255E-07 1.13E-07
1.4101E-03 2.31E-04 1.4497E-03 1.61E-04 6.2848E+01 8.37E-01 1.5790E-07 2.50E-08
2.7682E-03 2.57E-04 2.8712E-03 1.42E-04 4.0669E+01 1.65E-01 2.2718E-07 3.01E-08
2.3079E-03 3.05E-04 2.2768E-03 8.08E-05 6.5568E+01 3.46E-01 5.1726E-07 7.35E-08
1.9213E-03 1.12E-04 1.9758E-03 8.20E-05 4.9545E+01 4.44E-01 1.4493E-07 1.02E-08
4.2653E-03 2.15E-04 4.2711E-03 2.16E-04 6.4059E+01 3.55E-01 1.5621E-06 1.41E-07
3.2511E-03 2.17E-04 3.2841E-03 1.41E-04 6.5483E+01 2.67E-01 1.0441E-06 1.20E-07
1.3190E-04 1.09E-04 1.6169E-04 1.96E-04 6.8362E+01 3.11E-01 4.0297E-09 7.47E-09
5.4526E-03 1.09E-04 5.3895E-03 2.02E-04 6.9065E+01 1.32E+00 4.5285E-06 7.92E-07
2.4728E-03 2.90E-04 2.1750E-03 1.93E-04 6.3183E+01 8.27E-01 4.3021E-07 7.64E-08
2.6277E-03 1.62E-04 2.8107E-03 1.71E-04 6.4084E+01 8.08E-01 6.3884E-07 9.84E-08
4.1174E-03 1.59E-04 4.3593E-03 1.25E-04 6.3922E+01 2.02E-01 1.5190E-06 7.66E-08
1.9117E-03 1.86E-04 1.9526E-03 1.37E-04 6.6362E+01 1.35E+00 4.0216E-07 5.25E-08
4.5920E-03 1.69E-04 4.7113E-03 2.00E-04 6.4462E+01 3.97E-01 1.9210E-06 1.40E-07
8.9714E-03 1.36E-04 9.0403E-03 1.54E-04 6.3489E+01 3.18E-01 6.6239E-06 2.38E-07
6.4799E-03 4.33E-04 6.5481E-03 2.53E-04 5.9642E+01 2.80E-01 2.6367E-06 2.14E-07
4.8113E-03 2.48E-04 4.6520E-03 5.76E-05 6.7210E+01 8.20E-01 2.6461E-06 3.28E-07
3.1594E-03 2.21E-04 3.1700E-03 2.67E-04 7.1144E+01 2.07E+00 3.2538E-06 3.10E-06
6.2752E-03 3.99E-04 6.2525E-03 1.69E-04 5.8544E+01 3.85E-01 2.2825E-06 1.65E-07
7.7562E-03 8.53E-05 7.8087E-03 8.67E-05 6.5375E+01 1.20E-01 5.8440E-06 1.30E-07
1.0825E-03 1.47E-04 1.0712E-03 5.62E-05 3.0835E+01 2.36E-01 2.5882E-08 4.29E-09
1.1820E-03 4.03E-04 1.2342E-03 1.53E-04 6.0514E+01 2.34E-01 9.8580E-08 4.17E-08
4.6508E-03 2.81E-04 4.6449E-03 1.93E-04 6.0098E+01 9.46E-01 1.3810E-06 5.55E-08
2.5417E-03 2.36E-04 2.5197E-03 9.24E-05 6.0178E+01 6.27E-01 4.1093E-07 2.87E-08
1.3751E-03 4.76E-04 1.0802E-03 1.78E-04 6.2760E+01 3.03E-01 1.1394E-07 3.95E-08
4.0803E-03 2.71E-04 4.1034E-03 9.95E-05 6.3237E+01 5.45E-01 1.3411E-06 1.11E-07
2.9707E-03 2.63E-04 2.8739E-03 1.96E-04 6.0672E+01 9.17E-01 5.6704E-07 5.94E-08
3.8430E-03 2.90E-04 3.6349E-03 5.81E-05 5.8363E+01 5.03E-01 8.0605E-07 8.93E-08
1.0074E-03 2.90E-04 1.1402E-03 1.20E-04 6.1338E+01 5.23E-01 7.9043E-08 2.17E-08
1.6846E-03 2.34E-04 1.4262E-03 2.10E-04 7.0850E+01 1.49E+00 5.1736E-07 1.27E-07
9.0998E-04 2.01E-04 9.0726E-04 1.83E-04 6.6238E+01 1.25E+00 8.7981E-08 3.05E-08
1.4906E-03 1.90E-04 1.3853E-03 9.91E-05 3.5491E+01 1.71E+00 5.1828E-08 1.10E-08
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Tab. E.2: Continued.

