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Zusammenfassung

Die Adsorption einzelner magnetischer Atome und atomar dinner magnetischer
Schichten auf Oberflichen und zweidimensionalen Materialien bietet eine einzigartige
Moglichkeit zur Konstruktion hochkompakter und effizienter Nanostrukturen mit
potenziellen Anwendungen in der Spintronik und Spin-Orbitronik. Diese Arbeit
verwendet Berechnungen basierend auf der Dichtefunktionaltheorie, um unser
Verstandnis der Physik der 4f Elektronen zu vertiefen, indem sie die wesentlichen
Eigenschaften von Seltenerd-Atomen untersucht, die auf zweidimensionale Mate-
rialien adsorbiert sind. Diese Untersuchungen liefern wertvolle Erkenntnisse iiber
magnetische Anisotropie und verwandte Phéanomene und werfen Licht auf das kom-
plexe Zusammenspiel von Faktoren wie Spin-Bahn-Kopplung, Symmetrie, Kristallfeld
und topologischen Merkmalen, welche das beobachtete Verhalten bestimmen. Die
vielversprechenden Ergebnisse betonen die Bedeutung einer weiteren Erforschung
solcher Systeme, um den gezielten Entwurf und die Anpassung magnetischer Nanos-
trukturen zu realisieren.

Die Untersuchung beginnt mit der Analyse der Eigenschaften von Seltenerd-Atomen,
die auf einer Graphen-Monoschicht adsorbiert sind und sich somit in einem
hexagonalen Kristallfeld befinden. Die berechneten elektronischen und magnetischen
Eigenschaften sowie die Energieabhéngigkeit von der Magnetisierungsrichtung zeigen,
dass selbst auf einem strukturell einfachen Material wie Graphen die Energieab-
héngigkeit stark anisotrop ist und Werte von mehreren meV erreichen kann. Die
Berechnung von Multiplett-Aufspaltungen anhand bewerteter Kristallfeldparameter
zeigt Unterschiede zwischen ganzzahligen und halbzahligen Spin-Systemen auf. Im
ersten Fall treten tunnelgespaltene Zusténde auf, wéhrend die halbganzzahligen
Spin-Systeme durch Symmetrie gegen die Bildung solcher Zusténde geschiitzt sind.
Dennoch kann die Quantentunnelung der Magnetisierung in beiden Spin-Systemen
stattfinden, angetrieben von verschiedenen Faktoren wie Streuereignissen mit
Substrat-Phononen und Leitungselektronen. Insgesamt héngt die magnetische
Anisotropie signifikant vom entsprechenden Seltenerd-Atom ab und kann durch
Anwendung dufserer mechanischer Spannung als Mittel zur Manipulation modifiziert
werden, wihrend die elastischen Eigenschaften von der Magnetisierungsrichtung
abhéngen. Diese Beobachtungen bieten wertvolle Einblicke in die magnetoelastischen
und magnetostrukturellen Eigenschaften der Materialien.  Zusétzlich wird die
Bedeutung einer prézisen theoretischen Beschreibung der 4f Elektronen in einer
Diskussion {iber ihre Orbitalbesetzung betont, da dies erhebliche Auswirkungen auf
die magnetischen Anisotropieeigenschaften hat. Eine Konzentrationsreduktion der
magnetischen Atome zeigt in der anschliefenden Analyse, dass sich die elektronische
Struktur verdndern kann, was zu neuartigen Eigenschaften, wie der Entstehung von
flachen Béndern in der Ndhe der Fermi Energie fiihrt.



Das Ziel der Studie besteht aufserdem darin, experimentelle Bedingungen real-
itdsgetreuer in der Simulation nachzubilden, indem sie die Auswirkungen eines
metallischen Substrats auf die magnetischen Eigenschaften der Seltenerd- /Graphen-
Systeme analysiert. Die Ergebnisse legen nahe, dass die magnetischen Eigenschaften
durch das metallische Substrat minimal beeinflusst oder erheblich beeintrachtigt
werden konnen, abhéngig von der Entfernung zwischen den Komponenten und den
magnetischen Eigenschaften des Substrats selbst. Daher kann die Auswahl des
Metallsubstrats sowohl die Untersuchung der inhédrenten magnetischen Eigenschaften
des zweidimensionalen Seltenerd-Materials ermdglichen als auch die Manipulation
dieser Eigenschaften erleichtern.

Abschliefsend fithrt die Arbeit Untersuchungen beziiglich Seltenerd-Atomen auf einer
Monoschicht eines Ubergangsmetall-Dichalkogenid durch, und erweitert damit den
wissenschaftlichen Kenntnisstand der potenziellen Szenarien, in denen 4 f Elektronen
interagieren und von verschiedenen Umgebungen beeinflusst werden kénnen. Dieser
Abschnitt zeigt, dass eine groke magnetische Anisotropie entweder eine hohe oder
niedrige Bedeckung des magnetischen Atoms erfordert, abhéngig von seiner Chemie
und 4f Besetzung. Dariiber hinaus zeigen die Ergebnisse, dass die spezielle Kombi-
nation aus hoher Magnetisierung, starker Spin-Bahn-Kopplung und Symmetrieeigen-
schaften zur Entstehung nicht-trivialer topologischer Merkmale in der Bandstruktur
fithren kann. Diese Merkmale vereinen sich zu einer endlichen Berry-Kriimmung im
reziproken Raum, was vielversprechende Moglichkeiten fiir die Realisierung anomaler
Hall-Plattformen in diesen Systemen bietet.



Abstract

The adsorption of single magnetic atoms and atomic-thin magnetic layers on surfaces
and two-dimensional materials presents a unique opportunity for the construction
of highly compact and efficient nanostructures, with potential applications in
spintronics and spin-orbitronics. This thesis employs density functional theory-based
calculations to deepen our understanding of the physics of 4 f electrons by investigat-
ing the essential characteristics of rare-earth atoms adsorbed onto two-dimensional
materials. These investigations provide valuable insights into magnetic anisotropy
and related phenomena, shedding light on the complex interplay between factors such
as spin-orbit coupling, symmetry, crystal field, and topological features that govern
observed behaviors. The promising results obtained highlight the importance of
further exploration of such systems with the ultimate aim of designing and tailoring
magnetic nanostructures.

The analysis begins by examining the properties of rare-earth atoms adsorbed on
a graphene monolayer, resulting in them being situated within a hexagonal crystal
field. The calculated electronic and magnetic properties, as well as the energy
dependence on the magnetization direction, reveal that even on a structurally
simple material like graphene, the energy dependence is highly anisotropic and can
reach values of several meV. The calculation of multiplet splittings from evaluated
crystal field parameters indicates differences between integer and half-integer spin
systems. In the former case, tunnel-split states are found, whereas half-integer spin
systems are symmetry-protected against the formation of such states. Nevertheless,
quantum tunneling of magnetization can take place in both spin systems, driven by
various factors like scattering events involving substrate phonons and conduction
electrons. Overall, the magnetic anisotropy is found to be significantly dependent on
the specific rare-earth atom and can be modified by applying external mechanical
strain as a tool for manipulation, while the elastic properties rely on the direction
of magnetization. These observations offer valuable insights into the magnetoelastic
and magnetostriction properties of the materials. Additionally, the importance
of obtaining a precise theoretical description of the 4f electrons is emphasized in
a discussion on their orbital occupation, as it has a considerable impact on the
magnetic anisotropy properties. Upon diluting the magnetic atoms, subsequent
analysis demonstrates that the electronic structure can be altered, resulting in the
appearance of novel properties such as flat bands in the vicinity of the Fermi energy.

The study also aimed to simulate experimental conditions more accurately by
analyzing the impact of a metallic substrate on the magnetic properties of the
rare-earth/graphene systems. The findings suggest that the magnetic properties
can be minimally influenced or considerably impacted by the metallic substrate,
depending on the distance between the components and the magnetic prop-



erties of the substrate itself. Therefore, the selection of the metal substrate
can allow for either the examination of the inherent magnetic characteristics of the
two-dimensional rare-earth material or facilitate the manipulation of these properties.

Finally, the thesis outlines investigations with regards to rare-earth atoms adsorbed
onto a monolayer of transition-metal dichalcogenide, broadening the potential scenar-
ios in which 4f electrons can interact and be influenced by different environments. It
will be demonstrated that achieving a large magnetic anisotropy requires either a high
or low coverage of the magnetic atom, depending on its chemistry and 4 f occupation.
Furthermore, the results reveal that the combination of a large magnetization, strong
spin-orbit coupling, and symmetry properties can lead to the emergence of non-trivial
topological features in the band structure. These features merge into a finite Berry
curvature in reciprocal space, which presents promising opportunities for realizing
anomalous Hall platforms in these systems.
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Introduction

In recent years, there has been an increasing interest in exploring and developing
novel two-dimensional (2D) materials with the aim of expanding our fundamental
understanding of the underlying physics and advancing practical applications. A
broad range of systems has been extensively investigated in the literature, including
van der Waals (vdW) materials [1] such as graphene and graphene-like materials
(e.g., hexagonal boron nitride [2]), 2D transition metal dichalcogenides (TMDCs) [3]
like MoSs, WS,, MoSe,, WSes, and metal halides [4, 5]. These systems exhibit unique
properties arising from intrinsic effects such as spin-orbit coupling, symmetry-related
phenomena, electronic correlations, and magnetic interactions, which can be further
coupled by stacking different monolayers on top of each other [6-10]. By controlling
various factors such as the assembling sequence, chemical composition, and stacking
angle, a diverse range of properties can be engineered. For instance, twisting layers
can result in incommensurate structures that exhibit unique quantum effects, as
demonstrated by several recent studies [11-13]. This leads to the development of
novel materials that hold potential for use in the latest generation of electronics,
spintronics, and optics devices [14-18]. Moreover, the modulation of properties by
varying the constituents of the system enables a comprehensive understanding of the
respective roles played by different factors within the system.

Significant progress has also been made in the research area of atomically thin
magnetic materials [19, 20] in understanding their intrinsic magnetic properties and
manipulation through structure/composition engineering and external stimuli, such
as strain, light-induced phenomena, or gating [21-26]. Magnetism can generally
emerge in 2D-materials either intrinsically or due to external factors such as vacan-
cies, doping, or strain induction. [27]. Another strategy involves atomic impurities,
such as single atoms or molecules deposited on top [28-31|, which is similar to
constructing vdW heterostructures that exploit the proximity effect. In this context,
rare-earth atoms used for this technique could be an intriguing platform to stabilize
magnetic phases in 2D.

While the choice of investigating 2D-materials is easily justifiable due to the
extensive range of properties and manipulation possibilities they offer, the selection



1 Introduction

of rare-earth atoms (or 4f-atoms) as the magnetic source may raise questions. In
these atoms, magnetism arises from the 4f electrons, which can generate substantial
magnetic moments (both spin and orbital) and possess a high degree of localization,
protecting the 4f magnetic moment from excessive hybridization effects caused by
the surrounding chemical environment that could destabilize the magnetization.
Nevertheless, interactions between 4f electrons and other electrons can occur
through weaker hybridizations, electrostatic interactions, or indirect interactions (via
itinerant electrons), enabling the exploitation of their unique properties and leading
to extraordinary effects on the environment. Additionally, electron correlation effects
are significantly enhanced by the small distance between the 4 f electrons due to their
localization. The electron correlations lead to a multitude of complex properties, one
of which is the remarkably large magnetic anisotropy observed in rare-earth based sys-
tems, which is driven by the large spin-orbit coupling that 4 f electrons are subject to.

From these considerations, it can be inferred that the exploration of 4f electrons
is a fascinating choice because of the complexity and richness of the phenomena
involved. Theoretical treatments of these electrons pose significant challenges,
making it difficult to decipher their effects, but also presenting unique opportunities
for scientific exploration. Therefore, despite the challenges, investigating 4 f electron
phenomena holds great promise for advancing our understanding of the fundamental
principles governing magnetism in condensed matter systerms.

The aim of this study is to investigate through ab initio DFT calculations the
underlying electronic and magnetic properties of rare-earth atoms on 2D-materials,
with a particular focus on the phenomenon of magnetic anisotropy. The magnetic
anisotropy arises from the interplay between the geometrical shape of the 4f charge
cloud and the surrounding chemical environment via spin-orbit coupling. The
2D-substrate plays a fundamental role in generating a specific crystal field around the
rare-earth atom, whose symmetry and chemical-physical properties constitute the
second key ingredient in the generation of magnetic anisotropy. The present thesis
analyzes two different 2D-materials, namely graphene (Gr) and WSey, as substrates
for the 4 f-atoms.

The choice was based on three considerations: 1) they generate different local
symmetries for the 4 f-atom; 2) while graphene represents a case of weak interaction
from a chemical perspective, since there is no elemental variety and the Carbon atoms
interact with an adsorbed atom only with the perpendicular oriented delocalized m
orbitals, WSe, involves several types of orbitals in its interaction with the 4 f-atom;
3) graphene is an example of an almost spin-orbit coupling-free 2D-material, thus
the effect solely arises from the 4 f-atom, while in WSe,, the presence of heavy W
atoms leads to spin-orbit coupling in addition to that of the rare-earth atom. In this
study, the selected 2D-materials will serve as a basis for examining the electronic
and magnetic properties induced by 4f electrons. The underlying concept involves
addressing fundamental questions regarding 4 f physics when rare-earth atoms are
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adsorbed onto various substrate types, and exploring how this knowledge can be
leveraged to manipulate magnetic properties in rare-earth based 2D-materials.

Before delving into the technical details about the chapter organization of this
thesis, it is pertinent to address a fundamental question that arises: why is magnetic
anisotropy significant?

Initially, it should be highlighted that establishing long-range magnetic order in 2D
magnets can be challenging at finite temperatures due to the reduced dimensionality,
unless the thermal fluctuations can be overcome. This can be achieved for example
in 2D systems that possess a sufficiently large magnetic anisotropy [32].

In recent years, the advancement of computation power and data generation has
highlighted the need for improved memory capacity in electronic devices. One
promising solution for dense data storage is the use of single atoms deposited on
2D-materials or surfaces with large magnetic anisotropies [33]. These magnetic atoms
can serve as information carriers, with their magnetization oriented in specific favored
directions. The key requirement for stable information storage is magnetic stability,
which is associated with large magnetic anisotropy, allowing the unit of information,
or bit, to retain its state over long time periods and resist external perturbations,
such as temperature fluctuations. At the quantum level, this stability requires long
relaxation times for the atom’s magnetization, corresponding to magnetic quantum
states separated by significant energy gaps in the energy spectrum and protected
from quantum tunneling of magnetization. Additionally, to avoid magnetization
reversal, the atomic magnet should also be decoupled from the environment to
prevent scattering of the spin with electrons and phonons.

In this context, lanthanide atoms have already shown their potential in molecular
magnets [34-37], where the 4 f-atom is trapped in a molecular cage made out of specific
ligands. Recently, single lanthanide atoms adsorbed on surfaces have demonstrated
the ability to maintain their magnetic state, opening the path towards memory units
at the atomic scale [38, 39].

11
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This thesis aims to enhance our comprehension of magnetism in 4f systems by
examining and comparing different rare-earth atoms under various conditions. The
following is an overview of the thesis structure:

Chapter 2 of this thesis provides a theoretical overview of rare-earth physics,
including electronic properties of isolated atoms and the effects of their adsorption
onto a surface. The chapter reviews the concept of magnetic anisotropy and provide
an introduction to crystal field theory, including the hexagonal crystal field Hamil-
tonian and its parameters. The multiplet splittings of 4f electrons in a hexagonal
crystal field is explained, and the effect of quantum tunneling of magnetization on
magnetic stability is discussed. Two spin systems, namely a half-integer spin system
(J =7/2) and an integer spin system (J = 8), are modeled to illustrate the differences
between the two cases. The chapter also presents a method for deriving crystal
field parameters of a hexagonal crystal field from the classical magnetic anisotropy
constants, which can be computed from ab initio DFT calculations.

Chapter 3 offers insights into the main motivations behind the choice of the current
research topic. This is accomplished by briefly reviewing the pioneering works from
the literature and discussing the potential applications of 4 f-atoms on 2D-materials
in the fields of magnetic bits and anomalous Hall conductors.

Chapter 4 explores the intricacies of a many-electron system, presenting the requisite
theoretical groundwork for Density Functional Theory (DFT) and its extension
through the Hubbard model within the DFT+U framework. These methods are
necessary to enhance the description of 4f electrons, as exemplified in the case of
Gd/Gr. The chapter concludes with an explanation of the theoretical background of
the Full-Potential Linearized Augmented Plane-Wave method (FLAPW), which is
implemented in the FLEUR code used for all calculations throughout the thesis.

Chapter 5 starts the analysis of the results obtained in the context of 4 f-atoms on a
graphene monolayer. Firstly, the electronic and adsorption properties are examined,
followed by an exploration of the magnetic properties, with a particular emphasis on
magnetic anisotropy and a comparison between various rare-earth atoms. The sys-
tems under investigation include Eu and Gd, which are representatives of half-filled
4 f-shells, as well as Dy, Ho, and Tm, which are representatives of open 4 f-shells
with stronger spin-orbit coupling effects. Subsequently, the discussion shifts to the
computed multiplet splittings in the open 4f-shell systems, which were obtained
through the calculation of crystal field parameters based on the magnetic anisotropy
constants. Additionally, it is demonstrated that the magnetic anisotropy can be
engineered not only by changing the 4 f-atom but also by mechanical deformation.
Consequently, the magnetic anisotropy behavior as a function of external strain
is examined, allowing for the extraction of elastic force constants and vibrational
frequencies of the graphene complexes.

The chapter provides an overview of the impact of Hubbard U on the computed

12



magnetic anisotropy and highlights the challenges when simulating such systems in
the DFT+U framework. Furthermore, significant emphasis is given to the importance
of accurate U values, thereby increasing awareness of the need for precision.

Further investigation of Dy/Gr includes a comparison between magnetic anisotropy
in the Hund’s rule 4f occupation and a non-Hund’s rule occupation to illustrate the
competition between crystal field effects and the intra-atomic exchange interaction.
This section emphasizes once more the importance of accurately describing the 4 f
electrons, as it greatly affects the magnetic anisotropy properties.

Finally, the chapter concludes by examining the impact of rare-earth atom coverage
(concentration on the graphene sheet), briefly exploring the electronic properties
of a large simulation cell that corresponds to the isolated atomic limit of the 4 f-atoms.

Chapter 6 aims to establish a preliminary comprehension of how a metallic substrate
can affect the magnetic anisotropy of Gd/Gr. The investigation focuses on two
scenarios: the first involves a non-magnetic surface, while the second scenario involves
a magnetic surface, in the Gd/Gr/Ir(111) and Gd/Gr/Co(111) systems, respectively.

Chapter 7 delves into the effects of 4f-atoms adsorbed on a WSe; monolayer
and aims to investigate the electronic and magnetic properties of Eu/WSe, while
exploring the possibility of engineering spin and orbital properties for use as a
platform for magnetotransport phenomena. The study commences with a high
coverage situation of Eu atoms on the 2D-material, which creates sufficient proximity
effects to generate prominent spin-orbit coupling effects, magnetic anisotropy, and
stable ferromagnetism. These properties allow for the observation of anomalous
Hall conductivity resulting from the tailored Berry curvature in the system. The
impact of reducing the Eu coverage is then analyzed by simulating larger periodic cells.

Chapter 8 presents an analysis of the electronic and magnetic properties of Gd and
Ho atoms on WSe,. Gd is examined as an example of a different chemical behavior
than Eu, while Ho is considered as an instance of an open 4f-shell. This chapter
discusses the impact of these two properties on magnetic anisotropy and spin-orbital
properties in comparison with the previously studied Eu atom, both in high and
low coverage scenarios on the 2D-material. Based on these observations, the chapter
provides final considerations that could facilitate the manipulation of magnetic
anisotropy through the 4 f-atom’s nature and its coverage on the 2D-material in the
future.

Chapter 9 concludes the comprehensive investigation of rare-earth atoms on 2D-
materials, summarizing the key findings and insights gained.
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Magnetism of 4 f-atoms on
2D-materials

The following sections provide a comprehensive examination of rare-earth mag-
netism, starting with the electronic properties of individual rare-earth atoms and
how they are affected by adsorption onto surfaces and 2D-materials. Crystal field
theory is introduced to establish its connection to magnetic anisotropy, and subse-
quently utilized to model the influence of a hexagonal crystal field on systems with
both integer and half-integer spins. Lastly, the chapter illustrates the process of
determining crystal field parameters using the classical magnetic anisotropy en-
ergy functional. This method is later applied in Chapter 5 to DFT calculations
of rare-earth atoms on graphene.

2.1 General aspects of electronic properties of rare-earth
atoms

Magnetism is a property that arises in atoms characterized by unfilled (or “open”)
electron shells i.e. in presence of unpaired electron spins in specific orbitals. Orbital
filling is determined by the simultaneous action of the classical repulsive Coulomb
interaction between pairs of electrons and the pure quantum mechanical exchange
interaction acting between electrons with parallel spins. The latter is a consequence
of the identical nature of electrons and specifically of their classification as fermionic
particles with half-integer spin. Hence, considering a many-body system of electrons,
the respective wave function is antisymmetric with respect to the exchange of two
particles, leading to the well known Pauli exclusion principle which prohibits two
electrons to occupy the same state while having the same spin.

Unpaired electrons in atoms cause an imbalance in the spin density pointing in one
direction compared to the spin density pointing in the opposite direction, generat-
ing thus a magnetic moment which in turn can spin-polarize the structures they are
part of and/or interact with magnetic moments arising from other atoms in the sys-
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Figure 2.1: The lanthanide series: with increasing Z the 4 f-shell is filled and four
exceptions present d valence electrons in the atomic limit, namely La, Ce,
Gd and Lu.

tem, leading to a variety of magnetic phenomena exploitable in technological devices.
In this perspective, rare-earth (RE) atoms are extraordinarily appealing due to the
sequential filling of the 4f-shell along the series, being the unpaired 4f electrons
the source of large magnetic moments. Furthermore, rare-earths are heavy elements
characterized by strong spin-orbit coupling (SOC), which plays a primary role in de-
termining peculiar features in the electronic structure of some materials and is often
strictly associated to a broad and heterogeneous spectrum of complex yet fascinating
electronic and magnetic phenomena. For a more detailed discussion about SOC in
rare-earths, see section 2.2.

Fig. 2.1 illustrates the lanthanide series with increasing atomic number Z and shows
the electronic configuration for each element in the series. In general, lanthanides have
electronic configuration [Xe]6s24 ™ with exception of La, Ce, Gd and Lu that tend to
place one electron in the 5d orbital in order to get an empty, half-filled or completely
filled 4 f-shell. Starting with Lanthanium, the [Xe]6s25d! configuration is favored with
respect to the 5d%°4f1, leading thus to a 4f° state. However, as the atomic number
increases, the 4 f orbitals become more stable compared to the 5d orbitals due to their
high penetration into the core. This leads to the additional electron in Ce occupying
the 4 f-subshell, also driven by the stabilization gained when the spins of the 5d and
4f electrons are aligned. Subsequently, the 4 f-shell is gradually filled up through the
series and the lanthanides have electronic configuration [Xe]6s24 f75d%, n = 3-7. At
Z =63, namely Eu, the 4 f-shell is half-filled and the following electron in Gd occupies
the 5d orbital maintaining a half-filled 4 f-shell, [Xe]6s24f75d'. Nevertheless, with
Tb the energy equation involving the interaction with other electrons and the nuclear
charge, favors the displacement of the 5d electron into the 4 f-shell and the addition
of the new electron into the same shell. Hence, the next elements present again a
sequential filling of the 4 orbitals which leads to configurations [Xe]6s24 f"5d° with
n=9-14 until Z = 70. Finally, Lu places the last electron inside of the 5d orbitals,
being all the 4 f states occupied.
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Figure 2.2: Hydrogenic squared radial wave functions for the 4f, 5d and 6s orbitals
of cerium, plotted as the probability to find an electron at distance r from
the nucleus. (after [41, 42]).

