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Zusammenfassung

Die Adsorption einzelner magnetischer Atome und atomar dünner magnetischer
Schichten auf Oberflächen und zweidimensionalen Materialien bietet eine einzigartige
Möglichkeit zur Konstruktion hochkompakter und effizienter Nanostrukturen mit
potenziellen Anwendungen in der Spintronik und Spin-Orbitronik. Diese Arbeit
verwendet Berechnungen basierend auf der Dichtefunktionaltheorie, um unser
Verständnis der Physik der 4f Elektronen zu vertiefen, indem sie die wesentlichen
Eigenschaften von Seltenerd-Atomen untersucht, die auf zweidimensionale Mate-
rialien adsorbiert sind. Diese Untersuchungen liefern wertvolle Erkenntnisse über
magnetische Anisotropie und verwandte Phänomene und werfen Licht auf das kom-
plexe Zusammenspiel von Faktoren wie Spin-Bahn-Kopplung, Symmetrie, Kristallfeld
und topologischen Merkmalen, welche das beobachtete Verhalten bestimmen. Die
vielversprechenden Ergebnisse betonen die Bedeutung einer weiteren Erforschung
solcher Systeme, um den gezielten Entwurf und die Anpassung magnetischer Nanos-
trukturen zu realisieren.

Die Untersuchung beginnt mit der Analyse der Eigenschaften von Seltenerd-Atomen,
die auf einer Graphen-Monoschicht adsorbiert sind und sich somit in einem
hexagonalen Kristallfeld befinden. Die berechneten elektronischen und magnetischen
Eigenschaften sowie die Energieabhängigkeit von der Magnetisierungsrichtung zeigen,
dass selbst auf einem strukturell einfachen Material wie Graphen die Energieab-
hängigkeit stark anisotrop ist und Werte von mehreren meV erreichen kann. Die
Berechnung von Multiplett-Aufspaltungen anhand bewerteter Kristallfeldparameter
zeigt Unterschiede zwischen ganzzahligen und halbzahligen Spin-Systemen auf. Im
ersten Fall treten tunnelgespaltene Zustände auf, während die halbganzzahligen
Spin-Systeme durch Symmetrie gegen die Bildung solcher Zustände geschützt sind.
Dennoch kann die Quantentunnelung der Magnetisierung in beiden Spin-Systemen
stattfinden, angetrieben von verschiedenen Faktoren wie Streuereignissen mit
Substrat-Phononen und Leitungselektronen. Insgesamt hängt die magnetische
Anisotropie signifikant vom entsprechenden Seltenerd-Atom ab und kann durch
Anwendung äußerer mechanischer Spannung als Mittel zur Manipulation modifiziert
werden, während die elastischen Eigenschaften von der Magnetisierungsrichtung
abhängen. Diese Beobachtungen bieten wertvolle Einblicke in die magnetoelastischen
und magnetostrukturellen Eigenschaften der Materialien. Zusätzlich wird die
Bedeutung einer präzisen theoretischen Beschreibung der 4f Elektronen in einer
Diskussion über ihre Orbitalbesetzung betont, da dies erhebliche Auswirkungen auf
die magnetischen Anisotropieeigenschaften hat. Eine Konzentrationsreduktion der
magnetischen Atome zeigt in der anschließenden Analyse, dass sich die elektronische
Struktur verändern kann, was zu neuartigen Eigenschaften, wie der Entstehung von
flachen Bändern in der Nähe der Fermi Energie führt.
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Das Ziel der Studie besteht außerdem darin, experimentelle Bedingungen real-
itäsgetreuer in der Simulation nachzubilden, indem sie die Auswirkungen eines
metallischen Substrats auf die magnetischen Eigenschaften der Seltenerd- /Graphen-
Systeme analysiert. Die Ergebnisse legen nahe, dass die magnetischen Eigenschaften
durch das metallische Substrat minimal beeinflusst oder erheblich beeinträchtigt
werden können, abhängig von der Entfernung zwischen den Komponenten und den
magnetischen Eigenschaften des Substrats selbst. Daher kann die Auswahl des
Metallsubstrats sowohl die Untersuchung der inhärenten magnetischen Eigenschaften
des zweidimensionalen Seltenerd-Materials ermöglichen als auch die Manipulation
dieser Eigenschaften erleichtern.

Abschließend führt die Arbeit Untersuchungen bezüglich Seltenerd-Atomen auf einer
Monoschicht eines Übergangsmetall-Dichalkogenid durch, und erweitert damit den
wissenschaftlichen Kenntnisstand der potenziellen Szenarien, in denen 4f Elektronen
interagieren und von verschiedenen Umgebungen beeinflusst werden können. Dieser
Abschnitt zeigt, dass eine große magnetische Anisotropie entweder eine hohe oder
niedrige Bedeckung des magnetischen Atoms erfordert, abhängig von seiner Chemie
und 4f Besetzung. Darüber hinaus zeigen die Ergebnisse, dass die spezielle Kombi-
nation aus hoher Magnetisierung, starker Spin-Bahn-Kopplung und Symmetrieeigen-
schaften zur Entstehung nicht-trivialer topologischer Merkmale in der Bandstruktur
führen kann. Diese Merkmale vereinen sich zu einer endlichen Berry-Krümmung im
reziproken Raum, was vielversprechende Möglichkeiten für die Realisierung anomaler
Hall-Plattformen in diesen Systemen bietet.
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Abstract

The adsorption of single magnetic atoms and atomic-thin magnetic layers on surfaces
and two-dimensional materials presents a unique opportunity for the construction
of highly compact and efficient nanostructures, with potential applications in
spintronics and spin-orbitronics. This thesis employs density functional theory-based
calculations to deepen our understanding of the physics of 4f electrons by investigat-
ing the essential characteristics of rare-earth atoms adsorbed onto two-dimensional
materials. These investigations provide valuable insights into magnetic anisotropy
and related phenomena, shedding light on the complex interplay between factors such
as spin-orbit coupling, symmetry, crystal field, and topological features that govern
observed behaviors. The promising results obtained highlight the importance of
further exploration of such systems with the ultimate aim of designing and tailoring
magnetic nanostructures.

The analysis begins by examining the properties of rare-earth atoms adsorbed on
a graphene monolayer, resulting in them being situated within a hexagonal crystal
field. The calculated electronic and magnetic properties, as well as the energy
dependence on the magnetization direction, reveal that even on a structurally
simple material like graphene, the energy dependence is highly anisotropic and can
reach values of several meV. The calculation of multiplet splittings from evaluated
crystal field parameters indicates differences between integer and half-integer spin
systems. In the former case, tunnel-split states are found, whereas half-integer spin
systems are symmetry-protected against the formation of such states. Nevertheless,
quantum tunneling of magnetization can take place in both spin systems, driven by
various factors like scattering events involving substrate phonons and conduction
electrons. Overall, the magnetic anisotropy is found to be significantly dependent on
the specific rare-earth atom and can be modified by applying external mechanical
strain as a tool for manipulation, while the elastic properties rely on the direction
of magnetization. These observations offer valuable insights into the magnetoelastic
and magnetostriction properties of the materials. Additionally, the importance
of obtaining a precise theoretical description of the 4f electrons is emphasized in
a discussion on their orbital occupation, as it has a considerable impact on the
magnetic anisotropy properties. Upon diluting the magnetic atoms, subsequent
analysis demonstrates that the electronic structure can be altered, resulting in the
appearance of novel properties such as flat bands in the vicinity of the Fermi energy.

The study also aimed to simulate experimental conditions more accurately by
analyzing the impact of a metallic substrate on the magnetic properties of the
rare-earth/graphene systems. The findings suggest that the magnetic properties
can be minimally influenced or considerably impacted by the metallic substrate,
depending on the distance between the components and the magnetic prop-
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erties of the substrate itself. Therefore, the selection of the metal substrate
can allow for either the examination of the inherent magnetic characteristics of the
two-dimensional rare-earth material or facilitate the manipulation of these properties.

Finally, the thesis outlines investigations with regards to rare-earth atoms adsorbed
onto a monolayer of transition-metal dichalcogenide, broadening the potential scenar-
ios in which 4f electrons can interact and be influenced by different environments. It
will be demonstrated that achieving a large magnetic anisotropy requires either a high
or low coverage of the magnetic atom, depending on its chemistry and 4f occupation.
Furthermore, the results reveal that the combination of a large magnetization, strong
spin-orbit coupling, and symmetry properties can lead to the emergence of non-trivial
topological features in the band structure. These features merge into a finite Berry
curvature in reciprocal space, which presents promising opportunities for realizing
anomalous Hall platforms in these systems.
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Chapter 1
Introduction

In recent years, there has been an increasing interest in exploring and developing
novel two-dimensional (2D) materials with the aim of expanding our fundamental
understanding of the underlying physics and advancing practical applications. A
broad range of systems has been extensively investigated in the literature, including
van der Waals (vdW) materials [1] such as graphene and graphene-like materials
(e.g., hexagonal boron nitride [2]), 2D transition metal dichalcogenides (TMDCs) [3]
like MoS2, WS2, MoSe2, WSe2, and metal halides [4, 5]. These systems exhibit unique
properties arising from intrinsic effects such as spin-orbit coupling, symmetry-related
phenomena, electronic correlations, and magnetic interactions, which can be further
coupled by stacking different monolayers on top of each other [6–10]. By controlling
various factors such as the assembling sequence, chemical composition, and stacking
angle, a diverse range of properties can be engineered. For instance, twisting layers
can result in incommensurate structures that exhibit unique quantum effects, as
demonstrated by several recent studies [11–13]. This leads to the development of
novel materials that hold potential for use in the latest generation of electronics,
spintronics, and optics devices [14–18]. Moreover, the modulation of properties by
varying the constituents of the system enables a comprehensive understanding of the
respective roles played by different factors within the system.

Significant progress has also been made in the research area of atomically thin
magnetic materials [19, 20] in understanding their intrinsic magnetic properties and
manipulation through structure/composition engineering and external stimuli, such
as strain, light-induced phenomena, or gating [21–26]. Magnetism can generally
emerge in 2D-materials either intrinsically or due to external factors such as vacan-
cies, doping, or strain induction. [27]. Another strategy involves atomic impurities,
such as single atoms or molecules deposited on top [28–31], which is similar to
constructing vdW heterostructures that exploit the proximity effect. In this context,
rare-earth atoms used for this technique could be an intriguing platform to stabilize
magnetic phases in 2D.

While the choice of investigating 2D-materials is easily justifiable due to the
extensive range of properties and manipulation possibilities they offer, the selection
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1 Introduction

of rare-earth atoms (or 4f -atoms) as the magnetic source may raise questions. In
these atoms, magnetism arises from the 4f electrons, which can generate substantial
magnetic moments (both spin and orbital) and possess a high degree of localization,
protecting the 4f magnetic moment from excessive hybridization effects caused by
the surrounding chemical environment that could destabilize the magnetization.
Nevertheless, interactions between 4f electrons and other electrons can occur
through weaker hybridizations, electrostatic interactions, or indirect interactions (via
itinerant electrons), enabling the exploitation of their unique properties and leading
to extraordinary effects on the environment. Additionally, electron correlation effects
are significantly enhanced by the small distance between the 4f electrons due to their
localization. The electron correlations lead to a multitude of complex properties, one
of which is the remarkably large magnetic anisotropy observed in rare-earth based sys-
tems, which is driven by the large spin-orbit coupling that 4f electrons are subject to.

From these considerations, it can be inferred that the exploration of 4f electrons
is a fascinating choice because of the complexity and richness of the phenomena
involved. Theoretical treatments of these electrons pose significant challenges,
making it difficult to decipher their effects, but also presenting unique opportunities
for scientific exploration. Therefore, despite the challenges, investigating 4f electron
phenomena holds great promise for advancing our understanding of the fundamental
principles governing magnetism in condensed matter systems.

The aim of this study is to investigate through ab initio DFT calculations the
underlying electronic and magnetic properties of rare-earth atoms on 2D-materials,
with a particular focus on the phenomenon of magnetic anisotropy. The magnetic
anisotropy arises from the interplay between the geometrical shape of the 4f charge
cloud and the surrounding chemical environment via spin-orbit coupling. The
2D-substrate plays a fundamental role in generating a specific crystal field around the
rare-earth atom, whose symmetry and chemical-physical properties constitute the
second key ingredient in the generation of magnetic anisotropy. The present thesis
analyzes two different 2D-materials, namely graphene (Gr) and WSe2, as substrates
for the 4f -atoms.

The choice was based on three considerations: 1) they generate different local
symmetries for the 4f -atom; 2) while graphene represents a case of weak interaction
from a chemical perspective, since there is no elemental variety and the Carbon atoms
interact with an adsorbed atom only with the perpendicular oriented delocalized π
orbitals, WSe2 involves several types of orbitals in its interaction with the 4f -atom;
3) graphene is an example of an almost spin-orbit coupling-free 2D-material, thus
the effect solely arises from the 4f -atom, while in WSe2, the presence of heavy W
atoms leads to spin-orbit coupling in addition to that of the rare-earth atom. In this
study, the selected 2D-materials will serve as a basis for examining the electronic
and magnetic properties induced by 4f electrons. The underlying concept involves
addressing fundamental questions regarding 4f physics when rare-earth atoms are
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adsorbed onto various substrate types, and exploring how this knowledge can be
leveraged to manipulate magnetic properties in rare-earth based 2D-materials.

Before delving into the technical details about the chapter organization of this
thesis, it is pertinent to address a fundamental question that arises: why is magnetic
anisotropy significant?

Initially, it should be highlighted that establishing long-range magnetic order in 2D
magnets can be challenging at finite temperatures due to the reduced dimensionality,
unless the thermal fluctuations can be overcome. This can be achieved for example
in 2D systems that possess a sufficiently large magnetic anisotropy [32].

In recent years, the advancement of computation power and data generation has
highlighted the need for improved memory capacity in electronic devices. One
promising solution for dense data storage is the use of single atoms deposited on
2D-materials or surfaces with large magnetic anisotropies [33]. These magnetic atoms
can serve as information carriers, with their magnetization oriented in specific favored
directions. The key requirement for stable information storage is magnetic stability,
which is associated with large magnetic anisotropy, allowing the unit of information,
or bit, to retain its state over long time periods and resist external perturbations,
such as temperature fluctuations. At the quantum level, this stability requires long
relaxation times for the atom’s magnetization, corresponding to magnetic quantum
states separated by significant energy gaps in the energy spectrum and protected
from quantum tunneling of magnetization. Additionally, to avoid magnetization
reversal, the atomic magnet should also be decoupled from the environment to
prevent scattering of the spin with electrons and phonons.

In this context, lanthanide atoms have already shown their potential in molecular
magnets [34–37], where the 4f -atom is trapped in a molecular cage made out of specific
ligands. Recently, single lanthanide atoms adsorbed on surfaces have demonstrated
the ability to maintain their magnetic state, opening the path towards memory units
at the atomic scale [38, 39].
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1 Introduction

This thesis aims to enhance our comprehension of magnetism in 4f systems by
examining and comparing different rare-earth atoms under various conditions. The
following is an overview of the thesis structure:

Chapter 2 of this thesis provides a theoretical overview of rare-earth physics,
including electronic properties of isolated atoms and the effects of their adsorption
onto a surface. The chapter reviews the concept of magnetic anisotropy and provide
an introduction to crystal field theory, including the hexagonal crystal field Hamil-
tonian and its parameters. The multiplet splittings of 4f electrons in a hexagonal
crystal field is explained, and the effect of quantum tunneling of magnetization on
magnetic stability is discussed. Two spin systems, namely a half-integer spin system
(J = 7/2) and an integer spin system (J = 8), are modeled to illustrate the differences
between the two cases. The chapter also presents a method for deriving crystal
field parameters of a hexagonal crystal field from the classical magnetic anisotropy
constants, which can be computed from ab initio DFT calculations.

Chapter 3 offers insights into the main motivations behind the choice of the current
research topic. This is accomplished by briefly reviewing the pioneering works from
the literature and discussing the potential applications of 4f -atoms on 2D-materials
in the fields of magnetic bits and anomalous Hall conductors.

Chapter 4 explores the intricacies of a many-electron system, presenting the requisite
theoretical groundwork for Density Functional Theory (DFT) and its extension
through the Hubbard model within the DFT+U framework. These methods are
necessary to enhance the description of 4f electrons, as exemplified in the case of
Gd/Gr. The chapter concludes with an explanation of the theoretical background of
the Full-Potential Linearized Augmented Plane-Wave method (FLAPW), which is
implemented in the FLEUR code used for all calculations throughout the thesis.

Chapter 5 starts the analysis of the results obtained in the context of 4f -atoms on a
graphene monolayer. Firstly, the electronic and adsorption properties are examined,
followed by an exploration of the magnetic properties, with a particular emphasis on
magnetic anisotropy and a comparison between various rare-earth atoms. The sys-
tems under investigation include Eu and Gd, which are representatives of half-filled
4f -shells, as well as Dy, Ho, and Tm, which are representatives of open 4f -shells
with stronger spin-orbit coupling effects. Subsequently, the discussion shifts to the
computed multiplet splittings in the open 4f -shell systems, which were obtained
through the calculation of crystal field parameters based on the magnetic anisotropy
constants. Additionally, it is demonstrated that the magnetic anisotropy can be
engineered not only by changing the 4f -atom but also by mechanical deformation.
Consequently, the magnetic anisotropy behavior as a function of external strain
is examined, allowing for the extraction of elastic force constants and vibrational
frequencies of the graphene complexes.
The chapter provides an overview of the impact of Hubbard U on the computed
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magnetic anisotropy and highlights the challenges when simulating such systems in
the DFT+U framework. Furthermore, significant emphasis is given to the importance
of accurate U values, thereby increasing awareness of the need for precision.
Further investigation of Dy/Gr includes a comparison between magnetic anisotropy
in the Hund’s rule 4f occupation and a non-Hund’s rule occupation to illustrate the
competition between crystal field effects and the intra-atomic exchange interaction.
This section emphasizes once more the importance of accurately describing the 4f
electrons, as it greatly affects the magnetic anisotropy properties.
Finally, the chapter concludes by examining the impact of rare-earth atom coverage
(concentration on the graphene sheet), briefly exploring the electronic properties
of a large simulation cell that corresponds to the isolated atomic limit of the 4f -atoms.

Chapter 6 aims to establish a preliminary comprehension of how a metallic substrate
can affect the magnetic anisotropy of Gd/Gr. The investigation focuses on two
scenarios: the first involves a non-magnetic surface, while the second scenario involves
a magnetic surface, in the Gd/Gr/Ir(111) and Gd/Gr/Co(111) systems, respectively.

Chapter 7 delves into the effects of 4f -atoms adsorbed on a WSe2 monolayer
and aims to investigate the electronic and magnetic properties of Eu/WSe2 while
exploring the possibility of engineering spin and orbital properties for use as a
platform for magnetotransport phenomena. The study commences with a high
coverage situation of Eu atoms on the 2D-material, which creates sufficient proximity
effects to generate prominent spin-orbit coupling effects, magnetic anisotropy, and
stable ferromagnetism. These properties allow for the observation of anomalous
Hall conductivity resulting from the tailored Berry curvature in the system. The
impact of reducing the Eu coverage is then analyzed by simulating larger periodic cells.

Chapter 8 presents an analysis of the electronic and magnetic properties of Gd and
Ho atoms on WSe2. Gd is examined as an example of a different chemical behavior
than Eu, while Ho is considered as an instance of an open 4f -shell. This chapter
discusses the impact of these two properties on magnetic anisotropy and spin-orbital
properties in comparison with the previously studied Eu atom, both in high and
low coverage scenarios on the 2D-material. Based on these observations, the chapter
provides final considerations that could facilitate the manipulation of magnetic
anisotropy through the 4f -atom’s nature and its coverage on the 2D-material in the
future.

Chapter 9 concludes the comprehensive investigation of rare-earth atoms on 2D-
materials, summarizing the key findings and insights gained.
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Chapter 2
Magnetism of 4f -atoms on
2D-materials

The following sections provide a comprehensive examination of rare-earth mag-
netism, starting with the electronic properties of individual rare-earth atoms and
how they are affected by adsorption onto surfaces and 2D-materials. Crystal field
theory is introduced to establish its connection to magnetic anisotropy, and subse-
quently utilized to model the influence of a hexagonal crystal field on systems with
both integer and half-integer spins. Lastly, the chapter illustrates the process of
determining crystal field parameters using the classical magnetic anisotropy en-
ergy functional. This method is later applied in Chapter 5 to DFT calculations
of rare-earth atoms on graphene.

2.1 General aspects of electronic properties of rare-earth
atoms

Magnetism is a property that arises in atoms characterized by unfilled (or “open”)
electron shells i.e. in presence of unpaired electron spins in specific orbitals. Orbital
filling is determined by the simultaneous action of the classical repulsive Coulomb
interaction between pairs of electrons and the pure quantum mechanical exchange
interaction acting between electrons with parallel spins. The latter is a consequence
of the identical nature of electrons and specifically of their classification as fermionic
particles with half-integer spin. Hence, considering a many-body system of electrons,
the respective wave function is antisymmetric with respect to the exchange of two
particles, leading to the well known Pauli exclusion principle which prohibits two
electrons to occupy the same state while having the same spin.

Unpaired electrons in atoms cause an imbalance in the spin density pointing in one
direction compared to the spin density pointing in the opposite direction, generat-
ing thus a magnetic moment which in turn can spin-polarize the structures they are
part of and/or interact with magnetic moments arising from other atoms in the sys-
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2 Magnetism of 4f -atoms on 2D-materials

Figure 2.1: The lanthanide series: with increasing Z the 4f -shell is filled and four
exceptions present d valence electrons in the atomic limit, namely La, Ce,
Gd and Lu.

tem, leading to a variety of magnetic phenomena exploitable in technological devices.
In this perspective, rare-earth (RE) atoms are extraordinarily appealing due to the
sequential filling of the 4f -shell along the series, being the unpaired 4f electrons
the source of large magnetic moments. Furthermore, rare-earths are heavy elements
characterized by strong spin-orbit coupling (SOC), which plays a primary role in de-
termining peculiar features in the electronic structure of some materials and is often
strictly associated to a broad and heterogeneous spectrum of complex yet fascinating
electronic and magnetic phenomena. For a more detailed discussion about SOC in
rare-earths, see section 2.2.

Fig. 2.1 illustrates the lanthanide series with increasing atomic number Z and shows
the electronic configuration for each element in the series. In general, lanthanides have
electronic configuration [Xe]6s24fn with exception of La, Ce, Gd and Lu that tend to
place one electron in the 5d orbital in order to get an empty, half-filled or completely
filled 4f -shell. Starting with Lanthanium, the [Xe]6s25d1 configuration is favored with
respect to the 5d04f 1, leading thus to a 4f 0 state. However, as the atomic number
increases, the 4f orbitals become more stable compared to the 5d orbitals due to their
high penetration into the core. This leads to the additional electron in Ce occupying
the 4f -subshell, also driven by the stabilization gained when the spins of the 5d and
4f electrons are aligned. Subsequently, the 4f -shell is gradually filled up through the
series and the lanthanides have electronic configuration [Xe]6s24fn5d0, n = 3− 7. At
Z = 63, namely Eu, the 4f -shell is half-filled and the following electron in Gd occupies
the 5d orbital maintaining a half-filled 4f -shell, [Xe]6s24f 75d1. Nevertheless, with
Tb the energy equation involving the interaction with other electrons and the nuclear
charge, favors the displacement of the 5d electron into the 4f -shell and the addition
of the new electron into the same shell. Hence, the next elements present again a
sequential filling of the 4f orbitals which leads to configurations [Xe]6s24fn5d0 with
n = 9 − 14 until Z = 70. Finally, Lu places the last electron inside of the 5d orbitals,
being all the 4f states occupied.
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2.1 General aspects of electronic properties of rare-earth atoms

Figure 2.2: Hydrogenic squared radial wave functions for the 4f , 5d and 6s orbitals
of cerium, plotted as the probability to find an electron at distance r from
the nucleus. (after [41, 42]).

The unfilled 4f -shells in rare-earths are responsible for magnetic and spectroscopic
properties of the compounds they are part of, while they are mostly not involved in
chemical processes because of their localized nature. Instead, the chemical properties
of rare-earth materials are determined by valence orbitals that are more extended in
space (e.g. 6s and 5d), and hence can hybridize with surrounding electrons of different
species. In order to properly understand the electronic and magnetic properties of
the RE-based 2D-materials that are investigated in this thesis, it is necessary to have
a closer look at the wave functions describing the 4f electrons inside of single RE
atoms. Considering a RE atom with atomic number Z, the respective non-relativistic
Hamiltonian reads as [40]

H =
Z

∑
i

[−
h̵2

2m
∇2

i −
Ze2

ri
] +

1

2

Z

∑
ij

e2

∣ri − rj ∣
, (2.1)

where the first term describes the kinetic energy of the electrons, the second term
corresponds to the attractive potential energy of the electron in the field of the positive
charged nucleus, and the last term determines the electrostatic repulsion between pairs
of electrons. Solving the corresponding Schrödinger equation

HΨ = EΨ (2.2)

gives the atomic eigenstates Ψ and energies E. Nevertheless, the solution to this
eigenvalue problem presents difficulties associated to an accurate computation of all
inter-electronic interactions in multi-electron systems and a variety of numerical pro-
cedures, including post-Hartree Fock [43] and DFT [44–46] methods have been devel-
oped in order to account, within limits, for the last term in Eq. (2.1). A brief overview
will be provided here, with more details discussed in Chapter 4.
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2 Magnetism of 4f -atoms on 2D-materials

Figure 2.3: Ionic radius (for the Ln3+ state) as a function of the atomic number Z
depicting the lanthanide contraction.

One way to simplify the problem is by replacing the electron-electron interaction
with an effective potential that is experienced by each electron, effectively reducing
the many-body problem into multiple single-particle problems. Taking into account
the fermionic nature of electrons, the total eigenfunction Ψ can then be expressed as
an antisymmetric wave function in the form of a Slater determinant:

Ψ(q1, q2, ..., qN) =
1
√
N !

RRRRRRRRRRRRRRRRRRRRRR

ϕ1(q1) ϕ2(q1) ⋯ ϕN(q1)

ϕ1(q2) ϕ2(q2) ⋯ ϕN(q2)

⋮ ⋮ ⋱ ⋮

ϕ1(qN) ϕ2(qN) ⋯ ϕN(qN)

RRRRRRRRRRRRRRRRRRRRRR

. (2.3)

Here, the coordinates qi involve both spatial and spin coordinates, and N is the total
number of electrons. Moreover, being the atomic potential rotationally-invariant, it
is possible to express each single-electron function ϕ as a product of a radial function
Rnl(r), a spherical harmonic Ylm(θ,φ) and a spin function χms , to construct a spin-
orbital

ϕ(q) = Rnl(r)Ylm(θ,φ)χms , (2.4)

where n is the principal quantum number, l is the angular momentum quantum
number, m is the magnetic quantum number, and ms corresponds to the spin of the
electron. The single-particle eigenvalue problem becomes separable, and the radial
function is solution of the radial Schrödinger equation,

[−
h̵2

2m

d2

dr2
+
h̵l(l + 1)

2mr2
+ V (r)] rRnl(r) = ErRnl(r). (2.5)

Fig. 2.2 illustrates the radial part of Eq. (2.4) for the 4f , 5d and 6s orbitals of Ce
in terms of probability of finding an electron, calculated as 4πr2R2

nl at a distance r
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2.1 General aspects of electronic properties of rare-earth atoms

from the nucleus. This permits to understand why 4f electrons play a limited role in
chemical bonding, as they are spatially deep embedded within the atom compared to
the more widely spread 5d and 6s valence electrons [42].

This high penetration of the 4f orbitals is also responsible for the lanthanide contrac-
tion, which consists in a decreasing atomic (and ionic) radius of the elements with
increasing atomic number Z. This trend is illustrated in Fig. 2.3 for the ionic radii
of the oxidation state Ln3+ of the lanthanides and is due to an incomplete shielding
of the n = 5,6 valence electrons by the penetrating 4f electrons from the increasing
positive nuclear charge when protons are added along the series.

Coming back to Eq. (2.4), the spherical harmonics Ylm(θ,φ) are solution of the angular
Schrödinger equation,

[
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2
]Y m

l (θ,φ) = −l(l + 1)Y
m
l (θ,φ), (2.6)

and are eigenfunctions of the the angular momentum operator L and its z component
Lz:

L2Y m
l (θ,φ) = h̵

2l(l + 1)Y m
l (θ,φ) (2.7)

LzY
m
l (θ,φ) = h̵mY

m
l (θ,φ), (2.8)

where, l = 0, ..., n − 1 and m = −l, ..., l. The spherical harmonics can be expressed in

Figure 2.4: The 4f wave functions exhibit angular dependence, which can be described
by spherical harmonics with a quantum number l = 3, and varying mag-
netic quantum number m. The positive values are depicted in red, while
the negative values are shown in blue.
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2 Magnetism of 4f -atoms on 2D-materials

terms of associated Legendre polynomials Pm
l (cos θ),

Y m
l (θ,φ) = (−1)

m

¿
Á
ÁÀ(2l + 1)(l −m)!

4π(l +m)
Pm
l (cos θ)e

imφ, (2.9)

with
Y −ml (θ,φ) = Y

m∗
l (θ,φ). (2.10)

This equation gives the general shape of the orbitals i.e., if squared, the angular
probability to find the electron based on the quantum numbers l and m. Concerning
the 4f orbitals, l = 3 and m assumes integer values −l ≤ m ≤ l. This combination of
(l,m) generates highly anisotropic angular wave functions, as illustrated in Fig. 2.4,
and play an important role in the determination of magnetic properties of materials
involving REs.

Finally, the radial and angular parts in the single-particle wave functions, are mul-
tiplied by the spin function χms which is the eigenfunction of the spin operators S2

and Sz

S2χms = h̵
2s(s + 1)χms (2.11)

Szχms = h̵msχms (2.12)

with s = 1/2 and ms = ±1/2.
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2.2 Spin-orbit coupling

2.2 Spin-orbit coupling

The spin-orbit coupling, which refers to the interaction between the magnetic field
created by the electron’s motion through an electric field and the electron spin, plays
a crucial role in determining the energy spectrum of the 4f states in RE atoms and
materials. As a result, it has a significant impact on their electronic and magnetic
properties. It is well known that SOC manifests in lifting the spin degeneracies in
atoms and solids, and can be formally derived by introducing a relativistic correction
in the Schrödinger equation. This is done by considering the Dirac equation whose
solution naturally includes the spin of the electron and its relativistic nature. The
spin-dependent term in the relativistic Hamiltonian is the cause of spin-splitting of the
otherwise double-degenerate spin-up and spin-down bands in solids. For an electron
moving through an electric field E with momentum p, the spin-orbit Hamiltonian
can be written as

HSO = −
eh̵

(2mc)2
σ ⋅ (E × p) = −

µB

2
σ ⋅ (

1

c
E × v) = −

µB

2
σ ⋅B (2.13)

where e and m are the electron charge and mass, µB = eh̵/2mc is the Bohr magne-
ton, and the spin of the electron is σ = 2S/h̵, with S the spin angular momentum.
Eq. (2.13) describes the interaction of the magnetic moment of the electron spin with
the magnetic field arising from the orbital motion of the particle itself in an external
potential. In the case of the orbital motion of an electron in an atom, we consider
an electric field generated by the positive charge of the nucleus i.e. the potential
is spherically symmetric. In the reference system of the moving electron, it experi-
ences a magnetic field B = 1

c(E × v) emerging from the Lorentz-transformed electric
field (the electron perceives a dynamical positively-charged background), which will
interact with the electron spin. In this situation, Eq. (2.13) rewrites as

HSO =
h̵

4m2c2
1

r

dV

dr
σ ⋅ (r × p) =

h̵

4m2c2
1

r

dV

dr
σ ⋅ l = ξσ ⋅ l. (2.14)

Here, ξ is the spin-orbit coupling constant and l is the orbital angular momentum
that aligns antiparallel to the spin of the electron. In the vicinity of the atomic
nucleus, the potential V in Eq. (2.14) exhibits a Coulomb-like shape V ∼ −Z

r , where
Z represents the atomic number. Consequently, the derivative of the potential is
proportional to the atomic number Z, and it decreases as the distance from the
nucleus increases. As a result, the spin-orbit coupling constant ξ is expected to have
larger values for heavy elements and for electrons that are closer to the core. The
additional interaction energy described by HSO can often be treated as a perturbation
to the non-relativistic Hamiltonian, allowing to determine the energy corrections and
the respective split spectrum.

2.2.1 LS coupling scheme

In multi-electron atoms, the Aufbau principle can be exploited to obtain the ground
state electronic configuration in terms of shells, defined by the principal quantum
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2 Magnetism of 4f -atoms on 2D-materials

Figure 2.5: The total orbital angular momentum L, the total spin angular momentum
S and the total angular momentum J as a function of the number n of
4f electrons in the Ln3+ state in lanthanides. The trend follows Hund’s
rules.

number n, and subshells defined by l (s,p,d,f,...). Nevertheless, in order to determine
properties such as the the magnetic moment of an atom, it is necessary to take into
consideration the fact that each electron in a subshell carries an orbital moment and a
spin moment, and there are multiple approaches of combining these angular moments
in a many-electron system. Hence, the overall challenge is to identify the lowest-energy
state in a pool of different electronic state occupations for a given configuration. In
order to find the solution, it is necessary to account for distinct interactions acting
on and between electrons such as the electrostatic contributions from the nucleus and
other electrons, exchange interactions and SOC. If SOC is relatively weak compared
to the inter-electronic Coulomb interaction, then the Coulomb interaction first couples
the individual orbital moments li and spin moments si of the electrons generating the
total orbital angular momentum L and the total spin angular momentum S:

L = ∑
i

li, S = ∑
i

si, (2.15)

with quantum numbers L and S. This coupling scheme is known as the Russell-
Saunders coupling and is usually adopted for RE atoms. We define the z-components
of the angular moments as Lz and Sz, and the respective quantum numbers ML =

∑imi (−L ≤ML ≤ +L) and MS = ∑imsi (−S ≤MS ≤ +S). Then SOC couples L and S
to form the total angular momentum J = L+S, and acts as a perturbation inducing
further splitting of the energy levels, which are labeled by the quantum number J that
assumes values ∣L − S∣ ≤ J ≤ L + S. The spectroscopic term is a label used to identify
the atomic states based on the quantum numbers (LSJ), and writes as 2S+1LJ . The
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2.2 Spin-orbit coupling

different values of L = 0,1,2,3 are conventionally addressed as S,P,D,F , and the spin
multiplicity, given by 2S + 1, reflects the number of possible J states for given values
of L and S. The term symbol corresponding to the ground state can be determined
following Hund’s rules which summarize as [47–49]:

Hund’s rules

• For a given electron configuration, the term with maximum spin multi-
plicity (2S + 1) has the lowest energy.

• For a given multiplicity, the term with the largest value of the total orbital
angular momentum quantum number L has the lowest energy.

• For a given term, in an atom with outermost subshell half-filled or less,
the level with the lowest value of the total angular momentum quantum
number J lies lowest in energy. If the outermost shell is more than half-
filled, the level with the largest value of J will be the one with the lowest
energy.

Fig. 2.5 illustrates the trends of L, S and J for the 4fn configurations in the Ln3+

oxidation state along the lanthanide series.

By writing the multi-electron Hamiltonian as a spherical symmetric term and a per-
turbation,

H = H0 +HSO = H0 + ξL ⋅S, (2.16)

it is easy to show the symmetries of H, based on the commutation relations:

[Li,Lj] = ih̵ϵijkLk [Si,Sj] = ih̵ϵijkSk [L2,Lj] = 0 [S2,Sj] = 0, (2.17)

where ϵijk is the Levi-Civita symbol. Indeed, HSO does not commute with Lz and Sz

and hence, the two z -components are not conserved quantities, and ML and MS are
no longer good quantum numbers. Instead, HSO commutes with L2, S2, J2 and Jz

(z-component of J) and their simultaneous eigenstates are classified by the quantum
numbers J, L, S, J and Jz.

The magnetic moment of an atom can then be evaluated as [50]

m = −µB(gLL + gSS) = −µBgJJ , (2.18)

where µB represents the Bohr magneton, gL = 1 and gS ∼ 2 denote the orbital and
spin g-factors respectively, and gJ refers to the total angular momentum g-factor.
Moreover, atoms with J ≠ 0 are characterized by a (2J + 1)-fold degenerate ground
state, in which states are labeled by the quantum number Jz. The Jz states can be
further split by breaking the spherical symmetry e.g. in a crystal field whose symmetry
is dictated by the spatial arrangement of the constituent atoms.
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2 Magnetism of 4f -atoms on 2D-materials

2.3 Rare-earths atoms on surfaces

So far, only isolated RE atoms have been considered, for which each J energy level
presents a (2J +1)-fold degeneracy of Jz states due to the rotational invariance of the
atomic Hamiltonian with point symmetry O(3). Nevertheless, the present work deals
with single RE atoms adsorbed on top of two-dimensional layers of different materi-
als, where the underlying surface induces a symmetry breaking of the atomic states.
When an atom is deposited on a surface, it experiences an electric field produced by
the surrounding atomic charges, known as the crystal field (CF). The effect of the
CF is a lowering of the spherical symmetry of the embedded atomic potential, and
the new symmetry is dictated by the spatial arrangement of the neighboring atoms
defining the surface, or in other words, by the chemical environment.
Examples of two different local crystal field symmetries are shown in Fig. 2.6, which
depicts the two main situations that have been investigated throughout this work: a
hexagonal C6v and a trigonal C3v crystal field. The C6v point symmetry is character-
ized by 6 nearest neighbors located at the vertices of a hexagon, and hence related
by rotations of 60○ around the main rotation axis, while in the C3v site the adatom
is located at the center of two inequivalent triangles such that a rotation of 120○ is
needed to leave the system unaltered. These kind of atomic arrangements are found
in several 2D-crystal structures, e.g. graphene-like structures [51–53] and transition
metal dichalcogenides (TMDCs) [54, 55] and it will be shown that the symmetry of the
CF plays an important role in determining the magnetic properties of the adsorbed
RE atoms. For example, due to the interplay between large spin and orbital magnetic
moments that lead to strong SOC and the interaction with the CF, the 4f electrons
of a RE atom on top of a surface can exhibit prominent magnetic anisotropies.

Figure 2.6: C6v crystal field (left) and C3v crystal field (right). Both symmetries ex-
hibit a hexagonal arrangement of atoms, but in the C6v case, the atoms in
the 2D-material belong to the same chemical species (similar to graphene),
while in the C3v case, the central RE atom is surrounded by two different
atom species.
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2.3 Rare-earths atoms on surfaces

2.3.1 Magnetic anisotropy

The magnetic anisotropy (MA) is a property of a system that describes the dependence
of its magnetic properties on the direction of measurement. Samples that exhibit
magnetic anisotropy are more easily magnetized along a specific direction, meaning
that the magnetic anisotropy energy (MAE) represents the energy required to deflect
the magnetization from the preferred direction. The latter is called the easy-axis and
defines the direction of spontaneous magnetization i.e. the energetically most favored
magnetic state, while the most unfavored direction is referred to as hard-axis. The
phenomenon can be classified based on different sources:

Magnetocrystalline anisotropy is an intrinsic source of MA originating from the
interaction between the local non-spherical charge cloud of the magnetic atom
with the crystal field. The effect is driven by spin-orbit interaction. Closely
related to the magnetocrystalline anisotropy is the magnetoelastic anisotropy,
as it describes the change in magnetic properties of a material in response to
external stress. This phenomenon arises due to the deformation of the crystal
field surrounding magnetic atoms under stress, altering the interaction of the
charge cloud with the surrounding environment.

Shape anisotropy is observed in non-spherical samples due to the demagnetizing
field varying based on the direction, resulting in an easy-axis for the magneti-
zation.

Exchange anisotropy is driven by the magnetic interaction that occurs at the in-
terface between two distinct magnetically ordered layers, such as a ferromagnet
and an antiferromagnet.

The following discussion will provide a more detailed exploration of both magne-
tocrystalline and magnetoelastic anisotropy.

2.3.1.1 Magnetocrystalline anisotropy (MCA)

When a RE atom is deposited on a 2D-material, the 4f charge will experience the CF
generated by the nearest surface charges. For most of the lanthanides the 4f charge
distribution is characterized by a non-spherical geometry due to the large angular
moment L which is coupled through SOC to the large spin magnetic moment arising
from unpaired 4f electrons. As a result, the orientation of the magnetic moment
of the RE atom affects the interaction between the 4f charge distribution and the
surrounding point charges in the crystal field.

When the magnetic moment is rotated, the 4f charge cloud will also rotate, leading to
either a stronger or weaker electrostatic interaction with the crystal field, depending
on whether the 4f distribution is oriented more towards or away from the surrounding
point charges. This process translates into an angular dependence of the total energy
of the system upon rotation of the magnetization. Exceptions are Eu and Gd for
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2 Magnetism of 4f -atoms on 2D-materials

Figure 2.7: (a) In Eu and Gd the half-filed 4f -shell produces vanishing values of L
reflecting in a spherical shape of the 4f charge distribution. (b) For other
4f occupations, the total orbital angular momentum is non-zero leading to
oblate or prolate-like geometries of the 4f cloud which interact differently
with the surrounding CF based on their orientation.

which the half-filled 4f 7 shell leads to a vanishing L, which reflects in an isotropic
4f charge cloud (See Fig. 2.7). Therefore, in these cases the magnetocrystalline
anisotropy is expected to give only small contributions arising from the intra-atomic
spin-orbit interaction. From these considerations, the MCA can be reduced to two
key ingredients: the geometry of the 4f charge distribution and the symmetry of the
CF.

The classical energy functional, Ean(θ,φ), describing how the total energy changes
as a function of the magnetization direction, is written as a series of powers of the
direction cosines of the magnetization vector, where only even powers are permitted
because of the invariance of the anisotropy energy under time-reversal symmetry [56].
Moreover, the number of terms in the expansion depends on the specific crystallo-
graphic point-group. For example, for a trigonal symmetry the anisotropy energy is
[57]

C3v symmetry

Ean(θ,φ) =K1 sin
2 θ +K2 sin

4 θ +K
′

2 sin
3 θ cos θ cos(3φ) +K3 sin

6 θ

+K4 sin
6 θ cos(6φ) +K5 sin

3 θ cos3 θ cos(3φ),
(2.19)

whereas for hexagonal symmetries K ′

2 =K5 = 0, hence it reduces to
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2.3 Rare-earths atoms on surfaces

Figure 2.8: Coordinate system adopted in the investigation of MAE of RE atoms on
2D-materials: θ is the polar angle describing magnetization rotations from
the z-axis towards the substrate plane; φ corresponds to the angle from
the x-axis and relates to rotations of the magnetization in the plane of
the 2D-material.

C6v symmetry

Ean(θ,φ) =K1 sin
2 θ +K2 sin

4 θ +K3 sin
6 θ +K4 sin

6 θ cos(6φ). (2.20)

In Eqs. 2.19 and 2.20, θ is the polar angle between the z-axis and the magnetization
direction, and determines the energy change in the out-of-plane direction; φ instead
is the azimuthal angle between the x-axis and the magnetization direction, defining
the in-plane contributions to the MAE. Fig. 2.8 illustrates the coordinate system.

The Ki are the magnetic anisotropy constants and their values define the overall trend
of the MAE. For example, in the case of a first-order anisotropy, Ean(θ,φ) =K1 sin

2 θ,
and the sign of K1 determines the easy-axis: for K1 > 0 the system presents an out-
of-plane easy-axis, if K1 < 0 the easy-axis is in-plane. The MAE of many magnetic
materials is well described by the first term, however, in some instances, RE atoms
can exhibit a more complex behavior that requires the use of higher-order terms to
achieve an accurate description of the MAE.

A measure of the MA is the magnetic anisotropy field, which can be directly related
to the constants Ki. In the case of an in-plane easy-axis with (θ = π/2, φ = 0.0),
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2 Magnetism of 4f -atoms on 2D-materials

applying an external magnetic field B = [0,0,Bz] along the z direction, will induce
canting of the magnetization towards the magnetic field direction. The field needed to
obtain a complete alignment of the magnetization along z corresponds to the magnetic
anisotropy field, Ban. For an hexagonal system with magnetization M , the latter can
be calculated starting from

Ean+Bz(θ,φ) =K1 sin
2 θ +K2 sin

4 θ +K3 sin
6 θ +K4 sin

6 θ cos(6φ) +MBz cos θ, (2.21)

where the last term accounts for the effect of an externally applied magnetic field
along the z direction, resulting in the formation of a local minimum in the MAE
curve at θ = 0. Calculating the second derivative of Eq. 2.21 in θ = 0 and equating it
to 0, leads to

Bz = Ban = −
2K1

M
[T]. (2.22)

Typically the magnetization per atom is given in µB, where the conversion between
eV/T and µB is 1 µB ∼ 5.788 ⋅ 10−5 eV/T.

For an in-plane easy-axis K1 < 0, such that Ban becomes positive. From Eq. 2.22
it can be observed that a magnetic field of at least Ban is required to align the
magnetization of the material. Additionally, the larger the MAE, the more resistant
the magnetization will be to being tilted by an external magnetic field. This property
is crucial in the design of hard magnets.

2.3.1.2 Magnetoelastic anisotropy

Another effect explored in this thesis involves the coupling of the previously described
MCA with elastic deformations of the sample, such as a linear distortion described
by λ = ∆l/l0 = (l − l0)/l0, where l0 represents the original length of the system and l
represents the final length. There are two main phenomena which can be considered,
one the reverse effect of the other: magnetostriction effect [58, 59] and the magnetoe-
lastic effect [60, 61]. The magnetostriction effect involves changes in the structure or
dimensions of a material in response to magnetization, resulting in different shapes for
different magnetization directions. On the other hand, in the magnetoelastic effect,
the application of an external stress (resulting in changes in the structure) can induce
different magnetic properties, such as varying MA.

In the case of single RE atoms adsorbed on 2D-materials, the phenomenon can be
again described in terms of SOC and CF effects: in the magnetoelastic coupling an
external mechanical deformation (for example an applied pressure) induces changes
in the crystal structure at the atomic level. In the framework of the RE atom, this
consists in a displacement of the surrounding point charges that form the CF. This
shift in the crystal field results in a different interaction between the 4f charge cloud
and the crystal field compared to the unperturbed situation. This can lead to a
new direction of the easy-axis as well as general changes in the MAE i.e. different
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2.3 Rare-earths atoms on surfaces

Figure 2.9: (a)-(c)-(d): Example of how an external strain can change the CF around
the RE atom and consequently the MAE. (a)-(b)-(d): Example demon-
strating how a change in magnetization direction can induce a structural
transformation.

strains can induce different trends of Ean(θ,φ). Since the effect strictly relies on a
non-spherical charge distribution around the atom, it is expected to be stronger for
RE atoms with non-vanishing L values.

