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Abstract

We study Skyrmions on the Sphere which arise as critical points of a magnetic en-
ergy involving only exchange energy and easy – normal anisotropy. Due to the curved
nature of the sphere, these two terms suffice to stabilize critical points against the scal-
ing invariance of the Dirichlet term. Furthermore, the normal anisotropy breaks the
invariance of this term under individual rotations of the domain and target sphere,
leaving only invariance under joint rotations. The goal of this thesis is to understand
the effect that this remaining invariance has on the symmetry of minimizers and critical
points.

First, we focus on axisymmetric Skyrmions on the sphere, which are themselves invariant
under joint rotations around a given axis. We use standard methods to show existence
and regularity of minimizers in this symmetry class and then exploit the symmetry to
study their shape in more detail. A fine analysis of the energy density and other energy
arguments lead to the proof of several properties. We also give some estimates for the
case of a high anisotropy parameter.

Secondly, we investigate the minimality of these Skyrmions in a broader class. We
find that the Hessian associated to the magnetic energy is positive semidefinite and
identify the elements of its kernel. Under the assumption of strict convexity within
the axisymmetric class, we deduce local minimality of axisymmetric Skyrmions up to
invariances of the energy.

Finally, we construct non-trivial periodic solutions for the Landau-Lifshitz equation
associated to the magnetic energy functional. For this, we consider the minimization
of the energy under a constraint on the angular momentum which enforces symmetry
breaking. We show that constrained minimizers solve an Euler-Lagrange equation with
Lagrange multiplier ω and employ a  Lojasiewicz inequality for the magnetic energy to
confirm ω ̸= 0.
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Kurzzusammenfassung

Wir betrachten Skyrmionen auf der Sphäre, die als kritische Punkte eines magnetischen
Energiefunktionals bestehend aus Dirichletterm und Anisotropie aufkommen. Durch
die Krümmung der Sphäre sind diese beiden Terme ausreichend, um kritische Punkte
gegen die Skalierungsinvarianz des Dirichletterms zu stabilisieren. Zudem wird durch die
Anisotropie die Invarianz dieses Terms unter unabhängigen Rotationen der Definitions-
und Bildsphäre gebrochen, sodass nur Invarianz unter gleichzeitigen Drehungen übrig
bleibt. Das Ziel dieser Arbeit ist es, den Effekt dieser verbleibenden Invarianz auf
Minimierer und kritische Punkte zu verstehen.

Zuerst konzentrieren wir uns auf achsensymmetrische Skyrmionen auf der Sphäre, die
selbst invariant unter gleichzeitigen Drehungen um eine gegebene Drehachse sind. Wir
verwenden Standardmethoden, um Existenz und Regularität vo Minimierern in dieser
Symmetrieklasse zu zeigen und nutzen dann die Symmetrie, um ihre Form detaillierter
zu untersuchen. Eine genaue Analyse der Energiedichte und andere Energieargumente
führen zum Beweis diverser Eigenschaften. Zudem geben wir einige Abschätzungen für
den Fall hoher Anisotropie an.

Als zweites untersuchen wir die Minimalität dieser Skyrmionen in einer größeren Klasse.
Wir zeigen, dass die zur magnetischen Energie zugehörige Hessesche positiv semidefinit
ist und bestimmen die Elemente ihres Kerns. Unter der Annahme strikter Konvexität
innerhalb der achsensymmetrischen Klasse folgern wir die lokale Minimalität achsensym-
metrischer Skyrmionen bis auf Invarianzen der Energie.

Schließlich konstruieren wir nichttriviale periodische Lösungen für die zugehörige Landau-
Lifshitz Gleichung. Dafür betrachten wir die Minimierung der Energie unter einer Ein-
schränkung für den Drehmoment, die Symmetriebrechung forciert. Wir zeigen, dass be-
dingte Minimierer eine Euler-Lagrange Gleichung mit Langrangemultiplikator ω lösen,
und verwenden eine  Lojasiewicz Ungleichung für die magnetische Energie um ω ̸= 0 zu
bestätigen.
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c (S2 \ {ê3};Tm0S2) . . . . . . . . . . . . . 60

4.1.2. Non-Negativity for C∞(S2;Tm0S2) . . . . . . . . . . . . . . . . . 70
4.2. Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5. Non-Symmetric Solutions of the Landau Lifshitz Equation 83
5.1. Rotating Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1. Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.2. Lagrange Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.  Lojasiewicz-Simon Inequality . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.1. Preliminaries: Analyticity and Fredholm Property . . . . . . . . 94
5.2.2. Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . 97

5.3. Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

v



Contents

6. Outlook 105

A. Appendix 111
A.1. Spherical Coordinates and Moving Frame . . . . . . . . . . . . . . . . . 111
A.2. Analyticity of Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vi



1. Introduction

Skyrmions are topologically non-trivial critical points of nonlinear σ-models. They have
originally been proposed by Tony Skyrme as a field theory for interacting particles [49],
but are now discussed in the context of magnetism in condensed matter. Experimen-
tally, they have first been observed in bulk materials [41] and subsequently on thin film
[57].

Mathematically, the existence of Skyrmions is usually proven by minimizing a magnetic
energy functional under a constraint on the mapping degree. Depending on the situation
modeled, the energies under consideration are integral functionals over R3 for bulk
material or, more commonly, over R2 for the thin film limit, which can be confirmed
by proving Gamma convergence [13, 9]. They are applied to magnetizations u : Rn →
Sn for n ∈ {2, 3} which converge to a fixed value as |x| → ∞. Thus, identifying
Rn ∪ {∞} with Sn via the stereographic projection π, the map ũ = u ◦ π is well defined
and its mapping degree deg(ũ) is integer valued whenever ũ is sufficiently regular [8].
Focusing on the R2 model, it can be computed via the standard volume form ωS2 on
S2:

Q(u) := deg(ũ) =

∫
S2

ũ∗ωS2 =
1

4π

∫
R2

u · (∂1u× ∂2u) dx

By approximation with smooth functions, this integral expression of Q implies that the
topological charge Q(u) is well defined and integer valued even for fields u ∈ H1(R2;S2).
It separates H1(R2; S2) into topological sectors

{u ∈ H1(R2; S2) : Q(u) = k}

which are preserved under continuous deformations of u. Hence, minimizing under a
constraint on Q yields critical points of the energy, which are locally minimizing and
have higher energy than the ground state. Indeed, the classical topological bound for
the exchange energy yields

1

2

∫
R2

|∇u|2 dx ≥
∫
R2

|∂1u||∂2u|dx ≥ 4πQ(u)

by a simple application of Young’s inequality.

However, invariance of ∥∇u∥2L2(R2) under rescaling u 7→ uλ = u(λ·) entails that mini-
mizers are not localized and can vary in size. In order to overcome this problem and
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1. Introduction

to obtain stable Skyrmions on the plane, other terms of opposite scaling behavior must
be included, each carrying a different meaning in the context of micromagnetics. This
results in energy functionals consisting of at least three terms. In particular, a frequent
subject of study is the combination of Dzyaloshinski-Moriya interaction (DMI) and dif-
ferent anisotropy terms forcing u to assume fixed values at ∞ [32, 55, 12]. While the
DMI is given by ∫

R2

u · (∇× u) dx

and results in chirality, anisotropy relates to the fact that aligning all spins in a certain
direction is energetically favorable. The specific choice of anisotropy depends on the
modeled material. However, easy plane anisotropy (u · ê3)2 and easy axis anisotropy
1− (u · ê3)2, along with the Zeeman term 1− (u · ê3) = 1

2 |ê3−u|2 are most common. In
practice, the conditions under which DMI effects and anisotropy lead to the observation
of Skyrmions are hard to realize [50].

Stabilizing Effects of Curvature

This difficulty has led researchers to investigate the appearance of complex magnetic
structures on curved thin films [14, 50] in order to reduce the requirements on the
material in which Skyrmions can be stabilized. In the Γ-limit and under conditions on
the surface, that are usually satisfied in applications, these curved thin films are well
modeled by magnetization fields m : M → S2 where M is a two dimensional manifold
embedded in R3 [10].

In the case of a spherical shell ∂BR(0) ⊂ R3, this manifests in the fact that a Skyrmion
can already be induced by a uniform external magnetic field [26]. Mathematically, on the
other hand, the reduced requirements are reflected by an energy

E(m) =
1

2

∫
S2

|∇m|2 + κ(1 − (m · ν)2) dσ

that only consists of two terms. Here, ν(x) = x is the outer unit normal and κ > 0 is
the anisotropy parameter. Apart from the exchange energy, the easy-normal anisotropy
is sufficient to stabilize minimizers against scaling, which for m : S2 → S2 is done on the
level of the pullback via the inverse stereographic projection

mλ = m ◦ π−1(λ·) ◦ π.

The stability is due to the fact that the anisotropy on a curved surface results in a
curvature induced DMI [26]. This is easily shown for axisymmetric fields, see section
2.2.

For sufficiently regular magnetizations on the sphere, the topological charge can easily

2



be defined as

Q(m) = deg(m) =

∫
S2

m∗ωS2 .

It is identical to the topological charge of the pullback via the inverse stereographic
projection, m̃ = m ◦ π−1 : R2 → S2, which was defined above. Hence it is integer
valued for m ∈ H1(S2; S2). Interestingly, the hedgehog configurations h±(x) = ±ν(x)
satisfy Q(h±) = ±1 while also being the global minimizers [11] for κ > 4. In the planar
case, the topological lower bound for the exchange energy usually implies that ground
states are topologically trivial with Q(u) = 0. This shift in the topological charge
results from the inverse stereographic projection u = π−1 : R2 → S2, which has charge
Q(u) = 1.

Apart from degree considerations, it is particularly interesting that the hedgehog config-
urations are the global minimizers because this shows that the global minimizers display
the same symmetry as the energy functional, namely invariance under joint rotations
and inversions

m 7→ mO = Om(O−1·) for O ∈ O(3).

Invariance of the energy under individual inversions, i.e. m 7→ −m or m 7→ m(−·),
would change the topological charge and cannot be expected to hold for minimizers
within a fixed topological sector. Moreover, invariance under any individual inversion
combined with invariance under joint rotations is only satisfied by m ≡ 0 and is thus
impossible for a unit vector field.

The question immediately arises whether the symmetry property of the ground states
extends to minimizers in different topological sectors, i.e. Skyrmions. However, the
only maps that are invariant under all joint rotations are the outer and inner hedgehog
h± which are the ground states and therefore no candidates for Skyrmions . Instead,
the maximal possible symmetry is invariance under joint rotations and inversions which
preserve a chosen symmetry axis, meaning

m = mO for O ∈ O(3)ê,

where O(3)ê is the stabilizer subgroup of O(3) with respect to ê. This group is isomor-
phic toO(2). Maps that exhibit this symmetry shall be called ê-axisymmetric.

In general, the question whether minimizers are symmetric is very hard to answer
[25]. As a slightly easier question, one may ask if minimizers within a given sym-
metry class are locally minimizing in a larger class. Examples in which minimality
could be proven include the melting hedgehog in liquid crystals [23] and axisymmetric
chiral Skyrmions in the plane [32]. On the other hand, radially symmetric solutions
of the Ginzburg-Landau equation are only minimizing if they are of degree 0 or 1[39],
[43].

In [26], the authors use numerical simulations to obtain axisymmetric critical points of
the energy at different radii of the shell S = ∂BR(0). Furthermore, in the appendix, they
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1. Introduction

briefly touch on the question of local minimality by considering a Fourier decomposition
of an operator yielding the second variation and numerically computing the eigenvalues
of the first ten modes. However, a rigorous mathematical proof of existence and local
minimality of these critical points has yet to be given. Doing so is the first aim of this
work and shall be discussed in chapter 3 and 4.

In particular, existence, regularity, and several qualitative properties of axisymmetric
minimizers are proven in chapter 3, using standard PDE tools and a fine analysis of
the energy. Local minimality, on the other hand, is obtained by first proving that the
Hessian is positive semi-definite and then expressing the energy difference compared to
a critical point in terms of the Hessian. Treatment of the Hessian follows a method from
[23], which has been employed in several other problems, e.g. [28], [32]: The functional
is decomposed into several Fourier modes which are then analyzed individually. Due to a
monotonicity result, it is sufficient to consider the first two.

Dynamics of Skyrmions on the Sphere

To model the evolution of a magnetization vector under the influence of an external
field over time, Landau and Lifshitz [29] have proposed the Landau-Lifshitz (LL) equa-
tion

∂tu = u× heff,

where the effective field heff is given by the negative L2-gradient of the modeling energy.
It was originally stated for the bulk case of multi layered crystals and has been widely
investigated for magnetizations of flat space

u : Rn × R → S2.

In the original work by Landau and Lifshitz [29], the authors proposed a second equa-
tion accounting for the effects of what they called ’relativistic interaction’, often re-
ferred to as damping. For an equivalent choice of damping involving the time deriva-
tive of u, one arrives at the Landau-Lifshitz-Gilbert (LLG) equation. It was recently
shown in [10] for the (LLG) equation that in the limit for thin curved films, the lim-
iting function of solutions solves the (LLG) equation on the manifold describing the
film. Setting the Gilbert damping constant to zero, we therefore consider the equa-
tion

∂tm = m× (−∇L2E(m)) = m× (∆m + κ(m · ν)ν) on S2 (1.1)

for a magnetization of the sphere m : S2 → S2 and the same energy as above. Details
on its L2-gradient are given in section 2.1. For simplicity, we will denote it by ∇E for
the remainder of this introduction.

The geometric structure of the (LL)-equation implies that the energy and the absolute
value of a solution are formally conserved over time:

d

dt
E(m(t)) = ⟨∂tm,∇E(m)⟩L2 = ⟨m×∇E(m),∇E(m)⟩L2 = 0

4



and
d

dt
|m|2 = 2∂tm ·m = 2 (m×∇E(m)) ·m = 0.

In particular, this means that ∥∇m(t)∥L2 + ∥m(t)∥L2 are uniformly bounded in time
for solutions of the equation. A more rigorous proof of the conservation can be given in a
Hamiltonian framework for the equation. This is done in section 2.1.

However, existence of solutions and a-priori bounds in H2, which would be needed for a
stability analysis, are more subtle. In many cases, such well-posedness results are only
availiable for small initial data, due to the relation to the Schrödinger equation which is
well-posed for small initial data [2] but can be ill-posed for large data [38]. Unfortunately,
due to the topological lower bound, this is not applicable to Skyrmions and the question
becomes even more challenging. In the following, we give two examples of well-posedness
results for specific Landau-Lifshitz equations.

In the planar case, well-posedness of the (LL)-equation involving only exchange energy
and anisotropy has been proven for initial values close to certain critical points of the
energy [17]. This has been done by a transformation into a nonlinear Schrödinger equa-
tion. However, when considering (1.1) for the pullback via the inverse stereographic
projection, m̃ = π∗m : R2 → S2, the curvature induced DMI mentioned above intro-
duces additional terms. These are order one in the derivatives of m and are not covered
by the framework of [17].

Another approach to prove well-posedness of the planar (LL)-equation for arbitrary
initial data involves the construction of high-order energy functionals [7, 52]. This is
done for an energy functional consisting of the exchange energy and anisotropy with
respect to a fixed axis. Since the method is tailored for a specific energy functional,
it is unclear whether this method could be adapted to the normal anisotropy we con-
sider.

Instead of dealing with the full Cauchy problem, we construct specific solutions of (1.1)
that follow the orbit of a static magnetization under joint rotations. In order for the
thus obtained family of vector fields mt = mR(t)to solve the (LL)-equation, m has to
satisfy m×∇E(m) = F (m), where

F (m) =
d

dt
mR(t)|t=0

is the generator of a family of joint rotations. Such static magnetizations are obtained
by minimizing the energy under a constraint on the total angular momentum, as has
already been observed in [37].

It is of course a common concept to obtain specific solutions to difficult PDE by ap-
plying motion to an initial field that solves a matching static equation. For the (LL)-
equation and the related Schrödinger equation, examples include precessing bubbles [17]
and traveling wave solutions [34]. In the presence of symmetry, the static equation is
typically the Euler-Lagrange equation of a certain constrained minimization problem

5



1. Introduction

related to the symmetry by Noether’s law: Every invariance of the energy under the
action of a continuous symmetry group is related to a conserved quantity of the sys-
tem. The constraint is then put on the quantity that is conserved under the action of
the symmetry group. The general framework of this construction method is given in
[15], where the authors also develop tools for the stability analysis of the constructed
solutions.

Here, the conserved quantity related to invariance under joint rotations with R ∈ SO(3)
is the total angular momentum. Control over the angular momentum also ensures that
the constrained minimizers from [37] are non-symmetric. Hence, jointly rotating them
at a non-zero frequency yields non-trivial solutions. In chapter 5, we show that this
frequency arises as a Lagrange multiplier ω from the constrained minimization problem.
Furthermore, we prove a  Lojasiewicz-Simon type inequality for E to show that under
some assumptions, the minimality results of chapters 3 and 4 ensure ω ̸= 0. In total,
we thus give an analytical proof of the existence of non-symmetric, rotating solutions
of the Landau-Lifshitz equation. Such solutions have been observed numerically in
[47].

In the vicinity of critical points, a  Lojasiewiz inequality provides an estimate for the
energy difference in terms of the L2-norm of the gradient. In the present case, however,
since the energy takes S2-valued fields, some more work is necessary. This results in
an an estimate in terms of the projection of the L2-gradient gradient onto the tangent
space.

Originally proven for real analytic functions by  Lojasiewicz [27], the inequality was ex-
tended to the infinite dimensional setting by Simon [48] in order to show that solutions
to certain non-linear evolution equations converge asymptotically to solutions of a sta-
tionary equation. Since then, the proof has been simplified [24], generalised [19] and
adapted, in particular to settings with no analyticity [4], [18] and to the case of Banach
manifolds[46].

The inequality is usually applied in the study of gradient flows to prove, for example,
asymptotic stability, decay rates, or uniqueness of blowups [33], [5], [21]. To our knowl-
edge, it has not yet been used to estimate a Lagrange multiplier.

1.1. Statement of Main Results

We study the energy

E(m) =

∫
S2

|∇m|2 + κ
(
1 − (m · ν)2

)
dσ

6



1.1. Statement of Main Results

for magnetizations m : S2 → S2 and under the restriction Q = 0. In particular, we are
interested in axisymmetric fields of the form

m(Ψ(x, φ)) =

sin θ(x) cosφ
sin θ(x) sinφ

cos θ(x)

 ,

where θ : [0, π] → R is the polar profile of m and (x, φ) ∈ (0, π)×(0, 2π) are spherical co-
ordinates. In this case, Q(m) = 0 means that the profile θ satisfies

cos(θ(π)) − cos(θ(0)) = 0.

Axisymmetric fields are invariant under joint rotations and reflections

m 7→ mO = O−1m(O·), for O ∈ SO(3)ê3 .

Under the assumption of symmetry, the energy of m only depends on the profile θ
with

E(m) = 2πE(θ) = 2π

π∫
0

(θ′)2 sinx+
sin2 θ

sinx
+ κ sin2(θ − x) sinx dx.

In Theorems 1 and 2, we show that minimizers in the class of axisymmetric fields with
degree Q(m) = 0 exist and are smooth. Furthermore, we give a qualitative analysis
of these minimizers by investigating the polar profile θ. This is necessary to prove the
following theorem about the minimality of axisymmetric minimizers beyond the class
of symmetric magnetizations.

Theorem 3. Given κ > 24, let m0 = mθ be minimizing among all axisymmetric fields
of degree 0. Then the Hessian of E at m0 is positive semidefinite. Furthermore, if the
reduced energy is strictly convex at θ in the sense that d2

dt2
E(θ+tβ) > 0 for all variations

β ∈ C∞
0 ((0, π)) \ {0}|t = 0, then m0 is a local minimizer among all fields of degree 0

and there exist ε0, c > 0 such that

E(m) − E(m0) ≥ c inf
R∈SO(3)/SO(3)ê3

∥mR −m0∥H1

for all ∥m−m0∥H1 < ε0.

After minimality, we turn to the dynamical problem and construct a class of jointly
rotating solutions to the corresponding Landau Lifshitz equation by adding a constraint
on the total angular momentum J. In theorem 4, we prove that minimizers of the con-
strained minimization problem exist and solve the equation

m×∇E(m) = ωm×∇J3(m).

These constrained minimizers are then jointly rotated at frequency ω to obtain peri-
odic solutions of the (LL)-equation. To prove ω ̸= 0, i.e. that these solutions are
non-trivial, we establish a  Lojasiewicz inequatliy for E . Overall, and under some as-
sumptions (A1)-(A3) which are discussed in chapter 5, this yields the following theo-
rem:

7



1. Introduction

Theorem 5. Assume that for κ > 0 large enough, either (A1) and (A2) or (A3)
hold. Then there exists ε0 > 0 such that for all 0 < ε < ε0 there exist ω ̸= 0 and
m ∈ C∞(S2;S2) such that J(m) = −(4π + ε)ê3 and

m(x, t) := mR(ωt)(x)

is a nontrivial periodic solution of the Landau Lifshitz equation.

8



2. Preliminary Considerations

In this chapter, we will gather some preliminary results needed for the analysis in later
chapters. After introducing the underlying function spaces, we will also investigate the
role of symmetry.

2.1. Function Spaces and Admissible Variations

To start with, we will develop the framework of all computations by defining the relevant
function spaces and parametrizations of the sphere.

For most computations, we will use spherical coordinates

Ψ: (0, π) × (0, 2π) → S2 \ {(y1, y2, y3) ∈ R3 : y2 = 0, y1 ≥ 0}

on the sphere and denote them by (x, φ). Recall that Ψ is given by

Ψ(x, φ) =

sinx cosφ
sinx sinφ

cosx

 .

However, these coordinates are not defined at the poles ±ê3, which are of particular
interest in the symmetric case. Setting Ψ(0, φ) = ê3 and Ψ(π, φ) = −ê3, we can
continuously extend the parametrization and overcome the polar gap in most cases.
Still, we will need to be particularly careful when dealing with limits for x → π or
x→ 0. A more detailed discussion of the extension at the poles and of the existence of
some limits can be found in the appendix.

In other cases, the stereographic projections will be employed. For these we use the
notation π± : S2 \ {±ê3} → R2 where

π±(x) =
1

1 ∓ x3

(
x1
x2

)
and π±(Ψ(x, φ)) =

sinx

1 ∓ cosx

(
cosφ
sinφ

)
.

Furthermore, for p ∈ S2, πp shall denote the stereographic projection centered at p such
that for any R ∈ SO(3) with Rp = p, it holds that πp(x) = π−(Rx). In particular,
πp(p) = 0 = π−(ê3) = π+(−ê3).

9



2. Preliminary Considerations

The energy

E(m) =

∫
S2

|∇S2m|2 + κ
(
1 − (m · ν)2

)
dσ

is finite for m : S2 → S2 such that |∇m|2 is integrable over S2. Due to the conformal
invariance of the Dirichlet term, this is equivalent to square integrability of |∇(m◦π−1

± )|
over R2. For higher order derivatives, however, the Riemannian metric on S2 introduces
additional factors of (1 + |x|2)2k.

By Aubin [1], Sobolev spaces on Riemannian manifolds are independent of the choice
of the metric. We make use of this fact by defining Sobolev spaces on the sphere via
the stereographic projection.

Definition 1. Let (η1, η2) be a partition of unity on S2 such that η1(ê3) = 0 = η2(−ê3).
For a Ck– function m : S2 → R, we define

∥m∥2
Ḣℓ(S2) :=

∫
R2

(∣∣∣∇ℓ (m ◦ π+)
∣∣∣2 η1 ◦ π+ +

∣∣∣∇ℓ(m ◦ π−)
∣∣∣2 η2 ◦ π−) (1 + |x|2)2ℓ−2 dx.

Let Ck(S2) be the space of C∞ functions m on S2 such that ∥m∥Ḣℓ(S2) < ∞ for all

0 ≤ ℓ ≤ k. Then we define Hk(S2) to be the completion of Ck(S2) with respect to the
∥ · ∥Hk(S2)-norm, where

∥m∥2Hk(S2) =

k∑
0=ℓ

∥m∥2
Ḣℓ(S2).

Sobolev spaces over n-dimensional compact manifolds behave similarly to regular Sobolev
spaces over Ω ⊂ Rn open such that Ω̄ is compact. Most notably, the Sobolev imbedding
and the Rellich-Kondrakov theorem hold [1, Theorem 2.20 and Theorem 2.34]. This
ensures

Hk(S2) ⊂ C0(S2)

for k ≥ 2, thus justifying pointwise investigations for fields in H2(S2). Furthermore, the
validity of the Sobolev imbedding is sufficient to make Hk(Mn) an algebra for k ≥ n

2 .
A proof of the statement in the flat case can be found in [53], an adaptation to the case
of manifolds requires no changes.

Arguing componentwise, it easily follows that the Sobolev spaces Hk(S2;R3) are well
defined and that the imbeddings still hold. However, we are interested in S2-valued
fields m : S2 → S2 which do no not form a linear space anymore. Pointwise tangential
fields, on the other hand, do.

Definition 2. Given m : S2 → S2 and a field v : S2 → R3, we write v : S2 → TmS2 if v
satisfies

v(x) ∈ Tm(x)S2 for almost every x ∈ S2.

10
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Moreover,

Hk(S2;TmS2) := {v ∈ Hk(S2;R3) : v(x) ∈ Tm(x)S2 a.e.}.

Lemma 2.1. For every m : S2 → S2 and k ≥ 0, the space Hk(S2;TmS2) is a Hilbert
space enjoying the same imbedding properties as Hk(S2;R3).

Proof. This follows from the fact that Hk(S2;TmS2) is a closed subspace of Hk(S2;R3).
Indeed, it is a linear space due to the bilinearity of the scalar product in R3. Moreover,
the tangential property is characterized by v(x) · m(x) = 0 which is conserved by
pointwise convergence almost everywhere. This, on the other hand, follows from strong
L2-convergence and thus from Hk-convergence.

To abbreviate notation, we will sometimes also write v ∈ TmS2 for fields v : S2 →
TmS2.

2.1.1. Manifold Structure

While the spaces Hk(S2;S2) are not closed under summation and can therefore not be
Sobolev spaces, they are Banach manifolds for k ≥ 2 due to Sobolev estimates. We use
the following definitions by Zeidler.

Definition
– from [58], p. 533, definition 73.2
Let M be a topological space. A chart (U,φ) is a pair where the set U is open in M
and φ : U → Uφ is a homeomorphism onto an open subset Uφ of a Banach-space Xφ.
We call φ a chart map.

Definition
– from [58], p. 535, definition 73.4
Let M be a topological space. A Ck-atlas for M, 0 ≤ k ≤ ∞ is a collection of charts
(Uα, φα) (α ranging in some indexing set), which satisfies the following conditions:

(i) The Uα cover M .

(ii) Any two charts are Ck-compatible.

(iii) All chart spaces Xα are Banach spaces over K.

M is said to be a Ck-Banach manifold if and only if there exists a Ck-atlas for M .

11



2. Preliminary Considerations

Note: In [58], two charts (Ui, φi) are called Ck-compatible if their domains are disjoint
or if both φ1 ◦ φ−1

2 and φ2 ◦ φ−1
1 are Ck.

Following this definition, we will show that control of the C0 or L∞ norm together with
H1 is sufficient for a Banach manifold structure for a set of maps m : S2 → S2. To that
end, for every k ∈ N0, let Xk(S2;S2) be the set of S2-valued maps in Hk(S2;R3) from
above, equipped with the norm ∥ · ∥Xk where

∥m∥Xk = ∥m∥Hk(S2;R3) + ∥m∥L∞(S2;R3).

We show that Xk(S2; S2) is a Banach manifold for k ∈ N0 by defining local charts over a
suitable set of maps v : S2 → TmS2. The L∞ norm is needed to ensure that the images
of the charts remain bounded and to show compatibility of charts. While ∥m∥L∞ = 1
for all m : S2 → S2, the norm ∥ · ∥X introduces additional control over the difference of
two such functions. For k ≥ 2, the norm ∥ · ∥X is equivalent to the Hk(S2;R3) norm
due to the embedding of Hk into C0(S2;R3).

Lemma 2.2. The space Xk(S2;S2) defined above is a smooth Banach manifold.

Proof. Fix k ≥ 0. In the following, we will mostly omit the specification of differentia-
bility and write X = Xk(S2; S2) = (Hk(S2;S2), ∥·∥X). Given m0 ∈ Hk(S2;S2), consider
the set

Xk(S2;TmS2) := {v : S2 → TmS2 : ∥v∥Xk <∞}.

Equipped with the norm ∥·∥X , the spaces Xk(S2;TmS2) = Hk(S2;TmS2)∩L∞(S2;TmS2)
are Banach spaces. Henceforth, we will also leave out the specification of k for the spaces
Xk(S2;TmS2). We will construct a chart around m by considering

ψ : X(S2;TmS2) → X, ψ(v) =
m + v

|m + v|
.

First, note that
|m + v|2 = |m|2 + 2m · v + |v|2 = 1 + |v|2

so that ψ is well-defined. Furthermore, the L∞ bounds for m and v imply that∣∣∣∣ m + v

|m + v|

∣∣∣∣ = 1,

∣∣∣∣ 1

|m + v|

∣∣∣∣ ≤ 1 + ∥v∥L∞

and

∥∇ψ(v)∥L2(S2) ≲
(
∥∇m∥L2(S2) + ∥∇v∥L2(S2)

)
(1 + ∥v∥L∞) .

For k ≥ 2, the bounds for higher order derivatives follow componentwise from Hk(S2;R)
being an algebra. Thus, we find ∥ψ(v)∥X ≤ c∥v∥X for all v in some neighborhood of
0 ∈ X(S2;TmS2) and some c > 0. To compute the range of ψ, note that

m · ψ(v) =
1 + (m · v)

|m + v|
= (|m + v|)−1 =

(
1 + |v|2

)− 1
2 > 0.
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2.1. Function Spaces and Admissible Variations

On the other hand, given m̃ with m · m̃ > 0, the tangent field v = m̃
m·m̃ −m satisfies

m + v =
m̃

m̃ ·m
such that ψ(v) = m̃ and the range of ψ is

{m̃ ∈ X : m̃ ·m > 0}.

To ensure compatibility of the charts, we set

U :=

{
m̃ ∈ X : m̃ ·m > 0 and ∥m̃−m∥X <

1

2

}
.

By above computations, ψ−1 : U → Uφ with

ψ−1(m̃) =
m̃

m · m̃
−m

is the inverse of ψ. Continuity follows from the bounds for ∥m∥X in a similar fashion
as continuity of ψ. Thus, the pair (U,ψ−1) defines a local chart around m. It remains
to be shown that any two charts are compatible. For that, consider charts (U1, ψ1),
(U2, ψ2) around m1, m2 ∈ X. If m1(x) ·m2(x) < 1

2 for some x ∈ S2, then

|m1(x) −m2(x)|2 = 1 − 2m1(x) ·m2(x) + 1 > 1.

Hence, if the inequality holds on a set of positive measure, then ∥m1 −m2∥L∞ > 1 and
U1 ∩ U2 = ∅. On the other hand, if the intersection is non-empty, then m1 · m2 ≥ 1

2
almost everywhere and the composition of the two charts is given by

ψ−1
1 ◦ ψ2(v) = ψ−1

1

(
m2 + v

|m2 + v|

)
=

m2 + v

m1 · (m2 + v)
−m1 =

m2 + v

m1 ·m2
−m1,

which is a smooth mapping from X(S2;TmS2) to X(S2;TmS2) due to m1 ·m2 >
1
2 almost

everywhere. In the last step it has been used that v ∈ ψ−1
2 (U2) ⊂ X(S2;TmS2).

Corollary 2.1. Given m ∈ Xk(S2;S2), a representation of the tangent space TmX
k(S2; S2)

is given by Xk(S2;TmS2).

Proof. Since the spaces Xk(S2;TmS2) are the chart spaces for Xk(S2;S2), this follows
directly from proposition 73.12 in [58].

2.1.2. First and Second Variation of the Energy

Considering E as a functional on X1(S2; S2), it follows that dE is given by d (E ◦ ψ).
Fixing m ∈ X1(S2;S2), we thus define

mt :=
m + tv

|m + tv|
= ψ(tv) v ∈ X1(S2;TmS2), t ∈ R.
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2. Preliminary Considerations

To simplify computations, consider the nearest point projection

Π: R3 \ {0} → S2; x 7→ x

|x|
.

For v ∈ TmS2, Π(m+v) = ψ(v) is well defined and smooth with

DΠ(m + v)⟨w⟩ =
1

|m + v|

(
1− 1

|m + v|2
(m + v) ⊗ (m + v)

)
w,

d

dt
Π(m + tv)

∣∣∣
t=0

= DΠ(m)⟨v⟩ = v − (m⊗m)v = v

since m · v = 0. Furthermore, the second derivative is given by the second fundamental
form A on the sphere:

d2

dsdt
Π(m + tv + sw)

∣∣∣
s=t=0

= D2Π(m)⟨v, w⟩ = −A(m)⟨v, w⟩ = (v · w)m.

Furthermore, we introduce Ẽ , the extension of E toH1∩L∞(S2;R3). For v ∈ X1(S2;TmS2),
we now employ Π and Ẽ to compute the Gateaux derivative of E ◦ ψ at 0 = ψ−1(m) in
direction v.

δE(m)⟨v⟩ = δ (E ◦ ψ) (0)⟨v⟩ =
d

dt
E(mt)

∣∣∣
t=0

= δẼ(m)⟨DΠ(m)⟨v⟩⟩ = δẼ(m)⟨v⟩

=

∫
S2

∇m · ∇v − κ(m · ν)ν · v dσ

=

∫
S2

(−∆S2m− κ (m · ν) ν) · v dσ,

Consequently, the L2(S2;TmS2)-gradient of E is given by −∆m−κ(m·ν)ν. For a general
testfunction ϕ ∈ C∞(S2;R3), we may set v = m×ϕ such that

δE(m)⟨ϕ⟩ =

∫
S2

(−∆S2m− κ (m · ν) ν)·(m×ϕ) dσ =

∫
S2

(m× (−∆S2m− κ (m · ν) ν))·ϕ dσ.