The unfilled 4f-shells in rare-earths are responsible for magnetic and spectroscopic
properties of the compounds they are part of, while they are mostly not involved in
chemical processes because of their localized nature. Instead, the chemical properties
of rare-earth materials are determined by valence orbitals that are more extended in
space (e.g. 6s and 5d), and hence can hybridize with surrounding electrons of different
species. In order to properly understand the electronic and magnetic properties of
the RE-based 2D-materials that are investigated in this thesis, it is necessary to have
a closer look at the wave functions describing the 4f electrons inside of single RE
atoms. Considering a RE atom with atomic number Z, the respective non-relativistic
Hamiltonian reads as [40]

z 2 2 z 2
[ h _Zi] 1 e (2.1)

H = —7V2 + — _

Zi: 2m "o 2 ZZ]: |r; — ;]

where the first term describes the kinetic energy of the electrons, the second term

corresponds to the attractive potential energy of the electron in the field of the positive

charged nucleus, and the last term determines the electrostatic repulsion between pairs
of electrons. Solving the corresponding Schrédinger equation

HU = EV (2.2)

gives the atomic eigenstates ¥ and energies E. Nevertheless, the solution to this
eigenvalue problem presents difficulties associated to an accurate computation of all
inter-electronic interactions in multi-electron systems and a variety of numerical pro-
cedures, including post-Hartree Fock [43] and DFT [44-46] methods have been devel-
oped in order to account, within limits, for the last term in Eq. (2.1). A brief overview
will be provided here, with more details discussed in Chapter 4.
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Figure 2.3: Ionic radius (for the Ln3* state) as a function of the atomic number Z
depicting the lanthanide contraction.

One way to simplify the problem is by replacing the electron-electron interaction
with an effective potential that is experienced by each electron, effectively reducing
the many-body problem into multiple single-particle problems. Taking into account
the fermionic nature of electrons, the total eigenfunction W can then be expressed as
an antisymmetric wave function in the form of a Slater determinant:

&1(q) (@) - onlqr)
\I/(QI,(]2,“.7C]N):% ¢l(:(h) ¢2(:12) <Z5qu2) . (2.3)
& (gn) ¢a2(an) - onlan)

Here, the coordinates ¢; involve both spatial and spin coordinates, and N is the total
number of electrons. Moreover, being the atomic potential rotationally-invariant, it
is possible to express each single-electron function ¢ as a product of a radial function
R, (), a spherical harmonic Y;,,(6, ) and a spin function x,,,, to construct a spin-
orbital

¢(Q) = Rnl(r)Ylm(a(p)Xmsv (24)

where n is the principal quantum number, [ is the angular momentum quantum
number, m is the magnetic quantum number, and m, corresponds to the spin of the
electron. The single-particle eigenvalue problem becomes separable, and the radial
function is solution of the radial Schrédinger equation,

h? d®  hi(l+1) )
[ omdr? "’ 2mr? V(T)] rRu(r) = ErRu(r). (2.5)

Fig. 2.2 illustrates the radial part of Eq. (2.4) for the 4f, 5d and 6s orbitals of Ce
in terms of probability of finding an electron, calculated as 47r2R?, at a distance r
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2.1 General aspects of electronic properties of rare-earth atoms

from the nucleus. This permits to understand why 4 f electrons play a limited role in
chemical bonding, as they are spatially deep embedded within the atom compared to
the more widely spread 5d and 6s valence electrons [42].

This high penetration of the 4 f orbitals is also responsible for the lanthanide contrac-
tion, which consists in a decreasing atomic (and ionic) radius of the elements with
increasing atomic number Z. This trend is illustrated in Fig. 2.3 for the ionic radii
of the oxidation state Ln3* of the lanthanides and is due to an incomplete shielding
of the n = 5,6 valence electrons by the penetrating 4f electrons from the increasing
positive nuclear charge when protons are added along the series.

Coming back to Eq. (2.4), the spherical harmonics Y}, (6, ) are solution of the angular
Schrodinger equation,

1 0(. ,0 1 0 Tom B m
|95 (005 )* g | @0 = DV 00). (20)

and are eigenfunctions of the the angular momentum operator L and its z component
L.:

L2Y[™(0.¢) = 211+ 1)Y;"(0, ) (2.7)

L.Y"(0,) = hmY;™(0, ), (2.8)

where, [ =0,....,n—1 and m = —[,...,[. The spherical harmonics can be expressed in

}/3.() }/3.1 }/3.2 YZS.-‘S

|

% ¥

Y31 Y o Y33

Figure 2.4: The 4 f wave functions exhibit angular dependence, which can be described
by spherical harmonics with a quantum number [ = 3, and varying mag-
netic quantum number m. The positive values are depicted in red, while
the negative values are shown in blue.
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2 Magnetism of 4 f-atoms on 2D-materials

terms of associated Legendre polynomials P/ (cos#),

(20 + 1)(1-m)!

m imeyp
Tl m) P (cosf)e™?, (2.9)

Y™ (0,¢) = (-1)"
with
Y6, 0) = Y (0,0). (2.10)
This equation gives the general shape of the orbitals i.e., if squared, the angular
probability to find the electron based on the quantum numbers [ and m. Concerning
the 4f orbitals, [ = 3 and m assumes integer values -l < m < [. This combination of
(I,m) generates highly anisotropic angular wave functions, as illustrated in Fig. 2.4,
and play an important role in the determination of magnetic properties of materials
involving REs.

Finally, the radial and angular parts in the single-particle wave functions, are mul-
tiplied by the spin function y,,, which is the eigenfunction of the spin operators S?
and S,

5% X, = h*s(s + 1)Xm, (2.11)

52 Xm, = himsxm, (2.12)
with s = 1/2 and m, = +1/2.
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2.2 Spin-orbit coupling

2.2 Spin-orbit coupling

The spin-orbit coupling, which refers to the interaction between the magnetic field
created by the electron’s motion through an electric field and the electron spin, plays
a crucial role in determining the energy spectrum of the 4f states in RE atoms and
materials. As a result, it has a significant impact on their electronic and magnetic
properties. It is well known that SOC manifests in lifting the spin degeneracies in
atoms and solids, and can be formally derived by introducing a relativistic correction
in the Schrodinger equation. This is done by considering the Dirac equation whose
solution naturally includes the spin of the electron and its relativistic nature. The
spin-dependent term in the relativistic Hamiltonian is the cause of spin-splitting of the
otherwise double-degenerate spin-up and spin-down bands in solids. For an electron
moving through an electric field E with momentum p, the spin-orbit Hamiltonian
can be written as

Hso = - U-(Exp):—M—Ba-(lExv):—M—Ba-B (2.13)

eh
(2mc)? 2 2

where e and m are the electron charge and mass, ug = eh/2mc is the Bohr magne-
ton, and the spin of the electron is o = 2S5/h, with S the spin angular momentum.
Eq. (2.13) describes the interaction of the magnetic moment of the electron spin with
the magnetic field arising from the orbital motion of the particle itself in an external
potential. In the case of the orbital motion of an electron in an atom, we consider
an electric field generated by the positive charge of the nucleus i.e. the potential
is spherically symmetric. In the reference system of the moving electron, it experi-
ences a magnetic field B = %(E x v) emerging from the Lorentz-transformed electric
field (the electron perceives a dynamical positively-charged background), which will
interact with the electron spin. In this situation, Eq. (2.13) rewrites as

h 14V ~h 1dV
a2 dr O (rxp) = Am22r dr
Here, £ is the spin-orbit coupling constant and 1 is the orbital angular momentum
that aligns antiparallel to the spin of the electron. In the vicinity of the atomic
nucleus, the potential V' in Eq. (2.14) exhibits a Coulomb-like shape V ~ —%, where
Z represents the atomic number. Consequently, the derivative of the potential is
proportional to the atomic number Z, and it decreases as the distance from the
nucleus increases. As a result, the spin-orbit coupling constant ¢ is expected to have
larger values for heavy elements and for electrons that are closer to the core. The
additional interaction energy described by Hse can often be treated as a perturbation
to the non-relativistic Hamiltonian, allowing to determine the energy corrections and
the respective split spectrum.

Hso = o-l=¢o-l (2.14)

2.2.1 LS coupling scheme

In multi-electron atoms, the Aufbau principle can be exploited to obtain the ground
state electronic configuration in terms of shells, defined by the principal quantum

21



2 Magnetism of 4 f-atoms on 2D-materials

[=2 B BN 0]
wn

ot
L

Magnetic moment [ p]

S N W e
s L L L L

01 2345 67 8 91011121314
n

Figure 2.5: The total orbital angular momentum L, the total spin angular momentum
S and the total angular momentum J as a function of the number n of
4f electrons in the Ln3* state in lanthanides. The trend follows Hund’s
rules.

number n, and subshells defined by [ (s,p,d.f,...). Nevertheless, in order to determine
properties such as the the magnetic moment of an atom, it is necessary to take into
consideration the fact that each electron in a subshell carries an orbital moment and a
spin moment, and there are multiple approaches of combining these angular moments
in a many-electron system. Hence, the overall challenge is to identify the lowest-energy
state in a pool of different electronic state occupations for a given configuration. In
order to find the solution, it is necessary to account for distinct interactions acting
on and between electrons such as the electrostatic contributions from the nucleus and
other electrons, exchange interactions and SOC. If SOC is relatively weak compared
to the inter-electronic Coulomb interaction, then the Coulomb interaction first couples
the individual orbital moments I; and spin moments s; of the electrons generating the
total orbital angular momentum L and the total spin angular momentum S

L=l S=) s, (2.15)

with quantum numbers L and S. This coupling scheme is known as the Russell-
Saunders coupling and is usually adopted for RE atoms. We define the z-components
of the angular moments as L, and S, and the respective quantum numbers M}, =
Yim; (-L <My <+L)and Mg =Y, ms, (=S < Mg <+S). Then SOC couples L and S
to form the total angular momentum J = L + .S, and acts as a perturbation inducing
further splitting of the energy levels, which are labeled by the quantum number J that
assumes values |L - S| < J < L+ S. The spectroscopic term is a label used to identify
the atomic states based on the quantum numbers (LSJ), and writes as 25*1L;. The
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2.2 Spin-orbit coupling

different values of L = 0, 1,2, 3 are conventionally addressed as S, P, D, F', and the spin
multiplicity, given by 25 + 1, reflects the number of possible J states for given values
of L and S. The term symbol corresponding to the ground state can be determined
following Hund’s rules which summarize as [47—49]:

Hund’s rules

e For a given electron configuration, the term with maximum spin multi-
plicity (25 + 1) has the lowest energy.

e For a given multiplicity, the term with the largest value of the total orbital
angular momentum quantum number L has the lowest energy.

e For a given term, in an atom with outermost subshell half-filled or less,
the level with the lowest value of the total angular momentum quantum
number J lies lowest in energy. If the outermost shell is more than half-
filled, the level with the largest value of J will be the one with the lowest
energy.

Fig. 2.5 illustrates the trends of L, S and J for the 4f" configurations in the Ln3+
oxidation state along the lanthanide series.

By writing the multi-electron Hamiltonian as a spherical symmetric term and a per-
turbation,

H:H0+HSOZH0+€L-S7 (216)

it is easy to show the symmetries of H, based on the commutation relations:
[Li7 L]] = ZhQ]kLk [S“ S]] = ZhQ]kSk [I/27 L]] = 0 [52, S]] = 07 (217)

where ¢, is the Levi-Civita symbol. Indeed, Hso does not commute with L, and S,
and hence, the two z-components are not conserved quantities, and M, and Mg are
no longer good quantum numbers. Instead, Hso commutes with L% S2 J? and J,
(z-component of J) and their simultaneous eigenstates are classified by the quantum
numbers J, L, S, J and J,.

The magnetic moment of an atom can then be evaluated as [50]

m =-ug(grL + gsS) = —pusgsJ, (2.18)

where pp represents the Bohr magneton, g, = 1 and gs ~ 2 denote the orbital and
spin g-factors respectively, and g; refers to the total angular momentum g-factor.
Moreover, atoms with J # 0 are characterized by a (2J + 1)-fold degenerate ground
state, in which states are labeled by the quantum number J,. The J, states can be
further split by breaking the spherical symmetry e.g. in a crystal field whose symmetry
is dictated by the spatial arrangement of the constituent atoms.
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2 Magnetism of 4 f-atoms on 2D-materials

2.3 Rare-earths atoms on surfaces

So far, only isolated RE atoms have been considered, for which each J energy level
presents a (2.J+ 1)-fold degeneracy of J, states due to the rotational invariance of the
atomic Hamiltonian with point symmetry O(3). Nevertheless, the present work deals
with single RE atoms adsorbed on top of two-dimensional layers of different materi-
als, where the underlying surface induces a symmetry breaking of the atomic states.
When an atom is deposited on a surface, it experiences an electric field produced by
the surrounding atomic charges, known as the crystal field (CF). The effect of the
CF is a lowering of the spherical symmetry of the embedded atomic potential, and
the new symmetry is dictated by the spatial arrangement of the neighboring atoms
defining the surface, or in other words, by the chemical environment.

Examples of two different local crystal field symmetries are shown in Fig. 2.6, which
depicts the two main situations that have been investigated throughout this work: a
hexagonal Cg, and a trigonal Cs,, crystal field. The Cg, point symmetry is character-
ized by 6 nearest neighbors located at the vertices of a hexagon, and hence related
by rotations of 60° around the main rotation axis, while in the Cj, site the adatom
is located at the center of two inequivalent triangles such that a rotation of 120° is
needed to leave the system unaltered. These kind of atomic arrangements are found
in several 2D-crystal structures, e.g. graphene-like structures [51-53] and transition
metal dichalcogenides (TMDCs) [54, 55] and it will be shown that the symmetry of the
CF plays an important role in determining the magnetic properties of the adsorbed
RE atoms. For example, due to the interplay between large spin and orbital magnetic
moments that lead to strong SOC and the interaction with the CF, the 4f electrons
of a RE atom on top of a surface can exhibit prominent magnetic anisotropies.

Figure 2.6: Cg, crystal field (left) and Cj, crystal field (right). Both symmetries ex-
hibit a hexagonal arrangement of atoms, but in the Cg, case, the atoms in
the 2D-material belong to the same chemical species (similar to graphene),
while in the Cj3, case, the central RE atom is surrounded by two different
atom species.
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2.3 Rare-earths atoms on surfaces

2.3.1 Magnetic anisotropy

The magnetic anisotropy (MA) is a property of a system that describes the dependence
of its magnetic properties on the direction of measurement. Samples that exhibit
magnetic anisotropy are more easily magnetized along a specific direction, meaning
that the magnetic anisotropy energy (MAE) represents the energy required to deflect
the magnetization from the preferred direction. The latter is called the easy-azis and
defines the direction of spontaneous magnetization i.e. the energetically most favored
magnetic state, while the most unfavored direction is referred to as hard-axis. The
phenomenon can be classified based on different sources:

Magnetocrystalline anisotropy is an intrinsic source of MA originating from the
interaction between the local non-spherical charge cloud of the magnetic atom
with the crystal field. The effect is driven by spin-orbit interaction. Closely
related to the magnetocrystalline anisotropy is the magnetoelastic anisotropy,
as it describes the change in magnetic properties of a material in response to
external stress. This phenomenon arises due to the deformation of the crystal
field surrounding magnetic atoms under stress, altering the interaction of the
charge cloud with the surrounding environment.

Shape anisotropy is observed in non-spherical samples due to the demagnetizing
field varying based on the direction, resulting in an easy-axis for the magneti-
zation.

Exchange anisotropy is driven by the magnetic interaction that occurs at the in-
terface between two distinct magnetically ordered layers, such as a ferromagnet
and an antiferromagnet.

The following discussion will provide a more detailed exploration of both magne-
tocrystalline and magnetoelastic anisotropy.

2.3.1.1 Magnetocrystalline anisotropy (MCA)

When a RE atom is deposited on a 2D-material, the 4 f charge will experience the CF
generated by the nearest surface charges. For most of the lanthanides the 4f charge
distribution is characterized by a non-spherical geometry due to the large angular
moment L which is coupled through SOC to the large spin magnetic moment arising
from unpaired 4f electrons. As a result, the orientation of the magnetic moment
of the RE atom affects the interaction between the 4f charge distribution and the
surrounding point charges in the crystal field.

When the magnetic moment is rotated, the 4 f charge cloud will also rotate, leading to
either a stronger or weaker electrostatic interaction with the crystal field, depending
on whether the 4 f distribution is oriented more towards or away from the surrounding
point charges. This process translates into an angular dependence of the total energy
of the system upon rotation of the magnetization. Exceptions are Eu and Gd for
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Eu, Gd: 4f7 Other 4f occupations
L=0 S=7/2, J=7/2 L#0

Figure 2.7: (a) In Eu and Gd the half-filed 4 f-shell produces vanishing values of L
reflecting in a spherical shape of the 4f charge distribution. (b) For other
4 f occupations, the total orbital angular momentum is non-zero leading to
oblate or prolate-like geometries of the 4f cloud which interact differently
with the surrounding CF based on their orientation.

which the half-filled 4f7 shell leads to a vanishing L, which reflects in an isotropic
4f charge cloud (See Fig. 2.7). Therefore, in these cases the magnetocrystalline
anisotropy is expected to give only small contributions arising from the intra-atomic
spin-orbit interaction. From these considerations, the MCA can be reduced to two
key ingredients: the geometry of the 4f charge distribution and the symmetry of the
CF.

The classical energy functional, F,,(6,¢), describing how the total energy changes
as a function of the magnetization direction, is written as a series of powers of the
direction cosines of the magnetization vector, where only even powers are permitted
because of the invariance of the anisotropy energy under time-reversal symmetry [56].
Moreover, the number of terms in the expansion depends on the specific crystallo-
graphic point-group. For example, for a trigonal symmetry the anisotropy energy is

[57]

Cs;, symmetry

Eoun(0,¢0) =K1 sin? 6 + Kysin 6 + K, sin® 0 cos 0 cos(3p) + K3 sin® 4

. ) 2.19
+ Kysin® 0 cos(6¢) + K sin® 6 cos® 0 cos(3¢), (2.19)

whereas for hexagonal symmetries Ké = K5 =0, hence it reduces to
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y

Figure 2.8: Coordinate system adopted in the investigation of MAE of RE atoms on
2D-materials: 6 is the polar angle describing magnetization rotations from
the z-axis towards the substrate plane; ¢ corresponds to the angle from
the z-axis and relates to rotations of the magnetization in the plane of
the 2D-material.

Cg, symmetry

Ean(0,0) =K1 sin?0 + Kysin® 0 + Kysin® 0 + K4 sin’ 0 cos(6¢). (2.20)

In Egs. 2.19 and 2.20, 0 is the polar angle between the z-axis and the magnetization
direction, and determines the energy change in the out-of-plane direction; ¢ instead
is the azimuthal angle between the z-axis and the magnetization direction, defining
the in-plane contributions to the MAE. Fig. 2.8 illustrates the coordinate system.

The K; are the magnetic anisotropy constants and their values define the overall trend
of the MAE. For example, in the case of a first-order anisotropy, F,,(f,¢) = K, sin*6,
and the sign of K determines the easy-axis: for K; > 0 the system presents an out-
of-plane easy-axis, if K; < 0 the easy-axis is in-plane. The MAE of many magnetic
materials is well described by the first term, however, in some instances, RE atoms
can exhibit a more complex behavior that requires the use of higher-order terms to
achieve an accurate description of the MAE.

A measure of the MA is the magnetic anisotropy field, which can be directly related
to the constants K;. In the case of an in-plane easy-axis with (8 = 7/2, ¢ = 0.0),
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2 Magnetism of 4 f-atoms on 2D-materials

applying an external magnetic field B = [0,0, B,] along the z direction, will induce
canting of the magnetization towards the magnetic field direction. The field needed to
obtain a complete alignment of the magnetization along z corresponds to the magnetic
anisotropy field, B,,. For an hexagonal system with magnetization M, the latter can
be calculated starting from

Eunip.(0,0) = Ky sin?0 + Kysin® 0 + K3sin® 0 + K, sin® 0 cos(6p) + M B, cosf, (2.21)

where the last term accounts for the effect of an externally applied magnetic field
along the z direction, resulting in the formation of a local minimum in the MAE
curve at 6 = 0. Calculating the second derivative of Eq. 2.21 in 6 = 0 and equating it
to 0, leads to

2K,

B.= By === [T]. (2.22)

Typically the magnetization per atom is given in ug, where the conversion between
eV/T and pp is 1 pp ~5.788-107% eV/T.

For an in-plane easy-axis K; < 0, such that B,, becomes positive. From Eq. 2.22
it can be observed that a magnetic field of at least B,, is required to align the
magnetization of the material. Additionally, the larger the MAE, the more resistant
the magnetization will be to being tilted by an external magnetic field. This property
is crucial in the design of hard magnets.

2.3.1.2 Magnetoelastic anisotropy

Another effect explored in this thesis involves the coupling of the previously described
MCA with elastic deformations of the sample, such as a linear distortion described
by A = Alfly = (I -1lg)/ly, where I represents the original length of the system and !
represents the final length. There are two main phenomena which can be considered,
one the reverse effect of the other: magnetostriction effect [58, 59] and the magnetoe-
lastic effect [60, 61]. The magnetostriction effect involves changes in the structure or
dimensions of a material in response to magnetization, resulting in different shapes for
different magnetization directions. On the other hand, in the magnetoelastic effect,
the application of an external stress (resulting in changes in the structure) can induce
different magnetic properties, such as varying MA.

In the case of single RE atoms adsorbed on 2D-materials, the phenomenon can be
again described in terms of SOC and CF effects: in the magnetoelastic coupling an
external mechanical deformation (for example an applied pressure) induces changes
in the crystal structure at the atomic level. In the framework of the RE atom, this
consists in a displacement of the surrounding point charges that form the CF. This
shift in the crystal field results in a different interaction between the 4f charge cloud
and the crystal field compared to the unperturbed situation. This can lead to a
new direction of the easy-axis as well as general changes in the MAE i.e. different
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Figure 2.9: ): Example of how an external strain can change the CF around
the RE atom and consequently the MAE. (a)-(b)-(d): Example demon-
strating how a change in magnetization direction can induce a structural
transformation.

strains can induce different trends of E,,(6,¢). Since the effect strictly relies on a
non-spherical charge distribution around the atom, it is expected to be stronger for
RE atoms with non-vanishing L values.