Fig. 2.9 sketches a simple example of an oblate charge density inside of an C6v CF:
from (a) to (b), the charge density is rotated by θ = π/2 through SOC following the
rotation of the magnetization, depicted by the red arrow. This rotation will result in
a MAE due to the altered interaction with the CF after the rotation. From (a) to
(c) the 2D-material undergoes an in-plane compression, causing the CF point charges
to come closer to the charge cloud, leading to a change in the MAE compared to
the relaxed structure. Tracing the arrows from (a) to (b) and then to (d) reveals an
overall magnetostriction event, where a change in magnetization direction leads to
a variation in the crystal structure around the magnetic atom. On the other hand,
the path from (a) to (c) and then to (d) illustrates how a change in the crystal
structure (such as compression) can induce a rotation of the magnetization direction,
resulting in a magnetoelastic effect. In this example, the hexagonal symmetry is
retained even after the mechanical deformation. However, the induced strain can also
result in different symmetries of the CF around the RE atom and thus a transition
to one crystallographic phase to another [62–64], requiring the use of distinct energy
functionals Ean(θ,φ) to describe the MAE.

In general, the anisotropy energy of the system, which encompasses both the magne-
tocrystalline anisotropy energy and the magnetoelastic energy, can be represented as
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2 Magnetism of 4f -atoms on 2D-materials

a Taylor series with respect to the strain ε [65],

EMCA = (EMCA)0 +∑
i≥j

(
∂EMCA

∂εij
)
0

εij. (2.23)

The initial term characterizes the magnetocrystalline anisotropy unaffected by exter-
nal factors and maintains the symmetry of the undistorted crystal field. On the other
hand, the second term represents the variation in magnetic anisotropy energy induced
by strain and may deviate from the symmetry depending on the type of distortion.
Specifically, the strain is a tensor property that can be defined as εij = ( ∂ui

∂Xj
+

∂uj

∂Xi
)/2,

where i, j = 1,2,3 are the crystallographic directions, and the vector u = x −X rep-
resents the displacement from X to x. Thus, the derivatives of u components with
respect to X components characterize the distortion [66]. The explicit form of the
strain tensor is given by

ε =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.24)

and contains both normal strain components, which are εxx, εyy, and εzz, relative to
a perpendicularly applied stress to the cross section of the material, as well as shear
strain components εij, where i ≠ j, that are relative to a parallel applied stress to the
cross section of the material. Moreover, the magnetoelastic energy terms in Eq. 2.23
can be written using directional cosines multiplied by the magnetoelastic coupling
constants, which specify the magnitude of the magnetoelastic effect in different direc-
tions.

2.3.2 Crystal field theory

In the following, the CF effect on 4f electrons will be discussed in more detail. As
previously mentioned, when the magnetic RE atom is adsorbed on a surface, the
CF surrounding it induces splitting in the (2J + 1)-fold degenerate spectrum of the
4f electrons. This symmetry breaking modifies the magnetic properties and it is
important to understand how the new symmetry affects the MA from a quantum
point of view, in order to achieve an energetically stabilized magnetization. In the
point charge model, the atoms constituting the CF are treated as point charges, and
the electrostatic CF potential at a coordinate r close to the magnetic RE is evaluated
as [40, 67]

VCF(r) = ∑
i

qi
∣Ri − r∣

. (2.25)

Hence, VCF(r) is directly proportional to the sum of point charges composing the CF,
qi, and inversely proportional to the distance between the charges and the RE atom at
the center. It is important to note that this model corresponds to a simplified picture
where overlap between neighboring wave functions is neglected. This approximation
is suitable for highly localized 4f electrons, which are not typically involved in hy-
bridization processes, but might not be appropriate when dealing with delocalized
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Table 2.1: List of commonly occurring Legendre P 0
l and associated Legendre (Pm

l ,
m ≠ 0) polynomials.

P 0
2 (cos θ) =

1
2(3 cos

2 θ − 1)

P 2
2 (cos θ) = 3(1 − cos

2 θ)

P 0
4 (cos θ) =

1
8(35 cos

4 θ − 30 cos2 θ + 3)

P 2
4 (cos θ) =

15
2 (1 − cos

2 θ)(7 cos2 θ − 1)

P 3
4 (cos θ) = 105(1 − cos

2 θ)
3
2 cos θ

P 4
4 (cos θ) = 105(1 − cos

2 θ)2

P 0
6 (cos θ) =

1
16(231 cos

6 θ − 315 cos4 θ + 105 cos2 θ − 5)

P 2
6 (cos θ) =

105
8 (1 − cos

2 θ)(33 cos4 θ − 18 cos2 θ + 1)

P 3
6 (cos θ) =

315
2 (1 − cos

2 θ)
3
2 (11 cos3 θ − 3 cos θ)

P 4
6 (cos θ) =

945
2 (1 − cos

2 θ)2(11 cos2 θ − 1)

P 6
6 (cos θ) = 10395(1 − cos

2 θ)3

electrons. The CF potential in Eq. 2.25 is then expressed in terms of spherical har-
monics since this permits to easily access to the matrix elements of the CF potential
energy. In order to accomplish this, we define the angle α between R and r, such
that the quotient in Eq. 2.25 is represented as a sum of Legendre functions Pl(cosα):

1

∣Ri − r∣
=
∞

∑
l=0

rl

R
(l+1)
i

Pl(cosα) Ri > r. (2.26)

Table 2.1 lists some of the most commonly used Legendre and associated Legendre
polynomials. Adopting the “Addition Theorem”, the Legendre polynomials can be
written in terms of spherical harmonics Y m

l (θ,φ) ,

Pl(cosα) =
4π

(2l + 1)

l

∑
m=−l

(−1)mY −ml (θi, φi)Y
m
l (θ,φ), (2.27)

where (l,m) represent the orbital angular quantum number and the magnetic quan-
tum number, while (θi, φi) and (θ,φ) denote the angular coordinates of R and r,
respectively.
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Combining Eqs. 2.27 and 2.26 and plugging into Eq. 2.25, the potential generated by
the charges qi can be expressed as

VCF(r) = ∑
i

qi∑
l

rl

R
(l+1)
i

4π

(2l + 1)

l

∑
m=−l

(−1)mY −ml (θi, φi)Y
m
l (θ,φ). (2.28)

We then define
Am

l = (−1)
m 4π

(2l + 1)
∑
i

qi

R
(l+1)
i

Y −ml (θi, φi), (2.29)

which allows the potential to be rewritten as:

VCF(r) =
∞

∑
l=0

l

∑
m=−l

Am
l r

lY m
l (θ,φ). (2.30)

The Am
l are defined as the crystal field parameters (CFP) and strictly depend on the

symmetry of the CF. It is important to notice that the CF potential must be invariant
under the symmetry operations of the point group defining the site.

2.3.2.1 Perturbing Crystal Field Hamiltonian

In 4f systems the SOC energy is much larger than the CF energy, hence the latter
can be treated applying first-order perturbation theory and considering just the lowest
lying J multiplet of the 4f -shell. It is then possible to express the CF perturbation
of the 4f electrons in the CF as [68]

HCF = e∑
i

VCF(ri), (2.31)

where the sum goes over the 4f electrons. One way to determine the expectation
values of the CF Hamiltonian is direct integration between the 4f wave functions ϕm

l

and HCF

⟨ϕm1

l ∣HCF∣ϕ
m2

l ⟩ , (2.32)

where l = 3 and m1,m2 are the magnetic quantum numbers of the 4f states.

When calculating these matrix elements, it is necessary to deal with integrals that
involve 3 spherical harmonics since also the single-electron wave functions, ϕm

l , of the
4f electrons are expanded in spherical harmonics (as shown in Eq. 2.4). Separating
the radial from the angular part of the problem, the radial integral ⟨rl⟩ is mostly
considered numerically, while the angular part reduces to the evaluation of Gaunt
integrals [69],

⟨Y m1

l ∣Y
m3

l′ ∣Y
m2

l ⟩ =

¿
Á
ÁÀ(2l

′ + 1)(2l + 1)

4π(2l + 1)
C(l′ll∣000)C(l′ll∣m3m2m1). (2.33)
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Here, l′ and m3 are the angular momentum and magnetic quantum number of the CF
potential. The C are the Clebsh-Gordan coefficients. The Wigner-Eckart theorem
requires that in order to obtain non-zero matrix elements, Eq. 2.33 must contain the
totally symmetric representation. The following rules can be used to determine which
contributions result in non-zero matrix elements:

Selection rules

1. The integral vanishes unless ∣l − l∣ ≤ l′ ≤ 2l (triangle condition)

2. The integral vanishes unless m1 =m2 +m3

3. The integral vanishes unless the inner product of Eq. 2.33 is even i.e.
l + l + l′ is an even integer Ô⇒ for 4f electrons, with 2l = 6, the value of
l′ must be an even integer.

Applying these conditions to 4f electrons with l = 3, the first rule indicates that the
quantum number l′ ≤ 6, while the third rule results in l′ taking values 0,2,4,6. The
potential term with l′ = 0 corresponds to spherical contributions to the field and does
not induce any CF splitting in the 4f levels.

Concerning m3, the permitted values are dictated by the CF symmetry and can be
summarized as follows: for a Cnv symmetry, m3 = an with a integer and m3 ≤ l′. This
can be derived from the application of symmetry operators of the CF point group to
Eq. 2.30.

The aforementioned rules permit to understand where the expansion in Eq. 2.30 has
to be stopped and which terms give rise to contributions to the CF splitting of 4f
states in a specific CF symmetry.

2.3.2.2 Stevens Operator Equivalents Method

A more convenient method to evaluate the matrix elements of the crystal field im-
plies the transformation of the spherical harmonics into functions of the total angular
momentum operators called the “Operator Equivalents” [70]. The procedure involves
the conversion of the spherical harmonics in Eq. 2.30 in cartesian coordinates, leading
to HCF = e∑i V (xi, yi, zi), where (x, y, z) are then replaced by (Ĵx, Ĵy, Ĵz) in a sym-
metrized fashion that considers the non-commuting property of (Ĵx, Ĵy, Ĵz). This is
done by replacing the products of cartesian coordinates with all possible combinations
of products of the Ĵ components and dividing by the number of combinations.
For example,

xy Ð→
1

2
(ĴxĴy + ĴyĴx), x2 − y2 Ð→ Ĵ2

x − Ĵ
2
y . (2.34)
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Therefore, considering states ∣LSJJz⟩, the matrix element, for example, of ∑i(3z
2
i −

r2i ), can be written as

⟨LSJJ ′z ∣∑
i

(3z2i − r
2
i )∣LSJJz⟩ ≡α ⟨r

2⟩ ⟨LSJJ ′z ∣3Ĵ
2
z − Ĵ(Ĵ + 1)∣LSJJz⟩

=α ⟨r2⟩ ⟨LSJJ ′z ∣Ô
0
2 ∣LSJJz⟩ ,

(2.35)

where the factor α is the Stevens factor and depends on the quantum number l of
the considered shell and on J of the considered RE element. The respective Stevens
factors for 4th (l = 4) and 6th (l = 6) order terms are denoted as β and γ. A list of
these values can be found in Table A.3 for RE ions. The operator Ô0

2 is the operator
equivalent for l = 2,m = 0 in the specific example. If the procedure is carried out on the
respective tesseral harmonics expressed in cartesian coordinates, the CF Hamiltonian
can be written as

HCF = ∑
l,m

Am
l αl ⟨r

l⟩ Ôm
l = ∑

l,m

Cm
l Ô

m
l , (2.36)

with Cm
l = αlAm

l ⟨r
l⟩ the convention commonly adopted to refer to the CFP. In this

equation, Ôm
l are the so-called Stevens Operators. As discussed, these operators are

expressed in terms of total angular momentum operators and act on the Jz states
of the central RE atom, removing their degeneracy. The calculation of the matrix
elements of Eq. 2.36 gives thus rise to a multiplet structure of Jz states (corresponding
to the specific J values of the RE atom) which become split by the CF energy.
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2.4 Multiplet splitting of 4f-states in a C6v crystal field

In the present section, the CF theory will be discussed from the theoretical point of
view in the specific case of interest of 4f electrons in an hexagonal CF. Chapter 5
will then apply the acquired knowledge to real systems of RE adatoms adsorbed on
a graphene monolayer.

Based on the selection rules for non-zero matrix elements of Eq. 2.33, for a rare-earth
atom experiencing a C6v CF the respective crystal field Hamiltonian is given by [71,
72]

C6v Crystal Field Hamiltonian

H6v = C
0
2 Ô

0
2 +C

0
4 Ô

0
4 +C

0
6 Ô

0
6 +C

6
6 Ô

6
6. (2.37)

The explicit form of the operators Ôm
l is reported in the following:

Ô0
2 = 3Ĵ

2
z −X

Ô0
4 = 35Ĵ

4
z − (30X − 25)Ĵ

2
z + 3X

2 − 6X

Ô0
6 = 231Ĵ

6
z − (315X − 735)Ĵ

4
z + (105X

2 − 525X + 294)Ĵ2
z − 5X

3 + 40X2 − 60X

Ô6
6 =

1
2(Ĵ

6
+ − Ĵ

6
−),

with X = J(J + 1) and Ĵ± = Ĵx ± iĴy are the ladder operators. The operators with
m = 0 contain even powers of Ĵz and Ĵ and are defined as the uniaxial CF opera-
tors. Their effect is to split the Jz states maintaining the degeneracy of those with
the same absolute value ⟨Jz⟩. This gives rise to a specific energy landscape of the
quantum states depending on the values of the CFP, and it determines the energy
difference between the lowest and the highest lying states, the total zero field splitting
(TZFS) [72]. This energy corresponds to the energy barrier that has to be overcome
in order to observe a magnetization reversal from one magnetic state to the opposite
one and is related to the classical MAE of Eq. 2.20.

By taking as an example the operator Ô0
2, it contains Ĵ(Ĵ + 1) that equally shifts all

the states, and Ĵ2
z that generates a parabolic dispersion of the states around ⟨Jz⟩ = 0.

The sign of C0
2 determines the orientation of the parabola and thus it determines

the easy-axis of the system in the case of a first-order anisotropy: for C0
2 > 0 the

easy-axis is in-plane, for C0
2 < 0 the easy-axis is out-of-plane. How the sign of C0

2 is
precisely related to the first-order anisotropy constant is discussed in more detail in
Section 2.4.4.

Fig. 2.10 shows the effect of the sign of C0
2 in half-integer and integer spin systems.

In the case of a half-integer J (Fig. 2.10 (a)) with C0
2 > 0, the ground state will be
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Figure 2.10: Effect of the sign of C0
2 in half-integer and integer spin systems. (a)

A half-integer J with C0
2 > 0 leads to a double-degenerate ground state;

inverting the sign has no effect on the degeneracy. (b) A integer J system
with C0

2 > 0 shows a single magnetic state at ⟨Jz⟩ = 0, while C0
2 < 0

produces a double-degeneracy of the ground state.

two-fold degenerate. Switching to C0
2 < 0 maintains this degeneracy. On the other

hand, when J is integer and C0
2 > 0 (Fig. 2.10 (b)), the ground state is non-degenerate,

as a single state at the lowest energy is found with ⟨Jz⟩ = 0. If the sign is inverted, a
double-degenerate ground state scenario arises.

The higher powers of Ĵz contained in Ô0
4 and Ô0

6 lead to a non-monotonic dispersion
of the energy levels. Instead, the Ô6

6 operator, which depends on the ladder operators,
is defined as a transverse operator that acts in the (xy) plane and mixes Jz states
differing by ∆Jz = ±6,±12. Some of the newly generated mixtures can be tunnel-split
doublets with quenched ⟨Jz⟩ value, whose effect is to significantly reduce the energy
barrier for a spin-flip event inducing quantum tunneling of magnetization (QTM).

2.4.1 Quantum tunneling of magnetization and magnetic stability

For systems where HCF contains no transverse operators, the magnetization can in
principle only be reversed by exceeding the entire energy barrier spanning from the
lowest to the highest energy state(s). Instead, the presence of transverse operators
can significantly reduce this energy barrier because of the generation of mixtures of
states, some of which possibly lie at quenched ⟨Jz⟩. If states at ⟨Jz⟩ = 0 form, the
system no longer has to overcome the whole energy barrier, but can tunnel through
the barrier via these states from one magnetic state towards the opposite one. For an
hexagonal system,

⟨Jz = i∣Ô
6
6 ∣Jz = j⟩ ≠ 0, ∣i − j∣ = 6,12 (2.38)
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meaning that the expectation value of Ô6
6 between two Jz states is non-zero when

the Jz states differ by ∆Jz = ±6,±12. In this case, the states are coupled and a new
wavefunction described as a superposition of the initial states is generated.

A simplified example of the process is depicted in Fig. 2.11 for J = 4: the states dis-
played in the same color are linear combinations of pure states differing by ∆Jz = ±6,
for example the ∣Jz = −4⟩ couples to ∣Jz = 2⟩ and ∣Jz = −2⟩ is mixed with ∣Jz = 4⟩. Sim-
ilarly, ∣Jz = −3⟩ and ∣Jz = 3⟩ are mixed, and in this case two linear combinations are
generated from the two initial states, a symmetric (in phase combination) and an
antisymmetric (out of phase combination) one, both at ⟨Jz⟩ = 0. These states are
tunnel-split doublets and can yield QTM. In fact, if these states are ground states,
QTM can happen directly since the system is located simultaneously at the left and
at the right of the energy barrier [73]. If the tunnel-split doublets are not the ground
state, they can nevertheless mediate QTM via excitation, e.g., thermal excitation,
phonon or conduction electron scattering events. These phenomena can induce tran-
sitions of the spin either directly to the tunnel-split doublet or to some excited states,
from which the system then relaxes towards the opposite magnetization state via the
tunnel-split doublets.

In order to stabilize the magnetization against reversal events, the optimal choice
of the substrate is crucial both concerning the symmetry properties as well as the
chemical and physical properties. From this point of view, a graphene monolayer is a

Figure 2.11: Example of a parabolic multiplet splitting for J = 4 in the presence of
the transverse operator Ô6

6. Same colors indicate mixtures of states. The
green states at ⟨Jz = 0⟩ are tunnel-split states generated by the linear
combinations of ∣Jz = −3⟩ and ∣Jz = 3⟩. The highest lying state corre-
sponds to the ∣Jz = 0⟩ state. States ∣Jz = −1⟩ and ∣Jz = 1⟩ are pure states.
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suitable choice as a decoupling layer between the RE atom and a metallic/insulating
surface in order to avoid scattering events. It is possible to achieve a stable magneti-
zation also by a proper choice of the RE atom, i.e., the total angular momentum J .
As a matter of fact, half-integer spin systems are protected against the formation of
doublets at ⟨Jz⟩ = 0 by Kramer’s degeneracy, rendering quantum tunneling of magne-
tization impossible through such states. Certainly, also for half-integer J systems an
accurate analysis of the multiplet spectrum is necessary since magnetization reversal
can be induced by other factors, e.g., transitions induced by external perturbations.

These considerations are fundamental for the implementation of memory devices that
rely on a hard and enduring magnetization. Therefore, the knowledge of the specific
CFP in real materials as well as the general understanding of how the symmetry
conditions along with varying J and CFP values affect the magnetic multiplets, is
necessary to identify combinations of RE atoms and 2D-materials that are protected
against magnetization reversal and thus promising candidates for magnetic units.

Figure 2.12: Different 4f occupations corresponding to different total angular momen-
tum J values in the Hund’s rules: 4f 7 and 4f 13 are associated to J = 7/2,
4f 10 to J = 8.
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2.4.2 Modelling of a C6v crystal field Hamiltonian: integer and
half-integer spin systems

In the following, the splitting effect of a C6v crystal field will be analyzed by the
implementation of a toy model. As examples, a half-integer and an integer J spin
system have been chosen. The model contemplates the diagonalization of the CF
Hamiltonian matrix with the symmetry of Eq. 2.37, where the CFP are given as input
parameters and the elements ⟨Jz = i∣H6v ∣Jz = j⟩ are evaluated following the tables in
[67], which report the values of the elements ⟨Jz = i∣Ôm

l ∣Jz = j⟩ for a constant J . As
a half-integer spin system, the case of J = 7/2 will be discussed, which is associated
to a half-filled 4f -shell, namely 4f 7 (L = 0, S = 7/2), as well as to a 4f 13 occupation
(L = 3, S = 1/2). Concerning the integer J case, a J = 8 system has been investigated,
corresponding to a 4f 10 occupation (L = 6, S = 2). These are sketched in Fig. 2.12.

2.4.2.1 Half-integer spin: J = 7/2
In order to compute the actual energy spectrum, we consider that for J = 7/2, −7/2 ≤
Jz ≤ 7/2, and the respective CF matrix elements are reported in the following:

⟨Jz =
7

2
∣H6v ∣Jz =

7

2
⟩ = ⟨Jz = −

7

2
∣H6v ∣Jz = −

7

2
⟩ = 21C0

2 + 420C
0
4 + 1260C

0
6

⟨Jz =
5

2
∣H6v ∣Jz =

5

2
⟩ = ⟨Jz = −

5

2
∣H6v ∣Jz = −

5

2
⟩ = 3C0

2 − 780C
0
4 − 6300C

0
6

⟨Jz =
3

2
∣H6v ∣Jz =

3

2
⟩ = ⟨Jz = −

3

2
∣H6v ∣Jz = −

3

2
⟩ = −9C0

2 − 180C
0
4 + 11340C

0
6

⟨Jz =
1

2
∣H6v ∣Jz =

1

2
⟩ = ⟨Jz = −

1

2
∣H6v ∣Jz = −

1

2
⟩ = −15C0

2 + 540C
0
4 − 6300C

0
6

⟨Jz =
7

2
∣H6v ∣Jz = −

5

2
⟩ = ⟨Jz = −

7

2
∣H6v ∣Jz =

5

2
⟩ = ⟨Jz =

5

2
∣H6v ∣Jz = −

7

2
⟩ =

⟨Jz = −
5

2
∣H6v ∣Jz =

7

2
⟩ = 360

√
7C6

6 .

It can be noticed that the only non-zero off-diagonal terms are those between states
separated by ∆Jz = ±6, as the Ô6

6 operator operator exclusively mixes these states.
All other unlisted elements are zero, and the entire CF matrix can be represented in
the schematic form illustrated in Fig. 2.13.

Diagonalizing the CF matrix, leads to the energy spectrum of the multiplets. All
calculation outputs are plotted on an energy diagram in arbitrary units and each
pure state is represented by an individual color. By setting all CFP to zero except
C0

2 , one gets pure states at the permitted ⟨Jz⟩ values that arrange in a parabolic
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Figure 2.13: H6v matrix for J = 7/2.

trend, as shown in Fig. 2.14 for C0
2 = ±1, where the dashed lines are drawn on top

to put in evidence the shape of the energy spectrum. The shape arises from the Ô0
2

operator that contains Ĵ2
z . Changing the sign of C0

2 results in an inversion of the
parabola, maintaining a two-fold degenerate ground state in both cases, as imposed
by time-reversal symmetry for half-integer spins. The overall TZFS maintains the
same value independently from the sign of C0

2 .

Figure 2.14: Magnetic multiplets for J = 7/2 in a first-order anisotropy with C0
2 = 1

(left) and C0
2 = −1 (right) while all other CFP are equal to zero. The

dashed line serves as a guide to easier identify the dispersion.

Introducing the term C0
4 Ô

0
4 in the Hamiltonian leads to a higher order anisotropy

of the magnetic states. This is illustrated in Fig. 2.15, where the diagonalization
has been performed at fixed value of C0

4 = 1 and for increasing values of C0
2 , while
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2.4 Multiplet splitting of 4f -states in a C6v crystal field

Figure 2.15: Magnetic multiplets for J = 7/2 and varying C0
4/C

0
2 , with C0

2 taking
values of 1,50,100,200. C0

4 = 1 and C0
4 is fixed to 1. The second term in

Eq. 2.37 introduces local maxima and minima in the energy disposition
of the states.

higher order terms are put to zero. It is seen that low ratios of C0
4/C

0
2 in the order

of 5 × 10−3 are needed in order C0
4 to become negligible such that the states again

form a parabolic trend. For higher values of C0
4/C

0
2 the disposition of states forms

progressively more anisotropic curves with increasing depth and height of the valleys
and hills according to increasing value of C0

4/C
0
2 .

The effect of C0
4 is better evidenced in Fig. 2.16 where the ratio C0

2/C
0
4 goes up to 5

leading to bigger energy differences between the states and a larger TZFS. An inver-
sion in sign of C0

2 and C0
4 is respectively shown in Fig. 2.17 and 2.18. Here it is seen

that increasing the negative value of C0
2 pushes the states towards a parabolic shape,

which is reached for low absolute values of C0
4/C

0
2 and inverted compared to Fig. 2.15.

A similar effect is observed by comparison of Fig. 2.16 with Fig. 2.18 in the higher
anisotropy example (larger values of C0

4/C
0
2).
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2 Magnetism of 4f -atoms on 2D-materials

Figure 2.16: Magnetic multiplets for J = 7/2 for larger values of C0
4/C

0
2 . C0

2 is fixed
to 1 and C0

4 takes values of 1,2,3,5.
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2.4 Multiplet splitting of 4f -states in a C6v crystal field

Figure 2.17: Magnetic multiplets for J = 7/2 and varying C0
4/C

0
2 with negative C0

2 . C0
2

is varied over negative values of −1,−50,−100,−200, and C0
4 is fixed to 1.
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Figure 2.18: Magnetic multiplets for J = 7/2 and varying C0
4/C

0
2 with negative C0

4 .
C0

2 is fixed to 1, while C0
4 is varied over negative values of −1,−2,−3,−5.
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Figure 2.19: Magnetic multiplets for J = 7/2 with non-zero C0
6 = 1,−1.

Fig. 2.19 shows the multiplet splitting for C0
2 = C

0
4 = C

0
6 = 1 and C6

6 = 0. The effect
of the third term in Eq. 2.37 is to introduce further oscillatory behavior in the state
dispersion, which is a consequence of highly anisotropic behavior.

The introduction of the CFP C6
6 accounts for the hexagonal symmetry. Prior to ex-

amining the energy spectrum, group theoretical principles can be employed to predict
how the (2J + 1)-fold degeneracy of a spherically symmetric atom (with point group
Kh) will be split into a sum of irreducible representations (IR) due to the hexagonal
symmetry. The great orthogonality theorem [74] is a criteria for irreducibility,

n

∑
ν=1

χ(Γ)(gν)[χ
(Γ′)(gν)]

∗ = nδΓΓ′ (2.39)

where χ(Γ)(gν) and χ(Γ′)(gν) are characters of the symmetries gν belonging to the two
representations Γ,Γ′ of Kh and C6v, respectively, and n = is the number of symmetry
operations (n = 24 in this case). Eq. 2.39 gives an orthogonality relationship be-
tween the characters, indicating the number of times each Γ′ (in this case of the C6v

symmetry) is included in the reducible representation Γ (spherical symmetry Kh).
Considering the character table for an isolated atom with J = 7/2 and of the C6v

point-group (Table A.1) in Appendix A, it is possible to deduce the splitting of the
(2J + 1) = 8 states:

K
7/2
h = Γ7 + 2Γ8 + Γ9 (2.40)

leading to 4 sets of double degenerate states, two sets of which belonging to the same
IR, namely Γ8.

In Fig. 2.20, panel (a) shows the energy spectrum calculated for this symmetry with
arbitrary values of the CFPs as an illustrative example. The transverse operator Ô6

6

generates linear combinations of ∣Jz = −7
2⟩,∣Jz =

5
2⟩ and ∣Jz = −5

2⟩,∣Jz =
7
2⟩, which are

represented by states of the same color (blue and red), and it can be noticed how the
expectation value of these superpositions deviates from the pure state value. This
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2 Magnetism of 4f -atoms on 2D-materials

Figure 2.20: Magnetic multiplets for J = 7/2 with non-zero C6
6 = 1,2. From (a) to (b)

the C6
6 parameter increases and results in a larger shift of the mixtures

in blue and red from the pure state expectation value ⟨Jz⟩.

deviation increases the stronger the mixing i.e. the larger C6
6 , as observed in Fig. 2.20

(b). Of fundamental importance is the fact that for half-integer spin systems, in the
absence of an external magnetic field, the transverse operators can never generate
mixtures with ⟨Jz⟩ = 0, since states must maintain the two-fold degeneracy. This
property is nevertheless lost in integer J systems.

Before delving into the modelling of an integer spin system, it is important to high-
light that it is theoretically possible to determine the irreducible representations to
which different Jz states belong within a given point group. This can be achieved by
establishing appropriate basis functions and applying the symmetry operators. For
instance, let’s consider a symmetry group G defined by the operators Ĝk, and a basis
set composed of functions {ψ1, ..., ψd}. The action of the symmetry operator Ĝk on
one of the basis functions can be represented as a linear combination of the basis set:

Ĝk ∣ψi⟩ =
d

∑
k=1

Gki ∣ψk⟩ , i = 1, ..., d and ∀Ĝk ∈ G, (2.41)

resulting in a new vector within the space. The expansion coefficients, which depend
on the particular symmetry operation, determine the transformation or representation
matrix. In fact, by multiplying Eq. 2.41 on the left by ⟨ψj ∣, we obtain

⟨ψj ∣Ĝk∣ψi⟩ =
d

∑
k

Gki ⟨ψj ∣ψk⟩ =
d

∑
k

Gkiδkj. (2.42)

If the selected basis functions are orthogonal to each other, then Eq. 2.42 can be
reformulated as

Gji(k) = ⟨ψj ∣Ĝk∣ψi⟩ . (2.43)

46
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Hence, the representation matrix can be determined by calculating the matrix ele-
ments between all possible pairs of basis functions.

2.4.2.2 Integer spin: J = 8
For systems with integer spin, the modifications that the multiplet spectrum under-
goes with changing CFP are generally similar to those of half-integer spin systems.
However, it will be demonstrated that in integer spin systems, magnetization reversal
can be induced by QTM due to the influence of Ô6

6.

The CF matrix for a spin system with J = 8 has dimensions of 17 × 17, where Jz
can take values −8 ≤ Jz ≤ 8. The matrix elements, which are listed in Appendix A.2,
show that the Ô6

6 operator mixes states that differ in ⟨Jz⟩ by ±6, while all non-listed
elements are zero. As previously mentioned, the ground state for integer J can be
non-degenerate or double-degenerate, depending on the sign and values of the CFP.
This property is exemplified in Fig. 2.21, which represents a higher symmetry case
than the C6v due to the absence of the transverse operator.

Figure 2.21: Example of a multiplet splitting for J = 8 without Ô6
6 operator: for inte-

ger spin systems the ground state can be composed by a single magnetic
state or by two-degenerate states.

In order to consider a hexagonal CF, it is necessary to take into account also the C6
6 Ô

6
6

contribution. Adopting similar symmetry considerations as in the half-integer case,
the degeneracy of the Jz states in a C6v CF can be predicted considering the character
table in Table A.2 in Appendix A, where no double-group is necessary for an integer
spin system. The resulting splitting can be described as several non-degenerate states
and 6 sets of double-degenerate states belonging to the IR Γ5 and Γ6:

K8
h = Γ1 + 2Γ2 + Γ3 + Γ4 + 3Γ5 + 3Γ6. (2.44)
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2 Magnetism of 4f -atoms on 2D-materials

Fig. 2.22 illustrates the result of diagonalizing HCF containing all the terms describing
a C6v CF adopting arbitrary CFP for the sake of example. In this case, there are no
pure states as every wavefunction arises from linear combinations of several states.
For example, the states in purple are superpositions of ∣Jz = −8⟩, ∣Jz = −2⟩ and ∣Jz = 4⟩,
and similarly for the other states. It is also clear that for integer J values quantum
states at ⟨Jz⟩ = 0 can form: the light green states emerge as a result of the mixing of
three states, namely ∣Jz = −6⟩, ∣Jz = 0⟩, and ∣Jz = 6⟩, one state is situated at around
1.1 energy units, while the other two are approximately at 0.8 energy units and
appear to be in close proximity to each other. The dark green states, on the other
hand, are examples of tunnel-split doublets. The latter result from the symmetric
and antisymmetric linear combination of the ∣Jz = −3⟩ state with the ∣Jz = 3⟩ state
(pictorically drawn in grey on top of the multiplet calculation). This kind of quantum
states can drive QTM through excitation from the ground state, as the system can
tunnel through the energy barrier to reach the opposite magnetic state, such as from
∣Jz = −4⟩ to ∣Jz = 4⟩. This is the fundamental difference from half-integer spin system,
which are, in contrast, protected against the formation of such states. A last comment
concerns the degeneracy of the multiplets which perfectly reflects the result obtained
adopting the orthogonality theorem: 5 states are non-degenerate and 6 states are
double-degenerate in energy.

From this discussion, it emerges that half-integer and integer spins behave differently
when adsorbed in a hexagonal CF and it is essential to take into account the properties
of the two types of spin systems to design hard magnets. Although half-integer

Figure 2.22: Magnetic multplet splitting for J = 8 with arbitrary CFP. States in the
same color represent mixtures of several ∣Jz⟩. In particular, the combina-
tions of ∣Jz = −3⟩ with ∣Jz = 3⟩ leads to tunnel-split doublets at quenched
⟨Jz⟩.
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spins are protected against the formation of tunnel-split doublets, the choice between
integer or half-integer spin systems is not obvious since the magnetization can also be
destabilized by transitions that do not involve states at ⟨Jz = 0⟩. In this perspective, it
is in necessary to induce high energy barriers between the magnetic states in order to
prevent magnetization reversal and this can be achieved in both kinds of spin systems.

2.4.3 First-order perturbation effects: electron and phonon scattering

As previously mentioned, a magnetization reversal event can occur through processes
that may not necessarily involve quantum tunneling via mixed states at ⟨Jz = 0⟩.
Therefore, it is crucial to calculate multiplet splittings and further explore how to
control them based on the selection of the spin system and the crystal field. For in-
stance, temperature effects can induce magnetization reversal and affect the magnetic
stability. Two different mechanism can be distinguished in two different temperature
regimes: At finite temperatures, magnetization reversal can occur through thermal
activation, enabling the system to overcome the minimal energy barrier when the
temperature is sufficiently high. This leads to an Arrhenius-like relationship for the
magnetic lifetime under the condition that no external magnetic field is present. At
lower temperatures, although the thermal energy may not be sufficient to overcome
the energy barrier U (see Fig. 2.23), it can prompt excitations to metastable higher-
energy states that enable thermally assisted quantum tunneling of the magnetization
[73]. At the microscopic level, this phenomenon can involve scattering processes,
such as interactions with the substrate’s phonons and electrons. The mathematical
representation employs operators Ĵz, Ĵ+, and Ĵ−, which enable transitions between
states with ∆Jz = 0,±1. In this first-order perturbation scenario, the operator Ô6

6 of a
hexagonal crystal field facilitates the coupling between states of equal energy having
angular momentum differences of ∆Jz = 0± 6k,−1± 6k,1± 6k (as detailed in Ref. [72]

Figure 2.23: Visual representation depicting the mechanisms of magnetization reversal
through thermal activation and thermally assisted quantum tunneling of
magnetization.
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and the corresponding PhD thesis [75]). Here, the parameter k assumes integer values
depending on the total angular momentum J of the lanthanide. In the absence of an
external magnetic field, this process thus involves the transition to a higher-energy
state, from which subsequent quantum tunneling can take place. In the presence of
a magnetic field, it can also directly induce transitions between opposite spin ground
states.
It is important to mention that single atom spin systems can experience spin reversal
events mediated by exchange interactions with itinerant electrons of the substrate,
known as Kondo scattering [76–78]. These transitions between two ground states
lead to relatively short lifetimes. This effect occurs in systems where the crystal field
produces two degenerate ground states separated by ∆Jz = ±1 transitions. To reduce
this effect, one strategy is to separate the atomic spins from the conduction electrons,
which can be achieved by introducing a decoupling layer.

2.4.4 Reverse-engineering the magnetic anisotropy: from classical to
quantum

As discussed in the previous sections, the effects at the quantum level have a strong
impact on magnetization reversal events of single rare-earth atoms deposited on a
2D-material. Thus, a classical formulation as described in Eq. 2.20 is not suffi-
cient to achieve an exhaustive overview about the magnetic stability and a quantum-
mechanical description is fundamental to determine the energy differences involved in
possible transitions between different magnetic states. This translates in the necessity
to determine the accurate values of the CFP and compute the respective multiplet
structures to identify possible systems protected against magnetization reversal events
and therefore appealing choices for stable magnetic units.

In the following, a simple approach that relates the classical magnetic anisotropy
constants, Ki, to the quantum crystal field parameters, Cm

l , for a C6v symmetry is
proposed in the reverse-engineering framework. Since the classical energy functional
E(θ,φ) can be straightforwardly computed (and thus the Ki) in the DFT picture
discussed in section 4.2.1, the reverse-engineering represents a method to calculate
the CFP from ab initio.

Following [79], the 4f electron density associated to a spin quantization axis aligned
along ẑ can be defined as

ρẑ4f(r) = n
0
4f(r) ∑

l=2,4,6

Al (
2l + 1

4π
)

1/2

Yl0(r̂). (2.45)

Here, n0
4f(r) denotes the radial charge density, Yl0(r̂) represents spherical harmonics,

and the Al are numerical factors dependent on the total angular momentum J of the
specific rare-earth and the corresponding Stevens factor [70, 80]. This expression can
be extended for a general direction of the magnetic moment by replacing Yl0 with
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∑m e
−imφdm0

l Ylm(r̂), where the dm0
l functions are related to the associated Legendre

polynomials, Pm
l :

d02 = P 0
2 (cos θ)

d04 = P 0
4 (cos θ)

d06 = P 0
6 (cos θ)

d66 =
1
√
12!

P 6
6 (cos θ)

d−66 =
√
12!P −66 (cos θ).

Considering a single rare-earth atom at the center of a C6v CF, we assume that the
contributions to the MAE fully arise from the 4f electrons and consider the limit in
which the CF energy is small compared to the exchange field. In this scenario, the
CF contribution can be treated as a first-order perturbation [81]. The CF potential
is written as a linear combination of spherical harmonics, VCF(r) = ∑lm Vlm(r)Ylm(r̂),
and the expectation value can be expressed generally as:

ECF = ∫ ∑
lm

ρ4f(r)Vlm(r)Ylm(r̂)dr, (2.46)

which leads to [79]

ECF = ∑
l=2,4,6

Al∑
m

(−1)mB−ml e−imφdm0
l (θ). (2.47)

The B−ml are the CFP in the Waybourne convention [82],

Bm
l = (

2l + 1

4π
)

1/2

∫ r2n0
4f(r)Vlm(r)dr, (2.48)

and are closely related to the Stevens convention by a multiplicative factor depen-
dent on (l,m), denoted as θml (note that this is different from the θ used to denote
spherical coordinates), and the Stevens factor (αl): Cm

l = θ
m
l αlBm

l . The derivation of
the relationship between Ki and the CFP will be carried out in the Bm

l convention
to ultimately be converted in the more accesible convention Cm

l of Eq. 2.37.

Expansion of Eq. 2.47 for a C6v CF, leads to

E6v = A2B
0
2d

0
2(θ) + A4B

0
4d

0
4(θ) + A6B

0
6d

0
6(θ) + A6B

6
6(e

−i6φd66(θ) + e
i6φd−66 (θ)). (2.49)

Adopting the property

P −ml = (−1)m
(l −m)!

(l +m)!
Pm
l , (2.50)

it can be derived that P −66 =
1
12!P

6
6 and d−66 =

1√
12!
P 6
6 , which leads to

E6v = A2B
0
2P

0
2 (θ) + A4B

0
4P

0
4 (θ) + A6B

0
6P

0
6 (θ) + A6B

6
6

2
√
12!

P 6
6 cos(6φ). (2.51)
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Plugging the definition of the Pm
l of Table 2.1 into Eq. 2.51, produces

E6v = A2B
0
2

1

2
(3 cos2 θ − 1)

+ A4B
0
4

1

8
(35 cos4 θ − 30 cos2 θ + 3)

+ A6B
0
6

1

16
(231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5)

+ A6B
6
6(
−2 ⋅ 10395
√
12!

(cos2 θ − 1)3) cos(6φ)

= (
3

2
A2B

0
2 −

30

8
A4B

0
4 +

105

16
A6B

0
6) cos

2 θ

+ (
35

8
A4B

0
4 −

315

16
A6B

0
6) cos

4 θ

+ (
231

16
A6B

0
6) cos

6 θ

−
2 ⋅ 10395
√
12!

A6B
6
6(cos

2 θ − 1)3 cos(6φ)

−
1

2
A2B

0
2 +

3

8
A4B

0
4 −

5

16
A6B

6
6

= K ′1 cos
2 θ +K ′2cos

4θ +K ′3 cos
6 θ +K ′4 sin

6 θ cos(6φ) + constant.

(2.52)

Considering now the conversion to sin θ functions,

cos2 θ = 1 − sin2 θ

cos4 θ = 1 − 2 sin2 θ + sin4 θ

cos6 θ = 1 − 3 sin2 θ + 3 sin4 θ − sin6 θ,

(2.53)

Eq. 2.52 becomes

E6v = K ′1(1 − sin
2 θ) +K ′2(1 − 2 sin

2 θ + sin4 θ)

+K ′3(−3 sin
2 θ + 3 sin4 θ − sin6 θ) +K ′4 sin

6 θ cos(6ϕ)

= (−K ′1 − 2K
′
2 − 3K

′
3) sin

2 θ + (K ′2 + 3K
′
3) sin

4 θ

−K ′3 sin
6 θ +K ′4 sin

6 θ cos(6ϕ) + constant.

(2.54)
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This equation can then be written in the shape of Eq. 2.20 with

K1 = −K
′
1 − 2K

′
2 − 3K

′
3 = −

3

2
A2B

0
2 − 5A4B

0
4 −

21

2
A6B

0
6

K2 =K
′
2 + 3K

′
3 =

35

8
A4B

0
4 +

189

8
A6B

0
6

K3 = −K
′
3 = −

231

16
A6B

0
6

K4 =K
′
4 =

2 ⋅ 10395
√
12!

A6B
6
6 .

(2.55)

To conclude the derivation, we define θ02 = 1/2, θ04 = 1/8, θ06 = 1/16, θ66 =
√
231/16 as

reported in [83] and

A2 = J(J −
1

2
) ⋅ αl

A4 = J(J −
1

2
)(J − 1)(J −

3

2
) ⋅ αl

A6 = J(J −
1

2
)(J − 1)(J −

3

2
)(J − 2)(J −

5

2
) ⋅ αl,

(2.56)

with αl the Stevens factor (α, β, γ for l = 2,4,6), defined in Table A.3 for the RE3+

ions in Appendix A.4. The magnetic anisotropy constants Ki in Eq. 2.55 are finally
formulated in terms of Cm

l = θ
m
l α

m
l B

m
l as

Reverse-engineering of CFP

K1 = −3f2C
0
2 − 40f4C

0
4 − 168f6C

0
6

K2 = 35f4C
0
4 + 378f6C

0
6

K3 = −231f6C
0
6

K4 = f6C
6
6 .

(2.57)

where fl = Al/αl. The equations imply that the Ki values can be expressed as a linear
combination of the CFP. Assuming a pure first-order anisotropy, all constants except
K1 are zero, resulting in only C0

2 being non-zero. In this situation, C0
2 determines the

sign of the parabolic dispersion of the magnetic multiplets i.e. the easy-axis: if C0
2 < 0,

then the easy-axis is out-of-plane (K1 > 0), whereas C0
2 > 0 indicates an easy-plane

anisotropy (K1 < 0). Nevertheless, when dealing with open 4f -shells higher order
anisotropy terms must mostly be taken into account and the determination of the
easy-axis is not trivial.

The result of Eq. 2.57 for hexagonal C6v systems, shows that the calculation of the
magnetic anisotropy constants Ki gives access to the CFP. In Chapter 5 this method
will be applied to RE atoms adsorbed on a graphene monolayer, where starting from
DFT calculations, the multiplet splitting of the systems were determined.
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Chapter 3
Applications in spin-orbitronics

In this chapter, the use of rare-earth atoms on 2D-materials is explored, high-
lighting key studies that have influenced the current research. Specifically, two
major applications are examined: the implementation of rare-earths as single-
atom magnets and the potential of rare-earth-based materials as magnetotrans-
port devices, as they show great promise for future electronics. Both of these
applications demand the creation of significant magnetic anisotropies.

Since the discovery of graphene as first 2D-material, fundamental research has been
successful in discovering 2D-structures with properties useful in fields including elec-
tronics, optics, energy and catalysis. These materials offer a wide range of electronic
properties that can be manipulated through chemical composition and crystal struc-
tures, and can be experimentally realized using various methods [84–86]. The ability
to engineer the properties of 2D-materials by using proximity effects between layers
[87] or depositing single atoms [88–91] is particularly appealing. This allows for the
combination of various properties, such as large SOC [92–94], magnetism [95–99], and
topological properties [100–102], in one structure [103–105]. Through theoretical and
experimental investigation, it is possible to create novel phenomena by optimizing the
combination of elements in the system and this could potentially lead to the develop-
ment of next-generation of spintronics devices [106].

While spintronics exploits the spin magnetic moment of atoms to build efficient plat-
forms for electronic devices, spin-orbitronics concerns phenomena that arise from the
interplay between the spin magnetic moment and the orbital magnetic moment of
atoms. RE atoms are particularly well-suited for this due to their very large spin and
orbital moments that are coupled through spin-orbit interaction.

Additionaly, as discussed in Section 2.1, the magnetization of RE atoms is localized
and protected from the chemical environment, leading to a more stable f magnetic
moment in comparison to a d magnetic moment. From the orbital perspective, the 4f
filling leads to large L values that translate into anisotropic 4f distributions which
interact with the CF without being quenched. Another advantage concerns the pos-
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sibility to engineer the magnetic anisotropy by changing the orbital 4f filling, making
RE atoms promising candidates for a variety of applications e.g. data storage and
quantum technology.

Spin-orbitronics applications

Figure 3.1: Example of two applications of RE atoms on 2D-materials in spin-
(orbi)tronics: single atom magnets (left) and platforms for transport
properties such as the anomalous Hall effect (right).