It follows that critical points of the energy are weak solutions of the equation

0 = m× (−∆S2m− κ(m · ν)ν) =: (∇E(m))tan .

For the second variation and setting mst := Π(m+sv+ tw) where v, w ∈ X1(S2;TmS2),
the product rule gives

δ2E(m)⟨v, w⟩ =
d2

dsdt
E(mst) =

d

ds

(
δẼ(m + sv) ⟨DΠ(m + sv)⟨w⟩⟩

) ∣∣∣
s=0

= δ2Ẽ(m)⟨DΠ(m)⟨v⟩, DΠ(m)⟨w⟩⟩ + δẼ(m)⟨D2Π(m)⟨v, w⟩⟩

= δ2Ẽ(m)⟨v, w⟩ − δẼ(m)⟨(v · w)m⟩.

=

∫
S2

∇v · ∇w − κ(v · ν)(w · ν) dσ −
∫
S2

(
|∇m|2 − κ (m · ν)2

)
(v · w) dσ.
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2.1. Function Spaces and Admissible Variations

2.1.3. Hamiltonian Framework

We now return to the Landau-Lifshitz equation (1.1). In order to give a more detailed
reasoning for the energy conservation, we will establish a triplet (P, ω,H) with H = E
such that the flow associated with the Hamiltonian H describes the solutions of (1.1).
Assuming the existence of solutions, conservation of energy then follows from a result
for infinite dimensional Hamiltonian systems.

All definitions and the theorem cited below are taken from the first lecture of a set of
notes of Marsden [36]. However, some details have been omitted.

Definition
– from [36], p. 5
A symplectic manifold is a pair (P, ω) where P is a C∞ Banach manifold and ω is a C∞

two-form on P , such that

(i) dω = 0;

and

(ii) ω is (weakly) nondegenerate: for all x ∈ P and vx ∈ TxP ,

ωx(vx, wx) = 0

for all wx ∈ TxP implies vx = 0.

Note: The exterior derivative for differential forms on Banach manifolds that was used
in (i) is defined in a similar manner as the finite dimensional one, see [30, Proposition
3.2]. However, it is often simpler to define ω via an almost complex structure J , see
[36, Remark 6].

Setting P = X0(S2;S2) from above, we define ω by

ωm(vm, wm) = ⟨vm,m× wm⟩L2(S2) for vm, wm ∈ TmP = X0(S2;TmS2).

We will omit the subscripts m whenever it is unambiguous.

The form ω is thus defined via the Riemannian metric onX0(S2;S2),

g(m)⟨vm, wm⟩ = ⟨vm, wm⟩L2(S2;Tm0S2) vm, wm ∈ X0(S2;TmS2),

and the almost complex structure J that is given by

J : TX2(S2;S2) → TX(S2;S2), Jmvm = m× vm.
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It satisfies J 2v = m× (m×v) = (m ·m)v− (m ·v)m = v. Not only does this definition
of ω imply that ω⟨v, w⟩ = g⟨v,Jw⟩ is a closed and smooth two-form on X0(S2; S2) but
it also follows that ω is weakly nondegenerate, as we shall briefly show. Given m ∈ P ,
the identity ω(v, w) = 0 for all w ∈ X0(S2;TmS2) implies

0 = ω(v,m× v) = −ω(m× v, v) = −⟨m× v,m× v⟩L2(S2;R3) = −∥m× v∥2L2(S2).

But, since m × v ∈ L2(S2;R3), it follows from ∥m × v∥L2 = 0 that m × v = 0 almost
everywhere on S2. On the other hand, (m× v)(x) = 0 implies that v(x) is a multiple of
m(x) and thus

v(x) = ((v ·m)m)(x) = 0

since v : S2 → TmS2 means that v(x) ∈ Tm(x)S2 for almost every x ∈ S2. Therefore,
(P, ω) is a weak symplectic manifold.

Definition
– from [36], p. 11
Let (P, ω) be a (weak) symplectic manifold and H : DH → R a C1 function where DH

is a manifold domain in P . We call the triple (P, ω,H) a Hamiltonian system. Set

DXH
= {x ∈ DH : ∃v ∈ TxP, dH(x)⟨w⟩ = ω(v, w) for all w ∈ TxDH}

and call XH with XH(x) = vx the Hamiltonian vector field of H.

Note: Here, a manifold domain is a subset DH ⊂ P for which the inclusion of the
tangent spaces is dense, see [36, Remark 5]. It generalizes the notion of domains to
non-linear spaces. Introducing domains allows for H to be defined on a set of functions
with higher regularity than those of the underlying manifold. In particular, Xk(S2;S2)
is a manifold domain of X0(S2;S2) for all k ≥ 1.

As announced in the introduction of the section, we choose H = E : P → R with
domain DH = X1(S2;S2). Then, given m ∈ P and w ∈ X1(S2;TmS2) = TmDH , we
have

dH(m)⟨w⟩ = ⟨(−∆m− κ(m · ν)ν), w⟩L2 = ⟨(−∆m− κ(m · ν)ν),−m× (m× w)⟩L2

= ⟨m× (∆m + κ(m · ν)ν) ,m× w⟩
= ω(Pm (∇E) , w)

and thus

XH(m) = m× (∆m + κ(m · ν)ν) .

To ensure m×(∆m + κ(m · ν)ν) ∈ TmP it would be sufficient to choose m ∈ X2(S2;S2).
Thus, X2(S2;S2) ⊂ DXH

. However, DXH
might be larger due to regularity considera-

tions.

Note: In general, given a function f : Xk(S2; S2) → R, the vector field Xf satisfying
df(x)⟨w⟩ = ω(v, w) is given by m × (−∇L2(S2;TmS2)f) whenever this L2-gradient ex-
ists.
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2.1. Function Spaces and Admissible Variations

Definition
– from [36], p. 12
Let P be a Banach manifold and D ⊂ P be a manifold domain. Let G : D → TP be a
vector field with domain D. By a semiflow for G we mean a map F : R ⊂ (D×[0,∞)) →
D where R ⊂ D × [0,∞) is open, with the following properties:

(i) F is continuous.

(ii) D × {0} ⊂ R and F (x, 0) = x for all x ∈ D.

(iii) Let t, s ≥ 0 and x ∈ D. Then

(x, t+ s) ∈ R⇔ (x, s) ∈ R and (F (x, s), t) ∈ R.

In this case, F (x, t+ s) = F (F (x, s), t).

(iv) For t ≥ 0,
d

dt
F (x, t) = G(F (x, t)).

In contrast to finite dimensional Hamiltonian systems, even local existence and unique-
ness of a semiflow for a vectorfield are not guaranteed. However, if the flow for G = XH

exists on a set R ⊂ DDH
, then for m0 ∈ R, setting m(t) = F (m0, t) gives a solution to

the equations {
d
dtm(t) = XH(m(t)) = m× (∆m + κ(m · ν)ν)

m(0) = m0.

Conservation of the energy follows from the following theorem withK = H.

Theorem
– from [36], p. 12
Let (P, ω,H) be a Hamiltonian system and let K : DK → R be a C1 function. Assume:

(i) XH has a semiflow F .

(ii) DXH
⊂ P is a manifold domain.

(iii) DXK
⊃ DXH

and XK : DXH
→ TP is continuous. Then, for each x0 ∈ DXH

and
t > 0, (x0, t) ∈ R,

d

dt
K(F (x0, t)) = {K,H}(F (x0, t))

where the derivative is from the right for t = 0.

Note: The induced Poisson bracket is defined via the symplectic form by

{f, g}(x) = ωx(Xf (x), Xg(x))
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for functions f, g : P → R. If the L2(S2;TmS2)-gradients of f, g exist and are given by
∇L2f and ∇L2g, respectively, then the poisson bracket takes the form

{f, g}(m) = ωm(Xf (m), Xg(m)) = ⟨m×∇L2f,m× (m×∇L2g)⟩L2 = ωm(∇L2f,∇L2g).

For K = H, it immediately follows from the alternating property of two-forms that
ωm(XH , XH) = 0. Furthermore, given x ∈ S2, the function Kx : X2(S2; S2) → R with
Kx(m) = |m(x)|2 is well defined due to the embedding H2(S2;R3) ↪→ C0(S2;S2). It
satisfies

dKx(m)⟨v⟩ = 2m(x) · v(x) = 0

for all v ∈ X2(S2;TmS2) and therefore XKx = 0. Hence, {Kx, H} = 0 for every x ∈ S2
and |m| is pointwisely conserved by the flow of XH .

2.2. Symmetry

In this section, we take a closer look at the invariance of the energy under joint rotations
and inversions and at the corresponding symmetries. Since Emmi Noether famously dis-
covered a connection between one-parameter symmetries and invariants of a system [42],
researchers have been interested in finding solutions that display as many symmetries
as the system they solve. On the other hand, symmetry can also reduce equations to
more accessible ones, allowing for better results than in the general case. In particular,
radial solutions exploiting the invariance of ∥∇m∥2L2 under rotations on either domain
or target space gave rise to many discoveries for wave maps , see e.g. [51]. On the other
hand, this symmetry is broken in many Skyrmion models, for example due to chiral
terms like DMI [17, 32] or, in the present case, anisotropy on a curved surface. In this
scenario, individual rotational symmetry is reduced to equivariance under the operation
of a rotation group.

Definition
– see [54], p. 4
Let X,Y be sets and G a group acting on X,Y . A map f : X → Y is called G-equivariant
if f commutes with the action of G i.e. f(g.x) = g.f(x) for all x ∈ X, g ∈ G.

In mathematical physics, G is usually chosen to be a suitable rotation group in matrix
representation acting on X and Y via simple multiplication. In contrast, the term k-
equivariance is used when the action of X is simple multiplication while the action of
G on Y is multiplication by gk:

g.x = Rgx and g.y = Rkgy.
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2.2.1. Symmetry for Curvature Stabilized Skyrmions

The energy functional for curvature stabilized Skyrmions is not invariant under indi-
vidual rotations of the domain or target sphere. This is due to the anisotropy term
(1 − (m · ν)2), which relates m(x) to the outer unit normal ν(x). However, ν satis-
fies ν(Rx) = Rν(x) such that the anisotropy term is invariant under joint rotations
m 7→ mR where

mR(x) = R−1m(Rx).

Maps that are invariant under all joint rotations R ∈ G ⊂ SO(3) are exactly the
G-equivariant maps. For G = SO(3), this is a very small class containing only the
hedgehog h(x) ≡ x and −h. If κ ≥ 4, this is the ground state [11] with topological
degree Q(±h) = ±1. In the search for nontrivial energy minimizers with Q(m) = 0, we
therefore have to choose a suitable subgroup of SO(3), for example by restricting the
invariance of maps to rotations around a fixed axis ê. This corresponds to G = SO(3)ê,
the stabilizer subgroup of SO(3) with respect to ê3. We will use the term ê-equivariant
for SO(3)ê-equivariant maps and drop the specification of the axis for ê = ê3. Most of
the following properties hold for maps that are ê-equivariant almost everywhere on S2
and all other cases will be specifically marked.

We observe some properties of ê3-equivariant maps.

Lemma 2.3. For ê ∈ S2, let m : S2 → S2 be ê-equivariant. Then the following state-
ments hold true:

(1) For Q ∈ O(3), mQ is (Q−1ê)-equivariant.

(2) For u : S2 → S2, we have

⟨m, uR⟩L2(S2) = ⟨m, u⟩L2(S2) for all R ∈ SO(3)ê.

(3) If mR(±ê) = m(±ê) for all R ∈ SO(3)ê then m(ê) = ±ê and m(−ê) = ±ê.

Proof. (1) For R ∈ SO(3)Q−1ê it holds that

QRQ−1ê = Q
(
R
(
Q−1ê

))
= QQ−1ê = ê

and therefore QRQ−1 ∈ SO(3)ê. But then

(mQ)R = R−1Q−1m(QRx)

= Q−1
(
QR−1Q−1

)
m((QRQ−1)Qx) =

(
mQRQ−1

)
Q

= mQ.

(2) Orthogonality of R and detR = 1 imply ⟨a, bR⟩ = ⟨aR−1 , b⟩ and the statement
follows by the equivariance of m.
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(3) For R ∈ SO(3)ê it holds that m(ê) = mR(ê) = R−1m(ê). Therefore SO(3)ê ⊂
SO(3)m(ê). But since the two groups are isomorphic, the inclusion implies equality
which only holds for m(ê) = ±ê.

Furthermore, in the special case of ê = ê3 we have the following representation of
equivariant maps in spherical coordinates Ψ: (0, π) × (0, 2π) → S2 \ {x1 ≥ 0, x2 = 0}
on the domain sphere.

Lemma 2.4. Consider a continuous map m : S2 → S2. m is equivariant iff

m(Ψ(x, φ)) =

sin θ(x) cos(χ(x) + φ)
sin θ(x) cos(χ(x) + φ)

cos θ(x)


for some functions θ, χ : (0, π) → R.

Proof. In spherical coordinates on the domain and target sphere, any map can be ex-
pressed as

m(Ψ(x, φ)) = Ψ(θ(x, φ), χ(x, φ)) =

sin θ(x, φ) cos(χ(x, φ))
sin θ(x, φ) sin(χ(x, φ))

cos θ(x, φ)


for x ∈ (0, π), φ ∈ [0, 2π) and m(Ψ(x, φ)) ∈ S2 \ {ê3}. A more detailed discussion of
this representation can be found in A.1.

Consider a rotation around ê3 by the angle α, i.e.

Rα =

cosα − sinα 0
sinα cosα 0

0 0 1

 = R−1
−α.

Then R(Ψ(x, φ)) = Ψ(x, φ+α) if Ψ is 2π-periodically extended in the second component.
Therefore,

Rαm(R−αΨ(x, φ)) = Rαm(Ψ(x, φ− α))

=

sin θ(x, φ− α) cos(χ(x, φ− α) + α)
sin θ(x, φ− α) sin(χ(x, φ− α) + α)

cos θ(x, φ− α)


while

m(Ψ(x, φ)) =

sin θ(x, φ) cosχ(x, φ)
sin θ(x, φ) sinχ(x, φ)

cos θ(x, φ)

 .
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First, consider the third component:

(mR)3 = (m)3 iff θ(x, φ− α) = θ(x, φ)

for all x ∈ (0, π) and α ∈ R. Thus, θ must be independent of φ for m to be equivariant.
On the other hand, comparing the first two components, one can conclude that m is
equivariant iff χ(x, φ) − χ(x, φ − α) = α + 2πk for some k ∈ Z and all x ∈ (0, π). For
small α, we may assume k = 0 and by taking the limit

lim
α↘0

χ(x, φ) − χ(x, φ− α)

α
= 1

we conclude that χ grows linearly in φ, independently of x. Therefore, χ(x, φ) = χ̃(x)+φ
for some function χ̃ : (0, π) → R which in the following we will again denote by χ.

On the other hand, the hedgehog in spherical coordinates is given by

m(Ψ(x, φ)) =

sinx cosφ
sinx sinφ

cosx


and is therefore equivariant with θ(x) = x, χ(x) ≡ 0. Interested in as much symmetry as
possible, we will investigate equivariant maps with χ(x) = 0, leaving θ to be varied. In
fact, these are exactly the O(3)ê3-equivariant maps, i.e. those that are invariant under
joint rotations and joint reflections leaving ê3 unchanged. While the invariance has
been observed in [16], we are not aware of a proof of the characterization and provide
it here.

Lemma 2.5. Consider a continuous map m : S2 → S2. m is O(3)ê3-equivariant iff

m(Ψ(x, φ)) =

sin θ(x) cos(φ)
sin θ(x) sin(φ)

cos θ


for a function θ : (0, π) → R.

Due to this characterization in terms of the ê3-axis, we will refer to equivariant maps
with χ = 0 as axisymmetric maps.

Proof. Starting from the previous characterization of equivariant maps, we need to show
that the additional invariance under joint reflections implies the existence of a function
θ such that χ(x) = 0. For this purpose, we additionally consider the reflection at the
ê1-ê3-plane, i.e.

F2 =

1 0 0
0 −1 0
0 0 1


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with F ê3 = ê3. Then, again extending Ψ periodically in the second component,

F2Ψ(x, φ) =

 sinx cosφ
− sinx sinφ

cosx

 =

sinx cos(−φ)
sinx sin(−φ)

cosx

 = Ψ(x,−φ)

such that

F2m(F−1
2 Ψ(x, φ)) = F2m(Ψ(x,−φ))

=

 sin θ(x) cos(χ(x) − φ)
− sin θ(x) sin(χ(x) − φ)

cos θ(x)


=

sin θ(x) cos(−χ(x) + φ)
sin θ(x) sin(−χ(x) + φ)

cos θ(x)

 .

Again, it follows from comparison with m(x, φ) in the first and second component that
χ(x)+φ = −χ(x)+φ+2πk and therefore χ(x) = πk for some k ∈ Z. If k is even, χ can
be dropped due to the periodicity of the trigonometric functions. For odd k, we have

m(Ψ(x, φ)) =

sin θ(x) cos(φ+ kπ)
sin θ(x) sin(φ+ kπ)

cos θ(x)

 =

− sin θ(x) cosφ
− sin θ(x) sinφ

cos θ(x)

 =

sin(−θ(x)) cosφ
sin(−θ(x)) sinφ

cos(−θ(x))


which also is of the proposed form.

To confirm invariance for all elements of O(3)ê3 , note that any O ∈ O(3)ê3 is either a
rotation or can be decomposed into a rotation R ∈ SO(3)ê3 applied to F2: If det(O) = 1
then O = R ∈ SO(3)ê3 . If det(O) = −1 then O = (OF2)F2 where R = OF2 ∈ SO(3)ê3 .
In this decomposition, we have

mO = m(RF2) = (mF2)R = mR = m.

2.2.2. The Energy Functional for Axisymmetric Maps

We will now further investigate the relevant functionals for equivariant and axisymmetric
maps. In spherical coordinates, we have

|∇m| =

(
d

dx
m(Ψ(x, φ))

)2

+
1

sin2 x

(
d

dφ
m(Ψ(x, φ)

)

=

∣∣∣∣∣∣θ′
cos θ cos (χ+ φ)

cos θ sin (χ+ φ)
− sin θ

+ χ′

− sin θ sin(χ+ φ)
sin θ cos(χ+ φ)

0

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
− sin θ sin(χ+ φ)

sin θ cos(χ+ φ)
0

∣∣∣∣∣∣
2

= (θ′)2 + (χ′)2 sin2 θ +
sin2 θ

sin2 x
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2.2. Symmetry

and

1 − (m · ν)2 = 1 − (sin θ sinx (cos(χ+ φ) cosφ+ sin(χ+ φ) sinφ) + cos θ cosx)2

= 1 − (cos(θ − x) + sin θ sinx (cosχ− 1))2

= sin2(θ − x) − 2 cos(θ − x) sin θ sinx (cosχ− 1) − sin2 θ sin2 x (cosχ− 1)2 .

Thus, the energy is reduced to

E(m) = 2π

π∫
0

(
(θ′)2 + (χ′)2

)
sinx+

sin2 θ

sinx
+ κ
(

sin2(θ − x)

+2 cos(θ − x) sin θ sinx(1 − cosχ) − sin2 θ sin2 x (1 − cosχ)2
)

sinx dx

and in particular, for axisymmetric m,

E(m) = 2π

π∫
0

(θ′)2 sinx+
sin2 θ

sinx
+ κ sin2(θ − x) sinx dx =: 2πE(θ).

For the topological degree Q, we compute the pullback m∗ωS2 = ω(m) dx1 ∧ dx2 in
spherical coordinates x1 = x ∈ (0, π), x2 = φ ∈ (0, 2π), and x = Ψ(x1, x2) ∈ S2. Note
that they are orientation preserving due to

det(D(π− ◦ Ψ)) =
sinx

(1 + cosx)2
,

where sinx > 0 for x ∈ (0, π). Starting out with the vector product, we have

∂m

∂x
× ∂m

∂φ

=

θ′
cos θ cos(χ+ φ)

cos θ sin(χ+ φ)
− sin θ

+ χ′

− sin θ sin(χ+ φ)
sin θ cos(χ+ φ)

0

×

− sin θ cos(χ+ φ)
sin θ sin(χ+ φ)

0


= (θ′ sin θ)m.

Therefore, the topological charge for equivariant fields is given by

Q(m) =
1

4π

∫
S2

m∗ωS2

=
1

4π

2π∫
0

π∫
0

m ·
(
∂m

∂x
× ∂m

∂φ

)
dx dφ

=
1

2

π∫
0

θ′ sin θ dx =
1

2
(cos(θ(0)) − cos(θ(π)) .

23
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Recall that equivariance implies m(±ê3) ∈ {ê3,−ê3}, and therefore Q(m) ∈ {−1, 0, 1}.
For higher degrees, k-equivariant fields would have to be considered.

The group SO(3)ê3 is a compact Lie group as a subgroup of SO(3). It acts on X1(S2;S2)
via the operation m 7→ mR and E : X1 → R is SO(3)ê3 - invariant. By the principle
of symmetric criticality [44], critical points of E within the set of equivariant maps
are critical for E . Thus, we now express the terms in the Euler-Lagrange equations
for equivariant fields in spherical coordinates to obtain equations that are solved by
minimizers within the set of axisymmetric fields. Note that minimality is not covered
by Palais’ principle.

∆m×m =

(
θ′′ sinx+ θ′ cosx

sinx
+

sin(2θ)

2 sinx

(
(χ′)2 − 1

sinx

)) sin(χ+ φ)
− cos(χ+ φ)

0


+

(
sin θ

χ′ cosx+ χ′′ sinx

sinx
+ 2θ′χ′ cos θ

)cos θ cos(χ+ φ)
cos θ sin(χ+ φ)

− sin θ


(m · ν)ν ×m = (sin θ sinx cosχ+ cos θ cosx) ν ×m

= (sin θ sinx cosχ+ cos θ cosx) (cos θ sinx cosχ− sin θ cosx)

 sin(χ+ φ)
− cos(χ+ φ)

0


+ (sin θ sinx cosχ+ cos θ cosx) (− sinx sinχ)

cos θ cos(χ+ φ)
cos θ sin(χ+ φ)

− sin θ

 .

Combining these two terms, the equation 0 = m× (∆m + κ(m · ν)ν) is reduced to two
coupled ordinary differential equations for θ and χ.

sin θ

sinx

(
χ′ cosx+ χ′′ sinx

)
+

1

sinx

(
2θ′χ′ cos θ

)
(2.1)

= κ (sin θ sinx cosχ+ cos θ cosx) sinx sinχ

θ′′ sinx+ θ′ cosx+ sin(2θ)
(χ′)2

2
− sin(2θ)

2 sinx
(2.2)

= κ (sin θ sinx cosχ+ cos θ cosx) sinx (cos θ sinx cosχ− sin θ cosx)

In particular, for axisymmetric solutions with χ ≡ 0, the profile θ solves the equa-
tion

sinxθ′′ + cosxθ′ =
sin(2θ)

2 sinx
+ κ sin(2θ − 2x) sinx. (2.3)

Note that for constant χ, the left-hand side of the first equation vanishes. If sinχ ̸= 0
i.e. χ ̸∈ {0, π}, the reappearance of the right-hand side of (2.1) in the right-hand side

of (2.2) implies that θ has to solve (sinxθ′)′ = sin(2θ)
2 sinx , independently of κ. This is the

Euler-Lagrange equation for axisymmetric critical points of∫
S2

|∇m|2 dσ
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2.2. Symmetry

The equivariant m with profile θ and azimuthal shift χ would thus solve the harmonic
map equation. However, that is not what we’re interested in.

In the following, we will restrict our analysis to χ ∈ {0, π}, i.e. axisymmetric fields, and
the corresponding functionals. Recall that the change χ = 0 to χ = π corresponds to the
change θ 7→ −θ on the level of profiles. Apart from the considerations about harmonic
maps, the restriction to axisymmetric fields is further justified by the fact that for any
given profile θ, the angles χ ≡ 0 and χ ≡ π are critical among all χ for which the
expressions are defined. To see this set mt := (sin θ cos((χ+ tϕ)+φ), sin θ sin((χ+ tϕ)+
φ), cos θ)T for a test function ϕ ∈ C∞

0 (0, π). Then,

d

dt
E(mt)|t=0 = 2π

π∫
0

ϕ′χ′ sinx

+ κ
(
2 cos(θ − x) sin θ sinx sinχ− 2 sin2 θ sin2 x sinχ(1 − cosχ)

)
ϕ dx

which vanishes for χ ≡ 0 and χ ≡ π due to the sinχ-terms. Note that the anisotropy
term is sin2(θ − x) for χ ≡ 0 and sin2(θ + x) for χ ≡ π which corresponds to the shift
from θ to −θ that we have seen in the proof of lemma 2.5.

2.2.3. Analysis of the Energy Density

Recall that in the planar case, Dzyaloshinski-Moriya interaction (DMI) in combination
with a potential term stabilizes Skyrmions u : R2 → S2 against the scaling invariance of
∥∇u∥2L2 . It is given by ∫

R2

u · (∇× u) dx.

In the case of the sphere, it has been observed in [26] and [37] that the stabilizing
effect of curvature can be traced to a so-called curvature-induced DMI. By expressing
m in curvilinear coordinates (ν, êθ, êφ) on the sphere [26] or curvilinear stereographic
coordinates (τ1, τ2, ν) on R2 [37], a DMI-term emerges from the exchange energy. Both
these observations require extensive calculations. Under the assumption of symmetry,
however, the curvilinear coordinates are simply induced by considering the difference
profile Θ := θ − x:sin θ cosφ

sin θ sinφ
cos θ

 =

sin Θ cosx cosφ
sin Θ cosx sinφ
− sin Θ sinx

+

cos Θ sinx cosφ
cos Θ sinx sinφ

cos Θ cosx

 = sin Θê1 + cos Θên

in the notation of [26]. The energy, expressed in terms of Θ, is given by

E(θ) =

π∫
0

(Θ′)2 sinx+ 2Θ′ sinx+ sinx+
sin2 Θ cos2 x

sinx
+

sin(2Θ) cosx

sinx
+ cos2 Θ sinx

+ κ sin2(Θ) sinx dx.
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2. Preliminary Considerations

On R2, the properties of axisymmetric Skyrmions have been investigated in [32] for an
energy functional involving exchange energy, DMI and easy-axis anisotropy with a large
anisotropy parameter h. For axisymmetric Skyrmions, this results in

E[32](θ) = 2π

∞∫
0

(
(θ′)2

2
+

sin2 θ

2r2
+ θ′ +

sin θ cos θ

r
+ h(1 − cos θ)

)
r dr.

This can be compared with the case on the sphere by considering the pullback of
m : S2 → S2 via the inverse stereographic projection. On the level of profiles, this
corresponds to setting

θp : (0,∞) → R, θp(r) = Θ(2 arctan(r))

when identifying −ê3 with ∞. For the projection from ê+, π+, the same would be
achieved by Θ(2 arctan(1r )). Thus, using the identities sin(2 arctan(r)) = 2r

1+r2
and

cos(2 arctan(r)) = 1−r2
1+r2

, the energy of θ, expressed via θp, is given by

E(θ) =

∞∫
0

(
(θ′p)

2 (1 + r2)2

4

2r

1 + r2
+ 2θ′p

1 + r2

2

2r

1 + r2
+ sin2 θp

(1 − r2)2

(1 + r2)2
1 + r2

2r

+ sin(2θp)
1 − r2

1 + r2
+ (1 + cos2 θp + κ sin2 θp)

2r

1 + r2

)
2

1 + r2
dr

=

∞∫
0

(
(θ′p)

2 + 2θ′p
2

1 + r2
+

sin2 θp
r2

1 − 4r2 + r4

1 + 4r2 + r4

+
sin(2θp)

r

1 − r2

1 + 2r2 + r4
+ (2 + (κ− 1) sin2 θp)

4

(1 + r2)2

)
r dr

= 2

∞∫
0

(
(θ′p)

2

2
+ θ′p +

sin2 θp
2r2

+
sin(2θp)

2r
+ 4(κ− 1) sin2 θp

)
r dr

+

∞∫
0

θ′p
(1 − r2)r

1 + r2
− 8r sin2 θp

1 + 4r2 + r4
− sin(2θp)

3r3 + r4

1 + 2r + r4

+
8r − (8r2 + 4r4) sin2 θp

(1 + r2)2
dr.

Up to the change in the potential from a Zeeman term to anisotropy, the first integral
reproduces the energy for axisymmetric chiral Skyrmions on R2. The integrand of the
second integral converges to 0 as r → 0 where, in the planar case, the Skyrmion forms.
For large r, on the other hand, the expansion is not meaningful because the second
integral yields a significant contribution to the energy.

On the sphere, chapter two will reveal that the Skyrmion in the axisymmetric case may
form at either of the poles. The computations above have shown that similarities to the
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2.2. Symmetry

planar case are to be expected if the Skyrmion forms at the north pole ê3 with θ(ê3) =
θp(0). For a Skyrmion at −ê3, one may choose the stereographic projection accordingly
and the same expansion of the energy is achieved for

θ̃p = Θ

(
2 arctan

(
1

r

))
,

thus allowing the comparison of Skyrmions at the south pole.

In preparation for Chapter 2 on axisymmetric minimizers, we end this section with a
detailed analysis of the terms in the reduced energy for axisymmetric fields. For that
purpose, let

eI(θ, x) = (θ′(x))2 sinx and eII(θ, x) =
sin2 θ(x)

sinx
+ κ sin2(θ(x) − x) sinx

as well as

EI(θ) =

π∫
0

eI(θ, x) dx and EII(θ, x) =

π∫
0

eII(θ) dx.

Furthermore, given 0 ≤ a < b ≤ π, we define

E[a,b](θ) =

b∫
a

eI(θ, x) + eII(θ, x) dx.

This choice of grouping terms seems to be non-intuitive because∫
S2

|∇mθ|2 dσ = 2π

π∫
0

(θ′)2 sinx+
sin2 θ

sinx
dx,

which is split among eI and eII . However, on the level of profiles, minimality has
different effects on the two terms stemming from |∇mθ|2.

The first part of the energy, eI , is obviously minimized by constant profiles. However, it
is not relevant whether this constant is π, π2 , or any other value.

For eII , on the other hand, the pointwise value of θ is relevant. The energy density is
a superposition of the trigonometric terms sin2 θ and sin2(θ − x), weighted by 1/ sinx
and κ sinx. For very small x, namely x < arcsin( 1

κ)2, minimizing the first term by
having θ close to 0 or π therefore has a larger effect on minimizing eII then minimizing
the second term which enforces θ(x) to be close to x. For energy arguments, it will be
helpful to find the balance and to know the pointwise optimal value of θ with respect
to eII .

For any x ∈ (0, π), the value of θ is critical with respect to eII if

d

dδ
eII(θ + δ, x)|δ=0 =

sin(2θ)

2 sinx
+
κ

2
sin(2θ − 2x) sinx = 0.
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In order to solve this equation for θ when x is fixed, define dκ : (0, π) → R by

dκ(x) =

{
0 x = π

2
1
2 arccot

(
κ
2 tanx+ cot(2x)

)
otherwise

where arccot : R → (−π
2 ,

π
2 ) is chosen to be discontinuous at 0.

Figure 2.1.: Plots of dκ over [0, π] for different values of κ and compared to π
8 .

Lemma 2.6 (Properties of dκ). The function dκ : (0, π) → R given as above has the
following properties:

(1) For every κ > 0, dκ is well-defined and continuous.

(2) For every n ∈ N and every x ∈ (0, π), the value θ(x) = x+ nπ
2 − dκ(x) is a critical

point of y 7→ eII(y, x).

(3) κ 7→ dκ(x) is strictly monotonously increasing on (0, π2 ) and strictly monotonously
decreasing on (π2 , π). Moreover, limκ→∞ dκ(x) = 0 for all x ∈ (0, π).

(4) Let κ > 2. Then, dκ
(
(0, π2 )

)
⊂ (0, π8 ) and dκ

(
(π2 , π)

)
⊂ (−π

8 , 0).

(5) Define

η(x) := x+
π

2
− dκ(x) and ξ(x) := x− dκ(x).

Then for every n ∈ Z and x ∈ (0, π), the density eII(θ, x) is pointwise maximal if
θ(x) = η(x) + πn and minimal if θ(x) = ξ(x) + πn. The energy density is strictly
monotonous in θ between these extrema.

(6) eII is symmetric around x− dκ + nπ
2 for every n ∈ Z.
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The pointwise analysis of eII directly implies the following functional statement for
EII :

Corollary 2.2. For every n ∈ N, the continuous function id +nπ
2 −dκ is a critical point

of EII .

Moreover, the functions η and ξ as defined above are a maximizing and minimizing
function of EII , respectively.

Proof. Recall that by arccot, we refer to the discontinuous function which satisfies
arccot(−∞) = arccot(∞) = 0.

(1) On (0, π2 ) and (π2 , π), dκ is continuous as a combination of continuous functions
due to the choice of arccot. For continuity in x = π

2 , note that

lim
x↗π

2

κ

2
tan(x) + cot(2x) = ∞ and lim

x↘π
2

κ

2
tan(x) + cot(2x) = −∞

with limy→∞ arccot(y) = limy→−∞ arccot(y) = 0 = dκ(π2 ) for this choice of arccot.