Fig. 2.9 sketches a simple example of an oblate charge density inside of an Cj, CF:
from (a) to (b), the charge density is rotated by 6 = w/2 through SOC following the
rotation of the magnetization, depicted by the red arrow. This rotation will result in
a MAE due to the altered interaction with the CF after the rotation. From (a) to
(¢) the 2D-material undergoes an in-plane compression, causing the CF point charges
to come closer to the charge cloud, leading to a change in the MAE compared to
the relaxed structure. Tracing the arrows from (a) to (b) and then to (d) reveals an
overall magnetostriction event, where a change in magnetization direction leads to
a variation in the crystal structure around the magnetic atom. On the other hand,
the path from (a) to (¢) and then to (d) illustrates how a change in the crystal
structure (such as compression) can induce a rotation of the magnetization direction,
resulting in a magnetoelastic effect. In this example, the hexagonal symmetry is
retained even after the mechanical deformation. However, the induced strain can also
result in different symmetries of the CF around the RE atom and thus a transition
to one crystallographic phase to another [62-64], requiring the use of distinct energy
functionals E,,(6,¢) to describe the MAE.

In general, the anisotropy energy of the system, which encompasses both the magne-
tocrystalline anisotropy energy and the magnetoelastic energy, can be represented as

29



2 Magnetism of 4 f-atoms on 2D-materials

a Taylor series with respect to the strain e [65],

Enica = (BEvea)o + ), (af;MCA) Eij- (2.23)
i) Sij Jo
The initial term characterizes the magnetocrystalline anisotropy unaffected by exter-
nal factors and maintains the symmetry of the undistorted crystal field. On the other
hand, the second term represents the variation in magnetic anisotropy energy induced
by strain and may deviate from the symmetry depending on the type of distortion.
Specifically, the strain is a tensor property that can be defined as ¢;; = ( g;; + g;‘é )/2,
where 4,7 = 1,2,3 are the crystallographic directions, and the vector u = x - X rep-
resents the displacement from X to x. Thus, the derivatives of u components with
respect to X components characterize the distortion [66]. The explicit form of the

strain tensor is given by

E(L‘CL‘ E.’L‘y El‘Z
€=|eys Eyy Ey: |, (2.24)
Ezx ezy €2z
and contains both normal strain components, which are e,,, €, and €., relative to
a perpendicularly applied stress to the cross section of the material, as well as shear
strain components ¢;;, where ¢ # j, that are relative to a parallel applied stress to the
cross section of the material. Moreover, the magnetoelastic energy terms in Eq. 2.23
can be written using directional cosines multiplied by the magnetoelastic coupling
constants, which specify the magnitude of the magnetoelastic effect in different direc-
tions.

2.3.2 Crystal field theory

In the following, the CF effect on 4f electrons will be discussed in more detail. As
previously mentioned, when the magnetic RE atom is adsorbed on a surface, the
CF surrounding it induces splitting in the (2J + 1)-fold degenerate spectrum of the
4f electrons. This symmetry breaking modifies the magnetic properties and it is
important to understand how the new symmetry affects the MA from a quantum
point of view, in order to achieve an energetically stabilized magnetization. In the
point charge model, the atoms constituting the CF are treated as point charges, and
the electrostatic CF potential at a coordinate 7 close to the magnetic RE is evaluated
as [40, 67]

Ver(r) = Y |Riqi =t (2.25)

Hence, Vor(r) is directly proportional to the sum of point charges composing the CF,
¢;, and inversely proportional to the distance between the charges and the RE atom at
the center. It is important to note that this model corresponds to a simplified picture
where overlap between neighboring wave functions is neglected. This approximation
is suitable for highly localized 4f electrons, which are not typically involved in hy-
bridization processes, but might not be appropriate when dealing with delocalized
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2.3 Rare-earths atoms on surfaces

Table 2.1: List of commonly occurring Legendre P and associated Legendre (P,
m # 0) polynomials.

PY(cost) = £(3cos?6 - 1)

P(cos ) = 3(1 - cos?0)

PY(cos) = £(35cos* 6 — 30 cos?  + 3)

P2(cosf) = 13(1 - cos?0)(7cos? 0 - 1)

P3(cosf) = 105(1 - cos? ) cos f

P(cos8) = 105(1 - cos? 0)?

PY(cos) = 15(231 cos 6 — 315 cos* § + 105 cos? f - 5)
P3(cos) = 18 (1 - cos? ) (33 cos* 6 — 18 cos? 0 + 1)
P3(cosf) = 315(1 - cos? 6)3 (11 cos® 6 - 3cos )
Pi(cosf) = 25(1 - cos?0)?(11cos? 0 - 1)

P§(cos ) =10395(1 - cos®6)3

electrons. The CF potential in Eq. 2.25 is then expressed in terms of spherical har-
monics since this permits to easily access to the matrix elements of the CF potential
energy. In order to accomplish this, we define the angle o between R and 7, such
that the quotient in Eq. 2.25 is represented as a sum of Legendre functions P,(cos «):

1 ol
vl & 70D

P(cosa) R;>r. (2.26)

Table 2.1 lists some of the most commonly used Legendre and associated Legendre
polynomials. Adopting the “Addition Theorem”, the Legendre polynomials can be
written in terms of spherical harmonics Y;(0, ¢) ,

- l
Py(cosa) = 4 ) Z:_l(—l)mYl_m(é’i,<,DZ-)Ylm(9,<,D), (2.27)

(21 +
where (I,m) represent the orbital angular quantum number and the magnetic quan-

tum number, while (6;, ;) and (6,¢) denote the angular coordinates of R and »,
respectively.
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2 Magnetism of 4 f-atoms on 2D-materials

Combining Eqs. 2.27 and 2.26 and plugging into Eq. 2.25, the potential generated by
the charges ¢; can be expressed as

Ver(r) = 0 e iy 2 3OO0 (29

We then define

- )m(2l+1)ZR<m> Y (0 i), (2.29)

which allows the potential to be rewritten as:

Ver(m) =5 3 AP0, ). (2.30)

1=0 m=-1

The A" are defined as the crystal field parameters (CFP) and strictly depend on the
symmetry of the CF. It is important to notice that the CF potential must be invariant
under the symmetry operations of the point group defining the site.

2.3.2.1 Perturbing Crystal Field Hamiltonian

In 4f systems the SOC energy is much larger than the CF energy, hence the latter
can be treated applying first-order perturbation theory and considering just the lowest
lying J multiplet of the 4 f-shell. It is then possible to express the CF perturbation
of the 4f electrons in the CF as [6§]

Her = GZVCF("'i)7 (2.31)

where the sum goes over the 4f electrons. One way to determine the expectation
values of the CF Hamiltonian is direct integration between the 4f wave functions ¢}

and HCF
(0" Herlor™) (2.32)

where [ =3 and my, my are the magnetic quantum numbers of the 4f states.

When calculating these matrix elements, it is necessary to deal with integrals that
involve 3 spherical harmonics since also the single-electron wave functions, ¢}, of the
4f electrons are expanded in spherical harmonics (as shown in Eq. 2.4). Separating
the radial from the angular part of the problem, the radial integral (r!) is mostly
considered numerically, while the angular part reduces to the evaluation of Gaunt
integrals [69],

Qrr+1)2l+1)

ym Y:ng ymey =
( l | l | 1 ) 47T(2[+1)

CI11000)C (I'lljmzmamy). (2.33)

32



2.3 Rare-earths atoms on surfaces

Here, I’ and mg are the angular momentum and magnetic quantum number of the CF
potential. The C' are the Clebsh-Gordan coefficients. The Wigner-Eckart theorem
requires that in order to obtain non-zero matrix elements, Eq. 2.33 must contain the
totally symmetric representation. The following rules can be used to determine which
contributions result in non-zero matrix elements:

Selection rules

1. The integral vanishes unless |l — | <’ < 2] (triangle condition)
2. The integral vanishes unless m; = my +mg

3. The integral vanishes unless the inner product of Eq. 2.33 is even i.e.
l+1+1"is an even integer == for 4f electrons, with 2/ = 6, the value of
I must be an even integer.

Applying these conditions to 4f electrons with [ = 3, the first rule indicates that the
quantum number [’ < 6, while the third rule results in !’ taking values 0,2,4,6. The
potential term with I’ = 0 corresponds to spherical contributions to the field and does
not induce any CF splitting in the 4f levels.

Concerning mg, the permitted values are dictated by the CF symmetry and can be
summarized as follows: for a C,,, symmetry, mg = an with a integer and mg < I’. This
can be derived from the application of symmetry operators of the CF point group to
Eq. 2.30.

The aforementioned rules permit to understand where the expansion in Eq. 2.30 has
to be stopped and which terms give rise to contributions to the CF splitting of 4 f
states in a specific CF symmetry.

2.3.2.2 Stevens Operator Equivalents Method

A more convenient method to evaluate the matrix elements of the crystal field im-
plies the transformation of the spherical harmonics into functions of the total angular
momentum operators called the “Operator Equivalents” [70]. The procedure involves
the conversion of the spherical harmonics in Eq. 2.30 in cartesian coordinates, leading
to Her = €Y, V(x4 i, %), where (2,y, z) are then replaced by (.J,, jy, J.) in a sym-
metrized fashion that considers the non-commuting property of (.J,, jy, jz) This is
done by replacing the products of cartesian coordinates with all possible combinations
of products of the J components and dividing by the number of combinations.

For example,

(Jody+ Jy ), a%—y? — J2-J2 (2.34)
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2 Magnetism of 4 f-atoms on 2D-materials

Therefore, considering states |LSJJ,), the matrix element, for example, of ¥;(322 -
r2), can be written as

(LSJJ > (322 = r2)|LSJJ.) =a (r?) (LS JJL3J2 = J(J + 1)|LSJ J.)
7 A (2.35)
=a (r?) (LSJJ|OYLSJJ.),

where the factor « is the Stevens factor and depends on the quantum number [ of
the considered shell and on J of the considered RE element. The respective Stevens
factors for 4" (I = 4) and 6% (I = 6) order terms are denoted as 8 and ~. A list of
these values can be found in Table A.3 for RE ions. The operator Og is the operator
equivalent for [ = 2,m = 0 in the specific example. If the procedure is carried out on the
respective tesseral harmonics expressed in cartesian coordinates, the CF Hamiltonian
can be written as

Her = Y, APy (r) O = Y. COpP, (2.36)

l,m Im

with C7™ = A (r!) the convention commonly adopted to refer to the CFP. In this
equation, Olm are the so-called Stevens Operators. As discussed, these operators are
expressed in terms of total angular momentum operators and act on the J, states
of the central RE atom, removing their degeneracy. The calculation of the matrix
elements of Eq. 2.36 gives thus rise to a multiplet structure of J, states (corresponding
to the specific J values of the RE atom) which become split by the CF energy.
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2.4 Multiplet splitting of 4 f-states in a Cg, crystal field

2.4 Multiplet splitting of 4 f-states in a (g, crystal field

In the present section, the CF theory will be discussed from the theoretical point of
view in the specific case of interest of 4f electrons in an hexagonal CF. Chapter 5
will then apply the acquired knowledge to real systems of RE adatoms adsorbed on
a graphene monolayer.

Based on the selection rules for non-zero matrix elements of Eq. 2.33, for a rare-earth
atom experiencing a Cg, CF the respective crystal field Hamiltonian is given by [71,
72

Cg, Crystal Field Hamiltonian

Heo = CI09 + CY09 + CYOY + CSO8. (2.37)

The explicit form of the operators O}” is reported in the following:
09=3J2-X
09 =35J4 - (30X - 25).J2 +3X2 - 6X
00 =231.J6 - (315X - 735)J% + (105X2 - 525X +294).J2 - 5X3 + 40X2 - 60X
0g = 3(J5 - J°),

with X = J(J+1) and A zjy are the ladder operators. The operators with
m = 0 contain even powers of J., and J and are defined as the uniazial CF opera-
tors. Their effect is to split the J, states maintaining the degeneracy of those with
the same absolute value (J,). This gives rise to a specific energy landscape of the
quantum states depending on the values of the CFP, and it determines the energy
difference between the lowest and the highest lying states, the total zero field splitting
(TZFS) [72]. This energy corresponds to the energy barrier that has to be overcome
in order to observe a magnetization reversal from one magnetic state to the opposite
one and is related to the classical MAE of Eq. 2.20.

By taking as an example the operator 087 it contains j(j +1) that equally shifts all
the states, and jZQ that generates a parabolic dispersion of the states around (.J,) = 0.
The sign of CJ determines the orientation of the parabola and thus it determines
the easy-axis of the system in the case of a first-order anisotropy: for C§ > 0 the
easy-axis is in-plane, for C9 < 0 the easy-axis is out-of-plane. How the sign of CY is
precisely related to the first-order anisotropy constant is discussed in more detail in
Section 2.4.4.

Fig. 2.10 shows the effect of the sign of CY in half-integer and integer spin systems.
In the case of a half-integer J (Fig. 2.10 (a)) with C9 > 0, the ground state will be

35



2 Magnetism of 4 f-atoms on 2D-materials

\ / \ /
\ /
\\ // N4

5 3 1
2

2 2
<J,

1 3 5 3 -2 -1 0 1 2 3
Z 2z 2
>

Figure 2.10: Effect of the sign of CY in half-integer and integer spin systems. (a)
A half-integer J with C§ > 0 leads to a double-degenerate ground state;
inverting the sign has no effect on the degeneracy. (b) A integer J system
with C§ > 0 shows a single magnetic state at (J,) = 0, while C9 < 0
produces a double-degeneracy of the ground state.

two-fold degenerate. Switching to C9 < 0 maintains this degeneracy. On the other
hand, when J is integer and C > 0 (Fig. 2.10 (b)), the ground state is non-degenerate,
as a single state at the lowest energy is found with (.J,) = 0. If the sign is inverted, a
double-degenerate ground state scenario arises.

The higher powers of J. contained in (52 and Og lead to a non-monotonic dispersion
of the energy levels. Instead, the Og operator, which depends on the ladder operators,
is defined as a transverse operator that acts in the (zy) plane and mixes J, states
differing by AJ, = +6,+12. Some of the newly generated mixtures can be tunnel-split
doublets with quenched (J,) value, whose effect is to significantly reduce the energy
barrier for a spin-flip event inducing quantum tunneling of magnetization (QTM).

2.4.1 Quantum tunneling of magnetization and magnetic stability

For systems where Hcp contains no transverse operators, the magnetization can in
principle only be reversed by exceeding the entire energy barrier spanning from the
lowest to the highest energy state(s). Instead, the presence of transverse operators
can significantly reduce this energy barrier because of the generation of mixtures of
states, some of which possibly lie at quenched (J,). If states at (J,) = 0 form, the
system no longer has to overcome the whole energy barrier, but can tunnel through
the barrier via these states from one magnetic state towards the opposite one. For an
hexagonal system,

(J.=i0§]J. =) #0, [i-j]=6,12 (2:38)
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2.4 Multiplet splitting of 4 f-states in a Cg, crystal field

meaning that the expectation value of Og between two J, states is non-zero when
the J, states differ by AJ, = +6,+12. In this case, the states are coupled and a new
wavefunction described as a superposition of the initial states is generated.

A simplified example of the process is depicted in Fig. 2.11 for J = 4: the states dis-
played in the same color are linear combinations of pure states differing by AJ, = 6,
for example the |J, = —4) couples to |.J, = 2) and |J, = -2) is mixed with |J, = 4). Sim-
ilarly, |J, = -3) and |J, = 3) are mixed, and in this case two linear combinations are
generated from the two initial states, a symmetric (in phase combination) and an
antisymmetric (out of phase combination) one, both at (J,) = 0. These states are
tunnel-split doublets and can yield QTM. In fact, if these states are ground states,
QTM can happen directly since the system is located simultaneously at the left and
at the right of the energy barrier [73]. If the tunnel-split doublets are not the ground
state, they can nevertheless mediate QTM via excitation, e.g., thermal excitation,
phonon or conduction electron scattering events. These phenomena can induce tran-
sitions of the spin either directly to the tunnel-split doublet or to some excited states,
from which the system then relaxes towards the opposite magnetization state via the
tunnel-split doublets.

In order to stabilize the magnetization against reversal events, the optimal choice
of the substrate is crucial both concerning the symmetry properties as well as the
chemical and physical properties. From this point of view, a graphene monolayer is a

/ AN
-4 -3 -2 -1 0 1 2 3 4
<J>

Figure 2.11: Example of a parabolic multiplet splitting for J = 4 in the presence of
the transverse operator Og. Same colors indicate mixtures of states. The
green states at (J, = 0) are tunnel-split states generated by the linear
combinations of |J, =-3) and |J, =3). The highest lying state corre-
sponds to the |J, = 0) state. States |.J, = -1) and |J, = 1) are pure states.
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2 Magnetism of 4 f-atoms on 2D-materials

suitable choice as a decoupling layer between the RE atom and a metallic/insulating
surface in order to avoid scattering events. It is possible to achieve a stable magneti-
zation also by a proper choice of the RE atom, i.e., the total angular momentum J.
As a matter of fact, half-integer spin systems are protected against the formation of
doublets at (J,) = 0 by Kramer’s degeneracy, rendering quantum tunneling of magne-
tization impossible through such states. Certainly, also for half-integer J systems an
accurate analysis of the multiplet spectrum is necessary since magnetization reversal
can be induced by other factors, e.g., transitions induced by external perturbations.

These considerations are fundamental for the implementation of memory devices that
rely on a hard and enduring magnetization. Therefore, the knowledge of the specific
CFP in real materials as well as the general understanding of how the symmetry
conditions along with varying J and CFP values affect the magnetic multiplets, is
necessary to identify combinations of RE atoms and 2D-materials that are protected
against magnetization reversal and thus promising candidates for magnetic units.

4f7 4_f13 4f10
M= 3 —— M =3 m—— M = 3 i
M = 2 —— M = 2 M = 2 e e e
m =1 —— M =1 m—— M =1 m——
M = () m =0 =——— M = () e e
M = o] —— M = -] —— M = -] ——
T = -2 M = -2 e M = -2 e e
m = -3 =—— m = -3 m—— M = -3 ——

|
Half-integer J Integer J

Figure 2.12: Different 4 f occupations corresponding to different total angular momen-
tum J values in the Hund’s rules: 4f7 and 413 are associated to J = 7/2,
4110 to J =8.
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2.4 Multiplet splitting of 4 f-states in a Cg, crystal field

2.4.2 Modelling of a Cg, crystal field Hamiltonian: integer and
half-integer spin systems

In the following, the splitting effect of a Cg, crystal field will be analyzed by the
implementation of a toy model. As examples, a half-integer and an integer J spin
system have been chosen. The model contemplates the diagonalization of the CF
Hamiltonian matrix with the symmetry of Eq. 2.37, where the CFP are given as input
parameters and the elements (.J, = i|Hg,|J, = j) are evaluated following the tables in
[67], which report the values of the elements (.J, = i|OJ"|.J, = j) for a constant J. As
a half-integer spin system, the case of J = 7/2 will be discussed, which is associated
to a half-filled 4 f-shell, namely 4f7 (L = 0,5 = 7/2), as well as to a 4f13 occupation
(L =3,5=1/2). Concerning the integer J case, a J = 8 system has been investigated,
corresponding to a 4f19 occupation (L = 6,5 = 2). These are sketched in Fig. 2.12.

2.4.2.1 Half-integer spin: J =7/2

In order to compute the actual energy spectrum, we consider that for J =7/2, -7/2 <
J, <7/2, and the respective CF matrix elements are reported in the following:

(J. = ;rHGUIJZ = g) =(J, = —gl’HﬁvlJz = —;) = 2109 + 42009 + 1260C¢
5 5 5 5
(J.= §|H61)|Jz = 5) =(J. = _§|H6U|Jz = —5) =30y - 780C% - 63000
3 3 3 3 0 3 9
(Jz = §|H6’U|JZ = 5) = (Jz = 7§|H6’U|JZ E *5) = *902 - 18004 Tr 1134006
1 1 1 1
(J. = §|’H6U|JZ = 5) = (L= —§|H6U|Jz = —5) = -15C9 + 540CY - 6300Cg
7 5 7 5 5 7
(2 = 5ol Sz = =5) = (o = =5 el Sz = 5) = (J: = S[Heul o = =) =
(J: = ~2lHoul . = ©) = 360V/7CE

It can be noticed that the only non-zero off-diagonal terms are those between states
separated by AJ, = +6, as the Og operator operator exclusively mixes these states.
All other unlisted elements are zero, and the entire CF matrix can be represented in
the schematic form illustrated in Fig. 2.13.

Diagonalizing the CF matrix, leads to the energy spectrum of the multiplets. All
calculation outputs are plotted on an energy diagram in arbitrary units and each
pure state is represented by an individual color. By setting all CFP to zero except
C9, one gets pure states at the permitted (J,) values that arrange in a parabolic
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2 Magnetism of 4 f-atoms on 2D-materials

Figure 2.13: Hg, matrix for J = 7/2.

trend, as shown in Fig. 2.14 for C9 = +1, where the dashed lines are drawn on top
to put in evidence the shape of the energy spectrum. The shape arises from the Og
operator that contains J;Q Changing the sign of CY results in an inversion of the
parabola, maintaining a two-fold degenerate ground state in both cases, as imposed
by time-reversal symmetry for half-integer spins. The overall TZFS maintains the
same value independently from the sign of C3.

C9=1,C=0,C0=0,C{=0 C9=-1,C{=0,C{=0,C¢{=0
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Figure 2.14: Magnetic multiplets for J = 7/2 in a first-order anisotropy with C9 =1
(left) and C9 = -1 (right) while all other CFP are equal to zero. The
dashed line serves as a guide to easier identify the dispersion.

Introducing the term 0202 in the Hamiltonian leads to a higher order anisotropy
of the magnetic states. This is illustrated in Fig. 2.15, where the diagonalization
has been performed at fixed value of C{ = 1 and for increasing values of C3, while
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Figure 2.15: Magnetic multiplets for J = 7/2 and varying C9/CY, with C9 taking
values of 1,50,100,200. C9 =1 and CY is fixed to 1. The second term in
Eq. 2.37 introduces local maxima and minima in the energy disposition
of the states.

higher order terms are put to zero. It is seen that low ratios of C/CY in the order
of 5 x 1073 are needed in order C? to become negligible such that the states again
form a parabolic trend. For higher values of C9/CY the disposition of states forms
progressively more anisotropic curves with increasing depth and height of the valleys
and hills according to increasing value of CJ/CY.

The effect of CY is better evidenced in Fig. 2.16 where the ratio C/C? goes up to 5
leading to bigger energy differences between the states and a larger TZFS. An inver-
sion in sign of C§ and CY is respectively shown in Fig. 2.17 and 2.18. Here it is seen
that increasing the negative value of CJ pushes the states towards a parabolic shape,
which is reached for low absolute values of C?/C? and inverted compared to Fig. 2.15.
A similar effect is observed by comparison of Fig. 2.16 with Fig. 2.18 in the higher
anisotropy example (larger values of C9/CY).
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Figure 2.16: Magnetic multiplets for J = 7/2 for larger values of C$/C3.
to 1 and CY takes values of 1,2,3,5.
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Figure 2.17: Magnetic multiplets for J = 7/2 and varying C/CS with negative C3. C9
is varied over negative values of —1,-50,-100,-200, and C? is fixed to 1.
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Figure 2.18: Magnetic multiplets for J = 7/2 and varying C9/CS with negative CY.
C?Y is fixed to 1, while C? is varied over negative values of —1,-2,-3, 5.