3.1 Single-atom magnets

Permanent magnets have a high resistance to fluctuation, allowing them to maintain
stored data over time. This property is crucial for their use in efficient memory de-
vices. For example, when a RE atom is adsorbed on a substrate, it acts as an isolated
magnetic moment that spontaneously aligns along a preferred direction. If the energy
required to rotate the magnetic moment is too high to be induced by external factors
such at thermal excitations, the RE atom can serve as a hard magnet. Physically this
is reflected in a large magnetic anisotropy energy along with long coherence times
of the magnetization, which can be defined as a measure of the interval of time in
which the magnetization preserves its value along a direction before decaying and
losing the saved information. These systems permit the construction of magnets at
the atomic scale, favoring a downscaling of the information units and, consequently,
the possibility to increase the storage density per unit of surface [107].

These considerations are fundamental also at the quantum level, for example, in the
generation of stable basic units in quantum information referred to as qubits. The
primary distinction from classical computation, where information is encoded in ∣1⟩
and ∣0⟩ bits, is the possibility of utilizing spin states that are superpositions of these
states ∣1⟩ and ∣0⟩, thereby taking advantage of the quantum nature of the spin. In
this perspective, 4f -elements on 2D substrates are promising candidates as quantistic
information carriers [108, 109].

Recent research has aimed to gain a comprehensive understanding of the chemical
hybridization, electronic transfer processes, magnetic interactions and anisotropy of
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REs on 2D substrates, using both experimental and theoretical methods [78, 110–118].
The generation of single-atom magnets relies heavily on the magnetic anisotropy en-
ergy, which is the key ingredient in this process. Additionally, considering the highly
localized nature of 4f magnetic moments, quantum effects must be taken into ac-
count, as they may induce magnetization reversal processes. The proposed research
strategy is aimed at gaining a deeper understanding of how the magnetic anisotropy
energy changes with the nature of the RE element and the symmetry and chemistry
of the surrounding CF. The goal is to identify conditions that effectively prevent
the occurrence of quantum tunneling of magnetization. Previous studies have laid
the foundation for this research combining X-Ray Absorption Spectroscopy (XAS),
X-Ray Magnetic Circular Dichroism (XMDC) and Scanning Tunneling Microscopy
(STM) measurements with multiplet splittings calculations for RE atoms in different
environments [72, 119, 120] and determining giant lifetimes of the 4f magnetizations
[38, 76, 120–123].

In this context, graphene (Gr) is often utilized as a decoupling layer between a metal-
lic or insulating surface and the RE atoms. Indeed, graphene interacts via van der
Waals interactions which are remarkably weak compared to covalent bondings and re-
flect in larger distances from the substrate. As a result, by adsorption of a RE atom,
it is possible to investigate RE/Gr systems which are not substantially affected by
the vibrational modes and conduction electrons of the substrate. However, achieving
this separation requires careful selection of the substrate, as the interaction between
Gr and the substrate depends on the chemical composition of the latter [124–127].
For instance, it has been shown that Gr on top of Ir(111) results in a large vertical
distance [127, 128] compared to other metals with minimal impact on the electronic
structure of Gr, making Ir(111) a good substrate candidate for the study of RE single-
atom magnets on Gr.

The use of Gr as a 2D-material is not restricted to its weak bonding characteristics.
The hexagonal arrangement of the C atoms also generates a CF that can lead to sta-
ble magnetic ground states, and opens opportunities for manipulating the multiplet
splittings. Additionally, the low density of states at the Fermi energy of Gr prevents
scattering events of the magnetization and its negligible SOC means that the resulting
MAE is dominated by the adsorbed RE atom.

Other applications involve depositing RE atoms on van der Waals materials with
properties that differ from Gr, such as stronger SOC. The goal of this approach is to
not only exploit the CF of the 2D-material but also to take advantage of proximity
effects between layers, which can lead to phenomena that do not exist in the individual
layers alone. Examples of suitable 2D-materials might involve TMDCs such as MoS2,
MoSe2, WSe2 that are composed of three atomic layers, in which one transition metal
element (M) is bonded to chalcogen atoms (X) with stoichiometry MX2. These 2D-
materials are attractive due to the variety of electronic phases they exhibit, based on
the chemical composition of M and X and the crystalline structure [129, 130]. These
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phases range from semiconductors to conductors and superconductors [131–139]. A
TMDC monolayer in 2H stacking inherently breaks inversion symmetry and, coupled
with the intrinsic SOC stemming from the transition metal atom, results in various
effects such as band splitting and valley degrees of freedom [140, 141] leading to valley
and spin hall effects [142].

3.2 Magnetotransport phenomena

In general, TMDC monolayers represent an ideal platform for transport phenomena
due to the possibility to tailor their chemical and structural properties, the SOC and
magnetic properties e.g. via proximity effect by interfacing with a magnetic material.
From this perspective, RE atoms can act as a magnetic source, inducing magnetiza-
tion in the vdW material. This, in combination with SOC, is crucial for generating
magnetotransport phenomena such as the anomalous Hall effect.

3.2.1 Anomalous Hall conductivity

The anomalous Hall effect (AHE) occurs when an electric field is applied to a ferro-
magnet, causing the electronic current to deflect perpendicular to the applied voltage.
This effect arises from a combination of different factors such as net magnetization,
spin-orbit coupling, and orbital hybridization, which lead to an additional contribu-
tion to the group velocity of electrons perpendicular to the electric field, which is
absent in non-magnetic materials. A sketch of the effect is illustrated in Fig. 3.1.
Empirically, The AHE is typically represented by an additional term in the Hall
resistivity, ρH , which is proportional to the magnetization, Mz [143]:

ρH = R0Hz +RsMz. (3.1)

The first term in the equation describes the classical Hall effect, with R0 being the
Hall coefficient and Hz the perpendicularly applied magnetic field, indicating a lin-
ear dependence on the latter in non-magnetic materials. The anomalous effect in
ferromagnetic materials is accounted for by the second term, with Rs denoting the
anomalous Hall coefficient, as it originates from the presence of magnetization even
in the absence of an external magnetic field.

The intrinsic AHE solely depends on the band structure of the material, which can
exhibit intricate features due to orbital hybridization and SOC-induced effects. To
provide an accurate description of the AHE it is thus essential to incorporate topolog-
ical concepts, such as the Berry curvature, that appropriately capture the geometrical
characteristics of the electronic structure. On the other hand, contributions to the
AHE that come from external sources involve the presence of impurities that cause
scattering of electrons driven by spin-orbit coupling. This thesis focuses solely on the
intrinsic AHE, which will be discussed in further detail below.
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3.2 Magnetotransport phenomena

To understand the definition of the Berry curvature, we begin by introducing the
Berry phase as the phase evolution of a complex vector as it is transported around a
closed path, for example, the ground state of a quantum system when moved in the
parameter space (such as the k -space). The resulting phase evolution is determined
by the geometry of the parameter space.
Considering the Hamiltonian H of some system and its eigenstates ∣n(λ(t))⟩, the
adiabatic approximation [144] assumes the parameter λ(t) to change slowly over time.
This means that if the system is in the state ∣n(λ(0))⟩ at t = 0, it will remain in the
same state, up to a phase, at any later time t. In other words, the system is able to
adapt to the gradual changes. Taking the Ansatz [145, 146]

ψ(t) = c(t)e−iϕ(t) ∣n(λ(t))⟩ (3.2)

where ϕ is the dynamical phase defined as

ϕ(t) =
1

h̵

t

∫
0

En(λ(t
′))dt′, (3.3)

while c(t) allows for the potential existence of an extra phase beyond ϕ(t). Plugging
Eq. 3.2 into the time-dependent Schrödinger equation

[ih̵∂t −H(λ(t))] ∣ψ(t)⟩ = 0, (3.4)

results in

ih̵ċ(t)e−iϕ(t) ∣n(λ(t))⟩ + ih̵c(t)[
((((((((((((
−iϕ̇(t)e−iϕ(t) ∣n(λ(t))⟩] + ih̵c(t)e−iϕ(t)∂t ∣n(λ(t))⟩

−
((((((((((((
c(t)e−iϕ(t)En ∣n(λ(t))⟩ = 0,

(3.5)

where the cancellation occurs from ϕ̇(t) = En(t)/h̵. This yields the following expres-
sion,

ċ(t) ∣n(λ(t))⟩ + c(t)∂t ∣n(λ(t))⟩ = 0, (3.6)

which multiplied with ⟨n(λ(t))∣ on the left leads to

ċ(t) = ic(t) ⟨n(λ(t))∣i∂tn(λ(t))⟩ . (3.7)

We define An(t) = ⟨n(λ(t))∣i∂tn(λ(t))⟩ as the Berry connection “in time”, and the
solution of Eq. 3.7 is

c(t) = eiγ(t), (3.8)

with γ(t) the Berry phase defined as

γ(t) =

t

∫
0

⟨n(λ(t′))∣i∂t′n(λ(t
′))⟩ =

t

∫
0

An(t
′)dt′. (3.9)
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Expressing the Berry phase in terms of the parameter λ is then a straightforward
task by noticing that ∂t ∣n(λ(t))⟩ = λ̇∂λ ∣n(λ(t))⟩. Thus, An(t) = λ̇An(λ), with
An(λ) = ⟨n(λ)∣i∂λn(λ)⟩ defined as the Berry connection in parameter space (the time
dependence is intrinsic, meaning that the functions F(λ) are defined as F(λ(t))). By
utilizing dλ = λ̇dt, a variable substitution can be made to the λ-parameter space:

γ(t) =

λ(t)

∫

λ(0)

⟨n(λ)∣i∂λn(λ)⟩dλ =

λ

∫

λ(0)

An(λ)dλ, (3.10)

showing that the Berry phase solely depends on the path in parameter space. More
generally, for multiple changing parameters λ ≡ (λ1, λ2, λ3, ..., λN) the Berry phase
writes as

γ = ∮
Γ

i ⟨n(λ)∣∇λn(λ)⟩ ⋅ dλ = ∮
Γ

A(λ) ⋅ dλ, (3.11)

and depends only on the chosen path. The Berry curvature is then defined as the curl
of the Berry connection

Ω(λ) = ∇λ ×A(λ), (3.12)

and applying Stokes’ theorem for a closed path Γ that delimits the surface S, the
Berry phase is defined as

γ = ∮
Γ

A(λ) ⋅ dλ = ∫
S

Ω(λ) ⋅ dS. (3.13)

Eq. 3.13 illustrates that the relationship between A(λ) and Ω(λ) is the same as
the connection between the vector potential A(r) and the magnetic field B(r) in
real-space.

Berry curvature in crystals

Consequently, when the parameter space λ is defined by the reciprocal space
of a crystal structure, where the parameters are the wavevectors k, the Berry
curvature can be interpreted as an effective magnetic field in k -space. For each
band n, the value of Ωn(k) is well-defined and it provides a local description
of its geometric properties.

In the case of a 2D reciprocal space (kx,k y), the Berry connection associated with
band n is defined in terms of periodic part of the Bloch’s function, unk:

Ankx(k) = ⟨unk∣i∂kxunk⟩ , Anky(k) = ⟨unk∣i∂kyunk⟩ . (3.14)

The Berry phase then writes as

γn = ∮ An(k) ⋅ dk, (3.15)
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and the Berry curvature is given by

Ωnk = ∂kxAnky(k) − ∂kyAnkx(k) = −2Im ⟨∂kxunk∣∂kyunk⟩ . (3.16)

One common method to calculate the Berry curvature, and hence the intrinsic anoma-
lous Hall conductivity, is through the use of the Kubo formula [143, 147, 148] based
on linear response theory [149], which for each band n can be written as:

Ωnk = −2h̵
2
∑
m≠n

Im [
⟨unk∣ vx ∣umk⟩ ⟨umk∣ vy ∣unk⟩

(Enk −Emk)
2

] , (3.17)

where vx and vy are the x and y components of the velocity operator. The summation
is over the eigenstates with eigenvalues Enk. This equation indicates that features of
the Berry curvature will manifest in reciprocal space, where bands are separated in
energy, due to effects such as SOC.

Moreover, the evaluation of the Berry curvature for all occupied bands can be ob-
tained using the following equation, where the Fermi-Dirac distribution fnk has been
introduced:

Ωk = ∑
n

fnkΩnk. (3.18)

The intrinsic anomalous Hall conductivity can then be obtained by integrating Eq. 3.18
over the Brillouin zone (BZ) [150]

Anomalous Hall conductivity

σAHC =
e2

h̵ ∫
BZ

d2k

(2π)2
Ωk. (3.19)

When computing integrals over the BZ, symmetry is crucial in determining the values
of properties. In general, if the structural inversion symmetry is broken, the Berry
curvature will have equal magnitude but opposite sign at opposite k -points, result-
ing in a zero value of the intrinsic AHC upon integration over the BZ. However, if
time-reversal symmetry is also broken, then the Berry curvature will be different at
opposite k -points, allowing for a non-zero AHC. As a result, ferromagnetic materials
are particularly interesting for this purpose.

In summary, by carefully choosing the elements in a system and designing the band
structure with symmetry considerations, orbital hybridizations, and spin-orbit cou-
pling effects in mind, it is possible to create materials that exhibit anomalous Hall
conductivity.
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Chapter 4
The Many-Body Problem: ab initio
methods

The many-body problem refers to the difficulties in understanding and predicting
the behavior of materials composed by a large number of electrons. The complexity
stems from the numerous interactions between electrons, making the Schrödinger
equation impossible to solve exactly. To overcome this, approximate and compu-
tational techniques are employed to solve the equation and deduce the properties
of many-electron systems. The sections that follow detail the computational ap-
proaches that have been adopted throughout this thesis to calculate electronic and
magnetic properties of rare-earth atoms on 2D-materials.

For many-electron systems, the Hamiltonian can be written as

H = Te + TN + VeN + Vee + VNN (4.1)

where the terms are defined below with distances rij = ∣ri − rj ∣, and nuclear charges
denoted by Z [151]:

Te = −∑
i

h̵2

2me

∇2
i , kinetic energy of electrons with mass me

TN = −∑
k

h̵2

2mk

∇2
k, kinetic energy of nuclei with mass mk

VeN = −∑
i

∑
k

e2Zk

rik
, electron-nucleus electrostatic potential

Vee = ∑
i<j

e2

rij
, electron-electron electrostatic potential

VNN = ∑
k<l

e2ZkZl

rkl
, nucleus-nucleus electrostatic potential.

In the listed contributions, there are many coordinates and interactions that indi-
cate a mutual dependence among the particles. To simplify the problem, a common
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4 The Many-Body Problem: ab initio methods

method is to separate the motion of the electrons from the motion of the nuclei using
the Born-Oppenheimer approximation [152, 153]. This is possible because the nuclei
are much heavier than the electrons, so their coordinates can be assumed fixed in the
electronic framework. This allows the electronic configuration to instantly adapt to
the nuclear motion. Practically, one can thus solve the electronic equation separately
from the nuclear equation assuming an external nuclear potential for the electronic
problem.

However, the presence of electron interaction term implies that the dynamics of all
electrons are interdependent, and to accurately describe the system, it is necessary
to consider all interactions. However, due to the complexity and the infinite compu-
tational resources required, various computational methods are employed to approx-
imate these correlation effects. Density Functional Theory (DFT), shown schemat-
ically Fig. 4.1, is an example of such a method. It is extensively employed in com-
putational materials science and is widely recognized as a fundamental approach for
simulating quantum mechanical systems, alongside the Hartree-Fock methods.

The Hartree-Fock method for an N -particle system involves breaking down the N -
particle electronic Schrödinger equation into N individual single-particle equations
[154]. In the approach of treating each electron individually, an important approxi-
mation is introduced where an average potential field is considered for each electron re-
sulting from the presence of all other electrons. This field is supposed to approximately
mimic the repulsive electron-electron interactions. The ground state wavefunction is
assumed to be a single Slater determinant composed of the N single-electron wave-
functions, which comply with the antisymmetry condition, thus allowing the method
to include the exchange-correlation energy. Despite its limitations, the Hartree-Fock
method is often used as a starting point for more advanced methods that attempt to
account for electrostatic correlations between electrons in the so-called post-HF meth-
ods. Nevetherless, due to the computational demands of post-HF methods, especially
when applied to systems with a large number of atoms, such as periodic systems,
DFT methods are mostly employed when simulating crystal structures.

4.1 Density Functional Theory: a short review

Density functional theory offers a significant advantage by replacing the wavefunc-
tion of an N -electron system with an electron density, greatly reducing the number of
variables from 3N (3 for each electron) to just 3. This simplification is relevant when
considering the electronic problem of a system composed of N interacting electrons,
described by the Hamiltonian H = Te + Vee + Vext. Here, Te represents the kinetic en-
ergy, Vee denotes the electron-electron interaction, and Vext accounts for the external
potential originating from the nuclei.

At the core of DFT lie the Hohenberg-Kohn theorems, which establish its theoretical
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4.1 Density Functional Theory: a short review

Figure 4.1: The DFT philosophy consists to approximate the vast number of inter-
actions of a complex system considering an electronic charge distribution
around the nuclei. Each electron feels an effective field produced by the
other electrons.

foundation. The first theorem asserts that the electron density uniquely determines
the external potential within which the electrons are confined. This implies a one-
to-one correspondence between the electron density and the external potential. As a
direct consequence of this theorem, the total energy of the system becomes a unique
functional of the electron density. The second theorem builds upon this by stating that
the electron density that minimizes the energy functional corresponds to the exact
ground state density, subject to the constraint that the total number of electrons
remains fixed. [155]:

Hohenberg-Kohn theorems

1. E = E[n(r)]

2. E[n(r)] ≥ E[nGS(r)] = EGS.

These two formulations translate into a one-to-one mapping between the ground state
wavefunction and the ground state electron density, meaning it is sufficient to calcu-
late the electron charge density to determine ground state properties. However, due
to the lack of explicit definition of the electron density and the form of the total energy
functional in the Hohenberg-Kohn theorems, a practical strategy employed in DFT
calculations, inspired by Kohn and Sham [156], is to construct a fictitious system of
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4 The Many-Body Problem: ab initio methods

non-interacting electrons. This approach aims to emulate the behavior of the actual
interacting system by introducing a potential that describes electronic interactions.
The potential is designed in a manner that ensures the ground state density of the
fictitious system matches the ground state density of the real system.

Considering Eq. 4.1 for the electronic problem, the energy functional of the real
interacting system can be expressed as a sum of the kinetic energy of the electrons,
the Coulomb interactions between electrons and the interactions of the electrons with
the external nuclear potential:

E[n] = Te[n] + Vee[n] + VeN[n] = Te[n] + Vee + ∫ Vext(r)n(r)dr. (4.2)

In the non-interacting system the first two terms in Eq. 4.2 are replaced by the kinetic
term and two contributions that describe the electron interactions

Te[n] + Vee[n] = T
0
e [n] +EH[n] +EXC[n]. (4.3)

Here, the kinetic energy is simply the sum over the electrons of the individual contri-
butions

T 0
e [n] = −

h̵2

2me
∑
i
∫ ψ∗i ∇

2
iψidr, (4.4)

where the single-electron wave functions ψi(r) have been introduced and their use will
be discussed later. The second term, EH[n], describes the electrostatic interaction
between charge densities and is called the Hartree functional

EH[n] =
e2

2 ∬
n(r)n(r′)

∣r − r′∣
drdr′ =

e2

2 ∫
VH(r)n(r)dr. (4.5)

Lastly, the energy functional EXC[n] is the exchange-correlation functional and cor-
responds to the energy difference between the real interacting system and the non-
interacting system. Hence, it incorporates all missing quantum-mechanical effects
and writes as

EXC[n] = Te[n] + Vee[n] − T
0
e [n] −EH[n]. (4.6)

The exchange-correlation functional is not known and must be approximated as part
of the DFT workflow. One of the major challenges in DFT is identifying an accurate
exchange-correlation functional that can effectively capture the effects at the quantum
level as the accuracy of DFT calculations directly depends on this quantity. Examples
of some commonly adopted EXC functionals include the Local Density Approximation
(LDA) [157]

ELDA
XC = ∫ ϵLDA

XC n(r)dr (4.7)

where ϵLDA
XC is the exchange-correlation energy of the homogeneous electron gas of

density n(r). LDA assumes that the density varies slowly in space, making it possi-
ble to approximate the charge density of the system at a specific point with the charge
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density of a homogeneous gas. The exchange contribution can be determined ana-
lytically, while the correlation contribution can be estimated through methods such
as statistical quantum mechanics simulations. To account for inhomogeneities of the
electron density in real systems, other methods that include a gradient ∇n(r) correc-
tion have been developed and are classified as Generalized Gradient Approximations
(GGA). The final Kohn-Sham energy functional can thus be written as

E[n] = T 0
e [n] +EH[n] +EXC + ∫ Vext(r)n(r)dr. (4.8)

which has to be minimized with the constraint that the total number of electrons N
is fixed,

N = ∫ n(r)dr. (4.9)

Defining the respective Lagrangian functional

L[n] = E[n] − λ [∫ n(r)dr −N] (4.10)

and imposing δL[n] = 0, leads to the condition for the interacting system:

δT 0
e

δn
+
δEH

δn
+
δEXC

δn
+ Vext(r) − λ = 0. (4.11)

In the non-interacting system, an effective potential VKS is added to simulate all the
electron-electron interactions, resulting in a charge density that is identical to that of
the real system. The respective minimization is

δT 0
e

δn
+ VKS − λ = 0. (4.12)

Since VKS must be equivalent to the real-system potential, it is possible to define the
Kohn-Sham potential as

VKS =
δEH

δn
+
δEXC

δn
+ Vext(r), (4.13)

with

VH =
δEH

δn
= e2∫

n(r)dr

∣r − r′∣
, and VXC =

δEXC

δn
. (4.14)

The approach involves solving a set of N single-particle equations, known as the
Kohn-Sham equations, in a self-consistent field (SCF) manner,

[−
h̵2∇2

2me

+ VKS]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HKS

ψi(r) = εiψi(r), (4.15)

where HKS is the single-particle Kohn-Sham Hamiltonian and ψi(r) are the single-
particle wave functions with eigenenergies εi. The starting point of the method is
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the construction of the wave functions ψi(r) as linear combinations of a set of basis
functions ϕj(r)

ψi(r) = ∑
j

cjiϕj(r). (4.16)

The charge density can then be evaluated from the single-electron wave functions

n(r) =
N

∑
i

∣ψi(r)∣
2, (4.17)

and adopted to calculated an initial guess of the Kohn-Sham potential and thus the
Hamiltonian. It is then possible to solve iteratively the Kohn-Sham equations, which
lead to new wave functions that are used to calculate an improved charge density that
will serve as input for a new cycle. The procedure repeats until some convergency
criteria is met: the input and output charge densities are compared after each iteration
and if the difference is small enough, then the output value is the ground state density
and it is used to compute in the variational formalism the total energy of the system
which corresponds approximately to the total energy of the real system. A sketch of
the SCF cycle is shown in Fig. 4.4.

4.1.1 Spin Density Functional Theory

The present work aims to determine the magnetic properties of RE-systems, hence
it is necessary to extend the above described DFT workflow to include the spin de-
gree of freedom [158, 159], in order to simulate and observe fundamental magnetic
phenomena driven by the RE atoms. In the spin-polarized case, the electrons are
unrestricted, meaning electrons with opposite spins are not restricted to share the
same spatial wave function, as sketched in Fig. 4.2. As a result, it is necessary to
consider not only the scalar charge density, n(r), but also the magnetization density,
m(r), which is a 3-component vector.

When extending DFT to the spin-polarized case, Hohenberg-Kohn theorems now re-
quire the determination of a ground state density that is dependent on both the charge
and magnetization density. The spin density matrix is introduced as a 2 × 2 matrix
that can be decomposed into the scalar contribution and the vector contribution [160]:

n(r) =
1

2
(n(r)I +σ ⋅m(r)) =

1

2

⎛

⎝

n(r) +mz(r) mx(r) − imy(r)

mx(r) + imy(r) n(r) −mz(r)

⎞

⎠
, (4.18)

where the underlined notation indicates matrices and the bold represents vectors. I
is a 2 × 2 unit matrix and σ is a vector of the Pauli matrices:

σx =
⎛

⎝

0 1

1 0

⎞

⎠
, σy =

⎛

⎝

0 −i

i 0

⎞

⎠
, σz =

⎛

⎝

1 0

0 −1

⎞

⎠
. (4.19)
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Restricted vs. unrestricted DFT

Figure 4.2: (a) Restricted DFT: electrons with opposite spin occupy the same
spatial wave function. (b) Unrestricted DFT: electrons with opposite
spin can occupy different spatial wave functions.

The components nαβ(r) of Eq. 4.18,

nαβ(r) =
1

2
(n(r)δαβ +mx(r)σ

αβ
x +my(r)σ

αβ
y +mz(r)σ

αβ
z ), (4.20)

depend on the electronic density and magnetization density defined as

n(r) = ∑
α

nαα(r), m(r) = −µB∑
αβ

σαβnαβ(r), (4.21)

where the spin indices, denoted as α and β, can take on two possible values, namely
up ↑ and down ↓. In the Kohn-Sham formalism, the energy functional now depends
on both the charge density and the magnetization density [161],

E[nαβ(r)] = T 0
e [n

αβ(r)]+
e2

2 ∬
n(r)n(r′)

∣r − r′∣
drdr′

+∑
αβ
∫ V αβ

extn
αβ(r) +EXC[n

αβ(r)].
(4.22)

From this it is seen that only the Hartree energy depends on the total charge density,
while all other contributions depend on the spin. When considering spin-polarized
DFT, the external potential, Vext, now includes not only the potential from the nu-
clei, but also the effects of an external magnetic field. This arises naturally when
extending the Schrödinger equation to include relativistic effects through the use of
the Dirac equation for an electron moving in an electromagnetic field. When solving
this equation in the non-relativistic limit (where the electron’s speed is much smaller
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than the speed of light), it results in contributions to the Hamiltonian in the form
−σ ⋅B, which describe the interaction between the spin and the magnetic field.

As in standard DFT, in order to determine the ground state spin-density matrix,
it is necessary to introduce single-particle wave functions in order to define HKS.
However, the main difference from the restricted case is that these wave functions
are now determined by spin-dependent spatial wave functions or spin-orbitals. In
the general case, the Kohn-Sham equations for a spin density matrix in the form of
Eq. 4.18 are associated to an external potential,

V ext(r) = Vext(r)I + µBσ ⋅B(r), (4.23)

and exchange-correlation potential

δEXC

δn(r)
= VXC(r)I + µBσ ⋅BXC(r). (4.24)

Solution of the respective Kohn-Sham equations leads to the spin density matrix

nαβ(r) = ∑
i

ψ∗αi (r)ψ
β
i (r). (4.25)

When the spin density matrix is diagonal, it indicates that the magnetic fields, in-
cluding both external and exchange contributions, align in the direction of the z-axis.
This situation characterizes a collinear spin system, where the magnetic moments are
aligned exclusively along the z-axis. As a result, the Kohn-Sham equations can be
decoupled into two distinct equations, one for each spin direction (up ↑ and down ↓).
Expressing the functionals in terms of single-particle wave functions, for example the
kinetic energy functional for each spin writes as

T 0
e [n

↑(r)] = −
h̵2

2me
∑
i
∫ ψ∗↑i ∇

2
iψ
↑

idr

T 0
e [n

↓(r)] = −
h̵2

2me
∑
i
∫ ψ∗↓i ∇

2
iψ
↓

idr,

(4.26)

with n↑(r) and n↓(r) the spin-up and spin-down charge densities

n↑(r) =
N↑

∑
i

∣ψ↑i (r)∣
2

n↓(r) =
N↓

∑
i

∣ψ↓i (r)∣
2,

(4.27)

and minimizing the energy functional subject to the constraint of conservation of the
number of particles, the Kohn-Sham equations for each spin are obtained:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

[−
h̵2

2me

∇i + V
↑

eff(r)]ψ
↑

i (r) = ε
↑

iψ
↑

i (r)

[−
h̵2

2me

∇i + V
↓

eff(r)]ψ
↓

i (r) = ε
↓

iψ
↓

i (r),

(4.28)

(4.29)
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and solved simultaneously, following the standard DFT prescription. In Eqs. 4.28 and
4.29, Veff represents the effective potential, which encompasses the Hartree term, the
external potential, and the exchange-correlation term. The total charge density is
defined as the sum of the spin-up and spin-down densities, while the magnetization
density becomes the difference between the spin-up and spin-down densities:

n(r) = n↑(r) + n↓(r) =
N↑

∑
i

∣ψ↑i (r)∣
2 +

N↓

∑
i

∣ψ↓i (r)∣
2

mz(r) = n
↑(r) − n↓(r) =

N↑

∑
i

∣ψ↑i (r)∣
2 −

N↓

∑
i

∣ψ↓i (r)∣
2.

(4.30)

Finally, the spin magnetic moment per unit of volume is defined as the integral over
V of the magnetization density,

mspin = ∫
V

(n↑(r) − n↓(r))dr (4.31)

and is defined in units of µB.

4.2 The Hubbard Model

The previous sections outlined the use of standard DFT as an effective approach for
calculating properties of a wide range of materials, particularly in solids with high
electron mobility, such as metals. However, it is widely recognized that DFT is not
able to accurately describe strongly-localized electrons, as the limited spatial distri-
bution leads to stronger interactions and a correlated dynamics. In statistical terms
this means that the probability to find an electron at one coordinate and another elec-
tron at a second position, differs from the product of the two individual probabilities.
The shortcomings of DFT are rooted in the way it handles many-body interactions,
which are represented as functionals of the electron charge density, and the use of
approximate exchange-correlation functionals, along with a single-particle treatment
in solving the Kohn-Sham equations. These observations are critical when simulating
the behavior of 4f electrons in RE atoms, as these electrons have a highly restricted
spatial distribution and cannot be accurately described within the DFT picture.

A straightforward model that allows for a more accurate characterization of 4f elec-
trons (and in general, correlated materials) is the Hubbard model, which can easily be
integrated into the DFT process (as discussed in Section 4.2.1).
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4 The Many-Body Problem: ab initio methods

The Hubbard model

The fundamental idea behind the Hubbard model is to introduce a correc-
tion that accounts for the missing on-site electron-electron interactions. The
Hubbard model views the atoms in a crystal as distinct sites that can accom-
modate a maximum of two electrons with opposite spins, as dictated by the
Pauli exclusion principle. This means that each site can hold one electron with
either spin-up or spin-down, or two electrons with opposite spins. The Hub-
bard Hamiltonian can be formally written in second quantization notation as
the sum of two terms that capture the dynamics of the electrons in the lattice
[162]:

HHubbard = t ∑
⟨i,j⟩,σ

(c†i,σcj,σ + h.c.) +U∑
i

ni,↑ni,↓. (4.32)

The notation used includes ⟨i, j⟩ for the nearest-neighbor sites, c†i,σ is the creation
operator of an electron at site i and spin σ, cj,σ is the annihilation operator of an
electron at site j and spin σ and ni,σ is the number operator for electrons on site i
and with spin σ. In Eq. 4.32 the first term describes the hopping of an electron from
one atomic site to another with amplitude t, which is determined by the bandwidth
of the valence states. The second term represents the strong Coulomb repulsion that
occurs between electrons occupying the same atomic site, which is described by the
parameter U , also known as the Hubbard U . The Hubbard U term is only applied
to electrons on the same site, in order to account for the strong localization of the
electrons of interest, and this is mathematically represented by the product of the
occupation numbers on that site. A sketch of the model is depicted in Fig. 4.3.

The model predicts a transition from a metallic phase to an insulating phase based
on the ratio of U/t. When t >> U the extension of neighboring orbitals is such that
the electrons are free to move through the crystal, and standard DFT is sufficient to
achieve a good description of the electronic properties. Conversely, when t << U , the
hopping of electrons is not energetically favored due to the strong Coulomb repulsion
from double occupancy, causing the electrons to remain localized at their atomic sites.
This results in insulating behavior and isolated magnetic moments.

4.2.1 DFT+U

The DFT+U method can be utilized to improve the description of the ground state
properties of correlated electron systems by incorporating the Hubbard model into
the DFT cycle. This is achieved by adding a U parameter to the treatment of local-
ized electrons, such as the 4f electrons, while continuing to describe all delocalized
electrons using conventional DFT methods.
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4.2 The Hubbard Model

Figure 4.3: The Hubbard model can be schematized as follows: electrons can move
from one atomic site to a neighboring site with kinetic energy t. When a
site is occupied by two electrons, the Coulomb interaction between them
is described by the parameter U .

DFT+U method

The method involves a combination of the standard DFT functional,
EDFT[n(r)], and the Hubbard functional, EHubbard[nIσ

mm′], which contains
the electron-electron interactions between the localized electrons as described
within the Hubbard model. However, to avoid double-counting problems, it is
necessary to subtract the functional Edc[nIσ] from the formulation, as the DFT
part already accounts for a part of the correlation energy:

EDFT+U[n(r)] = EDFT[n(r)] +EHubbard[n
Iσ
mm′] −Edc[n

Iσ]. (4.33)

More precisely, the Hubbard term is dependent on the occupation numbers of the
localized orbitals, which are identified by the indices I, σ, and m, consistent with the
fact that the U correction is only applied to the localized electrons. Here, I repre-
sents the atomic site, σ denotes the spin index, and m corresponds to the localized
state. The occupation numbers can be computed as the projections of the Kohn-Sham
orbitals, ψσ

kv, onto the localized states, ϕI
m′ . This is expressed as follows:

nIσ
mm′ = ∑

k,v

fσ
kv ⟨ψ

σ
kv ∣ϕ

I
m′⟩ ⟨ϕ

I
m∣ψ

σ
kv⟩ , (4.34)

where fσ
kv stands for the Kohn-Sham occupation as determined by the Fermi-Dirac

distribution and k, v, and σ refer to the k -point, band, and spin indices, respectively.
I and m are used to identify the atomic site and the localized states at a given atom I.

The functional Edc[nIσ] in Eq. 4.33 is approximated as a mean-field evaluation of
the Hubbard energy functional and different formulations are currently available.
Considering the case of a Hubbard correction in the form 1

2U ∑m,σ≠m′σ′ n
Iσ
m n

Iσ′

m′ , with
a total number of electrons N I = ∑m,σ n

Iσ
m , then the DFT+U energy functional writes

as

EDFT+U = EDFT +∑
I

[
U I

2
∑

m,σ≠m′σ′
nIσ
m n

Iσ′

m′ −
U I

2
N I(N I − 1)] , (4.35)
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with nIσ
m = n

Iσ
mm′ . The last term in this equation is the double-counting term. From

this equation, the orbital energies can be evaluated by taking the derivative of the
DFT+U energy functional with respect to the occupation number of a specific state
[163]:

εIσm =
∂EDFT+U

∂nIσ
m

= εDFT +U
I(
1

2
− nIσ

m ). (4.36)

It is evident that the U term results in an energy shift of −U/2 for occupied orbitals
(nIσ

m = 1) and an energy shift of U/2 for unoccupied orbitals (nIσ
m =0). Similarly, the

DFT+U potential is obtained deriving the energy functional with respect to the charge
density of a specific orbital resulting again in a U I(12 − n

Iσ
m ) term that determines a

positive (repulsive) Hubbard potential if the orbital is less than half-filled (nIσ
m < 1/2),

and negative (attractive) when the orbital is more than half-filled (nIσ
m > 1/2).

The drawback with Eq. 4.35 is that it is not invariant under rotation of the atomic
basis set used for defining the occupation numbers, resulting in a dependence on the
choice of the basis set. To address this problem, a rotationally-invariant formulation
has been proposed in [164, 165], which eliminates the dependence on the atomic basis
set and resembles the HF prescription:

EHubbard[n
Iσ
mm′] =

1

2
∑

{m},σ,I

{⟨m,m′′∣Vee∣m
′,m′′′⟩nIσ

mm′n
I−σ
m′′m′′′

+(⟨m,m′′∣Vee∣m
′,m′′′⟩ − ⟨m,m′′∣Vee∣m

′′′,m′⟩)nIσ
mm′n

Iσ
m′′m′′′}.

(4.37)

In the limit of fully-occupied orbitals where each orbital is either fully-occupied or
empty, the double-counting term resulting from this approximation applied to Eq. 4.37
reduces to

EDC[n
Iσ
mm′] = ∑

I

{
U I

2
N I(N I − 1) −

J I

2
[N I↑(N I↑ − 1) +N I↓(N I↓ − 1)]}. (4.38)

This result is often referred to as the Fully-localized limit (FLL). Here, N I = N I↑+N I↓

and U and J represent the screened Coulomb and exchange parameters, respectively.

It is possible to determine the matrix elements of the electron-electron interaction
terms of Eq. 4.37 by describing the atomic orbitals ϕ in terms of a product of a radial
and a spherical harmonic function as illustrated in Eq. 2.4.

⟨m,m′′∣Vee∣m
′,m′′′⟩ = ∫ dr∫ dr′ϕ∗lm(r)ϕlm′(r)

1

∣r − r′∣
ϕ∗lm′′(r

′)ϕlm′′′(r
′). (4.39)
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4.2 The Hubbard Model

As already discussed, by the combination of Eq. 2.26 and Eq. 2.27, the Coulomb
kernel 1/∣r − r′∣ can be expanded in spherical harmonics, which inserted in Eq. 4.39,
leads to the formulation of the matrix elements:

Umm′′m′m′′′ = ⟨m,m
′′∣Vee∣m

′,m′′′⟩ = ∑
k

ak(m,m
′,m′′,m′′′)F k

Jmm′′m′′′m′ = ⟨m,m
′′∣Vee∣m

′′′,m′⟩ = ∑
k

ak(m,m
′′′,m′′,m′)F k,

(4.40)

where the factors ak are given by:

ak(m,m
′,m′′,m′′′) =

4π

2k + 1

k

∑
q=−k

⟨lm∣Y q
k ∣lm

′⟩ ⟨lm′′∣Y q∗
k ∣lm

′′′⟩ . (4.41)

Here, k is the angular moment of the potential and is restricted to the range 0 ≤ k ≤ 2l
(similarly, to the selection rules described in Section 2.3.2), where is l the angular
moment of the localized orbitals. The Slater integrals, on the other hand, determine
the radial part of Eq. 4.40 as follows:

F k = ∫ dr∫ dr′r2r′2R2
nl(r)

rk<

r
(k+1)
>

R2
nl(r

′) (4.42)

where r< and r> are the smaller and larger radial distance between r and r′ [166]. In
the case of d electrons, F 0, F 2, and F 4 are necessary, whereas for f electrons, the F 6

term is also required.

Going now back to the definition of the double-counting functional as a mean-field
picture of the Hubbard term, the U and J parameters in Eq. 4.38 can be defined as
averages of the integrals in Eq. 4.40 over the localized states of fixed quantum number
l:

U =
1

(2l + 1)2
∑
m,m′
⟨m,m′∣Vee∣m,m

′⟩

J =
1

2l(2l + 1)
∑

m≠m′,m′
⟨m,m′∣Vee∣m

′,m⟩
(4.43)

where equations 4.43 are linked to the Slater integrals, which can be calculated and
utilized to evaluate the Vee integrals. The determination of Hubbard U and exchange
parameter J is usually done in a semi-empirical manner by comparing with experimen-
tal results. Alternative methods involve the first-principle calculations of Hubbard U
via for example Random Phase Approximation [167–169] or linear response theory
[170]. However, the DFT+U method is limited in that the values depend on various
factors like the type of atoms, the crystal structure, and magnetic properties, making
them not easily transferable from one system to another or between different codes.

75



4 The Many-Body Problem: ab initio methods

Figure 4.4: DFT self-consistent cycle.

Effect of the Hubbard U

In Fig. 4.5, the impact of increasing values of the Hubbard U on the 4f states
of a Gd atom deposited on graphene is displayed via simulations performed
adopting the FLEUR code (See Section 4.3). The top half of the plots displays
the density of states (DOS) for the spin-up channel, while the bottom half shows
the spin-down channel DOS. The total DOS (TDOS) of the system (Gd/Gr) is
shown in grey, with the d and f states of the Gd adatom plotted in blue and
red, respectively. In general, it can be seen that applying a Hubbard correction
results in a larger energy splitting between the spin-up and spin-down 4f peaks.
Precisely, in the standard DFT calculation, a magnetic moment of the Gd atom
of 7.016 µB is calculated and the 4f spin-down peak lies at the Fermi energy
suggesting a metallic character of the 4f electrons. This indicates that standard
DFT is not accurate in the description of the localized 4f electrons. Applying
a correction of U = 3 eV, the effect is to push the spin-up states lower in energy
and the spin-down states away from the Fermi energy, leading to a magnetic
moment of 7.235 µB, thus increasing the localization of the 4f electrons. Finally,
in the U = 6.7 eV case, the 4f peaks are separated by an energy gap of ∼ 11 eV
leading to a magnetic moment of 7.319 µB and a fully insulating behavior of
the localized 4f states.
This example highlights the importance to incorporate a correction into the
DFT procedure in order to obtain a more accurate representation of the 4f
electrons and the resulting properties.
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4.2 The Hubbard Model

Figure 4.5: Effect of the Hubbard U correction on the 4f states of a Gd/Gr system
calculated in the DFT framework. The 4f peaks get separated in energy
the bigger the U value and are pushed away from the Fermi energy result-
ing in an localized and insulating character.
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4.3 Full-potential linearized augmented plane-wave method

The variational principle offers a method to obtain the solution to the eigenvalue
problem for a set of N states, given by the equation

H ∣ψi⟩ = εi ∣ψi⟩ , i = 1, ...,N. (4.44)

This principle guarantees that energies obtained using approximate wave functions
are higher than or equal to the exact energy solution. For the purposes of DFT
calculations, the wave function ∣ψi⟩ can be expressed as a linear combination of basis
functions:

∣ψi⟩ =
L

∑
j

cji ∣ϕj⟩ . (4.45)

By inserting Eq. 4.45 in Eq. 4.44 and multiplying by ⟨ϕk∣ on the left, this leads to

L

∑
j

cji ⟨ϕk∣H∣ϕj⟩ = εi
L

∑
j

cji ⟨ϕk∣ϕj⟩ , i = 1, ...,N (4.46)

and the problem transforms into a generalized Hermitian matrix eigenvalue problem,

L

∑
j

cjiHkj = εi
L

∑
j

Skj, i = 1, ...,N (4.47)

where cji is the j-th coefficient in the expansion of the i-th eigenfunction, εi is the
i-th eigenvalue, while the Hamiltonian matrix Hkj and the overlap matrix Skj have
the same dimension as the number of basis functions L. The set of equations can be
expressed in a compact form as:

HC = SCε (4.48)
where C is the matrix of the expansion coefficients and ε is a diagonal matrix of the
N εi eigenenergies corresponding to the eigenfunctions ∣ψi⟩. Computationally, the
selection of the basis set has a significant impact on both the cost of the computation
and the accuracy of the results. Different techniques can be used to represent the
target wave functions and the choice is largely dependent on the problem at hand.
Some common methods include the Linear Combination of Atomic Orbitals (LCAO),
where molecular orbitals are expressed as linear combinations of known atomic or-
bitals, typically in the form of Slater Type Orbitals (STO), Gaussian Type Orbitals
(GTO) [171–173], or related variants, which are frequently used in quantum chemistry.

For periodic systems, the wave functions are typically described differently as the
atomic character of the orbitals is partially lost, particularly for spatially delocalized
electrons. According to Bloch’s theorem, the wave functions in a periodic potential,
labelled by the band index n and the Bloch vector k, can be expressed as a product
of a plane wave and a function with the same periodicity as the Bravais lattice:

ψnk(r) = unk(r)e
ik⋅r, (4.49)
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where unk(r) = unk(r + R), R being a lattice vector. The periodic part can be
expressed in terms of plane waves

unk(r) = ∑
G

cGnke
iG⋅r, (4.50)

which leads to a description of the wave function as a linear combination of plane
waves in the Fourier series:

ψnk(r) = ∑
G

ck,Gnk e
i(k+G)⋅r. (4.51)

In this equation, G is a reciprocal lattice vector and ck,Gnk are the expansion coefficients.
The cut-off for the expansion is usually selected by considering the fact that the
contribution of higher ∣k +G∣ terms is small. This cut-off is set using the criterion
∣G+k∣ ≤Kmax. To achieve the optimal balance between accuracy and computational
cost, it is thus important to make a careful choice of the value of Kmax. However, it is
important to note that the wave functions undergo significant changes in the vicinity
of the atomic nucleus, with core electrons exhibiting peaks and valence electrons
characterized by wavy features. This translates into the requirement of high cut-off
values. In the frozen core approach, the core electrons are encoded in an approximate
and smooth potential (pseudopotential) so that the remaining wave functions exhibit
minimal spatial variation. This approach allows for the use of smaller basis sets and
although computationally efficient, it often results in a loss of precision. Alternative
methods include the core region in the calculations and are referred to as all-electron
methods.

FLAPW

In the field of DFT, the Full-Potential Linearized Augmented Plane-Wave
(FLAPW) method is widely recognized as one of the most precise all-electron
methods available, due to its full treatment of both valence and core electrons.
The FLAPW method can be understood as a successor of the Augmented Plane-
Wave (APW) method, where the full treatment is accomplished by dividing the
space into two distinct regions, namely the muffin-tin (MT) spheres (which do
not overlap), around each atom, and the interstitial region (IR) located between
the atoms, as depicted in Fig. 4.6.

To gain a comprehensive understanding of the FLAPW method, it is valuable to
briefly discuss the key assumptions made within the APW framework. In this context,
the potential inside of the MT is considered to be atomic-like i.e. spherical, allowing
for the use of atomic basis functions. On the other hand, the IR is characterized by
a slowly varying or constant potential, which can be described by plane waves.
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The electron wave functions in the Kohn-Sham method are expressed as linear com-
binations of basis functions, in the following form [174–177]:

ψnk(r) = ∑
∣k+G∣≤Kmax

ck+Gnk ϕG(k,r), (4.52)

ϕG(k,r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
√
V
ei(k+G)⋅r IR region

∑
L

aαGL (k)u
α
l (r

α,E)YL(r̂
α) MT region

(4.53)

where V is the unit cell volume, L = (l,m) indicates the orbital and magnetic quan-
tum numbers, α represents the atomic index at position τα, and rα = r − τα is the
position vector relative to atom α. The MT basis functions are constructed from a
combination of a spherical harmonic, YL(r̂), solution to the spherical potential, and a
radial function ul, which solves the radial Schrödinger equation (Eq. 2.5 with Rnl = ul).

To ensure the continuity of the basis functions at the boundary of the MT, the co-
efficients aαGL are determined by matching the functions at the boundary of the two
regions. Additionally, the radial functions are dependent on the band energy E, mak-
ing the problem non-linear, since E should be determined in a self-consistent way. To
address this issue, the energy derivative of the radial function, u̇αl (rα,E

α
l ), is intro-

duced as an augmentation inside of the MT region, which is now described by the
radial function ul and its derivative.