(2) For θ(x) = x+ nπ
2 − dκ(x), trigonometric identities give

cot(2θ) = cot(2x+ nπ − 2dκ(x)) = cot(2x− 2dκ(x))

=
cot(2x) cot(2dκ(x)) + 1

cot(2dκ(x)) − cot(2x)

=
cot(2x)

(
κ
2 tan(x) + cot(2x)

)
κ
2 tan(x)

+
1

κ
2 tan(x)

= cot(2x) +
2

κ

cosx

sinx

(
cot2(2x) + 1

)
= cot(2x) +

1

κ

1

sin2 x sin(2x)
.

Next, multiplication by κ sin(2x) sinx and sin(2θ) give

κ sinx (cos(2θ) sin(2x) − sin(2θ) cos(2x)) =
sin(2θ)

sinx
,

and therefore d
dδeII(θ + δ, x)|δ=0 = 0.

(3) Fix x ∈ (0, π) \ {π2 }. As a function in κ, dκ(x) is differentiable with derivative

d

dκ
dκ(x) =

tan(x)

4

−1

1 +
(
κ
2 tan(x) + cot(2x)

)2 .
This expression has the opposite signum of tanx and is therefore negative for
x < π

2 and positive for x > π
2 .
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For the asymptotic behavior as κ→ ∞, recall the asymptotic behavior of cot. For
x = π

2 , we have dκ(x) = 0 for all κ. Otherwise, the factor tan(x) is non-zero and
limκ→∞

∣∣κ
2 tanx+ cot(2x)

∣∣ = ∞.

(4) Due to the monotonicity of dκ in κ and symmetry of the trigonometric functions,
it suffices to prove the lower bound for κ = 2 and x ∈ (0, π2 ) and the upper bound
of 0 for x ∈ (0, π2 ). Figure 2.1 depicts the graphs of dκ for different κ and is topped
by an auxiliary line at π

8 .

Both bounds are visible in the plot but also easily shown analytically. For the
maximum of d2 on (0, π2 ), consider the derivative with respect to x,

d

dx
d2(x) =

1

2

−2 cos(2x)

sin(2x)

−1

1 +
(

1
sin(2x)

)2 =
cos(2x)

(sin(2x))2 + 1
.

The only root of this in (0, π2 ) is x = π
4 and d2(

π
4 ) = 1

2 arccot(1) = π
8 . On (π2 , π),

the only root is x = 3π
4 with d2(

3π
4 ) = 1

2 arccot(−1) = −π
8 .

For the lower bound, trigonometric identities imply

κ

2
tanx+ cot(2x) =

κ− 1

2
tanx+

1

2
cotx ≥ 1

2
(tanx+ cotx)

=
1

2 sinx cosx
=

1

sin(2x)
> 0

since κ ≥ 2 and tanx, sin(2x) > 0 for x ∈ (0, π2 ). Since arccot is positive on (0,∞),

dκ =
1

2
arccot

(κ
2

tanx+ cot(2x)
)
> 0 for all x ∈

(
0,
π

2

)
.

On (π2 , π), both tanx and sin(2x) are negative, resulting in the opposite inequality
and negativity of dκ(x).

(5) Consider the second derivative of eII with respect to θ,

cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx.

This can be rewritten as

cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

= cos(2θ − 2x)

(
cos(2x)

sinx
+ κ sinx

)
− sin(2θ − 2x) sin(2x)

sinx

= cos(2θ − 2x)

(
cos2 x+ (κ− 1) sin2 x

sinx

)
− 2 sin(2θ − 2x) cosx.

For κ > 2, the expression in parentheses is always larger than 1
sinx > 0.
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2.2. Symmetry

If x ∈ (0, π2 ) and θ(x) − x ∈ (π4 ,
π
2 ) then cos(2(θ − x)) < 0, sin(2(θ − x)) cosx > 0

and the whole expression is negative. Similarly, it is negative if x ∈ (π2 , π) and
θ− x ∈ (π2 ,

3π
4 ). By (4), this is true for η(x)− dκ(x) < θ(x) < η(x) + dκ(x) and in

particular for θ(x) = η(x).

On the other hand, the whole expression is positive for x ∈ (0, π2 ) if θ−x ∈ (−π
4 , 0)

and for x ∈ (π2 , π) if θ− x ∈ (0, π4 ). By (4), this is true for θ between ξ(x) + dκ(x)
and ξ(x) − dκ(x) and in particular for θ(x) = ξ(x).

(6) This follows from the criticality of eII at these points. By periodicity, the argument
is the same in both cases and we will proceed to show eII(η + δ) = eII(η − δ) for
δ > 0.

eII(η(x) + δ) − eII(η(x)) =

δ∫
0

d

dt
eII(η(x) + t) dt

=

δ∫
0

sin(2η(x) + 2t)

sinx
+ κ sin(2η(x) − 2x+ 2t) dt

=

δ∫
0

cos(−2t)

(
sin(2η(x))

sinx
+ κ sin(2η − 2x) sinx

)

+ sin(2t)

(
cos(2η)

sinx
+ κ cos(2η − 2x) sinx

)
dt

(a)
= −

δ∫
0

cos(−2t)

(
sin(2η(x))

sinx
+ κ sin(2η − 2x) sinx

)

+ sin(−2t)

(
cos(2η)

sinx
+ κ cos(2η − 2x) sinx

)
dt

=

δ∫
0

d

dt
eII(η(x) + t) dt = eII(η(x) − δ) − eII(η(x))

Note that cos(2t) ̸= − cos(2t) in (a) is irrelevant because the expression in paren-
thesis identically vanishes identically.
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3. Symmetric Minimizers

In this chapter, we consider the minimization problem

E(m) → min for {m ∈ H1(S2;S2) : Q(m) = 0, m axisymmetric}.

Since the energy and the topological degree are invariant under joint rotations and
reflections, fixing the symmetry axis to be ê3 was only a matter of convenience because
axisymmetric fields can be then expressed as

m = mθ =

sin θ cosφ
sin θ sinφ

cos θ


with a profile θ fulfilling θ(0) = π, θ(π) = (2k + 1)π for some k ∈ Z. More details
are given in the introduction, section 2.2. However, changing the symmetry axis would
result in an equivalent problem.

For axisymmetric fields, the energy can be rewritten as

E(mθ) = 2πE(θ) = 2π

π∫
0

(θ′)2 sinx+
sin2 θ

sinx
+ κ sin2(θ − x) sinx dx.

The Euler-Lagrange equation takes the special form of

0 = mθ ×∇E(mθ) = f(θ)

− sinφ
cosφ

0


where

f(θ) = −θ′′ − θ′
cosx

sinx
+

sin(2θ)

2 sin2 x
+
κ

2
sin(2θ − 2x).

The chapter is divided into two parts. First, we prove existence of symmetric min-
imizers and discuss their non-uniqueness due to further invariances of E . We then
derive several properties of minimizing profiles which will be useful in the next chap-
ters.
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3. Symmetric Minimizers

3.1. Existence, Regularity, and Non-Uniqueness

3.1.1. Existence

While the Euler-Lagrange equation of the reduced energy E, equation (2.3), is irregular
at both 0 and π, making a boundary value problem hard to solve, the existence of
symmetric minimizers for the functional E in the case κ > 0 is easily proven via the
direct method of the calculus of variations.

Theorem 1. For κ > 0, the minimum of E in

{m ∈ H1(S2;S2) : Q(m) = 0, m axisymmetric}

is attained.

Note: For κ = 0, constant fields are energy minimizing with zero energy. Thus, the
global energy minimum is attained in the topological sector of Q = 0. For κ > 0, on
the other hand, constant fields are not even critical points anymore and for κ > 4, the
ground state satisfies Q = 1 [10]. Therefore, while Theorem 1 holds for all κ > 0, we
are mostly interested in the case κ > 4.

Proof of Theorem 1. We apply the direct method of the calculus of variations exactly
as in [37] and add an extra argument to ensure that axial symmetry is preserved for the
minimizer.

The energy is bounded from below by 0 and the set

C = {m ∈ H1(S2; S2) : Q(m) = 0, m axisymmetric}

is non-empty due to m ≡ ê ∈ C.

Let (mk)k∈N be a minimizing sequence in C. Then ∥mk∥2H1(S2;R3) ≤ E(mk) + 4π so the

sequence is uniformly bounded in H1(S2;R3). Passing to a subsequence, we have weak
H1(S2;R3) convergence mk ⇀m for some m ∈ H1 with mk → m ∈ L2(S2;R3) strongly
and |m(x)| = limk→∞ |mk(x)| = 1 due to pointwise convergence almost everywhere.
Hence, m ∈ H1(S2; S2).

The energy is composed of a norm and the integral over a polynomial in m which
is nonnegative due to (m · ν)2 ≤ 1. Thus, pointwise convergence of (mk)k∈N almost
everywhere and the lemma of Fatou imply∫

S2

1 − (m · ν)2 dσ ≤ lim inf
k→∞

∫
S2

1 − (mk · ν)2 dσ
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3.1. Existence, Regularity, and Non-Uniqueness

and in total we find E(m) ≤ lim infk→∞ E(mk) because norms are weakly lower semi-
continuous.

To prove axisymmetry of m, recall that it is characterized by invariance under joint
rotations and joint reflections. Due to the pointwise convergence almost everywhere, we
find

R−1m(Rx)e = lim
k→∞

R−1mk(Rx) = lim
k→∞

mk(x) = m(x) a.e. and for R ∈ O(3)ê3 .

Since critical points are smooth (see Theorem 2 below), these identities extend to all
x ∈ S2 and m is axisymmetric. It follows that the class of axisymmetric functions is
weakly closed.

Finally, in order to study the topological degree, consider the topological density mea-
sure

ω(m) = m̃ · (∂1m̃× ∂2m̃) dx1 dx2

where, once more, m̃ = m ◦ π : R2 → S2. Due to [3, Theorem E1], boundedness of
∥∇mk∥2L2 and pointwise convergence almost everywhere imply that there exist integers
q1, . . . , qp ∈ Z and points x1, . . . xp ∈ R2 such that

ω(mk) → ω(m) + 4π

N∑
i=1

qiδxi

weakly in the sense of measures. This implies 0 = limk→∞Q(mk) = Q(m) +
∑N

i=1 qi.
Combining this with [35, Lemma 4.3], we find that

lim inf
k→∞

∫
S2

|∇mk|2 dσ ≥
∫
S2

|∇m|2 dσ + 4π
N∑
i=1

|qi|.

Due to the upper bound in [37], lim infk→∞
∫
S2 |∇mk|2 dσ ≤ lim infk→∞E(mk) < 8π

and N may be at most 1 with |q1| = 1. But even then Q(m) = ±1 and E(m) ≥
∥∇m∥2L2 ≥ 4π due to the topological lower bound.Then,

8π > lim inf
k→∞

E(mk) ≥ lim inf
k→∞

∥∇mk∥2L2 ≥ ∥∇m∥2L2 + 4π ≥ 8π,

a contradiction.

Note: If the direct method was applied on the level of profiles θ : [0, π] → R with
fixed boundary values, axisymmetry would automatically be preserved and conserva-
tion of Q would simply depend on the conservation of boundary values. However, the
reduced energy E does not provide a bound for ∥θk∥H1(0,π) due to the trigonometric
terms.
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3. Symmetric Minimizers

3.1.2. Regularity

Proving regularity of critical points again follows standard methods for harmonic maps,
see e.g. [20] or[40]. The details are given below.

Theorem 2. Let m be a critical point of E. Then m is smooth.

Proof. We show smoothness of m̃ := m ◦ π−1
± where π± is the stereographic projection

mapping ±ê3 to ∞. If not specified otherwise, all norms are between R2 and R3. For
convenience, write m = m̃.

The field m solves the equation

−∆m = Ω(m) : ∇m + f(m)

where

Ω(m) = m⊗∇m−∇m⊗m

f(m) =
4κ

(1 + |x|2)2
m× ((m · ν)ν ×m) .

Due to the special form of Ω, we have

|Ω|2 ≤ 2|∇m|2

and

div Ωij = mi∆mj −mj∆mi

= mif(m)j −mjf(m)i + mi(Ω(m) : ∇m)j −mj (Ω(m) : ∇m)i

= (m⊗ f − f ⊗m)ij

so that

∥div Ω∥L2 ≤ ∥f∥L2 ≤
∥∥∥∥ 4κ

(1 + |x|2)2

∥∥∥∥
L2

.

Performing a Helmholtz decomposition for Ω, we have Ω = Ω0 + Ω1 with div (Ω0) = 0,
curl(Ω1) = 0 and the following estimates:

∥∇Ω1∥L2 ≤ ∥div Ω∥L2 ≤ ∥f∥L2

and

∥Ωi∥L2 ≤ ∥Ω∥L2 ≤ 2∥∇m∥L2 .

Moreover,

∥Ω1∥Lr ≤ c∥Ω1∥
2
r

L2∥∇Ω1∥
1− 2

r

L2
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3.1. Existence, Regularity, and Non-Uniqueness

for all r ∈ (2,∞) due to the endpoint Gagliardo Nierenberg inequality. Combining this
with Hölder, we find for all q ∈ (1, 2) and r = 2q

2−q ∈ (2,∞):

∥Ω1∇m∥Lq = ∥|Ω1|q|∇m|q∥
1
q

L1(R2)

≤ ∥Ω1∥
L

2q
2−q

∥∇m∥L2

≤ c∥∇m∥L2

(
∥Ω1∥

2−q
q

L2 ∥∇Ω1∥
2(q−1)

q

L2

)
,

implying Ω1∇m ∈ Lq for all q ∈ (1, 2).

Now set g = Ω1 : ∇m, R > 0 and let u be a solution of

−∆u = f + g on BR(0)

u = m on ∂BR(0).

Since L2(BR(0)) ↪→ Lq(BR(0)) due to the boundedness of BR(0) and 1 < q < 2, the
Calderón-Zygmund inequality implies

∥D2u∥Lq(BR) ≲ ∥∆u∥Lq(BR) ≤ ∥f + g∥Lq(BR)

and hence u ∈ W 1,q(BR) for all q ∈ (1, 2). By Morrey’s inequality with α = 2(q−1)
q and

α ∈ (0, 1) for q ∈ (1, 2) we deduce continuity of u on BR(0).

On the other hand,

−∆(m− u) = Ω0 : ∇m + Ω1 : ∇m + f − (f + g)

= Ω0 : ∇m + g + f − g − f

= Ω0 : ∇m on BR(0),

extended by 0 on R2 \BR belongs to the Hardy space H1(R2;R3) because div Ω0 = 0[6].
It follows via Lorentz space estimates [20] that m−u is continuous on BR(0). Thus, m
is continuous on BR and, by repetition of the local argument, on R2.

Smoothness follows from continuity by standard arguments for semilinear equations with
quadratic growth [53]. Here, the right-hand side of the equation −∆m = b(x,m,∇m)
is given by

b(x,m,∇m) = Ω : ∇m + f(m)

= |∇m|2m +
4κ

(1 + |x|2)2
(m× (m · ν) ν ×m) ,

where |b(x, z, p)| ≤ |p|2|z|+ 4κ
(1+|x|2)2 |z|

3 ≤ c(1+ |p|2) for some constant c depending only

on κ and ε if ||z| − 1| < ε. This is sufficient since we are only interested in solutions
m : R2 → S2.
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3. Symmetric Minimizers

3.1.3. Non-Uniqueness

Axisymmetric minimizers of E exist and are smooth. However, they are not unique
due to further invariances of the energy. This is reflected in the fact that the solution
of (2.3) is non-unique, even when fixing boundary values. In the following, we discuss
the non-uniqueness of magnetizations m and profiles θ, starting from an axisymmetric
minimizer with m(±ê3) = −ê3.

Without loss of generality we may therefore assume that θ(0) = π. However, while
Q(m) = 0 implies m(ê3) = m(−ê3), this is not true on the level of profiles where θ(0)
and θ(π) may vary by multiples of 2π. Later on we will see that minimality of profiles
does indeed imply θ(0) = θ(π) so the non-uniqueness of boundary values can be ruled
out for minimizing profiles by fixing θ(0).

Apart from such effects that are due to the periodicity of trigonometric functions, non-
uniqueness of symmetric minimizers and thus their profiles is also due to the symmetry
of the energy functional. To account for the invariance of E under joint rotations and
joint reflections we have already fixed the axis of symmetry to be ê3 and the values at the
poles as −ê3. However, both the energy and the condition Q = 0 are also invariant under
individual reflections on the domain or target manifold.

The first type, m 7→ m(−·), can not be ruled out by fixing values at the poles. Such a
single reflection on the domain changes whether a Skyrmion forms at the north pole ê3 or
the south pole −ê3. For the polar profile, m 7→ m(−x) corresponds to a change in profile
θ 7→ π − θ(π − x), which also preserves boundary values.

The second type, m 7→ −m(·), is ruled out by fixing m(ê3) = −ê3. However, since it
does not affect the energy of the condition Q = 0, it yields additional minimizers. Such
a single reflection on the target sphere affects whether the Skyrmion forms inside the
sphere or outside.

Due to the invariance under reflections on the domain we can not expect the solution
to the boundary value problem

(θ′ sinx)′ =
sin(2θ)

sinx
+ κ sin(2θ − 2x) sinx

θ(0) = θ(π) = π

to be unique, even when minimality is additionally requested. Instead, we will focus on
profiles with θ(π2 ) < π. We will later see that this corresponds to a Skyrmion formation
at the north pole.

Definition 3. Let m ∈ {m ∈ H1(S2;S2) : Q(m) = 0, m axisymmetric} be a minimizer
and θ : [0, π] → R a profile such that m = mθ and θ(0) = π.

(1) θ is called a minimizing profile.
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3.1. Existence, Regularity, and Non-Uniqueness

Type I Skyrmion

Type II Skyrmion

Type III Skyrmion

Type IV Skyrmion

θ 7→ π − θ(π − x)

m(x) 7→ −m(x)

θ 7→ θ + π

m(x) 7→ m(−x)

θ 7→ 2π − θ(π − ·)

m(x) 7→ −m(−x)

Figure 3.1.: Types of axisymmetric Skyrmions and the transformations by which they
are related. On the left, the Skyrmion forms at the north pole and on the
right, the Skyrmion forms at the south pole. The Skyrmions are related by
the transformations indicated at the arrows and all have the same energy.

(2) If θ(π2 ) < π then θ is called a lower minimizing profile.
If θ(π2 ) > π then θ is called an upper minimizing profile.

(3) Given a profile θ : [0, π] → R, the profile θ̄ = π − θ(π − x) is called the mirrored
profile (associated to θ).

Notes:

(1) Minimizing profiles are minimizers of the reduced energy E.

(2) We will later see that the case θ(π2 ) = π does not occur for minimizing profiles.

(3) θ is a lower minimizing profile if and only if the mirrored profile θ̄ is an upper
minimizing profile.

(4) If θ is a lower minimizing profile then m0 is a type I Skyrmion. If θ is an upper
minimizing profile then m0 is a type III Skyrmion.
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3. Symmetric Minimizers

3.2. Properties of Minimizing Profiles

In this section we will analyze the properties of minimizing profiles. After establishing
that minimality implies θ(0) = θ(π) we will focus on lower minimizing profiles, investi-
gating their range and shape as well as their behaviour near π. Overall, we prove the
following:

Proposition 3.1. Assume κ > 24 and let θ be a lower [upper] minimizing profile with
θ(0) = π. Then the following holds

(1) θ(π) = π and for x ∈ (0, π), we have x < θ(x) < π [π < θ(x) < x+ π].

(2) θ has exactly one minimum xm [maximum xm]. As κ → ∞, we have xm → 0
[xm → π].

(3) θ − id is monotonically decreasing on (0, π).

(4) The limit of θ′ at π [at 0] exists and is smaller than 1.

3.2.1. Range

The upper bound for the energy directly implies

Lemma 3.1. Let θ be a minimizing profile with θ(0) = π. Then θ(π) = π.

Proof. Assume θ(π) = (2k+1)π with |k| ≥ 1. We show that the energy then exceeds the
upper bound for the minimum in [37]. For that, write xa := min{x ∈ (0, π) : θ(x) = a}
where a ∈ {2kπ, (2k + 1)π}. Then by Young’s inequality,

π∫
0

(θ′)2 sinx+
sin2 θ

sinx
dx ≥

x2kπ∫
0

−2θ′ sin θ dx+

x2k+1π∫
x2kπ

2θ′ sin θ dx

= 2 (cos(2π) − cos(π) + cos(2π) − cos(π)) = 8.

On the other hand, minimality implies E(θ) = 1
2πE(mθ) <

16π
2π = 8, a contradiction.

From a simple energy argument, it follows that minimizing profiles are enclosed between
id and id +π, implying sin(θ − x) > 0 for all x ∈ (0, π).

Lemma 3.2. Let θ be a minimizing profile with θ(0) = θ(π) = π. Then x < θ(x) < x+π
for all x ∈ (0, π).
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3.2. Properties of Minimizing Profiles

Proof. Assume that there exists c ∈ {x ∈ (0, π)| θ(x) < x}. Then, by the intermediate
value theorem and due to θ(0) > 0 and θ(π) = π, there are 0 < a < c < b ≤ π with
θ(a) = a and θ(b) = b. The contribution of θ on [a, b] can be estimated with Young’s
inequality:

b∫
a

sinx(θ′)2 +
sin2 θ

sinx
dx ≥ 2

b∫
a

θ′(x) sin θ dx = 2[− cos θ]ba

= 2 cos(θ(a)) − 2 cos(θ(a)) = 2 cos a− 2 cos b

On the other hand, consider the adapted profile

θ̃ : [0, π] → R, θ̃(x) =

{
x a ≤ x ≤ b

θ(x) else.

Due to θ(a) = a = θ̃(a) and θ(b) = b = θ̃(b), θ̃ is continuous and has the same boundary
values as θ. Since

b∫
a

(θ̃′)2 sinx+
sin2 θ̃

sinx
dx =

b∫
a

sinx+
sin2 x

sinx
dx = 2 cos a− 2 cos b

and
b∫
a

sin2(θ̃ − x) sinx dx = 0 <

b∫
a

sinx sin2(θ − x) dx

while the contribution outside [a, b] remains unchanged, we find E(θ̃) < E(θ), which is a
contradiction to θ being minimizing. Thus, the assumption of θ(c) < c has been wrong.

Furthermore, id[0,π] is a solution of the differential equation apart from the initial value.
Therefore, if θ = id on some interval [a, b], unique solvability of the ODE on [ε, π − ε]
for any ε > 0 would imply that θ = id on [ε, π − ε]. As the profile of a smooth
axisymmetric m, the function θ is continuous, see appendix A.1. Thus, θ = id on any
closed subintervall of [0, π] implies θ = id on [0, π] which contradicts θ(0) = π.

In conclusion, if there was x0 ∈ (0, π) such that θ(x0) = x0 then θ would not be
minimizing or θ = id on some interval [x0, b]. As both options are impossible, there can
be no such x0 and θ > x on (0, π).

By the same energy argument, θ(x) < x+ π for all x ∈ (0, π).

For lower minimizing profiles, the upper bound can be refined. This will be done in two
steps. First, we show that for minimizing profiles, the root of π has at most one element
p in (0, π). For lower minimizing profiles it follows that p < π

2 . We then perform all
further analysis under the assumption that p > 0. However, an argument in Chapter
two will show that p = 0, completing the proof of the first statement in Proposition
3.1.
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3. Symmetric Minimizers

Lemma 3.3. Assume that θ : [0, π] → R with θ(0) = θ(π) = π minimizes E and that
there exists x0 ∈ (0, π) with θ(x0) < π. Then either θ < π for all x ∈ (0, π) or there
exists a unique p ∈ (0, π) such that θ > π on (0, p) and θ < π on (p, π).

The second case will be referred to as overshooting. As mentioned above, it can
only be ruled out later on and thus has to be considered a possibility in this chap-
ter.

Proof. There is nothing to prove in the first case. If it does not occur then there exist
0 ≤ p1 < x0 < p2 ≤ π such that θ(x) < π on (p1, p2), θ(p1) = θ(p2) = π, and p1 > 0 or
p2 < π. We will show p2 = π in two steps and then conclude by a symmetry argument,
using θ̄. Note that the energy argument heavily relies on the analysis of eII in Lemma
2.6. There, we have defined η(x) = x+ π

2 +dκ(x) as the value of θ(x) for which eII(θ(x))
is maximal.

Step 1 First, assume p2 ≤ π
2 and let

xm = argmin[p1,p2]θ(x)

be the minimizer of θ in [p1, p2]. If θ(xm) ≥ π
2 then θ > π

2 on (p1, p2) and setting

θ̃(x) = 2π − θ(x) for x ∈ (p1, p2) would reduce the energy since

E(θ) − E(θ̃) = κ

p2∫
p1

(
sin2(θ − x) − sin2(θ + x)

)
sinx dx = κ

p2∫
p1

− sin(2θ) sin(2x) dx ⊛

which is positive due to sin(2θ) sin(2x) < 0 for all (x, θ) ∈ (0, π2 ) × (π2 , π).

On the other hand, if θ(xm) < π
2 < η(xm) and π = θ(p2) > η(p2) due to p2 <

π
2 , then

there must be intersection points a, b, c with xm ∈ (a, b) ⊂ (p1, p2) and c ∈ (p2, π) such
that θ(x) = η(x) for x ∈ {a, b, c}, θ > η on (0, a) ∪ (b, c) and θ < η on (a, b). Note that
oscillations of θ around η as opposed to θ < η on (a, b) and θ > η on (b, c) would result
in an increase of both EI(θ) and EII(θ) and can therefore be excluded. Also, c > p2
follows from the fact that η(p2) < π = θ(p2) due to p2 <

π
2 .

Starting from this assumption on θ and a, b, c we perform the following two adaptations
to construct θ̃ with strictly smaller energy and θ̃ > η > π

2 for all x ∈ (p1, p2), leading
back to the first case.

Adaptation 1 Find y = argmax(a,b)(η(y) − θ(y)) and set m := η(y) − θ(y) as well as
θ1 := η(y) +m. If θ1 ≤ π choose α ∈ (p1, a) such that θ(α) = θ1 and set

θ̃(x) =

{
θ(x) x ∈ (0, α)

θ1 x ∈ (α, y)
.
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π
2

π
2

η(x)
θ(x)

π
2π − θ(x)

θ1

y

m

α

(a) Case 1: θ1 ≤ π

π
2

π
θ1

m

θ(x)

2π − θ(x)

α y π
2

η(x)

(b) Case 2: θ1 < π

Figure 3.2.: Adaptation 1. θ̃ is highlighted in yellow.

Otherwise, if θ1 > π, choose α ∈ (p1, y) such that 2π − θ(α) = θ1 and set

θ̃(x) =


θ(x) x ∈ (0, p1)

2π − θ(x) x ∈ (p1, α)

θ1 x ∈ (α, y)

.

Adaptation 2 Compute θ2 = η(b) +m. If θ2 ≤ π, choose β ∈ (b, p2) minimal such that
θ(β) = θ2 and set

θ̃(x) =


η(x) +m x ∈ (y, b)

θ2 x ∈ (b, β)

θ(x) x ≥ β

.

If 2π − θ(b) > θ2 > π, choose β ∈ (b, p2) minimal such that 2π − θ(β) = θ2 and set

θ̃(x) =


η(x) +m x ∈ (y, b)

θ2 x ∈ (b, β)

2π − θ(x) x ∈ (β, p2)

θ(x) x > x0

.

Finally, if θ2 > 2π − θ(b), choose β ∈ (y, b) minimal such that 2π − θ(β) = η(β) + m
and set

θ̃(x) =


η(x) +m x ∈ (y, β)

2π − θ(x) x ∈ (β, p2)

θ(x) x > p2

.

Consistency Before proving that the adaptations yield a reduction of the energy, we
first confirm the existence of α, β in all cases and infer continuity of θ̃. For the first
adaptation, the inequalities

π = θ(p1) ≥ θ1 = η(y) +m > η(a) = θ(a)

and π = 2π − θ(p1) < θ1 = 2η(y) − θ(y) < 2π − θ(y),
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π
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π
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m

θ2

y b β

(a) Case 1: θ2 ≤ π

π
2

π
2

π

η(x)
θ2

y β

m

θ(x)

2π − θ(x)

b

(b) Case 2: π < θ2 < 2π − θ

π
2

π
2

π

η(x)θ2

y βb

m

θ(x)

2π − θ(x)

(c) Case 3: θ2 > 2π − θ

Figure 3.3.: Adaptation 2: positions of b and β

in the first and second case, respectively, imply the existence of α by the intermediate
value theorem in each of the cases. Due to θ(p1) = π = 2π−θ(p1) and θ(α) = θ1 or 2π−
θ(α) = θ1 in the respective cases, θ̃ is continuous on (0, y). For the second adaptation,
existence again follows from the intermediate value theorem under consideration of the
inequalities

θ(b) = η(b) < θ2 ≤ π = θ(p2),

2π − θ(b) > θ2 > π = 2π − θ(p2),

and π − θ(y) > η(y) +m while 2π − θ(b) < η(b) +m

in each of the respective cases. Continuity at b and β follows from the construction wile
θ̃(y) = η(y) +m from Step 1 ensures continuity at y. Note that θ1, θ2 > η and therefore
θ̃ > η > π

2 on (p1, p2).

Energy reduction In general, eII is reduced when |θ̃(x) − η(x)| > |θ(x) − η(x)|. For the
first move we have θ̃ ≥ θ > η on (0, a) and |θ̃(x) − η(x)| ≥ θ1 − η(y) = m ≥ η(x) − θ(x)
on (α, y). In the second case, where a < α is possible, note that

θ̃(x) − η(x) = 2π − θ(x) − η(x) > 2η(x) − θ(x) − η(x) = |η(x) − θ(x)|

on (a, α).
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3.2. Properties of Minimizing Profiles

For the second move there are three cases. Just as before, though, the reasoning is
mostly the same with θ̃ − η(x) = m ≥ θ(x) − η(x) on (y, b) (or on (y, β) in the third
case) and θ̃ > π > θ(x) > η(x) on (b, p2). For the third case, we again have the
additional estimate θ̃(x) − η(x) = 2π − θ(x) − η(x) > η(x) − θ(x) on (β, b).

The first part of the energy is reduced pointwise on (0, y) because 02 ≤ (θ′)2. On (y, b),
however, where θ̃′ = η′, we have to consider the possibility that η − θ admits local
extrema, which result in a change in the sign of (η − θ)′, thus preventing a pointwise
comparison of eI(θ) and eI(θ̃). Instead, we prove a reduction of EI on certain intervals.

For that, assume that η − θ has a local maximum at z. Then there are z1 < z and
z2 > z such that (η − θ)(z1) = (η − θ)(z2), (η − θ)′ > 0 on (z1, z) and (η − θ)′ < 0 on
(z, z2). We apply the integral version of the mean value theorem to obtain

z2∫
z1

(
η′)2 − (θ′)2

)
sinx dx

=

z∫
z1

(η′ − θ′)︸ ︷︷ ︸
>0

(η′ + θ′)︸ ︷︷ ︸
<2θ′

sinx dx+

z2∫
z

(η′ − θ′)︸ ︷︷ ︸
<0

(η′ + θ′)︸ ︷︷ ︸
>2θ′

sinx dx

<

z∫
z1

(2θ′ sinx)(η′ − θ′) dx+

z2∫
z

(2θ′ sinx)(η′ − θ′) dx

= 2θ′(ξ1) sin(ξ1)
(
η(z) − θ(z) − η(z1) + θ(z1)

)
+ 2θ′(ξ2) sin(ξ2)

(
η(z2) − θ(z2) − η(z) + θ(z)

)
=
(

(η(z) − θ(z)) − (η(z1) − θ(z1))
)(

2θ′(ξ1) sin(ξ1) − 2θ′(ξ2) sin(ξ2)
)
< 0,

where the last expression is negative as the product of a positive and a negative term.
Positivity of the first term follows from maximality of η−θ at z while the second term is
negative due to the monotonicity of θ′ sinx, which follows from differentiation. In fact,

(θ′ sinx)′ = θ′′ sinx+ θ′ cosx =
sin(2θ)

2 sinx
+
κ

2
sin(2θ − 2x) sinx =

d

dθ
eII(θ, x)

and the right and side is positive since eII is monotonically increasing in θ due to θ < η.

It follows that EI,[z1,z2](θ̃) < EI,[z1,z2](θ) around a local maximum of η − θ. By the
choice of y, the global maximum of η − θ in [y, b] ⊂ [a, b] is attained at y. Hence,
η − θ is decreasing near y and the first extremum must be a minimum. Furthermore,
η − θ > 0 = η(b) − θ(b) implies that η − θ is decreasing near b. It follows that the last
extremum must be a maximum. Since no two minima can occur without a maximum
between them and vice versa, all local extrema on (y, b) appear in pairs of minima and
maxima. In particular, every locally minimal value is assumed again at a later point,
allowing a comparison as above. In this way, EI,J can be improved on a collection of
intervals J such that (η − θ)′ < 0 on (y, b) \ J . On this remaining set, eI is reduced
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3. Symmetric Minimizers

pointwisely and overall, a reduction of EI,[y,b] follows. On (y, p2), reduction is trivial

with θ̃′ ∈ {0,−θ′}.

Since the assumption p2 ≤ π
2 has allowed to construct θ̃ with E(θ̃) < E(θ), thus con-

tradicting the minimality of θ, it must be wrong and we have shown that θ(x) < π
on (p1,

π
2 ] for any minimizing profile θ fulfilling θ(x0) < π for some x0 < π

2 . Here,
p1 = inf{x ∈ (0, x0) : θ(x) < π}.

Step 2 Next, consider the case where π
2 < p2 < π so that θ(x1) > π for some x1 ∈ (p2, π).