44



2.4 Multiplet splitting of 4 f-states in a Cg, crystal field
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Figure 2.19: Magnetic multiplets for J = 7/2 with non-zero C§ = 1, -1.

Fig. 2.19 shows the multiplet splitting for C9 = C9 = CY = 1 and C¢ = 0. The effect
of the third term in Eq. 2.37 is to introduce further oscillatory behavior in the state
dispersion, which is a consequence of highly anisotropic behavior.

The introduction of the CFP C¢ accounts for the hexagonal symmetry. Prior to ex-
amining the energy spectrum, group theoretical principles can be employed to predict
how the (2J + 1)-fold degeneracy of a spherically symmetric atom (with point group
K},) will be split into a sum of irreducible representations (IR) due to the hexagonal
symmetry. The great orthogonality theorem [74] is a criteria for irreducibility,

> O (g) (0] = ndrr (2.39)

v=1

where Y@ (g,) and x(I")(g,) are characters of the symmetries g, belonging to the two
representations I', I of K} and Cg,, respectively, and n = is the number of symmetry
operations (n = 24 in this case). Eq. 2.39 gives an orthogonality relationship be-
tween the characters, indicating the number of times each I' (in this case of the Cg,
symmetry) is included in the reducible representation I' (spherical symmetry Kj).
Considering the character table for an isolated atom with J = 7/2 and of the Cg,
point-group (Table A.1) in Appendix A, it is possible to deduce the splitting of the
(2J +1) = 8 states:

K[ =T+ 2T + T (2.40)

leading to 4 sets of double degenerate states, two sets of which belonging to the same
IR, namely Ts.

In Fig. 2.20, panel (a) shows the energy spectrum calculated for this symmetry with
arbitrary values of the CFPs as an illustrative example. The transverse operator Og
generates linear combinations of |J, = -1),|J. = 2) and |J, = -2),|J. = 1), which are
represented by states of the same color (blue and red), and it can be noticed how the
expectation value of these superpositions deviates from the pure state value. This
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Figure 2.20: Magnetic multiplets for J = 7/2 with non-zero C¢ = 1,2. From (a) to (b)
the C¢ parameter increases and results in a larger shift of the mixtures
in blue and red from the pure state expectation value (.J,).

deviation increases the stronger the mixing i.e. the larger Cf, as observed in Fig. 2.20
(b). Of fundamental importance is the fact that for half-integer spin systems, in the
absence of an external magnetic field, the transverse operators can never generate
mixtures with (J,) = 0, since states must maintain the two-fold degeneracy. This
property is nevertheless lost in integer J systems.

Before delving into the modelling of an integer spin system, it is important to high-
light that it is theoretically possible to determine the irreducible representations to
which different J, states belong within a given point group. This can be achieved by
establishing appropriate basis functions and applying the symmetry operators. For
instance, let’s consider a symmetry group G defined by the operators Gr, and a basis
set composed of functions {1, ...,%4}. The action of the symmetry operator G on
one of the basis functions can be represented as a linear combination of the basis set:

A d ~
Grli) =Y Grilg), i=1,..,d and VGjeg, (2.41)
k=1

resulting in a new vector within the space. The expansion coefficients, which depend
on the particular symmetry operation, determine the transformation or representation
matriz. In fact, by multiplying Eq. 2.41 on the left by (¢;|, we obtain

~ d d
(Vi1Grli) = 3 Gra (Wslvn) = Y- Gridag.- (2.42)
7 P

If the selected basis functions are orthogonal to each other, then Eq. 2.42 can be
reformulated as

Gi(k) = (| Glii) - (2.43)
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2.4 Multiplet splitting of 4 f-states in a Cg, crystal field

Hence, the representation matrix can be determined by calculating the matrix ele-
ments between all possible pairs of basis functions.

2.4.2.2 Integer spin: J =8

For systems with integer spin, the modifications that the multiplet spectrum under-
goes with changing CFP are generally similar to those of half-integer spin systems.
However, it will be demonstrated that in integer spin systems, magnetization reversal
can be induced by QTM due to the influence of OF.

The CF matrix for a spin system with J = 8 has dimensions of 17 x 17, where J,
can take values -8 < J, < 8. The matrix elements, which are listed in Appendix A.2,
show that the Og operator mixes states that differ in (J,) by +6, while all non-listed
elements are zero. As previously mentioned, the ground state for integer J can be
non-degenerate or double-degenerate, depending on the sign and values of the CFP.
This property is exemplified in Fig. 2.21, which represents a higher symmetry case
than the Cg, due to the absence of the transverse operator.

C9 =500, CY = —100, C{ =2, C¢ =0 C9 =500, CY = —100, CY = -2, C§ =0
10 -4 - - 1.0 4%
£ 0584 - T
§0.8 7 %
= ! fon el
506 | | e
= \ | — /
o LT = NRCAREE S
20.24 "
5 v -
0.0 =t :
8§ 6 -4 -2 0 2 4 6 8 8§ 6 -4 -2 0 2 4 6 8
<J.> <J.>

Figure 2.21: Example of a multiplet splitting for J = 8 without Og operator: for inte-
ger spin systems the ground state can be composed by a single magnetic
state or by two-degenerate states.

In order to consider a hexagonal CF, it is necessary to take into account also the CSOg
contribution. Adopting similar symmetry considerations as in the half-integer case,
the degeneracy of the J, states in a Cg, CF can be predicted considering the character
table in Table A.2 in Appendix A, where no double-group is necessary for an integer
spin system. The resulting splitting can be described as several non-degenerate states
and 6 sets of double-degenerate states belonging to the IR I's and Tg:

KS =I4 +2F2+F3+F4+3F5+3F6. (244)
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2 Magnetism of 4 f-atoms on 2D-materials

Fig. 2.22 illustrates the result of diagonalizing Hcr containing all the terms describing
a Cg, CF adopting arbitrary CFP for the sake of example. In this case, there are no
pure states as every wavefunction arises from linear combinations of several states.
For example, the states in purple are superpositions of |.J, = =8), |J, = =2) and |J, = 4),
and similarly for the other states. It is also clear that for integer J values quantum
states at (J,) = 0 can form: the light green states emerge as a result of the mixing of
three states, namely |J, = =6), |J, = 0), and |J, = 6), one state is situated at around
1.1 energy units, while the other two are approximately at 0.8 energy units and
appear to be in close proximity to each other. The dark green states, on the other
hand, are examples of tunnel-split doublets. The latter result from the symmetric
and antisymmetric linear combination of the |J, = —3) state with the |J, = 3) state
(pictorically drawn in grey on top of the multiplet calculation). This kind of quantum
states can drive QTM through excitation from the ground state, as the system can
tunnel through the energy barrier to reach the opposite magnetic state, such as from
|J, = —4) to |J, =4). This is the fundamental difference from half-integer spin system,
which are, in contrast, protected against the formation of such states. A last comment
concerns the degeneracy of the multiplets which perfectly reflects the result obtained
adopting the orthogonality theorem: 5 states are non-degenerate and 6 states are
double-degenerate in energy.

From this discussion, it emerges that half-integer and integer spins behave differently
when adsorbed in a hexagonal CF and it is essential to take into account the properties
of the two types of spin systems to design hard magnets. Although half-integer

€9 =100, CY =10, CY = =3, C§ =2

x107

o o = =
[=3] 2] (=] [\]
1 1 1 1

Energy [Arbitrary units]

8 6 4 2 0 2 4 6 8
<J. >

Figure 2.22: Magnetic multplet splitting for J = 8 with arbitrary CFP. States in the
same color represent mixtures of several |J,). In particular, the combina-
tions of |J, = =3) with |.J, = 3) leads to tunnel-split doublets at quenched
(J2).
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2.4 Multiplet splitting of 4 f-states in a Cg, crystal field

spins are protected against the formation of tunnel-split doublets, the choice between
integer or half-integer spin systems is not obvious since the magnetization can also be
destabilized by transitions that do not involve states at (J, = 0). In this perspective, it
is in necessary to induce high energy barriers between the magnetic states in order to
prevent magnetization reversal and this can be achieved in both kinds of spin systems.

2.4.3 First-order perturbation effects: electron and phonon scattering

As previously mentioned, a magnetization reversal event can occur through processes
that may not necessarily involve quantum tunneling via mixed states at (.J, =0).
Therefore, it is crucial to calculate multiplet splittings and further explore how to
control them based on the selection of the spin system and the crystal field. For in-
stance, temperature effects can induce magnetization reversal and affect the magnetic
stability. Two different mechanism can be distinguished in two different temperature
regimes: At finite temperatures, magnetization reversal can occur through thermal
activation, enabling the system to overcome the minimal energy barrier when the
temperature is sufficiently high. This leads to an Arrhenius-like relationship for the
magnetic lifetime under the condition that no external magnetic field is present. At
lower temperatures, although the thermal energy may not be sufficient to overcome
the energy barrier U (see Fig. 2.23), it can prompt excitations to metastable higher-
energy states that enable thermally assisted quantum tunneling of the magnetization
[73]. At the microscopic level, this phenomenon can involve scattering processes,
such as interactions with the substrate’s phonons and electrons. The mathematical
representation employs operators JZ7 J+, and J_, which enable transitions between
states with AJ, =0, +1. In this first-order perturbation scenario, the operator Og of a
hexagonal crystal field facilitates the coupling between states of equal energy having
angular momentum differences of AJ, = 0+ 6k, -1 +6k,1+6k (as detailed in Ref. [72]

High Temperature Intermediate Temperature
Thermally activated reversal Thermally assisted QTM
h—% ?ﬁ" = 7 ,, —
\ 7/ \ 7 \_—/ S/

\g E? § - |
=) +)

=) +)
Figure 2.23: Visual representation depicting the mechanisms of magnetization reversal

through thermal activation and thermally assisted quantum tunneling of
magnetization.
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2 Magnetism of 4 f-atoms on 2D-materials

and the corresponding PhD thesis [75]). Here, the parameter k assumes integer values
depending on the total angular momentum J of the lanthanide. In the absence of an
external magnetic field, this process thus involves the transition to a higher-energy
state, from which subsequent quantum tunneling can take place. In the presence of
a magnetic field, it can also directly induce transitions between opposite spin ground
states.

It is important to mention that single atom spin systems can experience spin reversal
events mediated by exchange interactions with itinerant electrons of the substrate,
known as Kondo scattering [76-78]. These transitions between two ground states
lead to relatively short lifetimes. This effect occurs in systems where the crystal field
produces two degenerate ground states separated by AJ, = £1 transitions. To reduce
this effect, one strategy is to separate the atomic spins from the conduction electrons,
which can be achieved by introducing a decoupling layer.

2.4.4 Reverse-engineering the magnetic anisotropy: from classical to
quantum

As discussed in the previous sections, the effects at the quantum level have a strong
impact on magnetization reversal events of single rare-earth atoms deposited on a
2D-material. Thus, a classical formulation as described in Eq. 2.20 is not suffi-
cient to achieve an exhaustive overview about the magnetic stability and a quantum-
mechanical description is fundamental to determine the energy differences involved in
possible transitions between different magnetic states. This translates in the necessity
to determine the accurate values of the CFP and compute the respective multiplet
structures to identify possible systems protected against magnetization reversal events
and therefore appealing choices for stable magnetic units.

In the following, a simple approach that relates the classical magnetic anisotropy
constants, [, to the quantum crystal field parameters, C}*, for a Cg, symmetry is
proposed in the reverse-engineering framework. Since the classical energy functional
E(0,¢) can be straightforwardly computed (and thus the K;) in the DFT picture
discussed in section 4.2.1, the reverse-engineering represents a method to calculate
the CFP from ab initio.

Following [79], the 4f electron density associated to a spin quantization axis aligned
along Z can be defined as

. 2A+1\'?_ .
P =) 5 A(T) V. (2.45)
1=2.4,6 s

I}

Here, nf f(r) denotes the radial charge density, Yjo() represents spherical harmonics,
and the 4; are numerical factors dependent on the total angular momentum J of the
specific rare-earth and the corresponding Stevens factor [70, 80]. This expression can
be extended for a general direction of the magnetic moment by replacing Yy with
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2.4 Multiplet splitting of 4 f-states in a Cg, crystal field

Yo €m0y, (F), where the d" functions are related to the associated Legendre
polynomials, P/™:

dy = PY(cosh)

d} = PY(cosf)

d) = P2(cosf)

1
dS = ——P%(cosb
6 \/E 6( )

V12! P;%(cosh).

-6
dg

Considering a single rare-earth atom at the center of a (g, CF, we assume that the
contributions to the MAE fully arise from the 4f electrons and consider the limit in
which the CF energy is small compared to the exchange field. In this scenario, the
CF contribution can be treated as a first-order perturbation [81]. The CF potential
is written as a linear combination of spherical harmonics, Vep(r) = ¥, Vi (1) Yin (),
and the expectation value can be expressed generally as:

Fep = / S g (1) Vien (1) Vi (i), (2.46)
Im
which leads to [79]

Ecr = A (1) B e e d (). (2.47)

1=2,4,6

The B;™ are the CFP in the Waybourne convention [82],

20+ 1\'/?
5= (") [ Vi, (2.48)

and are closely related to the Stevens convention by a multiplicative factor depen-
dent on (I,m), denoted as 6" (note that this is different from the # used to denote
spherical coordinates), and the Stevens factor (a;): CJ* = 6", B;". The derivation of
the relationship between K; and the CFP will be carried out in the B;" convention
to ultimately be converted in the more accesible convention C/™ of Eq. 2.37.

Expansion of Eq. 2.47 for a Cg, CF, leads to
Egy = Ay B3dY(0) + Ay BIdY(0) + Ag B3d(0) + Ag BE(e7°d8(0) + €%¢d3(9)). (2.49)

Adopting the property

P - (—1)7"8 - mi:PZ (2.50)

it can be derived that P;® = 5 P¢ and dg® = iz!Pf?’ which leads to

FEe, = Ao BYPY(0) + AyBYPY () + As BOPY(0) + Asg P cos(6p). (2.51)

BS—— \/_'
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2 Magnetism of 4 f-atoms on 2D-materials

Plugging the definition of the P/ of Table 2.1 into Eq. 2.51, produces

1
Eﬁv = A2B35(3 COS2 0- 1)
1
+ A4B2§(35 cos® § — 30 cos? 0 + 3)

1
+ AﬁBgE(Q?,l cos® 0 - 315 cos 6 + 105 cos? § - 5)
-2-10395

+ AgBS cos? 6 —1)%) cos(6
3 30 105
= (5./4238 - §A4Bg + ﬁAng) COS2 0 (252)
35 315
+ (§A4Bg - ﬁAﬁBg) COS4 0
+ (%Ang) cos 0
2-10395
- " AsBS(cos?0 - 1)3 cos(6
\/ﬁ! 6 6( ) (6¢)

1 3 ) X
- iAng + §A4Bg - TGAGBS

= K| cos® 0 + Kjcos* + K} cos® 0 + K sin® 6 cos(6¢) + constant.

Considering now the conversion to sin# functions,

cos’f =1-sin’0
cos*f =1-2sin’0 +sin’ @ (2.53)

cos®0=1-3sin?60 + 3sin*f —sin® 4,
Eq. 2.52 becomes

Ee, = K{(1-sin?0) + K5(1-2sin? 0 +sin* )
+ K4(-3sin?6 + 3sin® 0 - sin® 0) + K} sin® 0 cos(6¢)
(2.54)
= (-K{ - 2K} -3K})sin* + (K} + 3K}) sin* 0
— K}sin% 0 + K sin® 0 cos(6¢) + constant.
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This equation can then be written in the shape of Eq. 2.20 with

3 21
K, =-K|-2K5-3K} = —5,4233 - 5A4BY - ?AﬁBg

35 189
K, = Kb+ 3K}, = §A4Bfg + A

031 (2.55)
Ky = K] - —%AﬁBg
210395

V12!

To conclude the derivation, we define 63 = 1/2, 69 = 1/8, 62 = 1/16, 65 = /231/16 as
reported in [83] and

K= Kzi A@Bg

A= J(T=3) o
A4:J(J—%)(J—1)(J—g)-0q (2.56)
Ao =T =)0 =D - DU -2 -3)

with «; the Stevens factor («, 8, v for [ = 2,4,6), defined in Table A.3 for the RE3*
ions in Appendix A.4. The magnetic anisotropy constants K; in Eq. 2.55 are finally
formulated in terms of CJ™ = 0]"a]"B]" as

Reverse-engineering of CFP

Ky = =3f,C3 - 40f,Cf - 168 f,C3
Ky =35£,C9 + 378 fCY

K3 =-231f,CY

Ky = fsC8.

(2.57)

where f; = A;/oy. The equations imply that the K; values can be expressed as a linear
combination of the CFP. Assuming a pure first-order anisotropy, all constants except
K are zero, resulting in only CY being non-zero. In this situation, C determines the
sign of the parabolic dispersion of the magnetic multiplets i.e. the easy-axis: if C9 < 0,
then the easy-axis is out-of-plane (K; > 0), whereas C§ > 0 indicates an easy-plane
anisotropy (K7 < 0). Nevertheless, when dealing with open 4 f-shells higher order
anisotropy terms must mostly be taken into account and the determination of the
easy-axis is not trivial.

The result of Eq. 2.57 for hexagonal Cg, systems, shows that the calculation of the
magnetic anisotropy constants K; gives access to the CFP. In Chapter 5 this method
will be applied to RE atoms adsorbed on a graphene monolayer, where starting from
DFT calculations, the multiplet splitting of the systems were determined.
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Applications in spin-orbitronics

In this chapter, the use of rare-earth atoms on 2D-materials is explored, high-
lighting key studies that have influenced the current research. Specifically, two
magor applications are examined: the implementation of rare-earths as single-
atom magnets and the potential of rare-earth-based materials as magnetotrans-
port devices, as they show great promise for future electronics. Both of these
applications demand the creation of significant magnetic anisotropies.

Since the discovery of graphene as first 2D-material, fundamental research has been
successful in discovering 2D-structures with properties useful in fields including elec-
tronics, optics, energy and catalysis. These materials offer a wide range of electronic
properties that can be manipulated through chemical composition and crystal struc-
tures, and can be experimentally realized using various methods [84-86]. The ability
to engineer the properties of 2D-materials by using proximity effects between layers
[87] or depositing single atoms [88-91] is particularly appealing. This allows for the
combination of various properties, such as large SOC [92-94], magnetism [95-99], and
topological properties [100-102], in one structure [103-105|. Through theoretical and
experimental investigation, it is possible to create novel phenomena by optimizing the
combination of elements in the system and this could potentially lead to the develop-
ment of next-generation of spintronics devices [106].

While spintronics exploits the spin magnetic moment of atoms to build efficient plat-
forms for electronic devices, spin-orbitronics concerns phenomena that arise from the
interplay between the spin magnetic moment and the orbital magnetic moment of
atoms. RE atoms are particularly well-suited for this due to their very large spin and
orbital moments that are coupled through spin-orbit interaction.

Additionaly, as discussed in Section 2.1, the magnetization of RE atoms is localized
and protected from the chemical environment, leading to a more stable f magnetic
moment in comparison to a d magnetic moment. From the orbital perspective, the 4 f
filling leads to large L values that translate into anisotropic 4f distributions which
interact with the CF without being quenched. Another advantage concerns the pos-
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3 Applications in spin-orbitronics

sibility to engineer the magnetic anisotropy by changing the orbital 4 f filling, making
RE atoms promising candidates for a variety of applications e.g. data storage and
quantum technology.

Spin-orbitronics applications

0

® O

Pl rr2mterial

Figure 3.1: Example of two applications of RE atoms on 2D-materials in spin-
(orbi)tronics: single atom magnets (left) and platforms for transport
properties such as the anomalous Hall effect (right).

3.1 Single-atom magnets

Permanent magnets have a high resistance to fluctuation, allowing them to maintain
stored data over time. This property is crucial for their use in efficient memory de-
vices. For example, when a RE atom is adsorbed on a substrate, it acts as an isolated
magnetic moment that spontaneously aligns along a preferred direction. If the energy
required to rotate the magnetic moment is too high to be induced by external factors
such at thermal excitations, the RE atom can serve as a hard magnet. Physically this
is reflected in a large magnetic anisotropy energy along with long coherence times
of the magnetization, which can be defined as a measure of the interval of time in
which the magnetization preserves its value along a direction before decaying and
losing the saved information. These systems permit the construction of magnets at
the atomic scale, favoring a downscaling of the information units and, consequently,
the possibility to increase the storage density per unit of surface [107].

These considerations are fundamental also at the quantum level, for example, in the
generation of stable basic units in quantum information referred to as qubits. The
primary distinction from classical computation, where information is encoded in |1)
and |0) bits, is the possibility of utilizing spin states that are superpositions of these
states |1) and |0), thereby taking advantage of the quantum nature of the spin. In
this perspective, 4 f-elements on 2D substrates are promising candidates as quantistic
information carriers [108, 109].

Recent research has aimed to gain a comprehensive understanding of the chemical
hybridization, electronic transfer processes, magnetic interactions and anisotropy of
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3.1 Single-atom magnets

REs on 2D substrates, using both experimental and theoretical methods [78, 110-118].
The generation of single-atom magnets relies heavily on the magnetic anisotropy en-
ergy, which is the key ingredient in this process. Additionally, considering the highly
localized nature of 4f magnetic moments, quantum effects must be taken into ac-
count, as they may induce magnetization reversal processes. The proposed research
strategy is aimed at gaining a deeper understanding of how the magnetic anisotropy
energy changes with the nature of the RE element and the symmetry and chemistry
of the surrounding CF. The goal is to identify conditions that effectively prevent
the occurrence of quantum tunneling of magnetization. Previous studies have laid
the foundation for this research combining X-Ray Absorption Spectroscopy (XAS),
X-Ray Magnetic Circular Dichroism (XMDC) and Scanning Tunneling Microscopy
(STM) measurements with multiplet splittings calculations for RE atoms in different
environments [72, 119, 120] and determining giant lifetimes of the 4 f magnetizations
[38, 76, 120-123].

In this context, graphene (Gr) is often utilized as a decoupling layer between a metal-
lic or insulating surface and the RE atoms. Indeed, graphene interacts via van der
Waals interactions which are remarkably weak compared to covalent bondings and re-
flect in larger distances from the substrate. As a result, by adsorption of a RE atom,
it is possible to investigate RE/Gr systems which are not substantially affected by
the vibrational modes and conduction electrons of the substrate. However, achieving
this separation requires careful selection of the substrate, as the interaction between
Gr and the substrate depends on the chemical composition of the latter [124-127].
For instance, it has been shown that Gr on top of Ir(111) results in a large vertical
distance [127, 128] compared to other metals with minimal impact on the electronic
structure of Gr, making Ir(111) a good substrate candidate for the study of RE single-
atom magnets on Gr.

The use of Gr as a 2D-material is not restricted to its weak bonding characteristics.
The hexagonal arrangement of the C atoms also generates a CF that can lead to sta-
ble magnetic ground states, and opens opportunities for manipulating the multiplet
splittings. Additionally, the low density of states at the Fermi energy of Gr prevents
scattering events of the magnetization and its negligible SOC means that the resulting
MAE is dominated by the adsorbed RE atom.