Figure 4.6: The space in the (FL)APW method is divided into two parts: the muffin-
tin (MT) spheres, centered around each atom (represented in red), and
the interstitial region (IR) in between the spheres (represented in grey).
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This can be interpreted as a a Taylor expansion around the parameter El, thus lin-
earizing the problem [174, 178] by the introduction of deviations around this value.
In this way, it is possible to write

uαl (r
α,E) = uαl (r

α,Eα
l ) + (E −E

α
l )u̇

α
l (r

α,Eα
l ) + O((E −E

α
l )

2), (4.54)

which leads to an error of (E−El)
2 in the wavefunction. In this linearized-formulation

(LAPW), the basis set becomes:

LAPW basis set

ϕG(k,r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
√
V
ei(k+G)⋅r IR region

∑
L

[aαGL (k)u
α
l (r

α,Eα
l ) + b

αG
L (k)u̇

α
l (r

α,Eα
l )]YL(r̂

α) MT region

(4.55)

and the coefficients aαGL and bαGL are obtained by enforcing continuity of the basis
functions and the derivatives at the MT boundary in terms of value and slope. In the
light of the above considerations, in FLAPW calculations, it is necessary to converge
the total energy with respect to the Kmax, representing the number of basis functions
in the IR region, and lmax, which determines the maximum number of terms in the
expansion inside of the MT. Finally, the LAPW method can be extended to consider a
full potential in the two regions, without shape-approximations as discussed in [179].
This can be achieved by relaxing the conditions of a spherical potential in the MT
region and a constant potential in the IR region.

For the purpose of this thesis, all studies were performed using the FLEUR code
[180], an open-source code based on density functional theory that implements the
all-electron full-potential linearized augmented plane-wave method.

Figure 4.7: Homepage of FLEUR: https://www.flapw.de
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Chapter 5
Electronic and magnetic properties of
4f -adatoms on a graphene monolayer
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The focus of this chapter is to analyze the electronic and magnetic properties of
five selected rare-earth atoms (Eu, Gd, Dy, Ho and Tm) on graphene. These
elements include both half-filled and “heavy” rare-earth atoms with more than
half-filled 4f -shells. The chapter specifically explores the magnetic anisotropy
properties and the reverse-engineering technique is used to compute the CFP for
the highly-anisotropic systems. The findings for Dy, Ho and Tm can be found
in the manuscript “Magnetic properties of 4f adatoms on graphene: Density
functional theory investigations” by Johanna P. Carbone, Juba Bouaziz, Gustav
Bihlmayer, and Stefan Blügel [181].

In the group of the selected RE atoms, Eu and Gd both have a half-filled 4f -shell,
leading to large spin magnetic moments but vanishing orbital moments. Eu is char-
acterized by a valence electron configuration of 4f 76s2, while Gd has one additional
d electron, 4f5d16s2, which contributes to chemical bonding due to its larger spatial
extension.

On the other hand, Dy, Ho and Tm are selected as representatives of heavy rare-
earths, and exhibit spin and orbital moments that vary based on the occupation of
the 4f orbitals. Their valence configurations can be represented as 4f 106s2, 4f 116s2,
and 4f 136s2, respectively. This requires the consideration of Coulomb-like correla-
tions in addition to exchange correlation in determining the 4f orbital filling.

The second key-element is the 2D-material. In the context of single-atom magnets,
the choice of graphene as a 2D-material is driven by its ability to decouple from un-
derlying substrates, its hexagonal symmetry, and its minimal SOC. These properties
render RE/Gr systems suitable for examining magnetic anisotropy effects caused by
varying 4f occupations.

The present chapter will be organized as follows:

– The general electronic properties of RE on
√
3×
√
3 graphene, including chemical

adsorption and electronic structure, are addressed in Section 5.1. This section
is divided into two parts: 1) the analysis of Eu/Gr and Gd/Gr, which are char-
acterized by half-filled 4f -shells; 2) the examination of more complex systems
Dy/Gr, Ho/Gr, and Tm/Gr with increasing 4f occupancy.

– The analysis of magnetic anisotropy of the selected RE/Gr systems is presented
in Section 5.2. The focus of the section is then directed towards the systems of
Dy/Gr, Ho/Gr, and Tm/Gr, which exhibit highly anisotropic behavior due to
the strong interplay between spin and orbital moments. To extract the magnetic
anisotropy constants, the total energy curves are fitted, and the obtained values
are subsequently used to evaluate crystal field parameters and the corresponding
multiplet splittings for each system. The behavior of magnetic anisotropy energy
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is studied with respect to the variation in the applied perpendicular strain and
modification of the Hubbard U .

– The case of Dy/Gr deviating from Hund’s rules is analyzed in Section 5.3, high-
lighting the importance of an accurate description of 4f electrons in determining
magnetic anisotropy.

– Section 5.4 focuses on the effect of dilution of the rare-earth atoms by comparing
the
√
3 ×
√
3 simulation cell with a larger 4 × 4 simulation cell, providing an

overview of the electronic structure based on the packing density of the magnetic
atom.

A graphical representation illustrating the investigated magnetic rare-earth atoms
adsorbed on a monolayer of graphene. Credit for the design of this image goes to
Daniele Valente.
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5.1 Electronic properties of rare-earth adatoms on
√
3 ×
√
3

graphene

Computational details

All presented results were obtained in the DFT+U framework as implemented
in FLEUR, within the FLAPW method. The calculations were performed in a√
3 ×
√
3 simulation cell containing 6 C atoms and one rare-earth atom, with

lattice constant taken equal to the experimental value (2.46 Å) times
√
3. The

selection of the simulation cell is supported by both experimental and theoret-
ical studies of the coverage of rare-earth atoms on graphene, which has been
found to stabilize superstructures at a coverage of 33.3% ML [182, 183]. The
value of the maximal angular momentum inside of the MT spheres was set to
lmax = 10 for the rare-earth atoms and lmax = 6 for the C atoms, while in the IR
region the cut-off for the plane-wave expansion was set to Kmax = 4.5 a−10 (with
a0 the Bohr radius). The SCF cycle convergency was achieved using the GGA
exchange-correlation functional in the Perdew, Burke, and Ernzerhof (PBE)
prescription [184], in a 20 × 20 k -point mesh. Concerning the Hubbard U and
J , the following values are used in the FLL limit : U = 6.7 eV, J = 0.7 eV for
Eu and Gd; U = 7 eV, J = 0.82 eV for Dy; U = 7.03 eV, J = 0.83 eV for Ho; and
U = 7.1 eV, J = 0.86 eV for Tm. These parameters were selected referring to
previous studies that have shown that values U ∼ 7 eV can accurately reproduce
experimental observations, such as coehesive and magnetic properties, as well
as electronic spectra [185]. The parameters were chosen in reference to [186,
187] for the half 4f -shells in Eu and Gd, [114] for Ho, [78, 117] for Dy and
following the semiempirical formulas in [188] for Tm.

5.1.1 Eu and Gd on
√
3 ×
√
3 graphene

The electronic properties of Eu and Gd adsorbed on graphene were studied without
considering the effect of spin-orbit coupling in the DFT calculations. This is due
to the fact that the 4f -shell of these elements has a half-filled occupation, leading
to a negligible value for the orbital moment. For each 4f -adatom, three different
adsorption sites were investigated, including the Top-site (on top of a C atom), the
Bridge-site (at the midpoint between two C atoms), and the Hollow-site (at the center
of a hexagonal ring formed by 6 C atoms). These sites are shown in Fig. 5.1. For each
of the sites, structural relaxations were performed to determine the perpendicular
distance (along the z direction, as described in Fig. 2.8) of the RE atom from the
Gr monolayer. Upon reaching a state of minimal energy and vanishing forces, the
adsorption energy at each relaxed distance, d0, was computed as the energy difference
between the interacting system (RE/Gr) and the sum of the total energies of the
individual RE and Gr components,

Eads = ERE/Gr −ERE −EGr, (5.1)
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Figure 5.1:
√
3×
√
3 supercell of graphene depicting the three possible adsorption sites

of the RE atom: “T” for top, “H” for hollow, and “B” for bridge.

which represents the energy involved in the formation of the complex. Table 5.1 sum-
marizes the ground state properties for the tested adsorption sites at the equilibrium
distance d0. Based on the examination of the adsorption energies, it can be concluded
that the magnetic RE atom shows a preference for the H-site, as the magnitude of the
energy involved is greater compared to the T- and B-sites. The B-site appears to be
the second most favorable position for both systems. This observation can be argued
based on the delocalization of the charge, which has been calculated for Eu/Gr and
is shown in Fig. 5.2. Here, for each adsorption site the differential charge density,
calculated as nEu/Gr − nGr − nEu, is plotted on two different crystallographic planes,
namely (010) and (001). For the (001) plane, two slices at different heights, h1 and h2,
are evidenced. The red regions indicate a gain in charge density, while the blue ones
correspond to a loss of charge density. By comparison between the three situations on

Site Eads [eV] d0 [Å] docc focc mRE
s [µB] mtot

s [µB]
Eu adatom on graphene

H −0.620 2.540 0.332 6.908 7.054 7.393

T −0.436 2.740 0.226 6.911 7.039 7.332

B −0.451 2.725 0.230 6.911 7.043 7.378

Gd adatom on graphene
H −1.435 2.236 0.866 7.017 7.319 7.860

T −0.777 2.426 0.769 7.010 7.352 7.932

B −0.871 2.387 0.795 7.012 7.374 7.964

Table 5.1: Ground state properties for Eu and Gd on Gr for the three adsorption sites:
adsorption energy in eV, adsorption distance in Å, d and f occupation of
the magnetic RE atom, spin magnetic moment of the RE atom in µB, and
total spin magnetic moment of the RE/Gr system in µB. Calculations were
performed without SOC.
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the (001) plane, in the H-site the charge transfer happens between the RE adatom and
the 6 nearest neighbors, whereas in the B-site, only 2 nearest C atoms participate, and
in the T-site, primarily the C atom underneath is involved and to a lesser extent, the
3 surrounding C atoms. In general, the trend suggests that the interaction is stronger
the more C atoms are close to the adatom, such that more charge is involved in the

Figure 5.2: Differential charge densities of Eu/Gr on the three adsorption sites. The
results are in two different planes, with the (010) plane on the left and the
(001) plane on the right. From the results, a correlation can be established
between the number of nearest neighbors and the stability of the system,
with the H-site showing the highest stability, followed by the B and T-
sites.
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bonding. In particular, the hybridization is most likely to interest the out-of-plane
pz orbitals of Gr with the delocalized 5d orbitals of the RE. The preferred adsorption
site is related to the distance between the RE and graphene, with the RE tending to
adsorb closer to the monolayer in the H-site, and the relaxed distance being largest
in the T-site. Moreover, a systematic trend of increasing bonding strength towards
the graphene monolayer with a larger d occupation in the RE atom is observed, as
seen by comparing Eads and docc for the different sites. This correlation is a result of
the chemical bonding being determined by delocalized valence electrons.

As a result of the previous discussion, the following analyses will focus on the H-site.
The spin magnetic moment of the RE atom is primarily determined by the local-
ized 4f electrons, which tend to follow Hund’s rules in a half-filled manner. This
results in a spin moment of the RE being close to 7 µB in both cases, with any de-
viations arising from intra-atomic spin-polarization. The d spin-polarization of the
REs can be evaluated by subtracting the charge densities in the MT sphere, nd↑ −nd↓ ,
and results in ∼ 0.110 µB for Eu and ∼ 0.310 µB for Gd. The magnetic moment of
the whole RE/Gr complex is dominated by the magnetic moment of the RE, which
also causes spin-polarization in the substrate, especially in the IR region, which is
composed mostly of the strongly delocalized π orbitals of Gr that interact with the d
electrons of the RE. The magnetic moment associated with this region can be obtained
by subtracting the total magnetic moment of the RE/Gr complex and the magnetic
moment of the RE, ∆m =mtot

s −m
RE
s , resulting in 0.339 µB for Eu and 0.541 µB for Gd.

Figure 5.3: Differential charge density of Eu/Gr and Gd/Gr plotted in the (010) crys-
tallographic plane. The values have been plotted on the same color scale
ranging from a maximum saturation level of +0.004 (red) and a minimum
of −0.004 (blue).
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By comparing Eu/Gr with Gd/Gr, it is seen that the adsorption of Gd onto Gr is in
general favored compared to Eu, and can be explained by the additional 5d electron
of Gd in its outer valence shell. This is evidenced by plotting on the same color scale
the differential charge density for the two systems, as in Fig. 5.3. The Gd complex
exhibits more charge delocalization both towards the nearest C atoms, as well as to-
wards the second nearest C atoms, which translates into an overall larger adsorption
energy. In this regard, Eu exhibits more ionic characteristics in its bonding with the
Gr monolayer, while Gd displays more covalent properties. The presence of an extra
d electron in Gd results in a larger magnetic moment mGd

s compared to mEu
s , result-

ing in stronger spin-polarization in the system. This can be seen by examining the
electronic structures of the two systems. Figs. 5.4 (a) and (b) show the spin-polarized
density of states (DOS) for Eu/Gr and Gd/Gr, respectively. The total DOS is shown
in grey, whereas the d and f states of the RE atom are depicted in blue and red,
respectively. The upper panel (DOS ≥ 0) refers to the spin-up channel, while the
bottom panel (DOS ≤ 0) corresponds to the spin-down channel. The localized nature
of the 4f states is clearly visible, with the spin-up channel appearing at ∼ −2.5 eV for
Eu/Gr and at ∼ −9 eV in Gd/Gr, much deeper in energy. Nevertheless, both systems
display an unoccupied spin-down peak with a gap of ∆E ∼ 11 eV from the occupied

Figure 5.4: Spin-resolved DOS for Eu/Gr (a) and Gd/Gr (b): upper and lower panel
represent the majority and minority states, respectively. The total DOS is
shown in grey, the f states in red and the d states in blue. The calculated
spin-polarized band structures are shown in (c) for Eu/Gr and in (d) for
Gd/Gr. Calculations were performed without SOC.
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peak. Furthermore, both systems show evidence of d electron occupation, with Gd
having a slightly higher DOS near the Fermi energy, due to its extra d contribution as
discussed previously in Table 5.1. The unequal spin-up and spin-down TDOS reveals
the induced spin-polarization from the large magnetic moments of the RE atoms to
the graphene substrate. This spin-polarization can be observed not only in the re-
gions of the f states but also near the Fermi energy, and can be further analyzed in
the spin-polarized band structures as shown in Figs. 5.4 (c) and (d), where the blue
bands represent the spin-up channel and the red bands the spin-down channel.

Here, the presence of very flat bands can be observed at ∼ −2.5 eV for Eu and ∼ 2.3
eV for Gd, which correspond to the occupied and unoccupied 4f states respectively.
Note that the unoccupied 4f states of Eu and the occupied 4f states of Gd are not
visible in the given energy range. It is evident that the presence of the RE atoms
induces some spin-polarization into the graphene monolayer, with this effect being
more pronounced in Gd compared to Eu due to its larger magnetic moment. The
phenomenon can be evinced by taking approximately the energy difference between
the spin-up and the spin-down bands, which is enhanced in the Gd/Gr case. This
represents a manifestation of exchange splitting that has been generated within the
graphene monolayer as a result of its proximity to magnetic atoms. The

√
3 ×
√
3

simulation cell, whose reciprocal lattice is shown in black in Fig. 5.5 along with the
reciprocal space of the 1×1 unit cell in red, causes the high symmetry points of K and
K’ to fold into the Γ point, resulting in the emergence of the Dirac cone at this point.
The symmetry of the

√
3×
√
3 supercell breaks the sublattice symmetry of graphene by

inducing the hybridization of electrons with different valley indices. This inter-valley
coupling, also known as intervalley scattering, is a well-studied phenomenon in both
theoretical and experimental works [189–192]. The mixing of the two inequivalent K
and K’ points of the primitive graphene at the Γ point makes them indistinguishable
and leads to the sublattice symmetry breaking, introducing a difference in the effective

Figure 5.5: A visual representation of the reciprocal lattice of the
√
3 ×
√
3 supercell

and of the 1×1 unit cell of graphene, highlighted in black and red respec-
tively.
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potential felt by the sublattices of graphene. Consequently, the Dirac cone undergoes
an energy splitting, which shows similarities to a spin-orbit coupling splitting. The size
of the band gap depends on the strength of the intervalley mixing and can be tuned
to allow for the opening of non-trivial gaps, leading to potentially useful electronic
properties in graphene-based devices.

5.1.2 Dy, Ho and Tm on
√
3 ×
√
3 graphene

The focus now shifts to RE/Gr systems with open 4f -shells, where correlation effects
are particularly pronounced. The study involved Dy, Ho and Tm adsorbed on Gr,
and as a natural consequence of the large orbital moments of these RE atoms, the
following results have been obtained considering SOC inside of the MT regions. The
outcomes of the study, including the adsorption energies and distances, the d and
f occupation, the spin and orbital magnetic moments and the total spin magnetic
moment of the RE/Gr complex are summarized in Table 5.2. The stability of the
RE/Gr system follows a similar pattern as previously observed for Eu and Gd, with
the H-site being the favored position for the RE atom on the Gr monolayer. This
tendency has been noted in numerous other studies of RE/Gr, such as in references
[182, 193, 194]. Again, the comparison between different adsorption sites reveals that
the stability of the RE/Gr system increases as the RE atom gains more d electrons,

Site Eads [eV] d0 [Å] docc focc mRE
s [µB] mRE

l [µB] mtot
s [µB]

Dy adatom on graphene
H −0.545 2.493 0.262 9.891 4.040 5.876 4.174

T −0.074 2.741 0.189 9.901 4.024 5.904 4.115

B −0.086 2.695 0.194 9.900 4.033 5.902 4.163

Ho adatom on graphene
H −0.476 2.499 0.250 10.881 3.045 5.905 3.150

T −0.339 2.731 0.177 10.886 3.034 5.925 3.091

B −0.344 2.729 0.177 10.886 3.038 5.922 3.113

Tm adatom on graphene
H −0.399 2.471 0.237 12.867 1.027 3.000 1.072

T −0.280 2.805 0.143 12.878 1.020 2.987 1.043

B −0.286 2.793 0.145 12.878 1.022 2.988 1.048

Table 5.2: Ground state properties for Dy, Ho and Tm on Gr for the three adsorption
sites: adsorption energy in eV, adsorption distance in Å, d and f occupa-
tion of the magnetic RE atom, spin magnetic moment of the RE atom in
µB, orbital magnetic moment of the RE atom in µB, and total spin mag-
netic moment of the RE/Gr system in µB. Calculations were performed in
presence of SOC.
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resulting in a decrease in the perpendicular distance between the RE atom and the Gr
monolayer, which is lowest for the H-site. The Dy/Gr complexes with Dy adsorbed
onto T and B sites appear to be unstable, as evidenced by their significantly smaller
adsorption energies, which are an order of magnitude lower than those observed for
the H-site and for the other RE/Gr systems. It is noteworthy that the systems with
open 4f -shells have a d occupation that is closer to that seen in Eu/Gr, rather than
Gd/Gr, indicating a tendency towards ionic bonding with the Gr monolayer. In gen-
eral, the RE atom undergoes a semiatomic-like behavior, maintaning its orbital and
spin moments as dictated by Hund’s rules and acquiring d electrons from the inter-
action with the substrate.

With regard to the preferred adsorption site, the H-site, the calculation of the d spin-
polarization yields values of 0.04 µB for Dy, 0.03 µB for Ho, and 0.01 µB for Tm. This
gradual decline in spin-polarization is a reflection of the decrease in the spin moment
of the f electrons, from Dy to Tm. Additionaly, the mtot

s is inversely proportional
to the f occupation for late-series REs, and exhibits deviation from the f magnetic

Figure 5.6: Spin-polarized density of states of the d (blue) and f (red) electrons of
(a) Dy (b) Ho and (c) Tm, on top of graphene. The upper half of the
plots displays the majority states, while the lower panel is relative to the
minority states. The value E − EF = 0 corresponds to the Fermi energy.
(d) DOS of n-doped graphene (shown is the contribution of the MT of
the carbon atoms) in the Ho/Gr system (red) and DOS of bare graphene
(grey).
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moment. This deviation stems from both the intra-atomic f − d spin-polarization,
which increases with the d occupation of the RE and the f magnetic moment, and
the induced spin-polarization from mRE

s to the IR region, where mostly delocalized
π-orbitals of Gr and d electrons of the RE atom are found. The induced magnetiza-
tion in this region is proportional to the RE’s spin moment, with estimated values of
0.125 µB for Dy/Gr, 0.094 µB for Ho/Gr, and 0.036 µB for Tm/Gr.

In Fig. 5.6 (a) to (c), the spin-resolved DOS for the 5d and 4f electrons of the three
systems reveal the semiatomic-like behavior of the REs, with d occupation appearing
around the Fermi energy. The overall metallic behavior of the RE/Gr systems is
attributed to n-doping from the REs towards the Gr, driven by the hybridization
between d electrons of the RE and pz electrons of Gr. Fig. 5.6 (d) compares the
DOS of the C muffin-tins of Ho/Gr (red) to the total DOS of bare graphene (grey)
to illustrate this n-doping. The energy difference between the Dirac points of the
two cases estimates the magnitude of the n-doping to be around ∼ 1.4 eV. As for the
4f states, they occupy a large energy window with a gap separating the occupied
and unoccupied states, where the occupied states are close to the Fermi energy. The
localization of these states leads to values of spin and orbital moments adhering
closely to Hund’s rules, as presented in Table 5.2. The aforementioned characteristics,
including f -localization, spin-polarization, and doping effects, are also visible in the
band structures illustrated in Appendix B, where the contributions of the RE atoms
and C atoms are separated and displayed in the left and right, respectively, for each
RE/Gr system.

5.1.3 Overview: trends with 4f-filling

Figure 5.7 shows the variation of the adsorption energy (Eads) and distance (d0), as
well as the properties at equilibrium distance, presented in tables 5.1 and 5.2, with
respect to the RE atom, i.e., the 4f occupancy. An examination of Eads in relation to
docc indicates that the bonding between the RE atoms and Gr is stronger with higher
5d occupancy in the valence shell. While Gd exhibits the strongest bonding towards
Gr due to the presence of higher 5d occupancy in the valence shell, the behavior of
Eu, Dy, Ho, and Tm is comparable, exhibiting a slight decrease in docc along the
series, which corresponds to a declining Eads, reflecting the more ionic character of
the interaction with the substrate. In terms of the perpendicular equilibrium distance
d0, the exceptional strength of Gd’s bonding to the substrate manifests itself in its
closest proximity. Conversely, the decreasing trend observed from Eu to Tm can be
attributed to the lanthanide contraction, whereby the decreasing atomic radii of the
rare-earth metals leads to a decrease in the equilibrium distance to enable adsorption
onto Gr. Ultimately, the 4f orbital filling increases along the series, resulting in an
inverse relationship with the RE spin magnetic moment according to Hund’s rules.
As a result, the total magnetic moment of the RE/Gr complex follows the same
trend as mRE

s , but it is slightly shifted towards higher values due to the induced
spin-polarization from the 4f magnetic moment.
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Systematic trends

Figure 5.7: Systematic trends of Eu, Gd, Dy, Ho and Tm upon adsorption on
graphene in the H-site.
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5.2 Magnetic anisotropy of rare-earth adatoms on
√
3 ×
√
3

graphene

To calculate the energy required for magnetization rotation, i.e. the MAE, it is essen-
tial to incorporate spin-orbit coupling in all calculations. This is because the rotation
of magnetization results in a corresponding rotation of the orbital magnetic moment,
which alters the alignment of the 4f charge cloud in the RE and causes it to in-
teract differently with the surrounding crystal field. To determine the out-of-plane
MAE, the total energy of the systems is computed self-consistently by incrementally
rotating the magnetization, in steps of 10○, from the z-axis to the x-axis. Similarly,
to determine the in-plane MAE, the magnetization is rotated from the x-axis to the
y-axis. By fitting the curves obtained with Eq. 2.20 for a hexagonal symmetry, where
θ represents the polar angle relative to the out-of-plane rotation and φ represents
the azimuthal angle describing the in-plane rotation, the anisotropy constants Ki are
evaluated.

In Fig. 5.8, the MAE curves for Eu/Gr and Gd/Gr are displayed, showing blue points
for DFT+U calculations and a red curve for fitting. The energy values for all data

Figure 5.8: MAE out-of-plane curves for Eu/Gr (a) and Gd/Gr (b) and respective
polar plots.
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points are scaled so that the minimum energy value is zero. Additionally, each curve
is accompanied by a polar plot as an alternative representation.

It is evident that both systems exhibit low-order anisotropy, as confirmed by fitting
the Eu/Gr curve with K1 and K2, and that of Gd/Gr with K1. The values of these
constants, provided in Tab. 5.3, reveal that K1 is the dominant term. Additionally,
the Eu/Gr system presents an in-plane easy-axis, where the magnetic ground state
corresponds to the magnetization at θ = 90○, related to a K1 < 0.

In contrast, the Gd/Gr system is distinguished by an out-of-plane easy-axis, with the
energy minimum located at θ = 0○ and K1 > 0. Upon comparing the energy scales, it is
evident that the MAE in Eu/Gr is one order of magnitude lower than that of Gd/Gr.
This discrepancy is attributed to the additional 5d electron present in Gd, which hy-
bridizes with the CF and generates supplementary contributions to the MAE, apart
from the 4f effect. Moreover, as previously observed, the bonding between Gd and
Gr involves the 5d electron, causing Gd to approach the CF more closely than Eu,
resulting also in a stronger 4f -CF interaction.

The estimated energy required to switch the magnetization from the easy-axis to the
hard-axis (perpendicular for Eu and in-plane for Gd) are ∆E ∼ 0.06 meV and ∆E ∼ 0.7
meV for Eu/Gr and Gd/Gr, respectively, where ∆E = ∣E∥ − E⊥∣. This difference in
the MAE is also reflected in the values of K1, which are larger for Gd/Gr than for
Eu/Gr, indicating a larger first-order magnetic anisotropy.

Fig. 5.9 provides an analysis of the magnetic anisotropy in open 4f -shell systems. The
figure includes out-of-plane curves in panels (a)-(c) and corresponding polar plots for
an alternate representation, as well as in-plane MAE curves in panels (d)-(f). The red
lines show the fitted curves used to extract the anisotropy constants Ki, which are
presented in Tab. 5.3. Compared to Eu and Gd, the open 4f -shell systems exhibit a
significant anisotropic nature, requiring all four Ki terms in the energy expansion to
describe the MAE curves. The in-plane MAE curves reflect the six-fold symmetry of
the Gr substrate, which causes the energy to repeat as E(φ) = E(φ ± π/3). Hence,
the shape of these curves is fitted with K4 sin 6φ, where the amplitude and sign of the
oscillations depend on the K4 values.

By inspecting Table 5.3, the first-order constants (K1 and K2) are approximately one
order of magnitude greater than K3, while the in-plane constants (K4) contribute
the least, being two orders of magnitude weaker than the first orders. Nonetheless,
Tm/Gr displays a deviation from the general trend, as K3 and K4 exhibit similar
magnitudes. The magnetic anisotropy of Dy/Gr is illustrated in Fig. 5.9 (a) and (d),
which indicates a preference for an in-plane (θmin = 90○, φmin = 0○) easy-axis.
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The energy difference from the perpendicular magnetization direction is is estimated
to be approximately ∆E = 2 meV, whereas the energy barrier for the magnetization
switching from the easy-axis to the θ = 0○ direction is calculated to be as high as
5.3 meV. Referring to the MAE curves of Ho/Gr, an intermediate easy-axis at angles
(θmin = 42.67○, φmin = 30○) is observed, which results in a canted magnetization di-
rection. The energy difference between the perpendicular and parallel magnetization
directions, ∆E, is about 2 meV, whereas the energy required for complete alignment of
magnetization with the perpendicular and in-plane directions is approximately 6 meV
and 8 meV, respectively. The out-of-plane curve of Tm/Gr exhibits a similar shape to
that of Ho/Gr, and an absolute energy minimum observed at a tilted magnetization
angle of (θmin = 39.08○, φmin = 0○). The energy difference ∆E is approximately 3.8
meV, and the energy required to align the magnetization along the perpendicular and
in-plane directions are 2.64 meV and 6.22 meV, respectively.

The values of (θmin, φmin) that correspond to the absolute energy minima mentioned
earlier are determined by minimizing the energy functions that contain all terms
up to K4, using the extracted Ki parameters. The complete 3D energy surfaces,
representing for each system the function E(θ,φ), can be visualized in Fig. 5.10 and
the respective absolute minimum coordinates are listed in Table 5.4. The curvature

Unit K1 K2 K3 K4

Eu adatom on graphene
meV −0.101 0.040 - -
K −1.172 0.464 - -

Gd adatom on graphene
meV 0.683 - - -
K 7.926 - - -

Dy adatom on graphene
meV 15.355 −18.918 1.536 −0.441
K 178.187 −219.534 17.825 −5.118

Ho adatom on graphene
meV −27.734 32.218 −2.591 0.360
K −321.840 373.875 −30.067 4.178

Tm adatom on graphene
meV −13.285 16.720 0.146 −0.158
K −154.166 194.028 1.694 −1.834

Table 5.3: Magnetic anisotropy constants obtained via fitting of DFT+U data de-
picted in Fig. 5.8 for Eu and Gd and Fig. 5.9 for Dy, Ho and Tm. The
values are reported in meV and K.
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Figure 5.9: Out-of-plane magnetic anisotropy energy curves for Dy (a), Ho (b) and
Tm (c) on graphene: the total energy is plotted against the angle between
the perpendicular magnetization and the tested magnetization direction.
An alternative representation of the DFT+U data in a polar plot for the
computed systems is given besides. In-plane magnetic anisotropy energy
curves for Dy (d), Ho (e) and Tm (f) on graphene: the total energy
is plotted against the angle between the x-axis and the tested in-plane
magnetization direction. Full dots indicate the DFT+U data, while the
full lines display the fitting curves.

of the E(θ,φ) landscapes can be accounted for in terms of the magnetic anisotropy
constants Ki. The relationships between the constants and the curvature can be
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Figure 5.10: 3D MAE surfaces: the total energy is plotted as a function of the angular
coordinates (θ, ϕ) adopting the fitted Ki values.

derived by first finding the zeros of ∂Ean

∂θ , which occur at θ = 0○,90○ and for sin2 θ =
−K1/2K2. By examining the second derivative of the energy equation, disregarding
K3 and K4, the following relationships can be established:

1.
∂2Ean

∂θ2
∣θ=0○ = 2K1 (5.2)

leading to a convex behavior for K1 > 0 (Dy) and concave behavior for K1 < 0
(Ho and Tm).

2.
∂2Ean

∂θ2
∣θ=90○ = −2K1 − 4K2 (5.3)

giving rise to a convex behavior for Dy and concave behavior for Ho and Tm.

3.
∂2Ean

∂θ2
∣
sin2 θ=−

K1
2K2

= −2K1 (
2K2 +K1

K2

) (5.4)

The term in parenthesis is positive for all RE/Gr complexes, indicating that the
curvature is solely determined by K1. This defines an energy hill if K1 > 0 (Dy)
and an energy valley if K1 < 0 (Ho and Tm).

RE/Gr θmin φmin

Dy/Gr 90○ 0○ ± n ⋅ 60○

Ho/Gr 42.67○ 30○ ± n ⋅ 60○

Tm/Gr 39.08○ 0○ ± n ⋅ 60○

Table 5.4: Polar (θ) and azimuthal (φ) angular coordinates corresponding to the
ground state magnetization direction (easy-axis) for each open 4f -shell sys-
tem. The variable n appearing in φmin is an integer number, n = 0,1,2,3...
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Figure 5.11: Magnetization densities of the RE/Gr systems, calculated as n↑−n↓. The
plots are to scale and with varying isosurface values for visualization.

Regarding the in-plane MAE curves, it is noteworthy that Dy and Tm exhibit the
same negative sign of the fourth-order anisotropy constant (K4), which manifests as
energy minima at 0○ with a periodicity of 60○. In contrast, Ho displays a positive
K4 sign, leading to energy minima at 30○ with the same periodicity. Furthermore,
the magnitude of the oscillations is directly proportional to the absolute value of K4,
with Dy displaying the largest value, followed by Ho and Tm.

When comparing half-filled 4f -shells with open 4f -shells, it becomes apparent that
there are significant differences in the energies associated with magnetic anisotropy.
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Specifically, in Eu/Gr and Gd/Gr, much lower energies are required to rotate the
magnetization, and the anisotropies follow a simpler lower-order trend. In contrast,
open 4f systems exhibit larger energy scales and more complex trends due to the
non-spherical nature of the 4f charge cloud. By examining the magnetization densi-
ties, which were obtained by subtracting the spin-up and spin-down charge densities
and are illustrated in Fig. 5.11, one can qualitatively discern a difference between
half-filled 4f -shells and open 4f -shells. Specifically, the magnetization density of
half-filled 4f -shells appears nearly spherical due to the cancellation of angular mo-
mentum, whereas that of open 4f -shells exhibits a non-spherical shape, indicating an
anisotropic distribution in space.

5.2.1 Reverse-engineering of the crystal field parameters

After computing the magnetic anisotropy constants via fitting of ab initio DFT+U
calculations, it is possible to reverse-engineer the CFP as described in Eq. 2.37 follow-
ing the recipe given in Eq. 2.57, i.e. as linear combinations of the Ki values. These
parameters where calculated at equilibrium distance from the Gr monolayer for the
highly-anisotropic open 4f -shell REs systems and are tabulated in Table 5.5. The
CFP values were determined using Hund’s rules to obtain the ground state J value,
which is J = 8 for Dy, J = 15/2 for Ho, and J = 7/2 for Tm. Tables reporting the
respective CFP in the standard convention Am

l = C
m
l /αl and in the Waybourne con-

vention Bm
l = C

m
l /αlθml are provided in Appendix B.2. The CFP values enable access

to the matrix elements of the CF Hamiltonian H6v for each J value, as reported in
[67]. By diagonalizing the CF matrix, the eigenstates and eigenvalues of H6v can be
obtained, which form the magnetic multiplet spectrum of the RE/Gr system being
studied. The results for Dy/Gr, Ho/Gr and Tm/Gr are displayed in Fig. 5.12. Each
plot features grey lines that identify the possible Jz values ranging from −J to +J

Unit C0
2 C0

4 C0
6 C6

6

Dy adatom on graphene
meV 0.025 −1.717 ⋅ 10−4 −7.381 ⋅ 10−8 −4.895 ⋅ 10−6

K 0.290 −1.992 ⋅ 10−3 −8.565 ⋅ 10−7 −5.680 ⋅ 10−5

Ho adatom on graphene
meV −0.039 3.904 ⋅ 10−4 1.992 ⋅ 10−7 6.394 ⋅ 10−6

K −0.451 4.530 ⋅ 10−3 2.312 ⋅ 10−6 7.419 ⋅ 10−5

Tm adatom on graphene
meV −0.190 9.229 ⋅ 10−3 −8.026 ⋅ 10−6 −2.006 ⋅ 10−3

K −2.205 0.107 −9.314 ⋅ 10−5 −2.327 ⋅ 10−2

Table 5.5: Crystal field parameters obtained via reverse-engineering from the mag-
netic anisotropy constants Ki. The values are reported in meV and K.
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in steps of 1. States sharing the same color correspond to mixtures of states that
differ by ∆Jz = ±6,±12, and are subject to deviations from the pure state ⟨Jz⟩ value,
depending on the strength of the mixing operator Ô6

6.

For Dy/Gr with J = 8 (Fig. 5.12 (a)), the C0
2 parameter gives rise to a single ground

state at ⟨Jz⟩ = 0, but the non-monotonic behavior of the spectrum can be attributed
to the higher contributions. Specifically, the C6

6 parameter, generates linear combi-
nations of the states:

∣Jz = −8⟩ , ∣Jz = −2⟩ , ∣Jz = 4⟩

∣Jz = −7⟩ , ∣Jz = −1⟩ , ∣Jz = 5⟩

∣Jz = −6⟩ , ∣Jz = 0⟩ , ∣Jz = 6⟩

∣Jz = −5⟩ , ∣Jz = 1⟩ , ∣Jz = 7⟩

∣Jz = −4⟩ , ∣Jz = 2⟩ , ∣Jz = 8⟩

∣Jz = −3⟩ , ∣Jz = 3⟩.

Of note are the mixtures of (∣Jz = −6⟩ , ∣Jz = 0⟩ , ∣Jz = 6⟩) in orange (the state at ∼ 8 meV
corresponds to a doublet) and (∣Jz = −3⟩ , ∣Jz = 3⟩) in red, which appear at quenched
⟨Jz⟩ value. Generally speaking, these kind of states can give rise to spin-flipping
events via quantum tunneling, which are prevented in this case by the non-degenerate
magnetic ground state. In terms of symmetry representations, there are six sets of
double-degenerate states belonging to the Γ5 and Γ6 representations (see Tab. A.2).
Additionally, there are five non-degenerate states located at ⟨Jz⟩ = 0 and belonging
to the representations Γi, where i = 1,2,3,4.
Upon comparing the CFP of Dy/Gr in Am

l notation with those in Ref. [117], where
similar orbital and spin magnetic moments were obtained for Dy/Gr/Ir(111) within
the DFT+Hubbard-I framework, a good agreement is observed for the largest coeffi-
cients, i.e., (A0

2,A
0
4) = (−11.287,5.156) meV. However, some deviations were noticed

in the smaller contributions, (A0
6,A

6
6) = (0.057,3.765) meV.

In the case of the half-integer spin systems Ho/Gr (Fig. 5.12 (b)) and Tm/Gr (Fig. 5.12
(c)), Kramers degeneracy determines a double degeneracy of the states such that no
mixtures at ⟨Jz⟩ = 0 can form. According to the orthogonality theorem, Ho/Gr
presents three sets of double-degenerate states belonging to Γ7, three to Γ9 and two
to Γ8 (character table listed in Tab. A.1), while in the case of Tm/Gr the hexagonal
field induces a splitting of one Γ7 set, one Γ9 set and two sets of Γ8, all double-
degenerate (character table in Tab. A.1). This implies that these systems are are
not subject to spin-reversal through tunnel-split doublets, and in absence of external
perturbations, the system has to overcome the whole energy barrier spanning from
one ground state to the other in order to undergo a spin-flip event. Nevertheless,
the spin reversal can occur through alternative phenomena, such as scattering with
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phonons and electrons at finite temperatures. For Ho/Gr the lowest lying states
appear at ∼ ⟨Jz⟩ = ±11/2, while for Tm/Gr at ∼ ⟨Jz⟩ = ±5/2, and again the actual
expectation value deviates because of the presence of a finite transverse term. In the
case of Ho/Gr, the energy barrier separating the two ground states is substantial,
approximately ∼ 14 meV, which corresponds to an activation barrier of U= 162 K in
the expression for the relaxation time τ ∝ eU/kBT , where kB is the Boltzmann constant
and T the temperature. However, interactions with substrate phonons can establish
a connection between these two states and the closest accessible states via thermal
excitation. Specifically, these accessible states are characterized by ⟨Jz⟩ = ±13/2 and
are positioned at an energy gap of roughly ∆E ∼ 1.8 meV (21 K), from which assisted
quantum tunneling is possible. Shifting focus to the Tm/Gr system, the doubly
degenerate ground states possess an expectation value of ⟨Jz⟩ ∼ ±5/2. Overcoming
the entire energy barrier separating these ground states would require an energy
of 209 K (equivalent to 18 meV). Furthermore, there exists an energy gap of 95 K
(approximately ∼ 8.2 meV) to the first excited state at ⟨Jz⟩ = ±3/2, which is inherently
protected against quantum tunneling. From these arguments it can be concluded that
among the two systems studied with out-of-plane anisotropy, Tm/Gr is probably the

Figure 5.12: Multiplet splitting of (a) Dy/Gr, (b) Ho/Gr and (c) Tm/Gr, adopt-
ing the CFP values obtained from reverse-engineering via the magnetic
anisotropy constants. States in the same color correspond to linear com-
binations of ∣Jz⟩ differing by ∆Jz = ±6,±12.
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most stable with respect to magnetization reversal. In general, it can be observed
how the quantum framework qualitatively aligns with the classical magnetization
rotation. Upon rotation of the magnetic spin moment in the RE atom, the orbital
moment follows due to spin-orbit coupling. In the LSJ coupling picture, this induces
a rotation of the total angular momentum J , thus the projection Jz assumes different
values with different energies. Additional investigations are detailed in Appendix B.3,
where phase diagrams were created for J = 7/2, 8, 15/2 to identify the magnetic
ground state within a specific range of CFP values for C0

4 and C0
6 .

5.2.2 Magnetoelastic coupling

The correlation between the geometric characteristics of the 4f charge distribution
and the magnetic anisotropy energy implies that strain can be utilized to induce
modifications in the magnetic anisotropy of RE/Gr systems. The application of ex-
ternal pressure leads to the displacement of atoms in the crystal structure, causing
a rearrangement of the charge density. In the presence of spin-orbit coupling, this
displacement can induce a rotation of the spin magnetic moment, resulting in new
magnetic properties. The mechanical deformation in Fig. 5.14 is modeled by mod-
ifying the perpendicular distance between the RE adatom and the Gr monolayer.
Three distances are considered, including a compressed state, where the distance is
d/d0 = 0.96 (−4% strain), the equilibrium distance with d/d0 = 1.0 (no induced strain),
and a stretched state where d/d0 = 1.04 (+4% strain). From an experimental perspec-
tive, this shift in distance can be achieved, for instance, by modifying the chemical
reactivity or the charge state of the graphene sheet through intercalation of dopands
between graphene and the substrate [195–197].

Figure 5.13: Illustration of the set-up used to simulate a mechanical strain perpen-
dicular to the plane of a graphene substrate. Note that distances in this
illustration are provided for conceptual purposes only.
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For each of the three distances and systems, the MAE curves for both the out-of-plane
(Figures (a)-(c) in Fig. 5.14) and in-plane (Figures (d)-(f) in Fig. 5.14) directions are
obtained through total energy self-consistent calculations (represented by points), and
then fitted with Eq. 2.20 (represented by lines). The results for Dy/Gr are shown in
the first row (Figures (a) and (d)), Ho/Gr in the second row (Figures (b) and (e)), and
Tm/Gr in the last row (Figures (c) and (f)). The magnetic anisotropy constants as a
function of induced strain for each RE/Gr complex are presented in the last column
of each row (Figs. 5.14 (g)-(i)). Given the significant impact of the 4f charge cloud
shape, notable effects are expected in systems possessing non-zero orbital angular
momentum. Accordingly, the following discussion is focused on Dy/Gr, Ho/Gr, and
Tm/Gr systems.

When analyzing the out-of-plane curves, it is observed that the magnitude of the
MAE grows as the adatom approaches the substrate. This behavior is attributed to
the stronger crystal field that the impurity experiences as it gets closer to the sub-
strate. The absolute values of the anisotropy constants Ki, which are fitted to the
total energy points up to K3, exhibit a linear increase as the distance decreases. The
presence of the three contributions leads to anisotropic energy curves with canted
easy-axis in the case of Ho/Gr and Tm/Gr. When comparing the values among the
systems, K1 takes positive values for all distances in Dy/Gr, while it is negative for
Ho/Gr and Tm/Gr. This is consistent with the hills/valleys generated in the curves,
with the energy hill becoming steeper for Dy/Gr with smaller distances, and the en-
ergy valley becoming more pronounced for Ho/Gr and Tm/Gr. Regarding K2, the
sign is opposite in Dy/Gr compared to Ho/Gr and Tm/Gr, and the absolute value

Figure 5.15: (a) ∣K4∣ of Tm/Gr for distances ranging from d/d0 = 0.96 to d/d0 =
1.08 from the graphene sheet i.e. from −4% to +8% of perpendicular
strain. (b) In-plane MAE curves calculated with DFT+U for different
perpendicular strains of Tm on Gr.
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is slightly larger than that of K1 in all systems. A similar analysis is applicable to
K3, where the main difference lies in the magnitude, which is 6.821 meV for Dy/Gr
compared to −3.434 meV for Ho/Gr and −1.032 meV for Tm/Gr at d/d0 = 0.96. While
Ho/Gr and Tm/Gr maintain a canted easy-axis with the minimum slightly shifting
towards larger θ values with compression, Dy/Gr undergoes a significant change in
the easy-axis from in-plane at d/d0 = 1.0,1.04 to out-of-plane at d/d0 = 0.96.

Moving to the in-plane curves, Fig. 5.9 shows a periodic trend with a periodicity
of 60○. The amplitudes of the sin 6φ behavior are controlled by the constant K4,
and they increase as the adatom is moved closer to Gr. However, a deviation from
this trend is observed for Tm/Gr, where the modulus of K4 is slightly stronger for
d/d0 = 1.04 compared to d/d0 = 1.0.To gain insight into this behavior, the absolute
value of K4 was evaluated for several other strains, as shown in Fig. 5.15. The results
reveal a non-linear trend, with the value increasing from d/d0 = 1.08 to d/d0 = 1.03
before reaching a maximum. Then, from d/d0 = 1.03 to d/d0 = 1.0, ∣K4∣ decreases
before increasing again at higher compressions. The values shown in Fig. 5.15 for K4

were obtained by first calculating the in-plane MAE curves for each of the strains, and
then fitting them using the method described earlier. The following tables present the
reversed-engineered CFP Cm

l for the strain values of d/d0 = 0.96,1.04 in conjunction
with the corresponding Ki values for Dy/Gr (blue tables), Ho/Gr (grey tables), and
Tm/Gr (red tables).

d/d0 = 0.96

Unit K1 K2 K3 K4

meV 31.243 −36.872 6.821 −0.583

K 362.560 −427.882 79.154 −6.765

Unit C0
2 C0

4 C0
6 C6

6

meV 0.017 −2.691 ⋅ 10−4 −3.278 ⋅ 10−7 −6.471 ⋅ 10−6

K 0.197 −3.123 ⋅ 10−3 −3.804 ⋅ 10−6 −7.510 ⋅ 10−5

d/d0 = 1.04

Unit K1 K2 K3 K4

meV 4.345 −7.719 −1.539 −0.332

K 50.422 −89.575 −17.859 −3.853

Unit C0
2 C0

4 C0
6 C6

6

meV 0.035 −1.071 ⋅ 10−4 7.395 ⋅ 10−8 −1.866 ⋅ 10−6

K 0.406 −1.243 ⋅ 10−3 8.582 ⋅ 10−7 −2.165 ⋅ 10−5

Table 5.6: Dy/Gr: Magnetic anisotropy constants and crystal field parameters at
d/d0 = 0.96 and d/d0 = 1.04. The values are reported in meV and K.
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d/d0 = 0.96

Unit K1 K2 K3 K4

meV −43.329 47.289 −3.434 0.500

K −502.812 548.766 −39.850 5.802

Unit C0
2 C0

4 C0
6 C6

6

meV −0.043 5.815 ⋅ 10−4 2.640 ⋅ 10−7 8.88 ⋅ 10−6

K −0.450 6.748 ⋅ 10−3 3.064 ⋅ 10−6 1.030 ⋅ 10−4

d/d0 = 1.04

Unit K1 K2 K3 K4

meV −13.005 16.497 0.486 0.250

K −150.917 191.440 5.640 2.901

Unit C0
2 C0

4 C0
6 C6

6

meV −0.041 2.413 ⋅ 10−4 −3.737 ⋅ 10−8 4.440 ⋅ 10−6

K −0.476 2.800 ⋅ 10−3 −4.337 ⋅ 10−7 5.152 ⋅ 10−5

Table 5.7: Ho/Gr: Magnetic anisotropy constants and crystal field parameters at
d/d0 = 0.96 and d/d0 = 1.04. The values are reported in meV and K.

d/d0 = 0.96

Unit K1 K2 K3 K4

meV −23.109 24.977 −1.032 −0.221

K −268.169 289.846 −11.976 −2.565

Unit C0
2 C0

4 C0
6 C6

6

meV −0.135 1.267 ⋅ 10−2 5.673 ⋅ 10−5 2.806 ⋅ 10−3

K −1.567 0.147 6.583 ⋅ 10−4 0.033

d/d0 = 1.04

Unit K1 K2 K3 K4

meV −3.260 10.204 1.244 −0.168

K −37.831 118.413 14.436 −1.950

Unit C0
2 C0

4 C0
6 C6

6

meV −0.312 6.661 ⋅ 10−3 −6.838 ⋅ 10−5 −2.133 ⋅ 10−3

K −3.621 0.077 −7.935 ⋅ 10−4 −0.025

Table 5.8: Tm/Gr: Magnetic anisotropy constants and crystal field parameters at
d/d0 = 0.96 and d/d0 = 1.04. The values are reported in meV and K.
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Figure 5.16: This figure depicts the magnetic anisotropy energy as a function of the
distance between the RE element and the graphene layer. Gd and Eu
are also shown for comparison. The calculation was performed using
DFT+U . The energy difference between the parallel and perpendicular
energy components (E∥ −E⊥) is plotted on the y-axis.