The mirrored profile θ̄ then fulfils θ̄(π − x1) < π and π − x1 ∈ (0, π2 ) and since it is
also minimising, all arguments given above apply. From the first case it follows that
θ̄ < π on (p′1,

π
2 ) for some p′1 ∈ (0, x1), leading to a contradiction at π − p2 ∈ (p′1,

π
2 )

with θ̄(π − p2) = π. In total, p2 = π is the only remaining option.

If θ > x on (p0, p1) for some 0 ≤ p0 < 1 then performing the argument again for θ̄ with
θ̄ < π(π − p1, π − p0) proves p0 = 0. Therefore, in the case where θ overshoots, p := p1
is the unique root of θ for π in (0, π).

3.2.2. Shape

First, we show that a minimizing profile has exactly one minimum. We then proceed
to show an upper bound for the derivative of θ. Here and for the rest of the section we
use that there exists p ∈ [0, π) such that θ(x) > π on (0, p) and θ(x) < π on (p, π). For
lower minimizing profiles, θ(π2 ) < π implies p < π

2 .

Lemma 3.4. Let θ be a minimizing profile. If p < π then θ has exactly one minimum
in (p, π).

Proof. The proof again relies heavily on Lemma 2.6. In general, this implies that θ
can not have a local minimum xmin with θ(xmin) < ξ(xmin) or θ(xmin) > η(xmin) nor
a local maximum such that ξ(xmax) < θ(xmax) < η(xmax). Otherwise, constructing a
new profile by setting θ̃ ≡ const = θ(a) = θ(b) on a suitable interval (a, b) ∋ xmin [or
(a, b) ∋ xmax at maxima] with ξ(x) < θ(x) < θ(a) on (a, b) [or η > θ > θ(a) > ξ] would
give a profile with strictly smaller energy.

Let xm ∈ (0, π) be the global minimum of θ. Since θ ≡ π does not solve the equation,
θm := θ(xm) < π. We now proceed separately on (p, xm) and (xm, π).

On (p, xm), extrema appear in pairs xmin < xmax. Due to above results, it has to hold
that ξ(xmin) < θ(xmin) < η(xmin) as well as θ(xmax) < ξ(xmax) or η(xmax) < θ(xmax).
The maximal value can not be smaller than ξ(xmax) since monotonicity of ξ would then
imply the estimates θm < θ(xmax) < ξ(xm), a contradiction to the first observation
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3.2. Properties of Minimizing Profiles

applied to xm. Thus,

ξ(xmin) < θ(xmin) < η(xmin) < η(xmax) < θ(xmax)

is the only remaining option.

Assuming this setting, consider x1 < x2 ∈ (xmin, xmax) such that |θ − η| is maximal at
x1 and x2. Furthermore, by the intermediate value theorem, there are points y1 < xmin

and y2 > xmax such that θ(y1) = θ(xmax) and θ(y2) = θ(xmin). If η(x1) − θ(x1) <
θ(xmax) − η(x1) then

|θ(xmax) − η(x)| > |θ(x) − η(x)| for x ∈ (y1, xmax)

and setting θ̃ = θ(xmax) on (y1, xmax) results in eII(θ̃) < eII(θ) on (y1, xmax). The
derivative term is, as always, trivially reduced to 0 and so θ̃ has smaller energy than
the supposed minimizer θ, a contradiction.

π

η(x)

ξ(x)

xmin

xmax

xm

π

π
2

π

y1 x1 x2 x2

Figure 3.4.: Configuration of local extrema and the construction in the discussed case:
η(x1) − θ(x1) < θ(xmax) − η(x1)

Similarly, if θ(x2)− η(x2) < η(x2)− θ(xmin), setting θ̃(x) = θ(xmin) on (xmin, y2) would
yield an improvement in energy. Finally, since both θ and η are strictly increasing on
(xmin, xmax), one of the two inequalities has to hold whenever there are minimum and
maximum in the considered configuration. Since this was the last remaining case, there
can not be any extrema in (p, xm).

On (xm, π) extrema appear in pairs xmax < xmin. Again, the restrictions from the
first observations apply and θ(xmax) < ξ(xmax) would imply θ(xmin) < ξ(xmin) for the
following minimum, a contradiction. The remaining option of θ(xmax) > η(xmax) and
η(xmin) > θ(xmin) > ξ(xmin) implies that θ intersects η at two points in (xm, xmax) and
(xmax, xmin). We perform a construction similar to that in the proof of Lemma 3.3,
which reduces the energy.
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3. Symmetric Minimizers

Under the assumption of two intersections, there are points a, b and y ∈ (a, b) such that
η − θ is maximal at y and (θ − η)(a) = (θ − η)(b) = 0. If θ1 = 2η(y) − θ(y) < θ(xmax)
then there exists α < a such that θ(α) = θ(xmax) and setting θ̃ ≡ θ(xmax) on (α, xmax)
reduces the energy. Otherwise if θmax < θ1 < π there is β ∈ (y, xmax) such that
2θ(xmax) − θ(β) = 2η(y) − θ(y) since

2θ(xmax) − θ(y) > 2η(y) − θ(y) > θ(xmax).

Setting θ̃ ≡ θ1 on (α, β) and θ̃(x) = 2θ(xmax) − θ(x) on (β, xmax) reduces the energy.
Finally, it is possible that θ1 > π. In this case follow the corresponding construction in
Lemma 3.3, Move 1 and again choose β such that θ1 = 2θ(xmax) − θ(β). The resulting
θ̃ has smaller energy.

By considering θ̄ = 2π − θ(π − ·), we can conclude

Corollary 3.1. Let θ be a minimizing profile. If p > 0 then θ has exactly one maximum
in (0, p).

We shall denote a maximum in (0, p) by xm and its value by θm = θ(xm). Recall from
the proof of Lemma 3.4 that the global minimum is denoted by xm and its value by
θm = θ(xm).

Before we continue to prove monotonicity of θ − id, some more notation is introduced,
regarding the root of π

2 . Let θ be a minimizing profile.

Lemma 3.5. The set {x ∈ (0, π)| θ(x) = π
2 } contains at most 2 elements.

Proof. Assume |θ−1({π2 })| > 2. Then there would be points a < b ∈ (p, π2 ) such that
π > θ(x) > π

2 on (a, b) (due to Lemma 3.3) and θ(a) = θ(b) = π
2 and the energy could

be reduced by setting θ̃(x) = π − θ(x) < π
2 on [a, b].

As the limit for large κ will reveal, the root of π
2 contains exactly two elements for κ

large enough. In that case, denote them by x∗ < x∗ and note that x∗ < π
2 by Lemma

3.2.
If |θ−1{(π2 )}| ≤ 1, set x∗ = x∗ = xm where xm is the global minimum of θ in (p, π). In
this case it is possible that x∗ > π

2 .

We now turn to analyze the extrema of θ in (p, π). Again, the argument will rely on
Lemma 2.6.

Lemma 3.6. Let θ be a minimizing profile. Then θ− id is monotonically decreasing on
(p, π).
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3.2. Properties of Minimizing Profiles

For x ∈ (0, π), it holds that (θ̄ − id)′(x) = θ′(π − x) − 1 = (θ − id)′(π − x). Therefore,
the last Lemma implies:

Corollary 3.2. Let θ be a minimizing profile. Then (θ− id) is monotonically decreasing
on (0, π).

Proof of Lemma 3.6. Working backwards from π, we show that θ− id does not assume
a maximum. Since π = (θ− id)(0) > (θ− id)(p) > 0 = (θ− id)(π) for all x ∈ (0, π), this
proves the decay. The intervals that structure the proof are empty if xm ≥ π

2 . However,
since the arguments stay valid on the non-empty intervals, this will not be mentioned
explicitly. For this proof, most arguments rely on the Euler-Lagrange equation for
axisymmetric minimizers. Recall that this implies that the corresponding minimizing
profile solves

θ′′ sinx+ θ′ cosx =
sin(2θ)

sinx
+ κ sin(2θ − 2x) sinx. (3.1)

First interval: 3π
4 < x < θ < π

On this interval, sin(2θ) > sin(2x) and cosx ≤ 0. Also, 2(θ−x) ≤ 2π4 so sin(2θ−2x) > 0.
Thus, if θ′(x) − 1 ≥ 0, it would follow that

θ′′(x) =
1

sinx

(
sin(2θ)

2 sinx
− cosxθ′ +

κ

2
sinx sin(2θ − 2x)

)
≥ 1

sinx

(
2 sinx cosx

2 sinx
− cosx+

κ

2
sinx sin(2θ − 2x)

)
=

1

sinx

(κ
2

sinx sin(2θ − 2x)
)
> 0

and therefore there can be no maximum of θ − id on (3π4 , π).

Second interval: π
2 < x < 3π

4
From the optimization of eII it is known that the right-hand-side of (3.1) is positive for
ξ(x) < θ(x) and x ∈ (π2 , π) and negative while increasing in θ for θ between id = ξ + dκ
and ξ.

For θ(x) > ξ(x), this implies non-negativity of θ′′(x). Since there are no minima of θ
on (π2 ,

3π
4 ), the first derivative θ′(x) is non-negative and from the differential equation

it follows with cosx < 0 that

θ′′(x) =
1

sinx

(
− cosx θ′(x) +

sin(2θ)

2 sinx
+
κ

2
sin(2θ − 2x) sinx

)
> 0.

Thus, there can be no maximum of θ − id on this interval where θ > ξ. The only
remaining case is that of x < θ(x) < ξ(x). In this case, since the derivative of eII with
respect to θ is strictly monotonically increasing in θ for id < θ < ξ as seen in the proof
of Lemma 2.6, one finds

sin(2θ)

2 sinx
+
κ

2
sin(2θ − 2x) sinx >

sin(2x)

2 sinx
+
κ

2
sin(2x− 2x) sinx = cosx.
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Therefore, if θ′(x) ≥ 1, the differential equation again implies positivity of the second
derivative:

θ′′(x) =
1

sinx

(
− cosxθ′ +

sin(2θ)

2 sinx
+
κ

2
sin(2θ − 2x) sinx

)
>

1

sinx
(− cosx+ cosx) = 0.

Finally, the second derivative is positive for x = π
2 because θ(π2 ) ∈ (π2 , π) and κ > 1.

θ′′
(π

2

)
+ 0 · θ′(x) =

sin
(
2θ(π2 )

)
2 · 1

+
κ

2
sin(2θ − π) = (1 − κ) sin(2θ) > 0.

Since any maximum of θ − id at y would imply θ′(y) = 1 ≥ 1 and θ′′(y) ≤ 0, there are
no such maxima within (π2 ,

3π
4 ).

Third interval: xm < x < π
2

On (xm,
π
2 ), the second derivative of a solution can become negative for θ′ = 1. However,

we will show that this is only possible for θ close to x+ π
2 and infer an energy estimate

exceeding the lower bound of 8π from [37]. Thus, such maxima do not appear for
minimizing profiles.

Assume there exists x̄ ∈ (xm,
π
2 ) such that θ′(x̄) = 1 . Then the second derivative of θ

at x̄ is given by

θ′′(x̄) sin x̄ = − cos x̄+
sin(2θ(x̄))

2 sin x̄
+
κ

2
sin(2θ(x̄) − 2x̄) sin x̄.

Since the right hand side of this equation is zero if and only if

θ(x̄) = x̄+
nπ

2
− 1

2
arccot

(κ
2

tan x̄+ cot(2x̄) + 1
)

= ⊛n, n ∈ Z

and positive for example for θ(x̄) = x̄ + dκ(x̄) < ⊛1, θ
′′(x̄) can only be negative if

⊛1 < θ(x̄) < ⊛2. If p ≥ π
2 the case of xm < x < π

2 is irrelevant. Otherwise,

θ
(π

2

)
< π = lim

x→π
2

x+
π

2
− 1

2
arccot

(κ
2

tanx+ cot(2x) + 1
)

while θ(x̄) > x̄+ π
2 −

1
2 arccot

(
κ
2 tan x̄+ cot(2x̄) + 1

)
so the intermediate value theorem

implies existence of some a ∈ (x̄, π2 ) such that

θ(a) = a+
π

2
− 1

2
arccot(

κ

2
tan a+ cot(2a) + 1) =: a+

π

2
− 1

2
δκ(a).

Since δκ > dκ we have θ(a) < η(a) and without loss of generality one may assume that
θ(x) < η(x) on (a, π2 ) by choosing a = max{a ∈ (x̄, π2 )|θ(a) = a+ π

2 − 1
2δκ(a)}.

Using monotonicity of θ on (a, π) ⊂ (xm, π) we will now estimate the anisotropy part of
the energy on (a, θ(a)). Note that sin(θ − x) is increasing in θ as long as it holds that
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x ≤ θ(a) ≤ θ(x) ≤ x+ π
2 . By choice of a, this is true for x ∈ (a, θ(a)). Therefore,

π∫
a

sin2(θ − x) sinx dx ≥
θ(a)∫
a

sin2(θ(a) − x) sinx dx

=
1

12
[cos(2θ(a) − 3x) − 3 (cos(2θ(a) − x) + 2 cosx)]θ(a)a

=
1

12
(−8 cos(θ(a)) − cos(2θ(a) − 3a) + 3 (cos(2θ(a) − a) + 2 cos(a)))) .

Viewing this as a function of a, the expression has exactly one local maximum in (0, π2 ),
no minima, and the following values at the boundary:

1

12

(
−8 cos

(
(
π

2

)
+ cos(π − 0) − 3 (cos(π − 0) + 2 cos(0))

)
=

1

3

for a = 0, θ(a) = 0 + π
2 − 0 and

1

12

(
−8 cos(π) + cos

(
2π − 3π

2

)
− 3

(
cos
(

2π − π

2

)
+ 2 cos

(π
2

)))
=

2

3

for a = π
2 , θ(a) = π. By a very rough estimate, neglecting 0 < xm < a, the energy of θ

would therefore be larger than κ
3 if θ − id had a local maximum at x̄.

On the other hand, it is shown in [37] that the full energy 1
2E = πE is bounded from

above by 8π. The statement is repeated in Lemma 3.9. For κ > 24, the resulting bound
for E is exceeded by κ

3 and θ− id can therefore not have a local maximum in (xmin,
π
2 ).

Since θ′ is negative and therefore smaller than 1 on (p, xmin) this concludes the proof of
Lemma 3.6.

3.2.3. Behavior near π

The profile θ is well-defined and differentiable on (0, π) as the coordinate function of
the differentiable field mθ. Also, with mθ(±ê3) = −ê3, the limits limx↘0 θ(x) = π and
limx↗π θ(x) = π exist. However, differentiability up to the boundary is not clear. In-
deed, the profile is expected to drop quickly near p and behave moderately near π where
we have id < θ < π. We will further investigate this behavior .

Lemma 3.7. Let θ be a minimizing profile and assume x < θ(x) < π on (π − ε, π).
Then the following statements are true:

(1) θ′(π) := lim
x→π

θ′(x) ∈ (0, 1) exists.

(2) lim
x↗π

sinx θ′′(x) = 0.
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Proof. 1. First of all, recall that in spherical coordinates Ψ on S2 \ {x ≥ 0, y = 0}, m
is differentiable if and only if (0, π) × (0, 2π) ∋ (x, φ) 7→ m ◦ Ψ ∈ R3 is differentiable.
In particular, |θ′(x)| = | ddxm(ψ(x, φ)| is smooth on (0, π) since m is smooth. Moreover,
since mθ is differentiable at −ê3, the limit

L := |∇S2m(−ê3)|2 = lim
x→−ê3

|∇S2m(x)|2 = lim
x↗π

(
(θ′)2(x) +

sin2 θ

sin2 x

)
exists. Being interested in only one of the terms, we need to show that both terms
converge individually. If this is not the case then, due to the bounds 0 < θ′ < 1 and
0 < sin θ

sinx <
sinx
sinx = 1 on (π − ε, π), they both oscillate, the oscillations annihilating each

other. Let

I := lim inf
x↗π

(θ′(x))2 = lim
k→∞

(θ′(yk))
2 and S := lim sup

x↗π
(θ′(x))2 = lim

k→∞

(
θ′(ȳk)

)2
for two sequences (yk)k∈N and (ȳk)k∈N. Then

L− S = lim
k→∞

sin2 θ(ȳk)

sin2 ȳk
= lim inf

x↗π

sin2 θ

sin2 x
and L− I = lim

k→∞

sin2 θ(yk)

sin2 yk
= lim sup

k↗π

sin2 θ

sin2 x
.

Indeed, it holds that L = I + S which is shown by employing the mean value theorem
for each yk:

sin2 θ(yk)

sin2(yk)
=

(
sin θ(yk) − sin θ(π)

sin yk − sinπ

)2

=

(
θ′(ξk) cos θ(ξk)

cos ξk

)2

where ξk ∈ (yk, π).

As k → ∞, equality implies that both sides converge and we conclude

S = lim sup
x→π

(θ′(x))2 ≥ lim
k→∞

(θ′(ξk))
2 cos2 θ(ξk)

cos2(ξk)
= lim

k→∞

sin2 θ(yk)

sin2(yk)
= L− I.

Repeating the argument for the sequence ȳk results in the inequality I ≤ L− S. Com-
bining both inequalities, we find I + S ≤ L ≤ I + S and therefore L = I + S.

Having established the equality, consider the relation between θ′ and sin(2θ)
sin(2x) . In the first

case, we have θ′(x) ≤ sin θ
sinx

cos θ
cosx for all x ∈ (π − ε, π). Then

S = lim
k→∞

(θ′)2(ȳk) ≤ lim
k→∞

(
sin2 θ(ȳk)

sin2(ȳk)

cos2 θ(ȳk)

cos2(ȳk)

)
= lim

k→∞

sin2 θ(ȳk)

sin2 ȳk
= I

such that lim supx↗π(θ′(x))2 = S ≤ I = lim infx↗π θ
′(x)2 implies the existence of the

limit.

In the second case there exists x0 ∈ (π − ε, π) such that θ′(x0) >
sin(2θ(x0))
sin(2x0)

. Plugging
this into the equation results in

θ′′(x0) sinx0 = − cos(x0)θ
′(x0) +

sin(2θ(x0))

2 sin(x0)

κ

2
sin(2θ(x0) − 2x0) sinx0

> − cosx0
sin(2θ(x0))

2 sinx0 cosx0
+

sin(2θ(x0))

2 sinx0
+
κ

2
sin(2θ − 2x0) sinx0 > 0.
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3.2. Properties of Minimizing Profiles

On the other hand,(
sin(2θ)

sin(2x)

)′ ∣∣∣
x0

=
2θ′ cos(2θ) sin(2x) − 2 sin(2θ) cos(2x)

(sin(2x)2
|x0

< 2
cos(2θ(x0)) sin(2θ(x0) − sin(2θ(x0))) cos(2θ(x0))

sin(2x0)2
= 0

due to cos(2x) < cos(2θ) for x < θ and x, θ ∈ (π2 , π) and also due to the inequality
sin(2x0)θ

′(x0) < sin(2θ(x0)). On (π2 , π), this inequality is reversed due to cos(x) < 0.
Thus, the original inequality is self-reinforcing and holds on (x0, π), implying θ′′ > 0 on
(x0, π) such that θ′ is monotonically increasing. Hence, θ′(π) exists.

For the upper bound, note that limx↗π θ
′(x) ≤ 1 follows from Lemma 3.6. If this held

with equality, the functions f = id and g = θ would fulfill the assumptions of Lemma
3.8 below with id ≤ θ, id(π) = θ(π) and id′(π) = 1 = θ′(π). But then id ≡ θ on (0, π)
which contradicts Q(m) = 0.

2. After establishing the existence of θ′, the second statement is easy to prove. In fact,
the differential equation implies that

lim
x→π

θ′′ sinx = lim
x→π

(
−θ′ cosx+

sin(2θ)

2 sinx
+
κ

2
sin(2θ − 2x) sinx

)
= lim

x→π

(
−θ′ cosx+

θ′(x) cos(2θ)

cosx

)
= 0.

The fact that θ′(π) < 1 will be important later on in Chapter 4. It relies on a par-
tial uniqueness result for the ordinary differential equation at π which we prove via a
maximum principle, following the strategy in [22].

Lemma 3.8. Let f , g ∈ C((π− ε, π]) be solutions of (3.1) and assume that there exists
ε > 0 such that g ≤ f on (π − ε, π). If the boundary values satisfy f(π) = g(π) and
limx→π f

′(x) = limx→π g
′(x) = a ∈ R, then f ≡ g on (π − ε, π].

Proof. Assume that θ is a solution of (3.1). Then, expressing the stereographic projec-
tion π− : S2 \ {−ê3} → R2 in polar coordinates (r, φ) with r(x) = sinx

1+cosx , the profile
θp(r(x)) = θ(x) − r(x) is a solution of the equation

θ′p + rθ′′p = sin(θp)

(
cos θp

r4 − 6r2 + 1

r(r2 + 1)2
+ κ cos θp

4r

(r2 + 1)2
− 4 sin θp

1 − r2

(1 + r2)2

)
with boundary values θp(0) = π, limr→∞ θp(r) = limx→π θ(x) − x = 0.
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3. Symmetric Minimizers

Performing this transformation and then setting f̄ = fp(
1
t ) and ḡ = gp(

1
t ), f̄ and ḡ are

each solutions of the ODE

1

t
φ′ + φ′′ =

sin(2φ)

2

(
t4 − 6t2 + 1

t2(1 + t2)2
+ κ

4

(t2 + 1)2

)
+ 4 sin2 φ

(
t(1 − t2)

(t2 + 1)2

)
.

Moreover, they satisfy f̄(0) = ḡ(0) and limt→0
f̄
t = a = limt→0

ḡ
t . Setting v = f̄ − ḡ ≥ 0

thus gives a solution to the equation

v′′ +
1

t
v′ − 1

t2
1

(1 + t2)2
sin(2f̄) − sin(2ḡ)

2

=
sin(2f̄) − sin(2ḡ)

2

(
t2 − 6 + 4κ

(1 + t2)2

)
+ 2

(
sin2(f̄) − sin2(ḡ)

) t(1 − t2)

(1 + t2)2

where the right-hand side can be estimated by c(t)(f − g) for a non-negative and con-
tinuous function c : [0, ε̃) → R:

sin(2f̄) − sin(2ḡ) = 2(f̄ − ḡ) cos(ξ1) ≤ 2(f̄ − ḡ)

and

sin2(f̄) − sin2(ḡ) = (f̄ − ḡ) sin(2ξ2) ≤ (f̄ − ḡ).

Employing the first inequality on the left hand side together with 1
(1+t2)2

≤ 1, we can

conclude that v solves the following differential inequality:

v′′ +
1

t
v′ − 1

t2
v − c(t)v ≤ 0.

We are now in a situation to employ the method in [22] with p = q = 1: Set w = v
t .

Then w(0) = limt→0
f̄−ḡ
t = 0 and w ≥ 0 on [0, ε) for some ε > 0. Furthermore, w

satisfies

w′′ +
3

t
w′ − c(t)w =

1

t

(
v′′ +

1

t
v′ − 1

t2
v − c(t)v

)
≤ 0 in (0, ε̃).

By the extended maximum principle in the appendix of [22], w is identically 0 and
therefore f ≡ g.

3.2.4. The Limit for Large κ

In this section, we will investigate how some features of the profile depend on κ in the
limit κ → ∞. To do so, we will assume that the first statement of Proposition 3.1
has been fully proven. In particular, we will assume p = 0 [p = π] for lower [upper]
minimizzing profiles – a statement that will be proven in the following chapter. However,
since the behaviour for κ→ ∞ is not relevant for the analysis of H when κ is fixed, we
are in no danger of circular reasoning.

The qualitative analysis of θ is based on an upper bound from [37]:
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3.2. Properties of Minimizing Profiles

Lemma 3.9 ((Energy Bound, [37]). For every κ > 0 there exists a co-rotational field
m ∈ H1(S2; S2) with Q(m) = 0 and E(m) < 8π.

Note that by co-rotational the authors refer to fields of the type

m = (sin θ sinφ, sin θ cosφ, cos θ)T

which are called axisymmetric in this text. Furthermore, note that the energy in [37] is
given by

E(m) =
1

2

∫
S2

|∇m|2 + κ(1 − (m · ν)2) dσ =
1

2
E(m) = πE(θ).

As a direct consequence of the upper bound combined with the assumption p = 0 [p = π]
we have

Corollary 3.3. Given κ > 0, let θ(κ) be a family of lower [upper] minimizing profiles.
Then θκ(x) → x as κ→ ∞ for all x ∈ (0, π] [θ(x) → π+x as κ→ ∞ for all x ∈ [0, π)].

Proof. Pointwise convergence almost everywhere follows from the L1((0, π))-convergence
of sin2(θ(κ) − x) sinx and the fact that sin(y) → 0 and 0 < y < π implies y → 0 or
y → π. However, θ − x has to converge to the same value everywhere on (0, π) because
θ ̸= π for all x [θ ≥ π]. Smoothness of critical points and the corresponding continuity
of θκ for each κ imply that the pointwise convergence holds on (0, π) and convergence
at π [at 0] is implied by the fixed boundary value. In contrast, there is no convergence
at the north [south] pole where the Skyrmion forms.

By establishing lower bounds for the anisotropy term we can improve the statement and
give explicit bounds for |θ(κ)−id | on intervals bounded away from 0 [π].

Lemma 3.10. Let θκ be a family of lower minimizing profiles.

(1) For κ > 94, it holds that

sup
[xκm,π]

|θ(κ)(x) − x| = θ(κ)m − x(κ)m ≤ 4

√
216

κ
.

(2) As κ→ ∞, xκm → 0.

For families of upper minimizing profiles, the same statement holds with θm − (xm + π)
and π − xm.

On the level of axisymmetric minimizers m0
κ : S2 → S2, the following is an easy con-

clusion:
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3. Symmetric Minimizers

Corollary 3.4. If m(κ) is a family of axisymmetric minimizers of the same type then
mκ → ν uniformly for κ→ ∞ on every compact subset of S2 \ {ê3}.

Proof. For the proof of the refined convergence analysis, we introduce the following
notation: Let θ be an upper [lower] minimizing profile and a ∈ [0, π] [a ∈ [π, 2π]]. Then
set

ya := (θ − id)−1(a)
[
ya := (id +π − θ)−1(a)

]
.

Note that ya is well defined due to the strict monotonicity of θ − id that follows from
Proposition 3.1(3).

(1) As a preliminary step, assume that a ∈ [xm, π) satisfies θ(a) − a ≤ π
2 . Then θ is

motonically increasing on (a, θ(a)) by Lemma 3.4. On the other hand, θ − x is
decreasing on (0, π) such that, in total,

θ(a) − x < θ(x) − x < θ(a) − a <
π

2

for all x ∈ (a, θ(a)). Therefore, sin(θ− x) > sin(θ(a)− a) on (a, θ(a)) and we may
estimate

θ(a)∫
a

sin2(θ − x) sinx dx >

θ(a)∫
a

sin2(θ(a) − x) sinx dx

=
1

12
[cos(2θ(a) − 3x) − 3 cos(2θ(a) − x) − 6 cos(x)]θ(a)a

= ⊛

Collecting terms of the form cos(θ − x), this expression can be further simplified.

12⊛ = −8 cos(θ(a)) − cos(2θ(a) − a) + 3 cos(2θ(a) − a) + 6 cos a

= cos a (−8 cos(θ(a) − a) + 2 cos(2θ(a) − 2a) + 6)

+ sin a (8 sin(θ(a) − a) − 4 sin(2θ(a) − 2a))

= 4
(

(1 − cos(θ(a) − a))2 cos a+ 2 sin a sin(θ(a) − a) (1 − cos(θ(a) − a))
)
.

If θm − xm > π
2 , then a := yπ

2
> xm and θ(yπ

2
) − yπ

2
= π

2 . Therefore, by above
computations and taking into account the energy bound of Lemma 3.9 as well as
the special choice of a,

8

κ
≥

θ(yπ
2
)∫

yπ
2

sin2(θ − x) sinx dx

≥ 4

12

(
(1 − 0)2 cos yπ

2
+ 2 sin yπ

2
· 1 (1 − 0)

)
>

1

3
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3.2. Properties of Minimizing Profiles

for yπ
2
∈ (0, π). For κ ≥ 24, this is impossible and it follows that θm− xm < π

2 for
κ ≥ 24. Thus, xm satisfies the requirements for a above and

8

κ
≥ 1

3

(
(1 − cos(θm − xm))2 cosxm + 2 sinxm sin(θm − xm) (1 − cos(θm − xm))

)
.

If θm − xm < π
4 , then 1 − cos(θm − xm) < sin(θm − xm) and therefore

8

κ
≥ 1

3
(1 − cos(θm − xm))2 (cosxm + 2 sinxm) >

1

3
(1 − cos(θm − xm))2 .

Employing the inequality 1 − cos(x) ≥ x2

3 on (0, π2 ), this yields the upper bound
of the Lemma.

On the other hand, if θm−xm ≥ π
4 , then taking a := yπ

4
with θ(yπ

4
)− yπ

4
= π

4 , we
can conclude

8

κ
≥

θ(yπ
4
)∫

yπ
4

sin2(θ − x) sinx dx

≥ 1

3

(
1 −

√
2

2

)
cos yπ

4
+ 2 sin yπ

4

√
2

2

(
1 −

√
2

2

)
≥ 3

2
−
√

2

for yπ
4
∈ (0, 3π4 ). For κ > 94, this is false. Note that π > θ(yπ

4
) = yπ

4
+ π

4 implies
that this is true independently of κ. Indeed, as κ → ∞, there might be a more
accurate bound for yπ

4
, which would improve the constant and therefore reduce

κ0. However, as we are interested in the behavior for large κ, this does not affect
the result very much.

(2) The convergence of xm directly follows from the pointwise convergence of θ(κ) on
(0, π]. Given ε > 0, we show that xm < ε for κ sufficiently large. Indeed, choose
x < ε

2 . Then there exists κ0 > 0 such that θ(κ)(x) − x < ε
2 for all κ > κ0. On the

other hand,

θ(κ)(ε) > ε > x+
ε

2
> θ(κ)(x).

Hence θ(κ)(x) < θ(ε) and x < ε. Due to the fact that θ(κ) has exactly one
minimum, there exists a ∈ [x, ε) such that θ is increasing on [a, ε] and therefore

x
(κ)
m < ε.
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4. Local Minimality of Symmetric
Minimizers

In this chapter, we will show that minimizers in the class of axisymmetric fields are
actually locally minimizing within the full topological sector. In particular, we prove
the following Theorem:

Theorem 3. Given κ > 24, let m0 = mθ be minimizing among all axisymmetric fields
of degree 0. Then the Hessian of E at m0 is positive semidefinite. Furthermore, if the
reduced energy is strictly convex at θ in the sense that d2

dt2
E(θ+tβ) > 0 for all variations

β ∈ C∞
0 ((0, π)) \ {0}|t=0, then m0 is a local minimizer among all fields of degree 0 and

there exist ε0, c > 0 such that

E(m) − E(m0) ≥ c inf
R∈SO(3)/SO(3)ê3

∥mR −m0∥H1

for all ∥m−m0∥H1 < ε0.

Note: Here, ∥m−m0∥H1 = ∥∇m−∇m0∥L2(S2;R3)+∥m−m0∥L2(S2;R3).

4.1. Non-Negativity of the Hessian

As discussed in the introduction, variations on the sphere imply that the Hessian is
given by

H(m)⟨ϕ, ψ⟩ =

∫
S2

∇ϕ · ∇ψ − κ(ψ · ν)(ϕ · ν) dσ −
∫
S2

(ϕ · ψ)
(
|∇m|2 − κ(m · ν)2

)
dσ.

where ϕ, ψ ∈ H1(S2, TmS2).

Since H is a quadratic form, it suffices to prove nonnegativity for H(ϕ) := δ2E(m)⟨ϕ, ϕ⟩.
For axisymmetric minimizers, the kernel consists of tangent fields associated to joint
rotations or changes in the profile θ:
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4. Local Minimality of Symmetric Minimizers

Proposition 4.1. Let κ > 24 and assume that m0 : S2 → S2 minimises E among all
axisymmetric fields of degree 0. Then H(ϕ) ≥ 0 for all smooth tangent fields ϕ ∈ Tm0S2.
Furthermore, the kernel of H consists exactly of those fields

ϕ =
d

dt
m0Rv(t)

∣∣∣
t=0

associated to a joint rotation around v ∈ R3 \ {0} as well as those of the form

ϕ(x, φ) = α(x)

cos θ(x) cosφ
cos θ(x) sinφ
− sin θ(x)

 with α ∈ C∞
0 ((0, π)),

d2

dt2
E(θ + tα)

∣∣∣
t=0

= 0,

which result from non-convexity of the reduced functional.

When proving Proposition 4.1, we may assume without loss of generality that m is a
type I Skyrmion, see figure 3.1, resulting in a lower minimizing profile θ that satisfies
θ(0) = θ(π) = π. Otherwise, there is a transformation of m0 to a type one axisymmetric
Skyrmion that carries over to the tangent fields. For example, consider the transfor-
mation m̄ : x 7→ −m(−x) and note that ϕ(x) ∈ Tm̄(x)S2 iff ϕ̄(x) = −ϕ(−x) ∈ Tm(x)S2.
Furthermore,

δ2E(m)⟨ϕ, ϕ⟩ = δ2E(m̄)⟨ϕ̄, ϕ̄)

and ϕ is associated to a joint rotation of m around v iff ϕ̄ is associated to a joint rotation
of m̄ around v. Finally,

ϕ(x, φ) = α(x)

cos θ cosφ
cos θ sinφ
− sin θ

 iff ϕ̄(x, φ) = α(π − x)

cos θ̄ cosφ
cos θ̄ sinφ
− sin θ̄


and E(θ + tα) = E(θ̄ − tα(π − ·)).

Due to this assumption, it is sufficient to consider tangent fields that are compactly
supported on S2 \ {ê3} because m ∼ ν near the south pole. This implies that a decom-
position of m on S2 \ {±ê3} via a moving frame can be naturally extended at −ê3 due
to convergence results discussed in the appendix A.1.