H̄0i Error H̄i0 Error H̄ii Error δe(2)i Error

3.7170E-03 3.51E-04 3.7458E-03 2.09E-04 5.9241E+01 2.01E-01 8.4562E-07 1.13E-07
3.0355E-03 3.12E-04 3.1919E-03 1.06E-04 6.0320E+01 1.30E-01 6.2969E-07 8.20E-08
3.7944E-03 4.19E-04 3.8305E-03 1.32E-04 5.4954E+01 4.12E-01 6.9927E-07 8.01E-08
7.8405E-04 2.89E-04 8.5168E-04 1.10E-04 2.9330E+01 1.28E-01 1.4708E-08 7.30E-09
2.0434E-03 2.41E-04 2.1590E-03 1.10E-04 4.4976E+01 4.40E-01 1.4371E-07 2.12E-08
7.5875E-04 3.20E-04 7.6344E-04 2.18E-04 4.0951E+01 2.55E-01 1.7171E-08 9.98E-09
3.9300E-04 2.45E-04 4.4457E-04 4.10E-05 7.0171E+01 1.99E+00 4.3058E-08 4.16E-08
1.2205E-03 1.02E-04 1.4456E-03 2.40E-04 7.0587E+01 9.94E-01 3.5334E-07 9.37E-08
2.2849E-03 2.42E-04 2.1323E-03 1.40E-04 6.6189E+01 6.25E-01 5.1114E-07 6.64E-08
1.3258E-03 2.07E-04 1.1507E-03 1.60E-04 6.6141E+01 1.02E+00 1.5851E-07 2.38E-08
2.8259E-03 2.09E-04 2.8423E-03 5.65E-05 4.2560E+01 2.20E-01 2.4233E-07 2.26E-08
1.5157E-04 2.15E-04 9.4243E-05 5.81E-05 3.0522E+01 9.35E-02 3.4468E-10 4.37E-10
3.6844E-03 2.87E-04 3.6324E-03 2.03E-04 6.5862E+01 1.82E-01 1.3584E-06 1.72E-07
1.4555E-03 1.51E-04 1.3777E-03 1.50E-04 7.4997E+01 3.85E-01 3.4262E-06 2.07E-06
3.9834E-04 2.39E-04 7.0141E-04 2.61E-04 6.9760E+01 4.13E-01 5.0187E-08 3.47E-08
1.5419E-03 2.31E-04 1.5249E-03 6.81E-05 4.5505E+01 1.76E+00 7.7480E-08 8.98E-09
4.6014E-04 1.97E-04 6.1631E-04 1.39E-04 4.2914E+01 5.30E-01 8.6326E-09 4.52E-09
2.2927E-03 1.90E-04 2.1782E-03 1.93E-04 4.2536E+01 3.78E-01 1.5113E-07 2.36E-08
3.6407E-03 3.69E-04 3.7128E-03 1.74E-04 6.5855E+01 1.06E+00 1.3774E-06 1.84E-07
1.7097E-03 3.44E-04 1.8511E-03 1.85E-04 6.2159E+01 4.54E-01 2.3370E-07 5.50E-08
5.5006E-04 1.07E-04 3.6392E-04 1.28E-04 6.6799E+01 2.81E-01 2.2748E-08 9.63E-09
3.0578E-03 2.03E-04 3.1196E-03 1.66E-04 4.2594E+01 4.95E-01 2.8839E-07 3.25E-08
1.0869E-03 4.09E-04 1.1893E-03 1.62E-04 6.0778E+01 3.65E-01 8.8623E-08 4.08E-08
3.9150E-04 1.67E-04 2.8512E-04 6.63E-05 6.1189E+01 5.11E-01 8.0907E-09 5.05E-09
3.6573E-04 2.24E-04 1.7828E-04 1.08E-04 3.0994E+01 4.61E-01 1.5394E-09 1.62E-09
3.7428E-04 1.93E-04 4.2276E-04 6.17E-05 3.8232E+01 6.55E-01 4.3100E-09 2.26E-09
1.2309E-03 2.39E-04 1.5533E-03 2.05E-04 6.9966E+01 2.41E+00 4.4631E-07 3.57E-07
2.1923E-03 2.47E-04 1.9305E-03 1.75E-04 5.9294E+01 2.64E-01 2.5953E-07 5.32E-08
1.0050E-02 1.36E-04 1.0097E-02 1.44E-04 6.9339E+01 1.23E-01 1.5858E-05 3.97E-07
3.6282E-04 9.31E-05 3.5105E-04 2.31E-04 6.4015E+01 3.57E-01 1.1218E-08 7.29E-09
9.0874E-04 2.13E-04 7.4512E-04 1.76E-04 7.3394E+01 1.50E+00 1.7368E-06 3.46E-06
2.5817E-03 2.16E-04 2.4939E-03 1.25E-04 5.7251E+01 4.54E-01 3.4841E-07 3.59E-08
4.6997E-04 7.43E-05 5.9542E-04 1.84E-04 7.4001E+01 1.30E+00 2.9845E-06 6.37E-06
3.1083E-04 2.82E-04 3.9084E-04 9.98E-05 6.5570E+01 1.28E+00 1.1759E-08 1.04E-08
1.1342E-03 1.97E-04 1.1139E-03 1.04E-04 4.5858E+01 5.88E-01 4.2400E-08 8.50E-09
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Tab. E.2: Continued.