To further analyze the behavior of each RE/Gr system, the change in ∆E = E∥ −E⊥
as a function of strain has been investigated. The range of values was scanned from
d/d0 = 0.90 to d/d0 = 1.04 with a step of 0.01, and the results are presented in Fig. 5.16.
Positive values of ∆E indicate a favored out-of-plane magnetization (along the z-axis),
while negative values correspond to an in-plane (x-axis) magnetization.

Ho/Gr and Tm/Gr exhibit similar trends where the magnetic anisotropy energy, ∆E,
decreases gradually as the adatom approaches the graphene sheet from larger dis-
tances until it reaches a minimum, and then increases again for stronger compressions.
The distinguishing factor between the two systems is the location of the minimum
value, which is shifted towards smaller relative distances, d/d0, for Tm/Gr. Addi-
tionally, Tm/Gr experiences a sign change in ∆E in a narrow range of strain when
highly compressed, ultimately favoring an in-plane magnetization. The variable mag-
netic behavior observed in these systems under external induced strain could have
potential applications in the design of magneto-mechanical nano devices that rely on
pressure-induced magnetization transitions [198–200]. In contrast, Dy/Gr exhibits a
distinct behavior, where the trend appears linear, with ∆E starting from negative
values at d/d0 = 1.04 and increasing towards positive values upon compression. As a
result, there is a transition in the preferred direction of magnetization from in-plane
under large tensile strains to out-of-plane under compressive strains, with the transi-
tion occurring in the range of d/d0 = 0.98 to d/d0 = 0.97. The figure also depicts the
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Table 5.9: Dissociation energy De , the b parameter and the equilibrium distance d0
obtained by fitting with Eq. 5.5 the curves in Fig. 5.17. The parameters
are listed for each RE/Gr complex and magnetization direction.
M direction De [eV] b [1/bohr] d0 [Å]

Dy adatom on graphene
perpendicular 0.833 3.482 2.481

parallel 0.861 3.369 2.491
Ho adatom on graphene

perpendicular 1.179 2.762 2.479
parallel 0.731 3.587 2.472

Tm adatom on graphene
perpendicular 0.311 4.696 2.449

parallel 0.398 4.467 2.436

trend for Eu/Gr and Gd/Gr, which lack magnetoelastic behavior due to the half-filled
4f -shell. Consequently, as compared to open 4f -shells, ∆E remains nearly constant
and close to zero.

Fig. 5.17 illustrates the total energy curves of each RE/Gr system as a function of
strain, for both parallel and perpendicular magnetization directions. The curves have
been vertically shifted to set the lowest energy to 0 eV and are limited to a small range
of strains around the equilibrium distances. The DFT+U calculations are represented
by dotted points, while the continuous lines correspond to the fitting using a Morse
anharmonic potential in the form [201, 202]

V (r) =De (1 − e
−b(d−d0))

2
. (5.5)

The equation utilized to carry out the fitting involves several parameters. Specifically,
De refers to the potential’s depth relative to the dissociation energy, while d denotes
the distance between the RE and Gr, and d0 represents the equilibrium distance.
Additionally, the parameter b is utilized to determine the width of the potential well.

The values of these parameters are listed in Table 5.9. Notably, the anharmonic po-
tential exhibits a dependence on the magnetization direction, which is apparent from
the diverse characteristics of the potential well. In terms of the equilibrium distances,
the influence of magnetostriction is evident in the differences of approximately 0.01
Å when comparing the perpendicular magnetization direction to the in-plane direc-
tion. By treating the RE/Gr complex as a diatomic molecule, it is possible to model
the vibrational modes close to the energy minima in the ground state potential well
and determine the stiffness against deformation and vibrational frequencies. The
force constant at equilibrium distance, ke, can be evaluated from the fitted values as

111



5 Electronic and magnetic properties of 4f -adatoms on a graphene monolayer

ke = 2b2De, and the respective vibrational frequency can then be calculated using the
equation:

ν =
1

2π

√
ke
µ
. (5.6)

The reduced mass of the RE/Gr complex, denoted as µ, is calculated using the equa-
tion µ = mGrmRE

(mGr+mRE)
, where mRE represents the atomic mass of the RE atom, and mGr

represents the mass of the graphene in the simulation cell. For instance, Dy has an
atomic mass of 162.5 amu, Ho has an atomic mass of 164.93 amu, and Tm has an
atomic mass of 168.93 amu. The simulation cell consists of six carbon atoms with a
total mass of 72.066 amu. The reduced mass is then converted to Kg using the con-
version factor 1.6605 ⋅10−27, and the force constant ke, initially measured in eV/bohr2,
is converted to N/m by multiplying the values by 1.602⋅10−19

(5.2918⋅10−11)2 .

In this way, the vibrational frequencies can be obtained in units of s−1, providing im-
portant information on the mechanical and dynamic properties of the RE/Gr system.
Table 5.10 presents the computed values of ke and ν for each system and magne-
tization direction. It can be observed that the vibrational properties exhibit slight
variations depending on the magnetization direction. An out-of-plane magnetization
in Dy/Gr yields higher ke and ν values, indicating greater resistance to deformation
when perpendicularly magnetized. In contrast, Ho/Gr and Tm/Gr exhibit larger ke
and ν values for an in-plane magnetization. Among the examined materials, Tm/Gr
has the lowest force constants and vibrational frequencies, indicating weaker bond-
ing towards the substrate and greater malleability compared to the other systems.
Specifically, the force constant values follow the trend ke(Dy) > ke(Ho) > ke(Tm),
reflecting the adsorption energies and d occupations.
Taking into account the magnetic bistability observed in the multiplet spectra of
Ho/Gr and Tm/Gr (Fig. 5.12), there exists a separation between the two ground
states with energy gaps of approximately ∆E ∼ 14 meV and ∆E ∼ 18 meV, respec-
tively. When converting the vibrational frequencies of the rare-earth atoms’ modes
into vibrational energies, values ranging from hν = 60−70 meV are obtained. This im-
plies that magnetization reversal due to adatom vibrations, which would necessitate
∆E = hν, is unlikely.

RE/Gr ke⊥ ke∥ ν⊥ ⋅ 10−13 ν∥ ⋅ 10−13

Dy/Gr 1155.54 1118.13 1.879 1.848

Ho/Gr 1029.05 1076.14 1.769 1.809

Tm/Gr 784.72 908.63 1.539 1.656

Table 5.10: Elastic force constants ke (N/m) and the respective vibration frequencies
ν (s−1) calculated with perpendicular and parallel magnetization for each
RE/Gr system.
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Figure 5.17: Total energy curves for each system as a function of d/d0, ranging from
0.90 to 1.04, with perpendicular and in-plane magnetization directions.
The blue dots represent the DFT+U data, while the red continuous lines
are the fitting functions obtained with Eq. 5.5. The parameters De, b,
and the precise equilibrium distance d0 are determined from each fitting.
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5.2.3 How is the MAE affected by the Hubbard U?

This section investigates the influence of the Hubbard U parameter on the out-of-
plane magnetic anisotropy energy curves. The total energy curves as a function of θ
are studied for three distinct U values in each system. One value is consistent with
the previous analyses (approximately 7 eV), while the other two differ by 2 eV, with
one being smaller and the other larger.

Figs. 5.18, 5.19, and 5.20 present the results for Dy/Gr, Ho/Gr, and Tm/Gr, respec-
tively, along with the spin-polarized 4f and 5d DOS for each U value (in red and
blue, respectively). Additionally, Gd/Gr is included as a half-filled 4f representative
in Fig. 5.21. The blue curves correspond to the values used throughout this study,
while the red and green curves represent the results obtained using smaller and larger
U values, respectively.

Overall, it can be observed that as the Hubbard U parameter decreases, the 4f states
(depicted in red in the spin-resolved DOS) move closer to the Fermi energy. As a
result, they are more exposed to other high-energy valence states and interact more
strongly with the environment, generating larger MA effects. This trend is exempli-
fied by the Dy/Gr system, where the red curve corresponding to U = 5 eV reaches
higher energy values than for higher U values.
In the case of Ho/Gr and Tm/Gr, the shift of the 4f states is even causing them
to lie on the Fermi energy, indicating metallic behavior. Therefore, the MAE curves
obtained with small U values are not reliable and larger values must be used.

For U ∼ 9, the MAE curves have similar energy scales to the U ∼ 7 case. Additionally,
for Dy/Gr, the minima and maximum are close to the U = 7 eV value, and for Ho/Gr
and Tm/Gr, the canted easy-axis is also obtained with a larger Coulomb parameter.
Thus, it can be concluded that values of U ∼ 7 eV are sufficient to obtain the electronic
and magnetic properties of 4f -atoms quantitatively and qualitatively.

Fig. 5.21 illustrates the situation of the half-filled 4f -shell of Gd. The choice of the
U value does not significantly affect the MAE in this case. This can be attributed to
the fact that the occupied 4f states are located deep in energy away from the Fermi
energy in all cases. Therefore, the MAE primarily arises from the 5d occupation,
which is always spin-polarized due to the large 4f magnetic moment.
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Figure 5.18: Dy/Gr: dependence of the out-of-plane MAE curve and spin-polarized
DOS on the Hubbard U value. The red curve corresponds to U = 5 eV,
the blue curve to U = 7 eV, and the green curve to U = 9 eV.
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Figure 5.19: Ho/Gr: Dependence of the out-of-plane MAE curve and spin-polarized
DOS on the Hubbard U values. The red curve corresponds to U = 5.03
eV, the blue curve to U = 7.03 eV, and the green curve to U = 9.03 eV.
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Figure 5.20: Tm/Gr: Dependence of the out-of-plane MAE curve and spin-polarized
DOS on the Hubbard U values. The red curve corresponds to U = 5.1
eV, the blue curve to U = 7.1 eV, and the green curve to U = 9.1 eV.
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Figure 5.21: Gd/Gr: Dependence of the out-of-plane MAE curve and spin-polarized
DOS on the Hubbard U values. The red curve corresponds to U = 4.7
eV, the blue curve to U = 6.7 eV, and the green curve to U = 8.7 eV.
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5.3 The case of Dy deviating from Hund’s rules

In the sections discussed earlier, all systems displayed a Hund’s rule 4f occupation.
However, upon further analysis, it was found that in the case of Dy/Gr, a 4f 10 oc-
cupation can result in a distinct orbital occupation. Specifically, one majority spin
electron migrates from the ml = 1 orbital to the ml = 0 orbital, resulting in the quench-
ing of the orbital moment of Dy to ml = 5 µB. This phenomenon can be attributed to
the competition between the crystal field effects and the Hund’s exchange interaction,
leading to an orbital rearrangement.

Table 5.11 shows that the overall 4f occupation remains around 10 electrons with
a spin magnetic moment of 4.033 µB, which is similar to Hund’s rules. However,
the orbital magnetic moment is reduced to 4.903 µB, which breaks Hund’s second
rule of maximizing the total orbital angular momentum. Consequently, the total
angular momentum of Dy/Gr is J = 7 instead of J = 8 as per the Hund’s rules.
Specifically, the energy difference calculated between the two observed magnetic states
is 0.28 eV in favor of the J = 7 situation. To examine the impact of this orbital
rearrangement on the magnetic properties, the out-of-plane and in-plane magnetic
anisotropy curves were evaluated in the J = 7 configuration and are depicted in
Fig. 5.22. The anisotropic behavior deviates from the J = 8 case (as seen in Fig. 5.9)
due to the altered geometrical shape of the 4f charge when one 4f electron is moved
to the ml = 0 orbital. This difference can be visualized in Fig. 5.23. Upon examination
of Fig. 5.22, it can be observed that the out-of-plane curve demonstrates a minimum
at a canted angle of θ = 51.82○ and displays significant deviations from the J = 8 state
as the system moves from 0○ to 90○. While the J = 8 state presented an energy hill,
the J = 7 state exhibits an energy valley. This phenomenon can be attributed to the
magnetic anisotropy constants, which are compared in Table 5.12 for both magnetic
states.

The in-plane magnetic anisotropy energy curve exhibits a notable increase in en-
ergy, comparable in magnitude to the out-of-plane curve, and represents the largest
in-plane anisotropy among the studied systems. This enhanced contribution in the
in-plane direction can be attributed to the significant value of K4, which induces a
notable shift in the energy minimum from the pure out-of-plane value. Specifically,

docc focc mRE
s [µB] mRE

l [µB] mtot
s [µB]

0.260 9.898 4.033 4.903 4.168

Table 5.11: Ground state properties for Dy with orbital moment ∼ 5 µB (J = 7) on top
of Gr in the H-site: d and f occupation of the magnetic RE atom, spin
magnetic moment of the RE atom in µB, orbital magnetic moment of the
RE atom in µB, and total spin magnetic moment of the RE/Gr system in
µB. Calculations have been performed in presence of SOC.
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Table 5.12: Dy/Gr: Magnetic anisotropy constants for the J = 7 and J = 8 magnetic
states. The values are reported in meV.

State K1 K2 K3 K4

J = 7 −14.29 13.10 −1.76 1.16

J = 8 15.36 −18.92 1.54 −0.44

the minimum for the out-of-plane energy (∂Ean

∂θ ∣φ=0○) occurs at θ = 51.82○, while the
global minimum (∂Ean

∂θ ∣φ=30○) occurs at 57.93○ due to the effect of K4.

To offer a qualitative explanation for the substantial K4 value, one can consider the
spin-down 4f charge density, which is the distinguishing feature between the J = 8
and J = 7 states, computed for an in-plane magnetization direction, as depicted in
Fig. 5.23. The J = 7 magnetic configuration reveals a more significant density in the
xy-plane relative to the J = 8 state, which lacks such distinct poles parallel to the
substrate. Thus, the J = 7 configuration results in a stronger interaction of the 4f
charge with the hexagonal crystal field. These results highlight the importance of a
meticulous evaluation of the 4f orbital occupation in rare-earth based systems in low
dimensions. This is also important if one wants to use the above proposed reverse-
engineering method to determine the CFP, since it holds only valid in the context
of a Hund’s rule occupation, i.e. when the interelectronic repulsion and SOC effects
dominate and the crystal field can be treated as a perturbation.

Figure 5.22: The figure shows the out-of-plane (blue) and in-plane (red) magnetic
anisotropy energy curves for Dy/Gr with Dy having an orbital moment
of ml = 5 µB. The blue dots represent the DFT+U energies, while the
lines indicate the fitting.
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Figure 5.23: Top view of the charge density of the spin-down channel of Dy/Gr with
in-plane magnetization for the two different orbital moments: (a) ml = 6
µB (J = 8) (b) ml = 5 µB (J = 7).

5.4 Diluted rare-earth atoms: 4 × 4 graphene supercell

In order to investigate the effect of varying concentrations of rare-earth atoms ad-
sorbed onto the Gr sheet, a 4 × 4 supercell containing 33 atoms (32 C atoms and 1
RE atom) was simulated, with the magnetic adatom positioned in the H-site. This
configuration corresponds to a much more diluted RE concentration, with one RE
adatom per 32 C atoms instead of one per 6 C atoms. The perpendicular distance
between the RE and Gr atoms was held constant, matching the value obtained from
the smaller

√
3 ×
√
3 simulation cells.

The ground state electronic properties of Eu and Gd without SOC, as well as those of
the open 4f -shells in the presence of SOC, are presented in Table 5.13. Commencing
the discussion with a comparison of the d electron occupations in the two simulation
cells, it can be observed that in all instances, the docc is lower in the 4 × 4 cell as
compared to the

√
3 ×
√
3 configuration. Specifically, for Eu, the docc is 0.196 as op-

posed to 0.332; for Dy, it is 0.181 in contrast to 0.262; for Ho, it is 0.165 compared to
0.250; and for Tm, it is 0.155 as against 0.237 in the

√
3×
√
3 cell. The sole exception

to this trend is Gd/Gr, where the dilute configuration yields almost a full d electron
(0.935 d electrons) in the valence shell, as compared to a fraction of 0.866 observed
in the higher coverage scenario (

√
3 ×
√
3). These observations provide evidence of a

transition towards a more atomic-like nature of the magnetic 4f -adatoms. The in-
creased separation between RE atoms reduces the delocalized charge for each RE-RE
interaction as well as the electrons involved in the RE-Gr interaction, resulting in a
reduced metallic behavior of the RE layer. This transformation is reflected in a shift
from a RE monolayer to a more isolated atomic configuration.
Specifically, Gd tends to retain its 5d electron in the valence configuration, making
it less available for bonding and thus resulting in weaker interaction with Gr and the
surrounding Gd atoms. In contrast, all the other RE atoms acquire fewer d electrons
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5 Electronic and magnetic properties of 4f -adatoms on a graphene monolayer

from the environment, leading to reduced interaction. The transition from metallic to
atomic behavior is also reflected in the 4f orbital occupation, which exhibits a slight
increase across all cases, with a stronger trend towards following the Hund’s rules.

From the perspective of the spin magnetic moment of the RE atoms (mRE
s ), it is noted

that their values are higher of around 0.1 µB in the dilute situation, which can be
attributed to the presence of induced f − s spin polarization (see Table 5.14) that is
absent in the high-coverage state. In the case of Gd/Gr, the value of mRE

s is roughly
0.41 µB larger in the 4 × 4 supercell than in the

√
3 ×
√
3 cell, driven by both the

f − s spin polarization and the enhanced f − d spin polarization. These effects are
observable in Fig. 5.24, which displays the s (green), d (blue), and f (red) states of the
RE adatom for each system, in addition to the TDOS (grey). Additionally, a zoomed-
in view of the s states around the Fermi energy is provided for each RE/Gr system.
Here, it can be noticed how the 4f peaks shift deeper to lower energies compared
to the

√
3 ×
√
3 cell, reflecting the isolated-atom picture. The appearance of a sharp

occupied spin-up s peak just before the Fermi energy is especially noteworthy. This
feature can also be observed in other studies in the literature for large simulation
cells, including 4 × 4 [193, 203] and 5 × 5 [204] supercells.
The appearance of the sharp s peak seems to be linked to the RE atoms nearing the
dilute limit, as demonstrated by simulating a single RE atom per simulation cell and
gradually reducing the lattice parameter from that of the 4 × 4 Gr supercell (four
times the unit cell) to simulate the progression from an isolated atom to a monolayer.
Fig. 5.25 illustrates the evolution of the s peak of an Eu atom for various lattice
parameters: a/a0 = 1.0 corresponds to the dilute state of the Eu atom as in a 4×4 Gr
cell, where a0 is the lattice constant of this supercell; a/a0 = 0.84,0.72,0.67 correspond
to smaller distances between the magnetic atoms, resulting in denser packings. It
can be observed that as the RE atom becomes more isolated, the s peak becomes
narrower. Conversely, in high-concentration situations, the s electrons tend to be
more widely spread out in energy. The observed behavior also appears to affect the
spin-polarization, as the difference between the two spin channels (the upper panel
being spin-up and the lower panel being spin-down) becomes more pronounced when
the magnetic adatom is diluted.

RE/Gr docc focc mRE
s [µB] mRE

l [µB]
Eu/Gr 0.196 6.924 7.125 -
Gd/Gr 0.935 7.012 7.724 -
Dy/Gr 0.181 9.915 4.156 5.916
Ho/Gr 0.165 10.913 3.159 5.936
Tm/Gr 0.155 12.901 1.163 2.989

Table 5.13: Ground state properties of RE/Gr in a 4×4 supercell: d and f occupations,
spin mRE

s and orbital mRE
l magnetic moments.
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Figure 5.24: Spin-resolved DOS in the 4 × 4 supercells: panels (a) to (e) display the
s, d, f states of the RE and the TDOS; panels (f) to (j) show a zoom of
the RE states.
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Table 5.14: Spin magnetic moments of the s, d and f electrons of the 4 × 4 RE/Gr
systems.

RE/Gr ms
s [µB] md

s [µB] mf
s [µB]

Eu/Gr 0.126 0.061 6.906
Gd/Gr 0.135 0.609 6.951
Dy/Gr 0.140 0.032 3.966
Ho/Gr 0.141 0.024 2.980
Tm/Gr 0.140 0.014 1.002

This slight enhancement in the spin magnetic moment, compared to the
√
3×
√
3 su-

percell, may have an impact on magnetic anisotropy, but generally, the contribution
of valence electrons to the MAE is a small fraction, approximately 10%, of the total
interaction energy between the RE atom and the crystal field.

The computed unfolded bandstructure of 4 × 4 Eu/Gr in Fig. 5.26 clearly indicates
the presence of a narrow s state in the system at ∼ −0.7 eV. To emphasize the Dirac
cone of the carbon structure, the chosen k-path runs along Γ−K−K’−Γ. The shift of
the Dirac point towards lower energies from the Fermi energy suggests an n-doping
of the Gr from the lanthanide by approximately ∼ 0.7 eV. At a slightly higher energy
than the Dirac point, a very flat band corresponding to the s electrons of Eu is visible,
with its unoccupied spin-down counterpart located at ∼ 0.4 eV. Flat bands exhibit
a constant energy across the Brillouin zone, resulting in electrons with low kinetic
energy. These electrons are highly localized, which can give rise to novel behaviors
such as high electron density or strong electron-electron interactions. These proper-

Figure 5.25: Evolution of the s peak with the distance between magnetic Eu atoms
expressed as a function of the 4 × 4 supercell lattice constant of Gr.
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ties have been linked to the emergence of superconductivity. The s state of the REs
on graphene has the potential to form strongly correlated electronic states, making
the observation of the flat band in the 4× 4 RE/Gr systems a significant finding that
warrants further investigation. The behavior of electrons in flat bands is a subject of
great interest for the development of novel electronic and optoelectronic devices, and
the investigation of flat bands can pave the way for new discoveries in the field.

Moreover, the magnetic anisotropy can be in first approximation explained as origi-
nating from the electrostatic interaction between the non-spherical charge density, pri-
marily determined by the orbital magnetic moment, and the crystal field of graphene.
Given the minor changes observed in the orbital moments mRE

l (Table 5.13) in com-
parison to the

√
3 ×
√
3 supercell, significant deviations in the magnetic anisotropy

are not expected. From another perspective, the electron redistribution within the
valence orbitals observed in the 4 × 4 case can alter the interaction between the RE
atom with graphene, resulting in a small change in the perpendicular distance between
the RE atom and graphene. Consequently, this affects the crystal field generated by
Gr and experienced by the RE atom. Nonetheless, as illustrated in Fig. 5.14 and
Fig. 5.16, it is evident that the magnetic anisotropy (and the respective constants Ki)
trend remains approximately linear in the vicinity of d/d0 = 1.

Figure 5.26: Unfolded band structure of the 4 × 4 supercell of Eu/Gr along the Γ−K-
K’−Γ path, highlighting the Dirac cones at K and K’. The calculation
was performed without SOC.
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Chapter 6
The effect of a metallic substrate:
Gd/Gr/Ir(111) and Gd/Gr/Co(111)
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6 The effect of a metallic substrate: Gd/Gr/Ir(111) and Gd/Gr/Co(111)

The objective of this chapter is to investigate the impact of a metallic substrate
on the magnetic properties of Gd/Gr. Understanding the effects arising from
the metallic substrate in graphene-based systems is essential, as experimental
growth of van der Waals heterostructures often occurs on such surfaces. Two
scenarios have been examined: a non-magnetic substrate, Ir(111), and a magnetic
substrate, Co(111).

The chapter will be organized as follows:

– In Section 6.1, an initial investigation of Gr on an Ir(111) surface at two different
distances of the graphene monolayer from the substrate is carried out.

– In Section 6.2 the investigation is expanded by simulating the adsorption of a
Gd adatom on top of Gr/Ir(111), with attention given to differences between
the two perpendicular heights of Gr from Ir(111).

– In Section 6.3, a magnetic substrate is exemplified by replacing the Ir atoms with
Co atoms, and the effect of the magnetic surface will be analyzed by considering
the experimental distance between Gr and Co(111).

Computational details

The following sections present results obtained using the FLAPW method
within the DFT+U framework as implemented in FLEUR. The simulations
were performed in a

√
3 ×
√
3 simulation cell with the same lattice parameter

as the previous studies of free-standing RE/Gr systems. A surface of Ir(111)
(Co(111)) was constructed by stacking 5 layers of FCC Ir (Co) in the ABC
stacking sequence beneath the Gr monolayer. The Gd adatom was positioned
in the H-site of the Gr monolayer. The value of Kmax was set to 4.5 a−10 for the
SCF calculations and to 4.3 a−10 for the MAE calculations, and the maximal
angular momentum inside the MT spheres was set to lmax = 10 for Gd, lmax = 6
for C atoms, and lmax = 8 for Ir and Co atoms. The SCF cycle was converged
using the PBE prescription of GGA exchange-correlation functional and a k-
point mesh of 20 × 20. The DFT+U parameters for Gd were set to U = 6.7 eV
and J = 0.7 eV.

6.1 Graphene adsorbed on Ir(111)

It is widely acknowledged through experimental evidence that the growth of graphene
on Ir(111) leads to a structural mismatch when superposing the two structures. This
mismatch is primarily attributed to a lattice constant disparity of approximately 10%
between the graphene lattice constant (2.46 Å) and that of Ir(111) (2.73 Å), which
results in significant distortions within the system. This has been demonstrated
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6.1 Graphene adsorbed on Ir(111)

through a number of studies, including those conducted by Brako et al. (2010) [128],
Coraux et al. (2008) [205], and Meng et al. (2012) [206]. A superperiodicity, known
as a Moiré pattern, is generated as a result, in which the two structures only match
perfectly after a certain number of Ir unit cells and Graphene unit cells have been
covered, such that the center of the Graphene hexagon aligns with an Ir atom. To
achieve this alignment, 10 Graphene unit cells must be present on 9 Ir unit cells in
each surface direction, given the larger size of the Ir unit cell. Simulating such a large
supercell requires significant computational resources, and therefore it is often more
practical to simulate the different structural registries that appear within the Moiré
pattern separately. The objective of the forthcoming investigation is to assess the
effect of a metallic surface on the magnetic behavior of the RE/Gr complex. The Gr
monolayer interacts with the Ir(111) metallic surface through van der Waals forces,
and it is presumed that the crystal field surrounding the magnetic rare-earth (RE)
atom is solely determined by the hexagonal carbon ring of the Gr. Therefore, to
obtain computationally feasible outcomes, the varied structural configurations within
the Moiré superstructure are disregarded, and solely the impact of a generic Ir(111)
surface is examined. The simulation cell chosen for this study includes the previously
adopted

√
3×
√
3 cell of graphene with its corresponding lattice constant, along with

five layers of Ir(111) consisting of a total of 6 carbon atoms and 15 Ir atoms (3 Ir
atoms per layer), as illustrated in Figure 6.1. The Ir(111) interlayer distance has been
evaluated as one third of the body diagonal of FCC bulk Ir, resulting in a value of
2.228 Å when a bulk lattice constant of 3.86 Å is used, as reported in [128].

As Gr grown on Ir(111) is not flat but instead presents corrugations with regions
at different distances from the substrate, the Gr/Ir(111) system was investigated in
this study at two distinct distances of the Gr from the Ir(111): the valley position
at hv = 3.2 Å, and the hill position at hh = 3.6 Å, as observed in [207]. A sketch
of the corrugated graphene monolayer on Ir, illustrating the simulated valley and
hill positions, is presented in Fig. 6.2, along with the differential charge densities

Figure 6.1:
√
3 ×
√
3 simulation cell for Gr/Ir(111) illustrating the ABC stacking of

the Ir(111) surface layers in different colors.
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calculated as nGr/Ir − nGr − nIr for the valley and hill positions of the Gr monolayer
on Ir. The calculations reveal significant variations in charge distribution between
the two structures. The charge accumulation regions (positive values) are indicated
in red, while the charge loss regions (negative values) are shown in blue. The data
suggests that when the Gr is in closer proximity to the Ir surface, the interaction
involves more charge. Notably, there is a stronger dipole in the interface region, with
a negative pole located at the backside of Gr and a positive pole situated above the
first layer of Ir. This charge separation is also observed in the hill position, albeit with
less intensity. Fig. 6.3 illustrates the computed relative band structures, where the
overall band structures for each of the two analyzed Gr-Ir distances are presented in
black, while the contribution of Gr is depicted in red. The contribution of Gr is also
displayed separately with more emphasis underneath. An important observation is
that at the hill position hh, the Dirac cone is distinctly visible above the Fermi energy,
indicating a slight p-doping from the metal surface to the π orbitals of Gr that are

Figure 6.2: (a) The differential charge density in the Gr/Ir(111) system in the (1-10)
plane is shown for the valley and hill positions of graphene from the first
Ir layer. The two plots use the same color scale, ranging from −0.001 to
0.001 of saturation, to highlight the variations in charge distribution. (b)
The (1-10) crystallographic plane. (c) A sketch of the corrugated graphene
monolayer on Ir(111) illustrating the valley and hill positions is provided.
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oriented perpendicular to the sheet. This phenomenon has also been experimentally
observed [207, 208]. Additionally, it should be mentioned that an induced gap exists
at the Dirac point due to the intervalley mixing. In contrast, the breaking of the
Dirac cone observed at the valley position hv can be attributed to the disruption of
the AB sublattice symmetry of graphene as it approaches the Ir(111) surface in the
chosen configuration, similar to what has been observed in graphene on Au(111) [209].
In Fig. 6.1, it can be seen that three carbon atoms are positioned directly above an
Ir atom, while the remaining carbon atoms are located above the second layer of Ir
atoms. However, at hh, the distance is sufficient to prevent significant interaction
between Gr and Ir(111), thereby preserving the symmetry of Gr. As a result, the
proximity to Ir(111) has a considerable impact on the Gr structure at hv, which is
further supported by the observation that the Gr bands are pushed towards lower
energies compared to the hh configuration.

Figure 6.3: Computed band structures of Gr/Ir(111) system at valley distance (3.2
Å) and hill distance (3.6 Å) of Gr from Ir(111). Black denotes the overall
band structure, and red illustrates the contribution of C atoms.
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Figure 6.4: Optimization of the perpendicular distance between the Gd adatom and
the Gr monolayer is shown for the two Gr-Ir(111) distances. The total
energy is evaluated as a function of the relative distance d/d0, where d0 is
the equilibrium distance obtained in the absence of Ir(111) and d repre-
sents the tested new position. The range of distance variation considered
is from d = 0.97d0 to d = 1.03d0.

6.2 Gd on top of Gr/Ir(111)

The geometry of the Gd atom adsorbed onto Gr/Ir(111) maintains the same configu-
ration as in the free-standing graphene systems, where the magnetic adatom occupies
the H-site. To determine the Gd-Gr distance in the presence of the metal surface,
the equilibrium distance of Gd/Gr, which is d0 = 2.236 Å, was initially used and the
perpendicular distance was varied by increasing and decreasing it by 3% in steps of
1%, while evaluating the total energy. The result, shown in Fig. 6.4, indicates that
both systems favor a slightly higher position of the Gd from Gr, at d/d0 = 1.01, cor-
responding to d = 2.258 Å. In the presence of a Gd adatom, the system exhibits spin
polarization due to the large spin magnetic moment of Gd, which is approximately

Figure 6.5: The diagram illustrates the two possible structural configurations of Gd/-
Gr/Ir(111), with Gd adsorbed either in the valley position of Gr or in the
hill position.
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7.357 µB for hv and 7.352 µB for hh. Additionally, the docc and focc values show a high
degree of similarity between the two distances. Specifically, in the valley distance,
there are 0.853 d electrons and 7.013 4f electrons, while in the hill distance, there
are 0.858 d electrons and the same 4f electron count as in the valley distance. Thus,
no significant differences are observed in the Gd atom between the two distances.
By calculating the difference between the total spin-up charge density and the total
spin-down charge density, a total magnetic moment of 8.021 µB for the valley and
7.939 µB for the hill is obtained. This indicates that both cases behave similarly to
the free-standing Gd/Gr system, with the hill approaching that limit and the valley
exhibiting a slightly increased total magnetic spin moment.

Fig. 6.6 depicts the spin-polarized electronic structure of the Gd/Gr/Ir(111) system

Figure 6.6: The upper panels show the spin-polarized band structure projected on
the carbon atoms of Gd/Gr/Ir(111) in the valley and hill configurations,
where blue represents the spin-up channel and red represents the spin-
down channel. A reference line is plotted at -1.35 eV. The lower panels
show the corresponding spin-polarized density of states of the carbon con-
tribution (grey), the d electrons in Gd (blue), and the f electrons of Gd
(red). All calculations were performed in presence of SOC.
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Figure 6.7: Spin-resolved total DOS (in grey) and 4f DOS (in red) of Gd/Gr/Ir(111)
in the valley configuration.

with Gr at two different distances from Ir(111), calculated with SOC. The upper
panels present the spin-polarized graphene contribution to the band structure, with
blue and red representing the spin-up and spin-down channels, respectively, provid-
ing a clear view of the Dirac cone. The energy splitting between the spin-up and
spin-down bands indicates the induced spin-polarization, which is comparable to the
free-standing Gd/Gr exchange, as shown in Appendix C where the graphene band
structure of Gd/Gr/Ir(111) at hh is compared to that of the free-standing Gd/Gr
without the metallic surface. In addition, the adsorption of the Gd adatom on the
Gr/Ir(111) structure induces a clear n-doping effect, as evidenced by the shift of the
Dirac cone below the Fermi energy. This suggests a charge transfer from the d elec-
trons of Gd to the π orbitals, as previously discussed for Gd/Gr. The n-doping effect
is slightly more pronounced in the valley configuration than in the hill, as indicated
by the reference line at −1.35 eV. This is reflected in the position of the graphene
bands, which are pushed further towards lower energies in the valley. Consequently,
a stronger interaction is expected at hv between the metal and Gr as qualitatively
seen also in Appendix C.2, where the product between all the C contributions to the
bands with the Ir contributions is mapped in a color scheme.

The spin-polarized DOS shown in the lower panel of Fig. 6.6 provides further evidence
of the n-doping effect. The grey region represents the contribution of the carbon atoms
and the Dirac point appears below the Fermi energy at 0 eV for both the valley and
hill configurations. The spin-polarized d states of Gd are located around this energy
and exhibit an induced magnetic moment due to the large 4f magnetic moment. The
occupied spin-up 4f peak is situated at approximately −9 eV, with an energy gap of
roughly 11 eV from the unoccupied spin-down peak. Additionally, Fig. 6.7 displays
the TDOS of the hv system along with the 4f states of Gd to provide a complete
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Figure 6.8: Magnetic anostropy curves: total energy against the angle between the z-
axis and the direction of the magnetization. The MAE has been evaluated
for both the valley and the hill configurations.

overview of the electronic structure. It is evident that most of the features arise
from the Ir(111) surface, and the structure exhibits an overall metallic behavior. Fur-
thermore, most of the spin-polarization is concentrated at and around the 4f peaks,
suggesting that the magnetic moment arises from these states.

Additional exploration was conducted to examine the magnetic anisotropy in the sys-
tem. Similarly to previous studies, the total energy was computed by rotating the
magnetization in the zx-plane through varying the angle θ from 0○ (perpendicular
magnetization) to 90○ (in-plane magnetization). The obtained results for both the
valley and hill configurations of the Gr-Ir(111) distances are presented in Fig. 6.8.
The system exhibits an out-of-plane easy-axis, and requires an energy of about 0.7
meV to rotate the magnetization in-plane. The energy scales observed are similar to
those in free-standing Gd/Gr, indicating that the metallic substrate has a negligible
effect on enhancing the MAE through crystal field effects or SOC. In fact, the con-
tribution of Gr to the band structure computed without SOC showed no difference
from the SOC calculations (discussed in Fig. 6.6), providing further evidence that Ir
does not induce SOC in the Gd/Gr system. Although Ir(111) has a small influence on
the system, as seen in Fig. 6.8, the MAE in the valley configuration is slightly reduced.

To qualitatively investigate this effect, the energy difference ∆E = E∥ −E⊥ was com-
puted at hh and hv, with SOC turned off sequentially for Gd and Ir(111). In the
valley configuration, neglecting SOC in Gd resulted in ∆E ∼ −0.04 meV, indicating
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Figure 6.9: Visualization of the competition between the Gd out-of-plane easy-axis
and the Ir(111) in-plane easy-axis.

an in-plane easy-axis, while turning off SOC in Ir resulted in ∆E ∼ 0.77 meV, indi-
cating an out-of-plane easy-axis. Similarly, in the hill configuration, neglecting SOC
in Gd resulted in ∆E ∼ −0.01 meV, while turning off SOC in Ir resulted in ∆E = 1.22
meV, showing that Ir favors an in-plane magnetization while Gd favors an out-of-plane
magnetization. Therefore, there is a competition between the two magnetization di-
rections, as schematically illustrated in Fig. 6.9, leading to a reduction in the total
energy required to rotate the magnetization in-plane as the Gd atom approaches the
Ir(111) surface, due to the enhanced interaction with the metal.

In summary, due to its strong binding to the Gr monolayer and proximity to it, Gd has
served as an excellent case study for investigating the influence of Ir(111) on magnetic
anisotropy effects in RE/Gr systems. The effects of Ir(111) on the magnetic properties
of Gd/Gr were found to be minor, with only slight changes observed when the complex
was in close proximity to the substrate. The VdW interactions between Gr and
Ir(111) resulted in a sufficient distance between the two, preventing the transfer of
SOC or variations in the hexagonal crystal field induced by the substrate. However,
further investigations are necessary, particularly for highly anisotropic RE atoms.
Nonetheless, these findings demonstrate the potential of Ir(111) as a substrate for
growing complex magnetic heterostructures.

6.3 Gd on top of Gr/Co(111)

To investigate the influence of the magnetic surface on Gd/Gr, a structural configura-
tion has been selected in which the Gd-Gr distance is maintained at the equilibrium
distance obtained for the free-standing complex, specifically d0 = 2.236 Å, while the
Gr-Co(111) distance is set to 2.157 Å based on previous findings in [210]. By com-
parison with the Gr-Ir(111) distance, it is evident that the presence of a Co surface
brings the Gr much closer to the substrate. To enable comparison, the surface struc-
ture is kept identical to that of Ir(111), comprising five layers of ABC stacking, with
the substitution of magnetic Co atoms for the Ir atoms.
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Figure 6.10: Ferromagnetic and antiferromagnetic configurations investigated in the
system Gd/Gr/Co(111).

Two distinct magnetic configurations were examined in this study: a ferromagnetic
(FM) state in which the Gd spin magnetic moment is aligned with the Co magnetic
moments, and an antiferromagnetic (AFM) arrangement in which the magnetic mo-
ments of the two constituents are antiparallel, as depicted in Fig. 6.10. In the FM
state, the magnetic moments are initially set to 7.1 µB and 1.6 µB. To obtain the
AFM state, the sign of the Co atom’s magnetic moment is reversed.
The computed values for docc, focc, and the spin magnetic moment of Gd are presented
in Table 6.1, along with the MAE expressed as ∆E = E∥ −E⊥ for both magnetic con-
figurations. In this context, E⊥ denotes the total energy of the system in the FM
or AFM state with magnetization perpendicular to the plane. On the other hand,
E∥ represents the total energy in the FM or AFM state when the magnetization is
rotated by 90○ from the perpendicular direction to an in-plane orientation.

Before discussing the MAE, a brief summary of the electronic properties in both FM
and AFM configurations with a perpendicular magnetization direction is presented.
Although the d and f occupations show little difference between the FM and AFM
configurations, the spin magnetic moment of Gd is slightly greater in the FM con-
figuration due to the increased spin polarization in the MT d orbitals of Gd. More
precisely, the difference between the spin-up and spin-down d occupation, nd↑ −nd↓ , is

order docc focc mGd
s [µB] ∆E [meV]

FM 0.850 7.018 7.417 −0.533

AFM 0.844 7.022 7.262 −0.261

Table 6.1: The table summarizes the ground state properties of Gd/Gr/Co(111) in
the FM and AFM orders, including the d and f occupations, spin mRE

s

of Gd, computed with a perpendicular magnetization, and the magnetic
anisotropy of the system.
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0.409 for the FM configuration and 0.267 for the AFM configuration. The magnetic
moment of the Co atoms exhibits a small variation among the different layers, with
the most significant difference occurring between the first and fifth layers, whereas the
values in the three middle layers are relatively consistent. Specifically, the magnetic
moment in the first layer is 1.657 µB, and it gradually increases up to the maximum
value of 1.839 µB in the layer that is farthest from the surface. Conversely, the mag-
netic moment values in the second, third, and fourth layers fall within the range of
1.774 − 1.798 µB, which are comparatively similar. A similar trend is observed in the
AFM configuration with inverted sign.

The transition from FM to AFM is marked by a switch between the spin-up and spin-
down channels, as evidenced by the TDOS (in light blue) shown in Fig. 6.11, with the
exception of the Gd states. By closer inspection of the carbon atoms’ contribution
(shown in grey), it becomes evident that the change in magnetization also affects the
graphene states, leading to an inversion of the spin-up and spin-down states. This
indicates a strong influence of the metallic surface on the behavior of graphene, as de-
picted also in the spin-polarized band structure displaying the C atom’s contributions
in Fig. C.3 of Appendix C.3. Additionally, it is observed that significant n-doping

Figure 6.11: Spin-resolved DOS for the two magnetic orders: the top panels display
the TDOS of the system and the 4f states of Gd, the lower panels display
the relative 4f , 5d of Gd and graphene contributions.
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occurs in graphene, surpassing the levels found in free-standing Gd/Gr and Gd/-
Gr/Ir(111), indicating an additional charge transfer from Co(111) to the graphene
orbitals. Furthermore, it should be emphasized that upon evaluating the total ener-
gies of the FM and AFM configurations in Gd/Gr/Co(111), the FM configuration is
found to be energetically favored, indicating a preference for a parallel alignment of
the magnetic moments.

Upon examination of the ∆E values presented in Table 6.1, it is evident that both the
FM and AFM configurations prefer an in-plane easy-axis. In the case of FM, disabling
SOC on the Gd atom results in a ∆E of −1.016 meV, indicating Co’s inclination to-
wards an in-plane magnetization. Conversely, disabling SOC on the Co atoms yields
a ∆E of 0.641 meV, signifying Gd’s preference for a perpendicular easy-axis. These
results suggest that, like the Ir(111) surface, Co(111) promotes an in-plane magneti-
zation, while Gd promotes an out-of-plane magnetization. However, unlike Ir(111),
which exhibits limited spin-polarization, the Co(111) surface generates a large mag-
netic moment that competes with Gd’s magnetic moment, and thus can fully induce
a shift in the easy-axis of the Gd/Gr system. In contrast to Ir(111), it can be inferred
that Co(111) exerts a significant influence on a RE/Gr system, indicating that it is
unsuitable for studying free-standing RE/Gr or similar heterostructures due to the
strong electronic and magnetic interactions.

Further research is recommended to determine how to improve the MAE by selecting
a metallic substrate that preserves the same easy-axis as the RE/Gr system, thereby
enhancing the MAE. However, a small MAE, such as the one observed in Gd/Gr,
in competition with the substrate, can lead to intriguing phenomena that ultimately
result in a canting of the magnetization.
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Chapter 7
Engineering spin-orbit effects and
Berry curvature by deposition of a Eu
monolayer on WSe2
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7 Engineering spin-orbit effects and Berry curvature by deposition of a Eu
monolayer on WSe2

Motivated by recent advancements in 2D spintronics, the following chapter demon-
strates the utilization of rare-earth atoms on 2D-materials to exploit magnetic
anisotropy driven by the 4f electrons. Specifically, the study focuses on a Eu
monolayer on a 1H-WSe2 monolayer as a promising platform for engineering
spin-orbit effects and Berry curvature. The Eu/WSe2 system exhibits high mag-
netic anisotropy and valley-dependent polarization of spin and orbital angular
momenta, originating from the interplay between localized 4f magnetic moments
of Eu and mobile charge carriers of Eu and WSe2, as well as magnetic and
spin-orbit proximity effects at the interface. The magnetic properties analysis
shows a ferromagnetic configuration with an out-of-plane easy-axis of the magne-
tization, promoting a pronounced anomalous Hall effect in the proposed system.
Hence, the study proposes 4f -atoms deposited on transition-metal dichalcogenides
as a promising platform for 2D spintronics. The findings are presented in the
manuscript titled “Engineering spin-orbit effects and Berry curvature by deposi-
tion of a Eu monolayer on WSe2” by Johanna P. Carbone, Dongwook Go, Yuriy
Mokrousov, Gustav Bihlmayer, and Stefan Blügel [211].