The proof will be structured according to the strategy in [32], starting out with smooth
tangent fields that have compact support on S2 \ {ê3}.

4.1.1. Non-Negativity for C∞
c (S2 \ {ê3};Tm0S2)

Away from the poles, tangent fields can be expressed in a moving frame consisting
of

m0 =

sin θ cosφ
sin θ sinφ

cos θ

 X =

 sinφ
− cosφ

0

 Y =

cos θ cosφ
cos θ sinφ
− sin θ

 .
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It holds that |m0| = |X| = |Y | = 1 and m0 · X = m0 · Y = X · Y = 0. Hence, X
and Y span Tm0S2 on S2 \ {±ê3} and ϕ ∈ C∞

c (S2 \ {±ê3};Tm0S2) can be expressed as
ϕ = u1X + u2Y where ui ∈ C∞

c (S2 \ {ê3}). Note that u1 = X · ϕ and u2 = Y · ϕ imply
a special structure of ui that guarantees continuity at ±ê3 where X,Y are degenerated.
See A.1 for more details. In particular, this justifies the choice of ϕ with ϕ(−ê3) ̸=
0.

Since {±ê3} is a zero set and irrelevant for integration, we can rewrite the Hessian in
spherical coordinates, employing ϕ = u1X + u2Y .

H(ϕ) =

∫
S2

(
|∇ϕ|2 − κ (ϕ · ν)2 − |ϕ|2

(
|∇m0|2 − κ (m0 · ν)2

)
dσ

=

2π∫
0

π∫
0

(∣∣∣∣∂u∂x
∣∣∣∣2 +

1

sin2 x

∣∣∣∣∂u∂φ
∣∣∣∣2 +

2 cos θ

sin2 x

(
u× ∂u

∂φ

)

+ u21f1(θ, x) + u22f2(θ, x)

)
sinx dx dφ

where

f1(θ, x) =

(
−(θ′)2 +

cos2 θ

sin2 x
+ κ cos2(θ − x)

)
f2(θ, x) =

(
cos(2θ)

sin2 x
+ κ cos(2θ − 2x)

)
.

Next, dependence of ui on the variables x, φ is separated by expanding ui as a Fourier
series in φ with coefficients aik, b

i
k ∈ C∞

c ((0, π]):

ui(x, φ) =
1

2
ai0(x) +

∞∑
k=1

(
aik(x) cos(kφ) + bik(x) sin(kφ)

)
, i = 1, 2,

Some computations give

H(m0)⟨ϕ, ϕ⟩ = 2πH0(a
1
0, a

2
0) + π

∞∑
k=1

(
Hk(a

1
k, b

2
k) + Hk(b

1
k,−a2k)

)
,

where

Hk(α, β) =

π∫
0

((
α′)2 +

(
β′
)2

+
k2

sin2 x

(
α2 + β2

)
+

4k cos θ

sin2 x
αβ + α2f1(θ, x) + β2f2(θ, x)

)
sinx dx

for α, β ∈ C∞
c (0, π] and k ∈ N0.

Conveniently, the Fourier modes Hk display the following monotonicity:
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Lemma 4.1. For fixed α, β and k ≥ 1, Hk(α, β) is strictly increasing in k unless
α = β = 0 in which case Hk(α, β) = 0 independently of k.

Proof. Assume α, β ̸= 0.

Hk+1(α, β) −Hk(α, β)

=

π∫
0

(
(k + 1)2

sinx
− k2

sinx

)(
α2 + β2

)
+

(
4(k + 1) cos θ

sinx
− 4k cos θ

sinx

)
αβ dx

=

π∫
0

2k + 1

sinx

(
α2 + β2

)
+

4 cos θ

sinx
αβ dx

>

π∫
0

(
2α2 + 2β2 − 4αβ

) 1

sinx
dx =

π∫
0

2(α− β)2

sinx
dx ≥ 0.

If α = 0 or β = 0 then the mixed term is identically 0 and the strict inequality becomes
an equality. In particular, if α · β = 0 but either α ̸= 0 or β ̸= 0 the last inequality is
strict and the difference is again strictly positive. If α = β = 0 however, this inequality
becomes an equality as well and the difference is 0. Plugging α = β = 0 into the
expression for Hk immediately gives Hk(0, 0) = 0 for all k.

Note: The special structure of ui implies α(π) = β(π) for Fourier coefficients so that
the last integral has finite value in these cases.

Non-negativity thus reduces to the problem of determining a signum for H0 and H1.
As the Lemmata below show, H1 > 0 unless α, β = 0 and positivity of H0 is equivalent to
convexity of E. In conclusion, the following statement holds:

Proposition 4.2. Let κ > 4 and ϕ ∈ C∞
c (S2 \ {ê3};Tm0S2). Then, H(ϕ) ≥ 0 and

H(ϕ) = 0 if and only if

ϕ(x, φ) = α(x)

cos θ cosφ
cos θ sinφ

sin θ

 with α ∈ C∞
c (0, π) and

d2

dt2
E(θ + tα)|t=0 = 0,

where θ is the polar profile associated to m0.

Before getting into non-negativity of H0 and H1, we consider the following general
Hardy-type decomposition, a variation of [23] :

Lemma 4.2. Consider the integral

b∫
a

sinx|u′(x)|2 + V (x)u(x)2 dx
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4.1. Non-Negativity of the Hessian

where u ∈ C∞(a, b) ∩ C([a, b]) and choose ψ : (a, b) → R smooth with ψ > 0 on (a, b)

such that u2 ψ
′

ψ sinx can be continuously extended to {a, b}. Then it holds that

b∫
a

V u2 dx =

b∫
a

ψ2V

(
u

ψ

)2

dx

and
b∫
a

sinx(u′)2 dx =

b∫
a

ψ2 sinx

((
u

ψ

)′)2

dx+

b∫
a

(
u

ψ

)2 (
− sinxψ′)′ ψ dx

+

(
lim
x↗π

− lim
x↘0

)
sinx

ψ′

ψ
u2.

The proof is elementary by partial integration. As an application of Lemma 4.2, we first
consider

H1(α, β) =

π∫
0

(
(α′)2 + (β′)2

)
sinx+

4 cos θ

sinx
αβ

+ α2

(
1

sinx
− (θ′)2 sinx+

cos2 θ

sinx
+ κ cos2(θ − x) sinx

)
+ β2

(
1

sinx
+

cos(2θ)

sinx
+ κ(2θ − 2x) sinx

)
dx.

Lemma 4.3. H1(α, β) > 0 for all α, β ∈ C∞
c ((0, π]) \ {0}.

Proof. We perform separate decompositions for the α and β terms of the functional.
First, apply Lemma 4.2 to the α part with ψ(x) = sin(θ−x)

sinx such that α = ξ sin(θ−x)
sinx .

Since α is compactly supported away from 0, the partial integration at 0 holds trivially.
Near π, we show that the limit of ψ′

ψ exists.

lim
x→π

ψ′(x)

ψ(x)
sinx = lim

x→π

sin2 x

sin(θ − x)

(
(θ′ − 1) cos(θ − x)

sinx
− sin(θ − x) cosx

sin2 x

)
= lim

x→π

(
− cosx+

sinx(θ′ − 1) cos(θ − x)

sin(θ − x)

)
= lim

x→π

(
− cosx+

cosx(θ′ − 1) cos(θ − x) + sinxθ′′ cos(θ − x)

(θ′ − 1) cos(θ − x)

− sinx(θ′ − 1)2 sin(θ − x)

(θ′ − 1) cos(θ − x)

)

= lim
x→π

(
sinx

θ′′

θ′ − 1
− sinx(θ′ − 1)

sin(θ − x)

cos(θ − x)

)
= lim

x→π
sinx

θ′′

θ′ − 1
.
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4. Local Minimality of Symmetric Minimizers

By Lemma 3.7, this final limit is 0. Hence, application of Lemma 4.2 yields, without
any contribution from the boundary term at π, the following simplification:

π∫
0

(α′)2 sinx+ α2

(
1

sinx
− (θ′)2 sinx+

cos2 θ

sinx
+ κ cos2(θ − x) sinx

)
dx

=

π∫
0

sin2(θ − x)

sinx
(ξ′)2

+ ξ2

(
sin(2θ − 2x)

2 sin2 x

(
−θ′′ sinx+ (θ′ − 1) cosx+

κ

2
sin(2θ − 2x) sinx

)
+ sin2(θ − x)

(
1

sin3 x
+

−(θ′)2

sinx
+

cos2 θ

sin3 x
+

(θ′ − x)2

sinx
− 1

sinx
− cos2 x

sin3 x

))
dx

⊛
=

π∫
0

sin2(θ − x)

sinx
(ξ′)2 + ξ2

(
sin(2θ − 2x)

2 sin2 x

(
(2θ′ − 1) cosx− sin(2θ)

2 sinx

)

+ sin2(θ − x)

(
−2θ′

sinx
+

1 + cos2 θ − cos2 x

sin3 x

))
dx

=

π∫
0

sin2(θ − x)

sinx
(ξ′)2 + ξ2

2 sin(θ − x) cos θ(θ′ − 1)

sin2 x
dx.

Note that the differential equation (3.1), i.e.

θ′′ sinx+ θ′ cosx =
sin(2θ)

2 sinx
+
κ

2
sin(2θ − 2x) sinx,

was employed in ⊛ as well as several trigonometric identities in the last equality.

For the terms with β, use ψ = θ′ − 1 and set η = β
ψ For the limit at π, we again have

lim
x→π

sinx
ψ′

ψ
= lim

x→π
sinx

θ′′

θ′ − 1
= 0

such that the contribution of the boundary terms in Lemma 4.2 is once more negligible.
Applying the decomposition of Lemma 4.2 to the β-terms results in the expression
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4.1. Non-Negativity of the Hessian

below.

π∫
0

(β′)2 sinx+ β2
(

1

sinx
+

cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

)
dx

=

π∫
0

(η′)2 sinx(1 − θ′)2 + η2

(
(1 − θ′)2

1 + cos(2θ)

sinx
dx

+ (1 − θ′)
(
cosxθ′′ + sinxθ′′′ + (1 − θ′)κ cos(2θ − 2x) sinx

))

⊖
=

π∫
0

(η′)2 sinx(1 − θ′)2 + η2(1 − θ′)

(
sinxθ′ +

1 − θ′

sinx
− sin(2θ) cosx

2 sin2 x

+
cos(2θ)

sinx
+
(κ

2
sin(2θ − 2x) sinx− sinxθ′′

) cosx

sinx

)
dx

⊛
=

π∫
0

(η′)2 sinx(1 − θ′)2 + η2(1 − θ′)

(
sinxθ′ +

1 − θ′

sinx

+
cos2 x

sinx
θ′ − sin(2θ) cosx

sin2 x
+

cos(2θ)

sinx

)
dx

=

π∫
0

(η′)2 sinx(1 − θ′)2 + η2(1 − θ′)

(
−2

sin(θ − x)

sin2 x
cos θ

)
dx.

The differential equation was again applied in ⊛, its derivative in ⊖.

Recalling αβ = ξη sin(θ−x)(1−θ′)
sinx and collecting terms, the overall result of the decompo-

sition is given by

H1(α, β)

=

π∫
0

sin2(θ − x)

sinx
(ξ′)2 + (1 − θ′)2 sinx(η′)2 − 2

sin(θ − x)(1 − θ′) cos θ

sin2 x
(ξ − η)2 dx

=: H̃1(ξ, η).

With cos θ taking both positive and negative values, further analysis becomes necessary
for the last term. Using

−2 sin(θ − x)(1 − θ′) cos θ = −2 sin(θ − x)(1 − θ′) (cos(θ − x) cosx− sin(θ − x) sinx)

=

(
d

dx
sin2(θ − x)

)
cosx+ 2 sin2(θ − x)(1 − θ′) sinx,
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4. Local Minimality of Symmetric Minimizers

integration by parts leads to

H̃1(ξ, η) =

π∫
0

sin2(θ − x)

sinx
(ξ′)2 + (1 − θ′)2 sinx(η′)2

− sin2(θ − x)(ξ − η)2
(
−1 − cos2 x

sin3 x

)
+ 2

sin2(θ − x)(1 − θ′)

sinx
(ξ − η)2

− 2
sin2(θ − x) cosx

sin2 x
ξ′(ξ − η) + 2

sin2(θ − x) cosx

sin2 x
η′(ξ − η) dx

=

π∫
0

(
sin(θ − x)√

sinx
ξ′ − sin(θ − x) cosx

√
sinx

3 (ξ − η)

)2

+

(
sin(θ − x)

√
1 + 2 sinx(1 − θ′)
√

sinx
3 (ξ − η) +

sin(θ − x) cosx√
sinx(1 + 2 sinx(1 − θ′)

η′

)2

+

(
(1 − θ′)2 sinx− sin2(θ − x) cos2 x

sinx(1 + 2 sinx(1 − θ′)

)
(η′)2 dx.

It remains to show that (1 − θ′)2 sinx − sin2(θ−x) cos2 x
sinx+2 sin2 x(1−θ′) is non-negative. Since the

denominator is strictly positive on (0, π), it suffices to consider the numerator

(1 − θ′)2 sin2 x− sin2(θ − x) cos2 x+ 2 sin3 x(1 − θ′)3.

To do so, let h(x) = (1 − θ′)2 sin2 x − sin2(θ − x). Then h(0) = h(π) = 0 and h(x) is
strictly smaller than (1−θ′)2 sin2 x−sin2(θ−x) cos2 x+2 sin3 x(1−θ′)3 since | cosx| < 1
and θ − id is monotonously decreasing. Furthermore,

h′(x) = −2θ′′(1 − θ′) sin2 x+ (1 − θ′)2 sin(2x) + (1 − θ′) sin(2θ − 2x)

= (1 − θ′)
((
−2θ′′ sinx− 2θ′ cosx

)
sinx+ sin(2x) + sin(2θ − 2x)

)
⊛
= (1 − θ′)

(
− sin(2θ) − κ sin(2θ − 2x) sin2 x+ sin(2x) + sin(2θ − 2x)

)
= 2(1 − θ′) sin(θ − x) sinx

(
− cos(θ − x)(κ− 2) sinx+ cosx sin(θ − x)

)
,

where equation (3.1) has once more been employed in ⊛, followed by some trigonometric
identities.

Since sin(θ−x) > 0 on (0, π), the last expression for the derivative implies that h′(x) = 0
if and only if cot(θ−x)(κ−2) = cotx where the right hand side is increasing for x ∈ (0, π)
and the left hand side is decreasing in x, due to the monotonicity of θ − id. Therefore,
h′ has only one zero, h has only one extremum in (0, π) and h(x) ̸= 0 = h(0) = h(π)
for all x ∈ (0, π). Taking into account that h′(x) > 0 for very small x and κ > 2, it
follows that h(x) > 0 for all x ∈ (0, π) and therefore the factor of (η′)2 is non-negative,
resulting in H̃1(ξ, η) ≥ 0 for all ξ, η ∈ C∞

c ((0, π]).

H̃1, as a sum of three squares, can only be 0 if all three terms are identically 0. From
the last term we can then deduce η′ ≡ 0 and therefore, from the second term and since
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4.1. Non-Negativity of the Hessian

sin(θ − x) > 0, we have ξ − η ≡ 0 which implies ξ = η = const. From the boundary
data it follows that ξ = η ≡ 0.

We next prove non-negativity of H0 which is given by

H0(α, β) =

π∫
0

(α′)2 sinx+ α2

(
−(θ′)2 sinx+

cos2 θ

sinx
+ κ cos2(θ − x) sinx

)

+ (β′)2 sinx+ β2
(

cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

)
dx.

However, in contrast to H1, this requires stronger assumptions on α, β, which hold true
for the relevant α, β.

Lemma 4.4. Let α = a10 and β = a20 be the zeroth-order Fourier coefficients of u1 = ϕ·X
and u2 = ϕ ·Y , respectively. Then the limits of α and β at 0, π exist and are equal to 0.

For the proof, we refer to the Lemma A.1 in the appendix, where the limits of Fourier
coefficients at the poles are discussed in general. We now proceed to proving non-
negativity of H0.

Lemma 4.5. Let κ > 24. Then H0(α, β) ≥ 0 for all α, β ∈ C∞(0, π) such that
α(0) = β(0) = 0 and α(π) = β(π) = 0. In particular,

π∫
0

(α′)2 sinx+ α2

(
−(θ′)2 sinx+

cos2 θ

sinx
+ κ cos2(θ − x) sinx

)
> 0

for all such α and

π∫
0

(β′)2 sinx+ β2
(

cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

)
dx ≥ 0

for all such β with equality if and only if d2

dt2
E(θ + tβ)|t=0 = 0.

Proof. The first statement is once more proven by applying Lemma 4.2. First, assume
that α is compactly supported in (0, π) and consider ξ with α(x) = ξ(x) sin(θ−x). Due
to the compact support, no boundary terms have to be considered.

π∫
0

sinx|α′|2 + α2

(
sinx

(
−(θ′)2 +

cos2 θ

sin2 x
+ κ cos2(θ − x)

))

=

π∫
0

sin2(θ − x) sinx(ξ′)2 + ξ2

(
sinx(θ′ − 1)2 sin2(θ − x)
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− cosx(θ′ − 1)
sin(2θ − 2x)

2
− sinxθ′′

sin(2θ − 2x)

2

+ sin2(θ − x)

(
− sinx(θ′)2 +

cos2(θ)

sinx

)
+
κ

4
sin2(2θ − 2x) sinx

)
dx

⊛
=

π∫
0

sin2(θ − x) sinx(ξ′)2

+ ξ2

(
sin(2θ − 2x)

2

(
− cosx(θ′ − 1) − sinxθ′′ + θ′′ sinx+ θ′ cosx− sin(2θ

2 sinx

)

+ sin2(θ − x)

(
(θ′ − 1)2 sinx− (θ′)2 sinx+

cos2(θ)

sinx

))
dx

=

π∫
0

sin2(θ − x) sinx(ξ′)2 + ξ2 sin(θ − x)

(
cos(θ − x)

(
cosx− sin(2θ)

2 sinx

)

+ sin2(θ − x)

(
cos2 θ

sinx
+ sinx− 2θ′ sinx

))
dx

=

π∫
0

sin2(θ − x) sinx
(
(ξ′)2 + 2ξ2(1 − θ′)

)
dx

Note that the differential equation was again applied in ⊛. For the last step, the identity

cos(θ − x)

(
cosx− sin(2θ)

2 sinx

)
= sin(θ − x)

(
sinx− cos2 θ

sinx

)

was used. It easily follows from trigonometric identities.

For κ > 24, Proposition 3.1 implies that 1 − θ′ > 0 and therefore the integrand is non-
negative for any ξ. Furthermore, it is zero if and only if ξ ≡ 0 and therefore α ≡ 0, due
to the boundary restriction.

The non-negativity of the integrand ensures that this property carries over to the limiting
α ∈ C∞

0 (0, π).

For the second statement, recall the reduced functional E(θ) and the minimality of
θ. These imply that for µ, ν ∈ C∞

0 (0, π) and variations θs = θ + sµ + tν, the second
derivative

d2

ds dt
E(θst)

∣∣∣
s=t=0
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4.1. Non-Negativity of the Hessian

is non-negative. Computing it, we find

d2

dsdt
E(θst)|s=t=0 =

d

ds

π∫
0

2ν ′θ′st sinx+
ν sin(2θst

sinx
+ κ sin(2θst − 2x)ν sinx dx

∣∣∣
s=t=0

= 2

π∫
0

ν ′µ′ sinx+
cos(2θ)

sinx
νµ+ κ cos(2θ − 2x) sinxνµ dx

= H(µ, ν)

and therefore, choosing ν = µ = β ∈ C∞
0 ((0, π)),

π∫
0

(β′)2 sinx+ β2
(

cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

)
dx =

1

2
H(β, β) =:

1

2
H(β) ≥ 0

for all β ∈ C∞
0 ((0, π)). However, minimality alone can not imply a strict inequality

for β ̸= 0 and so the problem of degeneracy for H is reduced to whether or not the
Hessian H of the reduced functional is degenerate. See Chapter 6 for a discussion on
this topic.

By performing the proof of Proposition 4.2 again under different assumptions, we can
complete the proof of Proposition 3.1 by giving the missing statement about the range
of minimizing profiles.

Corollary 4.1. Let κ > 24 and assume that m0 : S2 → S2 minimizes E among all
axisymmetric fields. Then the corresponding minimizing profile fulfils θ < π for all x if
it is a lower minimizing profile and θ > π if it is an upper minimizing profile.

Proof. Without loss of generality, consider a lower minimizing profile θ with θ(π2 ) < π.
If not, θ̄ fulfills this claim.

In Lemma 3.7, the asymptotics of θ for x → π were analysed based only on the fact
that 0 < θ′ < 1 on an interval (π − ε, π). If θ > π was true for any x ∈ (0, π) then it
would follow that θ > π on (0, p) ⊂ (0, π2 ) and θ < π on (p, π). In particular, θ would
have a unique maximum at xmax ∈ (0, p) and 0 < θ′ < 1 on (0, xmax), see Lemma 3.4.
Thus the same techniques as in Lemma 3.7 could be applied to θ̄ to show that

lim
x↘0

sinx
θ′′

1 − θ′
= − lim

x↗π
sinx

θ̄′′

1 − θ̄′
= 0.

Therefore, if p > 0, the assumptions of Proposition 4.2 above could be weakened to
allow any ϕ ∈ C∞(S2;Tm0S2) because both boundary terms in the partial integration
for H1 would be controlled.
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4. Local Minimality of Symmetric Minimizers

This would mean that H(ϕ) = 0 only if ϕ = αY for some α ∈ C∞
0 ((0, π)) with H(α) = 0.

In particular, given v ∈ R3\{0}, the tangent field associated to the joint rotation around
v,

d

dt
m0Rv(t)|t=0,

which can be expressed in the moving frame as described below in Lemma 4.8, would
not be an element of the kernel. But t 7→ E(m0Rv(t)) is constant so this is false. Thus
the assumption of θ > π on (0, p) ̸= ∅ must have been wrong.

Since θ ≡ π does not solve the equation, the profile has to fulfil θ < π on (0, π).

4.1.2. Non-Negativity for C∞(S2;Tm0S2)

The nonnegativity result for H can be lifted from the compactly supported case to
general tangent fields ϕ ∈ H1(S2;Tm0S2). In a first step, fields with ϕ(ê3) = 0 are
considered.

Lemma 4.6. Let ϕ ∈ H1(S2;Tm0S2) with ϕ(ê3) = 0 and assume κ > 24. Then H(ϕ) ≥
0. Moreover, H(ϕ) = 0 implies that ϕ is axisymmetric and

ϕ(x, φ) = α(x)

cos θ cosφ
cos θ sinφ
− sin θ

 with α ∈ C∞
0 ((0, π)), H(α) = 0.

Proof. Given ε > 0, consider a smoothing cut-off function ρε : [0, π] → [0, 1] with ρε ≡ 0
on [0, ε], ρε ≡ 1 on [2ε, π], and |ρ′ε| ≤ 2

ε . Set ϕε(x, φ) = ρε(x)ϕ(x, φ). Obviously ϕε → ϕ
pointwisely on S2. Furthermore, for (x, φ) ∈ S2 \ {±ê3},

∫
S2

|∇ϕε|2 dS =

2π∫
0

π∫
0

∣∣∣∣∂ϕε∂x

∣∣∣∣2 +
1

sin2 x

∣∣∣∣∂ϕε∂φ

∣∣∣∣2 dx dφ

=

∫
S2

|∇ϕ|2 dx+

2π∫
0

π∫
0

(
2ϕϕxρερε

′ + ϕ2(ρ′)2
)

sinx dx dφ.

Taking into account that ρε is constant on [0, ε] ∪ [2ε, π], this implies

H(ϕε) =

∫
S2

ρ2ε
(
|∇ϕ|2 − κ(ϕ · ν)2 − |ϕ|2

(
|∇m0|2 − κ(m0 · ν)2

))
dS

+

2π∫
0

 2ε∫
ε

(
2ϕ∂xϕρερ

′
ε + ϕ2(ρ′ε)

2
)

sinx dx


−→H(ϕ) as ε→ 0
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where the first term converges due to Lebesgue and the pointwise convergence ρε → 1
almost everywhere while the second term converges to 0 due to

2ε∫
ε

(
2ϕϕxρερ

′
ε + |ϕ|2(ρ′ε|2

)
sinx dx ≤

2ε∫
ε

2ε

(
2 sup
[ε,2ε]

(ϕϕx)
2

ε
+ (sup

[0,2ε]
(ϕ))2

4

ε2

)
dx

≤

(
8 sup
[0,1]

(ϕϕx) + (sup
[ε,2ε]

(ϕ))2
8

ε

)
(2ε− ε)

and limϵ→0 sup[ε,2ε](ϕ) = 0.

For every ε > 0, ϕε is compactly supported in (0, π) and smooth. Therefore H(ϕε) ≥ 0
by Proposition 4.2, implying H(ϕ) ≥ 0 .

Now assume that H(ϕ) = 0. Then H(ϕε) → 0 as ε→ 0. Decomposing ϕε = ρεϕ via the
moving frame and then into Fourier modes, the choice of ρε implies that (aik)ε = ρεa

i
k

and (bik)ε = ρεb
i
k for aik, b

i
k ∈ C∞((0, π) for all k ∈ N0 and i = 1, 2. Since Hk ≥ 0 for all

k they all individually converge to 0. For k = 0 and again considering the α and β part
separately, this implies

π∫
0

2(ρεξ)
2 sin2(θ − x) sinx dx =

π∫
0

2ρ2ε(a
1
0)

2 sinx(1 − θ′) dx→ 0 as ε→ 0.

On the other hand the above expression is increasing in ε and non-negative so the
integral must be identically 0 and therefore a10 = 0. For the β part where β = a20, note
that

|(β′ε)2 − (β′)2ρ2ε| = |2ββ′ρερ′ε + β2(ρ′ε)
2| ≤

(
sup
[ε,2ε]

(ββ′)
2

ε
+ sup

[ε,2ε]
(β)2

4

ε2

)
χ[ε,2ε].

As for H0, this implies , using dominated convergence and a similar reasoning as above,
that

0 = lim
ε→0

π∫
0

(βε)
2 sinx+ (βε)

2

(
cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

)
dx

= lim
ε→0

π∫
0

ρ2ε

(
(β′)2 sinx+ β2

(
cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

))
dx

+

π∫
0

(
2ββ′ρερ

′
ε + β2(ρ′ε)

2
)

sinx dx

=

π∫
0

(β′)2 sinx+ β2
(

cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

)
dx

= H(β).
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4. Local Minimality of Symmetric Minimizers

Thus, while a20 does not have to be 0, we find that a20 is in the kernel of the Hessian for
the reduced energy.

For H1, recall that L2 convergence implies convergence in measure and also that

H̃1(ξ, η) =

∥∥∥∥∥sin(θ − x)√
sinx

ξ′ − sin(θ − x) cosx
√

sinx
3 (ξ − η)

∥∥∥∥∥
2

L2

+

∥∥∥∥∥sin(θ − x)
√

1 + 2 sinx(1 − θ′)
√

sinx
3 (ξ − η) +

sin(θ − x) cosx√
sinx(1 + 2 sinx(1 − θ′))

η′

∥∥∥∥∥
2

L2

+

∥∥∥∥∥
(

(1 − θ′)2 sinx− sin2(θ − x) cos2 x

sinx(1 + 2 sinx(1 − θ′)

) 1
2

(η′)

∥∥∥∥∥
2

L2

.

From the third norm we can infer that η converges in measure to a constant while the
second and first norm imply that the same holds true for ξ and that the constants are
identical. Due to

ηε = ρε
β

1 − θ′
and lim

x→π

β(x)

1 − θ′(x)
=

β(π)

1 − θ′(π)
,

this constant must be identical to 0 = β(π), which follows from limx→π ϕ(x, φ) = 0 for
all φ and Lemma A.1.

For Hk where k ≥ 1 let αε = ρεα, βε = ρεβ correspond to k-th Fourier coefficients of
ϕε. Then

0 = lim
ε→0

Hk(αε, βε) ≥ lim
ε→0

H1(αε, βε) = 0

so H1(αε, βε) converges to 0 and thus αε, βε are identically 0.

All together we have ϕ = u1X + u1Y = 0 + a20Y where the zero-order coefficient of u2,
a20 ∈ C∞

0 (0, π), fulfills H(a20) = 0.

Before extending the result to general ϕ ∈ H1(S2;Tm0S2) we show that the tangent fields
associated to joint rotations span the tangent space of m0 at ê3.

Definition 4. For v ∈ R3 \ {0}, the field

ϕv =
d

dt
mRv(t)|t=0

is called the tangent field associated to the joint rotation around v. For v = ê1 and
v = ê2, set

ϕ(1) = ϕê1 and ϕ(2) = ϕê2 .

Note that ϕv = 0 for vectors v parallel to the symmetry axis ê3. For other directions,
the fields ϕ(1) and ϕ(2) have the following property:
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Lemma 4.7. The vectors ϕ(1)(ê3) and ϕ(2)(ê3) form a basis of Tm0(ê3)S2. Moreover,
for any v ∈ R3 \ {0}, the tangent field associated to the joint rotation around v is given
by

ϕv = v1ϕ
(1) + v2ϕ

(2).

Proof. In general, for x ∈ S2, direct computation gives

ϕv(x) = m0(x) × v +Dm0(x)⟨v × x⟩.

Since both terms are linear in v, this directly implies the representation of v in terms of
ϕ(1) and ϕ(2). In the special case of v = ê1, x = ê3 with m0(ê3) = −ê3, the expression
yields

ϕ(1)(ê3) = −ê2 −
∂

∂ê2
m0 = −ê2

(
1 +

∂

∂ê2
m2(ê3)

)
since ∂

∂ê2
m1 = ∂

∂ê1
m2 = 0 and ∂

∂ê1
m3 = ∂

∂ê2
m3 = 0 for symmetry reasons. To compute

the directional derivative, consider the curve γ(t) = (0, t,
√

1 − t2)T for t ∈ (−ε, ε) with
γ(0) = ê3 and γ̇(0) = ê2. Since m0 is differentiable at ê3, this implies

∂

∂ê2
m2 =

d

dt
m2(γ(t))|t=0.

Furthermore, γ(t) = Ψ(arcsin(t), 3π2 ) for t < 0 and γ(t) = Ψ(arcsin(t), π2 ) for t > 0.
While the spherical coordinates can not be used to compute the partial derivative at
ê3, this together with the special form of m0 and θ < π implies m2(γ(t)) < 0 for t < 0
and m2(γ(t)) > 0 for t > 0. Thus,

∂

∂ê2
m2(ê3) ≥ 0

and ϕ(1)(ê3) is a non-zero multiple of ê2 Similar calculations yield

ϕ(2)(ê) = ê1

(
1 +

∂

∂ê1
m1

)
and ∂

∂ê1
m1 ≥ 0, using the curve γ(t) = (t, 0,

√
1 − t2)T .

Away from the poles tangential fields can be expressed by means of the moving frame
X, Y defined above. While this is not relevant for the proof, it gives a motivation for
the meaning of constant ξ, η in the expansion of H̃1.

Lemma 4.8. Let v ∈ R3 \ {0} be an arbitrary axis of rotation and ϕv the tangent field
associated to v Then for (x, φ) ∈ S2 \ {±ê3},

ϕv(x, φ) = −sin(θ − x)

sinx
(v1 cosφ− v2 sinφ)X + (θ′ − 1) (−v1 sinφ+ v2 cosφ)Y

and for type I Skyrmions, this expression is continuous at the south pole −ê3 .
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4. Local Minimality of Symmetric Minimizers

Note: Above expression for ϕv yields

H(ϕv) = H̃1(−v1,−v1) + H̃1(−v2,−v2),

i.e. constant ξ and η.

Proof. The representation of ϕv in spherical coordinates follows with some computations
from the general form in Lemma 4.7. For the continuity, set

u1 = −sin(θ − x)

sinx
(v1 cosφ− v2 sinφ) and u2 = (θ′ − 1)(−v1 sinφ+ v2 cosφ).

Then compute

u1X1 + u2Y1 = v1 sinφ cosφ

(
sin(θ − x)

sinx
− (θ′ − 1) cos θ

)
+ v2

(
sin2 φ

sin(θ − x)

sinx
+ cos2 φ(θ′ − 1) cos θ

)
u1X2 + u2Y2 = v2 sinφ cosφ

(
sin(θ − x)

sinx
+ (θ′ − 1) cos θ

)
+ v1

(
− cos2 φ

sin(θ − x)

sinx
− sin2 φ(θ′ − 1) cos θ

)
u1X3 + u2Y3 = − sin θ cos θ(θ′ − 1)(−v1 sinφ+ v2 cosφ).

At ê3, a Skyrmion forms and nothing is known about the behaviour of θ′ as x → 0.
In contrast, existence of the limit would lead to a similar contradiction as the one in
Corollary 4.1. As x → π, on the other hand, existence of the limit θ′(π) has been
proven. By linearity of the limit, the third component converges to 0. For the first two
components, due to

lim
x→π

sin(θ − x)

sinx
= lim

x→π
(θ′ − 1)

cos(θ − x)

cosx
= lim

x→π
(θ′ − 1) (cos θ + sin θ sinx)

= lim
x→π

(θ′ − 1) cos θ,

the first line in each component converges to 0 while the second lines converge to
−v2(θ′(π) − 1) = −v2 a2 and v1(θ

′(π) − 1) = v1
a
2 , respectively, as x → π. Compar-

ing these to the expression of ϕ in Lemma 4.7 confirms the continuity.

