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Abstract
In injection molding, shrinkage and warpage lead to a deformation of the pro-
duced parts with respect to the cavity shape. One method to mitigate this ef-
fect is to adapt the cavity shape to the expected deformation. This deforma-
tion can be determined using appropriate simulation models, which then also
serve as a basis for determining the optimal cavity shape. Shape optimization
usually requires a sequence of forward simulations, which can be computa-
tionally expensive. To reduce this computational cost, we use Bayesian opti-
mization which uses Gaussian process regression as a reduced order model.
Additionally, Gaussian process regression has the benefit that it allows to ac-
count for uncertainty in the model parameters and thus provides a means to
investigate their influence on the optimization result. We present a Gaussian
process regression trained with samples from a finite-element solid-body
model. It predicts the deformation of the product after solidification and, to-
gether with Bayesian optimization, allows for efficient cavity optimization.
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1 | INTRODUCTION

Injection molding is a widely-used manufacturing proc-
ess for plastics products. In order to ensure a high part
quality, a number of causes for inaccuracies need to be
considered. One main cause for reduced shape accuracy
is warpage; a result of both uneven shrinkage and an

inhomogeneous temperature distribution within the part
during and after solidification [1].

Warpage is influenced by a variety of factors and nu-
merous studies have investigated methods to reduce
warpage by adjusting process parameters or part design
[2]. In that work, the influence of process parameters
such as melt temperature, injection time, injection
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pressure, holding pressure, and cooling time is explained
and different optimization strategies are discussed. The
optimization techniques include genetic algorithms, re-
sponse surface methodology, Bayesian optimization, and
particle swarm optimization. In terms of component de-
sign, the wall thickness of the part can be optimized to
reduce warpage [3]. Also, the design of the cooling sys-
tem can reduce the warpage [4].

However, these methods cannot completely eliminate
warpage. A potential approach to further minimize war-
page is to compensate for it by adjusting the cavity
shape. In this way, the part is produced with a deforma-
tion that then compensates for the warpage that occurs.

Finding the optimal cavity shape that compensates
for warpage is difficult. The simplest method is based on
experiments and trial runs. The cavity is iteratively
modified based on measured data from parts produced
in trial runs. For this method, it is critical to use enough
measurement points with sufficient accuracy. It is also
possible to compute the corrected cavity shape based on
measurement data of the entire surface of the part [5].

The industry also uses simulation-based compensa-
tion methods. With commercially available simulation
software, the warpage can be predicted. Integrated opti-
mizers and sensitivity analysis for process parameters
and simple geometric features are also available [6,7].

An automated method to compute the optimal cavity
shape is still a work in progress. Several methods have
been proposed in the literature.

A method called 3D volume shrinkage method has
been used for shrinkage compensation by scaling the
part in each direction of the coordinate axis, resulting in
a reduction of the warpage [8].

Another method is to use an inverse model to com-
pute the optimal cavity geometry [9, 10]. A forward sim-
ulation is run once to obtain the temperature dis-
tribution in the part and then an inverse model is
employed to identify a modified part that after shrinkage
and warpage corresponds to the desired product. This
geometry is then used as the new cavity shape. The ad-
vantage of this method is that only one run of the in-
verse model is required. The disadvantage is that the
temperature distribution is computed only once and is
not adjusted for the compensated geometry.

In another iterative method, the objective function is
the difference to the desired geometry and it is computed
locally [11]. With this local objective function, the geom-
etry can be adjusted locally to reduce each objective
function with each iteration. This approach requires
only a few iterations. Another advantage of this method
is that any forward simulation model can be used.

In this paper, we propose a shape-optimization-based
approach to finding the cavity shape that minimizes

warpage. In general, shape-optimization approaches
require four ingredients: (1) a shape parameterization,
(2) an easy-to-evaluate forward simulation, (3) an ob-
jective function, and (4) an optimization algorithm. In
terms of shape parameterization, a low-dimensional rep-
resentation has the advantage that the computational ef-
fort is more manageable and therefore the set of suitable
optimization algorithms is larger. Furthermore, such pa-
rameterization may facilitate the compatibility with
computer-aided design systems. There are several ways
to achieve such a parametrization [12]. Here, we use the
so-called Free-form deformation method. Free-form de-
formation not only allows for local adjustments of the
geometry, but it also has the advantage that it is easy to
set up also for complex geometries as it is based on the
embedding of point clouds in a box spline, which we em-
phasize is not boundary-conforming to the represented
geometry [13].