The chapter is structured as follows:

– Section 7.1 provides an overview of the structural and electronic properties of Eu
atoms adsorbed on WSe2 in a high-coverage situation (1×1 unit cell), including
symmetry considerations.

– In Section 7.2, the magnetic properties of the structure are analyzed, including
magnetic anisotropy and the magnetic order.

– Section 7.3 discusses the spin and orbital texture produced in the material due
to the interaction between different components.

– The observation of anomalous Hall effect is explained in Section 7.8, which
discusses how the combination of properties arising from the various components
in the system leads to this effect.

– Finally, in Section 7.5, the choice of the simulation cell is discussed by comparing
a high-coverage situation of the Eu atom with a more dilute situation in a√
3 ×
√
3 supercell.
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Computational details

The results presented in the following sections were obtained using the FLAPW
method within the DFT+U framework, as implemented in FLEUR. A 1 × 1
unit cell was simulated, which included one Eu atom, two Se atoms, and one
W atom, with a lattice constant of a = 3.327 Å, as illustrated in Fig. 7.1. The
plane-wave basis cut-off was set to Kmax = 4.0 a−10 , and the maximum angular
momentum inside the MT spheres was set to lmax = 10 for Eu and lmax = 8
for W and Se. To converge the SCF cycle, the PBE prescription of the GGA
exchange-correlation functional and a k-point mesh of 10 × 10 were used. The
magnetic properties, such as the MAE and the spin-spiral, were computed using
a 21 × 21 k-point mesh. To account for the highly localized 4f electrons of Eu,
the DFT+U method was used with parameters set to U = 6.7 eV and J = 0.7
eV. In the simulations of the dilute case in a larger supercell (Fig. 7.9 (b)), the
same parameters were adopted, with a 20 × 20 k-point mesh. The DFT energy
bands are compared to the band structure obtained by constructing maximally-
localized Wannier functions (MLWFs) in the FLAPW formalism [212] and the
open-source code Wannier90 [213]. The initial projections for the Wannier
functions are chosen to be s, d, f orbitals for the Eu atom, p orbitals for the Se
atoms and s, d orbitals for the W atom. In this way, 50 MLWFs are constructed,
where the frozen window maximum was set 0.4 eV above the Fermi energy. From
the converged MLWFs, the Hamiltonian, spin, and orbital operators are written
in real space, which are Fourier-transformed in an interpolated k-mesh for the
calculation of spin-orbital texture, Berry curvature, and AHE.

7.1 Structural and electronic properties of Eu atoms on WSe2

As mentioned in Section 3.2, the coexistence of strong SOC and a net magnetization
is crucial for achieving AHC. This study aims to create this additional contribution to
the Hall conductivity by combining Eu atoms with a monolayer of a TMDC material,
namely WSe2. This approach is motivated by the extensive research on magnetotrans-
port properties in 2D-materials for the development of innovative magnetic storage
devices. WSe2 is a member of the TMDC family of materials and its 1H-phase mono-
layer has a triatomic structure with one layer of W sandwiched between two Se layers.
Specifically, each W atom is covalently bonded to six Se atoms, resulting in a similar
atom arrangement to that of graphene when viewed from above. Due to the presence
of the heavy W atom in the structure, WSe2 exhibits significant SOC effects, which
play a crucial role in the phenomena under investigation.

The second essential ingredient is a strong magnetization, which is achieved by ad-
sorbing a magnetic atom, in this case Eu. To determine the adsorption position of Eu
on the TMDC, three sites were tested: on top of the W atom (T-W), on top of the Se
atom (T-Se), and in the center of the hexagon formed by W and Se atoms (H). The
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Figure 7.1: Left: 1×1 unit cell in a top-view of Eu (red spheres) monolayer deposited
on top of the W atom (grey spheres) of a single layer of WSe2. Se atoms
are indicated by green spheres. Right: side-view of the Eu monlayer on
top of the WSe2 monolayer. The magnetic 4f -atom is adsorbed on top of
the W.

relaxation of the Eu atoms on top of the 2D-material was undertaken with subsequent
calculations conducted on a 1×1 unit cell. For each adsorption site, Table 7.1 presents
the calculated adsorption energy, the perpendicular distance from the first Se layer,
the d and f electron occupations in the valence shell of Eu, and the spin magnetic
moment of Eu. The adsorption energies were determined by computing the energy
difference between the heterostructure and the individual components, specifically
EEu/WSe2 − EEu − EWSe2 . In all three instances, the focc generally adheres to Hund’s
rules, which is also evidenced by a large magnetic moment close to 7 µB. Any devia-
tions from this value primarily stem from the spin-polarization of Eu d electrons due
to intra-atomic exchange interactions between 4f and 5d electrons. By evaluating the
difference nd↑ − nd↓ within the MT spheres, the MT d magnetic moment is estimated
to be 0.306 µB at the H-site, 0.463 µB at the T-Se site, and 0.2 µB at the T-W site. In
all cases, smaller contributions to the magnetic moment also arise from spin-polarized
intra-atomic s and p states.

It is apparent from the adsorption energies that the most advantageous site for ad-
sorption is on the top of the W atoms, which also brings the Eu atom into closer
proximity with the WSe2 monolayer. The unit cell and a side view of the structure

Site Eads [eV] d0 [Å] docc focc mRE
s [µB]

H −0.312 2.830 0.520 6.861 7.240

T-W −0.474 2.500 0.522 6.865 7.130

T-Se −0.341 3.119 0.550 6.858 7.440

Table 7.1: Ground state properties for Eu in the three adsorption sites on WSe2:
adsorption energy in eV, adsorption distance in Å, d and f occupation of
the magnetic RE atom, and spin magnetic moment of the RE atom in µB.
Calculations have been performed without SOC.
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7.1 Structural and electronic properties of Eu atoms on WSe2

can be seen in Fig. 7.1. In the local framework of the RE atom, there are three nearest
neighbors represented by Se atoms of the first layer, which generate a trigonal crystal
field with C3v symmetry.

An analysis of the spin-resolved DOS is shown in Fig. 7.2 (a) and (b), where the
DOS is decomposed into its orbital contributions. Notably, the presence of the Eu
monolayer leads to a closure of the semiconducting gap observed in pristine WSe2,
resulting in a metallic nature. Initially, the electronic structure of the system can be
described by considering the electronic structure of the WSe2 monolayer that acquires
spin-polarized conduction electrons from Eu through hybridization. This causes the

Figure 7.2: (a) Contribution to the local DOS of the f and d electrons of Eu. The
total DOS (TDOS) is shown as grey shaded area. (b) Contribution to the
local DOS of the s, p, d electrons of Eu, d electrons of W and p electrons
of Se. Both DOS in (a) and (b) have been calculated without SOC.
(c) Band structure of Eu/WSe2 calculated with DFT+U (blue dashed
line represents the majority channel and red dashed line represents the
minority channel) and with DFT+U+SOC (black solid line). (d) First
Brillouin zone with high-symmetry points.

145



7 Engineering spin-orbit effects and Berry curvature by deposition of a Eu
monolayer on WSe2

Fermi surface to intersect the previously unoccupied conduction states of WSe2. Con-
sequently, mainly spin-polarized Eu d (and s) states hybridizing with W d-states are
observed in the vicinity of the Fermi surface.

To provide more detailed insight, Fig. 7.2 (a) illustrates the TDOS, as well as the d
(blue) and f (red) DOS of Eu. The upper panel represents the majority states, while
the lower panel shows the minority states. The occupied 4f spin-up peak is located at
approximately −2.5 eV, while the spin-down states that are unoccupied are situated
around +8 eV, indicating an exchange splitting of about ∼ 11 eV. The Eu d-states
exhibit a significant band-width extending over more than 10 eV, indicative of their
extensive delocalization and largely unoccupied nature. This behavior is consistent
with the occupancy of a small fraction of Eu d-electrons, with docc = 0.522 as shown in
Tab. 7.1. Such occupancy results from the hybridization of the Eu atom with neigh-
boring atoms when it is incorporated into the solid phase, in contrast to its isolated
state as a single atom. A detailed discussion of this effect is provided in Section 7.5,
in the case of quasi-single Eu atoms on top of WSe2.

The TDOS exhibits spin-polarization as evidenced by the unequal spin-up and spin-
down channels, which can also be observed in the orbital contributions of the s, p, d
states of Eu, the d states of W, and the p states of Se, as highlighted in Fig. 7.2.
The figure zooms in on the energy range close to the Fermi energy from −3 eV to
+3 eV. In this energy range, large contributions from Eu-d, W-d, and Se-p states
are found, along with strong spin-polarization. The strongest exchange splitting is
observed for Eu-d electrons, which is a result of the intra-atomic ferromagnetic ex-
change coupling between localized 4f electrons and the delocalized d states of Eu.
The large 4f magnetic moments also affect other states in the structure, as seen near
the Fermi energy (±0.5 eV) for W-d, Se-p, and Eu-s. Concerning the hybridization
effects arising in this energy window, Fig. 7.3 reports the calculated product between
weights of different orbitals belonging to different chemical species. Close to the Fermi
energy, it becomes evident that various hybridization processes are significant, such
as those between Eu’s more delocalized d and s electrons with W-d electrons, as well
as interactions between Eu-s with Se-p. Between −1.5 eV and −2.5 eV, interactions
between f states of Eu and d states of W can be found. These observations confirm
the presence of an interaction between the substrate and the magnetic atom. To gain
an understanding of the energy position of different states in the system, the orbital
contributions to the band structure are presented in Fig. D.2 of Appendix D.

The role of the spin-orbit coupling is analyzed in Fig. 7.2 (c) displaying a comparison
between the spin-resolved band structure in the vicinity of the Fermi energy along
high-symmetry lines (for details see Fig. 7.2 (d)) neglecting the SOC by which major-
ity states (blue lines) and minority states (red lines) are well-defined eigenstates with
the ones calculated with SOC (black lines). A strong spin-orbit splitting is witnessed
at the K and K’-points around −1.6 eV. These valley-shaped states have primarily
W-d character and undergo spin-orbit splitting by about ±0.18 eV to −1.42 eV and
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−1.78 eV. In the same way also the crossing point at K just above the Fermi energy is
split up into two separated bands, while on the path between K and Γ just below the
Fermi energy an avoided crossing is generated. This plays a crucial role in determin-
ing the strength of the magnetic anisotropy, in generating large Berry curvature and
contributing to the AHE. Concerning the energy bands from K’ to Γ, similar effects
arise but it can be already noticed that the two high symmetry points K and K’ are
not equivalent due to the absence of structural inversion symmetry. As anticipated

Figure 7.3: Hybridization analysis of electronic states with respect to different orbitals
belonging to different chemical elements of the system for a monolayer of
Eu on a WSe2 monolayer: f electrons of Eu with d electrons of W, d
electrons of Eu with d electrons of W, s electrons of Eu with p electrons
of Se and s electrons of Eu with d electrons of W. The hybridization
effects are calculated as the product of the weights of two different orbitals.
Calculations are carried out including the spin-orbit coupling and explicit
spin-analysis is neglected.
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from the large DOS of W-d at the Fermi energy, discussed in Fig. 7.2 (b), in general,
the SOC effect arises mainly from the W atom. The impact of increasing the SOC
strength on the system is demonstrated in the band structure shown in Fig. D.1 in
Appendix D. This augmentation results in energy gaps, avoided crossings, and an
increase in spin splitting, including at the K-valley.

7.2 Magnetic properties

Upon examining the electronic properties and identifying significant orbital hybridiza-
tions and SOC effects, the next crucial step towards achieving AHC is the establish-
ment of strong magnetism. High magnetic anisotropy energies are crucial for magnetic
data-storage devices as they ensure the stability of a specific direction of the magnetic
moments against external perturbations such as thermal fluctuations or scattering
from conduction electrons. This stiffness of magnetization is a key ingredient for
these devices to function effectively.

The total energy of the Eu/WSe2 system is plotted as a function of the angle θ be-
tween the surface normal and the magnetization direction in Fig. 7.4 (a). By rotating
the magnetization from the out-of-plane position (θ = 0○) to the in-plane position
(θ = 90○) and calculating the total energy for each direction in 10-degree steps, it was
found that the minimum energy state corresponds to an out-of-plane easy-axis of the
magnetization, with a difference in energy of 1.75 meV per unit cell compared to the
in-plane state. The magnetic anisotropy energy observed in Eu/WSe2 is quite large
for half-filled 4f -shells, and can be attributed to the electronic hybridization between
Eu and WSe2.

This is mainly due to two aspects: 1) the direct f − d interaction between Eu and
W observed in Fig. 7.3; 2) the ferromagnetic spin-polarization of the Eu-d electrons,
which results from intra-atomic exchange with 4f electrons, and the hybridization of
the Eu and W d-electrons at the Fermi surface. Fig. 7.2 (c) shows a comparison of the
band structure with and without SOC, which highlights the significant SOC influence
on the Eu-W hybridization at the Fermi energy. By turning the spin-quantization
axis of the Eu-4f electrons, the spin-quantization axis of the Eu-d electrons follows.
The spin-orbit dependent interaction between the spin-quantization axis of the Eu-d
states and the crystal lattice dependent spin-orbit interaction of the W-d electrons
leads to the observed magnetic anisotropy energy in Fig. 7.4 (a). Furthermore, the
MAE is around two orders of magnitude smaller for Eu adsorbed on top of Gr (ap-
proximately 0.06 meV), where hybridization effects are minimal, which supports this
hypothesis.

The significant MAE observed in the Eu system is a favorable outcome, given that
maintaining a stable magnetization is essential. Moreover, the AHE indicates a linear
relationship with the z component of magnetization expressed as M cos θ, thereby
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rendering it a valuable technique for quantifying magnetization in magnetic materials
[214, 215]. To explore the magnetic ordering in the ground state, the total energy
is examined for specific spin-spiral states with a wave vector q (defined in recipro-
cal lattice vector units) along the high-symmetry lines in the 2D Brillouin zone. A
spin-spiral state refers to a magnetic configuration where the magnetic moments are
rotated by a constant angle from one atom to the next along a particular direction. It
represents the exact mathematical solution of the classical Heisenberg model applied
to periodic crystal lattices, and the q-state with the lowest energy is the magnetic
ground state. The high-symmetry points of the Brillouin zone correspond to a certain
periodic magnetic order in real space (for hexagonal lattices, see [216]). Specifically,
the magnetization of an atom at position R can be expressed as

M(R) =M

⎛
⎜
⎜
⎝

cos(q ⋅R) sinβ

sin(q ⋅R) sinβ

cosβ

⎞
⎟
⎟
⎠

, (7.1)

where β is defined as the angle between the magnetic moment and the rotation axis
(see [217]). The generalized Bloch theorem [218], as implemented in the FLEUR code

Figure 7.4: (a) Magnetic anisotropy energy curve: the total energy of the system is
plotted versus the polar angle θ of the magnetization measured from the
z-axis. (b) The energy of the spin-spiral states of a flat spiral, i.e. with
cone angle β = π/2, computed for the values of the q-vector along the
Γ−K−M path, presented with respect to the ferromagnetic ground state
at the Γ-point. (c) The magnetic configurations at the high-symmetry
points.
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[219], is a highly efficient numerical method for calculating the DFT total energy for a
spin-spiral state. By applying this method, the energy is calculated for various values
of the q-vector of a spin spiral along the Γ−K−M path, and the results are displayed in
Fig. 7.4 (b). The inset in Fig. 7.2 (b) depicts the first Brillouin zone, which highlights
the high-symmetry points. Moreover, an overview of the magnetic orders at these
points is shown in Fig. 7.4 (c). The energy minimum is found at Γ, indicating that
the system favors a ferromagnetic ground state. Additionally, the energy differences
between Γ and the other two high-symmetry points, K (non-collinear 120○-Néel state)
and M (row-wise antiferromagnetic state), are about 70 meV and 50 meV, respectively.
Hence, the Néel and the antiferromagnetic state are not energetically favorable.

7.3 Spin and orbital textures

The spatial inversion symmetry (I) operation maps k to −k, resulting in degenerate
bands around the Γ point for each spin direction, given by:

ϵ(k, ↑) = ϵ(−k, ↑) and ϵ(k, ↓) = ϵ(−k, ↓). (7.2)

Furthermore, due to time-reversal symmetry, we have ϵ(k, ↑ (↓)) = ϵ(−k, ↓ (↑)), re-
sulting in double-degenerate bands:

ϵ(k, ↑)
I
= ϵ(−k, ↑)

TR
= ϵ(k, ↓)

I
= ϵ(−k, ↓). (7.3)

The breaking of structural inversion symmetry in a monolayer of TMDC results in
the appearance of non-identical valleys K and K’ in k-space, as illustrated in Fig. 7.5,

ϵ(k, ↑)
TR
= ϵ(−k, ↓)

I
≠ ϵ(−k, ↑)

TR
= ϵ(k, ↓), (7.4)

leading to valley-specific orbital angular momentum and Berry curvature, giving rise
to the valley-orbital Hall effect [220–222]. By depositing Eu atoms on WSe2, the

Figure 7.5: K−valley splitting in a monolayer of TMDCs due to the absence of inver-
sion symmetry and enhanced by the presence of SOC.
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Rashba effect can be induced by breaking the mirror symmetry with respect to the
2D plane [223, 224]. The breaking of symmetry results in the creation of a potential
gradient on the surface that produces a SOC field when an electron travels through
the resulting electric field, leading to a magnetic field interacting with its spin. The
Rashba effect is induced not only on the spin but also on the orbital angular mo-
mentum, which is known as the orbital Rashba effect (ORE) [225–228], and plays a
crucial role in magnetotransport phenomena. Similar to the Rashba effect, where the
electron’s spin is locked to its momentum, in the ORE, the electron’s orbital angular
momentum L is locked to its momentum k. The Rashba Hamiltonian can be written
to describe this effect, where the spin operator is replaced with the orbital angular
momentum operator [227]:

HOR(k) =
αOR

h̵
L ⋅ (ẑ × k), (7.5)

where αOR is the orbital Rashba parameter identifying the strength of the effect.
The ORE is observed in situations where there is significant orbital hybridization at
surfaces. In such cases, an electric dipole is generated, which couples to the electric
field created by the breaking of inversion symmetry at the surface. This interaction
affects states having different orbital angular momentum, leading to the splitting of
the bands and the emergence of orbital textures in reciprocal space. Notably, the
ORE occurs even in the absence of SOC, and the conventional spin Rashba effect
arises only after SOC is introduced. Therefore, spin Rashba splitting is a secondary
effect driven by the ORE.

Thus, the spin and orbital textures are essential for comprehending spin and orbital
magneto-transport phenomena, as previously documented in [229, 230]. The following
analysis provides an overview of the spin and orbital textures, represented as SFS(k)
and LFS(k), respectively, in the k-space at the Fermi surface of Eu/WSe2 (Fig. 7.3).
Following Ref. [230], the orbital texture is evaluated as the expectation value of the
orbital angular momentum operator L defined within the muffin-tin sphere of each
atom,

LFS(k) = ∑
n

2 ⟨unk∣L ∣unk⟩

1 + cosh[(EF −Enk)/kBT ]
, (7.6)

Here, unk is the periodic part of the Bloch state with band index n. The denominator
expresses the Fermi-Dirac temperature broadening of the Fermi surface. kBT is set
to kBT = 25 meV for broadening, where kB is the Boltzmann constant and T is the
temperature. Enk corresponds to the energy band, and EF to the Fermi energy. The
spin texture is obtained replacing L by S in Eq. (7.6).

In general, the breaking of inversion symmetry results in the inequivalence of the K
and K’ valleys. As shown in Fig. 7.6 (a), the z component of the orbital angular
momentum exhibits a 3-fold rotational symmetry as expected, along with valley-
dependent orbital textures with opposite signs at the K and K’ valleys, similar to the
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conduction states of the bare WSe2 [231]. The z component of the spin angular mo-
mentum is shown in Fig. 7.6 (b). Although it satisfies a three-fold rotation symmetry,
it nearly exhibits a six-fold rotation symmetry. This is because the spin magnetism
is mainly driven by Eu layer, which has a six-fold rotation symmetry if the substrate
is absent. Slight deviation of the spin texture from the six-fold rotation symmetry
indicates hybridization of Eu atoms with the substrate, where proximity-induced W
d-states exhibit finite spin polarization via an indirect exchange interaction between
itinerant Eu s, d-electrons and the spin moments of localized f electrons. These
features are directly associated with the orbital contributions to the band structure
discussed in Fig. 7.2 and in Fig. D.2. For example, around the Γ point, Eu-d majority
states prevail, resulting in a positive value of ⟨Sz⟩FS. Concerning the K and K′ points

Figure 7.6: Spin and orbital texture in k-space at the Fermi surface. (a) Expectation
value for the out-of-plane component of the orbital angular momentum at
the Fermi surface ⟨Lz⟩FS. (b) Expectation value of the in-plane compo-
nent of the orbital angular momentum ⟨Lxy⟩FS =

√
⟨Lx⟩

2
FS + ⟨Ly⟩

2
FS. Anal-

ogously, the z-component and the magnitude of the in-plane component
for the spin expectation value at the Fermi surface are shown in (c) and
(d), respectively. ⟨Lz⟩FS > (<)0 and ⟨Sz⟩FS > (<)0 (color blue (red)) cor-
responds the angular-momentum direction (anti-)parallel to the spin of
Eu-4f electrons.
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7.4 Anomalous Hall conductivity

instead, the biggest contribution comes from the W-d states with a spin-orbit split-
ting that competes in energy with the exchange splitting of the hybridizing s and d
electrons of Eu, causing the majority states to lie around the Fermi energy and a full
quantum mixture of electronic states resulting in three-dimensional spin and angular
moment textures. When comparing Figs. 7.6 (a) to (d) around the K and K′ points,
it is evident that similar values for ⟨S⟩FS and ⟨L⟩FS for the out-of-plane in in-plane
components are observed, respectively.

In Fig. 7.6 (c), the in-plane component of the orbital angular momentum, ⟨Lxy⟩FS =√
⟨Lx⟩

2
FS + ⟨Ly⟩

2
FS, displays a Rashba-like texture, which arises from the hybridization

between Eu and WSe2 and the consequent breaking of z-reflection mirror symmetry.
Notably, this orbital Rashba effect is independent of the SOC and is solely due to the
orbital hybridization. When SOC is taken into account, an orbital texture emerges,
coupled with the spin texture, which leads to the emergence of the spin Rashba
effect, as shown in Fig. 7.6 (d). Remarkably, the in-plane orbital and spin textures
share a striking resemblance, indicating that both have the same origin − the orbital
hybridization. This similarity also explains why a three-fold rotation symmetry is
evident in both the in-plane spin and orbital textures, but not for the out-of-plane
component.

7.4 Anomalous Hall conductivity

The magnetic and orbital properties, coupled with the perpendicular ferromagnetic
ordering, provide a promising starting point for investigating the anomalous conduc-
tivity in the system. The Berry curvature (Ω) is a useful quantity for characteriz-
ing this behavior. Breaking of spatial inversion symmetry ensures that the Berry
curvature at opposite k points has opposite sign but equal magnitude, such that
Ω(k) = −Ω(−k), leading to distinguishable behavior at the two K-valleys. However,
the integration over the entire Brillouin zone results in vanishing values. To obtain
finite values of Ω, an additional symmetry breaking mechanism must be considered,
arising from the presence of magnetic Eu atoms, which breaks time-reversal symmetry
and leads to markedly different behavior at the two K-valleys (Ω(k) ≠ −Ω(−k)).

The interplay between orbital hybridizations due to proximity and SOC can lead to
small energy gaps or avoided crossings between the energy bands, as illustrated in
Fig. 7.2. Such regions are expected to generate a significant Berry curvature. This is
evident from the features in the Berry curvature depicted in Fig. 7.7 (a), where the
calculated band structure along Γ−K−M−K’−Γ is displayed with the corresponding
Berry curvature values in color scale. Regions of significant Ωnk can be identified at
specific points where the degeneracy of energy bands is lifted by the SOC. This is
particularly evident for the splitting of bands between Γ and K which results in a
band inversion. Fig. 7.7 (b) illustrates the Berry curvature summed over all occupied
states below the Fermi energy for the same k-path, confirming that hotspots in the
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monolayer on WSe2

Figure 7.7: (a) Band structure around the Fermi energy with color scale indicating
the value of the Berry curvature Ωnk. (b) Berry curvature summed over
all occupied states along the k-path Γ−K−M−K’−Γ.

Berry curvature arise from SOC-induced avoided crossings found along the Γ−K and
Γ−K’ paths. Furthermore, the two K and K’ points exhibit different Berry curvature.
Specifically, the K point has a positive peak, while the K’ point displays a broad
negative feature. Along the path K’−Γ an intense peak appears characterized by
inverted sign with respect to the peak between Γ−K.

By integrating the Berry curvature over the Brillouin zone, it is possible to calculate
the intrinsic anomalous Hall conductivity. Fig. 7.8 shows the anomalous conductivity
as a function of the Fermi energy, which is varied with respect to the original value

Figure 7.8: Anomalous Hall conductivity as a function of the Fermi level.
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7.5 Effect of Eu coverage

Etrue
F . Major peaks are found around 2 eV below the Fermi energy, slightly above the

Fermi energy, and 1 eV above the Fermi energy. These energies are where avoided
band crossings induced by the SOC are found. A double-peak feature right above the
Fermi energy implies an interesting possibility to tune the Hall response by electron
doping, which may be experimentally observed. Meanwhile, the peak at −2 eV is
where the K and K’ valleys of WSe2 in k-space are situated. From Fig. 7.2 (a) it is
clear that SOC lifts the degeneracy of the band at the K and K’ valleys which have
predominantly d character from the W atom such that a contribution to the Berry
curvature arises.

7.5 Effect of Eu coverage

In an experimental set-up, it is possible that the WSe2 substrate may not be fully
covered by Eu atoms. To examine the impact of Eu coverage on the electronic and
magnetic properties, the electronic structures of Eu in two different unit cells are
compared: the previous studied 1×1 unit cell (Fig. 7.9 (a)) and the

√
3×
√
3 unit cell

(Fig. 7.9 (b)), where Eu has 1/3 coverage compared to the 1 × 1 unit cell.

Table 7.2 summarizes the adsorption energies, distances from the substrate, total
magnetic moment of the Eu atom, and its f - and d-state occupation for the

√
3×
√
3

cell. In the scenario where Eu atoms sparsely cover the WSe2 substrate, the behavior
of Eu is similar to that of a single-atom adsorbate. Specifically, the adsorption energy
slightly increases, suggesting a stronger bonding towards the substrate. Furthermore,
the occupation number of Eu f -electrons approaches the atomic occupation of 7, and
the occupation number of Eu d-electrons (docc) is reduced by a factor of 4. This leads
to negligible d contributions to mRE

s , in contrast to the scenario where the coverage
is dense. Similar to the 1 × 1 cell, the preferred adsorption site is located on the top
of a W atom.

Reducing the coverage of Eu on WSe2 leads to a decrease in the magnetic proximity
of WSe2 due to the reduction in hybridization between Eu and W d-electrons. Si-
multaneously, the semiconducting properties of the WSe2 monolayer reemerge. Upon

Site Eads [eV] d0 [Å] docc focc mRE
s [µB]

H −0.611 2.582 0.128 6.923 6.991

T-W −0.690 2.500 0.158 6.923 6.994

T-Se −0.401 3.112 0.085 6.922 7.000

Table 7.2: Adsorption energy, distance of the Eu atom from the WSe2 layer, the mag-
netic moment and the f and d occupations in the muffin-tin sphere of the
Eu atom for the different adsorption sites in the

√
3×
√
3 cell. Calculations

have been performed without SOC.
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examination of the band structure of (
√
3×
√
3)-Eu/WSe2 in Fig. 7.9 (d), a band gap

of approximately ±0.4 eV around −1 eV is observed. However, (
√
3 ×
√
3)-Eu/WSe2

becomes a conductor due to the doping of WSe2 by Eu s, p, and d-electrons, albeit to
a lesser extent than in the dense coverage case. When compared to the full coverage
case depicted in Fig. 7.9 (c), the exchange splitting of the states at the Fermi energy
(the energy difference between the red and blue lines) is significantly smaller, indicat-
ing indeed a reduction in magnetic proximity. Fig. D.3 in Appendix D displays the
respective spin-polarized DOS. It is evident that the bands immediately below the
Fermi energy primarily correspond to the s states of Eu and, to a lesser extent, to
the d states.

The computed differential charge densities (nEu/WSe2 −nEu−nWSe2) shown in Fig. 7.10
for both concentrations of the RE atom reveal less charge delocalization in the

√
3×
√
3

supercell, when compared on the same color scale, with the high coverage situation.

Figure 7.9: Comparison of the electronic structure of Eu monolayer on a WSe2 mono-
layer for two simulation cells: (a) 1 × 1 unit cell (high coverage of Eu)
and (b)

√
3 ×
√
3 unit cell (low coverage of Eu). The corresponding band

structures determined neglecting SOC are shown in (c) and (d), where
blue and red lines indicate majority and minority states, respectively.
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7.5 Effect of Eu coverage

This is indicated by blue regions (loss of charge) and red regions (gain of charge)
between the involved atoms. This enhanced charge transfer within the 1 × 1 unit cell
leads to the disappearance of all semiconducting features of bare WSe2 in the band
structure.

Fig. 7.11 (a) displays the respective magnetic anisotropy energy as function of the
magnetization direction in the dilute situation. In agreement with the full-coverage
case, the easy-axis is out-of-plane and consistent with the explanation given in Sec-
tion 7.2 that the interaction of spin carrying Eu and the spin-orbit carrying W d-
electrons are the origin of the magnetocrystalline anisotropy. The energy of the in-
plane hard axis is only 0.2 meV per

√
3 ×
√
3 unit cell, much smaller than the 1.75

meV per 1 × 1 unit cell.
Figs. 7.11 (b) and (c) demonstrate the effect of turning off the spin-orbit coupling in
the Eu and W muffin-tin spheres, respectively, in the low-coverage situation. These
figures reveal that in this case, the MAE is solely driven by the substrate, particularly
by the orbital interactions of W with its surrounding environment. Indeed, Fig. 7.11
(c) illustrates that the energy of the system remains unchanged when the spin mo-
ments of Eu and Se are rotated, indicating an atomic nature of Eu and a negligible
Eu-substrate orbital hybridization compared to the 1×1 unit cell. Thus, a high cover-
age of Eu atoms appears to be necessary for inducing significant MAE by establishing
strong orbital hybridizations and enabling measurements of the anomalous Hall effect.

Figure 7.10: Differential charge density of Eu/WSe2 in the two simulation cells. (a)
The 1 × 1 unit cell in the (110) plane. (b) The

√
3 ×
√
3 unit cell in the

(010) and (1-10) planes. The color scale ranges from −0.005 to +0.005
and is consistent in both cases. The interaction between the Eu atom and
the WSe2 substrate involves more charge in the 1 × 1 unit cell compared
to the

√
3 ×
√
3 unit cell.
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7 Engineering spin-orbit effects and Berry curvature by deposition of a Eu
monolayer on WSe2

Figure 7.11: (a) The magnetic anisotropy curve in the zx-plane for the
√
3×
√
3 sim-

ulation cell of Eu/WSe2. Similar to the 1 × 1 cell, the dilute cover-
age situation exhibits an out-of-plane easy-axis. However, the magnetic
anisotropy energy from the in-plane direction is significantly reduced to
approximately ∼ 0.2 meV. (b) MAE curve turning off SOC on the Eu
and considering only the W+Se contributions. (c) MAE curve turning
off SOC on the W and considering only the Eu+Se contributions.
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Chapter 8
Gd and Ho atoms deposited on
WSe2: coverage dependence of
magnetic properties

159



8 Gd and Ho atoms deposited on WSe2: coverage dependence of magnetic properties

In the following chapter, a glimpse into the electronic and magnetic character-
istics of Gd and Ho adsorbed onto a WSe2 monolayer is provided. In light of
the findings obtained for Eu on WSe2, the inquiry naturally progresses towards
examining other rare-earth elements that exhibit dissimilar chemical interactions,
such as Gd, or that possess an open 4f -shell, as in the case of Ho.

The chapter is structured as follows:

– Section 8.1 focuses on examining the structural and electronic properties of Gd
atoms when adsorbed on WSe2 in a high-coverage scenario (1 × 1 unit cell).
The subsequent discussion delves into the magnetic anisotropy exhibited by the
system.

– In Section 8.2, the study on a dilute distribution of Gd atoms on WSe2 is
presented, utilizing a

√
3×
√
3 simulation cell. The electronic characteristics and

magnetic anisotropy are examined, and the findings demonstrate that, unlike
Eu/WSe2, the magnetic anisotropy energy is increased by a low concentration
of Gd atoms due to their chemically active 5d electrons.

– Sections 8.4 and 8.5 conclude the study by investigating the effect of replacing
the half-filled 4f -atoms with open 4f -shell Ho atoms. The adsorption of Ho on
WSe2 and its corresponding magnetic anisotropy is discussed in both high and
low coverage situations.

Computational details

The DFT and Hubbard parameters that were used in the Eu/WSe2 system
were also employed for the Gd/WSe2 system. Additionally, for the Ho/WSe2
system, the same DFT parameters as for Eu/WSe2 were used, while the U and
J parameters from Ho/Gr were employed, namely U = 7.03 eV and J = 0.83 eV.

8.1 Gd atoms deposited on 1 × 1 WSe2: monolayer case

The Gd atom has been adsorbed on the three different adsorption sites of 1× 1 WSe2
and the respective adsorption energies, perpendicular distances from the first Se layer,
as well as d and f occupations of the Gd atom and its spin magnetic moment are
summarized in Table 8.1. In general, Gd tends to follow Hund’s rules with an f
occupation close to 7 electrons, which reflects in the very large magnetic moment
of Gd > 7 µB. The deviations from a 7 µB magnetic moment in all cases can be
attributed to the presence of one 5d electron, which results in magnetic moments of
approximately 0.55 µB on the H-site, 0.46 µB on the T-W site, and 0.52 µB on the
T-Se site, for the d states. Similar to the Eu/WSe2 case, the adsorption energies
indicate a preference for on-top adsorption on the W atoms, with similar magnitudes
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8.1 Gd atoms deposited on 1 × 1 WSe2: monolayer case

Table 8.1: Ground state properties for Gd in the three adsorption sites on 1×1 WSe2:
adsorption energy in eV, adsorption distance in Å, d and f occupation of
the magnetic RE atom, and spin magnetic moment of the RE atom in µB.
Calculations have been performed without SOC.

Site Eads [eV] d0 [Å] docc focc mRE
s [µB]

H −0.319 2.716 1.011 6.980 7.589

T-W −0.507 2.377 1.020 6.990 7.509

T-Se −0.415 3.001 1.000 6.977 7.564

across all sites and in comparison to Eu/WSe2. This places the Gd atoms in close
proximity to the TMDC monolayer.

In Fig. 8.1 (a), the spin-polarized density of states of the system is depicted. The grey
region represents the TDOS, while the red and blue regions correspond to the f and
d states of the Gd atom, respectively. The d states exhibit a broad energy range due
to their delocalization, while the f states exhibit two sharp peaks at approximately
−8 eV and 3 eV. The presence of the magnetic Gd atom leads to a strongly spin-
polarized electronic structure, as demonstrated by the spin-polarized band structure
shown in Fig. 8.1 (b). In this figure, the blue and red colors indicate the spin-up and
spin-down states, respectively. The overall band structure is similar to that observed
in Eu/WSe2, albeit with a slightly higher degree of spin-splitting due to the increased
magnetic interaction compared to Eu.

Figure 8.1: (a) Spin-resolved DOS of 1 × 1 Gd/WSe2: grey represents the TDOS,
red and blue the f and d states of Gd. (b) Spin-resolved band structure
highlighting the 4f states. Calculations were performed without SOC.
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8 Gd and Ho atoms deposited on WSe2: coverage dependence of magnetic properties

Figure 8.2: The magnetic anisotropy energy curve of Gd on 1 × 1 WSe2 exhibits an
easy-axis oriented out-of-plane, and an energy difference of around ∼ 0.4
meV relative to the in-plane direction.

The MAE calculation results (refer to Fig. 8.2) reveal an out-of-plane easy-axis and
a four times smaller anisotropy than the one observed in 1 × 1 Eu/WSe2 of approxi-
mately 0.4 meV. This phenomenon may be explained by taking into account that the
occupied 4f states are located at a considerable depth in energy, which means they
cannot interact with the substrate states. The evaluation of the interaction between
various orbital contributions, as depicted in the band structures in Fig. 8.3, sup-
ports this observation. The color scale represents the product of weights attributed
to different orbitals and species. It is evident that, unlike in Eu/WSe2 (Fig. 7.3),
the occupied 4f states are not within the same energy range as other states and are
not visible around the Fermi energy. Consequently, they do not hybridize with the
delocalized d electrons of W. Nevertheless, interaction occurs between the delocalized
electrons of Gd and WSe2, which is also observed in Eu/WSe2. The band structures
presented exhibit significant splittings between the bands at the K-valleys and various
points near the Fermi energy, which are attributed to the influence of SOC that was
taken into account during the computations. However, regarding the goal of creating
a stable anomalous Hall conductor, as previously discussed, the magnetization of 1×1
Gd/WSe2 is less stable than that of 1×1 Eu/WSe2, indicating it can be more suscep-
tible to perturbations. Further information is presented in Fig. D.4 of Appendix D,
illustrating the impact of disabling SOC for different elements on the MAE curve.
First, SOC is deactivated on the Gd atom to isolate the substrate contribution to the
MAE. Subsequently, SOC on the W atom is disabled to examine the MAE resulting
from Gd and Se.

It is important to emphasize that Gd and Eu exhibit differing chemical behaviors due
to the outer 5d electron in Gd. While Eu lacks occupied outer d electrons and can
only acquire d occupation through transfer from neighboring or underlying atoms, Gd
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8.1 Gd atoms deposited on 1 × 1 WSe2: monolayer case

already has a 5d electron, and a full occupation may indicate a reluctance to hybridize
with the surrounding environment. Upon examining the orbital contributions in the
Appendix in Fig. D.2, it is apparent that the bands near the Fermi energy on the
K−M−K’ path display d electron contributions of Eu in Eu/WSe2, which arise from
charge transfer. On the other hand, in Gd, these bands originate from Gd’s own
electron and, as a result, have a higher occupation. Consequently, they are shifted
towards the lower energy region near the K-valleys, where they exhibit slight inter-
action. This suggests that Eu generally interacts more with the substrate through
charge transfer, while Gd behaves more atomically, with its states pushed onto the
WSe2 states. However, given that the distinguishing factor between 1 × 1 Eu/WSe2
and 1×1 Gd/WSe2 is the interatomic f−d hybridization, it seems that this interaction
is the primary contributor to the MAE in high-coverage situations.

Figure 8.3: SOC-included calculations of orbital interactions in Gd/WSe2 along the
Γ−K−K’−Γ path. The interactions include: f states of Gd with d states
of W, d states of Gd with d states of W, s states of Gd with p states of
Se, and s states of Gd with d states of W.
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Table 8.2: Ground state properties for Gd in the three adsorption sites on
√
3 ×
√
3

WSe2: adsorption energy in eV, adsorption distance in Å, d and f occupa-
tion of the magnetic RE atom, and spin magnetic moment of the RE atom
in µB. Calculations have been performed without SOC.

Site Eads [eV] d0 [Å] docc focc mRE
s [µB]

H −1.106 2.162 0.756 7.004 7.433

T-W −1.451 2.049 0.831 7.012 7.407

T-Se −0.688 2.796 0.684 6.984 7.530

8.2 Gd atoms deposited on
√
3 ×
√
3 WSe2: dilute limit

As we move towards a less concentrated state in which the Gd atom coverage on WSe2
is reduced to 1/3 of the 1 × 1 unit cell, various distinctions can be observed upon
examining the adsorption properties listed in Table 8.2. One primary observation
is that the adsorption energy is substantially larger than that in the high-coverage
condition, and in the preferred T-W site, the Gd atom moves significantly closer
towards the substrate, exhibiting a more pronounced proximity compared also to√
3 ×
√
3 Eu/WSe2. Secondly, a slight loss in the d occupation is noticeable, which

suggests a stronger interaction with the substrate.

Fig. 8.4 displays the corresponding electronic structure, where (a) presents the spin-
resolved DOS and (b) displays the spin-resolved band structure, both calculated
without SOC. It is noticeable that, once more, the system exhibits “semiconduct-

Figure 8.4: (a) Spin-resolved DOS of
√
3×
√
3 Gd/WSe2: grey represents the TDOS,

green, red and blue the s, f and d states of Gd. (b) Spin-resolved band
structure highlighting the 4f states. Calculations were performed without
SOC.
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√
3 ×
√
3 WSe2: dilute limit

ing” characteristics in this low coverage scenario, with an energy gap present in both
spin channels below the Fermi energy. The spin-splitting in the system seems to be
slightly stronger than in the

√
3 ×
√
3 Eu/WSe2 scenario due to the larger mGd

s ∼ 7.4
µB, in comparison to mEu

s ∼ 7.0 µB. Once again, the 4f peaks are widely separated
in energy, with the occupied spin-up peak at around ∼ −10 eV and the unoccupied
spin-down peak at approximately ∼ 1.8 eV. Nonetheless, the most significant aspect
to observe is the existence of a significant DOS originating from the d occupation on
and below the Fermi energy, in addition to the previously observed s occupation in
the
√
3 ×
√
3 Eu/WSe2 case.

For a qualitative analysis of the electronic charge displacement involved in the het-
erostructure formation, the differential charge density was computed in the same
saturation range as that of the

√
3×
√
3 Eu/WSe2 case, as discussed in Fig. 7.10 (b).

For comparison purposes, the figure is presented again in Fig. 8.5. Observing the dif-
ferential charge density in the Gd case reveals stronger intensities, indicating greater
charge gain/loss in the respective red/blue areas. Furthermore, it seems that the Gd
atom not only interacts with the W atom underneath, but some charge also appears
to be involved on the second and third nearest W atoms. Another noteworthy feature
is the symmetry of the charge lobes on Gd, which exhibit more pronounced features
in the xy-plane. The orbital-specific d DOS of Gd is analyzed in Fig. 8.6 to confirm
this observation. Firstly, it should be pointed out that due to the C3v symmetry of
the system, the dx2−y2 and dxy orbitals, as well as the dyz and dxz orbitals, are de-
generate. Secondly, the (dx2−y2 , dxy) orbitals, oriented in the xy plane of the WSe2,
have the largest orbital contribution in the occupied region, followed by the (dyz, dxz)

Figure 8.5: (a) Differential charge density of
√
3 ×
√
3 Gd/WSe2 in the (010) and (1-

10) planes. (b) Differential charge density of
√
3 ×
√
3 Eu/WSe2 in the

(010) and (1-10) planes. The color scale ranges from −0.005 to +0.005 and
is consistent in both cases.
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Figure 8.6: Orbital-resolved d density of states of Gd in
√
3×
√
3 Gd/WSe2: the dx2−y2

and dxy orbitals, as well as the dyz and dxz orbitals, are degenerate due to
the C3v symmetry of the system.

orbitals that introduce a z component. Lastly, a small red peak can be observed
around ∼ −0.5 eV from the dz2 orbitals.

Shifting our attention to the influence of d chemistry on the MAE, we turn to exam-
ine Fig. 8.7. This figure displays the total energy as a function of the magnetization
direction, indicating a significantly larger magnetic anisotropy compared to all other
cases investigated where a half-filled 4f -shell was present (recall that Gd/Gr yielded
a MAE of ∼ 0.6 meV), and close to the energy magnitudes observed in open 4f -shells,

Figure 8.7: The magnetic anisotropy energy curve of Gd on
√
3×
√
3 WSe2 exhibits an

easy-axis oriented out-of-plane, and an energy of around ∼ 5 meV relative
to the in-plane direction.
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8.2 Gd atoms deposited on
√
3 ×
√
3 WSe2: dilute limit

Figure 8.8: Magnetic anisotropy curves in the zx-plane for the
√
3 ×
√
3 simulation

cell of Gd/WSe2 by turning off SOC on (a) the Gd atom and (b) on the
W atoms.

albeit with a lower order anisotropy. The substantial energy difference observed is
surprising, especially when considering the experience gained from the Eu/WSe2 sys-
tem where the dilution of the RE atom led to a smaller MAE.

The difference with the Gr systems can be explained by considering that Gr, in com-
parison to WSe2, leads to weaker hybridization effects, resulting in the MAE arising
solely from the Gd atom in the hexagonal crystal field. In the present case, the MAE
is driven by both the Gd atom in the C3v crystal field and the effects of orbital hy-
bridizations and spin-polarization. The Gd spin-polarizes the environment and, via
orbital hybridizations at the Fermi energy, leads to a rotation of the magnetic mo-
ments of other spin-polarized electrons in the system. Analyzing the effect of SOC
supports this idea, as demonstrated in Fig. 8.8. Specifically, SOC has been turned
off for both the Gd atom (Fig. 8.8 (a)) and the W atoms (Fig. 8.8 (b)). The results
show that the substrate atoms themselves lead to a substantial MAE, even when SOC
on Gd is disregarded, though most of the contribution appears to arise from the Gd
atom. Additionally, it should be noted that the contributions from the two species
are not additive.

Another difference to the
√
3 ×
√
3 Eu/WSe2 system arises from the DOS in the

occupied region close to the Fermi energy: the Eu system does not exhibit a large d
occupation as the Gd system, which is reflected in a generally smaller interaction with
the substrate. Additionally, it is important to note that, while the distance between
the Eu atom and WSe2 does not appear to be greatly affected by dilution, in the case
of Gd, dilution results in the RE atom being brought much closer to the substrate.
As such, further investigations are recommended to gain a deeper understanding of
how the concentration of RE atoms impacts their adsorption distance, taking into
consideration the nature of the RE atom, and how this in turn affects the MAE and
any possible magnetoelastic phenomena.
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8.3 Eu/WSe2 and Gd/WSe2: takeaways

The primary conclusion is that MAE in the systems is mainly generated by 4f elec-
trons, either through direct interaction with the chemical environment or indirectly
through induced magnetic moments. Another important finding is the significant
impact of an additional 5d electron on the MAE. Based on these observations, the
following conclusions can be inferred:

1. In cases of high coverage (1 × 1 unit cells), the dominant factor influencing the
MAE is the positioning of the 4f states in the gapless energy spectrum. When
4f states are in close proximity to other states in the system (Eu), they may
hybridize and cause significant MAE. On the other hand, when 4f states are
distant from other states (Gd), they may induce only minor anisotropies via
spin-polarization of other states. This contribution is also present in the first
scenario.