From the expression of ϕv in spherical coordinates, we can easily deduce that tangent
fields associated to joint rotations are not invariant under joint rotations around ê3.
Instead, this results in a shift of the rotation axis.

Corollary 4.2. For v ∈ R3 \ {0} and R ∈ SO(3)ê3, it holds that

(ϕv)R = ϕR−1v.
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4.2. Minimality

Proof. In spherical coordinates, let R ∈ SO(3)ê3 denote a rotation around ê3 with angle
α. Then RΨ(x, φ) = Ψ(x, φ+α) and XR = X, YR = Y on S2 \ {±ê3}. For ϕv, we have

(ϕv)R (Ψ(x, φ)) = −sin(θ − x)

sinx
(v1 cos(φ+ α) − v2 sin(φ− α))XR

+ (θ′ − 1) (−v1 sin(φ− α) + v2 cos(φ+ α))YR

= −sin(θ − x)

sinx
(ṽ1 cosφ− ṽ2 sinφ)X + (θ′ − 1) (−ṽ1 sinφ+ ṽ2 cosφ)Y

where ṽ1 = (v1 cosα+ v2 sinα), ṽ2 = −v1 sinα+ v2 cosα and therefore ṽ = R−1v.

Combining the previous results for H with the knowledge about Tm0(ê3)S2, we can now
prove nonnegativity of the Hessian for arbitrary tangent fields.

Proof of Proposition 4.1. Given ϕ ∈ Tm0S2, note that 0 = ϕ(ê3) · m0(ê3) = −ϕ3(ê3).
Set

ϕ̃ = ϕ− ϕ1(ê3)

(
1 +

∂

∂ê1
m1(ê3)

)−1

ϕ(2) + ϕ2(ê3)

(
1 +

∂

∂ê2
m2(ê3)

)−1

ϕ(1).

Then ϕ̃(ê3) = 0 and Lemma 4.6 implies H(ϕ̃) ≥ 0, hence

H(ϕ) = H(ϕ̃) − 0 ≥ 0

and if H(ϕ) = 0 then H(ϕ̃) = 0 and again by Lemma 4.6, ϕ̃(x, φ) = α(x)Y for some
α ∈ H1

0 ([0, π]) so that ϕ = ϕv + α(x)Y for

v =


−ϕ2(ê3)

(
1 + ∂

∂ê2
m2(ê3)

)−1

ϕ1(ê3)
(

1 + ∂
∂ê1

m1(ê3)
)−1

0

 .

4.2. Minimality

We will now assume that E is strictly convex and infer minimality of m0. This is
based on an identity for the energy difference where H is extended to a functional H̃ on
H1(S2;R3).

Lemma 4.9. For a critical point m0 of E and m ∈ H1(S2; S2),

E(m) − E(m0) =
1

2
H̃(m−m0).
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4. Local Minimality of Symmetric Minimizers

Proof. Simple computations give

2 (E(m) − E(m0)) =

∫
S2

|∇m|2 − |∇m0|2 + κ
(
(m0 · ν)2 − (m · ν)2

)
dσ

=

∫
S2

|∇(m−m0)|2 − κ ((m−m0) · ν)2 dσ

+ 2

∫
S2

∇m0 · (∇(m−m0)) − κ(m0 · ν) ((m−m0) · ν) dσ.

The first integral is equal to the first term of H and needs no further computations.
For the second integral, criticality of m0, pointwisely paired with the vector identity
a · b = (a · b)|m0|2 = (a×m0) · (b×m0) + (a ·m0)(b ·m0) gives∫

S2

∇m0 · (∇(m−m0)) − κ(m0 · ν)(m−m0) · ν dσ

=

∫
S2

(−∆m0 − κ(m0 · ν)ν) (m−m0) dσ

=

∫
S2

(−∆m0 − κ(m0 · ν)ν) ·m0(m−m0) ·m0 dσ

=

∫
S2

(
|∇m0|2 − κ(m0 · ν)2

) (
|m−m0|2 + (m−m0) · (m + m0)

)
dσ.

Since the last term vanishes identically due to |m|2 − |m0|2 = 1 − 1 = 0, insertion into
the first calculation proves the statement.

Expressing the energy difference in terms of the Hessian is convenient because the Hes-
sian is coercive on the level of tangent fields orthogonal to ker(H).

Lemma 4.10. There exists λ > 0 such that

H(ϕ) ≥ λ∥ϕ∥2H1

for all ϕ ∈ H1(S2, Tm0S2) with ϕ ⊥ ker(H).

Here, orthogonality is understood with respect to the L2(S2)-scalar product.

Proof. Consider

I = inf
{
H(ϕ) : ϕ ∈ H1(S2, Tm0S2), ϕ ⊥ ker(H), ∥ϕ∥L2 = 1

}
.

76



4.2. Minimality

By proposition 4.1, I is non-negative. Assume I = 0. Then, there exists a sequence
(ϕk)k∈N with

∥ϕk∥L2 = 1, H(ϕk) ≤
1

k
and ϕk ⊥ ker(H).

Due to H ≲ ∥ϕ∥2H1 , the sequence is uniformly bounded in H1 and therefore admits a
weakly convergent subsequence, strongly convergent in L2 such that ϕ = limk→∞ ϕk
satisfies ∥ϕ∥L2 = 1. On the other hand,

0 ≤ H(ϕ) ≤ lim inf
k→∞

H(ϕk) = 0

and therefore ϕ ∈ ker(H). But

⟨ϕ, ϕ(i)⟩L2 = lim
k→∞

⟨ϕk, ϕ(i)⟩L2 = 0

due to the strong L2-convergence such that ϕ ∈ ker(H) ∪ ker(H)⊥ = {0}. This contra-
dicts ∥ϕ∥L2 = 1.

Combining the lower bound with the estimate

H(ϕ) = ∥ϕ∥2H1 −
∫
S2

(
1 + |∇m0|2 − κ(m0 · ν)2

)
+ κ(ϕ · ν)2 dσ

≥ ∥ϕ∥2H1 − µ(m0, κ)∥ϕ∥2L2 ,

we arrive at

H(ϕ) ≥ λ∥ϕ∥2H1 + (−λµ+ (1 − λ)I) = λ∥ϕ∥2H1

for λ = I
µ+I .

The kernel of H contains of fields associated to joint rotations. Such variations due not
affect the energy, implying that E(mR) − E(m0) = E(m) − E(m0) for all R ∈ SO(3).
Before applying the result for H to a decomposition of m − m0 into tangential and
normal parts, we therefore choose an optimal rotation of m such that mR is orthogonal
to the kernel of H.

Lemma 4.11. There exist ρ > 0 such that for all m ∈ H1(S2;S2) with ∥m−m0∥H1 < ρ,
there exists R ∈ SO(3) such that ⟨mR −m0, ϕ

(i)⟩ = 0 for i = 1, 2.

Proof. Given m ∈ H1(S2;S2), consider the mapping

SO(3) ∋ R 7→ ⟨mR −m0, ϕ
(i)⟩L2(S2) for i = 1, 2.

We want to use the implicit function Theorem to find a suitable R for any m such
that the mR − m0 is L2-orthogonal on the kernel of H. Since SO(3) is too large
for the application of the Theorem and given the symmetry of m0, we will consider
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4. Local Minimality of Symmetric Minimizers

special representative of the equivalence classes in SO(3)/SO(3)ê3 . Note that for any
A ∈ SO(3)ê3 , the ê3-equivariance of m0 implies

⟨mRA −m0, ϕ
(i)⟩ = ⟨mRA −m0A, ϕ

(i)⟩ = ⟨mR −m0, ϕ
(i)
A−1⟩ = ⟨mR −m0, ϕv⟩

for v = Aêi. Thus, mRA−m0 is orthogonal on the kernel of H iff mR−m0 is orthogonal
on it. Instead of working with the full equivalence classes, note that

S2 ∼= SO(3)/SO(2) ∼= SO(3)/SO(3)ê3

where for ν ∈ S2, a representative of [R(ν)] is given by | | |
τ1 τ2 ν
| | |

 ∈ SO(3)

with arbitrary τ1, τ2 ∈ TνS2 and τ1 ⊥ τ2. To see this, choose A ∈ SO(2) arbitrary.

Then (τ1 τ2 ν)

(
A

1

)
= (τ̃1 τ̃2 ν) so that the structure is unchanged. Furthermore, any

orthogonal pair of τ1, τ2 complementing ν to a basis can be found via rotation.

Expressing ν in stereographic coordinates, τ1 and τ2 may be chosen in such a way that
differentiability near 0 with π−1(0) = ê3 is ensured. For example, one might take

ν =


2y1

1+|y|2
2y2

1+|y|2
1−|y|2
1+|y|2

 , τ1 =
1√

1 + 4y21 − 2|y|2 + 4|y|4

1 − |y|2
0

−y1



and τ2 = ν × τ1 =
1√

1 + 4y21 − 2|y|2 + 4|y|4(1 + |y|2)

 −4y1y2
(1 − |y|2)2 + 4y21
−2y2(1 − |y|2)

 .

Having found a way to express the desired R as a point in R2, we are now in a place to
consider the mapping

F : R2 ×H1(S2;R3) → R2, (y, ξ) 7→
∑
i=1,2

⟨ξR(y) + m0R(y) −m0, ϕ
(i)⟩êi

and apply the infinite dimensional implicit function Theorem [59, Theorem 4.E] in
the vicinity of (0, 0). Recall that H1(S2;R3) is a Banach space. Here, ξ represents
m−m0 ∈ H1(S2;R3) with

⟨ξR(y) + m0R(y) −m0, ϕ
(i)⟩ = ⟨mR(y) −m0, ϕ

(i)⟩

such that above calculations still apply.

In order to differentiate F at (0, 0), note that R(y) is differentiable for |y| < 1 with

∂

∂y1
R(y)|(0,0) =

d

dt
R2(t)|t=0 and

∂

∂y2
R(y)|(0,0) =

d

dt
R1(t)|t=0.
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4.2. Minimality

Therefore, d
dyi
Fj |(y,ξ)=(0,0) = ⟨ϕ(i), ϕ(j)⟩L2(S2;R3). By Cauchy-Schwarz, the Jacobian

⟨ϕ(1), ϕ(1)⟩⟨ϕ(2), ϕ(2)⟩ − ⟨ϕ(1), ϕ(2)⟩2 ≥ 0

is 0 if and only if ϕ(1) and ϕ(2) are linearly dependent. But since ϕ(1)(ê3) and ϕ(2)(ê3)
are orthogonal for a axisymmetric minimizer m0, this can not be the case and it follows
that det ∂F∂y |(y,ξ)=(0,0) > 0.

The implicit function theorem now ensures the existence of ρ > 0 and a C1-function
g : Bρ(0) ⊂ H1(S2;R3) → BR(0) ⊂ R2, ξ 7→ y(ξ) such that F (y(ξ), ξ) = F (0, 0) = 0 for
all ξ ∈ Bρ(0) and where y(ξ) is the only solution of this equation.

Uniqueness and existence of y correspond to existence of a unique coset [R] = [R(y(ξ)] ∈
SO(3)/SO(2) for every ξ ∈ Bρ(0) and thus for every m ∈ Bρ(m0) such that

⟨mP −m0, ϕ
(i)⟩ = 0 for all P ∈ [R(y(ξ)] and i = 1, 2.

Aiming to employ the energy identity for E(m)−E(m0) = E(mR)−E(m0), we show that
the distance of m from m0 is not heavily affected by the joint rotation.

Lemma 4.12. There exists a constant c such that

∥mR −m0∥H1(S2) < c∥m−m0∥H1(S2) < cρ

for the jointly rotated field from Lemma 4.11.

Proof. In a first step, the implicit function theorem which was employed above to find
R = R(y) = R(y(ξ)) provides an estimate for |y(ξ)|, using

|y(ξ)| = |y(ξ) − y(0) −Dy(0)⟨ξ⟩| + |Dy(0)⟨ξ⟩| ≤ c∥ξ∥H1 +

∣∣∣∣∣
(
∂F

∂y
|(0,0)

)−1

⟨∂F
∂ξ

⟨ξ⟩⟩

∣∣∣∣∣ .
With F (0, ·) : ξ 7→

∑
i=1,2⟨ξ, ϕ(i)⟩L2 êi and ∂F

∂y |(0,0) =
∑

⟨ϕ(i), ϕ(j)⟩L2 êi ⊗ êj , the second

term can be estimated by c(ϕ(i))∥ξ∥L2 and in total, one finds |y(ξ)| ≤ c∥ξ∥H1 .

In a second step, we estimate ∥mR − m0∥H1 in terms of |y| and thus in terms of
∥m−m0∥H1 . Simple computations show |R(y)v − v| ≤ c|y||v| for a universal constant
c and any v ∈ R3. This can be employed to conclude

∥mR−m0∥H1 ≤ ∥mR−m0R∥H1 +∥m0R−m0∥H1 ≤ ∥m−m0∥H1 +c|y| ≤ c∥m−m0∥H1
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4. Local Minimality of Symmetric Minimizers

where the details of the last two estimates are given in the following. Due to the
orthogonality of R(y), the chain rule implies ∥ξR∥H1 = ∥ξ∥H1 and the estimate for the
first term follows. For the second term, write

∥m0R −m0∥L2 = ∥R−1m0(R·) −m0(R·)∥L2 + ∥m0(R·) −m0∥L2

≤ c|y|∥m0(R·)∥L2 +

∫
S2

 1∫
0

d

dt
m0

(
x+ t(Rx− x)

|x+ t(Rx− x)|

)
dt

2

dx


1
2

≤ c|y|∥m0∥L2 + c|y|∥m0∥H1 ≤ c(m0)|y|.

The derivative part is slightly more delicate since the inner rotation affects the derivative.
In stereographic coordinates πp centered at p with R(y)p = p there exists R̃ ∈ SO(2)
such that Rπp(x) = πp(R̃x) for all x ∈ R2. In these coordinates, we have

∥∂i(m0R ◦ πp)−∂i(m0 ◦ πp)∥L2(R2)

= ∥∂i
(
R−1(m0 ◦ πp)R̃

)
− ∂i (m0 ◦ πp) ∥L2(R2)

≤ ∥R−1∂i

(
(m0 ◦ πp)R̃

)
−R−1 (∂i(m0 ◦ πp)) ∥L2(R2)

+ ∥R−1(∂i(m0 ◦ πp)) − ∂i(m0 ◦ πp)∥L2(R2)

With ∂i(m0 ◦ πp) ∈ R3, the second term can directly be estimated by c(m0)|y|. On the
other hand, the first one can be simplified, using orthogonality of R and R̃. From here
on writing m̃0 = m0 ◦ πp and ∥ · ∥L2 for ∥ · ∥L2(R2) we estimate, for i = 1,

∥∂1(m̃0R̃) − ∂1(m̃0)∥L2 = ∥∂1m̃0(R̃·)R̃11 + ∂2m̃0(R̃·)R̃12 − ∂1m̃0∥L2

≤ ∥∂1m̃0(R̃·)
(
R̃11 − 1

)
∥L2 + ∥∂2m̃0(R̃·)R̃12∥L2 + ∥∂1m̃0(R̃·) − ∂1m̃0∥L2 .

Testing R̃ with unit vectors, the individual components of R̃ can be estimated in terms
of |y|, for example

|R̃11 − 1| =

∣∣∣∣(R̃(1
0

)
−
(

1
0

))
· ê1
∣∣∣∣ ≤ ∣∣∣∣R̃(1

0

)
−
(

1
0

)∣∣∣∣
=

∣∣∣∣π−1
m

(
R

(
πp

((
1
0

))))
− π−1

p

(
πp

((
1
0

)))∣∣∣∣ ≤ Lc|y|

where L is the Lipschitz constant of π−1
p on πp (B2(0)) ⊂ S2. Similar computations show

|R̃12| < c|y|, |R̃21| < c|y| and |R̃22 − 1| < c|y|. Using these estimates, it is obvious that
the first two terms in the L2-estimate of ∂1m̃ can be bounded by c|y|∥m0∥H1(S2) while
the third term again involves an extra derivative. Recalling that m0 is smooth on the
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compact manifold S2, we can estimate

∥∂1m̃0(R̃·) − ∂1m̃0∥2L2 ≤

∫
R2

1∫
0

∣∣∣∣ d

dt
∂1m0(x+ t(R̃x− x))

∣∣∣∣2 dt dx


1
2

≤

∫
R2

|D2m̃0|2|x|2|y|2 dx

 1
2

≤ |y|∥m0∥H2(S2).

Note that ∥m0∥H2(S2) only adds to the constant c while |y| is relevant for the estimate
of ∥mR − m0∥H1 in terms of ∥m − m0∥H1 . Repeating the same estimates for ∂2m̃0

completes the proof.

Having collected all necessary estimates, we can now express the energy difference via
the Hessian and proceed further to show the following:

Proposition 4.3. Assume that m0 minimizes E in the set of axisymmetric fields of
degree 0, {m ∈ H1(S2;S2) : Q(m) = 0, m axisymmetric} and that E is strictly convex
at θ. Then m0 locally minimizes E in {m ∈ H1(S2; S2) : Q(m) = 0}. In particular,
there are constants ε0 > 0 and c > 0 such that

E(m) − E(m0) ≥ c inf
[R]∈SO(3)/SO(3)ê3

∥mR −m0∥H1

for all ∥m−m0∥H1 < ε : 0.

Proof. Due to the assumption of convexity, the kernel of H consists exactly of the
tangent fields associated to joint rotations. Given m close to m0, Lemma 4.11 implies
the existence of R ∈ SO(3) such that mR −m0 is orthogonal to the kernel of H. For
this R we have

E(m) − E(m0) = E(mR) − E(m0) = H̃(mR −m0).

Writing ξ = mR−m, we decompose ξ = ξT +ξ⊥ into a tangential part ξT and a normal
component ξ⊥. Due to the bilinearity of H, we can write

H̃(ξ) = H(ξT ) + 2H̃(ξT , ξ⊥) + H̃(ξ⊥)

and estimate the three terms separately. For the first one, orthogonality of ξ with
respect to ϕ(i) implies orthogonality of ξT and the lower bound of Lemma 4.10 implies

H(ξT ) ≥ g∥ξT ∥2H1 .

Before analysing terms that involve the normal component ξ⊥, note that

ξ⊥ = (m0 · ξ)m0 = −1

2
|ξ|2m0

81



4. Local Minimality of Symmetric Minimizers

due to |ξ|2 = |m|2 + |m0|2 − 2m ·m0 = 2|m0|2 − 2m ·m0 = −2ξ ·m. In particular, this
implies that 4|ξ⊥|2 = |ξ|4. For H̃(ξ⊥), we compute

H̃(ξ⊥) =

∫
S2

|∇ξ⊥|2 − κ(ν · ξ⊥)2 − |ξ⊥|2
(
|∇m0|2 − κ(m0 · ν)2

)
dσ

=

∫
S2

|∇ξ⊥|2 − κ

4
|ξ|4 − 1

4
|ξ|4

(
|∇m0|2 − κ(m0 · ν)2

)
dσ

=

∫
S2

|∇ξ⊥|2 − 1

4
|ξ|4|∇m0|2 dσ

= ∥ξ⊥∥2H1 − c1∥ξ∥4L4 .

Finally, for the mixed term, we estimate

|∇ξT : ∇ξ⊥| =

∣∣∣∣∇(1

2
|ξ|2m0

)
: ∇ (m0 × (m0 × ξ))

∣∣∣∣
=

∣∣∣∣((ξ · ∇ξ)m0 +
1

2
|ξ|2∇m0

)
: (∇ξ −∇(m0 · ξ)m0 − (m0 · ξ)∇m0)

∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

(ξ · ∂iξ)(m0 · ∂jξ) − (ξ · ∂iξ)(∂jm0 · ξ) − (ξ · ∂iξ)(m0 · ∂jξ)

+
1

2
|ξ|2(∂im0 · ∂jξ) −

1

2
|ξ|2(m0 · ξ)(∂im0 · ∂im0

∣∣∣∣
≲

3

2
|ξ|2|∇ξ||∇m0| +

1

2
|ξ|3|∇m0|.

Furthermore, we can estimate |ξT | ≤ |ξ| and hence, noting that ξT · ξ⊥ = 0, we find

H̃(ξT , ξ⊥) =

∫
S2

∇ξT : ∇ξ⊥ − κ(ν · ξT )(ν · ξ⊥) − (ξT · ξ⊥)
(
|∇m0|2 − κ(m0 · ν)2

)
dσ

≳ −
∫
S2

|ξ|2|∇ξ||∇m0| + |ξ|2|∇m0| + κ|ξ|3 dσ

≳ −∥ξ∥2L4∥∇ξ∥L2 − ∥∇m0∥
1
2

L8∥ξ∥3L4 − ∥ξ∥2L4∥ξ∥2L2

≥ c2∥ξ∥3H1 .

Choosing ε small enough with ∥ξ∥H1 ≤ c∥m − m0∥H1 < cε, the energy difference is
bounded from below by

E(m) − E(m0) ≥
1

2

(
λ∥ξT ∥2H1 + ∥ξ⊥∥2H1 − c1∥ξ∥4H1 − c2∥ξ∥3H1

)
≥ 1

2

(
min{λ, 1} − c1ε

2 − c2ε
)
∥ξ∥2H1 .
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5. Non-Symmetric Solutions of the Landau
Lifshitz Equation

We now turn to the dynamics of Skyrmions on the sphere, which are governed by the
Landau-Lifshitz equation

∂tm(t) = m× (∆m + κ(m · ν)ν) .

The axisymmetric critical points that were the subject of chapters two and three yield
constant solutions of the equation. By jointly rotating them around ê3, they are for-
mally time-dependent but actually constant due to their symmetry. On the other hand,
invariance of the energy under joint rotations implies that any time-dependent solution
constructed by rotating a specific profile automatically obeys the conservation of energy
that is inherent in the equation. In order to yield non static solutions, such profiles
should be non-equivariant and rotate at a non-zero speed. They can not be critical
points of the energy because the right hand side of the equation also is invariant under
joint rotations and thus

m× (∆m + κ(m · ν)ν) = 0

would be preserved over time.

5.1. Rotating Solutions

In [37], the authors proved existence of constrained minimizers where the constraint is a
means to control equivariance of the fields. These minimizers are then used to construct
periodic solutions of the Landau-Lifshitz equation that are rotating at a certain speed
ω ∈ R. However, while attainment of the energy minimum under the constraint was
proven, there was no rigorous treatment of ω as Lagrange multiplier. In this section, we
shall use the infinite dimensional Lagrange multiplier theorem from [59] to rigorously
establish that constrained minimizers solve the equation

−m×∇E =
3∑
i=1

ωi(−m×∇Ji)

with ω = (0, 0, ω) in a special case. We will then apply the  Lojasiewicz inequality
proved in section 5.2 to prove ω ̸= 0, thus ruling out the possibility of constant in time
solutions.

83



5. Non-Symmetric Solutions of the Landau Lifshitz Equation

The final step will be done under the assumption that all minimizers are equivariant.
This is conjectured to be true for large enough κ as increasing anisotropy forces m to
align with the normal at least in the azimuthal direction.

The rest of the section is organized as follows. To start, we will briefly collect the main
results of [37] and extend them to accomodate an arbitrary axis of rotation. Then we
will prove that constrained minimizers fulfill the equation mentioned above and use the
equation to extend the regularity result of Theorem 2 to constrained critical points. By
a similar method, a convergence result for critical points will be shown. Finally, ω ̸= 0
follows by contradiction, due to the following Proposition:

Proposition 5.1. Assume that m0 is a critical point of E. Then there exist ρ > 0, c > 0
and γ ∈

(
0, 12
)
such that ∥m−m0∥H2 < ρ implies

∥(∇E(m))tan∥L2 ≥ c|E(m) − E(m0)|1−γ .

The Proposition will be proved in section 5.2.

5.1.1. Preliminary Results

The key observation of [37] is that if R(t) ∈ SO(3)ê3 is a rotation of angle t around ê3,
then

d

dt
mR(ωt) = ω (−m×∇J3(m))R(ωt)

such that static solutions of the equation

−m×∇E = ω (−m×∇J3) (5.1)

yield solutions of the Landau Lifshitz equation by setting m(x, t) = m(x)R(ωt).

Here, J = S + L is the total angular momentum, where

S(m) =

∫
S2

m dσ ∈ R3 and L(m) =

∫
S2

ν(m∗ωS2) ∈ R3

are the spin and orbital angular momentum, respectively. For ê-equivariant fields, the
total angular momentum is determined by the values at ±ê.

Lemma 5.1. Given ê ∈ S2, assume that m : S2 → S2 is ê-equivariant and continuous
near ±ê. Then

J(m) = 2π (m(ê) + m(−ê)) .

In particular, J(m) = ±4πê if Q(m) = 0 and J(m) = 0 if Q(m) = ±1.
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5.1. Rotating Solutions

Proof. For ê = ê3, this is the statement of Lemma 5 in [37]. For a general direction,
the identity follows from the fact that

J(mR) = RJ(m) for all R ∈ SO(3). (5.2)

which is Lemma 1 of [37].

In order to find solutions to the static equation mentioned above, we will consider
the constrained minimization problem E(m) → min for J(m) = J0. For J0 = J3ê3,
attainment of the constrained minimum has been proven in [37] as well as an upper
bound for the minimal energy of 8π. For general J0, these statements follow from
(5.2) and the invariance of E under joint rotations. To prove that these constrained
minimizers indeed yield a solution of (5.1), we will apply the following Theorem about
Lagrange multipliers from Zeidler [59]:

Theorem
– from [59], p. 270, Proposition 1
Let f : U(u) ⊂ X → R and G : U(u) ⊂ X → Y be C1 on an open neighborhood of u,
where X and Y are real Banach spaces. Suppose that u is a solution of

f(u) → min!

G(u) = 0

where G′(u) : X → Y is surjective. Then there exists a functional λ ∈ Y ∗ such that

f ′(u) + λG′(u) = 0

holds true.

Aiming to work on Banach spaces, recall from section 2.1 that H1(S2; S2) with the norm
∥·∥H1+∥·∥L∞ is a Banach manifold which we calledX1(S2;S2). Near a given m, it can be
parametrized over the Banach space X1(S2;TmS2) via ψ : X1(S2;TmS2) → X1(S2; S2).
Hence we set f = E ◦ ψ and G = J ◦ ψ − J0. In order to confirm the conditions for G′

we henceforth compute the variation of J.

In [37], the variation of J was only computed for the case J = J3ê3 and in stereographic
coordinates. We introduce the angular derivative around an axis ê ∈ S2 and note
several of its properties in order to compute the variation in the general case and in a
coordinate-free expression. Apart from resulting in the surjectivity of (J ◦ ψ)′, this will
give a characterization of equivariance.

Definition 5. The angular derivative ∂χϕ of ϕ ∈ C∞(S2;R3) around ê is given by

∂χϕ(x) =
d

dt
ϕ(Rtx).
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5. Non-Symmetric Solutions of the Landau Lifshitz Equation

Lemma 5.2 (Properties of the angular derivative). Consider an arbitrary axis ê ∈ S2.

(1) Let ϕ ∈ C∞(S2;R3) and let Rt be a rotation around ê by angle t. Then,

d

dt
(ϕ)R(t) = ê× ϕ− ∂χϕ.

(2) For smooth ϕ, the angular derivative commutes with joint rotations.

(3) The angular derivative is L2(S2;R3) skew-adjoint.

(4) m ∈ H1(S2;R3) is ê-equivariant iff ∂χm = ê×m weakly in L2(S2;R3).

Proof. (1) This follows pointwisely from direct computations and the definition of the
angular derivative.

(2) Let R ∈ SO(3) be an arbitrary rotation. Then

R
d

dt

∣∣∣
t=0

Rtx = R (ê× x) = ê× (Rx) =
d

dt
Rt(Rx)

and therefore

∂χϕR(x) =
d

dt

∣∣∣
t=0

ϕR(Rtx) =
d

dt

∣∣∣
t=0

Rϕ(R−1Rtx) = R
d

dt

∣∣∣
t=0

ϕ(Rt(R
−1x)).

(3) Again, this follows by a direct computation and from orthogonality of R.

⟨∂χm, v⟩L2 =
d

dt

∣∣∣
t=0

⟨m(Rtx), v⟩ =
d

dt

∣∣∣
t=0

⟨m(R−tRt(x), v(R−tx)⟩

=
d

dt

∣∣∣
t=0

⟨m, v(R−tx)⟩ = −⟨m, ∂χv⟩.

(4) Recall that m is ê-equivariant if mR = m for all R ∈ SO(3)ê. In particular, m
is equivariant iff the map m 7→ mRt is constant for Rt representing a rotation
around ê by angle t. Testing with ϕ ∈ C∞(S2;R3), m is equivariant, iff

0 =
d

dt
⟨mRt , ϕ⟩ =

d

dt
⟨m, ϕR−t⟩

for all such ϕ. Note that the second equality follows from the orthogonality of R
as in (3). Together with the previous properties, this implies

d

dt
⟨mRt , ϕ⟩ = ⟨m,−ê× ϕ+ ∂χϕ⟩ = ⟨ê×m− ∂χm, ϕ⟩

and therefore m is equivariant iff the last term in the equation is 0 for all smooth
ϕ i.e. if ∂χ = ê×m weakly.

86



5.1. Rotating Solutions

Using these properties, we can analyze the variation of J.

Lemma 5.3. Given ê ∈ S2, m ∈ H1(S2; S2) and v ∈ X1(S2;TmS2), the following holds:

(1) ê · (δJ(m)⟨v⟩) = δ (ê · J) (m)⟨v⟩ = ⟨ê−m× ∂χm, v⟩L2.

(2) m is equivariant around ê iff δ (ê · J) ⟨v⟩ = 0 for all v ∈ X1(S2;TmS2).

(3) If m is not ê-equivariant for any axis ê then the angular momentum J : S2 → R3

has a surjective differential

δJ(m) : X1(S2;TmS2) → R3.

Proof. (1) For ê = ê3, the variation of J3 was computed in [37]. By (5.2), this extends
to the general case, using ê · J = (Rê) · (RJ).

(2) From Lemma 5.2 above it follows that m is ê-equivariant iff ê × m − ∂χm = 0
weakly in L2(S2;R3). For arbitrary ϕ ∈ C∞(S2;R3), evaluate δ(ê · J) at m× ϕ to
find that

δ(ê · J)(m)⟨m× ϕ⟩ = ⟨ê−m× ∂χm,m× ϕ⟩L2 = ⟨ê×m− ∂χm, ϕ⟩L2 .

Since any v can be smoothly approximated by tangent fields vk = m × ϕk, this
implies the equivalence.

(3) Assume that m is not ê-equivariant for any axis ê. Then for all ê ∈ S2 there exists
v∗ ∈ X1(S2;TmS2) such that

ê · (δJ(m)⟨v∗⟩) = α ̸= 0.

Given c ∈ R3, let c ∈ [0,∞) and ê ∈ S2 be such that c = cê. Then

δJ(m)⟨v⟩ = c iff δ(ê · J)(m)⟨v⟩ = ⟨ê−m× ∂χm, v⟩L2 = c.

Recalling v∗ from above, set vc = c
|α|v

∗. For vc, it holds that

ê · (δJ(m)⟨vc⟩) =
c

α
α = c

and thus δJ(m)⟨vc⟩ = c.
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5. Non-Symmetric Solutions of the Landau Lifshitz Equation

5.1.2. Lagrange Multiplier

We have now gathered all ingredients to prove that the constrained minimizers found in
[37] satisfy the stationary equation (5.1) for some ω ∈ R.

Theorem 4. For ε > 0 and a local minimizer m ∈ H1(S2; S2) of E = E(m) subject to
J(m) = −(4π+ε)ê3 it holds that m ∈ C∞(S2;S2), and there exists a Lagrange multiplier
ω ∈ R such that {m, E} = ω{m, J3}.

Proof. We apply the Lagrange multiplier theorem from [59] to the pulled back function-
als

F = E ◦ ψ and G = J ◦ ψ
on the closed subspace X1(S2;TmS2) of the Banach space X1(S2;R3). A constrained
minimizer is given by u0 = 0 with ψ(0) = m. Then

DF (0)⟨v⟩ = δE(m)⟨v⟩ and DG(0)⟨v⟩ = δJ(m)⟨v⟩ for v ∈ X1(S2;TmS2)

such that the differential DG(0) : X1(S2;TmS2) → R3 is surjective. It follows that there
exists a Lagrange multiplier ω = (ω1, ω2, ω3) such that

δE(m)⟨v⟩ =
3∑
j=1

ωjδJj(m)⟨v⟩.

Smoothness of m follows by the same methods as for non-constrained critical points.
More details are given in Lemma 5.5 below. It remains to show that ω1 = ω2 = 0. Due
to the smoothness, we may now write the Euler-Lagrange equations in its strong form
as

m×∇E(m) =

3∑
j=1

ωj m×∇Jj(m).

Hence for every 1 ≤ i ≤ 3, testing with ∇Ji gives

⟨∇Ji(m),m×∇E(m)⟩L2 =
3∑
j=1

ωj ⟨∇Ji(m),m×∇Jj(m)⟩
L2

which may be written as

{Ji, E}(m) =

3∑
j=1

ωj{Ji, Jj}(m)

by utilizing the poisson bracket defined in the introduction. As {Ji, Jj} = ϵijkJk and
{Ji, E} = 0 by Lemma 5.4 below it follows that

0 =

3∑
j,k=1

ϵijkωjJk(m)

so ω × J(m) = 0. But as J(m) = J ê3 ̸= 0 it follows that ω1 = ω2 = 0.
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5.1. Rotating Solutions

The following Lemmata justify some of the computations of the last proof.

Lemma 5.4.

(1) {Ji, Jj} = ϵijkJk on X2(S2;S2).

(2) {E , Jk} = 0 on X2(S2;S2) for k = 1, 2, 3.