Other applications involve depositing RE atoms on van der Waals materials with
properties that differ from Gr, such as stronger SOC. The goal of this approach is to
not only exploit the CF of the 2D-material but also to take advantage of proximity
effects between layers, which can lead to phenomena that do not exist in the individual
layers alone. Examples of suitable 2D-materials might involve TMDCs such as MoS,,
MoSes, WSe, that are composed of three atomic layers, in which one transition metal
element (M) is bonded to chalcogen atoms (X) with stoichiometry MXs. These 2D-
materials are attractive due to the variety of electronic phases they exhibit, based on
the chemical composition of M and X and the crystalline structure [129, 130]. These
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3 Applications in spin-orbitronics

phases range from semiconductors to conductors and superconductors [131-139]. A
TMDC monolayer in 2H stacking inherently breaks inversion symmetry and, coupled
with the intrinsic SOC stemming from the transition metal atom, results in various
effects such as band splitting and valley degrees of freedom [140, 141] leading to valley
and spin hall effects [142].

3.2 Magnetotransport phenomena

In general, TMDC monolayers represent an ideal platform for transport phenomena
due to the possibility to tailor their chemical and structural properties, the SOC and
magnetic properties e.g. via proximity effect by interfacing with a magnetic material.
From this perspective, RE atoms can act as a magnetic source, inducing magnetiza-
tion in the vdW material. This, in combination with SOC, is crucial for generating
magnetotransport phenomena such as the anomalous Hall effect.

3.2.1 Anomalous Hall conductivity

The anomalous Hall effect (AHE) occurs when an electric field is applied to a ferro-
magnet, causing the electronic current to deflect perpendicular to the applied voltage.
This effect arises from a combination of different factors such as net magnetization,
spin-orbit coupling, and orbital hybridization, which lead to an additional contribu-
tion to the group velocity of electrons perpendicular to the electric field, which is
absent in non-magnetic materials. A sketch of the effect is illustrated in Fig. 3.1.
Empirically, The AHE is typically represented by an additional term in the Hall
resistivity, py, which is proportional to the magnetization, M, [143]:

pir = RoH, + RyM,. (3.1)

The first term in the equation describes the classical Hall effect, with Ry being the
Hall coefficient and H, the perpendicularly applied magnetic field, indicating a lin-
ear dependence on the latter in non-magnetic materials. The anomalous effect in
ferromagnetic materials is accounted for by the second term, with R, denoting the
anomalous Hall coefficient, as it originates from the presence of magnetization even
in the absence of an external magnetic field.

The intrinsic AHE solely depends on the band structure of the material, which can
exhibit intricate features due to orbital hybridization and SOC-induced effects. To
provide an accurate description of the AHE it is thus essential to incorporate topolog-
ical concepts, such as the Berry curvature, that appropriately capture the geometrical
characteristics of the electronic structure. On the other hand, contributions to the
AHE that come from external sources involve the presence of impurities that cause
scattering of electrons driven by spin-orbit coupling. This thesis focuses solely on the
intrinsic AHE, which will be discussed in further detail below.
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3.2 Magnetotransport phenomena

To understand the definition of the Berry curvature, we begin by introducing the
Berry phase as the phase evolution of a complex vector as it is transported around a
closed path, for example, the ground state of a quantum system when moved in the
parameter space (such as the k-space). The resulting phase evolution is determined
by the geometry of the parameter space.

Considering the Hamiltonian # of some system and its eigenstates [n(A(¢))), the
adiabatic approximation [144] assumes the parameter A(¢) to change slowly over time.
This means that if the system is in the state [n(A(0))) at ¢ = 0, it will remain in the
same state, up to a phase, at any later time ¢. In other words, the system is able to
adapt to the gradual changes. Taking the Ansatz [145, 146]

(t) = c(t)e™ O [n(A(1))) (3.2)

where ¢ is the dynamical phase defined as

o0 =7 [ B, (3.3)

while ¢(t) allows for the potential existence of an extra phase beyond ¢(¢). Plugging
Eq. 3.2 into the time-dependent Schrédinger equation

[ih0y = H(A(E))] (1)) = 0, (3.4)
results in
ihc’(t)e’”’(t) [n(A(2))) +z‘hc(t)[—i' HeZ A A(t))) ] +z’hc(t)e’i¢(t)8t|n(/\(t)))

~ (D SO EATA() =0,

(3-5)

where the cancellation occurs from ¢(t) = E,(t)/h. This yields the following expres-
sion,

() [n(A(2))) + c(t) 0 In(A(1))) = 0, (3.6)
which multiplied with (n(A(¢))| on the left leads to
é(t) = ic(t) (n(A@)]i0m(A(1))) - 3.7)

We define A, (t) = (n(A(2))|i0n(A(t))) as the Berry connection “in time”, and the
solution of Eq. 3.7 is

o(t) = e, (3.8)
with (t) the Berry phase defined as

10 = [ nOEDdenE)) = [ Auw)ar (39)
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3 Applications in spin-orbitronics

Expressing the Berry phase in terms of the parameter A is then a straightforward
task by noticing that 9 [n(A(t))) = Adx|n(A(t))). Thus, A.(t) = AA,(N), with
An(N) = (n(N)]idyn(N)) defined as the Berry connection in parameter space (the time
dependence is intrinsic, meaning that the functions F(\) are defined as F(A(t))). By
utilizing d\ = \dt, a variable substitution can be made to the A-parameter space:

A(t) A
(1) = f (n(\)]idan (X)) dA = f A, (VA (3.10)

A(0) A(0)

showing that the Berry phase solely depends on the path in parameter space. More
generally, for multiple changing parameters A = (A1, Ag, A3, ..., Ay) the Berry phase
writes as
5= jgi(n()\)w)\n()\)) “dX = fA(A)-dA, (3.11)
T T
and depends only on the chosen path. The Berry curvature is then defined as the curl
of the Berry connection

Q(A) = Va x AN), (3.12)

and applying Stokes’ theorem for a closed path T' that delimits the surface S, the
Berry phase is defined as

7:95,4(,\).(1)\:fQ(A)-dS. (3.13)

Eq. 3.13 illustrates that the relationship between A(X) and £2(A) is the same as
the connection between the vector potential A(r) and the magnetic field B(r) in
real-space.

Berry curvature in crystals

Consequently, when the parameter space A is defined by the reciprocal space
of a crystal structure, where the parameters are the wavevectors k, the Berry
curvature can be interpreted as an effective magnetic field in k-space. For each
band n, the value of Q, (k) is well-defined and it provides a local description
of its geometric properties.

In the case of a 2D reciprocal space (k;,k,), the Berry connection associated with
band n is defined in terms of periodic part of the Bloch’s function, w,:

A”kd(k) = (unk|/l/ak.ﬂunk> ) Ankl,(k) = <Unk|iakyunk> . (314)

The Berry phase then writes as

= § Auk)-dk, (3.15)
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3.2 Magnetotransport phenomena

and the Berry curvature is given by

One common method to calculate the Berry curvature, and hence the intrinsic anoma-
lous Hall conductivity, is through the use of the Kubo formula [143, 147, 148] based
on linear response theory [149], which for each band n can be written as:

Q o= —2h2 Z Im <unk|va: |umk> (umk|vy |unk>

3.17
m#n (Enk - Emk)2 7 ( )

where v, and v, are the  and y components of the velocity operator. The summation
is over the eigenstates with eigenvalues FE, . This equation indicates that features of
the Berry curvature will manifest in reciprocal space, where bands are separated in
energy, due to effects such as SOC.

Moreover, the evaluation of the Berry curvature for all occupied bands can be ob-
tained using the following equation, where the Fermi-Dirac distribution f,, has been
introduced:

Qe =D frk k- (3.18)

The intrinsic anomalous Hall conductivity can then be obtained by integrating Eq. 3.18
over the Brillouin zone (BZ) [150]

Anomalous Hall conductivity
e? a2k

OAHC =

Sy (3.19)
hBZ (2m)2*

When computing integrals over the BZ, symmetry is crucial in determining the values
of properties. In general, if the structural inversion symmetry is broken, the Berry
curvature will have equal magnitude but opposite sign at opposite k-points, result-
ing in a zero value of the intrinsic AHC upon integration over the BZ. However, if
time-reversal symmetry is also broken, then the Berry curvature will be different at
opposite k-points, allowing for a non-zero AHC. As a result, ferromagnetic materials
are particularly interesting for this purpose.

In summary, by carefully choosing the elements in a system and designing the band
structure with symmetry considerations, orbital hybridizations, and spin-orbit cou-
pling effects in mind, it is possible to create materials that exhibit anomalous Hall
conductivity.
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The Many-Body Problem: ab initio
methods

The many-body problem refers to the difficulties in understanding and predicting
the behavior of materials composed by a large number of electrons. The complexity
stems from the numerous interactions between electrons, making the Schrodinger
equation impossible to solve exactly. To overcome this, approximate and compu-
tational techniques are employed to solve the equation and deduce the properties
of many-electron systems. The sections that follow detail the computational ap-
proaches that have been adopted throughout this thesis to calculate electronic and
magnetic properties of rare-earth atoms on 2D-materials.

For many-electron systems, the Hamiltonian can be written as

H:,];+TN+VeN+Vee+VNN (41)

where the terms are defined below with distances r;; = |r; — 75|, and nuclear charges
denoted by Z [151]:

T.= - Z S G kinetic energy of electrons with mass m,
7 e
B2
Tn= - Z TV% kinetic energy of nuclei with mass my
PR
GQZk . .
Ven= - Z Z — electron-nucleus electrostatic potential
2
Vee = Z —, electron-electron electrostatic potential
i<j Tij
e 27 . .
VNN = Z %, nucleus-nucleus electrostatic potential.
k<l kl

In the listed contributions, there are many coordinates and interactions that indi-
cate a mutual dependence among the particles. To simplify the problem, a common
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4 The Many-Body Problem: ab initio methods

method is to separate the motion of the electrons from the motion of the nuclei using
the Born-Oppenheimer approximation [152; 153]. This is possible because the nuclei
are much heavier than the electrons, so their coordinates can be assumed fixed in the
electronic framework. This allows the electronic configuration to instantly adapt to
the nuclear motion. Practically, one can thus solve the electronic equation separately
from the nuclear equation assuming an external nuclear potential for the electronic
problem.

However, the presence of electron interaction term implies that the dynamics of all
electrons are interdependent, and to accurately describe the system, it is necessary
to consider all interactions. However, due to the complexity and the infinite compu-
tational resources required, various computational methods are employed to approx-
imate these correlation effects. Density Functional Theory (DFT), shown schemat-
ically Fig. 4.1, is an example of such a method. It is extensively employed in com-
putational materials science and is widely recognized as a fundamental approach for
simulating quantum mechanical systems, alongside the Hartree-Fock methods.

The Hartree-Fock method for an N-particle system involves breaking down the N-
particle electronic Schrodinger equation into N individual single-particle equations
[154]. In the approach of treating each electron individually, an important approxi-
mation is introduced where an average potential field is considered for each electron re-
sulting from the presence of all other electrons. This field is supposed to approximately
mimic the repulsive electron-electron interactions. The ground state wavefunction is
assumed to be a single Slater determinant composed of the N single-electron wave-
functions, which comply with the antisymmetry condition, thus allowing the method
to include the exchange-correlation energy. Despite its limitations, the Hartree-Fock
method is often used as a starting point for more advanced methods that attempt to
account for electrostatic correlations between electrons in the so-called post-HF meth-
ods. Nevetherless, due to the computational demands of post-HF methods, especially
when applied to systems with a large number of atoms, such as periodic systems,
DFT methods are mostly employed when simulating crystal structures.

4.1 Density Functional Theory: a short review

Density functional theory offers a significant advantage by replacing the wavefunc-
tion of an N-electron system with an electron density, greatly reducing the number of
variables from 3NNV (3 for each electron) to just 3. This simplification is relevant when
considering the electronic problem of a system composed of N interacting electrons,
described by the Hamiltonian H = T; + V.. + Veuy. Here, T, represents the kinetic en-
ergy, V.. denotes the electron-electron interaction, and V,,; accounts for the external
potential originating from the nuclei.

At the core of DFT lie the Hohenberg-Kohn theorems, which establish its theoretical
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4.1 Density Functional Theory: a short review

Many-body problem DFT

Electron density

Figure 4.1: The DFT philosophy consists to approximate the vast number of inter-
actions of a complex system considering an electronic charge distribution
around the nuclei. Each electron feels an effective field produced by the
other electrons.

foundation. The first theorem asserts that the electron density uniquely determines
the external potential within which the electrons are confined. This implies a one-
to-one correspondence between the electron density and the external potential. As a
direct consequence of this theorem, the total energy of the system becomes a unique
functional of the electron density. The second theorem builds upon this by stating that
the electron density that minimizes the energy functional corresponds to the exact
ground state density, subject to the constraint that the total number of electrons
remains fixed. [155]:

Hohenberg-Kohn theorems

1. E=E[n(r)]

2. E[n(r)] > Elnas(r)] = Eas.

These two formulations translate into a one-to-one mapping between the ground state
wavefunction and the ground state electron density, meaning it is sufficient to calcu-
late the electron charge density to determine ground state properties. However, due
to the lack of explicit definition of the electron density and the form of the total energy
functional in the Hohenberg-Kohn theorems, a practical strategy employed in DFT
calculations, inspired by Kohn and Sham [156], is to construct a fictitious system of
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4 The Many-Body Problem: ab initio methods

non-interacting electrons. This approach aims to emulate the behavior of the actual
interacting system by introducing a potential that describes electronic interactions.
The potential is designed in a manner that ensures the ground state density of the
fictitious system matches the ground state density of the real system.

Considering Eq. 4.1 for the electronic problem, the energy functional of the real
interacting system can be expressed as a sum of the kinetic energy of the electrons,
the Coulomb interactions between electrons and the interactions of the electrons with
the external nuclear potential:

E[n] =T.[n]+ Ve[n] + Ven[n] =T.[n] + Ve + f Vewt(r)n(r)dr. (4.2)

In the non-interacting system the first two terms in Eq. 4.2 are replaced by the kinetic
term and two contributions that describe the electron interactions

T,[n] + Vee[n] = T°[n] + Eu[n] + Exc[n]. (4.3)

Here, the kinetic energy is simply the sum over the electrons of the individual contri-
butions

TO[n] = f V2edr, 4.4

2me ZZ: ViviY (44)
where the single-electron wave functions v;(7) have been introduced and their use will
be discussed later. The second term, FEy[n], describes the electrostatic interaction
between charge densities and is called the Hartree functional

-5 [f ”(r)”(r PAT)PAT) i = f Vit (r)n(r)dr. (4.5)

v

Lastly, the energy functional Exc[n] is the exchange-correlation functional and cor-
responds to the energy difference between the real interacting system and the non-
interacting system. Hence, it incorporates all missing quantum-mechanical effects
and writes as

Excln] = T.[n] + Vee[n] = T2[n] - En[n]. (4.6)

The exchange-correlation functional is not known and must be approximated as part
of the DFT workflow. One of the major challenges in DFT is identifying an accurate
exchange-correlation functional that can effectively capture the effects at the quantum
level as the accuracy of DF'T calculations directly depends on this quantity. Examples
of some commonly adopted Fxc functionals include the Local Density Approximation

(LDA) [157]
ELDA - f LDAD () drr (4.7)

where kB4 is the exchange-correlation energy of the homogeneous electron gas of

density n(r). LDA assumes that the density varies slowly in space, making it possi-
ble to approximate the charge density of the system at a specific point with the charge
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4.1 Density Functional Theory: a short review

density of a homogeneous gas. The exchange contribution can be determined ana-
lytically, while the correlation contribution can be estimated through methods such
as statistical quantum mechanics simulations. To account for inhomogeneities of the
electron density in real systems, other methods that include a gradient Vn(r) correc-
tion have been developed and are classified as Generalized Gradient Approximations
(GGA). The final Kohn-Sham energy functional can thus be written as

Eln] =T2[n] + Euln) + Exc+ [ Veu(r)n(r)dr. (4.8)

which has to be minimized with the constraint that the total number of electrons N
is fixed,
N-= f n(r)dr. (4.9)

Defining the respective Lagrangian functional

L[n]=E[n]-A\ [[ n(r)dr - N] (4.10)
and imposing 0£[n] = 0, leads to the condition for the interacting system:
oT9 N 0En N 0 Exc
on on on
In the non-interacting system, an effective potential Vks is added to simulate all the

electron-electron interactions, resulting in a charge density that is identical to that of
the real system. The respective minimization is

+ Ve (r) = A = 0. (4.11)

oT9
on

Since Vg must be equivalent to the real-system potential, it is possible to define the
Kohn-Sham potential as

+ VKS -A=0. (4.12)

(5EH 5EXC

VKS = W + 6’” + ‘/ezt('r)7 (413)
with
V2 OB o ()T G e = OEx0 (4.14)
on |r — 7| on

The approach involves solving a set of N single-particle equations, known as the
Kohn-Sham equations, in a self-consistent field (SCF) manner,

[ s Vi) = ), (4.15)

| —
His

where Hxs is the single-particle Kohn-Sham Hamiltonian and ;(7) are the single-
particle wave functions with eigenenergies ;. The starting point of the method is
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4 The Many-Body Problem: ab initio methods

the construction of the wave functions 1;(r) as linear combinations of a set of basis
functions ¢;(r)

0i(r) = X iy (). (4.16)

The charge density can then be evaluated from the single-electron wave functions

n(r) =3 [i(r)P, (4.17)

and adopted to calculated an initial guess of the Kohn-Sham potential and thus the
Hamiltonian. It is then possible to solve iteratively the Kohn-Sham equations, which
lead to new wave functions that are used to calculate an improved charge density that
will serve as input for a new cycle. The procedure repeats until some convergency
criteria is met: the input and output charge densities are compared after each iteration
and if the difference is small enough, then the output value is the ground state density
and it is used to compute in the variational formalism the total energy of the system
which corresponds approximately to the total energy of the real system. A sketch of
the SCF cycle is shown in Fig. 4.4.

4.1.1 Spin Density Functional Theory

The present work aims to determine the magnetic properties of RE-systems, hence
it is necessary to extend the above described DFT workflow to include the spin de-
gree of freedom [158, 159], in order to simulate and observe fundamental magnetic
phenomena driven by the RE atoms. In the spin-polarized case, the electrons are
unrestricted, meaning electrons with opposite spins are not restricted to share the
same spatial wave function, as sketched in Fig. 4.2. As a result, it is necessary to
consider not only the scalar charge density, n(r), but also the magnetization density,
m(r), which is a 3-component vector.

When extending DFT to the spin-polarized case, Hohenberg-Kohn theorems now re-
quire the determination of a ground state density that is dependent on both the charge
and magnetization density. The spin density matrix is introduced as a 2 x 2 matrix
that can be decomposed into the scalar contribution and the vector contribution [160]:

n(r) = S(n(r)L + o -m(r)) = 5 (

n(r)+m.(r)  my(r)—imy(r)

5 ) (4.18)

mg(r) +imy(r)  n(r)-m.(r)

where the underlined notation indicates matrices and the bold represents vectors. [
is a 2 x 2 unit matrix and o is a vector of the Pauli matrices:

01 0 —i 10
0, = Coo=0 T o= . (4.19)
1 o) 7\ o 0 -1
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Restricted vs. unrestricted DFT

Restricted Unrestricted

Figure 4.2: (a) Restricted DFT: electrons with opposite spin occupy the same
spatial wave function. (b) Unrestricted DFT: electrons with opposite
spin can occupy different spatial wave functions.

The components n®?(r) of Eq. 4.18,
« 1 (83 Q, Q, «,
nf(r) = E(n(r)é B+ my(r)o? +my(r)ayﬁ +m.(r)o*?), (4.20)
depend on the electronic density and magnetization density defined as

n(r) =Y n(r), m(r)=-us Zﬂ:ga[’na[’(r), (4.21)

where the spin indices, denoted as o and /3, can take on two possible values, namely
up 1 and down |. In the Kohn-Sham formalism, the energy functional now depends
on both the charge density and the magnetization density [161],

E[naﬂ(r)]:Tg[naﬁ(r)]+§ Ji 7n(‘:)_niq/)drdr’

(4.22)
+ E V O‘?n"‘ﬁ r) + Exc[n®(r)].
af _/ ex ( ) XC[ ( )]

From this it is seen that only the Hartree energy depends on the total charge density,
while all other contributions depend on the spin. When considering spin-polarized
DFT, the external potential, V,,;, now includes not only the potential from the nu-
clei, but also the effects of an external magnetic field. This arises naturally when
extending the Schrédinger equation to include relativistic effects through the use of
the Dirac equation for an electron moving in an electromagnetic field. When solving
this equation in the non-relativistic limit (where the electron’s speed is much smaller
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4 The Many-Body Problem: ab initio methods

than the speed of light), it results in contributions to the Hamiltonian in the form
—o - B, which describe the interaction between the spin and the magnetic field.

As in standard DFT, in order to determine the ground state spin-density matrix,
it is necessary to introduce single-particle wave functions in order to define Hyks.
However, the main difference from the restricted case is that these wave functions
are now determined by spin-dependent spatial wave functions or spin-orbitals. In
the general case, the Kohn-Sham equations for a spin density matrix in the form of
Eq. 4.18 are associated to an external potential,

Vot (1) = Veur (7)1 + ppa - B(r), (4.23)
and exchange-correlation potential
dExc
=V I -B . 4.24
Sn(r) xc(r)L + psa - Bxe(r) (4.24)
Solution of the respective Kohn-Sham equations leads to the spin density matrix
n(r) = Y ()] (7). (4.25)

When the spin density matrix is diagonal, it indicates that the magnetic fields, in-
cluding both external and exchange contributions, align in the direction of the z-axis.
This situation characterizes a collinear spin system, where the magnetic moments are
aligned exclusively along the z-axis. As a result, the Kohn-Sham equations can be
decoupled into two distinct equations, one for each spin direction (up 1 and down |).
Expressing the functionals in terms of single-particle wave functions, for example the
kinetic energy functional for each spin writes as

[ T(.r) *TVQMdr
(4.26)
TOni(r)] = o2t
with n'(r) and n'(7) the spin-up and spin—down charge densities
Ny
W (r) = Sl ()P
i (4.27)

n(r) = Sl

and minimizing the energy functional subject to the constraint of conservation of the
number of particles, the Kohn-Sham equations for each spin are obtained:

[_%W * ngf(’")] vi(r) = evi(r) (4.28)
[_Qh it Wff(’“)] i (r) = e (r), (4.29)
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4.2 The Hubbard Model

and solved simultaneously, following the standard DFT prescription. In Egs. 4.28 and
4.29, V.ss represents the effective potential, which encompasses the Hartree term, the
external potential, and the exchange-correlation term. The total charge density is
defined as the sum of the spin-up and spin-down densities, while the magnetization
density becomes the difference between the spin-up and spin-down densities:

n(r) = nl(r) + nt(r) = S )+ 3 et ()
i i (4.30)

ma(r) = nl(r) — () = S [l (1) - S ()

Finally, the spin magnetic moment per unit of volume is defined as the integral over
V' of the magnetization density,

Mapin = [ (n'(r) - n*())dr (4.31)

and is defined in units of pp.