The geometry can then be modified by displacing the
control points of the box spline. The choice of spline
type for the box spline can significantly affect the flexi-
bility and computational efficiency of the optimization
process. Common spline types include B-splines, non-
uniform rational B-splines, and Bézier splines [14,15]. In
our study, we chose B-splines because they offer a suit-
able balance between flexibility and computational cost,
providing a smooth and continuous representation of the
cavity geometry while maintaining computational effi-
ciency [14].

Since shape-optimization problems require many
queries of the forward simulation, as a second ingredient
we require an efficient forward simulation [16]. In this
work, we will use Bayesian optimization, a surrogate
model-based optimization algorithm. Making use of sur-
rogate or reduced-order models can serve as an im-
portant means to lower computational complexity [17].
Surrogate models and reduced order models are espe-
cially useful in optimization problems where the ob-
jective function is expensive to evaluate [16]. This is the
case, for example, when the objective function is com-
puted by running a full-order finite element simulation
model.

In this paper, we generate a surrogate model that rep-
resents the functional relationship between the opti-
mization parameters i. e., the free-form deformation con-
trol point positions and the objective function.

Such surrogate models can be obtained in many
ways, including regression techniques or machine learn-
ing [16–19]. In contrast to reduced-order models, surro-
gate models are purely data-based. This means that they
are non-intrusive and furthermore can be trained in a
hybrid way using both simulation and experimental data
[16]. In this work, we obtain the surrogate model using
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Gaussian process regression. The reason for this choice
is that in addition to the surrogate model itself, Gaussian
process regression also provides an uncertainty bound
for its prediction of the objective function [20]. Knowing
how accurate the Gaussian process regression model is
for certain optimization parameters can be used during
training to calculate the optimal next training point. This
is often referred to as Bayesian optimization. To find the
optimal next training point, an acquisition function is
defined that balances exploitation and exploration, i. e.,
the weighting of low function value versus high un-
certainty. Thus, promising points with low function val-
ue and high uncertainty are chosen, as here the proba-
bility of finding a better point is highest [21,22]. Note
that in literature, Bayesian optimization has been ap-
plied to finding optimal process parameters for injection
molding [23–25]. The difference to this work is that
there the process parameters such as the cooling time or
the holding pressure were optimized, whereas in our
work, the cavity shape is optimized to compensate for
warpage.

In classic Bayesian optimization, the bounds for the
optimization variables must be set first. If no bounds are
set, the learning function would propose training points
that are too far apart in the search space, which can be a
drawback if the region where the global optimum lies is
unknown. Several methods have been proposed in the
literature to deal with this problem. One method is to
constrain the uncertainty during optimization with an
upper bound [26]. Another method is to use initial
bounds and expand them when the bound is reached,
called adaptive expansion [27].

The paper is organized as follows. In Section 2, we
describe our proposed method. This is followed by a nu-
merical example in Section 3 and the discussion and out-
look in Section 4.

2 | A BAYESIAN OPTIMIZATION
FRAMEWORK FOR IDENTIFYING THE
OPTIMAL CAVITY SHAPE

In this section, we detail the methods used in our study,
including the spline-based free-form deformation and
the simulation model, followed by the objective function
and the implementation of Bayesian optimization to ulti-
mately achieve the goal of warpage minimization by
finding the optimal cavity geometry.

In this paper, surrogate-model-based optimization is
used to solve the geometry compensation problem. Oth-
er components involved are the objective function,
which is computed as the mean distance to the desired
geometry. The adaptation of the cavity geometry during

the optimization iterations is achieved via a spline-based
free-form deformation.

2.1 | Spline-based free-form
deformation

To adjust the cavity geometry in a flexible and efficient
way, we use a spline-based free-form deformation ap-
proach [13, 15, 28]. In particular, our deformation spline
is a B-spline. The deformation spline is usually a box-
shaped spline, i. e., either a rectangle in 2D or a cuboid
in 3D. In many cases, the control points are homoge-
neously distributed, but this is not a strict requirement.
The finite element mesh representing the initial geome-
try, i. e., the cavity geometry in the warpage simulation
is then embedded in the box spline. In simple terms,
this means that each finite element node is attached to
a specific point on the spline. As the spline is deformed
during the optimization iterations, also the finite ele-
ment mesh deforms accordingly and the cavity shape is
modified. In practice, this means that for each finite el-
ement node one identifies a local coordinate on the
spline. When the spline is re-evaluated after its de-
formation, this automatically identifies the new posi-
tions of the finite element nodes. This means that no
remeshing of the domain is necessary. By manipulating
the positions of these control points, the cavity geome-
try can be deformed in a smooth and continuous man-
ner.