Proof. For the identity of J, we first decompose the Poisson bracket into individual
terms.

{Ji, Jj} = {Si, Sj} + {Si, Lj} + {Li, Sj} + {Li, Lj}.

Both of the mixed terms vanish due to

{Si, Lj} = −⟨êi, ∂jχm⟩L2 = ⟨∂jχêi,m⟩L2 = 0,

where ∂jχ is the angular derivative around êj . Then the final identity follows from
general properties of the poisson bracket, see [37].

For the second identity, write E = D + κA and Jk = Sk + Lk. We investigate each
term separately using he expression for δJk = δ(J · ê) from Lemma 5.3. By comparison
with [37], δSk(m)⟨v⟩ = ⟨êk, v⟩L2 and δLk(m)⟨v⟩ = ⟨−m× ∂χm, v⟩L2 where the angular
derivative is around êk. Hence we compute:

{D,Sk}(m) = ω(XD, XSk
)(m) = ⟨m× ∆m, êk⟩

= ⟨∇ · (m×∇m), êk⟩ = −⟨m×∇m,∇êk⟩ = 0.

In stereographic coordinates centered at êk, the angular derivative around êk is given
by ∂χm = (x⊥ · ∇)m = x1∂2m− x2∂1m where x = (x1, x2) ∈ R2. Computing

∆
(

(x⊥ · ∇)m
)

= ((∆x⊥) · ∇)m + 2
∑

k={1,2}

∂kx
⊥ · ∇∂km + x⊥ · ∇∆m

= 0 + 2 (−∂1∂2m + ∂2∂1m) + (x⊥ · ∇)∆m

we confirm that the angular derivative and the laplace operator commute. Thus, for
smooth m,

{D,Lk}(m) = ⟨∆m,−m× (m× ∂χm)⟩
= ⟨∆m, ∂χm⟩ = ⟨m,∆∂χm⟩ = ⟨m, ∂χ∆m⟩ = −⟨∂χm,∆m⟩.

On the other hand, it follows from symmetry of the scalar product that

{D,Lk}(m) = ⟨∆m, ∂χm⟩ = ⟨∂χm,∆m⟩.

Thus, {D,Lk} = −{D,Lk} = 0. For m ∈ X2(S2; S2), the statement follows by approx-
imation.
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5. Non-Symmetric Solutions of the Landau Lifshitz Equation

For the anisotropy we make use of the ê-equivariance of ν for every axis ν, implying
∂χν = êk × ν weakly in L2. Thus, for smooth m ∈ X2(S2;S2),

{A, Jk}(m) = ω(XA, XJk) = ⟨m× (m · ν)ν, êk −m× ∂χm⟩
= ⟨(m · ν)m, ν × êk⟩ − ⟨(m · ν)ν, ∂χm⟩
= ⟨(m · ν)m, ν × êk⟩ + ⟨(∂χ(m · ν)) ν,m⟩ + ⟨(m · ν)∂χν,m⟩
= ⟨(m · ν)m,−êk × ν + ∂χν⟩ + ⟨∂χ(m · ν)ν,m⟩
= ⟨(∂χ(m · ν)) ν,m⟩L2(S2;R3)

= ⟨∂χ(m · ν),m · ν⟩L2(S2).

As for {D,Lk}, The last expression is identically 0 by the symmetry of the scalar product
and the skew-symmetry of the angular derivative.

Note: Again writing E = D + κA, we have shown that {D,Sk} = 0 = {D,Lk}. Thus,
the spin and orbital angular momentum would be individually conserved if κ = 0. This
corresponds to the invariance of D under individual rotations in domain or target space.
However, for the anisotropy term, the individual terms were not zero but annihilated
each other. Thus, for κ > 0, spin and orbital angular momentum are not individually
conserved.

Using the Hamiltonian framework, preservation of the angular momentum is an easy
consequence of the result for the Poisson bracket.

Corollary 5.1. If m is a solution of the Landau Lifshitz equation, then J(m) is con-
served over time.

Proof. From the introduction, recall that for any smooth function K : P → R, the flow
for the Hamiltonian system satisfies

d

dt
K(F (t, x0)) = {K,H}(F (t, x0)).

Here, K = Jk and H = E satisfy {Jk, E} = 0 such that the right-hand side is identically
0.

The following Lemma fills the gap of regularity in the proof of Theorem 4. Further-
more, by extending the techniques already used in 2, we obtain a convergence result for
constrained critical points.

Lemma 5.5. Fix κ > 0 and J0 ∈ R3.

(1) Constrained critical points are smooth.
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5.1. Rotating Solutions

(2) Let (mk)k∈N be a sequence of (constrained) critical points of E with Lagrange mul-
tipliers ωk = 0. Assume that ∥mk −m0∥H1(S2;R3) → 0 for some m0 ∈ H1(S2; S2).
Then

∥mk −m0∥H2(S2;R3) → 0

and m0 is a smooth critical point of E.

Proof. For both statements, we proceed as in Theorem 2

(1) In stereographic coordinates centered at ê3, the Euler-Lagrange equation is given
by

−∆m = Ω: ∇m + f

with Ω(m) = m⊗∇m−∇m⊗m and

f = λ2(x)m×

(
κ(ν ·m)ν ×m +

3∑
i=1

ωi

(
êi ×m− x̃i

(
x⊥ · ∇m

)))
+ λ(x)m× (ω1∂2m− ω2∂1m)

where x̃ = (x1, x2, 1). As in the unconstrained case, f ∈ L2(R2) with bounds that
only depend on κ, ω and ∥∇m∥L2 . In particular, note that |x̃i||x|λ2(x) ≤ λ(x) for
all x ∈ R2. From here on, the proof is identical to the proof of Theorem 2 and we
omit the details.

(2) ProvingH2(S2;TmS2)-convergence for stronglyH1(S2;TmS2)-convergent sequences
again follows the same strategy as the proof of regularity in Theorem 2. However,
since we are now interested not only in bounds but in convergence, we will give
more details.

Firstly, note that every mk is smooth since they are all critical points and write
mk = mk ◦π−1 for the stereographic projection π. Then, ∇mk → ∇m strongly in
L2(R2) and mkλ(x) → mλ(x) strongly in L2(R2). Furthermore, each mk satisfies

−∆mk = Ωk : ∇mk + fk

with Ωk and fk as in the Lemma and, defining Ω and f in terms of the limit m,

∥Ωk − Ω∥L2 = ∥(mk −m) ⊗∇m + m⊗ (∇mk −∇m)∥L2

≤ ∥(mk −m) ⊗∇m∥L2 + ∥∇mk −∇m∥L2 → 0 as k → ∞

where the first term converges due to dominated convergence with

|(mk −m) ⊗∇m(x)|2 → 0 pointwisely a.e. on R2

and

|mk −m|2|∇m|2 ≤ 2∥∇m∥2 ∈ L1(R2).
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5. Non-Symmetric Solutions of the Landau Lifshitz Equation

For f , |m| = 1 implies

|fk − f | ≤ λ(x)2κ · 3|mk −m| → 0 in L2(R2).

Working locally, we decompose each mk into mk = uk + vk such that uk satisfies
−∆uk = fk + gk = fk + Ωk

1 : ∇mk ∈ L2. By the Calderón-Zygmund inequality
and via the estimates in Theorem 2 we find, for each q ∈ (1, 2),

∥D2uk∥Lq ≤ ∥fk + gk∥Lq(BR)

where gk is uniformly bounded in Lq since the estimates go back on ∥∇mk∥L2(R2).

Thus, proceeding as in Theorem 2, uk is uniformly bounded in Cα(BR) for every
α ∈ (0, 1), yielding locally uniform convergence of a subsequence due to Arzela
Ascoli.

On the other hand, mk − uk = vk satisfies

−∆vk = Ωk
0 : ∇mk

where Ωk
0 → Ω0 in L2 due to the convergence of Ωk and continuity of the Helmholtz

projection. By the same Hardy space arguments as in the proof of regularity, this
yields local uniform convergence vk → v and thus, up to a subsequence, locally
uniform convergence mk → m.

Fixing B = B1+ε(0) for some ε > 0, standard estimates for semilinear equations
with quadratic growth [53], combined with bootstrapping yield uniform estimates
for ∥mk∥Hl(U) for all l > 0 and U ⊂⊂ B . These estimates are uniform not

only in k but also in Ω for Ω = Bδ(x) ⊂⊂ B. By compactness of B1+ε(0), this
yields uniform H l(R2) bounds on B1+ε(0) and H2(R2) convergence of mk ◦ π−1

on B1+ε(0) follows for a subsequence due to Rellich.

Since 1 + |x|2 is bounded by a constant on B1+ε(0), this yields H2 convergence
of the original sequence mk : S2 → S2 on S2≥0. Repeating the procedure on
B1+ε(0) = π−(S2≤0) proves the H2(S2;R3) convergence of mk to m.

From the local H2(S2;R3) convergence of mk to m it follows that m also satisfies
the equation

∆m = Ω(m) : ∇m + f

and thus is smooth as a critical point of E .

We will apply the convergence result to show that if the constrained minimizers are also
critical points of E , meaning that they solve (5.1) with ω = 0, then they converge to an
unconstrained critical point in H2. In order to prove the H1-convergence we need to
compare the constrained energy minimum with the global minimal value within the topo-
logical sector Q = 0. We thus consider special functions constructed from an equivariant
m such that the total angular momentum is controlled.
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5.1. Rotating Solutions

Definition 6. Given m : S2 → S2, s > 0 and an axis ê, define ms : S2 → S2 via

ms = m̃s ◦ πê, m̃s(x1, x2) = (m ◦ πê)((1 + s)x1, s2).

ms is called an elliptic distortion of m around ê.

It was shown in [37] that the size of the angular momentum is strictly increased by
elliptical distortion for s > 0. In fact, this increase is strictly monotonous, resulting in
the following Lemma:

Lemma 5.6. Given ê ∈ S2, let m : S2 → S2 be ê-equivariant. Then there exists δ > 0
such that J̃ : R → R, s 7→ J(ms) admits a continuous, strictly monotonic inverse on
[0, δ0]. In particular, J̃ → 4π implies E(mt) → E(m).

Proof. For ê = ê3, Lemma 6 in [37] implies that J̃ ′ < 0 on (0, δ) for some δ > 0.
Furthermore, R ∋ s 7→ ms ∈ H1(S2;S2) and H1(S2; S2) ∋ m 7→ J(m) ∈ R are contin-
uous. Thus, J̃ is continuous and strictly monotonous on [0, δ] and the existence of a
continuous, strictly monotonous inverse J̃−1 follows on [0, δ0] for every δ0 < δ.

For ∥mε − m0∥H2 sufficiently small, the  Lojasiewicz inequality of Proposition 5.1 ap-
plies and relates the energy difference to the norm of the tangential gradient. Having
prepared the convergence, we are now able to prove that the Lagrange multiplier ω in
the constrained minimization problem is nontrivial, given the assumption that all min-
imizers of degree 0 are equivariant. This results in non-static rotating solutions of the
Landau Lifshitz equation.

Theorem 5. Assume that all minimizers of E with Q = 0 are equivariant. Then there
exists ε0 > 0 such that for all 0 < ε < ε0 there exist ω ̸= 0 and m ∈ C∞(S2;S2) such
that J(m) = −(4π + ε)ê3 and

m(x, t) := mR(ωt)(x)

is a nontrivial periodic solution of the Landau Lifshitz equation.

Proof. For ε small enough, let mε be the constrained minimizer from Theorem 4, solving

mε ×∇E(mε) = ωε (mε × J(mε))

and satisfying |J(mε)| = 4π + ε. We show that there exists ε0 > 0 such that ωε ̸= 0 for
all ε < ε0. Otherwise there exists a sequence εk → 0 such that ωεk = 0 and thus

mεk ×∇E(mεk) = 0.
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5. Non-Symmetric Solutions of the Landau Lifshitz Equation

Let m0 be a global minimizer. By assumption, m0 is equivariant. Furthermore, for every
ε > 0, let m0

ε be its elliptic distortion. Then for all εk, the constrained minimizers mεk

satisfy
E(mεk) ≤ E(m0

ε) ≤ E(m0) + o(ε)

by Lemma 5.6. Since E(m) ≥ ∥m∥H1 − 4π, this implies that the sequence (mεk)k∈N is
uniformly bounded in H1 and admits a weakly convergent subsequence mk ⇀m∗ which
is strongly convergent in L2. Combining local minimality of m with lower semicontinuity
of E and the estimate above, we find

E(m0) ≤ E(m∗) ≤ lim inf
k→∞

E(mεk) ≤ E(m0)

such that m∗ is locally minimizing and therefore equivariant by assumption. More
importantly, the resulting convergence of the energy implies strong H1-convergence of
mεk and thus H2 convergence by Lemma 5.5. For ∥mεk − m∗∥H2 small enough, the
 Lojasiewicz inequality can be applied:

0 = ∥mε ×∇E(mεk)∥L2 ≥ (E(mεk) − E(m∗))1−γ ≥ 0

Therefore, E(mεk) = E(m∗) and mεk is an unconstrained minimizer of E . By assumption
it follows that mεk is equivariant, which contradicts |J(mεk)| = 4π + ε.

5.2.  Lojasiewicz-Simon Inequality

In this section, we will follow the framework of Haraux and Jendoubi [19] to prove the
 Lojasiewicz inequality for critical points of E stated in Proposition 5.1.

5.2.1. Preliminaries: Analyticity and Fredholm Property

One of the key ingredients of the finite dimensional  Lojasiewicz inequality is analyt-
icity and although generalizations exist [18],[4], it is usually required in the infinite
dimensional case as well. As in the application of the Lagrange Multiplier theorem,
we thus consider the pull-back of E via the chart defined in the introduction, section
2.1.

F : H2(S2;Tm0S2) → R, F = E ◦ ψ,

where ψ(v) = m0+v
|m0+v| . Here, m0 denotes a critical point of E . Then E(m0) = F (0) and,

as computed in section 2.1,

DF (0)⟨ϕ⟩ = δE(m0)⟨ϕ⟩ = ⟨∇E(m0)
tan, ϕ⟩L2 = 0

for all ϕ ∈ H2(S2;Tm0S2).

Moreover, F is analytic in the sense of definition 7.
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5.2.  Lojasiewicz-Simon Inequality

Lemma 5.7. There exists ρ > 0 such that

F : Bρ(0) ⊂ H2(S2;Tm0S2) → R

is analytic.

Proof. Consider the continuation of E to a functional on H2(S2;R3) given by

Ẽ(m) =

∫
S2

|∇m|2 + κ(1 − (m · ν)2) dσ

such that Ẽ(m) = E(m) for m : S2 → S2. Furthermore, write ψ̃ for the non-surjective
function ψ̃ : H2(S2;Tm0S2) → H2(S2;R3) with ψ̃(v) = ψ(v). Then Ẽ and ψ̃ are analytic
as functionals between Banach spaces, hence

F = E ◦ ψ = Ẽ ◦ ψ̃

is analytic due to theorem A.2.

For the analyticity of ψ̃ in a neighborhood of 0, apply Lemma A.4 to

fa : R3 → R, x 7→ a+ x

|a+ x|

where fa is analytic on Br(0) ⊂ R3 with r independent of the choice of a ∈ S2.

On the other hand, the continuation of E is the sum of a norm and an integral over a
polynomial in m, both of which are analytic due to Lemma A.2 and Corollary A.1.

In contrast to finite dimensions, analyticity alone is not sufficient to prove a  Lojasiewicz
type inequality in infinite dimensions. One way to fill the gap is via a Fredholm property
of the second variation. In the present case, the Hessian of the pulled back functional
F = E ◦ ψ,

D2F : H2(S2;Tm0S2) ×H2(S2;Tm0S2) → R

gives rise to a bounded linear symmetric operator A on L2 with domain H2(S2;Tm0S2)
satisfying

D2F (0)⟨ϕ, ·⟩ = ⟨Aϕ, ·⟩L2 , i.e. A = D (∇L2F ) (0)

because

D2F (0)⟨ϕ, ·⟩ = D (DF (0)⟨·⟩) ⟨ϕ⟩ = D⟨∇L2F (0), ·⟩⟨ϕ⟩ = ⟨D∇L2F (0)⟨ϕ⟩, ·⟩.

Furthermore, the following holds:

Lemma 5.8. If 0 is a critical point of F then the operator

A : H2(S2;Tm0S2) → L2(S2;Tm0S2)

is a Fredholm operator of index 0.
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5. Non-Symmetric Solutions of the Landau Lifshitz Equation

Proof. We first show invertibility of A + λι : H2(S2;Tm0S2) → L2(S2;Tm0S2) for some
λ > 0 to be determined. Here, ι denotes the compact embedding H2 ↪→ L2. Smoothness
of m0 on S2 implies the existence of some µ > 0 such that

H(ϕ) = ∥ϕ∥2H1(S2;R3) −
∫
S2

ϕ2
(
1 + |∇m0|2 − κ(m0 · ν)2

)
+ κ(ϕ · ν)2 dσ

≥ ∥ϕ∥2H1 − µ∥ϕ∥2L2(S2).

On the other hand, H(ϕ) + µ∥ϕ∥2L2 ≤ c(m0, κ)∥ϕ∥2H1 such that H(·) + µ∥ · ∥2L2 defines

a norm on H1(S2;Tm0S2). We consider the Hilbert space H̃1(S2, Tm0S2) consisting of
functions in H1(S2;Tm0S2) and equipped with the scalar product

(ϕ, ψ) 7→ H(ϕ, ψ) + µ⟨ϕ, µ⟩L2 .

Given f ∈ L2(S2, Tm0S2), we apply the Riesz representation theorem on H̃1(S2;Tm0S2)
to the linear functional

H̃1(S2;Tm0S2) → R, ψ 7→ ⟨f, ψ⟩L2(S2)

to find a unique v ∈ H1(S2, Tm0S2) such that

⟨f, ψ⟩L2 = H(v, ψ) + µ⟨v, ψ⟩L2 .

By considering the pullback via the inverse stereographic projection, we can proceed as
in [32] to show v ∈ H2(S2, Tm0S2):

Given η ∈ C∞(S2;R3), let Pm0η = −m×m× η denote the projection of η onto Tm0S2.
Then Pm0η ∈ C∞(S2;Tm0S2) and

⟨f, η⟩L2(S2;R3) = ⟨f, Pm0η⟩L2(S2;Tm0S2) = H(v, Pm0η) + µ⟨v, Pm0η⟩L2(S2;Tm0S2)

=

∫
S2

∇v : ∇(Pm0η) − κ(v · ν)(Pm0η · ν)

− v · Pm0η
(
|∇m0|2 − κ(m0 · ν)2 − µ

)
dσ

= ⟨∇v,∇Pm0η⟩L2(S2;R3) − ⟨g, η⟩L2(S2;R3)

where g = Pm0

(
κ(v · ν)ν −

(
|∇m0|2 − κ(m0 · ν)2 − µ

)
v
)
∈ L2(S2;R3) due to the smooth-

ness of m0.

If v was smooth then

Pm0∆S2v = ∆S2v − (m0 · ∆S2v)m0

= ∆S2v − ∆S2(m0 · ν)m0 + ∇ · (∇m0 · v)m0 + (∇m0 : ∇v)m0

where ∆S2(m0 · ν)m0 = 0 since v ∈ Tm0S2. Therefore, a smooth v would satisfy

⟨∇v,∇Pm0η⟩L2(S2) = −⟨∆v, Pm0η⟩L2(S2) = −⟨Pm0∆v, η⟩L2(S2)

= −⟨∆v, η⟩ + ⟨∇ · (∇m0 · v)m0, η⟩ + ⟨(∇m0 : ∇v)m0, η⟩
= ⟨∇v,∇η⟩L2(S2;R3) + ⟨g1, η⟩L2(S2;R3)
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5.2.  Lojasiewicz-Simon Inequality

with g1 ∈ L2(S2) involving only first derivatives of v. Approximating v ∈ H1(S2;Tm0S2)
by smooth functions, the identity thus carries over and implies that v ∈ H1(S2;Tm0S2)
weakly solves

−∆S2v = f + g − g1 on S2.

Once more arguing via the pullback v ◦ π−1
± ∈ H1(R2;Tm0S2) on the upper and lower

half sphere respectively, v ∈ H2(S2;Tm0S2) follows from the regularizing properties of
the Poisson equation on bounded domains in R2.

Having shown that for every f ∈ L2(S2, Tm0S2) there exists a unique v ∈ H2(S2, Tm0S2)
such that

⟨f, ψ⟩L2 = H(v, ψ) + µ⟨v, ψ⟩L2 = ⟨Av + µv, ψ⟩L2 for all ψ ∈ H1(S2, Tm0S2),

we conclude by the open mapping theorem that

(A+ µι)−1 : L2(S2;Tm0S2) → H2(S2;Tm0S2)

is a bounded linear operator where the embedding ι : H2(S2, Tm0S2) → L2(S2;Tm0S2)
is compact. Therefore, the operators

1H2 − (A+ µ ι)−1A = µ(A+ µ ι)−1ι

and 1L2 −A(A+ µ ι)−1 = µ ι(A+ µ ι)−1

are compact and A is Fredholm with index 0.

5.2.2. Proof of Proposition 5.1

We have now gathered all ingredients to prove the inequality for F . From the statement
for F , Proposition 5.1 can be deduced as follows:

Firstly, given m ∈ H2(S2;S2), we have m = Π(m0 + v) for

v =
m

m ·m0
−m0

where m · m0 > 0 if |m − m0|2 < 2 and it follows by construction that v ∈ Tm0S2.
Therefore,

F (v) − F (0) = E(m) − E(m0).

For the derivative, recall from section 2.1 that

d

dt
Π(m0 + tϕ) = ϕ

and therefore
DF (v)⟨ϕ⟩ = δE(Π(m0 + v))⟨ϕ⟩ = δE(m)⟨ϕ⟩
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5. Non-Symmetric Solutions of the Landau Lifshitz Equation

for any ϕ ∈ H2(S2;Tm0S2) and v as above. This implies

∥∇F (v)∥L2(S2;Tm0S2) = sup
∥ϕ∥L2(S2;Tm0 S2)=1

⟨∇F (v), ϕ⟩L2(S2;Tm0S2)

= sup
∥η∥L2(S2;R3)=1

⟨m0 ×∇E(m0), η⟩L2(S2;R3) = ∥(∇E(m0))
tan∥L2(S2;R3).

Here, we have used that for any η ∈ L2(S2;R3), the field ϕη = −m0 × η satisfies the
pointwise identity |ϕη(x)| = |η(x)| and therefore

∥η∥L2(S2;R3) = ∥ϕη∥L2(S2;Tm0S2).

Also, given ϕ ∈ L2(S2;R3), setting η = −m0 × ϕ ∈ L2(S2;Tm0S2) ⊂ L2(S2,R3) implies
that ϕ is of the form ϕ = −m0×η for a function η ∈ L2(S2;R3).

All together, given m ∈ H2(S2; S2) and setting v :=
Pm0 (m−m0)

m·m0
∈ Tm0S2, a  Lojasiewicz-

type inequality for F would imply

∥∇E(m)tan∥L2(S2;R3) = ∥∇F (v)∥L2(S2;Tm0S2) ≥ (F (v) − F (0))1−γ = (E(m)−E(m0))
1−γ .

Passing on to F , let N ⊂ H2(S2;Tm0S2) be the kernel of A and PN the orthogonal
projection onto it. Set k = dim(N) and note k < ∞ by Lemma 5.8. Moreover, if the
reduced energy in chapter 2 is strictly convex, than k = 2 and N is spanned by the
tangent fields associated to joint rotations.

The proof of the inequality for F is structured into three parts. First, we will show
that

M = PN + ∇F : H2(S2;Tm0S2) → L2(S2;Tm0S2)

admits an analytic inverse in a neighborhood of 0. In a second step, this enables a
reduction to finite dimensions by defining an analytic function Γ: R3 → R by compos-
ing F on N ∼ Rk with the inverse of M. Finally, estimates on ∥∇F∥ and |F − Γ|
will allow to establish a  Lojasiwiz-Simon inequality for F , based on the inequality for
Γ.

Invertibility of M

Consider the bounded linear operator L = PN + A : H2(S2;Tm0S2) → L2(S2;Tm0S2).
Since dim(N) <∞, the orthogonal projection onto N is a compact operator and thus L
is Fredholm as the sum of a Fredholm operator and a compact operator. Furthermore, we
have kerL = {0} sinceAv = −PNv for v ∈ H2(S2;Tm0S2) implies

∥Av∥2L2 = −⟨Av, PNv⟩ = −⟨v,APNv⟩ = 0

and therefore Av = PNv = 0 and v ∈ N ∩ N⊥ = {0}. Since L is Fredholm, the im-
age R(L) is closed. Moreover, L is onto because it is Fredholm with index 0 and hence
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5.2.  Lojasiewicz-Simon Inequality

dim(kerL) = 0 = codimR(L). Thus, the operator L : H2(S2;Tm0S2) → L2(S2;Tm0S2) is
invertible and by the closed graph theorem, L−1 is bounded.

Now consider M = PN + ∇F : H2(S2;Tm0S2) → L2(S2;Tm0S2) where ∇F = ∇S2;R3 is
given by

∇F (v) = Pm0 (−∆ψ(v) − κ(ψ(v) · ν)ν) .

This functional is analytic in a neighbourhood of 0 since the projection onto Tm0S2
is given by a polynomial in m0 while ∇F = ∇E ◦ ψ is analytic as the composi-
tion of ψ̃ and ∇Ẽ which are both analytic by the same reasoning as in Proposition
5.7.

Since A = D(∇F )L2(0),

DM(0) = D(PN + ∇F )(0) = PN + ∇DF (0) = PN +A = L

admits a bounded linear inverse. Hence, by the analytic inverse function theorem [56],
there exist neighborhoods W1, W2 of 0 ∈ H2(S2;Tm0S2) and 0 = M(0) ∈ L2(S2;Tm0S2),
respectively, such that M : W1 → W2 admits an analytic inverse M−1. In particular,
M−1 is bounded and differentiable.

Reduction to finite dimensions

Let ϕi ∈ H2(S2;Tm0S2), 1 ≤ i ≤ k be an orthonormal basis of N and choose r > 0 small
enough to ensure

∑k
l=1 ξlϕl ∈W2 ⊂ L2(S2;Tm0S2) for all ξ ∈ Br(0) ⊂ Rk. This is possi-

ble since 0 ∈ N ⊂ L2(S2;Tm0S2). Define Γ: Br(0) → R by

Γ(ξ) = F

(
M−1

(
k∑
l=1

ξlϕl

))
.

Γ is the composition of the analytic functionals F , M−1, and a polynomial and thus
analytic, too. Furthermore, it holds that

∂iΓ(ξ) = DF

M−1(
k∑
j=1

ξjϕj)

 ⟨DM−1(
k∑
j=1

ξjϕj)⟨ϕi⟩⟩

=

〈
∇F

M−1(
k∑
j=1

ξjϕj)

 , DM−1(
k∑
j=1

ξjϕj)⟨ϕi⟩

〉
L2(S2;R3)

.

Recall that M(0) = PN (0) + ∇F (0) = 0 ∈ L2 and thus M−1(0) = 0. For Γ, this
implies

Γ(0) = F (M−1(0)) = F (0)

as well as

∇Γ(0) =

k∑
i=1

⟨∇F (M−1(0)), DM−1(0)⟨ϕk⟩⟩êk =

k∑
i=1

⟨∇F (0), DM−1(0)⟨ϕk⟩⟩êk = 0.
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Hence, the classical  Lojasiewicz inequality can be applied and it follows that there are
are ρ ∈ (0, r], c > 0 and γ ∈ (0, 12) such that

|Γ(ξ) − Γ(0)|1−γ ≤ c|∇Γ(ξ)|

for all ξ ∈ Bρ(0).

Estimates relating Γ and F

Returning to the basis on N , define the coefficient vector K : W1 → Rn componentwise
by Ki(u) = ⟨u, ϕi⟩L2 such that

PNu =
k∑
i=1

Ki(u)ϕi ∈ H2(S2;Tm0S2).

There is an open neighbourhood U ⊂W1 of 0 such that K(u) ∈ Bρ(0) for all u ∈ U . For
u ∈ U , the  Lojasiewicz inequality for Γ applies to ξ = K(u) and

|F (u) − F (0)|1−γ ≤ |F (u) − Γ(K(u))|1−γ + |Γ(K(u)) − Γ(0)|1−γ

≤ |F (u) − Γ(K(u))|1−γ + c|∇Γ(K(u))|,

indicating that estimates on |∇Γ(K(u))| and |F −Γ ◦K| will lead to a  Lojasiewicz type
inequality for F . To reduce notation, we will use the notation L2 = L2(S2;Tm0S2) and
H2 = H2(S2;Tm0S2) for the rest of the proof.

Since ∇F , M and M−1 are all analytic, they also are all continuously differentiable.
As a result, after possibly reducing W1 and W2 = M(W1), there are constants CF and
CM−1 for which the following estimates hold:

∥∇F (u)∥L2 ≤ ∥∇F (0)∥L2 + 1 = 1 for all u ∈W1,

∥∇F (u) −∇F (v)∥L2 ≤ CF ∥u− v∥H2 for all u, v ∈W1,

∥DM−1(u)∥L(L2;H2) ≤ ∥DM−1(0)∥L(L2;H2) + 1

= ∥(DM(0))−1∥L(L2;H2) + 1 =: CM−1 for all u ∈W2,

and, finally

∥M−1(u) −M−1(v)∥H2 ≤ ∥DM−1(u)∥L(L2;H2)∥u− v∥L2

≤ CM−1∥u− v∥L2 for all u, v ∈W2.

Furthermore, W1 is reduced to a ball centered at 0 to ensure convexity and W2 and U
from above are adapted as necessary to ensure U ⊂W1. Since all estimates hold for the
center u = 0, U is still an open neighborhood of 0 inH2(S2;Tm0S2).
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For arbitrary u ∈W1, the estimate on M−1 gives

∥M−1(PNu) − u∥H2 = ∥M−1(PNu) −M−1(M(u))∥H2

≤ CM−1∥PNu−M(u)∥L2 = CM−1∥∇F (u)∥L2 .

For the gradient of Γ, evaluated at K(u) where u ∈ U , the bounds on ∥DM−1∥ and
∥∇F (u)∥L2 give

|∇Γ(K(u))| =

∣∣∣∣∣
k∑
i=1

⟨∇F (M−1(PNu), DM−1(PNu)ϕi⟩êi

∣∣∣∣∣
≤ kCM−1∥∇F (M−1(PNu))∥L2

≤ kCM−1

(
∥∇F (u)∥L2 + ∥∇F

(
M−1(PNu)

)
−∇F (u)∥L2

)
≤ kCM−1∥∇F (u)∥L2 + kCM−1CF ∥M−1(PNu) − u∥H2

≤ kCM−1(1 + CFCM−1)∥∇F (u)∥L2 =: c1∥∇F (u)∥L2 .

Lastly, convexity of W1 ensures ut = u + t(M−1(PNu) − u) ∈ W1 for all t ∈ [0, 1] and
the absolute difference can be estimated by

|F (u)−Γ(K(u))| = |F (u) − F (M−1(PNu))|

≤
1∫

0

∣∣∣〈∇F (ut),M−1(PNu) − u
〉
L2(S2;R3)

∣∣∣ dt
≤

1∫
0

∥∇F (ut)∥L2∥M−1(PNu) − u∥H2 dt

≤ CM−1∥∇F (u)∥L2

1∫
0

∥∇F (u)∥L2 + ∥∇F (ut) −∇F (u)∥L2 dt

≤ CM−1∥∇F (u)∥L2

1∫
0

∥∇F (u)∥L2 + CF ∥tM−1(PNu) + u)∥L2 dt

≤ CM−1∥∇F (u)∥L2(1 +
CF
2
CM−1)∥∇F (u)∥L2 =: c2∥∇F (u)∥2L2

Combining the estimates for |(∇Γ) ◦K| and |F −Γ ◦K| with the  Lojasiewicz inequality
for Γ, one finds that for c̃ = cc1 + c2 > 0, γ ∈ (0, 12), and all u ∈ U , which is an open
neighbourhood of 0 in H2(S2;Tm0S2),

|F (u) − F (0)|1−γ ≤ |Γ(K(u)) − Γ(0)|1−γ + |F (u) − Γ(K(u))|1−γ

≤ c|∇Γ(K(u))| + |F (u) − Γ(K(u))|1−γ

≤ cc1∥∇F (u)∥L2 + c2∥∇F (u)∥2(1−γ)
L2

≤ c̃∥∇F (u)∥L2 ,

where 2(1−γ) > 1 and ∥∇F (u)∥L2 ≤ 1 where used in the last inequality.
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5.3. Observations

In this section, we gather some further consequences of the  Lojasiewiz inequality.

Combining the  Lojasiewicz inequality with the energy inequality near minimizers from
Theorem 3, we observe the following property of critical points:

Corollary 5.2. Let m0 = mθ be an axisymmetric minimizer such that E is strictly
convex at θ. Then there exists ρ > 0 such that all critical points m with ∥m−m0∥H2 < ρ
are joint rotations of m0. In particular, if ∥m−m0∥H2 < ρ and m is critical, then m
is ê-axisymmetric for some ê ∈ S2.

Proof. Let ρ be small enough that both inequalities hold. Then any critical point m
satisfies

0 = ∥(∇E)tan(m)∥L2 ≥ (E(m) − E(m0))
1−γ ≥ c inf

R∈SO(3)/SO(3)ê3

∥mR −m0∥1−γH1

and therefore there exists R ∈ SO(3) such that mR = m0. Thus, m = (m0)R−1 and m
is Rê3-axisymmetric by Lemma 2.3.

The next observation is inspired by a work of Rupflin [45] on harmonic maps and
concerns the critical values of the energy.