4.2 The Hubbard Model

The previous sections outlined the use of standard DFT as an effective approach for
calculating properties of a wide range of materials, particularly in solids with high
electron mobility, such as metals. However, it is widely recognized that DFT is not
able to accurately describe strongly-localized electrons, as the limited spatial distri-
bution leads to stronger interactions and a correlated dynamics. In statistical terms
this means that the probability to find an electron at one coordinate and another elec-
tron at a second position, differs from the product of the two individual probabilities.
The shortcomings of DFT are rooted in the way it handles many-body interactions,
which are represented as functionals of the electron charge density, and the use of
approximate exchange-correlation functionals, along with a single-particle treatment
in solving the Kohn-Sham equations. These observations are critical when simulating
the behavior of 4f electrons in RE atoms, as these electrons have a highly restricted
spatial distribution and cannot be accurately described within the DFT picture.

A straightforward model that allows for a more accurate characterization of 4 f elec-
trons (and in general, correlated materials) is the Hubbard model, which can easily be
integrated into the DFT process (as discussed in Section 4.2.1).
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4 The Many-Body Problem: ab initio methods

The Hubbard model

The fundamental idea behind the Hubbard model is to introduce a correc-
tion that accounts for the missing on-site electron-electron interactions. The
Hubbard model views the atoms in a crystal as distinct sites that can accom-
modate a maximum of two electrons with opposite spins, as dictated by the
Pauli exclusion principle. This means that each site can hold one electron with
either spin-up or spin-down, or two electrons with opposite spins. The Hub-
bard Hamiltonian can be formally written in second quantization notation as
the sum of two terms that capture the dynamics of the electrons in the lattice
[162]:

Hrubbard =t Z (CZ,JCj,U +hc)+U anniﬂi. (4.32)

K2

(i4)0

The notation used includes (i,j) for the nearest-neighbor sites, CZTU is the creation

operator of an electron at site ¢ and spin o, ¢;, is the annihilation operator of an
electron at site j and spin o and n;, is the number operator for electrons on site i
and with spin o. In Eq. 4.32 the first term describes the hopping of an electron from
one atomic site to another with amplitude ¢, which is determined by the bandwidth
of the valence states. The second term represents the strong Coulomb repulsion that
occurs between electrons occupying the same atomic site, which is described by the
parameter U, also known as the Hubbard U. The Hubbard U term is only applied
to electrons on the same site, in order to account for the strong localization of the
electrons of interest, and this is mathematically represented by the product of the
occupation numbers on that site. A sketch of the model is depicted in Fig. 4.3.

The model predicts a transition from a metallic phase to an insulating phase based
on the ratio of U/t. When t >> U the extension of neighboring orbitals is such that
the electrons are free to move through the crystal, and standard DFT is sufficient to
achieve a good description of the electronic properties. Conversely, when ¢ << U, the
hopping of electrons is not energetically favored due to the strong Coulomb repulsion
from double occupancy, causing the electrons to remain localized at their atomic sites.
This results in insulating behavior and isolated magnetic moments.

4.2.1 DFT+U

The DFT+U method can be utilized to improve the description of the ground state
properties of correlated electron systems by incorporating the Hubbard model into
the DFT cycle. This is achieved by adding a U parameter to the treatment of local-
ized electrons, such as the 4f electrons, while continuing to describe all delocalized
electrons using conventional DFT methods.
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—

~7
t

Figure 4.3: The Hubbard model can be schematized as follows: electrons can move
from one atomic site to a neighboring site with kinetic energy ¢. When a
site is occupied by two electrons, the Coulomb interaction between them
is described by the parameter U.

DFT+U method

The method involves a combination of the standard DFT functional,
Eppr[n(r)], and the Hubbard functional, Epyppera[n’, ], which contains
the electron-electron interactions between the localized electrons as described
within the Hubbard model. However, to avoid double-counting problems, it is
necessary to subtract the functional E4.[n!] from the formulation, as the DFT
part already accounts for a part of the correlation energy:

Eprrsv[n(r)] = Eppr[n(r)] + Egusara[nlo,] = Eac[n'7]. (4.33)

More precisely, the Hubbard term is dependent on the occupation numbers of the
localized orbitals, which are identified by the indices I, o, and m, consistent with the
fact that the U correction is only applied to the localized electrons. Here, I repre-
sents the atomic site, o denotes the spin index, and m corresponds to the localized
state. The occupation numbers can be computed as the projections of the Kohn-Sham
orbitals, ¢)7 . onto the localized states, ¢! ,. This is expressed as follows:

mm Z fkv ¢kv|¢m ) (¢£1|¢]Zv) ’ (434)

where f7 stands for the Kohn-Sham occupation as determined by the Fermi-Dirac
distribution and k, v, and o refer to the k-point, band, and spin indices, respectively.
I and m are used to identify the atomic site and the localized states at a given atom 1.

The functional E4.[n’?] in Eq. 4.33 is approximated as a mean-field evaluation of
the Hubbard energy functional and different formulations are currently available
Considering the case of a Hubbard correction in the form U Y, o 157 nlo’ with
a total number of electrons N7 =y, nl¢, then the DFT+U energy functional writes
as

Ul
2

Y, nnl 7U NI(NT-1)], (4.35)

m,o+m’c’

Eprriv = Eprr + Z
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with nl = nlo .. The last term in this equation is the double-counting term. From
this equatlon the orbital energies can be evaluated by taking the derivative of the
DFET+U energy functional with respect to the occupation number of a specific state
[163]:

Io _ 8EDFT+U

m an{rg
It is evident that the U term results in an energy shift of —U/2 for occupied orbitals
(nfe = 1) and an energy shift of U/2 for unoccupied orbitals (nf7=0). Similarly, the
DFT+U potential is obtained deriving the energy functional with respect to the charge
density of a specific orbital resulting again in a U’(4 - nl?) term that determines a
positive (repulsive) Hubbard potential if the orbital is less than half-filled (nl7 < 1/2),
and negative (attractive) when the orbital is more than half-filled (nf7 > 1/2).

1
:EDFT+UI(§—TL£§)~ (4~36)

The drawback with Eq. 4.35 is that it is not invariant under rotation of the atomic
basis set used for defining the occupation numbers, resulting in a dependence on the
choice of the basis set. To address this problem, a rotationally-invariant formulation
has been proposed in [164, 165], which eliminates the dependence on the atomic basis
set and resembles the HF prescription:

1
EHubbm‘d[n{gm’] :5 Z {(m7 m/”|‘/;g|m/7 m"') n{,‘fm,nﬁl 11
{m},o,I (437)
+({m, " [Veelm!,m™) = (e, m [Vee |, m") )2 .

In the limit of fully-occupied orbitals where each orbital is either fully-occupied or
empty, the double-counting term resulting from this approximation applied to Eq. 4.37
reduces to

EDc[nggm,]:Z{UQ NI(NT-1) - [N”(N” 1)+ NN -1} (4.38)

This result is often referred to as the Fully-localized limit (FLL). Here, NT = NIt + N4
and U and J represent the screened Coulomb and exchange parameters, respectively.

It is possible to determine the matrix elements of the electron-electron interaction

terms of Eq. 4.37 by describing the atomic orbitals ¢ in terms of a product of a radial
and a spherical harmonic function as illustrated in Eq. 2.4.

R B B O e EA O LA CONTE )
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As already discussed, by the combination of Eq. 2.26 and Eq. 2.27, the Coulomb
kernel 1/|r — r'| can be expanded in spherical harmonics, which inserted in Eq. 4.39,
leads to the formulation of the matrix elements:

Uit = {m, m” [Veelm”,m™) = Z ar(m,m’,m" ,m")F*
%

4.40
Jmm ity = (m7 m"|VCC\m"', m/) — Z ak(m7 mlll7 mu7 m')F’ﬁ ( )
k
where the factors a;, are given by:
ag(m,m’,;m" m") = Z (Im|Y2)im”) (Im”" Y7 [Im"") . (4.41)

2k+

Here, k is the angular moment of the potential and is restricted to the range 0 < k < 21
(similarly, to the selection rules described in Section 2.3.2), where is [ the angular
moment of the localized orbitals. The Slater integrals, on the other hand, determine
the radial part of Eq. 4.40 as follows:

:fdrf dr'r*r?R2,(r) (kH)Rnl(r’) (4.42)

where 7. and r, are the smaller and larger radial distance between r and 7/ [166]. In
the case of d electrons, F°, F2, and F* are necessary, whereas for f electrons, the F'¢
term is also required.

Going now back to the definition of the double-counting functional as a mean-field
picture of the Hubbard term, the U and J parameters in Eq. 4.38 can be defined as
averages of the integrals in Eq. 4.40 over the localized states of fixed quantum number
l:
Fi I V)
m,m’|Vee|m, m
(2l +1)2 °

1
S 20(20+ 1) mZ

m/ m’

(4.43)
(m, m/|Veelm',m)

where equations 4.43 are linked to the Slater integrals, which can be calculated and
utilized to evaluate the V.. integrals. The determination of Hubbard U and exchange
parameter J is usually done in a semi-empirical manner by comparing with experimen-
tal results. Alternative methods involve the first-principle calculations of Hubbard U
via for example Random Phase Approximation [167-169] or linear response theory
[170]. However, the DET+U method is limited in that the values depend on various
factors like the type of atoms, the crystal structure, and magnetic properties, making
them not easily transferable from one system to another or between different codes.
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4 The Many-Body Problem: ab initio methods
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Figure 4.4: DFT self-consistent cycle.

Effect of the Hubbard U

In Fig. 4.5, the impact of increasing values of the Hubbard U on the 4f states
of a Gd atom deposited on graphene is displayed via simulations performed
adopting the FLEUR code (See Section 4.3). The top half of the plots displays
the density of states (DOS) for the spin-up channel, while the bottom half shows
the spin-down channel DOS. The total DOS (TDOS) of the system (Gd/Gr) is
shown in grey, with the d and f states of the Gd adatom plotted in blue and
red, respectively. In general, it can be seen that applying a Hubbard correction
results in a larger energy splitting between the spin-up and spin-down 4 f peaks.
Precisely, in the standard DFT calculation, a magnetic moment of the Gd atom
of 7.016 up is calculated and the 4f spin-down peak lies at the Fermi energy
suggesting a metallic character of the 4 f electrons. This indicates that standard
DFT is not accurate in the description of the localized 4 f electrons. Applying
a correction of U = 3 eV, the effect is to push the spin-up states lower in energy
and the spin-down states away from the Fermi energy, leading to a magnetic
moment of 7.235 up, thus increasing the localization of the 4 f electrons. Finally,
in the U = 6.7 eV case, the 4f peaks are separated by an energy gap of ~ 11 eV
leading to a magnetic moment of 7.319 up and a fully insulating behavior of
the localized 4 f states.

This example highlights the importance to incorporate a correction into the
DFT procedure in order to obtain a more accurate representation of the 4f
electrons and the resulting properties.
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4.2 The Hubbard Model
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Figure 4.5: Effect of the Hubbard U correction on the 4f states of a Gd/Gr system
calculated in the DFT framework. The 4f peaks get separated in energy
the bigger the U value and are pushed away from the Fermi energy result-

ing in an localized and insulating character.
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4 The Many-Body Problem: ab initio methods

4.3 Full-potential linearized augmented plane-wave method

The variational principle offers a method to obtain the solution to the eigenvalue
problem for a set of NV states, given by the equation

H|’l/}1):51|1/)z>, 121,,N (444)

This principle guarantees that energies obtained using approximate wave functions
are higher than or equal to the exact energy solution. For the purposes of DFT
calculations, the wave function |t);) can be expressed as a linear combination of basis
functions:

W)z‘) = chi|¢j>- (4-45)

By inserting Eq. 4.45 in Eq. 4.44 and multiplying by (¢x| on the left, this leads to
L L
Zle' (¢k|H|¢]> :EZ'ZC]'Z' (¢k‘¢])7 7= 1,...,N (446)
J J
and the problem transforms into a generalized Hermitian matrix eigenvalue problem,
L L
chinjZSiZSkj7 1= 17...,N (447)
J J

where cj; is the j-th coefficient in the expansion of the i-th eigenfunction, ¢; is the
i-th eigenvalue, while the Hamiltonian matrix #; and the overlap matrix Sy; have
the same dimension as the number of basis functions L. The set of equations can be
expressed in a compact form as:

HC = SCe (4.48)

where C is the matrix of the expansion coefficients and € is a diagonal matrix of the
N g; eigenenergies corresponding to the eigenfunctions |¢;). Computationally, the
selection of the basis set has a significant impact on both the cost of the computation
and the accuracy of the results. Different techniques can be used to represent the
target wave functions and the choice is largely dependent on the problem at hand.
Some common methods include the Linear Combination of Atomic Orbitals (LCAO),
where molecular orbitals are expressed as linear combinations of known atomic or-
bitals, typically in the form of Slater Type Orbitals (STO), Gaussian Type Orbitals
(GTO) [171-173], or related variants, which are frequently used in quantum chemistry.

For periodic systems, the wave functions are typically described differently as the
atomic character of the orbitals is partially lost, particularly for spatially delocalized
electrons. According to Bloch’s theorem, the wave functions in a periodic potential,
labelled by the band index n and the Bloch vector k, can be expressed as a product
of a plane wave and a function with the same periodicity as the Bravais lattice:

Pk (1) = Unge(r) e, (4.49)
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4.3 Full-potential linearized augmented plane-wave method

where U, (7) = u(r + R), R being a lattice vector. The periodic part can be
expressed in terms of plane waves

Unk(T) = Y G e, (4.50)
G

which leads to a description of the wave function as a linear combination of plane
waves in the Fourier series:

ORI (451)
G

In this equation, G is a reciprocal lattice vector and c’: kG are the expansion coefficients.
The cut-off for the expansion is usually selected by considering the fact that the
contribution of higher |k + G| terms is small. This cut-off is set using the criterion
|G + k| < K, 0e- To achieve the optimal balance between accuracy and computational
cost, it is thus important to make a careful choice of the value of K,,,,. However, it is
important to note that the wave functions undergo significant changes in the vicinity
of the atomic nucleus, with core electrons exhibiting peaks and valence electrons
characterized by wavy features. This translates into the requirement of high cut-off
values. In the frozen core approach, the core electrons are encoded in an approximate
and smooth potential (pseudopotential) so that the remaining wave functions exhibit
minimal spatial variation. This approach allows for the use of smaller basis sets and
although computationally efficient, it often results in a loss of precision. Alternative
methods include the core region in the calculations and are referred to as all-electron
methods.

FLAPW

In the field of DFT, the Full-Potential Linearized Augmented Plane-Wave
(FLAPW) method is widely recognized as one of the most precise all-electron
methods available, due to its full treatment of both valence and core electrons.
The FLAPW method can be understood as a successor of the Augmented Plane-
Wave (APW) method, where the full treatment is accomplished by dividing the
space into two distinct regions, namely the muffin-tin (MT) spheres (which do
not overlap), around each atom, and the interstitial region (IR) located between
the atoms, as depicted in Fig. 4.6.

To gain a comprehensive understanding of the FLAPW method, it is valuable to
briefly discuss the key assumptions made within the APW framework. In this context,
the potential inside of the MT is considered to be atomic-like i.e. spherical, allowing
for the use of atomic basis functions. On the other hand, the IR is characterized by
a slowly varying or constant potential, which can be described by plane waves.
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4 The Many-Body Problem: ab initio methods

The electron wave functions in the Kohn-Sham method are expressed as linear com-
binations of basis functions, in the following form [174-177]:

¢nk(r) = Z Cﬁ;G(ﬁg(k,’I’), (452)
|k+G|<Kmax
Lei(’”G)'r IR region
dak.r)=1 YV (4.53)

Y a9 (k)uf (r*, E)YL(#*)  MT region
I

where V' is the unit cell volume, L = (I,m) indicates the orbital and magnetic quan-
tum numbers, « represents the atomic index at position 7¢, and r® = r — 7% is the
position vector relative to atom «. The MT basis functions are constructed from a
combination of a spherical harmonic, Y7 (#), solution to the spherical potential, and a
radial function u;, which solves the radial Schrodinger equation (Eq. 2.5 with Ry = w).

To ensure the continuity of the basis functions at the boundary of the MT, the co-
efficients a$® are determined by matching the functions at the boundary of the two
regions. Additionally, the radial functions are dependent on the band energy F, mak-
ing the problem non-linear, since E should be determined in a self-consistent way. To
address this issue, the energy derivative of the radial function, uf*(r®, Ef*), is intro-
duced as an augmentation inside of the MT region, which is now described by the
radial function u; and its derivative.

000

Figure 4.6: The space in the (FL)APW method is divided into two parts: the muffin-
tin (MT) spheres, centered around each atom (represented in red), and
the interstitial region (IR) in between the spheres (represented in grey).
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4.3 Full-potential linearized augmented plane-wave method

This can be interpreted as a a Taylor expansion around the parameter FEj, thus lin-
earizing the problem [174, 178] by the introduction of deviations around this value.
In this way, it is possible to write

up (r, B) =uf (r*, ) + (B = )i (r, E7) + O((E - Ef)?), (4.54)

which leads to an error of (E- E;)? in the wavefunction. In this linearized-formulation
(LAPW), the basis set becomes:

LAPW basis set

ikt G)T IR region

¢G(k7r) = a be . . .
ag®(k)u (r*, ) + b3¢ (k)i (r*, Ef) | Yo(7*)  MT region

5~

(4.55)

and the coefficients a$¢ and b$¢ are obtained by enforcing continuity of the basis
functions and the derivatives at the MT boundary in terms of value and slope. In the
light of the above considerations, in FLAPW calculations, it is necessary to converge
the total energy with respect to the K, .., representing the number of basis functions
in the IR region, and [,,,,,, which determines the maximum number of terms in the
expansion inside of the MT. Finally, the LAPW method can be extended to consider a
full potential in the two regions, without shape-approximations as discussed in [179].
This can be achieved by relaxing the conditions of a spherical potential in the MT
region and a constant potential in the IR region.

For the purpose of this thesis, all studies were performed using the FLEUR code
[180], an open-source code based on density functional theory that implements the
all-electron full-potential linearized augmented plane-wave method.

FLEUR Home ~ User Guide v Tutorials/Examples ~ Q Search Fleur Version: MaX-6.0 v Edit on GIT

Welcome to the home of
the open-source project
FLEUR

The FLEUR project provides a simulation tool for
materials properties using density functional
theory and related methods

Figure 4.7: Homepage of FLEUR: https://www.flapw.de
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

The focus of this chapter is to analyze the electronic and magnetic properties of
five selected rare-earth atoms (Eu, Gd, Dy, Ho and Tm) on graphene. These
elements include both half-filled and ‘“heavy” rare-earth atoms with more than
half-filled 4f-shells. The chapter specifically explores the magnetic anisotropy
properties and the reverse-engineering technique is used to compute the CFP for
the highly-anisotropic systems. The findings for Dy, Ho and Tm can be found
in the manuscript “Magnetic properties of 4f adatoms on graphene: Density
functional theory investigations” by Johanna P. Carbone, Juba Bouaziz, Gustav
Bihlmayer, and Stefan Bligel [181].

In the group of the selected RE atoms, Eu and Gd both have a half-filled 4 f-shell,
leading to large spin magnetic moments but vanishing orbital moments. Eu is char-
acterized by a valence electron configuration of 4f76s2, while Gd has one additional
d electron, 4 f5d'6s%, which contributes to chemical bonding due to its larger spatial
extension.

On the other hand, Dy, Ho and Tm are selected as representatives of heavy rare-
earths, and exhibit spin and orbital moments that vary based on the occupation of
the 4f orbitals. Their valence configurations can be represented as 410652, 411652,
and 4f136s2, respectively. This requires the consideration of Coulomb-like correla-
tions in addition to exchange correlation in determining the 4f orbital filling.

The second key-element is the 2D-material. In the context of single-atom magnets,
the choice of graphene as a 2D-material is driven by its ability to decouple from un-
derlying substrates, its hexagonal symmetry, and its minimal SOC. These properties
render RE/Gr systems suitable for examining magnetic anisotropy effects caused by
varying 4f occupations.

The present chapter will be organized as follows:

— The general electronic properties of RE on v/3x+/3 graphene, including chemical
adsorption and electronic structure, are addressed in Section 5.1. This section
is divided into two parts: 1) the analysis of Eu/Gr and Gd/Gr, which are char-
acterized by half-filled 4 f-shells; 2) the examination of more complex systems
Dy/Gr, Ho/Gr, and Tm/Gr with increasing 4f occupancy.

— The analysis of magnetic anisotropy of the selected RE/Gr systems is presented
in Section 5.2. The focus of the section is then directed towards the systems of
Dy/Gr, Ho/Gr, and Tm/Gr, which exhibit highly anisotropic behavior due to
the strong interplay between spin and orbital moments. To extract the magnetic
anisotropy constants, the total energy curves are fitted, and the obtained values
are subsequently used to evaluate crystal field parameters and the corresponding
multiplet splittings for each system. The behavior of magnetic anisotropy energy
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is studied with respect to the variation in the applied perpendicular strain and
modification of the Hubbard U.

— The case of Dy/Gr deviating from Hund’s rules is analyzed in Section 5.3, high-
lighting the importance of an accurate description of 4 f electrons in determining
magnetic anisotropy.

— Section 5.4 focuses on the effect of dilution of the rare-earth atoms by comparing
the /3 x /3 simulation cell with a larger 4 x 4 simulation cell, providing an
overview of the electronic structure based on the packing density of the magnetic
atom.

A graphical representation illustrating the investigated magnetic rare-earth atoms
adsorbed on a monolayer of graphene. Credit for the design of this image goes to
Daniele Valente.
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

5.1 Electronic properties of rare-earth adatoms on v/3 x /3
graphene

Computational details

All presented results were obtained in the DFT+U framework as implemented
in FLEUR, within the FLAPW method. The calculations were performed in a
V3 x /3 simulation cell containing 6 C atoms and one rare-earth atom, with
lattice constant taken equal to the experimental value (2.46 A) times v/3. The
selection of the simulation cell is supported by both experimental and theoret-
ical studies of the coverage of rare-earth atoms on graphene, which has been
found to stabilize superstructures at a coverage of 33.3% ML [182, 183]. The
value of the maximal angular momentum inside of the MT spheres was set to
Imaz = 10 for the rare-earth atoms and [,,,, = 6 for the C atoms, while in the IR
region the cut-off for the plane-wave expansion was set to Kq, = 4.5 ag' (with
ag the Bohr radius). The SCF cycle convergency was achieved using the GGA
exchange-correlation functional in the Perdew, Burke, and Ernzerhof (PBE)
prescription [184], in a 20 x 20 k-point mesh. Concerning the Hubbard U and
J, the following values are used in the FLL limit : U = 6.7 ¢V, J = 0.7 eV for
Eu and Gd; U =7 eV, J=0.82 eV for Dy; U =7.03 ¢V, J =0.83 €V for Ho; and
U=71¢€V, J=0.86 eV for Tm. These parameters were selected referring to
previous studies that have shown that values U ~ 7 eV can accurately reproduce
experimental observations, such as coehesive and magnetic properties, as well
as electronic spectra [185]. The parameters were chosen in reference to [186,
187] for the half 4f-shells in Eu and Gd, [114] for Ho, [78, 117] for Dy and
following the semiempirical formulas in [188] for Tm.