2. For the low coverage situations (
√
3 ×
√
3 simulation cells), the key factor im-

pacting MAE is the spin-polarization of states at EF above the energy gap of
the semiconducting WSe2 substrate, induced by the 4f electrons. For Eu, a low
density of states of the RE atom close to the Fermi energy is observed, while for
Gd, a significant spin-polarized d DOS is found, which primarily contributes to
the MAE.

3. When comparing the
√
3 ×
√
3 Eu and Gd systems on WSe2 to their respective

systems on Gr, it becomes clear that the choice of 2D-material plays a crucial
role in determining the MAE of the system. In this case, WSe2 seems to amplify
the MAE of both RE atoms compared to Gr. The effect is particularly striking
for Gd and can be attributed to various factors such as orbital hybridizations,
stronger SOC, and a different symmetry of the crystal field.

4. By carefully selecting the substrate and the coverage of the RE atom, it is
feasible to manipulate the magnetic anisotropy of half-filled 4f -atoms.

Table 8.3: A summary of the main findings regarding the electronic and magnetic
properties of Eu and Gd adsorbed on WSe2.
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8.4 Ho atoms deposited on 1 × 1 WSe2: monolayer case

After investigating the behavior of half-filled 4f -shells in two different packing densi-
ties of the RE atoms and two valence configurations (Eu vs. Gd), the next sections
will provide a brief account on of the chemical and magnetic properties of an open
4f -shell RE atom on WSe2, with a focus on Ho. Chemically, Ho behaves more simi-
larly to Eu (without an external 5d electron). Therefore, this compares the effect of
the non-half-filled 4f -shell on the magnetic anisotropy. The first step is to examine
the high-coverage scenario by simulating a 1× 1 unit cell containing one Ho atom per
W atom, effectively representing an entire monolayer of Ho atoms on the surface of
the substrate. Subsequently, the study will briefly address the more dilute situation
in the

√
3 ×
√
3 simulation cell.

Table 8.4 summarizes the adsorption properties of Ho, indicating that it prefers to
adsorb on top of the W atom, as evidenced by the adsorption energies. Similarly to
the case of Eu, Ho gains a fraction of d electrons that were not present in the isolated
Ho atom and moves closer to the substrate when adsorbed on this site compared to
other tested positions. The 4f occupation closely follows Hund’s rules, with almost
11 electrons in the shell, leading to a magnetic moment close to 3 µB. This magnetic
moment induces a small spin-polarization in other states, such as the d states which
exhibit a magnetic moment of ∼ 0.05 µB, much smaller than those observed in Eu and
Gd/WSe2 due to the smaller 4f magnetic moment. However, the orbital magnetic
moment is approximately 1 µB smaller than the value predicted by Hund’s rules (6
µB). This suggests a competition between Hund’s rules and the crystal field effect,
which causes quenching of the orbital moment. It appears that one 4f electron moves
from the orbital with orbital quantum number ml = 0 to ml = −1, inducing the
reduction of the total orbital angular momentum.

The electronic structure of the system is shown in Fig. 8.9. The spin-polarized DOS
in Fig. 8.9 (a) indicates that the 4f states occupy a wide energy range, with the occu-
pied states ranging from approximately −4 eV to −0.5 eV, while the unoccupied states
are located at approximately 7 eV. The d states are highly delocalized, with a small

Site Eads [eV] d0 [Å] docc focc mRE
s [µB] mRE

l [µB]
H −0.511 2.672 0.395 10.853 3.085 4.897

T-W −0.946 2.404 0.440 10.846 3.068 4.888

T-Se −0.780 3.101 0.405 10.849 3.107 4.899

Table 8.4: Ground state properties for Ho in the three adsorption sites on 1×1 WSe2:
adsorption energy in eV, adsorption distance in Å, d and f occupation of
the magnetic RE atom, and spin and orbital magnetic moment of the RE
atom in µB. Calculations for Eads and d0 have been performed without
SOC, all the other properties have been calculated including SOC.
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8 Gd and Ho atoms deposited on WSe2: coverage dependence of magnetic properties

Figure 8.9: (a) Spin-resolved DOS of 1× 1 Gd/WSe2: grey represents the TDOS, red
and blue the f and d states of Ho. (b) Band structure highlighting the
occupied 4f states. Calculations were performed with SOC.

fraction of them being occupied and overlapping in energy with some of the 4f states.
This suggests the possibility of an intra-atomic f − d interaction. In Fig. 8.9 (b), the
band structure exhibits characteristics similar to the 1×1 Eu and Gd/WSe2 systems.
However, it is noteworthy that the bands originating from the 4f electrons of Ho are
exceptionally flat, in the displayed occupied region. These bands are situated in close
proximity to the Fermi energy and are expected to significantly impact the magnetic
properties of the system. It is also noted that the exchange splitting of the electronic
structure is diminished in comparison to that of Eu and Gd. However, the spin-orbit
coupling splitting, which is notably visible in the K-valleys, appears to be of similar
magnitude for all the systems, as can be observed in the subsequent Fig. 8.10.

In these plots, the band structure is shown for the path Γ−K−M−K’−Γ, with the va-
lence band maxima of WSe2 at the K-valleys being noticeable at around −2 eV. The
figures illustrate the interaction between different types of electrons in the system,
which appear to be comparable to those observed in the 1 × 1 Eu/WSe2 structure.
Specifically, the delocalized Ho s, d electrons interact with the delocalized electrons
of the substrate, while the 4f electrons interact with the d electrons of W, which are
in the same energy range close to the Fermi energy. As a result, one may expect a
magnetic anisotropy energy of at least a similar order of magnitude as observed for
Eu/WSe2 and greater than that of Gd/WSe2, in which the 4f states were considerably
distant from the substrate states. In the same region as these 4f states, other states
of the Ho atom, such as the d and s states, also appear to interact intra-atomically
with the 4f band at around −1 eV.

In order to examine the impact of an open 4f -shell on the magnetic anisotropy, the
out-of-plane MAE curve has been calculated and is presented in Fig. 8.11. The blue
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8.4 Ho atoms deposited on 1 × 1 WSe2: monolayer case

dots denote the DFT+U data, and the red curve represents the fitting obtained using
Eq. 2.19 for a C3v crystal field, with φ = 0 and only considering a single sin6 θ term.
In other words, the extracted magnetic anisotropy constants are K1,K2,K ′2,K3, and
K5. Similar to open 4f -shells in graphene systems, the magnetic easy-axis for Ho on
a WSe2 surface is observed to appear at a canted θ angle, around 70○, with a larger
in-plane component than the out-of-plane one. The large values of MAE obtained
are noteworthy, with the maximum energy from the magnetic ground state being ap-
proximately 15 meV, an order of magnitude greater than the MAE observed in 1 × 1
Eu/WSe2. The hard-axis is found at θ ∼ 30○, while the perpendicular magnetization
direction (θ = 0○) is slightly lower in energy, at ∼ 10 meV from the ground state. The
overall behavior is highly anisotropic, as expected for a non-spherical 4f charge cloud

Figure 8.10: SOC-included calculations of orbital interactions in Ho/WSe2 along the
Γ−K−K’−Γ path. The interactions include: f states of Ho with d states
of W, d states of Ho with d states of W, s states of Ho with p states of
Se, and s states of Ho with d states of W.
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8 Gd and Ho atoms deposited on WSe2: coverage dependence of magnetic properties

Figure 8.11: The magnetic anisotropy energy curve for Ho on a 1×1 WSe2 monolayer
in the zx-plane. The DFT+U data is denoted by blue dots, while the
fitting function is represented by a continuous red line.

with non-zero angular momentum. The large MAE values and high-order anisotropic
behavior can be attributed to the indirect effect of the 4f magnetic moment polarizing
other states, which generate MAE contributions through SOC, and the effect of the
4f states interacting with neighboring states, where the crucial difference from the
Eu system is that the 4f charge cloud exhibits a high degree of anisotropy in space,
leading to a pronounced angular dependence of the energy. The magnetic anisotropy
constants obtained from the fitting of the self-consistent data are presented in Ta-
ble 8.5 in units of meV and K.

It is worth noting that in the Ho/WSe2 system, the interactions between 4f elec-
trons and the substrate consist of electrostatic interactions and potentially involve
more complex hybridization effects. The increased diversity of chemical species and
electrons in the Ho/WSe2 system, in contrast to the graphene complexes discussed in
Chapter 5, contributes to this distinction. Consequently, conducting further analysis
utilizing crystal field theory could provide valuable insights into the accuracy of the
point charge model employed in these TMDC systems, which exclusively considers
electrostatic interactions.

Unit K1 K2 K ′2 K3 K5

meV 56.061 −160.875 6.704 94.143 −16.701

K 650.565 −1866.888 77.797 1092.491 −193.808

Table 8.5: Magnetic anisotropy constants obtained via fitting of DFT+U data de-
picted in Fig. 8.11 for 1×1 Ho/WSe2. The values are reported in meV and
K.
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8.5 Ho atoms deposited on
√
3 ×
√
3 WSe2: dilute limit

Moving on to the dilute scenario, Table 8.6 presents a summary of the adsorption
properties on different sites. Notably, in the H-site, the orbital moment approaches
the Hund’s rule value of 6 µB, unlike in the monolayer where all sites had values close
to 5 µB. This difference can be attributed to the larger distance from the substrate,
of approximately ∆d0 = 0.4 Å, resulting in a more atomic-like behavior of the Ho
atoms. However, the orbital moment is quenched by 1 µB when located on the Se
and W atoms, suggesting the presence of a stronger crystal field effect or convergence
towards a local energy minimum. At the T-W site, two distinct energy minima were
identified: one characterized by full Hund’s rule values and another where the orbital
moment is quenched. The latter represents the ground state, which has a lower en-
ergy by 0.33 eV, and was obtained by considering the same adsorption distance as the
Hund’s rules case (the adsorption energy in this configuration has not been evaluated).

The DOS for the two energy minima can be found in Fig. 8.12. Similar to the case of√
3×
√
3 Eu/WSe2, the d occupation is negligible, resulting in a minimal contribution

to the MAE of the system. In both cases, the 4f occupation gives rise to spiky peaks
located below the Fermi energy, which are separated by a significant energy gap from
the unoccupied counterpart. The distinctive shape of the 4f peaks, reflecting the
different orbital moment, induces other disparities in the electronic structure. To be
more precise, in both spin channels, the deviation from Hund’s rules (Fig. 8.12 (a))
leads to an energy gap of approximately 1 eV between the f states and the s states
of Ho. In contrast to the Hund’s rules case (Fig. 8.12 (b)), where the 4f states close
the gap, the 4f states are slightly lower in energy, as demonstrated also by the band
structures displayed in Figs. 8.12 (c) and (d). Large MAE is expected in both cases
due to the presence of an open 4f -shell. However, further investigations are needed

Site Eads [eV] d0 [Å] docc focc mRE
s [µB] mRE

l [µB]
H −0.374 3.069 0.039 10.910 3.005 5.944

T-W −0.634 2.428 0.141 10.910 3.012 5.935

T-WGS - 2.428 0.141 10.910 3.009 4.948

T-Se −0.382 3.120 0.056 10.911 3.008 4.956

Table 8.6: Ground state properties for Ho in the three adsorption sites on
√
3 ×
√
3

WSe2: adsorption energy in eV, adsorption distance in Å, d and f occu-
pation of the magnetic RE atom, and spin and orbital magnetic moment
of the RE atom in µB. Calculations for Eads and d0 have been performed
without SOC, all the other properties have been calculated including SOC.
For the T-WGS case, the adsorption energy has not been evaluated, and
the distance from the first Se layer is assumed to be the same as in the
Hund’s rule case.
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8 Gd and Ho atoms deposited on WSe2: coverage dependence of magnetic properties

to elucidate the potential impact of the difference in orbital moment on the magnetic
anisotropy energy, for example within the framework of the crystal field theory model
employed for the RE/Gr systems.

Fig. 8.13 presents the computed magnetic anisotropy for the mHo
l = 6 µB scenario,

where the DFT+U outcomes are indicated with blue dots and the fitting function for
a C3v symmetry is depicted with a red line. When comparing to the other

√
3 ×
√
3

systems (Eu and Gd), it becomes apparent that the energy involved in the magneti-
zation rotation is higher than for Eu and in the same order of magnitude as for Gd.
However, in contrast to Gd, where a large d occupation at the Fermi energy drives
the phenomenon, in this case, it arises from the 4f electrons. These 4f electrons not
only result in an energy difference between the magnetic ground state (at approxi-
mately θ = 50○) and the hard axis (perpendicular direction, θ = 0○) of about ∼ 6 meV
but also produce a highly anisotropic behavior, resulting in high-order terms in the
energy functional expansion (see Table 8.7). In contrast, when comparing with Ho on
graphene, it is apparent that although both exhibit a tilted magnetic ground state,

Figure 8.12: Spin-resolved DOS of
√
3×
√
3 Ho/WSe2: (a) In the mHo

l = 5 µB case. (b)
In the mHo

l = 6 µB (Hund’s rules) case. Grey represents the TDOS, red
and blue the f and d states of Ho. Figures (c) and (d) are the respective
band structures highlighting the occupied 4f states. Calculations were
peformed with SOC and GGA+U .
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Figure 8.13: The magnetic anisotropy energy curve for Ho with mHo
l = 6 µB on a

√
3×
√
3 WSe2 monolayer in the zx-plane. The DFT+U data is denoted

by blue dots, while the fitting function is represented by a continuous
red line.

the shape of the curve is distinctly different, possibly due to the varying symmetries
of the surrounding crystal field as well as the chemical makeup of the 2D-material,
which can have an impact on the orbital hybridization effect.

Overall, it can be concluded that Ho on WSe2 displays a canted magnetization direc-
tion and high anisotropy values that can be controlled by adjusting the coverage of
the magnetic atom. Unlike half-filled 4f -shells, the magnetic anisotropy can attain
significant magnitudes even without the presence of delocalized d occupation, as ob-
served in the

√
3 ×
√
3 case, due to the significant direct contributions from the bare

anisotropic 4f charge cloud. However, increasing the Ho coverage and, therefore, the
d occupation of Ho and the interface hybridization, results in larger anisotropy values
than any other system studied, likely driven by the 4f charge cloud and the intra-
atomically spin-polarized d occupation, as well as the 4f -4f repulsion. Indeed, in a
monolayer of Ho atoms, the anisotropic nature of the 4f charge clouds themselves can
contribute to the crystal field effect. However, this contribution becomes negligible
in half-filled 4f -shells. Therefore, the optimal approach to achieving high magnetic
anisotropies may be to employ open 4f -shells at a high concentration.

Unit K1 K2 K ′2 K3 K5

meV −28.095 37.341 1.515 −14.189 3.950

K −326.031 433.328 17.581 −164.658 45.838

Table 8.7: Magnetic anisotropy constants obtained via fitting of DFT+U data de-
picted in Fig. 8.13 for

√
3×
√
3 Ho/WSe2. The values are reported in meV

and K.
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Chapter 9
Conclusions

This thesis offers a comprehensive investigation of the electronic and magnetic prop-
erties of various rare-earth atoms adsorbed on different 2D-materials based on first-
principles DFT calculations. By examining two distinct 2D materials as substrates
for the rare-earth atoms, it becomes possible to explore a range of chemical environ-
ments. This exploration encompasses examining varying interactions, contributions
from spin-orbit coupling, and different symmetries of the crystal field. Furthermore,
the study uncovers the magnetic behavior based on the orbital occupation by an-
alyzing both half-filled 4f -shells and open 4f -shells. The findings reveal that, in
general, the significant magnetic anisotropies are primarily driven by the spin and
orbital magnetic moments resulting from the interplay between the 4f electrons and
the surrounding crystal field. Notably, the magnetic anisotropies are particularly
large for open 4f -shells. Moreover, the involvement of 5d electrons becomes crucial
in specific cases, as they can contribute to the magnetic anisotropy and influence the
chemistry of the rare-earth atoms. Additionally, the study demonstrates that the
magnetic anisotropy can be modified through mechanical deformation and variations
in the adsorption coverage.

The investigation of 4f -atoms adsorbed on a graphene monolayer elucidated that rare-
earth elements lacking an additional 5d electron in their valence shell exhibit similar
chemical behavior, while those with 5d electrons, such as Gd, interact differently with
graphene. All studied RE/Gr complexes displayed large spin magnetic moments and
significant orbital magnetic moments for open 4f -shell configurations (Dy, Ho, and
Tm). The values of the spin and orbital moments conform with Hund’s rule orbital
occupation in all cases except for Dy/Gr, where a lower energy configuration with a
smaller orbital moment was discovered.

Adsorption of 4f -atoms onto graphene causes n-doping in the 2D-material, result-
ing in metallic behavior driven by the delocalized d occupation of the RE atoms.
The 4f states remain localized and detached from the Fermi energy, and are the pri-
mary source of magnetic anisotropy. Eu/Gr and Gd/Gr exhibit negligible magnetic
anisotropies in magnitude, which are well described by low orders in the energy func-
tional E(θ, ϕ) due to the almost absent orbital moment in the half-filled 4f situation.
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9 Conclusions

In contrast, Dy, Ho, and Tm exhibit magnetic anisotropies on the order of several
meV, which necessitate high-order contributions to fit well with the energy functional
E(θ, ϕ) for hexagonal systems. A detailed analysis of the energy as a function of
magnetization direction reveals that Ho/Gr and Tm/Gr favor a canted easy-axis,
while Dy/Gr exhibits an in-plane easy-axis. Fitting the magnetic anisotropy curves
allowed for determination of the magnetic anisotropy constants, which were then
reverse-engineered in the quantum framework for the crystal field parameters. The
crystal field parameters were utilized to compute the multiplet structures, revealing
that Ho/Gr and Tm/Gr are protected against direct quantum tunneling of magneti-
zation, whereas Dy/Gr generates tunnel-split doublets that can potentially destabilize
the magnetization. However, in the case of Dy/Gr, a single magnetic ground state
at ⟨Jz = 0⟩ was identified, consequently ruling out the possibility of magnetization
reversal.
By examining the effect of an induced perpendicular strain on the 4f -atoms, it was
observed that compressing the atoms towards the graphene monolayer results in an in-
creased magnetic anisotropy, indicating a promising approach for enhancing magnetic
stability. Furthermore, application of strain has been observed to cause pressure-
induced magnetization switching by changing the easy-axis in Dy/Gr. The results
of the magnetoelastic analysis indicate that the force constants and vibrational fre-
quencies of the RE/Gr complexes reflect the d occupations and are sensitive to the
direction of magnetization.

In the investigation of Dy/Gr, a notable finding involves the study of its two different
energy minima corresponding to two orbital configurations, namely J = 7 and J = 8.
The presence of the J = 7 occupation implies a conflict between the intra-atomic
exchange and the crystal field effect. It has been demonstrated that a significant
modification in the magnetic anisotropy is observed when one 4f electron is shifted
into a different f orbital from the one expected by Hund’s rules. It is evident from this
that a precise description of the 4f electrons holds immense significance in unraveling
magnetic anisotropies with utmost accuracy.

Finally, the dilution of 4f -atoms adsorbed on graphene leads to a more atomic-like
behavior, as reflected in the electron occupations. Surprisingly, the s states show
sharper and stronger spin-polarized peaks in the density of states upon dilution. This
leads to a flat band close to the Fermi energy in the 4 × 4 supercell.

The investigation of the effect of metallic substrates on the magnetic anisotropy of
Gd/Gr has revealed a dependence on the magnetic properties and interaction of the
substrate with graphene. In this study, Ir(111) was selected as a non-magnetic sub-
strate, and the investigation revealed that the weak van der Waals interaction with
graphene resulted in a minimal impact on the MAE of Gd/Gr. Only when the Gd
atom adsorbs in the valley regions of the corrugated graphene, bringing it closer to the
Ir surface, slight effects on the overall out-of-plane MAE are observed. Specifically,
the decrease in MAE can be ascribed to the preferred in-plane magnetization direc-
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tion of the induced magnetic moment in the metallic substrate, which slightly reduces
the hardness of the perpendicular easy-axis of Gd/Gr. However, given the very low
energy scales involved, it can be concluded that Ir(111) has a minimal impact and is
thus a suitable substrate for investigating the magnetic anisotropy effects of RE/Gr
systems or other 2D magnetic nanostructures.

To examine the impact of a magnetic metallic substrate, simulations were performed
with a Co(111) surface as a substrate for Gd/Gr. The easy-axis of the system was
found to be in-plane, indicating a strong influence of the magnetic Co(111) substrate
on the magnetic properties of Gd/Gr, which otherwise exhibits a perpendicular easy-
axis. Therefore, the Co(111) magnetism and its interaction with Gd/Gr are significant
enough to modify the magnetic properties of the graphene complex. As such, a mag-
netic substrate such as Co(111) can be employed to induce changes in the magnetic
properties of RE/Gr systems.

The study of rare-earth atoms adsorbed on a TMDC substrate, namely WSe2, has
yielded notable and compelling findings with regard to both magnetic characteristics
and transport properties. The systems were analyzed considering different degrees of
coverage of the RE atom on WSe2.
The investigation of Eu atoms deposited on a WSe2 monolayer at high coverage has
revealed promising features for the development of magnetotransport applications.
The proximity-induced orbital hybridizations, spin-orbit coupling, spin-polarization,
and broken symmetries provide the potential to influence the magnetic anisotropy,
spin-orbital textures, and Berry curvature. High concentration of Eu atoms generates
an overall metallic system with a large density of states around the Fermi energy,
which plays a fundamental role in the generation of magnetic anisotropy. The spin-
polarization induced by the large local 4f moment of Eu, along with the observed
hybridizations between Eu electrons and the delocalized electrons of the substrate,
are responsible for generating a prominent magnetic anisotropy (∼ 1.75 meV) even
in the presence of a half-filled 4f -shell, with a perpendicular easy-axis. Moreover,
the calculations predict a ferromagnetic configuration, while the spin-orbital texture
on the Fermi surface evidences the presence of magnetic interactions and orbital hy-
bridizations. The synergy between these features induces Berry curvature hotspots
in k-space, which lead to a sizable anomalous Hall conductivity in the sample. This
example of RE/TMDC heterostructure expands the design portfolio of potential fu-
ture spintronic devices in 2D.

Upon exploring the magnetic anisotropy of the Eu/TMDC system at a reduced cover-
age of Eu atoms, i.e., in a

√
3×
√
3 simulation cell, the magnetic anisotropy was found

to be almost quenched, with values in the range of ∼ 0.2 meV. This significant reduc-
tion in magnetic anisotropy is attributed to the decreased magnetic proximity effects
resulting from weaker hybridizations between Eu and WSe2, as well as between Eu
atoms. The exchange splitting is reasonably smaller than that in the high-coverage
scenario, and the overall electronic structure displays a reemergence of the semicon-
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ducting features of WSe2 with a band gap close to the Fermi energy. These findings
indicate that a high coverage of Eu atoms is crucial to achieve significant magnetic
anisotropies when Eu is the chosen rare-earth atom. Furthermore, the observation
holds significant implications for experimental realizations and suggests that high cov-
erage is also essential for measuring the anomalous Hall effect.

The study of Gd/WSe2 is of interest due to the chemical dissimilarity between Gd
and Eu, which arises from the outer 5d electron. Comparing the high and low cover-
age situations of the two 4f -atoms on the TMDC reveals that Gd exhibits opposite
behavior to Eu. Specifically, a small magnetic anisotropy was found for high coverage,
whereas extraordinarily large values were obtained in the dilute situation. Inspection
of the electronic structures of the two cases reveals that, in the high coverage case,
the magnetic anisotropy is significantly influenced by the energy location of the 4f
states in the energy spectrum and their overlapping with the substrate states near
the Fermi energy. For Gd, these states are much deeper in energy than for Eu, which
causes them to not contribute to direct interactions with other electrons. In contrast,
the key factor in the dilute case appears to be the presence of spin-polarized states
above the energy gap close to the Fermi energy. While Eu exhibits a low density of
states in this energy area, Gd is characterized by a large density of states, primarily
originating from d states. These states are spin-polarized intra-atomically by the 4f
magnetic moment and hybridize with the electrons of the substrate. Another crucial
aspect to consider relative to the unique chemistry of Gd is its closer adsorption to
the TMDC monolayer in the dilute scenario. This proximity significantly amplifies
the interaction between the Gd adatom and the crystal field.
Additionally, when comparing the dilute cases of Eu and Gd on WSe2 with the re-
spective graphene systems, it was found that the magnetic anisotropy is generally
amplified by the TMDC. The details of this amplification depend on the factors dis-
cussed above. These results highlight the crucial role of both the 4f -atom and the
2D-material in tailoring the magnetic anisotropy.

To determine the influence of a non-spherical 4f charge distribution on the magnetic
anisotropy of WSe2, Ho atoms were simulated on the surface of the material in both
high and low coverage scenarios. When Ho atoms are densely packed, the electronic
structure is similar to that of Eu/WSe2 with the 4f states situated near the Fermi
energy. As a result, the magnetic anisotropy energy reaches significant values (around
15 meV) and exhibits a highly anisotropic behavior with respect to the magnetization
direction. These characteristics distinguish Ho from Eu and Gd, as the non-spherical
4f distribution of Ho, due to its large orbital moment, interacts differently with the
surrounding crystal field under rotation of the magnetization. To gain a comprehen-
sive understanding of the significant magnetic anisotropy, it is crucial also to consider
the contribution of the crystal field originating from the open 4f -shells, which results
in 4f -4f interactions. When the Ho atoms are less concentrated, similar to the Eu
case, the magnetic anisotropy decreases but remains relatively high, indicating that
adjusting the coverage of Ho controls the magnetic anisotropy. Furthermore, it is
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essential to note that changing the 2D-material from graphene to WSe2 leads to a
different local symmetry in the crystal field theory, resulting in a varied dependence
on the magnetization direction.

In conclusion, these years of research on rare-earth atoms in 2D-materials have re-
vealed a deeper understanding of the behavior of magnetic anisotropy resulting from
the interaction between 4f electrons and the crystal field, as well as complex hy-
bridization effects involving other types of electrons. Intra-atomic and inter-atomic
spin-polarization, spin-orbit coupling, orbital hybridizations, and symmetry condi-
tions all play important roles in this complex picture. While a point charge model
may suffice for treating 4f -atoms in graphene systems with small interactions, it
becomes more challenging when dealing with complex structures containing various
chemical elements. In such cases, a thorough understanding of many parallel effects
is crucial for discernment. The beauty of this field lies in the fusion of physics and
chemistry to provide important insights into the behavior of rare-earth atoms in their
environments.

Hopefully, the insights gained from these studies will not only expand our fundamen-
tal understanding of the complex behavior of 4f -atoms, but also provide important
guidelines for designing new magnetic materials with tailored properties for both fun-
damental scientific knowledge and practical applications in the future.
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A graphical representation illustrating the magnetic rare-earth atoms investigated in
this thesis, adsorbed on a monolayer of transition metal dichalcogenide. Credit for
the design of this image goes to Daniele Valente.
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Appendix A

A.1 Character Tables

In general, the characters of a system with total angular momentum J undergoing a
rotation of an angle α can be calculated as follows:

χJ(α) =
sin[(J + 1

2)α]

sin α
2

. (A.1)

However, it is important to note that the transformation α → α+2π behaves differently
for integer and half-integer values of J . Specifically, when evaluating the rotation
α + 2π, we have [232]:

χJ(α + 2π) =
sin[(J + 1

2)(α + 2π)]

sin α+2π
2

=
sin(J + 1

2)α ⋅ cos(J +
1
2)2π

sin α
2 ⋅ cosπ

, (A.2)

where the value of cos(J + 1
2)2π is negative for integer J values and positive for half-

integer J values. Therefore, it is possible to express this as:

χJ(α + 2π) = χJ(α)(−1)2J , (A.3)

Based on this, it can be can be inferred that for systems with integer J , rotations of
α + nπ, where n = 2,4,6, . . . , result in the same outcome. However, for half-integer
spin systems, rotations of 2π and 4π do not produce the same character:

χJ(α ± 2π) = −χJ(α)

χJ(α ± 4π) = +χJ(α).
(A.4)

This implies that in the latter case, the identity operation is defined differently. In
other words, a rotation of 2π does not leave the system unchanged, but a rotation
of 4π is required. Due to this characteristic of half-integer spin systems, it becomes
necessary to introduce an additional group element to represent the 2π rotation (as
the identity corresponds to the 4π rotation). As a consequence, the point group ex-
periences a doubling of the number of symmetries, encompassing both the original
operations and the composite operations obtained by applying the 2π rotation to the
original ones.

An example of double group character table can be seen in Table A.1, which shows
the double C6v point group for half-integer spin and the spherically symmetric Kh

group with J = 7/2,15/2. Table A.2 displays the standard character table of the C6v

and Kh group with J = 8.
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Appendix

C6v E Ē C2 2C3 2C̄3 2C6 2C̄6 3σd 3σv

C̄2 3σ̄d 3σ̄v

Γ1 1 1 1 1 1 1 1 1 1
Γ2 1 1 1 1 1 1 1 −1 −1
Γ3 1 1 −1 1 1 −1 −1 1 −1
Γ4 1 1 −1 1 1 −1 −1 1 1
Γ5 2 2 −2 −1 −1 1 1 0 0
Γ6 2 2 2 −1 −1 −1 −1 0 0
Γ7 2 −2 0 1 −1

√
3 −

√
3 0 0

Γ8 2 −2 0 1 −1 −
√
3

√
3 0 0

Γ9 2 −2 0 −2 2 0 0 0 0

J = 7/2 Kh 8 −8 0 1 −1 −
√
3

√
3 0 0

J = 15/2 Kh 16 −16 0 −1 1
√
3 −

√
3 0 0

Table A.1: Character table of the C6v symmetry double group and of the rotational
invariant atom with total angular momentum J = 7/2,15/2.

C6v E 2C6 2C3 2C2 3σd 3σv
Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1
Γ3 1 −1 1 −1 1 −1
Γ4 1 −1 1 −1 −1 1
Γ5 2 1 −1 −2 0 0
Γ6 2 −1 −1 2 0 0

J = 8 Kh 17 1 −1 1 −1 −1

Table A.2: Character table of the C6v symmetry point group and of the rotational
invariant atom with total angular momentum J = 8.
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A.2 C6v Crystal Field matrix elements for J = 8

A.2 C6v Crystal Field matrix elements for J = 8

The crystal field matrix elements for J = 8 are presented in accordance with Ref. [67]:

⟨Jz = 8∣H6v ∣Jz = 8⟩ = ⟨Jz = −8∣H6v ∣Jz = −8⟩ = 120C0
2 + 21840C

0
4 + 1441440C

0
6

⟨Jz = 7∣H6v ∣Jz = 7⟩ = ⟨Jz = −7∣H6v ∣Jz = −7⟩ = 75C0
2 − 5460C

0
4 − 2342340C

0
6

⟨Jz = 6∣H6v ∣Jz = 6⟩ = ⟨Jz = −6H6v ∣Jz = −6⟩ = 36C0
2 − 16380C

0
4 − 1081080C

0
6

⟨Jz = 5∣H6v ∣Jz = 5⟩ = ⟨Jz = −5∣H6v ∣Jz = −5⟩ = 3C0
2 − 16380C

0
4 + 900900C

0
6

⟨Jz = 4∣H6v ∣Jz = 4⟩ = ⟨Jz = −4∣H6v ∣Jz = −4⟩ = −24C0
2 − 10080C

0
4 + 1774080C

0
6

⟨Jz = 3∣H6v ∣Jz = 3⟩ = ⟨Jz = −3∣H6v ∣Jz = −3⟩ = −45C0
2 − 1260C

0
4 + 1288980C

0
6

⟨Jz = 2∣H6v ∣Jz = 2⟩ = ⟨Jz = −2∣H6v ∣Jz = −2⟩ = −60C0
2 + 7140C

0
4 + 27720C

0
6

⟨Jz = 1∣H6v ∣Jz = 1⟩ = ⟨Jz = −1∣H6v ∣Jz = −1⟩ = −69C0
2 + 13020C

0
4 − 1178100C

0
6

⟨Jz = 0∣H6v ∣Jz = 0⟩ = −72C0
2 + 15120C

0
4 − 1663200C

0
6

⟨Jz = 8∣H6v ∣Jz = 2⟩ = ⟨Jz = 2∣H6v ∣Jz = 8⟩ = ⟨Jz = −8∣H6v ∣Jz = −2⟩ =

⟨Jz = −2∣H6v ∣Jz = −8⟩ = 720
√
2002C6

6

⟨Jz = 7∣H6v ∣Jz = 1⟩ = ⟨Jz = 1∣H6v ∣Jz = 7⟩ = ⟨Jz = −7∣H6v ∣Jz = −1⟩ =

⟨Jz = −1∣H6v ∣Jz = −7⟩ = 2520
√
715C6

6

⟨Jz = 6∣H6v ∣Jz = 0⟩ = ⟨Jz = 0∣H6v ∣Jz = 6⟩ = ⟨Jz = −6∣H6v ∣Jz = 0⟩ =

⟨Jz = 0∣H6v ∣Jz = −6⟩ = 5040
√
429C6

6
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⟨Jz = 5∣H6v ∣Jz = −1⟩ = ⟨Jz = −1∣H6v ∣Jz = 5⟩ = ⟨Jz = −5∣H6v ∣Jz = 1⟩ =

⟨Jz = 1∣H6v ∣Jz = −5⟩ = 4320
√
1001C6

6

⟨Jz = 4∣H6v ∣Jz = −2⟩ = ⟨Jz = −2∣H6v ∣Jz = 4⟩ = ⟨Jz = −4∣H6v ∣Jz = 2⟩ =

⟨Jz = 2∣H6v ∣Jz = −4⟩ = 15120
√
110C6

6

⟨Jz = 3∣H6v ∣Jz = −3⟩ = ⟨Jz = −3∣H6v ∣Jz = 3⟩ = 166320C6
6

A.3 C6v Crystal Field matrix elements for J = 15/2

The crystal field matrix elements for J = 15/2 are presented in accordance with
Ref. [67]:

⟨Jz =
15
2 ∣H6v ∣Jz =

15
2 ⟩ = ⟨Jz = −

15
2 ∣H6v ∣Jz = −

15
2 ⟩ = 105C

0
2 + 16380C

0
4 + 900900C

0
6

⟨Jz =
13
2 ∣H6v ∣Jz =

13
2 ⟩ = ⟨Jz = −

13
2 ∣H6v ∣Jz = −

13
2 ⟩ = 63C

0
2 − 5460C

0
4 − 1621620C

0
6

⟨Jz =
11
2 ∣H6v ∣Jz =

11
2 ⟩ = ⟨Jz = −

11
2 ∣H6v ∣Jz = −

11
2 ⟩ = 27C

0
2 − 13260C

0
4 + 540540C

0
6

⟨Jz =
9
2 ∣H6v ∣Jz =

9
2⟩ = ⟨Jz = −

9
2 ∣H6v ∣Jz = −

9
2⟩ = −3C

0
2 − 12060C

0
4 − 817740C

0
6

⟨Jz =
7
2 ∣H6v ∣Jz =

7
2⟩ = ⟨Jz = −

7
2 ∣H6v ∣Jz = −

7
2⟩ = −27C

0
2 − 6060C

0
4 + 1205820C

0
6

⟨Jz =
5
2 ∣H6v ∣Jz =

5
2⟩ = ⟨Jz = −

5
2 ∣H6v ∣Jz = −

5
2⟩ = −45C

0
2 − 1380C

0
4 + 623700C

0
6

⟨Jz =
3
2 ∣H6v ∣Jz =

3
2⟩ = ⟨Jz = −

3
2 ∣H6v ∣Jz = −

3
2⟩ = −57C

0
2 + 77400C

0
4 − 346500C

0
6

⟨Jz =
1
2 ∣H6v ∣Jz =

1
2⟩ = ⟨Jz = −

1
2 ∣H6v ∣Jz = −

1
2⟩ = −63C

0
2 + 11340C

0
4 − 1039500C

0
6
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⟨Jz =
15
2 ∣H6v ∣Jz =

3
2⟩ = ⟨Jz = −

15
2 ∣H6v ∣Jz = −

3
2⟩ = ⟨Jz = −

3
2 ∣H6v ∣Jz = −

15
2 ⟩ =

⟨Jz =
3
2 ∣H6v ∣Jz =

15
2 ⟩ = 360

√
11
√
455C6

6

⟨Jz =
13
2 ∣H6v ∣Jz =

1
2⟩ = ⟨Jz = −

13
2 ∣H6v ∣Jz = −

1
2⟩ = ⟨Jz = −

1
2 ∣H6v ∣Jz = −

13
2 ⟩ =

⟨Jz =
1
2 ∣Hhex.∣Jz =

13
2 ⟩ = 7 ⋅ 360

√
11
√
39C6

6

⟨Jz =
11
2 ∣H6v ∣Jz = −

1
2⟩ = ⟨Jz = −

11
2 ∣H6v ∣Jz =

1
2⟩ = ⟨Jz =

1
2 ∣H6v ∣Jz = −

11
2 ⟩ =

⟨Jz = −
1
2 ∣H6v ∣Jz =

11
2 ⟩ = 4 ⋅ 360

√
11
√
273C6

6

⟨Jz =
9
2 ∣H6v ∣Jz = −

3
2⟩ = ⟨Jz = −

9
2 ∣H6v ∣Jz =

3
2⟩ = ⟨Jz =

3
2 ∣H6v ∣Jz = −

9
2⟩ =

⟨Jz = −
3
2 ∣H6v ∣Jz =

9
2⟩ = 84 ⋅ 360

√
11C6

6

⟨Jz =
7
2 ∣H6v ∣Jz = −

5
2⟩ = ⟨Jz = −

5
2 ∣H6v ∣Jz =

5
2⟩ = ⟨Jz =

5
2 ∣H6v ∣Jz = −

7
2⟩ =

⟨Jz = −
5
2 ∣H6v ∣Jz =

7
2⟩ = 42 ⋅ 360

√
11
√
5C6

6

A.4 Stevens’ factors

In the following the Stevens factors adapted from [40] are reported.

Ion3+ α × 102 β × 104 γ × 106

Ce −5.714 63.49 0
Pr −2.101 −7.346 60.99
Nd −0.6428 −2.911 −37.99
Pm 0.7714 4.076 60.78
Sm 4.127 25.01 0
Tb −1.0101 1.224 −1.121
Dy −0.6349 −0.5920 1.035
Ho −0.2222 −0.3330 −1.294
Er 0.2540 0.4440 2.070
Tm 1.0101 1.632 −5.606
Yb 3.175 −17.32 148.0

Table A.3: Stevens’ factors for RE ions in the 3+ oxidation state.
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Appendix B

B.1 Band structures of open 4f-shell atoms on
√
3 ×
√
3

graphene

Figure B.1: RE/Gr band structures. (a)-(b) Dy contribution (left) and C contribution
(right) in Dy/Gr; (c)-(d) Ho contribution (left) and C contribution (right)
in Ho/Gr; (e)-(f) Tm contribution (left) and C contribution (right) in
Tm/Gr.
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B.2 Crystal field parameters at equilibrium distance in standard and Waybourne
notation

B.2 Crystal field parameters at equilibrium distance in
standard and Waybourne notation

The table below displays the crystal field parameters at equilibrium distance cal-
culated as Am

l = C
m
l /αl, where αl represents the Stevens’ factor for a specific total

angular momentum J . For the Gr-complex under investigation, Dy has a J value
of 8, corresponding to the Ho3+ configuration, with the associated Stevens’ factors
of (α2, α4, α6) = (−0.222 ⋅ 10−2,−0.333 ⋅ 10−4,−1.3 ⋅ 10−6), as presented in Table A.3.
Similarly, the Stevens’ factors for Ho (J = 15/2) correspond to the Er3+ values, and
for Tm (J = 7/2), the values associated with Yb3+ are assumed.

Unit A0
2 A0

4 A0
6 A6

6

Dy adatom on graphene
meV −11.287 5.156 0.057 3.765

K −130.980 59.833 0.659 43.691

Ho adatom on graphene
meV −15.312 8.793 0.096 3.089

K −177.688 102.039 1.114 35.846

Tm adatom on graphene
meV −5.990 −5.329 −0.054 −13.556

K −69.511 −61.841 −0.627 −157.311

Table B.1: Crystal field parameters in standard notation at equilibrium distance. The
values are reported in meV and K.

The CFP in the Waybourne convention, Bm
l = C

m
l /αlθml , are summarized in Table B.2.

Unit B0
2 B0

4 B0
6 B6

6

Dy adatom on graphene
meV −22.573 41.246 0.908 3.964

K −261.949 478.640 10.537 46

Ho adatom on graphene
meV −30.623 70.345 1.540 3.252

K −355.365 816.320 17.871 37.738

Tm adatom on graphene
meV −11.979 −42.630 −0.868 −14.271

K −139.011 −494.701 −10.073 −165.608

Table B.2: Crystal field parameters in Waybourne notation at equilibrium distance.
The values are reported in meV and K.
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B.3 Phase diagrams of ⟨Jz⟩ for J = 7/2,8,15/2

Considering the CF Hamiltonian for a hexagonal symmetry in Eq. 2.37, and dividing
it by the first CFP (C0

2) neglecting the transverse term (C6
6 = 0), leads to

H6v

C0
2

= Ô0
2 +

C0
4

C0
2

Ô0
4 +

C0
6

C0
2

Ô0
6. (B.1)

The diagonalization of Eq. B.1 can be done for a range of C0
4 and C0

6 values with
fixed C0

2 , resulting in a series of multiplet structures. For each spectrum, the magnetic
ground state (lowest lying state in energy) can be identified and its expectation value,
⟨Jz⟩, is plotted in a phase diagram. Fig. B.2 shows the phase diagrams for J =
7/2, 15/2, 8.

Figure B.2: Phase diagrams of the magnetic ground state for multiplet structures with
varying C0

4/C
0
2 and C0

6/C
0
2 ratios for systems with total angular momen-

tum (a) J = 7/2 (b) J = 8 and (c) J = 15/2.

Each diagram scans the ground state for CFP spanning the ranges −300 ≤ C0
4 ≤ 300

and −10 ≤ C0
6 ≤ 10. Since the spectrum is always symmetric around ⟨Jz⟩, only the

ground state with ⟨Jz⟩ ≥ 0 has been considered. As an example case, C0
2 is set to 100

(arbitrary units), allowing the phase diagrams to show the magnetic ground state for
ratios −3 < C0

4/C
0
2 < 3 and −0.1 < C0

6/C
0
2 < 0.1. These values are chosen based on the

most visible information obtained from trial values, starting from large ranges and
narrowing in on the region where most phase transitions occur. The magnetic ground
state varies depending on the values of the CFP with fixed C0

2 , and further analysis
can be carried out by extending the code to all possible J values across the 4f series
and by integrating symmetries other than C6v.
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Appendix C

C.1 Gd/Gr/Ir(111) vs. Gd/Gr: graphene contribution

Figure C.1: The figure compares the band structure contributions of graphene in Gd/-
Gr/Ir(111) with Gr positioned at hh, and that of free-standing Gd/Gr.
The spin-up channel is represented in blue, and the spin-down channel
is shown in red. These calculations were performed with the inclusion of
spin-orbit coupling.
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C.2 Gd/Gr/Ir(111): Gr-Ir(111) interaction with distance

Figure C.2: Band structure of Gd/Gr/Ir(111) at the valley and hill positions, high-
lighting the strength of Gr-Ir interaction using a colormap based on the
product of the sum of all carbon contributions and the sum of all Ir con-
tributions. The valley configuration shows a higher degree of interaction.

C.3 Gd/Gr/Co(111): spin-polarized band structure of
graphene

Figure C.3: Spin-polarized band structure of carbon atoms in the ferromagnetic and
antiferromagnetic configurations of Gd/Gr/Co(111). The calculations
were performed with the inclusion of SOC.
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Appendix D

D.1 Eu on 1 × 1 WSe2: spin-orbit coupling scaling

Figure D.1: The scaling effect of spin-orbit coupling in 1×1 Eu/WSe2 can be observed
in the simulated band structure along the Γ-M-K-Γ path in reciprocal
space. As the strength of spin-orbit coupling increases, energy gaps form,
leading to the removal of degeneracies and the appearance of avoided
crossings. This effect is particularly evident in the K-valley, where the
spin-up and spin-down channels are split.

D.2 Eu on 1 × 1 WSe2: orbital contributions to the band
structure

Fig. D.2 reports the band structure of a monolayer of Eu atoms deposited on 1H-
WSe2, which illustrates the contribution coming from different chemical elements and
orbitals. Specifically the contribution of the f , s, d electrons of Eu, the p electrons of
Se and the d electrons of W are shown. The shown contribution for Se only includes
the atom of the upper layer, which is the one closer to the adatom and thus exhibits
stronger interaction.
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Figure D.2: Orbital contributions to the band structure of a monolayer of Eu on a
WSe2 monolayer are depicted for the various chemical elements present in
the system. Specifically, panel (a) illustrates the f , s, and d contributions
of Eu, with a zoomed-in view of the d contribution near the energy range
of occupied f states. In panel (b), the d contribution of W and the
p contribution of Se from the substrate are displayed. The color scale
indicates the weights of the orbital characters. The calculations include
the consideration of spin-orbit coupling.

196



D.3 Eu on
√
3 ×
√
3 WSe2: density of states

D.3 Eu on
√
3 ×
√
3 WSe2: density of states

Figure D.3: Spin-resolved density of states of
√
3×
√
3 Eu/WSe2. Grey represents the

TDOS, green, red and blue the s, f and d states of the Eu atom.

D.4 Gd on 1 × 1 WSe2: magnetic anisotropy contributions

Figure D.4: Out-of-plane magnetic anisotropy curves in the xz-plane for the 1 × 1
simulation cell of Gd/WSe2 are shown by disabling spin-orbit coupling
on (a) the Gd atom and (b) the W atoms.
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Appendix E

Presented below are several examples of FLEUR input files for the input generator
inpgen of the investigated systems. These input files contain information about the
hexagonal lattice geometry of the studied systems, including atomic positions, as
well as specifications such as the k-point mesh and spin-orbit coupling. It is worth
noting that, for the calculation of magnetic anisotropy curves, the line &soc 0.37
0.10 is employed, which leads to a breaking of symmetries. For each (θ,φ) point,
the orientation of the spin quantization axis is then adjusted in the corresponding
inp.xml file.