It is to be expected that our approach requires more
iterations than the local objective function method, since
the optimization problem is of higher dimensions. In
particular, the dimension is computed as the number of
spline points multiplied by their respective number of
degrees of freedom. Depending on the number of spline
points used, the dimension may increase rapidly. How-
ever, given the high both global and local shape flexi-
bility offered by free-form deformation along with the
guarantee of smooth shapes, we consider this additional
computational effort justified.

2.2 | Simulation model

The injection molding process can be subdivided into
several phases, namely, filling, packing, solidification,
and demolding. Our warpage model sets in at the proc-
ess stage when the component is fully solidified, but not
yet cooled down to room temperature [29]. This is the
main phase where warpage occurs as the component is
no longer constricted by the mold. As initial data, the
model requires the temperature distribution within the
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component after the solidification. The inhomogeneous
temperature distribution is the driver of warpage and
can be determined using a separate simulation that is
not part of this paper.

As constitutive equation, we use a steady, linear ther-
moelasticity model [30]. The domain where we solve our
model is the volume of an injection molding part, de-
noted by Ω. As discretization, we use a tetrahedral mesh
with 29048 elements and 8725 nodes. To prevent transla-
tional or rotational movement, in total six degrees of
freedom near the gate are restricted as the boundary
conditions. The stress tensor is computed as:

s ¼ C : e (1)

where C is the stiffness tensor and ɛ the strain tensor.
These are defined as follows with the identity matrix I
and the fourth order identity tensor J:

C ¼ l I � Ið Þ þ 2mJ (2)

e ¼
1
2 ruþ ruð ÞTð Þ � a Tfinal � Tinitialð ÞI (3)

The stiffness tensor requires the Lamé parameters λ
and μ, which can be defined in terms of Young’s mod-
ulus E and Poisson’s ratioν.

l ¼
En

1 þ nð Þ 1 � 2nð Þ
(4)

m ¼
E

2 1 þ nð Þ
(5)

Additionally, u is the deformation, α is the coefficient
of thermal expansion and T is the temperature for the
initial and final state respectively.

The model then calculates the steady-state solution of
the deformation when the entire part has reached am-
bient temperature. For this, the weak form with test
functions ϕk of the momentum balance is solved over the
domain Ω.

Z

W

r�k : s dV ¼ 0: (6)

The simulation model thus provides a prediction of
the distortion that will occur after the cooling phase. The
deformed geometry is then used in order to compute the
objective function for the optimization process. It is evi-
dent that this model makes a number of assumptions,
such as linearity, unrestricted cooling, etc. However, the
correctness and accuracy of this simulation model is not

the focus of this study. In general, any warpage
prediction model can be used.

2.3 | Objective function

For optimization, the calculated warpage must be quan-
tified by an objective function. The objective function
measures the deviation between the warped geometry
and the ideal geometry of the molded part. In our study,
we define the objective function as the average distance
between corresponding points on the warped and ideal
geometries.

We use this point-based distance measurement, as
this is a very simple method which is easy to implement
and sufficiently accurate for our use case. The points are
sampled uniformly over the surface of the undeformed
part, based on the mesh elements. As the same mesh
connectivity is used for the deformed and undeformed
mesh, each point on the deformed domain has a corre-
sponding point on the undeformed domain. We calculate
the Euclidean distance between each pair of correspond-
ing points and sum these distances divided by the total
number of points:

FðsÞ ¼
1
Gj j

SN
i¼0 xi � ~xiðsÞk k2;

with xi 2 G � @W and ~xiðsÞ 2 ~GðsÞ � @ ~WðsÞ
(7)

Here, G or ~G is the set containing the sample points
and @W or @ ~W denotes the surface of the undeformed or
deformed part, respectively. Note that the shape of the
deformed surface depends on the coordinates of the
spline control points s. The coordinates of the part are x
for the ideal geometry and ~x for the deformed geometry.
This distance-based metric provides a comprehensive
measure of the overall distortion in the part and allows
direct comparison of different cavity geometries during
the optimization process. With this objective function,
the optimization problem can be formulated as follows:

min
s

F sð Þ, s:t: Blower � s � Bupper (8)

where s is a flattened vector representing the coordinates
of the control points, combining the values of the coor-
dinates from each direction. The lower and upper
bounds of the spline control point coordinates are given
by the vectors Blower and Bupper. The condition between
the vectors s, Blower and Bupper has to be read component-
wise. By minimizing this objective function, we aim to
reduce the overall distortion in the molded part, thereby
improving its quality and adherence to the desired speci-
fications.
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2.4 | Bayesian optimization
implementation

Using Bayesian optimization, we identify the optimal
cavity geometry in the sense of Equation (6). The Baye-
sian optimization is based on a Gaussian process re-
gression surrogate model determined using the open-
source Python library psimpy. For the Gaussian process
regression, we use a Matérn kernel with the parameter
νMatérn =2.5.