5.1.1 Eu and Gd on V3 xv3 graphene

The electronic properties of Eu and Gd adsorbed on graphene were studied without
considering the effect of spin-orbit coupling in the DFT calculations. This is due
to the fact that the 4f-shell of these elements has a half-filled occupation, leading
to a negligible value for the orbital moment. For each 4 f-adatom, three different
adsorption sites were investigated, including the Top-site (on top of a C atom), the
Bridge-site (at the midpoint between two C atoms), and the Hollow-site (at the center
of a hexagonal ring formed by 6 C atoms). These sites are shown in Fig. 5.1. For each
of the sites, structural relaxations were performed to determine the perpendicular
distance (along the z direction, as described in Fig. 2.8) of the RE atom from the
Gr monolayer. Upon reaching a state of minimal energy and vanishing forces, the
adsorption energy at each relaxed distance, dy, was computed as the energy difference
between the interacting system (RE/Gr) and the sum of the total energies of the
individual RE and Gr components,

Euds = Ere/ar — Ere - Ear, (5.1)
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5.1 Electronic properties of rare-earth adatoms on /3 x \/3 graphene

Figure 5.1: /3x1/3 supercell of graphene depicting the three possible adsorption sites
of the RE atom: “T” for top, “H” for hollow, and “B” for bridge.

which represents the energy involved in the formation of the complex. Table 5.1 sum-
marizes the ground state properties for the tested adsorption sites at the equilibrium
distance dy. Based on the examination of the adsorption energies, it can be concluded
that the magnetic RE atom shows a preference for the H-site, as the magnitude of the
energy involved is greater compared to the T- and B-sites. The B-site appears to be
the second most favorable position for both systems. This observation can be argued
based on the delocalization of the charge, which has been calculated for Eu/Gr and
is shown in Fig. 5.2. Here, for each adsorption site the differential charge density,
calculated as ngu/Gr — Nar — NEw, is plotted on two different crystallographic planes,
namely (010) and (001). For the (001) plane, two slices at different heights, hy and hao,
are evidenced. The red regions indicate a gain in charge density, while the blue ones
correspond to a loss of charge density. By comparison between the three situations on

Site  Egus [€V] dy [A] Joce mBE[up] mtug]
Eu adatom on graphene

H -0.620 2.540 0.332 6.908 7.054 7.393

T -0.436 2.740 0.226 6.911 7.039 7.332

B -0.451 2.725 0.230 6.911 7.043 7.378
Gd adatom on graphene

H -1.435 2.236 0.866 7.017 7.319 7.860

T -0.777 2.426 0.769 7.010 7.352 7.932

B -0.871 2.387 0.795 7.012 7.374 7.964

Table 5.1: Ground state properties for Eu and Gd on Gr for the three adsorption sites:
adsorption energy in eV, adsorption distance in A, d and f occupation of
the magnetic RE atom, spin magnetic moment of the RE atom in up, and
total spin magnetic moment of the RE/Gr system in pg. Calculations were
performed without SOC.
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

the (001) plane, in the H-site the charge transfer happens between the RE adatom and
the 6 nearest neighbors, whereas in the B-site, only 2 nearest C atoms participate, and
in the T-site, primarily the C atom underneath is involved and to a lesser extent, the
3 surrounding C atoms. In general, the trend suggests that the interaction is stronger
the more C atoms are close to the adatom, such that more charge is involved in the

Hollow

Bridge

On-top

Figure 5.2: Differential charge densities of Eu/Gr on the three adsorption sites. The
results are in two different planes, with the (010) plane on the left and the
(001) plane on the right. From the results, a correlation can be established
between the number of nearest neighbors and the stability of the system,
with the H-site showing the highest stability, followed by the B and T-
sites.
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5.1 Electronic properties of rare-earth adatoms on /3 x \/3 graphene

bonding. In particular, the hybridization is most likely to interest the out-of-plane
p, orbitals of Gr with the delocalized 5d orbitals of the RE. The preferred adsorption
site is related to the distance between the RE and graphene, with the RE tending to
adsorb closer to the monolayer in the H-site, and the relaxed distance being largest
in the T-site. Moreover, a systematic trend of increasing bonding strength towards
the graphene monolayer with a larger d occupation in the RE atom is observed, as
seen by comparing E.4s and d,.. for the different sites. This correlation is a result of
the chemical bonding being determined by delocalized valence electrons.

As a result of the previous discussion, the following analyses will focus on the H-site.
The spin magnetic moment of the RE atom is primarily determined by the local-
ized 4f electrons, which tend to follow Hund’s rules in a half-filled manner. This
results in a spin moment of the RE being close to 7 up in both cases, with any de-
viations arising from intra-atomic spin-polarization. The d spin-polarization of the
REs can be evaluated by subtracting the charge densities in the MT sphere, ng, —nq,,
and results in ~ 0.110 pug for Eu and ~ 0.310 pp for Gd. The magnetic moment of
the whole RE/Gr complex is dominated by the magnetic moment of the RE, which
also causes spin-polarization in the substrate, especially in the IR region, which is
composed mostly of the strongly delocalized 7 orbitals of Gr that interact with the d
electrons of the RE. The magnetic moment associated with this region can be obtained
by subtracting the total magnetic moment of the RE/Gr complex and the magnetic
moment of the RE, Am = mtt—mEE resulting in 0.339 ug for Eu and 0.541 ug for Gd.

Figure 5.3: Differential charge density of Eu/Gr and Gd/Gr plotted in the (010) crys-
tallographic plane. The values have been plotted on the same color scale
ranging from a maximum saturation level of +0.004 (red) and a minimum

of —0.004 (blue).
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

By comparing Eu/Gr with Gd/Gr, it is seen that the adsorption of Gd onto Gr is in
general favored compared to Eu, and can be explained by the additional 5d electron
of Gd in its outer valence shell. This is evidenced by plotting on the same color scale
the differential charge density for the two systems, as in Fig. 5.3. The Gd complex
exhibits more charge delocalization both towards the nearest C atoms, as well as to-
wards the second nearest C atoms, which translates into an overall larger adsorption
energy. In this regard, Eu exhibits more ionic characteristics in its bonding with the
Gr monolayer, while Gd displays more covalent properties. The presence of an extra
d electron in Gd results in a larger magnetic moment m&d compared to m=, result-
ing in stronger spin-polarization in the system. This can be seen by examining the
electronic structures of the two systems. Figs. 5.4 (a) and (b) show the spin-polarized
density of states (DOS) for Eu/Gr and Gd/Gr, respectively. The total DOS is shown
in grey, whereas the d and f states of the RE atom are depicted in blue and red,
respectively. The upper panel (DOS > 0) refers to the spin-up channel, while the
bottom panel (DOS < 0) corresponds to the spin-down channel. The localized nature
of the 4f states is clearly visible, with the spin-up channel appearing at ~ -2.5 ¢V for
Eu/Gr and at ~ -9 eV in Gd/Gr, much deeper in energy. Nevertheless, both systems
display an unoccupied spin-down peak with a gap of AE ~ 11 eV from the occupied

(b) 0

- gl

DOS [1/eV]

E-E F [(‘V]

/ e spini{up
e spin;down

M I K M

Figure 5.4: Spin-resolved DOS for Eu/Gr (a) and Gd/Gr (b): upper and lower panel
represent the majority and minority states, respectively. The total DOS is
shown in grey, the f states in red and the d states in blue. The calculated
spin-polarized band structures are shown in (c¢) for Eu/Gr and in (d) for
Gd/Gr. Calculations were performed without SOC.
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5.1 Electronic properties of rare-earth adatoms on /3 x \/3 graphene

peak. Furthermore, both systems show evidence of d electron occupation, with Gd
having a slightly higher DOS near the Fermi energy, due to its extra d contribution as
discussed previously in Table 5.1. The unequal spin-up and spin-down TDOS reveals
the induced spin-polarization from the large magnetic moments of the RE atoms to
the graphene substrate. This spin-polarization can be observed not only in the re-
gions of the f states but also near the Fermi energy, and can be further analyzed in
the spin-polarized band structures as shown in Figs. 5.4 (¢) and (d), where the blue
bands represent the spin-up channel and the red bands the spin-down channel.

Here, the presence of very flat bands can be observed at ~ =2.5 eV for Eu and ~ 2.3
eV for Gd, which correspond to the occupied and unoccupied 4f states respectively.
Note that the unoccupied 4f states of Eu and the occupied 4 f states of Gd are not
visible in the given energy range. It is evident that the presence of the RE atoms
induces some spin-polarization into the graphene monolayer, with this effect being
more pronounced in Gd compared to Eu due to its larger magnetic moment. The
phenomenon can be evinced by taking approximately the energy difference between
the spin-up and the spin-down bands, which is enhanced in the Gd/Gr case. This
represents a manifestation of exchange splitting that has been generated within the
graphene monolayer as a result of its proximity to magnetic atoms. The v/3 x /3
simulation cell, whose reciprocal lattice is shown in black in Fig. 5.5 along with the
reciprocal space of the 1x 1 unit cell in red, causes the high symmetry points of K and
K’ to fold into the I' point, resulting in the emergence of the Dirac cone at this point.
The symmetry of the v/3xv/3 supercell breaks the sublattice symmetry of graphene by
inducing the hybridization of electrons with different valley indices. This inter-valley
coupling, also known as intervalley scattering, is a well-studied phenomenon in both
theoretical and experimental works [189-192]. The mixing of the two inequivalent K
and K’ points of the primitive graphene at the I" point makes them indistinguishable
and leads to the sublattice symmetry breaking, introducing a difference in the effective

—

Figure 5.5: A visual representation of the reciprocal lattice of the /3 x v/3 supercell
and of the 1 x 1 unit cell of graphene, highlighted in black and red respec-
tively.
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

potential felt by the sublattices of graphene. Consequently, the Dirac cone undergoes
an energy splitting, which shows similarities to a spin-orbit coupling splitting. The size
of the band gap depends on the strength of the intervalley mixing and can be tuned
to allow for the opening of non-trivial gaps, leading to potentially useful electronic
properties in graphene-based devices.

5.1.2 Dy, Ho and Tm on /3 x /3 graphene

The focus now shifts to RE/Gr systems with open 4 f-shells, where correlation effects
are particularly pronounced. The study involved Dy, Ho and Tm adsorbed on Gr,
and as a natural consequence of the large orbital moments of these RE atoms, the
following results have been obtained considering SOC inside of the MT regions. The
outcomes of the study, including the adsorption energies and distances, the d and
f occupation, the spin and orbital magnetic moments and the total spin magnetic
moment of the RE/Gr complex are summarized in Table 5.2. The stability of the
RE/Gr system follows a similar pattern as previously observed for Eu and Gd, with
the H-site being the favored position for the RE atom on the Gr monolayer. This
tendency has been noted in numerous other studies of RE/Gr, such as in references
[182, 193, 194]. Again, the comparison between different adsorption sites reveals that
the stability of the RE/Gr system increases as the RE atom gains more d electrons,

Site Eggs [eV]  do [A] doce Soce mBE(ug]  miEug|  miot|ug]

Dy adatom on graphene
H -0.545 2.493 0.262 9.891 4.040 5.876 4.174
T -0.074 2.741 0.189 9.901 4.024 5.904 4.115
B -0.086 2.695 0.194 9.900 4.033 5.902 4.163
Ho adatom on graphene
H -0.476 2.499 0.250 10.881 3.045 5.905 3.150
T -0.339 2.731 0.177 10.886 3.034 5.925 3.091
B -0.344 2.729 0.177 10.886 3.038 5.922 3.113
Tm adatom on graphene
H -0.399 2.471 0.237 12.867 1.027 3.000 1.072
T -0.280 2.805 0.143 12.878 1.020 2.987 1.043
B -0.286 2.793 0.145 12.878 1.022 2.988 1.048

Table 5.2: Ground state properties for Dy, Ho and Tm on Gr for the three adsorption
sites: adsorption energy in ¢V, adsorption distance in A, d and f occupa-
tion of the magnetic RE atom, spin magnetic moment of the RE atom in
1B, orbital magnetic moment of the RE atom in ug, and total spin mag-
netic moment of the RE/Gr system in ug. Calculations were performed in
presence of SOC.

92



5.1 Electronic properties of rare-earth adatoms on /3 x \/3 graphene

resulting in a decrease in the perpendicular distance between the RE atom and the Gr
monolayer, which is lowest for the H-site. The Dy/Gr complexes with Dy adsorbed
onto T and B sites appear to be unstable, as evidenced by their significantly smaller
adsorption energies, which are an order of magnitude lower than those observed for
the H-site and for the other RE/Gr systems. It is noteworthy that the systems with
open 4 f-shells have a d occupation that is closer to that seen in Eu/Gr, rather than
Gd/Gr, indicating a tendency towards ionic bonding with the Gr monolayer. In gen-
eral, the RE atom undergoes a semiatomic-like behavior, maintaning its orbital and
spin moments as dictated by Hund’s rules and acquiring d electrons from the inter-
action with the substrate.

With regard to the preferred adsorption site, the H-site, the calculation of the d spin-
polarization yields values of 0.04 ug for Dy, 0.03 up for Ho, and 0.01 ug for Tm. This
gradual decline in spin-polarization is a reflection of the decrease in the spin moment
of the f electrons, from Dy to Tm. Additionaly, the m* is inversely proportional
to the f occupation for late-series REs, and exhibits deviation from the f magnetic
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Figure 5.6: Spin-polarized density of states of the d (blue) and f (red) electrons of
(a) Dy (b) Ho and (¢) Tm, on top of graphene. The upper half of the
plots displays the majority states, while the lower panel is relative to the
minority states. The value E — Er = 0 corresponds to the Fermi energy.
(d) DOS of n-doped graphene (shown is the contribution of the MT of
the carbon atoms) in the Ho/Gr system (red) and DOS of bare graphene

(grey).
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moment. This deviation stems from both the intra-atomic f — d spin-polarization,
which increases with the d occupation of the RE and the f magnetic moment, and
the induced spin-polarization from mRF to the IR region, where mostly delocalized
m-orbitals of Gr and d electrons of the RE atom are found. The induced magnetiza-
tion in this region is proportional to the RE’s spin moment, with estimated values of
0.125 pp for Dy/Gr, 0.094 ug for Ho/Gr, and 0.036 pp for Tm/Gr.

In Fig. 5.6 (a) to (c), the spin-resolved DOS for the 5d and 4f electrons of the three
systems reveal the semiatomic-like behavior of the REs, with d occupation appearing
around the Fermi energy. The overall metallic behavior of the RE/Gr systems is
attributed to n-doping from the REs towards the Gr, driven by the hybridization
between d electrons of the RE and p, electrons of Gr. Fig. 5.6 (d) compares the
DOS of the C muffin-tins of Ho/Gr (red) to the total DOS of bare graphene (grey)
to illustrate this n-doping. The energy difference between the Dirac points of the
two cases estimates the magnitude of the n-doping to be around ~ 1.4 ¢V. As for the
4f states, they occupy a large energy window with a gap separating the occupied
and unoccupied states, where the occupied states are close to the Fermi energy. The
localization of these states leads to values of spin and orbital moments adhering
closely to Hund’s rules, as presented in Table 5.2. The aforementioned characteristics,
including f-localization, spin-polarization, and doping effects, are also visible in the
band structures illustrated in Appendix B, where the contributions of the RE atoms
and C atoms are separated and displayed in the left and right, respectively, for each
RE/Gr system.

5.1.3 Overview: trends with 4f-filling

Figure 5.7 shows the variation of the adsorption energy (E,4s) and distance (dy), as
well as the properties at equilibrium distance, presented in tables 5.1 and 5.2, with
respect to the RE atom, i.e., the 4f occupancy. An examination of E,4, in relation to
doce indicates that the bonding between the RE atoms and Gr is stronger with higher
5d occupancy in the valence shell. While Gd exhibits the strongest bonding towards
Gr due to the presence of higher 5d occupancy in the valence shell, the behavior of
Fu, Dy, Ho, and Tm is comparable, exhibiting a slight decrease in d,.. along the
series, which corresponds to a declining E,g4,, reflecting the more ionic character of
the interaction with the substrate. In terms of the perpendicular equilibrium distance
dp, the exceptional strength of Gd’s bonding to the substrate manifests itself in its
closest proximity. Conversely, the decreasing trend observed from Eu to Tm can be
attributed to the lanthanide contraction, whereby the decreasing atomic radii of the
rare-earth metals leads to a decrease in the equilibrium distance to enable adsorption
onto Gr. Ultimately, the 4f orbital filling increases along the series, resulting in an
inverse relationship with the RE spin magnetic moment according to Hund’s rules.
As a result, the total magnetic moment of the RE/Gr complex follows the same
trend as mPF, but it is slightly shifted towards higher values due to the induced
spin-polarization from the 4 f magnetic moment.
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Systematic trends
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Figure 5.7: Systematic trends of Eu, Gd, Dy, Ho and Tm upon adsorption on
graphene in the H-site.
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

5.2 Magnetic anisotropy of rare-earth adatoms on /3 x /3
graphene

To calculate the energy required for magnetization rotation, i.e. the MAE, it is essen-
tial to incorporate spin-orbit coupling in all calculations. This is because the rotation
of magnetization results in a corresponding rotation of the orbital magnetic moment,
which alters the alignment of the 4f charge cloud in the RE and causes it to in-
teract differently with the surrounding crystal field. To determine the out-of-plane
MAE;, the total energy of the systems is computed self-consistently by incrementally
rotating the magnetization, in steps of 10°, from the z-axis to the z-axis. Similarly,
to determine the in-plane MAE, the magnetization is rotated from the z-axis to the
y-axis. By fitting the curves obtained with Eq. 2.20 for a hexagonal symmetry, where
0 represents the polar angle relative to the out-of-plane rotation and ¢ represents
the azimuthal angle describing the in-plane rotation, the anisotropy constants K; are
evaluated.

In Fig. 5.8, the MAE curves for Eu/Gr and Gd/Gr are displayed, showing blue points
for DFT+U calculations and a red curve for fitting. The energy values for all data
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Figure 5.8: MAE out-of-plane curves for Eu/Gr (a) and Gd/Gr (b) and respective
polar plots.
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points are scaled so that the minimum energy value is zero. Additionally, each curve
is accompanied by a polar plot as an alternative representation.

It is evident that both systems exhibit low-order anisotropy, as confirmed by fitting
the Eu/Gr curve with K; and Kj, and that of Gd/Gr with K. The values of these
constants, provided in Tab. 5.3, reveal that K; is the dominant term. Additionally,
the Eu/Gr system presents an in-plane easy-axis, where the magnetic ground state
corresponds to the magnetization at 6 = 90°, related to a K; < 0.

In contrast, the Gd/Gr system is distinguished by an out-of-plane easy-axis, with the
energy minimum located at 6 = 0° and K; > 0. Upon comparing the energy scales, it is
evident that the MAE in Eu/Gr is one order of magnitude lower than that of Gd/Gr.
This discrepancy is attributed to the additional 5d electron present in Gd, which hy-
bridizes with the CF and generates supplementary contributions to the MAE, apart
from the 4f effect. Moreover, as previously observed, the bonding between Gd and
Gr involves the 5d electron, causing Gd to approach the CF more closely than Eu,
resulting also in a stronger 4 f-CF interaction.

The estimated energy required to switch the magnetization from the easy-axis to the
hard-axis (perpendicular for Eu and in-plane for Gd) are AE ~ 0.06 meV and AFE ~ 0.7
meV for Eu/Gr and Gd/Gr, respectively, where AE = |E| — E,|. This difference in
the MAE is also reflected in the values of K, which are larger for Gd/Gr than for
Eu/Gr, indicating a larger first-order magnetic anisotropy.

Fig. 5.9 provides an analysis of the magnetic anisotropy in open 4 f-shell systems. The
figure includes out-of-plane curves in panels (a)-(c) and corresponding polar plots for
an alternate representation, as well as in-plane MAE curves in panels (d)-(f). The red
lines show the fitted curves used to extract the anisotropy constants K;, which are
presented in Tab. 5.3. Compared to Eu and Gd, the open 4 f-shell systems exhibit a
significant anisotropic nature, requiring all four K; terms in the energy expansion to
describe the MAE curves. The in-plane MAE curves reflect the six-fold symmetry of
the Gr substrate, which causes the energy to repeat as E(y) = F(¢ +7/3). Hence,
the shape of these curves is fitted with K sin 6p, where the amplitude and sign of the
oscillations depend on the K, values.

By inspecting Table 5.3, the first-order constants (K and K») are approximately one
order of magnitude greater than K3, while the in-plane constants (K4) contribute
the least, being two orders of magnitude weaker than the first orders. Nonetheless,
Tm/Gr displays a deviation from the general trend, as K3 and K, exhibit similar
magnitudes. The magnetic anisotropy of Dy/Gr is illustrated in Fig. 5.9 (a) and (d),
which indicates a preference for an in-plane (6, = 90°, ©min = 0°) easy-axis.
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

The energy difference from the perpendicular magnetization direction is is estimated
to be approximately AF =2 meV, whereas the energy barrier for the magnetization
switching from the easy-axis to the 6 = 0° direction is calculated to be as high as
5.3 meV. Referring to the MAE curves of Ho/Gr, an intermediate easy-axis at angles
(Omin = 42.67°, ©min = 30°) is observed, which results in a canted magnetization di-
rection. The energy difference between the perpendicular and parallel magnetization
directions, AFE, is about 2 meV, whereas the energy required for complete alignment of
magnetization with the perpendicular and in-plane directions is approximately 6 meV
and 8 meV, respectively. The out-of-plane curve of Tm/Gr exhibits a similar shape to
that of Ho/Gr, and an absolute energy minimum observed at a tilted magnetization
angle of (Omin = 39.08°, @min = 0°). The energy difference AFE is approximately 3.8
meV, and the energy required to align the magnetization along the perpendicular and
in-plane directions are 2.64 meV and 6.22 meV, respectively.

The values of (0min, ©min) that correspond to the absolute energy minima mentioned
earlier are determined by minimizing the energy functions that contain all terms
up to Ky, using the extracted K; parameters. The complete 3D energy surfaces,
representing for each system the function E(6, ), can be visualized in Fig. 5.10 and
the respective absolute minimum coordinates are listed in Table 5.4. The curvature

Unit K, K, K3 Ky
Eu adatom on graphene
meV -0.101 0.040 - -
K -1.172 0.464 - -
Gd adatom on graphene
meV 0.683 - - -
K 7.926 - - -
Dy adatom on graphene
meV 15.355 -18.918 1.536 -0.441
K 178.187 -219.534 17.825 -5.118
Ho adatom on graphene
meV -27.734 32.218 -2.591 0.360
K -321.840 373.875 -30.067 4.178
Tm adatom on graphene
meV -13.285 16.720 0.146 —-0.158
K —-154.166 194.028 1.694 -1.834

Table 5.3: Magnetic anisotropy constants obtained via fitting of DFT+U data de-
picted in Fig. 5.8 for Eu and Gd and Fig. 5.9 for Dy, Ho and Tm. The
values are reported in meV and K.
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Figure 5.9: Out-of-plane magnetic anisotropy energy curves for Dy (a), Ho (b) and
Tm (c) on graphene: the total energy is plotted against the angle between
the perpendicular magnetization and the tested magnetization direction.
An alternative representation of the DFT+U data in a polar plot for the
computed systems is given besides. In-plane magnetic anisotropy energy
curves for Dy (d), Ho (e) and Tm (f) on graphene: the total energy
is plotted against the angle between the z-axis and the tested in-plane
magnetization direction. Full dots indicate the DFT+U data, while the

full lines display the fitting curves.

of the E(0, p) landscapes can be accounted for in terms of the magnetic anisotropy
constants K;. The relationships between the constants and the curvature can be
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Figure 5.10: 3D MAE surfaces: the total energy is plotted as a function of the angular
coordinates (6, ¢) adopting the fitted K; values.
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derived by first finding the zeros of 85;”7 which occur at 6 = 0°,90° and for sin?6 =

-K1/2K>. By examining the second derivative of the energy equation, disregarding
K3 and K4, the following relationships can be established:

1.
0*Eqp,

06?

lo=00 = 211 (5.2)

leading to a convex behavior for K7 > 0 (Dy) and concave behavior for K; <0
(Ho and Tm).