Proposition 5.2. For any ε > 0, the set

{E ∈ [0, 8π − ε] : ∃m ∈ H1(S2;S2) with Q(m) = 0, E(m) = E, and ∇E(m)tan = 0}

is discrete.

Proof. Assume that the statement is wrong. Then there exists a sequence of distinct
values Ek and corresponding critical points mk with Q(mk) = 0, E(mk) = Ek such that
Ek → E ∈ [0, 8π − ε].

Convergence of the energy implies uniform H1 boundedness of (mk)k∈N and thus the
existence of a weakly in H1, strongly in L2 and pointwise almost everywhere convergent
subsequence mk ⇀ m. As in the proof of Lemma 1, it follows from theorem E1 in [3]
and Lemma 4.3(ii) in [35] that there exists integers q1, . . . qN such that

lim
k→∞

Q(mk) = Q(m) +

N∑
i=1

qi and lim
k→∞

E(mk) = E(m) + 4π

N∑
i=1

|qi|.
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If qi = 0 for all 1 ≤ i ≤ N then the convergence E(mk) → E(m) implies strong H1

convergence which we will deal with below. Otherwise, if at least one index is non-zero,
it follows that

E(m) + 4π

n∑
i=1

|qi| ≥ 4π + 4π = 8π,

where we have employed the lower bound of [10]. But

E = lim
k→∞

E(mk) ≤ 8π − ε < 8π,

a contradiction.

If the convergence of the subsequence is strong due to the norm convergence that’s
implied by the energy convergence, then strong convergence in H2 follows by Lemma
5.5 and it holds that m is a critical point. But then the  Lojasiewicz inequality at m
implies

0 = ∥∇Etan(m)∥L2 ≥ 1

c

(
E(m) − E(mk)

)1−γ
and therefore Ek ≡ E for all k with ∥mk −m∥ < ρ, a contradiction.
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6. Outlook

In the last chapters, we have discussed axisymmetric minimizers and shown that they are
locally minimizing among all magnetizations m ∈ H1(S2; S2). Going further, it would
be interesting to investigate the Cauchy problem for the (LL)-equation, as minimality
would imply the orbital stability of constant axisymmetric solutions. However, it would
be important to first answer the question of strict convexity of the reduced energy at
minimizing profiles.

In terms of energy methods, the assumption of convexity is supported by the fact that for
θ a minimizing profile and β ∈ C∞

c ((0, π)) \ {0}, the energy difference can be expressed
as

E(θ + β) − E(θ) =

π∫
0

(β′)2 sinx+ sin2 β

(
cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

)
dx,

implying that the right hand side is strictly positive for β ̸= 0. On the other hand, this
is closely related to

d2

dt2
E(θ + tβ)|t=0 =

π∫
0

(β′)2 sinx+ β2
(

cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

)
dx,

the only difference being that β appears quadratically or as sinβ. However, due to
sin2 β ≤ β2, the possibly negative expression in parentheses is given a larger weight in the
reduced Hessian than in the energy difference and no conclusion can be made.

On the other hand, due to the similarity between the present work and the stabil-
ity analysis of axisymmetric Skyrmions on the plane [32] it seems strange that in the
Fourier expansion of the Hessian, the zero-mode H0 behaves differently. In [32], the
corresponding term can be controlled by employing lemma 4.2 and using properties
of the profile θ. Indeed, expressing the β-part for H0 in terms of Θ = θ − id, we
have

Iβ =

π∫
0

(β′)2 sinx+ β2
(

cos(2θ)

sinx
+ κ cos(2θ − 2x) sinx

)
dx

=

π∫
0

(β′)2 + β2
(

cos(2Θ)

(
cos(2x)

sinx
+ κ sinx

)
− 2 sin(2Θ) cosx

)
dx
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which is reminiscent of the term in [32], given by

∞∫
0

(β′)2r + β2
(

cos(2θ)

r
+ h cos(θ) − 2 sin(2θ)

)
dr.

As observed in section 2.2, the Skyrmion is expected to behave similar to the planar case
at its center with possible differences in the tail. However, note that

cos(2Θ)

(
cos(2x

sinx
+ κ sinx

)
− 2 sin(2Θ) cosx

= cos(2Θ)

(
cos2 x

sinx
+ (κ− 1) sinx

)
− 2 sin(2Θ) cosx

>

√
2

2

(
cos2 x

sinx
+ (κ− 1) sinx− 2 cosx

)
=

√
2

2

(
(cosx− sinx)2

sinx
+ (κ− 2) sinx

)
> 0

for Θ < π
8 , x < π

2 and κ > 2, implying that the integrand is positive on (yπ
8
, π2 ).

Furthermore, the expression of the first line is obviously positive for Θ < π
4 and x > π

2 .
It follows that positivity of Iβ only depends on the behavior of the Skyrmion for small
x, i.e. at its center. This suggests that one might be able to follow a similar strategy as
in [31].

Applying Lemma 4.2 with β = (1− θ′)η and then again with ψ =
√

tan(x2 ), one arrives
at

Iβ =

π∫
0

sinx tan(
x

2
)(1 − θ′)2

((
η

tan(x2 )

)′)2

+ η2
(θ′ − 1)

sinx

(
−1

4
(θ′ − 1) + sin(θ − x)

(
cos(θ − x) cosx

sinx
− (κ− 2) cos(θ − x) sinx

))
+ η2

(1 − θ′)2

sinx

(
(1 − cosx)

(
(1 − θ′) cosx− sin(2θ − 2x)

2

cosx

sinx
+ 2 sin2(θ − x)

))
dx.

Here, the integral in the first two lines is again similar to

∞∫
0

(θ′)2
((

η√
r

)′)2

+ η2
θ′

r

(
−θ

′

4
+ sin θ

(
cos θ

r
− hr

))
dr

while the integrand of the second integral is positive on [y 3π
4
, yπ

4
] for κ > 24 be-

cause

(1 − θ′) cosx−sin(2θ − 2x)

2

cosx

sinx
+ 2 sin2(θ − x)

>
sin(θ − x)

sinx
cosx− sin(θ − x)

sinx
cos(θ − x) cosx+ 2 sin2(θ − x)

=
sin(θ − x)

sinx
cosx (1 − cos(θ − x)) + 2 sin2(θ − x) > 0
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for x < π
2 . However, the bound for x follows from x < yπ

4
< π

2 by the estimate in the
proof of Lemma 3.10.

If the techniques of [31] are sufficient to prove non-negativity of the integral in the first
line, at least for small x, then positivity of Iβ for arbitrary β would follow by a partition
of unity.

Once positivity of Iβ has been established, there are two possible directions to con-
tinue the research. Focussing on the static case, on might investigate the question
whether Q = 0 axisymmetric fields are globally minimizing within the set of equiv-
ariant fields with Q = 0. To do so, a first step might be to consider the system of
coupled ODE (2.1), (2.2) and find out whether they have a solution (θ, χ) such that χ
is non-constant.

On the other hand, the easily obtained orbital stability of axisymmetric minimizers,
which is due to the energy conservation of the Hamiltonian system makes it attractive to
first consider the dynamical properties. To establish the local and then global existence
of soultions in H2(S2;S2), an adaptation of the methods in [17] or [7] seems promising.
However, both of these works only deal with an energy consisting of Dirichlet term and
anisotropy. They do not involve any non-squared derivatives like the (DMI)-like terms
appearing after application of the stereographic projection, see the end of section 2.2.
Thus, a careful analysis of the mixed terms is necessary.

If solutions of (1.1) would exist for initial values close to m∗ where m∗ is a axisymmetric
minimizer then one could obtain

Lemma. Let κ > 24. There exists ε0 > 0 such that for every ε ∈ (0, ε0), there exists
δ > 0 such that ∥m−m∗∥H1(S2;R3) < δ implies

inf
R∈SO(3)/SO(3)ê3

∥m(t) −m∗∥H1(S2;R3) < ε

for all t > 0 where m(t) ∈ C0([0,∞);H2(S2;S2)) solves (1.1) with m(0) = m.

Proof. For the proof, take ε0, c > 0 from proposition 3. For every ε > 0 there exists
δ > 0 such that ∥m−m∗∥H1 < δ implies |E(m) − E(m∗)| = E(m) − E(m∗) < cε.

E(m) − E(m∗) =

∫
S2

|∇m|2 − |∇m∗|2 dσ +

∫
S2

(m∗ · ν)2 − (m · ν)2 dσ

≤ ∥∇m−∇m∗∥L2 (∥∇m∥L2 + ∥∇m∗∥L2)

+

∫
S2

((m∗ −m) · ν) ((m∗ + m) · ν) dσ

≤ ∥m−m∗∥H1(S2) (2∥∇m∗∥L2 + δ + 8πκ) .
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Choose ε > 0 and m ∈ H2(S2;S2) with ∥m −m∗∥H1 < δ with δ > 0 from above. Let
m(t) be the solution of (1.1) with initial value m(0) = m. Since m(t) ∈ X2(S2; S2) in
the notation of 2.1, it holds that E(m(t)) = E(m) for all t ∈ [0,∞). Therefore, as long
as ∥m(t) −m∗∥H1 < ε, it follows that

inf
R∈SO(3)/SO(3)ê3

∥m(t) −m∗∥H1 ≤ 1

c
(E(m(t) − E(m∗)) =

1

c
(E(m) − E(m∗)) < ε < ε0.

Thus, the inequality remains valid on an open interval (t, t + τ) and subsequently on
(0,∞). Note that δ < ε < ε0 establishes the bound for small t.

In Hamiltonian systems, the conservation of energy generally prevents asymptotic sta-
bility of solutions because convergence would infer the convergence of energy which is
impossible. Furthermore, in the presence of symmetry, one can not expect to rule out
the infimum over all equivalence classes [R] ∈ SO(3)/SO(3)ê3 . Instead, it would be
interesting to use the framework of [15] for stability in the presence of symmetry to
investigate the stability of a set of non-static solutions.

The Landau Lifshitz equation is of the form

d

dt
m(t) = JE′(m(t))

with J : TmS2 → TmS2 given by J ξ = m × ξ. It is invariant under the operation
(m, R) 7→ mR of the one-parameter group SO(3)ê ≃ SO(2). The paper [15] then pro-
vides the framework to study the stability of solitonic solutions

m(t) = mR(ωt) = R(ωt)−1m(R(ωt)·)

where R(t) is a rotation by angle t around ê3. Furthermore, the angular momentum J is
a conserved quantity of the equation and a generator of joint rotations [37]. In particular,
J3 is a generator of joint rotations around ê3 and invariant under them. It can therefore
function as the conserved functional Q in [15].

In [15], the authors state three assumptions under which they than prove the stability
of

”
bound states“, time-dependent solutions of the equation which are obtained by

applying the group operation to static profiles. While the first assumption, existence
of solutions to the Cauchy problem, is still open for (1.1), the second assumption deals
with the existence of bound states.

In [37] together with chapter 4 of this work it has been proven that solutions of

m×∇E(m) = ωm×∇J3(m)

exist for |J3(m)| close to 4π where the |J3(m)| = 4π solution is equivariant with ω = 0.
However, [15] requires existence for ω ∈ (ω1, ω2) with 0 ∈ (ω1, ω2). In order to capitalize
on our existence result, one would need to determine the relationship between J3(m)−4π
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and ω, aiming for continuity. If this could be done, then the third step would be to
investigate the eigenvalues of

Hω(m) = H(m) − ωδ2J(m)

in order to verify the third assumption of [15]. For ω = 0, we have already proved
for axisymmetric solutions that H0 = H(m) has no negative eigenvalues and that its
kernel is spanned by tangent fields associated to the operation of SO(3). Aiming to
extend this to ω ̸= 0, i.e. to constrained minimizers, it could be interesting to consider
the effect that elliptical distortion has on H(m) where m is an axisymmetric minimizer.
Furthermore, an expression of these minimizers in spherical coordinates would be helpful
in adapting the methods of the axisymmetric case.
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A. Appendix

A.1. Spherical Coordinates and Moving Frame

In section 2.2, we have found representation in spherical coordinates that are specific
to equivariant and axisymmetric fields. Furthermore, in chapter 3, we have used this
expression to define a moving frame on S2 \ {±ê3}. We have extended both the co-
ordinate representation and the decomposition via the moving frame to the poles. In
the following, we will give further justification for this process and prove that the co-
efficient functions of the Fourier decomposition of tangent fields are well-defined at the
poles.

First, consider the regular parametrization

Ψ: (0, π)×(0, 2π) → S2 \{(y1, y2, y3) ∈ S2 : y1 ≥ 0, y2 = 0}, Ψ(x, φ) =

sinx cosφ
sinx sinφ

cosx

 .

For computation purposes, we may extend it to Ψ: (0, π)×[0, 2π) → S2\{±ê3}, which is
still injective. At the poles, the injectivity degenerates. However,

lim
x↘0

Ψ(x, φ) = ê3 and lim
x↗π

(x, φ) = −ê3

independently of φ. Thus, setting Ψ(0, φ) = ê3 and Ψ(π, φ) = −ê3 for all φ ∈ [0, 2π) re-
sults in a continuous and surjective map Ψ: [0, π]×[0, 2π) → S2.

Given m ∈ C(S2; S2) and using the same coordinates on the target sphere, we find
functions

θ̃ : (0, π) × [0, 2π) → (0, π), ϕ̃ : (0, π) × [0, 2π) → [0, 2π),

not necessarily continuous, such that

m(Ψ(x, φ)) =

sin θ̃(x, φ) cos ϕ̃(x, φ)

sin θ̃(x, φ) sin ϕ̃(x, φ)

cos θ̃(x, φ)

 for Ψ(x, φ) ∈ S2 \ {m = ±ê3}.

To ensure continuity of the coordinate functions θ, ϕ, observe that θ̃, ϕ̃ are as regular
as m on any relatively open subset G of S2 such that m(x) ∈ S2 \ {y1 ≥ 0, y2 = 0} and
x ∈ S2 \ {x1 ≥ 0, x2 = 0} for all x ∈ G. Discontinuities occur when ϕ̃ approaches 0 or
2π and when θ̃ approaches 0 or π.
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Instead of ϕ̃ : (0, π) × [0, 2π) → (0, 2π), it is more convenient to consider the sphere
without poles as a cylinder over the circle:

S2 \ {±ê3} = (0, π) × S1.

In this representation, regularity of ϕ̃ : (0, π) × S1 → S1 immediately follows from regu-
larity of m at S2 \{±ê3}. Opening up the circle at φ = 0, we can furthermore construct
a continuous coordinate function ϕ : (0, π)×(0, 2π) → R by adding 2π for every covering
of S1 by ϕ̃.

The more difficult problem is posed by the discontinuities for θ̃ approaching 0 or π. In
general, the coordinate functions could not be extended. In the equivariant case however,
the set {m = ±ê3}, which is responsible for the discontinuities of θ̃, consists of rings of
the form Ψ({x}×[0, 2π)). Indeed, if m(Ψ(x, φ)) = ±ê3, then

m(Ψ(x, φ+ α)) = RαR
−1
α m (RαΨ(x, φ)) = Rαm(x, φ) = Rα ± ê3 = ê3,

where Rα ∈ SO(3)ê3 is a rotation by angle α. Thus, starting at the north pole, we
can construct a continuous function θ : (0, π) → R by adding multiples of π on each
connectivity component of S2 \ {m = ±ê3}. Recall that for minimizing axisymmetric
fields, θ < 2π was a very easy consequence of minimality as shown in Lemma 3.1 and
the following.

With continuous coordinate functions on S2 \ {x1 ≥ 0, x2 = 0}, the computations of
section 2.2 are justified and the special form of ϕ(x, φ) = χ(x) +φ allows to extend the
representation to S2 \ ±{ê3}. Furthermore, the symmetry implies m(±ê3) ∈ {ê3,−ê3}
and therefore the value of θ has to be a multiple of π at the poles. Since θ is independent
of φ, this can be done such that θ : [0, π] → R is continuous. The values of χ at the
poles can not be determined.

Differentiability of the coordinate functions θ and χ on S2\{±ê3} follows by the same ar-
guments as the continuity and the same holds for higher order derivatives.

We now consider the moving frame

X =

 sinφ
− cosφ

0

 and Y =

cos θ cosφ
cos θ sinφ
− sin θ

 ,

pointwisely spanning Tm0S2. On S2 \ {±ê3}, these are well defined. At ±ê3 however,
the parametrization Ψ is not injective such that X,Y can not be defined. However, if
ϕ : S2 → Tm0S2 is continuous at ê3, then for fixed φ ∈ [0, 2π) it holds that

ϕ(ê3) = lim
x↘0

ϕ(x, φ) = lim
x↘0

(ϕ(x, φ) ·X(x, φ))X(x, φ) + (ϕ(x, φ) · Y (x, φ))Y (x, φ).

This can also be verified in the coordinate representation. Write u1 = ϕ·X and u2 = ϕ·Y .
Then

u1 = ϕ ·X = sinφϕ1 − cosφϕ2,

u2 = ϕ · Y = cos θ cosφϕ1 + cos θ sinφϕ2 − sin θϕ3.
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and, again for fixed φ,

u1X + u2Y (x, φ)

=

 sin2 φϕ1 − sinφ cosφϕ2 + cos2 θ cos2 φϕ1 + cos2 θ cosφ sinφϕ2 − sin θ cos θϕ3
− cosφ sinφϕ1 + cos2 φϕ2 + cos2 θ cosφ sinφϕ1 + cos2 θ sin2 φϕ2 − sin θ cos θϕ3

sin2 θ cos θϕ1 + sin θ cos θ sinφϕ2 + sin2 θϕ3


=

ϕ1
(
sin2 φ+ cos2 θ cos2 φ

)
+ ϕ2 sinφ cosφ(−1 + cos2 θ) − ϕ3 sin θ cos θ

ϕ2
(
cos2 φ+ cos2 θ sin2 φ

)
+ ϕ1 sinφ cosφ

(
−1 + cos2 θ

)
− ϕ3 sin θ cos θ

sin θ (sin θ cos θϕ1 + cos θ sinφϕ2 + sin θϕ3)


−→

ϕ1(ê3)ϕ2(ê3)
0

 = ϕ(ê3),

because ϕ3(ê3) = ϕ · ê3 = −ϕ ·m(ê3) = 0 and because limx→0 θ(x) = 0. The same holds
for x→ π.

Unfortunately, the individual coefficients ui do not converge as x→ 0 or x→ π because
they explicitly depend on φ. On the other hand, if the dependence of φ is evened out
by considering a Fourier decomposition of ϕ with respect to φ, then convergence can be
guaranteed.

Lemma A.1. Given ϕ ∈ C∞(S2;Tm0S2) with ϕ = u1X + u2Y , let a
(i)
k , b

(i)
k : (0, π) → R

be functions such that

ui(x, φ) = a
(i)
0 (x) +

∞∑
k=1

(
a
(i)
k (x) cos(kφ) + b

(i)
k sin(kφ)

)
, i = 1, 2

almost everywhere. Then

lim
x→a

a
(i)
k (x) = 0 = lim

x→a
b
(i)
k (x), i = 1, 2

for a ∈ {0, π} and for k ∈ N>1. Furthermore, limx→a a
(i)
0 (x) = 0 for a ∈ {0, π} and

i = 1, 2 and

lim
x→a

a
(1)
1 (x) = −ϕ2(Ψ(a)), lim

x→a
a
(2)
1 (x) = −ϕ1(Ψ(a)),

lim
x→a

b
(1)
1 (x) = ϕ1(Ψ(a)), lim

x→a
b
(2)
1 (x) = −ϕ2(Ψ(a)),

where again a ∈ {0, π} and Ψ(0) = ê3, Ψ(π) = −ê3.

Proof. As Fourier coefficients, the a
(i)
k and b

(i)
k are pointwisely given by

a
(i)
k (x) =

1

π

2π∫
0

ui(x, φ) cos(kφ) dφ and b
(i)
k (x) =

1

π

2π∫
0

ui(x, φ) sin(kφ) dφ,
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where again u1 = ϕ ·X and u2 = ϕ · Y . Being parameter integrals, they are as regular

as ϕ for x ∈ (0, π). Furthermore, by dominated convergence, the a
(i)
k satisfy

lim
x→π

a
(1)
k = lim

x→π

1

π

2π∫
0

ϕ(x, φ) ·X(x, φ) cos(kφ) dφ

=
1

π

2π∫
0

ϕ(−ê3) ·

 sinφ cos(kφ)
− cosφ cos(kφ)

0

 dφ

and

lim
x→π

a
(2)
k = lim

x→π

1

π

2π∫
0

ϕ(x, φ) · Y (x, φ) cos(kφ) dφ

=
1

π

2π∫
0

ϕ(−ê3) ·

− cosφ cos(kφ)
− sinφ cos(kφ)

0

 dφ.

Here, we have used that ϕ and |X|, |Y | are bounded near π and that for every fixed φ ∈
[0, 2π), the limits limx→πX(x, φ) and limx→π Y (x, φ) exist. The problem in extending
X,Y to the poles only lies in the fact that these limits are not independent of φ such
that the limit for x → −ê3 does not exist. Furthermore, we have employed θ(x) = π,
which holds for minimizing profiles. For non-minimizing axisymmetric m, cos(θ(π)) = 1
is possible, resulting in a change of the sign.

After computing the scalar product, the constants ϕ1(−ê3) and ϕ2(−ê3) can be moved
in front of the integral so that we are left with standard integrals of the type

2π∫
0

cos(φ) cos(kφ) dφ and

2π∫
0

sin(φ) cos(kφ) dφ.

For k > 1 and k = 0, both of these integrals are 0. For k = 1, their values are π and

0, respectively. Therefore, a
(1)
1 (π) = −ϕ2(−ê3) and a

(2)
1 (π) = −ϕ1(−ê3). Similarly, the

limits of b
(i)
k at π exist and satisfy

lim
x→π

b
(1)
k (x) =

1

π

2π∫
0

ϕ(−ê3) ·

 sinφ sin(kφ)
− cosφ sin(kφ)

0

 dφ =

{
ϕ1(−ê3) k = 1

0 otherwise

and

lim
x→π

b
(2)
k (x) =

1

π

2π∫
0

ϕ(−ê3) ·

− cosφ sin(kφ)
− sinφ sin(kφ)

0

 dφ =

{
−ϕ2(−ê3) k = 1

0 otherwise.

At x = 0, the result is identical but ϕ is evaluated at ê3.
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A.2. Analyticity of Functionals

In chapter 4 we have proven a  Lojasiewicz-Simon type inequality for the pulled-back
functional F = E ◦ψ. One of the key ingredients is the analyticity of F because it allows
to apply the finite-dimensional  Lojasiewicz inequality to a reduced function Γ. In the
following, we follow [56] to give a definition of analytic functionals. We then collect
some useful results.

Definition 7. Let A,B be Banach spaces. The functional f : A → B is called analytic
in a ∈ A if there exists a sequence of n-linear operators ϕn : An → B and r > 0 such
that

∞∑
n=1

∥ϕn∥Ln(A,B)r
n <∞

and for all h ∈ A with ∥h∥ < r it holds that

f(a+ h) − f(a) =
∞∑
n=1

ϕn(h, . . . , h).

By the linearity of norms it immediately follows that the analytic functionals on A
form a linear space. To have some first examples, consider n-linear operators taking
n times the same argument. These are the equivalent of order n monomials in finite
dimensions.

Lemma A.2. Let B1, B2 be Banach spaces, k ∈ N and T ∈ Lk(B1,B2). Then the
operator T̃ : B1 → B2, x 7→ T (x, . . . x) is analytic.

Proof. We show that T̃ is analytic at 0 with an infinite radius of convergence.

Set ϕℓ : Bk1 → R to be

ϕℓ(x(1), . . . , x(ℓ)) = T (x(1), . . . , x(k)) if ℓ = k

and ϕℓ ≡ 0 otherwise. Then all ϕℓ are ℓ-linear mappings, T̃ (u) =
∑∞

k=0 ϕ
k(u, . . . u) and

∞∑
ℓ=0

∥ϕℓ∥Lk(B1,B2)r
ℓ = ∥T∥Llrk <∞ for all r > 0.

Corollary A.1. The functional

F1 : H2(S2;R3) → R, m 7→ 1

2

∫
S2

|∇m|2 dσ

is analytic.
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Proof. We can write F1(m) = ⟨∇m,∇m⟩L2(S2;R3). Since the L2-scalar product is a
bilinear, bounded operator on H1(S2;R3) while ∇ : H2 → H1 is bounded and linear,
analyticity follows from Lemma A.2 and the following result by Whittlesey.

Theorem
– from [56]
The composition of analytic functionals is analytic.

Definition 7 extends the notion of analyticity from finite to infinite dimensions in a
natural way. Hence, functionals that are defined via an analytic function can inherit
this property if the norm ∥ · ∥A is sufficiently strong.

Lemma A.3. Let A be a Banach space consisting of functions u : Ω → Rn where
Ω ⊂ Rm is open and bounded and assume ∥u∥L∞(Ω) ≤ c∥u∥A for some c > 0. If a
function f : Rn → R is analytic on a neighborhood of 0, then so is

F : A→ R, F (u) =

∫
Ω

f(u(x)) dx.

Proof. We show that F is analytic in 0. For u ∈ A close to 0, the proof is identical as
long as f is analytic in ∥u∥L∞ ≤ c∥u∥A.

Since f is analytic in 0, there are r > 0 and aα ∈ R for all multi-indices α ∈ Nn such
that

f(x) = f(0) +
∞∑
k=1

∑
|α|=k

aαx
α for all |x| < r,

where the series is absolutely convergent on Br(0). Given a multi-index α ∈ Nn with
length |α| =

∑n
i=1 αi = k, set

ϕα : En → R, ϕα(u(1), . . . , u(k)) =

∫
Ω

aα

k∏
i=1

∑i
l=1 αl∏

j=1+
∑i−1

l=1 αl

u
(i)
i

and

ϕk =
∑
|α|=k

ϕα.

Then ϕk is k-linear as the sum of k-linear functionals. Furthermore, ϕk is bounded due
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to |u(x)| ≤ ∥u∥L∞(Ω) ≤ c for almost all x ∈ Ω and u ∈ A with ∥u∥A = 1:

∥ϕk∥Lk(E,R) = sup
∥u(i)∥A=1

|ϕk(u(1), . . . , u(k))| ≤
∑
|α|=1

sup
∥u(i)∥A=1

|ϕα(u(1), . . . , u(k))|

≤
n∑
k=1

sup
∥u(i)∥A=1

∫
Ω

|aα|
k∏
i=1

∥u(i)∥L∞(Ω) dx

≤
n∑
k=1

sup
∥u(i)∥A=1

∫
Ω

|aα|ck dx

=

n∑
k=1

|Ω||aα|ck.

For |ρ| < r
c , the series

∑∞
k=0 ∥ϕk∥Lk(E,R)ρ

k is absolutely convergent since the terms are
bounded by

∥ϕk∥Lk(A,R)ρ
k ≤ |Ω|

∑
|α|=k

|aα||cρ|k

and the series representation of f is absolutely convergent.

Furthermore, since absolute convergence and integrability of ϕk(u, . . . , u) due to the
L∞-embedding allow to change the order of summation and integration, it follows for
∥u∥A < r

c that

F (u) =

∫
Ω

f(u(x)) dx =

∫
Ω

f(0) dx+

∞∑
k=1

∑
|α|=k

aα

k∏
i=1

ui(x)αi dx

= F (0) +
∞∑
k=0

ϕk(u, . . . , u).

By a similar argument, the composition operator with an analytic function is analytic
if it is defined on a Banach space that is an algebra. We prove this statement for the
special case H2(Ω) where Ω ⊂ Rn and n ∈ {2, 3}.

Lemma A.4. Let Ω ∈ Rn be bounded for n ∈ {2, 3} and f : Rn → Rn analytic in a
neighborhood of 0 in the sense that there are r > 0 and aα ∈ Rn for every multi-index
α ∈ Nn such that

f(x) = f(0) +
∞∑
k=1

∑
|α|=k

aαx
α for all |x| < r

and such that all n components of the sum converge absolutely for all |x| < r. Then the
functional

F : H2(Ω;Rn) → H2(Ω,Rn), u 7→ f ◦ u
is analytic in a neighborhood of 0.
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Proof. Since 2 > n
2 ∈ {1, 32}, there is c∞ > 0 such that ∥u∥∞ = ∥u∥C0 ≤ c∞∥u∥H2 .

Consequently, if u ∈ B r
c∞

(0) ⊂ H2(Ω;Rn), |u(x)| ≤ ∥u∥L∞ < r for almost all x ∈ Ω and

F (u)(x) = f ◦ u(x) = f(0) +
∞∑
k=1

∑
|α|=k

aαu(x)α

with absolute convergence for almost every x ∈ Ω. For a multi-index α ∈ Nn with length
k =

∑n
l=1 αl, set

ϕα(u1, . . . uk) = aα

k∏
i=1

∑i
ℓ=1 αℓ∏

j=(
∑i−1

ℓ=1 αℓ)+1

(uj)i

and define

ϕk :
(
H2(Ω;Rn)

)k → H2(Ω;Rn) by ϕk(u(1), . . . , u(k)) =
∑
|α|=k

ϕα(u(1), . . . , u(k)).

Since H2(Ω) is an algebra, each component of ϕk is well-defined for all k ∈ N and
as in Lemma A.3, we have found a series representation of F . It remains to prove
the convergence by finding suitable bounds for the ϕk as n-linear forms. Proceeding
as in the proof of the algebraic property, we can estimate ∥ϕk∥Lk(H2;H2). To do so,

choose u(1), . . . , u(k) ∈ H2(Ω;R3) arbitrarily with ∥ui∥H2 = 1 for all 1 ≤ i ≤ k where
|α| = k ≥ 2 and fix a component 1 ≤ m ≤ n. Then it holds for the mth entry of
ϕα =

∑
ϕαmêm that

∥(ϕα(u(1), . . . , u(k)))m∥2L2 =

∫
Ω

|(aα)m|2
k∏
i=1

∏
...

|(u(j)(x)i|2 dx

≤
∫
Ω

|(aα)m|2
k∏
i=1

∥u(i)∥2∞ dx

≤ |Ω||(aα)m|2c2k∞,

∥∂pϕα(u(1), . . . , u(k))m∥2L2 ≤ 2

∫
Ω

|aα|2
k∑
ℓ=1

|∂p(u(l))|2
k∏
i=1

∏
...

|(u(j)(x))i|2 dx

≤ 2

k∑
ℓ=1

∫
Ω

(aα)2m|∂pu(ℓ)(x)|2c2(k−1)
∞ dx

≤ 2
k∑
ℓ=1

((aα)m)2∥u(ℓ)∥2H2 = k((aα)mc
k−1
∞ )2,

and finally, with ∥∂pu∥L4 ≤ ∥u∥W 1,4 ≤ c1∥u∥H2 due to choice of n and the implied
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continuous embedding H2 ⊂W 1,4 as well as 2 ≤ 4 < min{∞, 6}),

∥∂p∂qϕα(u(1), . . . , u(k))m∥2L2

≤
∫
Ω

(aα)2m

 k∑
ℓ=1

∑
o=1
o ̸=ℓ

|∂pu(ℓ)||∂qu(o)|
∏
i=1
i ̸=ℓ,o

|u(i)| +
k∑
ℓ=1

|∂p∂qu(ℓ)|
k∏
i=1

|u(i)|


2

dx

≤ 4

∫
Ω

(aα)2m

k∑
ℓ=1

∑
o=1
o ̸=ℓ

|∂pu(ℓ)||∂qu(o)|c2(k−2)
∞ dx+ 2

∫
Ω

(aα)2m

k∑
ℓ=1

|∂p∂qu(ℓ)|2c2(k−1)
∞ dx

≤ 4|aα|2c2(k−2)
∞

k∑
ℓ=1

∑
o=1
o ̸=ℓ

∥∂pu(ℓ)∥2L4∥∂qu(o)∥2L4 + 2(aα)2mc
2(k−1)
∞

k∑
ℓ=1

∥u(ℓ)∥2H2

≤ 4(aα)2mc
2(k−2)
∞

k∑
ℓ=1

k∑
o=1
o ̸=ℓ

c41 + 2k
(

(aα)mc
k−1
∞

)2
= 4k(k − 1)

(
(aα)mc

k−2
∞ c21

)2
+ 2k

(
(aα)mc

k−1
∞

)2
.

For k ≤ 2, similar estimates hold. They are not important for the convergence of the
series, though.

Set c = max{1, c∞, c1}. Then,

∥(ϕα)m∥2Lk(H2,H2) ≤ (|Ω| + 4k + 4k2)((aα)mc
k)2

and since the first factor does not affect the radius of convergence, the series

∞∑
k=1

∥ϕk∥Lk(H2;H2)r
k ≤

∞∑
k=1

∑
|α=k|

∥ϕα∥Lk(H2;H2)r
k

≤ const +
∞∑
k=2

∑
|α|=k

√
|Ω| + 4k + 4k2|(aα)m||cr|k

converges for |z| < r
c .

Note: In Lemma A.3 and A.4, the set Ω could be replaced by a Riemannian manifold
such as S2. For Lemma A.4, the manifold should have dimension 2 or 3 to ensure that
H2(M) is an algebra.

We end this section by citing another theorem from [56].

Theorem
– from [56]
If f : D → D is an analytic diffeomorphism, then f−1 : f(D) → D is analytic.
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This theorem is employed in [56] to prove that in the inverse as well as in the implicit
function theorem on Banach spaces, analyticity of the original map implies analyticity
of the inverse or implicit map.
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Ich, Helene Schroeder, erkläre hiermit, dass diese Dissertation und die darin dargelegten
Inhalte die eigenen sind und selbstständig, als Ergebnis der eigenen originären Forschung,
generiert wurden.
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(3) Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen wurden,
wurden diese klar benannt;
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