The expected improvement function EI is used as the
acquisition function for the Bayesian optimization to de-
termine the most promising next candidate geometry in
the search space [31]. The expected improvement func-
tion is defined as:

EIðsÞ ¼

ðmðsÞ � FðsþÞ � xÞFðZÞþ

sðsÞ�ðZÞjif sðsÞ ¼ 0;

0jif sðsÞ ¼ 0;

8
>>><

>>>:

(9)

with

Z ¼
m sð Þ � F sþð Þ � xð Þ

s sð Þ
(10)

Here, m is the mean and σ is the variance of the
Gaussian process regression prediction. F(s+) is the best
observed objective function value, Φ(Z) is the cumulative
distribution function of the standard normal dis-
tribution, and ϕ(Z) is the corresponding probability den-
sity function. The parameter ξ balances exploration and
exploitation.

The best candidate geometry lies at the minimum of
this exploration function. Thus, in each iteration step,
the (ideally global) optimum of this function is found.
This optimization problem is:

min
s

EI sð Þ; s:t: Blower � s � Bupper (11)

For an efficient Bayesian optimization, especially in
high dimensions, it is important not to have a too large
search space for the global optimum. Otherwise, too
many iterations will be needed for the Bayesian opti-
mization to converge. Therefore, we start with small
bounds for the optimization variables, which are ex-
panded adaptively. The criterion for expansion is that
the current optimum lies at the current boundary. Then
the boundary is expanded in that direction. With this
method alone, the algorithm tends to over-explore the
domain, leading to unnecessary simulations in regions
where the objective function is far from the optimum.

Therefore, in addition to the adaptive expansion, the
search space is limited by imposing an upper bound on
the optimization of the acquisition function. This results
in the adaptive equation of the acquisition function opti-
mization:

min
s

EI sð Þ; s:t: Blower � s � Bupper; s sð Þ � t (12)

Here, τ is an additional parameter that reduces the
exploration of the Bayesian optimization algorithm. To
find the global optimum of this constrained problem, the
Python library scipy.optimize is used. The Basin-hopping
algorithm is used, which starts several local optimizers
in the search space. The local optimizer uses the sequen-
tial least squares programming algorithm. For both opti-
mizers and the Bayesian optimization algorithm, multi-
ple hyperparameters, as mentioned in this section, are
selected, Table 1. Here, η and the bounded expansion
rate have the most influence on the convergence of the
algorithm. The result of this optimization is a set of
spline control point coordinates.

The Bayesian optimization algorithm starts with the
initial cavity shape and the warping model is used to
compute the objective function, Figure 1. The objective

T A B L E 1 Optimization hyperparameters.

Parameter Value

Bounds expansion rate 0.01

Maximum uncertainty τ 0.1

Exploration parameter ξ 0.01

Basin-hopping iterations 10

Basin-hopping step size 0.1

F I G U R E 1 Overview of the Bayesian optimization algorithm.

17

Wiley VCH Freitag, 19.01.2024

2401 / 334748 [S. 17/20] 1

 15214052, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

aw
e.202300157 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



function provides the data to train the Gaussian process
regression. The Gaussian process regression is used to
find the minimum of the acquisition function. The loca-
tion of the minimum of the acquisition function selects
the coordinates of the spline points. Free-form deforma-
tion deforms the mesh of the next cavity shape, and the
loop starts again. The algorithm then runs for a fixed
number of iterations.

3 | NUMERICAL EXAMPLE

In this section, we present a numerical example for our
optimization approach, highlighting the effectiveness in
minimizing warpage in injection molded parts. As stated
in the Section 2, the warpage model requires an initial
temperature distribution. This distribution was de-
termined using the commercial software Moldflow. For

this simulation multiple process parameters need to be
selected, Table 2. In the subsequent warpage simulation
according to Section 2.2, the necessary material parame-
ters were chosen, Table 3.

The geometry is a slice of a part with multiple fins
and the initial temperature field is indicated by the color
field, Figure 2. As such, it can be reduced to a 2D-geom-
etry. For symmetry reasons, only half of the part is con-
sidered. The temperature just after solidification is un-
evenly distributed. The highest temperature is at the
injection point at about 520 K and drops rapidly for the
rest of the part. The tips of the fins feature the lowest
temperature of 360 K. This image also shows the spline
control points used for the free-form deformation. To
keep the computational cost low, we use as few control
points as possible. The underlying B-spline is comprised
of nine control points, whose positions are all subject to
optimization. This results in a total of 18 degrees of free-
dom, namely the coordinates of the spline control points
in x- and y-direction. These spline control points are
then moved with a sample distribution to deform the ge-
ometry, Figure 3.