H̄0i Error H̄i0 Error H̄ii Error δe(2)i Error

1.0850E-02 1.54E-04 1.0677E-02 9.15E-05 3.2964E+01 2.34E-01 2.7083E-06 5.33E-08
6.9473E-04 3.13E-04 8.0782E-04 2.30E-04 4.3445E+01 3.23E-01 1.8243E-08 9.47E-09
6.4743E-04 1.72E-04 6.6612E-04 1.78E-04 4.5394E+01 9.19E-01 1.3913E-08 4.03E-09
5.5130E-04 2.78E-04 5.5429E-04 1.96E-04 6.2234E+01 1.32E+00 2.1925E-08 1.27E-08
1.7051E-03 2.04E-04 1.5843E-03 7.62E-05 4.3789E+01 2.04E+00 8.5089E-08 1.42E-08
1.0574E-03 1.42E-04 8.8395E-04 1.64E-04 7.2287E+01 4.56E+00 1.7655E-07 4.29E-08
4.4520E-04 3.25E-04 4.9585E-04 2.01E-04 4.1952E+01 1.02E+00 6.4125E-09 6.21E-09
2.5532E-04 2.43E-04 1.9991E-04 1.75E-04 6.6131E+01 4.24E-01 4.3200E-09 6.69E-09
5.0962E-04 3.60E-04 1.4586E-04 1.71E-04 4.2733E+01 2.48E-01 1.6470E-09 1.79E-09
1.8654E-03 1.85E-04 1.9581E-03 1.32E-04 6.1634E+01 4.80E-01 2.5967E-07 3.67E-08
2.7462E-04 3.01E-04 1.7529E-04 1.56E-04 6.6646E+01 4.30E-01 9.6934E-09 1.72E-08
2.5189E-04 1.62E-04 2.1689E-04 1.37E-04 6.6925E+01 7.13E-01 5.7441E-09 4.92E-09
1.3447E-04 8.27E-05 2.5740E-04 1.69E-04 4.2614E+01 5.13E-01 1.1314E-09 8.08E-10
2.8262E-03 2.58E-04 2.6328E-03 2.84E-04 6.0879E+01 7.42E-01 5.0471E-07 9.39E-08
6.8101E-03 1.01E-04 6.8279E-03 1.26E-04 7.1745E+01 1.58E-01 1.1653E-05 5.70E-07
4.7138E-04 2.26E-04 5.1289E-04 2.12E-04 6.3675E+01 8.02E-01 2.0063E-08 1.32E-08
3.0965E-04 2.20E-04 2.4224E-04 1.86E-04 6.5463E+01 1.07E+00 6.9653E-09 6.73E-09
5.2595E-04 1.14E-04 3.9541E-04 2.85E-04 6.4109E+01 2.38E+00 1.9848E-08 1.77E-08
2.1287E-04 1.91E-04 1.2832E-04 1.04E-04 6.7365E+01 4.87E-01 3.9301E-09 5.75E-09
3.4417E-04 2.93E-04 3.7480E-04 1.86E-04 6.4391E+01 4.51E-01 1.2412E-08 1.33E-08
3.6479E-04 2.07E-04 3.0255E-04 1.74E-04 6.6528E+01 1.35E+00 1.4081E-08 1.49E-08
8.7675E-05 5.93E-05 1.1638E-04 1.07E-04 6.9509E+01 5.35E-01 1.8412E-09 1.67E-09