E.1 Input file sample for FLEUR: Eu atom on
√
3 ×
√
3

graphene

&input f i lm=t /
&l a t t i c e l a t s y s=hdp a=8.0518 /

7
63 1 .0 2 .0 1.8000953146
6 0 .0 0 .0 −3.0
6 1 .0 1 .0 −3.0
6 2 .0 2 .0 −3.0
6 1 .0 0 .0 −3.0
6 0 .0 2 .0 −3.0
6 2 .0 1 .0 −3.0

&f a c t o r 3 . 0 3 .0 1 .0 /
&soc 0 .37 0 .10 /
&kpt div1=20 div2=20 div3=1 /

The input files for Gd/Gr, Dy/Gr, Ho/Gr, and Tm/Gr share identical structures,
except for the adjusted distance between the rare-earth atom and the Gr monolayer
and the atomic number of the first listed atom.
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E.2 Input file sample for FLEUR: Gd atom on
√
3 ×
√
3 Gr/Ir(111)

E.2 Input file sample for FLEUR: Gd atom on
√
3 ×
√
3

Gr/Ir(111)

&input f i lm=t /
&l a t t i c e l a t s y s=hdp a=8.0518 /

22
64 1 .0 2 .0 13.31797096
6 0 .0 0 .0 9.09219959035
6 1 .0 1 .0 9.09219959035
6 2 .0 2 .0 9.09219959035
6 1 .0 0 .0 9.09219959035
6 0 .0 2 .0 9.09219959035
6 2 .0 1 .0 9.09219959035
77 0 .0 0 .0 3.04519959035
77 1 .0 1 .0 3.04519959035
77 2 .0 2 .0 3.04519959035
77 1 .0 0 .0 −1.1668004096499995
77 0 .0 2 .0 −1.1668004096499995
77 2 .0 1 .0 −1.1668004096499995
77 0 .0 1 .0 −5.378800409649999
77 2 .0 0 .0 −5.378800409649999
77 1 .0 2 .0 −5.378800409649999
77 0 .0 0 .0 −9.590800409649999
77 1 .0 1 .0 −9.590800409649999
77 2 .0 2 .0 −9.590800409649999
77 1 .0 0 .0 −13.802800409649999
77 0 .0 2 .0 −13.802800409649999
77 2 .0 1 .0 −13.802800409649999

&f a c t o r 3 . 0 3 .0 1 .0 /
&kpt div1=20 div2=20 div3=1 /

The above corresponds to the structure with Gr in the valley position on Ir(111).
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E.3 Input file sample for FLEUR: Eu atom on 1 × 1 WSe2

&input f i lm=t /
&l a t t i c e l a t s y s=hcp a=6.287113491 /

4
63 1 .0 2 .0 4.9538123666
34 2 .0 1 .0 0.2365412966
74 1 .0 2 .0 −2.9964573580
34 2 .0 1 .0 −6.175900000

&f a c t o r 3 . 0 3 .0 1 .0 /
&soc 0 .0 0 .0 /
&kpt 64 /

The provided input generates the structure of the 1×1 Eu/WSe2 simulation cell with
a k-point mesh consisting of 64 k-points. Subsequently, the k-point mesh has been
appropriately modified for the actual calculations with the command line: inpgen
-inp.xml -kpt gamma@grid=10,10,1.

E.4 Input file sample for FLEUR: Eu atom on
√
3 ×
√
3 WSe2

&input f i lm=t /
&l a t t i c e l a t s y s=hdp a=10.8896 /

10
63 1 .0 1 .0 4.9538123666
74 0 .0 0 .0 −2.9992581821
74 1 .0 1 .0 −2.9964573580
74 2 .0 2 .0 −2.9992624865
34 1 .0 0 .0 0.2365412966
34 1 .0 0 .0 −6.1759
34 0 .0 2 .0 0.2365412966
34 0 .0 2 .0 −6.1759
34 2 .0 1 .0 0.2365412966
34 2 .0 1 .0 −6.1759

&f a c t o r 3 . 0 3 .0 1 .0 /
&kpt div1=20 div2=20 div3=1 /
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6 operator: for
integer spin systems the ground state can be composed by a single
magnetic state or by two-degenerate states. . . . . . . . . . . . . . . . . . 47

2.22 Magnetic multplet splitting for J = 8 with arbitrary CFP. States in
the same color represent mixtures of several ∣Jz⟩. In particular, the
combinations of ∣Jz = −3⟩ with ∣Jz = 3⟩ leads to tunnel-split doublets at
quenched ⟨Jz⟩. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.23 Visual representation depicting the mechanisms of magnetization rever-
sal through thermal activation and thermally assisted quantum tunnel-
ing of magnetization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

220



List of figures

3.1 Example of two applications of RE atoms on 2D-materials in spin-
(orbi)tronics: single atom magnets (left) and platforms for transport
properties such as the anomalous Hall effect (right). . . . . . . . . . . . . 56

4.1 The DFT philosophy consists to approximate the vast number of inter-
actions of a complex system considering an electronic charge distribu-
tion around the nuclei. Each electron feels an effective field produced
by the other electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 (a) Restricted DFT: electrons with opposite spin occupy the same spa-
tial wave function. (b) Unrestricted DFT: electrons with opposite spin
can occupy different spatial wave functions. . . . . . . . . . . . . . . . . . 69

4.3 The Hubbard model can be schematized as follows: electrons can move
from one atomic site to a neighboring site with kinetic energy t. When
a site is occupied by two electrons, the Coulomb interaction between
them is described by the parameter U . . . . . . . . . . . . . . . . . . . . . 73

4.4 DFT self-consistent cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Effect of the Hubbard U correction on the 4f states of a Gd/Gr system

calculated in the DFT framework. The 4f peaks get separated in
energy the bigger the U value and are pushed away from the Fermi
energy resulting in an localized and insulating character. . . . . . . . . . 77

4.6 The space in the (FL)APW method is divided into two parts: the
muffin-tin (MT) spheres, centered around each atom (represented in
red), and the interstitial region (IR) in between the spheres (repre-
sented in grey). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Homepage of FLEUR: https://www.flapw.de . . . . . . . . . . . . . . . . 81

5.1
√
3 ×
√
3 supercell of graphene depicting the three possible adsorption

sites of the RE atom: “T” for top, “H” for hollow, and “B” for bridge. . 87
5.2 Differential charge densities of Eu/Gr on the three adsorption sites.

The results are in two different planes, with the (010) plane on the left
and the (001) plane on the right. From the results, a correlation can be
established between the number of nearest neighbors and the stability
of the system, with the H-site showing the highest stability, followed
by the B and T-sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Differential charge density of Eu/Gr and Gd/Gr plotted in the (010)
crystallographic plane. The values have been plotted on the same color
scale ranging from a maximum saturation level of +0.004 (red) and a
minimum of −0.004 (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Spin-resolved DOS for Eu/Gr (a) and Gd/Gr (b): upper and lower
panel represent the majority and minority states, respectively. The
total DOS is shown in grey, the f states in red and the d states in
blue. The calculated spin-polarized band structures are shown in (c)
for Eu/Gr and in (d) for Gd/Gr. Calculations were performed without
SOC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

221

https://www.flapw.de


List of figures

5.5 A visual representation of the reciprocal lattice of the
√
3×
√
3 supercell

and of the 1 × 1 unit cell of graphene, highlighted in black and red
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Spin-polarized density of states of the d (blue) and f (red) electrons
of (a) Dy (b) Ho and (c) Tm, on top of graphene. The upper half of
the plots displays the majority states, while the lower panel is relative
to the minority states. The value E −EF = 0 corresponds to the Fermi
energy. (d) DOS of n-doped graphene (shown is the contribution of the
MT of the carbon atoms) in the Ho/Gr system (red) and DOS of bare
graphene (grey). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Systematic trends of Eu, Gd, Dy, Ho and Tm upon adsorption on
graphene in the H-site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 MAE out-of-plane curves for Eu/Gr (a) and Gd/Gr (b) and respective
polar plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Out-of-plane magnetic anisotropy energy curves for Dy (a), Ho (b)
and Tm (c) on graphene: the total energy is plotted against the angle
between the perpendicular magnetization and the tested magnetization
direction. An alternative representation of the DFT+U data in a polar
plot for the computed systems is given besides. In-plane magnetic
anisotropy energy curves for Dy (d), Ho (e) and Tm (f) on graphene:
the total energy is plotted against the angle between the x-axis and the
tested in-plane magnetization direction. Full dots indicate the DFT+U
data, while the full lines display the fitting curves. . . . . . . . . . . . . . 99

5.10 3D MAE surfaces: the total energy is plotted as a function of the
angular coordinates (θ, ϕ) adopting the fitted Ki values. . . . . . . . . . 100

5.11 Magnetization densities of the RE/Gr systems, calculated as n↑ − n↓.
The plots are to scale and with varying isosurface values for visualization.101

5.12 Multiplet splitting of (a) Dy/Gr, (b) Ho/Gr and (c) Tm/Gr, adopting
the CFP values obtained from reverse-engineering via the magnetic
anisotropy constants. States in the same color correspond to linear
combinations of ∣Jz⟩ differing by ∆Jz = ±6,±12. . . . . . . . . . . . . . . . 104

5.13 Illustration of the set-up used to simulate a mechanical strain perpen-
dicular to the plane of a graphene substrate. Note that distances in
this illustration are provided for conceptual purposes only. . . . . . . . . 105

222



List of figures

5.14 MAE curves (out-of-plane and in-plane) for different distances, namely
d/d0 = 0.96,1.0,1.04 (blue, green and red respectively) of the rare earth
adatoms from the graphene monolayer. (a) and (d) correspond to the
out-of-plane and in-plane curves of Dy/Gr; (b) and (e) correspond to
the out-of-plane and in-plane curves of Ho/Gr; (c) and (f) correspond
to the out-of-plane and in-plane curves of Tm/Gr. For each system, the
last column (Figures (g)-(i)) shows the respective magnetic anisotropy
constants Ki (i = 1,2,3,4) obtained via the fitting of the MAE curves.
Specifically, (g) shows the Ki for Dy/Gr, (h) for Ho/Gr and (i) for
Tm/Gr. Points correspond to DFT+U data while lines to the fitting
curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.15 (a) ∣K4∣ of Tm/Gr for distances ranging from d/d0 = 0.96 to d/d0 =
1.08 from the graphene sheet i.e. from −4% to +8% of perpendicular
strain. (b) In-plane MAE curves calculated with DFT+U for different
perpendicular strains of Tm on Gr. . . . . . . . . . . . . . . . . . . . . . . 107

5.16 This figure depicts the magnetic anisotropy energy as a function of the
distance between the RE element and the graphene layer. Gd and Eu
are also shown for comparison. The calculation was performed using
DFT+U . The energy difference between the parallel and perpendicular
energy components (E∥ −E⊥) is plotted on the y-axis. . . . . . . . . . . . 110

5.17 Total energy curves for each system as a function of d/d0, ranging from
0.90 to 1.04, with perpendicular and in-plane magnetization directions.
The blue dots represent the DFT+U data, while the red continuous
lines are the fitting functions obtained with Eq. 5.5. The parameters
De, b, and the precise equilibrium distance d0 are determined from each
fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.18 Dy/Gr: dependence of the out-of-plane MAE curve and spin-polarized
DOS on the Hubbard U value. The red curve corresponds to U = 5 eV,
the blue curve to U = 7 eV, and the green curve to U = 9 eV. . . . . . . . 115

5.19 Ho/Gr: Dependence of the out-of-plane MAE curve and spin-polarized
DOS on the Hubbard U values. The red curve corresponds to U = 5.03
eV, the blue curve to U = 7.03 eV, and the green curve to U = 9.03 eV. . 116

5.20 Tm/Gr: Dependence of the out-of-plane MAE curve and spin-polarized
DOS on the Hubbard U values. The red curve corresponds to U = 5.1
eV, the blue curve to U = 7.1 eV, and the green curve to U = 9.1 eV. . . 117

5.21 Gd/Gr: Dependence of the out-of-plane MAE curve and spin-polarized
DOS on the Hubbard U values. The red curve corresponds to U = 4.7
eV, the blue curve to U = 6.7 eV, and the green curve to U = 8.7 eV. . . 118

5.22 The figure shows the out-of-plane (blue) and in-plane (red) magnetic
anisotropy energy curves for Dy/Gr with Dy having an orbital moment
of ml = 5 µB. The blue dots represent the DFT+U energies, while the
lines indicate the fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

223



List of figures

5.23 Top view of the charge density of the spin-down channel of Dy/Gr
with in-plane magnetization for the two different orbital moments: (a)
ml = 6 µB (J = 8) (b) ml = 5 µB (J = 7). . . . . . . . . . . . . . . . . . . . 121

5.24 Spin-resolved DOS in the 4× 4 supercells: panels (a) to (e) display the
s, d, f states of the RE and the TDOS; panels (f) to (j) show a zoom
of the RE states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.25 Evolution of the s peak with the distance between magnetic Eu atoms
expressed as a function of the 4 × 4 supercell lattice constant of Gr. . . 124

5.26 Unfolded band structure of the 4×4 supercell of Eu/Gr along the Γ−K-
K’−Γ path, highlighting the Dirac cones at K and K’. The calculation
was performed without SOC. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1
√
3 ×
√
3 simulation cell for Gr/Ir(111) illustrating the ABC stacking

of the Ir(111) surface layers in different colors. . . . . . . . . . . . . . . . 129
6.2 (a) The differential charge density in the Gr/Ir(111) system in the (1-

10) plane is shown for the valley and hill positions of graphene from
the first Ir layer. The two plots use the same color scale, ranging from
−0.001 to 0.001 of saturation, to highlight the variations in charge
distribution. (b) The (1-10) crystallographic plane. (c) A sketch of the
corrugated graphene monolayer on Ir(111) illustrating the valley and
hill positions is provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Computed band structures of Gr/Ir(111) system at valley distance (3.2
Å) and hill distance (3.6 Å) of Gr from Ir(111). Black denotes the
overall band structure, and red illustrates the contribution of C atoms. 131

6.4 Optimization of the perpendicular distance between the Gd adatom
and the Gr monolayer is shown for the two Gr-Ir(111) distances. The
total energy is evaluated as a function of the relative distance d/d0,
where d0 is the equilibrium distance obtained in the absence of Ir(111)
and d represents the tested new position. The range of distance varia-
tion considered is from d = 0.97d0 to d = 1.03d0. . . . . . . . . . . . . . . . 132

6.5 The diagram illustrates the two possible structural configurations of
Gd/Gr/Ir(111), with Gd adsorbed either in the valley position of Gr
or in the hill position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 The upper panels show the spin-polarized band structure projected on
the carbon atoms of Gd/Gr/Ir(111) in the valley and hill configura-
tions, where blue represents the spin-up channel and red represents
the spin-down channel. A reference line is plotted at -1.35 eV. The
lower panels show the corresponding spin-polarized density of states of
the carbon contribution (grey), the d electrons in Gd (blue), and the
f electrons of Gd (red). All calculations were performed in presence of
SOC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7 Spin-resolved total DOS (in grey) and 4f DOS (in red) of Gd/Gr/Ir(111)
in the valley configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

224



List of figures

6.8 Magnetic anostropy curves: total energy against the angle between the
z-axis and the direction of the magnetization. The MAE has been
evaluated for both the valley and the hill configurations. . . . . . . . . . 135

6.9 Visualization of the competition between the Gd out-of-plane easy-axis
and the Ir(111) in-plane easy-axis. . . . . . . . . . . . . . . . . . . . . . . 136

6.10 Ferromagnetic and antiferromagnetic configurations investigated in the
system Gd/Gr/Co(111). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.11 Spin-resolved DOS for the two magnetic orders: the top panels display
the TDOS of the system and the 4f states of Gd, the lower panels
display the relative 4f , 5d of Gd and graphene contributions. . . . . . . 138

7.1 Left: 1 × 1 unit cell in a top-view of Eu (red spheres) monolayer de-
posited on top of the W atom (grey spheres) of a single layer of WSe2.
Se atoms are indicated by green spheres. Right: side-view of the Eu
monlayer on top of the WSe2 monolayer. The magnetic 4f -atom is
adsorbed on top of the W. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2 (a) Contribution to the local DOS of the f and d electrons of Eu. The
total DOS (TDOS) is shown as grey shaded area. (b) Contribution
to the local DOS of the s, p, d electrons of Eu, d electrons of W and p
electrons of Se. Both DOS in (a) and (b) have been calculated without
SOC. (c) Band structure of Eu/WSe2 calculated with DFT+U (blue
dashed line represents the majority channel and red dashed line repre-
sents the minority channel) and with DFT+U+SOC (black solid line).
(d) First Brillouin zone with high-symmetry points. . . . . . . . . . . . . 145

7.3 Hybridization analysis of electronic states with respect to different
orbitals belonging to different chemical elements of the system for a
monolayer of Eu on a WSe2 monolayer: f electrons of Eu with d elec-
trons of W, d electrons of Eu with d electrons of W, s electrons of Eu
with p electrons of Se and s electrons of Eu with d electrons of W. The
hybridization effects are calculated as the product of the weights of two
different orbitals. Calculations are carried out including the spin-orbit
coupling and explicit spin-analysis is neglected. . . . . . . . . . . . . . . . 147

7.4 (a) Magnetic anisotropy energy curve: the total energy of the system
is plotted versus the polar angle θ of the magnetization measured from
the z-axis. (b) The energy of the spin-spiral states of a flat spiral,
i.e. with cone angle β = π/2, computed for the values of the q-vector
along the Γ−K−M path, presented with respect to the ferromagnetic
ground state at the Γ-point. (c) The magnetic configurations at the
high-symmetry points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5 K−valley splitting in a monolayer of TMDCs due to the absence of
inversion symmetry and enhanced by the presence of SOC. . . . . . . . . 150

225



List of figures

7.6 Spin and orbital texture in k-space at the Fermi surface. (a) Ex-
pectation value for the out-of-plane component of the orbital angu-
lar momentum at the Fermi surface ⟨Lz⟩FS. (b) Expectation value of
the in-plane component of the orbital angular momentum ⟨Lxy⟩FS =√
⟨Lx⟩

2
FS + ⟨Ly⟩

2
FS. Analogously, the z-component and the magnitude

of the in-plane component for the spin expectation value at the Fermi
surface are shown in (c) and (d), respectively. ⟨Lz⟩FS > (<)0 and
⟨Sz⟩FS > (<)0 (color blue (red)) corresponds the angular-momentum
direction (anti-)parallel to the spin of Eu-4f electrons. . . . . . . . . . . 152

7.7 (a) Band structure around the Fermi energy with color scale indicating
the value of the Berry curvature Ωnk. (b) Berry curvature summed
over all occupied states along the k-path Γ−K−M−K’−Γ. . . . . . . . . . 154

7.8 Anomalous Hall conductivity as a function of the Fermi level. . . . . . . 154
7.9 Comparison of the electronic structure of Eu monolayer on a WSe2

monolayer for two simulation cells: (a) 1× 1 unit cell (high coverage of
Eu) and (b)

√
3 ×
√
3 unit cell (low coverage of Eu). The correspond-

ing band structures determined neglecting SOC are shown in (c) and
(d), where blue and red lines indicate majority and minority states,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.10 Differential charge density of Eu/WSe2 in the two simulation cells. (a)
The 1 × 1 unit cell in the (110) plane. (b) The

√
3 ×
√
3 unit cell in

the (010) and (1-10) planes. The color scale ranges from −0.005 to
+0.005 and is consistent in both cases. The interaction between the Eu
atom and the WSe2 substrate involves more charge in the 1 × 1 unit
cell compared to the

√
3 ×
√
3 unit cell. . . . . . . . . . . . . . . . . . . . 157

7.11 (a) The magnetic anisotropy curve in the zx-plane for the
√
3 ×
√
3

simulation cell of Eu/WSe2. Similar to the 1×1 cell, the dilute coverage
situation exhibits an out-of-plane easy-axis. However, the magnetic
anisotropy energy from the in-plane direction is significantly reduced
to approximately ∼ 0.2 meV. (b) MAE curve turning off SOC on the Eu
and considering only the W+Se contributions. (c) MAE curve turning
off SOC on the W and considering only the Eu+Se contributions. . . . 158

8.1 (a) Spin-resolved DOS of 1 × 1 Gd/WSe2: grey represents the TDOS,
red and blue the f and d states of Gd. (b) Spin-resolved band structure
highlighting the 4f states. Calculations were performed without SOC. . 161

8.2 The magnetic anisotropy energy curve of Gd on 1 × 1 WSe2 exhibits
an easy-axis oriented out-of-plane, and an energy difference of around
∼ 0.4 meV relative to the in-plane direction. . . . . . . . . . . . . . . . . . 162

8.3 SOC-included calculations of orbital interactions in Gd/WSe2 along
the Γ−K−K’−Γ path. The interactions include: f states of Gd with d
states of W, d states of Gd with d states of W, s states of Gd with p
states of Se, and s states of Gd with d states of W. . . . . . . . . . . . . 163

226



List of figures

8.4 (a) Spin-resolved DOS of
√
3 ×
√
3 Gd/WSe2: grey represents the

TDOS, green, red and blue the s, f and d states of Gd. (b) Spin-
resolved band structure highlighting the 4f states. Calculations were
performed without SOC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.5 (a) Differential charge density of
√
3 ×
√
3 Gd/WSe2 in the (010) and

(1-10) planes. (b) Differential charge density of
√
3 ×
√
3 Eu/WSe2 in

the (010) and (1-10) planes. The color scale ranges from −0.005 to
+0.005 and is consistent in both cases. . . . . . . . . . . . . . . . . . . . . 165

8.6 Orbital-resolved d density of states of Gd in
√
3 ×
√
3 Gd/WSe2: the

dx2−y2 and dxy orbitals, as well as the dyz and dxz orbitals, are degen-
erate due to the C3v symmetry of the system. . . . . . . . . . . . . . . . . 166

8.7 The magnetic anisotropy energy curve of Gd on
√
3×
√
3 WSe2 exhibits

an easy-axis oriented out-of-plane, and an energy of around ∼ 5 meV
relative to the in-plane direction. . . . . . . . . . . . . . . . . . . . . . . . 166

8.8 Magnetic anisotropy curves in the zx-plane for the
√
3×
√
3 simulation

cell of Gd/WSe2 by turning off SOC on (a) the Gd atom and (b) on
the W atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.9 (a) Spin-resolved DOS of 1 × 1 Gd/WSe2: grey represents the TDOS,
red and blue the f and d states of Ho. (b) Band structure highlighting
the occupied 4f states. Calculations were performed with SOC. . . . . . 170

8.10 SOC-included calculations of orbital interactions in Ho/WSe2 along
the Γ−K−K’−Γ path. The interactions include: f states of Ho with d
states of W, d states of Ho with d states of W, s states of Ho with p
states of Se, and s states of Ho with d states of W. . . . . . . . . . . . . 171

8.11 The magnetic anisotropy energy curve for Ho on a 1×1 WSe2 monolayer
in the zx-plane. The DFT+U data is denoted by blue dots, while the
fitting function is represented by a continuous red line. . . . . . . . . . . 172

8.12 Spin-resolved DOS of
√
3 ×
√
3 Ho/WSe2: (a) In the mHo

l = 5 µB case.
(b) In the mHo

l = 6 µB (Hund’s rules) case. Grey represents the TDOS,
red and blue the f and d states of Ho. Figures (c) and (d) are the
respective band structures highlighting the occupied 4f states. Calcu-
lations were peformed with SOC and GGA+U . . . . . . . . . . . . . . . 174

8.13 The magnetic anisotropy energy curve for Ho with mHo
l = 6 µB on a

√
3×
√
3 WSe2 monolayer in the zx-plane. The DFT+U data is denoted

by blue dots, while the fitting function is represented by a continuous
red line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.1 RE/Gr band structures. (a)-(b) Dy contribution (left) and C contribu-
tion (right) in Dy/Gr; (c)-(d) Ho contribution (left) and C contribution
(right) in Ho/Gr; (e)-(f) Tm contribution (left) and C contribution
(right) in Tm/Gr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.2 Phase diagrams of the magnetic ground state for multiplet structures
with varying C0

4/C
0
2 and C0

6/C
0
2 ratios for systems with total angular

momentum (a) J = 7/2 (b) J = 8 and (c) J = 15/2. . . . . . . . . . . . . . 192

227



List of figures

C.1 The figure compares the band structure contributions of graphene in
Gd/Gr/Ir(111) with Gr positioned at hh, and that of free-standing
Gd/Gr. The spin-up channel is represented in blue, and the spin-down
channel is shown in red. These calculations were performed with the
inclusion of spin-orbit coupling. . . . . . . . . . . . . . . . . . . . . . . . . 193

C.2 Band structure of Gd/Gr/Ir(111) at the valley and hill positions, high-
lighting the strength of Gr-Ir interaction using a colormap based on
the product of the sum of all carbon contributions and the sum of all
Ir contributions. The valley configuration shows a higher degree of
interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

C.3 Spin-polarized band structure of carbon atoms in the ferromagnetic and
antiferromagnetic configurations of Gd/Gr/Co(111). The calculations
were performed with the inclusion of SOC. . . . . . . . . . . . . . . . . . 194

D.1 The scaling effect of spin-orbit coupling in 1 × 1 Eu/WSe2 can be ob-
served in the simulated band structure along the Γ-M-K-Γ path in re-
ciprocal space. As the strength of spin-orbit coupling increases, energy
gaps form, leading to the removal of degeneracies and the appearance
of avoided crossings. This effect is particularly evident in the K-valley,
where the spin-up and spin-down channels are split. . . . . . . . . . . . . 195

D.2 Orbital contributions to the band structure of a monolayer of Eu on a
WSe2 monolayer are depicted for the various chemical elements present
in the system. Specifically, panel (a) illustrates the f , s, and d contri-
butions of Eu, with a zoomed-in view of the d contribution near the
energy range of occupied f states. In panel (b), the d contribution
of W and the p contribution of Se from the substrate are displayed.
The color scale indicates the weights of the orbital characters. The
calculations include the consideration of spin-orbit coupling. . . . . . . . 196

D.3 Spin-resolved density of states of
√
3 ×
√
3 Eu/WSe2. Grey represents

the TDOS, green, red and blue the s, f and d states of the Eu atom. . 197
D.4 Out-of-plane magnetic anisotropy curves in the xz-plane for the 1 × 1

simulation cell of Gd/WSe2 are shown by disabling spin-orbit coupling
on (a) the Gd atom and (b) the W atoms. . . . . . . . . . . . . . . . . . . 197

228



List of Tables

2.1 List of commonly occurring Legendre P 0
l and associated Legendre (Pm

l ,
m ≠ 0) polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Ground state properties for Eu and Gd on Gr for the three adsorption
sites: adsorption energy in eV, adsorption distance in Å, d and f oc-
cupation of the magnetic RE atom, spin magnetic moment of the RE
atom in µB, and total spin magnetic moment of the RE/Gr system in
µB. Calculations were performed without SOC. . . . . . . . . . . . . . . . 87

5.2 Ground state properties for Dy, Ho and Tm on Gr for the three ad-
sorption sites: adsorption energy in eV, adsorption distance in Å, d and
f occupation of the magnetic RE atom, spin magnetic moment of the
RE atom in µB, orbital magnetic moment of the RE atom in µB, and
total spin magnetic moment of the RE/Gr system in µB. Calculations
were performed in presence of SOC. . . . . . . . . . . . . . . . . . . . . . 92

5.3 Magnetic anisotropy constants obtained via fitting of DFT+U data
depicted in Fig. 5.8 for Eu and Gd and Fig. 5.9 for Dy, Ho and Tm.
The values are reported in meV and K. . . . . . . . . . . . . . . . . . . . 98

5.4 Polar (θ) and azimuthal (φ) angular coordinates corresponding to the
ground state magnetization direction (easy-axis) for each open 4f -shell
system. The variable n appearing in φmin is an integer number, n =
0,1,2,3... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Crystal field parameters obtained via reverse-engineering from the mag-
netic anisotropy constants Ki. The values are reported in meV and K. . 102

5.6 Dy/Gr: Magnetic anisotropy constants and crystal field parameters at
d/d0 = 0.96 and d/d0 = 1.04. The values are reported in meV and K. . . 108

5.7 Ho/Gr: Magnetic anisotropy constants and crystal field parameters at
d/d0 = 0.96 and d/d0 = 1.04. The values are reported in meV and K. . . 109

5.8 Tm/Gr: Magnetic anisotropy constants and crystal field parameters at
d/d0 = 0.96 and d/d0 = 1.04. The values are reported in meV and K. . . 109

5.9 Dissociation energy De , the b parameter and the equilibrium distance
d0 obtained by fitting with Eq. 5.5 the curves in Fig. 5.17. The param-
eters are listed for each RE/Gr complex and magnetization direction. . 111

5.10 Elastic force constants ke (N/m) and the respective vibration frequen-
cies ν (s−1) calculated with perpendicular and parallel magnetization
for each RE/Gr system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

229



List of tables

5.11 Ground state properties for Dy with orbital moment ∼ 5 µB (J = 7)
on top of Gr in the H-site: d and f occupation of the magnetic RE
atom, spin magnetic moment of the RE atom in µB, orbital magnetic
moment of the RE atom in µB, and total spin magnetic moment of the
RE/Gr system in µB. Calculations have been performed in presence of
SOC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.12 Dy/Gr: Magnetic anisotropy constants for the J = 7 and J = 8 magnetic
states. The values are reported in meV. . . . . . . . . . . . . . . . . . . . 120

5.13 Ground state properties of RE/Gr in a 4 × 4 supercell: d and f occu-
pations, spin mRE

s and orbital mRE
l magnetic moments. . . . . . . . . . 122

5.14 Spin magnetic moments of the s, d and f electrons of the 4 × 4 RE/Gr
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 The table summarizes the ground state properties of Gd/Gr/Co(111)
in the FM and AFM orders, including the d and f occupations, spin
mRE

s of Gd, computed with a perpendicular magnetization, and the
magnetic anisotropy of the system. . . . . . . . . . . . . . . . . . . . . . 137

7.1 Ground state properties for Eu in the three adsorption sites on WSe2:
adsorption energy in eV, adsorption distance in Å, d and f occupation
of the magnetic RE atom, and spin magnetic moment of the RE atom
in µB. Calculations have been performed without SOC. . . . . . . . . . 144

7.2 Adsorption energy, distance of the Eu atom from the WSe2 layer, the
magnetic moment and the f and d occupations in the muffin-tin sphere
of the Eu atom for the different adsorption sites in the

√
3 ×
√
3 cell.

Calculations have been performed without SOC. . . . . . . . . . . . . . 155

8.1 Ground state properties for Gd in the three adsorption sites on 1 × 1
WSe2: adsorption energy in eV, adsorption distance in Å, d and f
occupation of the magnetic RE atom, and spin magnetic moment of
the RE atom in µB. Calculations have been performed without SOC. . 161

8.2 Ground state properties for Gd in the three adsorption sites on
√
3×
√
3

WSe2: adsorption energy in eV, adsorption distance in Å, d and f
occupation of the magnetic RE atom, and spin magnetic moment of
the RE atom in µB. Calculations have been performed without SOC. . 164

8.3 A summary of the main findings regarding the electronic and magnetic
properties of Eu and Gd adsorbed on WSe2. . . . . . . . . . . . . . . . . 168

8.4 Ground state properties for Ho in the three adsorption sites on 1 × 1
WSe2: adsorption energy in eV, adsorption distance in Å, d and f
occupation of the magnetic RE atom, and spin and orbital magnetic
moment of the RE atom in µB. Calculations for Eads and d0 have been
performed without SOC, all the other properties have been calculated
including SOC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

230



List of tables

8.5 Magnetic anisotropy constants obtained via fitting of DFT+U data
depicted in Fig. 8.11 for 1 × 1 Ho/WSe2. The values are reported in
meV and K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.6 Ground state properties for Ho in the three adsorption sites on
√
3×
√
3

WSe2: adsorption energy in eV, adsorption distance in Å, d and f
occupation of the magnetic RE atom, and spin and orbital magnetic
moment of the RE atom in µB. Calculations for Eads and d0 have been
performed without SOC, all the other properties have been calculated
including SOC. For the T-WGS case, the adsorption energy has not
been evaluated, and the distance from the first Se layer is assumed to
be the same as in the Hund’s rule case. . . . . . . . . . . . . . . . . . . . 173

8.7 Magnetic anisotropy constants obtained via fitting of DFT+U data
depicted in Fig. 8.13 for

√
3 ×
√
3 Ho/WSe2. The values are reported

in meV and K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.1 Character table of the C6v symmetry double group and of the rotational
invariant atom with total angular momentum J = 7/2,15/2. . . . . . . . 186

A.2 Character table of the C6v symmetry point group and of the rotational
invariant atom with total angular momentum J = 8. . . . . . . . . . . . . 186

A.3 Stevens’ factors for RE ions in the 3+ oxidation state. . . . . . . . . . . . 189
B.1 Crystal field parameters in standard notation at equilibrium distance.

The values are reported in meV and K. . . . . . . . . . . . . . . . . . . . 191
B.2 Crystal field parameters in Waybourne notation at equilibrium dis-

tance. The values are reported in meV and K. . . . . . . . . . . . . . . . 191

231





Acknowledgements

The project has been funded by the Deutsche Forschungsgemeinschaft (DFG) through
CRC 1238, Control and Dynamics of Quantum Materials: Spin orbit coupling, corre-
lations, and topology (Project No. 277146847 C01). Acknowledgements go to com-
puting resources granted by RWTH Aachen University under Project No. jara0219.

The artwork for the cover of this thesis has been designed by Daniele Valente.

The years spent pursuing my PhD have been intense and challenging, and I’ve come
to realize that while I’ve always aspired to a career in research and being part of the
scientific community, the support of those around me has been, and will always be,
fundamental to achieving my life goals. Therefore, I would like to express my acknowl-
edgements to all the individuals who have been by my side during this life-changing
experience.

I am immensely grateful to Prof. Dr. Stefan Blügel for providing me with the opportu-
nity to work in an exceptional environment and for being a caring and understanding
supervisor who constantly inspires me to do my best and shares valuable ideas and
possibilities. I also want to thank him for allowing me to continue my family tradition
and create new memories in a place that holds cherished childhood memories.

My sincere thanks also goes to Dr. Gustav Bihlmayer for his meticulous guidance
throughout these years and for always being available whenever I needed assistance.
I have learned from him not only physics, but also the importance of patience and
calm in achieving sound scientific results and maintaining the right mindset to tackle
any questions or problems that may arise in our work.

I am grateful to Dr. Juba Bouaziz for the fruitful discussions and support, and to
Henning Janssen for sharing this experience (and the office) with me from day one.

I express my thanks to Dr. Nicolae Atodiresei for his availability and enthusiastic
discussions with me. Our meetings always left me brimming with new ideas.

I would like to extend my appreciation to all the members of PGI-1/IAS-1 with whom
I have shared my days. A special mention goes to the Quantum Lounge people who
accepted me despite coming from the main building. Thank you for the incredibly
long and nonsensical discussions after lunch, and for always appreciating my italian
coffee - I will miss those moments. I specifically want to thank Daniela for being my
pillar at the institute and a supportive friend.

I would like to give special recognition to Dr. Dongwook Go, who, apart from being

233



Acknowledgements

one of my closest friends, has been an important figure in supporting me throughout
my journey. As I started my doctoral studies, the pandemic also began, presenting
numerous challenges for a new PhD student. Despite the limitations of not being able
to access the office, Dongwook has been a constant source of support. Through online
meetings and chats, he has provided guidance in completing my initial projects and
has helped uplift my spirits.

I also want to express my gratitude to Dr. Gregor Michalicek for continuously check-
ing if I am happy since my master’s thesis. Thank you for always being available to
listen and help resolve any FLEUR problems.

Outside of Forschungszentrum Jülich, I would like to thank the individuals who have
broadened my perspective of the research field and provided me with new experiences
to keep my mind open:

First and foremost, I want to thank Prof. Dr. Pietro Gambardella and Prof. Dr.
Nicola Spaldin for hosting me in their research groups at ETH Zürich. This was
my first scientific exchange experience after the pandemic and marked the beginning
of my research activities from a broader perspective. The opportunity to visit labs,
see science beyond my computer screen, and engage in discussions with numerous
researchers had a profound impact on shaping me as a scientist.

I am grateful to the CRC collaboration for organizing enjoyable and intellectually
stimulating scientific retreats. These retreats provided me with the opportunity to
meet fellow young researchers, exchange experiences and ideas, and gain insights into
various theoretical and experimental aspects of condensed matter physics.

I would like to thank Dr. Stefano Rusponi of EPFL Lausanne for generously sharing
his time and expertise in discussing rare-earth atoms on surfaces and shedding light
on experimental possibilities in the field.

I would like to express my gratitude to the group of Prof. Dr. Thomas Michely at
Universität zu Köln for their insightful discussions during the CRC retreats.

I also express my gratitude to Prof. Dr. Morgenstern of RWTH Aachen for agreeing
to be my second referee.

Lastly, I want to thank Prof. Dr. Cesare Franchini at the University of Vienna
and Prof. Dr. Andreas Grüneis at Technische Universität Wien for hosting me and
providing me with the opportunity to share my work with their research groups. The
enriching discussions we had and the exposure to fascinating phenomena and methods
beyond my project were invaluable to my growth as a researcher.

234



Acknowledgements

I would like to take a moment to express my heartfelt appreciation to my friends.
These remarkable individuals have been by my side through thick and thin, always
unwavering in their support, regardless of the circumstances or distance between us.
Anoop, Sara, Stefano, Chiara, Emanuele, Nicoletta, Matteo, Giovanni, Sabastian and
David - your presence in my life has been a precious gift, filling it with moments
of joy and growth. I am truly grateful for the years and accomplishments we have
experienced together. Thank you.

I extend my heartfelt gratitude to Eduardo, whom I affectionately call Edu, despite
his esteemed title as Prof. Dr. Eduardo Mendive Tapia. Edu’s brilliance as a scientist
and teacher is matched only by his steadfast and caring friendship, for which I am
immensely grateful. Your constant support and enduring presence, even during the
most challenging times, are invaluable to me, and I wholeheartedly appreciate your
boundless generosity. In simple words, thank you for everything.

Thanks go out to my friends in the Flamingo community. I believe we are a demon-
stration to the fact that friendship transcends distances and strengthens over time. I
sincerely appreciate your support throughout all these years and cherish the memories
of all our incredible adventures together.

I am filled with profound gratitude for Riccardo, whose immense and genuine support
has meant the world to me. The precious moments and experiences we have shared
throughout the years hold a special place in my heart. Thank you for always bringing
light into situations where I may not see it, and for your constant presence in my life.

Finally, I want to express my heartfelt gratitude to my family on both sides of the
Alps. I am also grateful for my cousin Sophie, who has shared numerous Aachener
adventures with me.

My utmost gratitude goes to the two most influential and inspiring scientists in my
life, my mother and father. Thank you for your limitless support and encouragement:
your understanding and belief in me have been a guiding light throughout my doc-
toral journey, and for that, I am truly grateful. It is incredibly rare to say that my
parents not only understand, but probably even better than me, my doctoral thesis.
Thank you for sharing in both my academic and personal journey.

Last but not least, I wish to express my deepest appreciation to someone whom I
believe I’ve never truly thanked enough - my brother, Giulio. I may not excel in
demonstrating my gratitude mostly, so I find it fitting to take a few extra words for
you. Thank you for always being a source of calm, peace, and rationality in the face of
difficulties and the challenges of life. The immeasurable joy I experience when we meet
and the healing effect of our time together are truly invaluable. I genuinely thank
you for your ongoing support and understanding, providing a comforting presence
whenever I need it. Here’s to us—cheers!

235



The best advice I’ve ever received is,
“No one else knows what they’re
doing either”.

Ricky Gervais



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

 
Band / Volume 269 
The complex inositol metabolism of Corynebacterium glutamicum and its 
application for the production of rare inositols 
P. Ramp (2023), VI, 161 pp 
ISBN: 978-3-95806-699-1 
 
Band / Volume 270 
Spin- and orbital-dependent band structure of  
unconventional topological semimetals 
K. Hagiwara (2023), v, 115 pp 
ISBN: 978-3-95806-701-1 
 
Band / Volume 271 
Neutron scattering 
Experimental Manuals of the JCNS Laboratory Course held at 
Forschungszentrum Jülich and at the Heinz-Maier-Leibnitz Zentrum Garching 
edited by T. Brückel, S. Förster, K. Friese, M. Kruteva, M. Zobel and R. Zorn 
(2023), ca 150 pp 
ISBN: 978-3-95806-705-9 
 
Band / Volume 272 
Ab-initio investigation of the interplay between the hyperfine 
interaction and complex magnetism at the nanoscale 
S. R. S. Shehada (2023), ix, xi, 119 pp 
ISBN: 978-3-95806-718-9 
 
Band / Volume 273 
Analysis of the signal transduction cascade tuning the 2-oxoglutarate 
dehydrogenase activity in Corynebacterium glutamicum 
L. Sundermeyer (2023), VI, 119 pp 
ISBN: 978-3-95806-722-6 
 
Band / Volume 274 
Multicellular defense against phage infection in Streptomyces – impact of 
secondary metabolites and mycelial development 
L. Kever (2023), iv, 246 pp 
ISBN: 978-3-95806-724-0 
 
Band / Volume 275 
Investigation of the electronic band structure of 2D transition metal 
dichalcogenides via angle-resolved photoemission spectroscopy 
B. Parashar (2023), xvii, 156 pp 
ISBN: 978-3-95806-725-7 
 
 
 
 



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

 
Band / Volume 276 
Strain- and process engineering for polyketides production with  
Pseudomonas taiwanensis VLB120 in two-phase cultivations 
T. P. Schwanemann (2023), 230 pp 
ISBN: 978-3-95806-726-4 
 
Band / Volume 277 
Quantitative atomic-level investigation of solid materials through 
multidimensional electron diffraction measurements 
H. L. Lalandec-Robert (2024), xxi, 152 pp 
ISBN: 978-3-95806-735-6 
 
Band / Volume 278 
Studies on the cAMP-responsive regulatory network of Corynebacterium 
glutamicum 
N. Wolf (2024), iii, 122 pp 
ISBN: 978-3-95806-736-3 
 
Band / Volume 279 
Rare-earth atoms on two-dimensional materials: ab initio investigation of 
magnetic properties 
J. P. Carbone (2024), 235 pp 
ISBN: 978-3-95806-740-0 
 
 
 
 
 
 
Weitere Schriften des Verlags im Forschungszentrum Jülich unter 
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp 





Schlüsseltechnologien / Key Technologies
Band / Volume 279
ISBN 978-3-95806-740-0

Schlüsseltechnologien / Key Technologies
Band / Volume 279
ISBN 978-3-95806-740-0

Rare-earth atoms on two-dimensional materials:  
ab initio investigation of magnetic properties
Johanna Paulina Carbone

279

Sc
hl

üs
se

lte
ch

no
lo

gi
en

  
Ke

y 
Te

ch
no

lo
gi

es
Ra

re
-e

ar
th

 a
to

m
s 

on
 tw

o-
di

m
en

si
on

al
 m

at
er

ia
ls

:  
ab

 in
iti

o 
in

ve
st

ig
at

io
n 

of
 m

ag
ne

tic
 p

ro
pe

rt
ie

s
Jo

ha
nn

a 
Pa

ul
in

a 
C

ar
bo

ne


	Introduction
	Magnetism of 4f-atoms on 2D-materials
	General aspects of electronic properties of rare-earth atoms
	Spin-orbit coupling
	LS coupling scheme

	Rare-earths atoms on surfaces
	Magnetic anisotropy
	Magnetocrystalline anisotropy (MCA)
	Magnetoelastic anisotropy

	Crystal field theory
	Perturbing Crystal Field Hamiltonian
	Stevens Operator Equivalents Method


	Multiplet splitting of 4f-states in a C6v crystal field
	Quantum tunneling of magnetization and magnetic stability
	Modelling of a C6v crystal field Hamiltonian: integer and half-integer spin systems
	Half-integer spin: J=7/2
	Integer spin: J=8

	First-order perturbation effects: electron and phonon scattering
	Reverse-engineering the magnetic anisotropy: from classical to quantum


	Applications in spin-orbitronics
	Single-atom magnets
	Magnetotransport phenomena
	Anomalous Hall conductivity


	The Many-Body Problem: ab initio methods
	Density Functional Theory: a short review
	Spin Density Functional Theory

	The Hubbard Model
	DFT+U

	Full-potential linearized augmented plane-wave method

	Electronic and magnetic properties of 4f-adatoms on a graphene monolayer
	Electronic properties of rare-earth adatoms on 33 graphene
	Eu and Gd on 33 graphene
	Dy, Ho and Tm on 33 graphene
	Overview: trends with 4f-filling

	Magnetic anisotropy of rare-earth adatoms on 33 graphene
	Reverse-engineering of the crystal field parameters
	Magnetoelastic coupling
	How is the MAE affected by the Hubbard U?

	The case of Dy deviating from Hund's rules
	Diluted rare-earth atoms: 4 4 graphene supercell

	The effect of a metallic substrate: Gd/Gr/Ir(111) and Gd/Gr/Co(111)
	Graphene adsorbed on Ir(111)
	Gd on top of Gr/Ir(111)
	Gd on top of Gr/Co(111)

	Engineering spin-orbit effects and Berry curvature by deposition of a Eu monolayer on WSe2
	Structural and electronic properties of Eu atoms on WSe2
	Magnetic properties
	Spin and orbital textures
	Anomalous Hall conductivity
	Effect of Eu coverage

	Gd and Ho atoms deposited on WSe2: coverage dependence of magnetic properties
	Gd atoms deposited on 11 WSe2: monolayer case
	Gd atoms deposited on 33 WSe2: dilute limit
	Eu/WSe2 and Gd/WSe2: takeaways
	Ho atoms deposited on 11 WSe2: monolayer case
	Ho atoms deposited on 33 WSe2: dilute limit

	Conclusions
	Appendix A
	Character Tables
	C6v Crystal Field matrix elements for J=8
	C6v Crystal Field matrix elements for J=15/2
	Stevens' factors

	Appendix B
	Band structures of open 4f-shell atoms on 33 graphene
	Crystal field parameters at equilibrium distance in standard and Waybourne notation
	Phase diagrams of Jz for J=7/2,8,15/2

	Appendix C
	Gd/Gr/Ir(111) vs. Gd/Gr: graphene contribution
	Gd/Gr/Ir(111): Gr-Ir(111) interaction with distance
	Gd/Gr/Co(111): spin-polarized band structure of graphene

	Appendix D
	Eu on 11 WSe2: spin-orbit coupling scaling
	Eu on 11 WSe2: orbital contributions to the band structure
	Eu on 33 WSe2: density of states
	Gd on 11 WSe2: magnetic anisotropy contributions

	Appendix E
	Input file sample for FLEUR: Eu atom on 33 graphene
	Input file sample for FLEUR: Gd atom on 33 Gr/Ir(111)
	Input file sample for FLEUR: Eu atom on 11 WSe2
	Input file sample for FLEUR: Eu atom on 33 WSe2

	Bibliography
	List of publications
	List of figures
	List of tables
	Acknowledgements
	Leere Seite