The optimization algorithm was run for 300 iter-
ations using the desired geometry as the initial cavity
shape. The objective function value indicating the qual-
ity of the cavity shape decreases with increasing number
of iterations, Figure 4. The initial value of the objective
function is about 2.0 mm. In the first 50 iterations, the
objective function value decreases rapidly to about
0.5 mm. In the next 250 iterations, the objective function
value decreases much slower, but distinct improvements
can still be observed. For comparison, also the SciPy im-
plementation of the sequential least squares program-
ming (SLSQP) algorithm was run for the same problem.

T A B L E 2 Injection molding parameters for Pocan B 1305.

Parameter Value

Melt temperature 250 °C

Mold temperature 80 °C

Injection time 1.4 s

Packing pressure 60% of injection pressure

Packing time 6 s

Cooling time 4.5 s

T A B L E 3 Nutils warpage simulation model material
parameters.

Parameter Value

Young’s modulus 2800 MPa

Poisson’s ratio 0.4

Thermal expansion coefficient 1×10� 4 K� 1

F I G U R E 2 Geometry of the part, including the temperature
field and the spline control points.

F I G U R E 3 Deformed geometry (gray) with the
corresponding spline surface and control points (black).
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The decrease of the objective function value is slightly
worse compared to the Bayesian optimization algorithm.
In the case of our simple numerical example, the se-
quential least squares programming (SLSQP) algorithm
did not get stuck in a local minimum. However, in a
more complex case, local minima may be a problem, in
which case Bayesian optimization is more likely to find
the global optimum.

The optimization algorithm results in an improved
cavity shape, Figure 5. By choice, the initial cavity shape
corresponds exactly to the desired product geometry,

Figure 5a. As such, this geometry has a dual-purpose.
When the initial cavity is used, the right corner of the
part is bent up and the two largest ribs are bent slightly
inward, Figure 5b. For the optimal cavity shape de-
termined via Bayesian optimization, the right corner of
the cavity shape is moved up and the ribs are bent in-
ward, Figure 5c. Notice, that roughly the opposite de-
formation of the deformed part is applied. The final part
resulting from this cavity shape shows that the deforma-
tion has been significantly reduced, Figure 5d. Some mi-
nor deviations compared to the desired product geome-
try remain, for example the length of the third fin is too
short.

4 | DISCUSSION AND OUTLOOK

As demonstrated by means of the numerical example,
the introduced algorithm is able to improve the cavity
geometry in such a way that the warpage is significantly
reduced. The key advantage of our method is that it is
non-intrusive, meaning that any warpage model or ex-
perimental data can be used to generate the surrogate
model and optimize the cavity shape. In addition, this
method is easily adaptable to include additional opti-
mization parameters for warpage minimization, such as
process parameters.

However, in comparison to the local objective func-
tion method it should be noted that our method requires
more than an order of magnitude more iterations. This is
due to the fact that our method uses a global objective
function that averages the distance to the desired geome-
try over the entire part. With this method, the in-
formation about where the deformations occur on the
part is lost and must be “rediscovered” by acquiring
enough training data from the simulation model. It is
necessary to find out which spline point corresponds to
an area with larger deformations. Depending on the
number of spline points, this connection is difficult to
find. This will be addressed in future work.

Furthermore, we currently do not restrict the possible
range of cavity shapes except for the imposed bound
constraints on the displacement of the spline control
points. As a result, the adapted cavity shape may result
in a produced part that is difficult to demold, i. e., diffi-
cult to extract from the cavity. While curved parts are
not impossible to demold, it is more expensive. As a
remedy, one could implement an appropriate constraint
on the cavity shape. It is also important to note that no
process parameter optimization was performed in the ex-
ample shown. With optimized process parameters, the
total warpage will be reduced and thus a demolding cri-
terion may no longer be necessary.

F I G U R E 4 Convergence of the Bayesian optimization
algorithm and the sequential least squares programming (SLSQP)
algorithm. On the y-axis, the objective function value is shown,
which measures the average distance of the deformed part to the
desired part. On the x-axis the number of iterations is shown.

F I G U R E 5 Comparison of the initial cavity shape (a) and the
optimized cavity shape (c) with their corresponding deformed
parts (b) and (d).
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