9.0881E-05 8.47E-05 9.6910E-05 7.64E-05 7.1296E+01 3.44E-01 2.3129E-09 2.55E-09
2.5461E-04 1.34E-04 8.1818E-05 6.76E-05 6.3571E+01 7.04E-01 2.2456E-09 2.05E-09
1.6294E-04 1.26E-04 1.3305E-04 9.42E-05 6.3397E+01 4.07E-01 1.3271E-09 1.52E-09
1.2365E-04 7.41E-05 1.3234E-04 6.90E-05 6.5587E+01 5.29E-01 1.6497E-09 1.25E-09
2.0945E-04 1.14E-04 1.7344E-04 1.34E-04 6.6975E+01 3.37E-01 4.6941E-09 5.96E-09
1.2495E-04 5.48E-05 1.8343E-04 1.46E-04 6.9280E+01 5.15E-01 3.1805E-09 3.05E-09
1.4901E-04 1.09E-04 6.3043E-05 6.55E-05 6.8505E+01 3.38E-01 1.1376E-09 1.90E-09
1.7839E-04 1.33E-04 1.9285E-04 1.49E-04 6.7450E+01 1.09E+00 2.8758E-09 2.55E-09
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CIPSI-Jastrow Wave Functions

VMC and DMC Energies

Tab. E.3: C2 VMC and DMC energies in Eh for truncated CIPSI wave functions using SDs.

Threshold VMC DMC

0.0100 -75.6276(4) -75.9007(6)
0.0075 -75.6484(4) -75.9032(6)
0.0050 -75.6793(4) -75.9041(5)
0.0025 -75.7049(4) -75.9066(5)

Tab. E.4: C2 VMC and DMC energies in Eh for CIPSI-Jastrow wave functions (Determinant and CSF
expansions) at various optimization levels using two different Jastrow factors.

VMC DMC

Threshold Jas Jas+CI Jas+MO+CI Jas Jas+CI Jas+MO+CI

Det, sm444

0.0100 -75.8463(4) -75.8525(3) -75.8763(3) -75.9007(5) -75.9064(5) -75.9122(5)
0.0075 -75.8531(4) -75.8614(4) -75.8816(3) -75.9034(5) -75.9089(5) -75.9141(5)
0.0050 -75.8619(3) -75.8725(3) -75.8869(3) -75.9050(5) -75.9119(5) -75.9171(5)
0.0025 -75.8683(3) -75.8801(3) -75.8892(3) -75.9066(5) -75.9152(5) -75.9160(5)

Det, sm666

0.0100 -75.8597(3) -75.8669(3) -75.8842(3) -75.9011(5) -75.9065(5) -75.9120(5)
0.0075 -75.8658(3) -75.8746(3) -75.8895(3) -75.9040(5) -75.9090(5) -75.9135(5)
0.0050 -75.8718(3) -75.8838(2) -75.8936(3) -75.9066(5) -75.9118(5) -75.9162(5)
0.0025 -75.8768(3) -75.8902(3) -75.8940(3) -75.9067(5) -75.9142(5) -75.9167(5)

CSF, sm444

0.0100 -75.8482(4) -75.8557(3) -75.8785(3) -75.9023(5) -75.9083(5) -75.9125(5)
0.0075 -75.8561(4) -75.8651(3) -75.8832(3) -75.9034(5) -75.9099(5) -75.9149(5)
0.0050 -75.8637(3) -75.8756(3) -75.8891(3) -75.9049(5) -75.9128(5) -75.9161(5)
0.0025 -75.8702(3) -75.8816(3) -75.8917(3) -75.9076(5) -75.9149(5) -75.9183(5)

CSF, sm666

0.0100 -75.8621(3) -75.8705(3) -75.8875(3) -75.9024(5) -75.9084(5) -75.9130(5)
0.0075 -75.8677(3) -75.8780(3) -75.8913(3) -75.9042(5) -75.9104(5) -75.9148(5)
0.0050 -75.8725(3) -75.8863(3) -75.8953(3) -75.9045(5) -75.9147(5) -75.9158(5)
0.0025 -75.8775(3) -75.8916(3) -75.8959(3) -75.9071(5) -75.9161(5) -75.9182(5)
0.0010 -75.9025(3) -75.9197(5)
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Tab. E.5: C VMC and DMC energies in Eh for fully optimized (Jas+MO+CI) truncated CIPSI-Jastrow CSF
wave functions. An sm666 Jastrow factor was used.

Truncation Scheme a Truncation Scheme b Truncation Scheme c
Threshold VMC DMC Threshold VMC DMC Threshold VMC DMC

0.0100 -37.8378(2) -37.8432(5) 0.1000 -37.8240(2) -37.8365(5) 0.1000 -37.8240(2) -37.8365(5)
0.0075 -37.8400(2) -37.8438(5) 0.0870 -37.8240(2) -37.8365(5) 0.0550 -37.8231(3) -37.8346(5)
0.0050 -37.8397(3) -37.8438(5) 0.0710 -37.8240(2) -37.8365(5) 0.0380 -37.8321(2) -37.8408(5)
0.0025 -37.8401(3) -37.8448(5) 0.0500 -37.8238(3) -37.8364(5) 0.0340 -37.8330(3) -37.8415(5)
0.0010 -37.8391(2) -37.8430(5) 0.0320 -37.8329(3) -37.8424(5) 0.0230 -37.8362(2) -37.8424(5)

Tab. E.6: C2 VMC and DMC energies in Eh for truncated CIPSI-Jastrow wave functions using Slater de-
terminants for different sets of initial orbitals.

VMC DMC

Threshold # Dets Jas Jas+CI Jas+MO+CI Jas+CI Jas+MO+CI

B3LYP

0.0100 191 -75.8721(3) -75.8781(3) -75.8844(3) -75.9109(5) -75.9120(5)
0.0075 300 -75.8740(3) -75.8832(2) -75.8890(3) -75.9118(5) -75.9142(4)
0.0050 589 -75.8769(3) -75.8882(2) -75.8938(3) -75.9140(5) -75.9161(5)
0.0025 1377 -75.8815(3) -75.8942(2) -75.8983(3) -75.9174(5) -75.9173(5)

PBE0

0.0100 189 -75.8706(3) -75.8775(3) -75.8843(3) -75.9107(5) -75.9123(5)
0.0075 286 -75.8732(3) -75.8809(3) -75.8891(3) -75.9119(5) -75.9129(5)
0.0050 581 -75.8760(3) -75.8871(2) -75.8941(3) -75.9137(5) -75.9153(5)
0.0025 1379 -75.8807(3) -75.8938(2) -75.8983(3) -75.9161(5) -75.9175(5)

CAS(8,8)

0.0100 143 -75.8671(3) -75.8744(3) -75.8848(3) -75.9094(5) -75.9128(4)
0.0075 240 -75.8700(3) -75.8794(3) -75.8895(3) -75.9123(5) -75.9139(5)
0.0050 510 -75.8745(3) -75.8862(3) -75.8937(3) -75.9140(5) -75.9167(4)
0.0025 1201 -75.8788(3) -75.8913(2) -75.8983(3) -75.9157(5) -75.9185(5)
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