0?Ean
7|9=900 = —2K1 - 4K2 (53)

00?
giving rise to a convex behavior for Dy and concave behavior for Ho and Tm.
82Ean 2K2 + Kl
WL“‘Z 9=’2KTI2 = —2K1 (T) (54)

The term in parenthesis is positive for all RE/Gr complexes, indicating that the
curvature is solely determined by K;. This defines an energy hill if K; >0 (Dy)
and an energy valley if K; <0 (Ho and Tm).

Omin Pmin
Dy/Gr 90° 0° £ n-60°
Ho/Gr 42.67° 30° £ n - 60°
Tm/Gr 39.08° 0° +mn - 60°

Table 5.4: Polar (f) and azimuthal (¢) angular coordinates corresponding to the
ground state magnetization direction (easy-axis) for each open 4 f-shell sys-
tem. The variable n appearing in ¢,,;, is an integer number, n =0, 1,2, 3...
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Figure 5.11: Magnetization densities of the RE/Gr systems, calculated as ny—n,. The
plots are to scale and with varying isosurface values for visualization.
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Regarding the in-plane MAE curves, it is noteworthy that Dy and Tm exhibit the
same negative sign of the fourth-order anisotropy constant (K,), which manifests as
energy minima at 0° with a periodicity of 60°. In contrast, Ho displays a positive
K, sign, leading to energy minima at 30° with the same periodicity. Furthermore,
the magnitude of the oscillations is directly proportional to the absolute value of Ky,
with Dy displaying the largest value, followed by Ho and Tm.

When comparing half-filled 4 f-shells with open 4 f-shells, it becomes apparent that
there are significant differences in the energies associated with magnetic anisotropy.

101



5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

Specifically, in Eu/Gr and Gd/Gr, much lower energies are required to rotate the
magnetization, and the anisotropies follow a simpler lower-order trend. In contrast,
open 4f systems exhibit larger energy scales and more complex trends due to the
non-spherical nature of the 4f charge cloud. By examining the magnetization densi-
ties, which were obtained by subtracting the spin-up and spin-down charge densities
and are illustrated in Fig. 5.11, one can qualitatively discern a difference between
half-filled 4 f-shells and open 4f-shells. Specifically, the magnetization density of
half-filled 4 f-shells appears nearly spherical due to the cancellation of angular mo-
mentum, whereas that of open 4 f-shells exhibits a non-spherical shape, indicating an
anisotropic distribution in space.

5.2.1 Reverse-engineering of the crystal field parameters

After computing the magnetic anisotropy constants via fitting of ab initio DFT+U
calculations, it is possible to reverse-engineer the CFP as described in Eq. 2.37 follow-
ing the recipe given in Eq. 2.57, i.e. as linear combinations of the K; values. These
parameters where calculated at equilibrium distance from the Gr monolayer for the
highly-anisotropic open 4f-shell REs systems and are tabulated in Table 5.5. The
CFP values were determined using Hund’s rules to obtain the ground state J value,
which is J = 8 for Dy, J = 15/2 for Ho, and J = 7/2 for Tm. Tables reporting the
respective CFP in the standard convention A" = C"/oy and in the Waybourne con-
vention B/" = C/"/cy8" are provided in Appendix B.2. The CFP values enable access
to the matrix elements of the CF Hamiltonian #g, for each J value, as reported in
[67]. By diagonalizing the CF matrix, the eigenstates and eigenvalues of Hg, can be
obtained, which form the magnetic multiplet spectrum of the RE/Gr system being
studied. The results for Dy/Gr, Ho/Gr and Tm/Gr are displayed in Fig. 5.12. Each
plot features grey lines that identify the possible J, values ranging from -J to +J

Unit

Dy adatom on graphene

meV 0.025 -1.717-10~ -7.381-1078 -4.895-1076

K 0.290 -1.992-1073 -8.565 - 107 -5.680-1075
Ho adatom on graphene

meV -0.039 3.904-10-4 1.992-1077 6.394-106

K -0.451 4.530-1073 2.312-10°6 7.419-107°
Tm adatom on graphene

meV -0.190 9.229-10-3 -8.026- 1076 -2.006-1073

K -2.205 0.107 -9.314-1073 -2.327-1072

Table 5.5: Crystal field parameters obtained via reverse-engineering from the mag-
netic anisotropy constants K;. The values are reported in meV and K.
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in steps of 1. States sharing the same color correspond to mixtures of states that
differ by AJ, = +6,+12, and are subject to deviations from the pure state (J.) value,
depending on the strength of the mixing operator Of.

For Dy/Gr with J =8 (Fig. 5.12 (a)), the C§ parameter gives rise to a single ground
state at (J,) = 0, but the non-monotonic behavior of the spectrum can be attributed
to the higher contributions. Specifically, the C¢ parameter, generates linear combi-
nations of the states:

|[J.==8),[J: = =2),|]. = 4)

. = =7), | = =1), |2 = 5)

|J: = =6) | = 0),|J. = 6)

|J. = =5),|J. = 1),|1. = 7)

| J.==4) | ). =2),|J. = 8)
[ = =3),|J2 = 3).

Of note are the mixtures of (|J, = -6}, |J, = 0),]J, = 6)) in orange (the state at ~ 8 meV
corresponds to a doublet) and (|J, = -3),|.J, = 3)) in red, which appear at quenched
(J,) value. Generally speaking, these kind of states can give rise to spin-flipping
events via quantum tunneling, which are prevented in this case by the non-degenerate
magnetic ground state. In terms of symmetry representations, there are six sets of
double-degenerate states belonging to the I's and I'g representations (see Tab. A.2).
Additionally, there are five non-degenerate states located at (J,) = 0 and belonging
to the representations I';, where i = 1,2, 3,4.

Upon comparing the CFP of Dy/Gr in A" notation with those in Ref. [117], where
similar orbital and spin magnetic moments were obtained for Dy/Gr/Ir(111) within
the DFT+Hubbard-I framework, a good agreement is observed for the largest coeffi-
cients, i.e., (A9, A}) = (-11.287,5.156) meV. However, some deviations were noticed
in the smaller contributions, (Ag7 A8) = (0.057,3.765) meV.

In the case of the half-integer spin systems Ho/Gr (Fig. 5.12 (b)) and Tm/Gr (Fig. 5.12
(¢)), Kramers degeneracy determines a double degeneracy of the states such that no
mixtures at (J,) = 0 can form. According to the orthogonality theorem, Ho/Gr
presents three sets of double-degenerate states belonging to I'7, three to I'g and two
to I's (character table listed in Tab. A.1), while in the case of Tm/Gr the hexagonal
field induces a splitting of one I'; set, one I'g set and two sets of I'g, all double-
degenerate (character table in Tab. A.1). This implies that these systems are are
not subject to spin-reversal through tunnel-split doublets, and in absence of external
perturbations, the system has to overcome the whole energy barrier spanning from
one ground state to the other in order to undergo a spin-flip event. Nevertheless,
the spin reversal can occur through alternative phenomena, such as scattering with
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

phonons and electrons at finite temperatures. For Ho/Gr the lowest lying states
appear at ~ (J,) = £11/2, while for Tm/Gr at ~ (J,) = +5/2, and again the actual
expectation value deviates because of the presence of a finite transverse term. In the
case of Ho/Gr, the energy barrier separating the two ground states is substantial,
approximately ~ 14 meV, which corresponds to an activation barrier of U= 162 K in
the expression for the relaxation time 7 oc eV/487 where kg is the Boltzmann constant
and T the temperature. However, interactions with substrate phonons can establish
a connection between these two states and the closest accessible states via thermal
excitation. Specifically, these accessible states are characterized by (J,) = +13/2 and
are positioned at an energy gap of roughly AF ~ 1.8 meV (21 K), from which assisted
quantum tunneling is possible. Shifting focus to the Tm/Gr system, the doubly
degenerate ground states possess an expectation value of (.J,) ~ £5/2. Overcoming
the entire energy barrier separating these ground states would require an energy
of 209 K (equivalent to 18 meV). Furthermore, there exists an energy gap of 95 K
(approximately ~ 8.2 meV) to the first excited state at (.J,) = £3/2, which is inherently
protected against quantum tunneling. From these arguments it can be concluded that
among the two systems studied with out-of-plane anisotropy, Tm/Gr is probably the
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Figure 5.12: Multiplet splitting of (a) Dy/Gr, (b) Ho/Gr and (¢) Tm/Gr, adopt-
ing the CFP values obtained from reverse-engineering via the magnetic
anisotropy constants. States in the same color correspond to linear com-
binations of |J,) differing by AJ, = 6, +12.
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most stable with respect to magnetization reversal. In general, it can be observed
how the quantum framework qualitatively aligns with the classical magnetization
rotation. Upon rotation of the magnetic spin moment in the RE atom, the orbital
moment follows due to spin-orbit coupling. In the LSJ coupling picture, this induces
a rotation of the total angular momentum J, thus the projection J, assumes different
values with different energies. Additional investigations are detailed in Appendix B.3,
where phase diagrams were created for J = 7/2, 8, 15/2 to identify the magnetic
ground state within a specific range of CFP values for C§ and C§.

5.2.2 Magnetoelastic coupling

The correlation between the geometric characteristics of the 4f charge distribution
and the magnetic anisotropy energy implies that strain can be utilized to induce
modifications in the magnetic anisotropy of RE/Gr systems. The application of ex-
ternal pressure leads to the displacement of atoms in the crystal structure, causing
a rearrangement of the charge density. In the presence of spin-orbit coupling, this
displacement can induce a rotation of the spin magnetic moment, resulting in new
magnetic properties. The mechanical deformation in Fig. 5.14 is modeled by mod-
ifying the perpendicular distance between the RE adatom and the Gr monolayer.
Three distances are considered, including a compressed state, where the distance is
d/dy = 0.96 (-4% strain), the equilibrium distance with d/dp = 1.0 (no induced strain),
and a stretched state where d/dy = 1.04 (+4% strain). From an experimental perspec-
tive, this shift in distance can be achieved, for instance, by modifying the chemical
reactivity or the charge state of the graphene sheet through intercalation of dopands
between graphene and the substrate [195-197].

stretching

compression

Figure 5.13: Illustration of the set-up used to simulate a mechanical strain perpen-
dicular to the plane of a graphene substrate. Note that distances in this
illustration are provided for conceptual purposes only.
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Figure 5.14: MAE curves (out-of-plane and in-plane) for different distances, namely d/dy = 0.96,1.0,1.04 (blue, green and red
respectively) of the rare earth adatoms from the graphene monolayer. (a) and (d) correspond to the out-of-plane
and in-plane curves of Dy/Gr; (b) and (e) correspond to the out-of-plane and in-plane curves of Ho/Gr; (c) and
(f) correspond to the out-of-plane and in-plane curves of Tm/Gr. For each system, the last column (Figures
(g)-(i)) shows the respective magnetic anisotropy constants K; (i = 1,2,3,4) obtained via the fitting of the
MAE curves. Specifically, (g) shows the K; for Dy/Gr, (h) for Ho/Gr and (i) for Tm/Gr. Points correspond to
DFT+U data while lines to the fitting curves.
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5.2 Magnetic anisotropy of rare-earth adatoms on \/3 x \/3 graphene

For each of the three distances and systems, the MAE curves for both the out-of-plane
(Figures (a)-(c) in Fig. 5.14) and in-plane (Figures (d)-(f) in Fig. 5.14) directions are
obtained through total energy self-consistent calculations (represented by points), and
then fitted with Eq. 2.20 (represented by lines). The results for Dy/Gr are shown in
the first row (Figures (a) and (d)), Ho/Gr in the second row (Figures (b) and (e)), and
Tm/Gr in the last row (Figures (c) and (f)). The magnetic anisotropy constants as a
function of induced strain for each RE/Gr complex are presented in the last column
of each row (Figs. 5.14 (g)-(i)). Given the significant impact of the 4f charge cloud
shape, notable effects are expected in systems possessing non-zero orbital angular
momentum. Accordingly, the following discussion is focused on Dy/Gr, Ho/Gr, and
Tm/Gr systems.

When analyzing the out-of-plane curves, it is observed that the magnitude of the
MAE grows as the adatom approaches the substrate. This behavior is attributed to
the stronger crystal field that the impurity experiences as it gets closer to the sub-
strate. The absolute values of the anisotropy constants K;, which are fitted to the
total energy points up to K3, exhibit a linear increase as the distance decreases. The
presence of the three contributions leads to anisotropic energy curves with canted
easy-axis in the case of Ho/Gr and Tm/Gr. When comparing the values among the
systems, K; takes positive values for all distances in Dy/Gr, while it is negative for
Ho/Gr and Tm/Gr. This is consistent with the hills/valleys generated in the curves,
with the energy hill becoming steeper for Dy/Gr with smaller distances, and the en-
ergy valley becoming more pronounced for Ho/Gr and Tm/Gr. Regarding K>, the
sign is opposite in Dy/Gr compared to Ho/Gr and Tm/Gr, and the absolute value
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Figure 5.15: (a) |Ky| of Tm/Gr for distances ranging from d/dy = 0.96 to d/dy =
1.08 from the graphene sheet i.e. from -4% to +8% of perpendicular
strain. (b) In-plane MAE curves calculated with DET+U for different
perpendicular strains of Tm on Gr.
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

is slightly larger than that of K in all systems. A similar analysis is applicable to
K3, where the main difference lies in the magnitude, which is 6.821 meV for Dy/Gr
compared to —3.434 meV for Ho/Gr and -1.032 meV for Tm/Gr at d/dy = 0.96. While
Ho/Gr and Tm/Gr maintain a canted easy-axis with the minimum slightly shifting
towards larger 6 values with compression, Dy/Gr undergoes a significant change in
the easy-axis from in-plane at d/dy = 1.0,1.04 to out-of-plane at d/dy = 0.96.

Moving to the in-plane curves, Fig. 5.9 shows a periodic trend with a periodicity
of 60°. The amplitudes of the sin6yp behavior are controlled by the constant Ky,
and they increase as the adatom is moved closer to Gr. However, a deviation from
this trend is observed for Tm/Gr, where the modulus of K is slightly stronger for
d/dy = 1.04 compared to d/dy = 1.0.To gain insight into this behavior, the absolute
value of K, was evaluated for several other strains, as shown in Fig. 5.15. The results
reveal a non-linear trend, with the value increasing from d/dy = 1.08 to d/dy = 1.03
before reaching a maximum. Then, from d/dy = 1.03 to d/dy = 1.0, |Ky4| decreases
before increasing again at higher compressions. The values shown in Fig. 5.15 for K,
were obtained by first calculating the in-plane MAE curves for each of the strains, and
then fitting them using the method described earlier. The following tables present the
reversed-engineered CFP C™ for the strain values of d/dy = 0.96,1.04 in conjunction
with the corresponding K; values for Dy/Gr (blue tables), Ho/Gr (grey tables), and
Tm/Gr (red tables).

d/dy =0.96
Unit
meV 31.243 -36.872 6.821 -0.583
K 362.560 —427.882 79.154 —-6.765
meV 0.017 -2.691-10~* -3.278 1077 -6.471-1076
K 0.197 -3.123-1073 -3.804-1076 -7.510-107°
d/dy=1.04
Unit K, K, K3 K,
meV 4.345 -7.719 -1.539 -0.332
K 50.422 -89.575 —-17.859 -3.853
Unit
meV 0.035 -1.071-10~ 7.395-10°8 -1.866 - 106
K 0.406 -1.243-1073 8.582-107 -2.165-10°

Table 5.6: Dy/Gr: Magnetic anisotropy constants and crystal field parameters at
d/dy =0.96 and d/dy = 1.04. The values are reported in meV and K.
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Ky

d/dy = 0.96

-3.434

meV ~43.329 47.289 0.500
K ~502.812 548.766 -39.850 5.802
meV ~0.043 5.815- 10 2.640- 107 8.88-10°6
K -0.450 6.748 - 107 3.064 - 10-6 1.030- 104
dfdy = 1.04
meV ~13.005 16.497 0.486 0.250
K ~150.917 191.440 5.640 2.901
meV ~0.041 2.413-104 ~3.737-10°8 4.440- 106
K -0.476 2.800- 10~ ~4.337-10°7 5152107

Table 5.7: Ho/Gr: Magnetic anisotropy constants and crystal field parameters at
d/dy=0.96 and d/dy = 1.04. The values are reported in meV and K.

d/dy =0.96
Unit K, K, K3 Ky
meV -23.109 24.977 -1.032 -0.221
K —-268.169 289.846 -11.976 —-2.565
meV -0.135 1.267-1072 5.673-107° 2.806-10-3
K -1.567 0.147 6.583- 1074 0.033
d/dy =1.04

[\2

10.204
118.413

1.244

14.436

-0.168
-1.950

meV -3.260
K -37.831
meV -0.312
K -3.621

6.661 - 1073
0.077

-6.838-107°
-7.935-10~

-2.133-1073
-0.025

Table 5.8: Tm/Gr: Magnetic anisotropy constants and crystal field parameters at
d/dy =0.96 and d/dy = 1.04. The values are reported in meV and K.
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Figure 5.16: This figure depicts the magnetic anisotropy energy as a function of the
distance between the RE element and the graphene layer. Gd and Eu
are also shown for comparison. The calculation was performed using
DFT+U. The energy difference between the parallel and perpendicular
energy components (Ej - E,) is plotted on the y-axis.

To further analyze the behavior of each RE/Gr system, the change in AE = Ey - E,
as a function of strain has been investigated. The range of values was scanned from
d/dy =0.90 to d/dy = 1.04 with a step of 0.01, and the results are presented in Fig. 5.16.
Positive values of AE indicate a favored out-of-plane magnetization (along the z-axis),
while negative values correspond to an in-plane (2-axis) magnetization.

Ho/Gr and Tm/Gr exhibit similar trends where the magnetic anisotropy energy, AFE,
decreases gradually as the adatom approaches the graphene sheet from larger dis-
tances until it reaches a minimum, and then increases again for stronger compressions.
The distinguishing factor between the two systems is the location of the minimum
value, which is shifted towards smaller relative distances, d/dy, for Tm/Gr. Addi-
tionally, Tm/Gr experiences a sign change in AF in a narrow range of strain when
highly compressed, ultimately favoring an in-plane magnetization. The variable mag-
netic behavior observed in these systems under external induced strain could have
potential applications in the design of magneto-mechanical nano devices that rely on
pressure-induced magnetization transitions [198-200]. In contrast, Dy/Gr exhibits a
distinct behavior, where the trend appears linear, with AFE starting from negative
values at d/dy = 1.04 and increasing towards positive values upon compression. As a
result, there is a transition in the preferred direction of magnetization from in-plane
under large tensile strains to out-of-plane under compressive strains, with the transi-
tion occurring in the range of d/dy = 0.98 to d/dy = 0.97. The figure also depicts the

110
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Table 5.9: Dissociation energy D, , the b parameter and the equilibrium distance d,
obtained by fitting with Eq. 5.5 the curves in Fig. 5.17. The parameters
are listed for each RE/Gr complex and magnetization direction.

M direction D, [eV] b [1/bohr] dy [A]
Dy adatom on graphene

perpendicular 0.833 3.482 2.481

parallel 0.861 3.369 2.491
Ho adatom on graphene

perpendicular 1.179 2.762 2.479

parallel 0.731 3.587 2.472
Tm adatom on graphene

perpendicular 0.311 4.696 2.449

parallel 0.398 4.467 2.436

trend for Eu/Gr and Gd/Gr, which lack magnetoelastic behavior due to the half-filled
4 f-shell. Consequently, as compared to open 4 f-shells, AF remains nearly constant
and close to zero.

Fig. 5.17 illustrates the total energy curves of each RE/Gr system as a function of
strain, for both parallel and perpendicular magnetization directions. The curves have
been vertically shifted to set the lowest energy to 0 eV and are limited to a small range
of strains around the equilibrium distances. The DFT+U calculations are represented
by dotted points, while the continuous lines correspond to the fitting using a Morse
anharmonic potential in the form [201, 202]

V(r) = D, (1-¢b(d-d)? (5.5)

The equation utilized to carry out the fitting involves several parameters. Specifically,
D, refers to the potential’s depth relative to the dissociation energy, while d denotes
the distance between the RE and Gr, and dy represents the equilibrium distance.
Additionally, the parameter b is utilized to determine the width of the potential well.

The values of these parameters are listed in Table 5.9. Notably, the anharmonic po-
tential exhibits a dependence on the magnetization direction, which is apparent from
the diverse characteristics of the potential well. In terms of the equilibrium distances,
the influence of magnetostriction is evident in the differences of approximately 0.01
A when comparing the perpendicular magnetization direction to the in-plane direc-
tion. By treating the RE/Gr complex as a diatomic molecule, it is possible to model
the vibrational modes close to the energy minima in the ground state potential well
and determine the stiffness against deformation and vibrational frequencies. The
force constant at equilibrium distance, k., can be evaluated from the fitted values as
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5 Electronic and magnetic properties of 4 f-adatoms on a graphene monolayer

ke = 20D, and the respective vibrational frequency can then be calculated using the
equation:
1 /K
v=—y/—. (5.6)
2\ p
The reduced mass of the RE/Gr complex, denoted as p, is calculated using the equa-
tion p = (mmc,#7 where mgg represents the atomic mass of the RE atom, and mq,
Gr+MRE) . . . .
represents the mass of the graphene in the simulation cell. For instance, Dy has an
atomic mass of 162.5 amu, Ho has an atomic mass of 164.93 amu, and Tm has an
atomic mass of 168.93 amu. The simulation cell consists of six carbon atoms with a
total mass of 72.066 amu. The reduced mass is then converted to Kg using the con-
version factor 1.6605-10727, and the force constant k., initially measured in eV /bohr?,

is converted to N/m by multiplying the values by %.

In this way, the vibrational frequencies can be obtained in units of s~!, providing im-
portant information on the mechanical and dynamic properties of the RE/Gr system.
Table 5.10 presents the computed values of k. and v for each system and magne-
tization direction. It can be observed that the vibrational properties exhibit slight
variations depending on the magnetization direction. An out-of-plane magnetization
in Dy/Gr yields higher k. and v values, indicating greater resistance to deformation
when perpendicularly magnetized. In contrast, Ho/Gr and Tm/Gr exhibit larger k.
and v values for an in-plane magnetization. Among the examined materials, Tm/Gr
has the lowest force constants and vibrational frequencies, indicating weaker bond-
ing towards the substrate and greater malleability compared to the other systems.
Specifically, the force constant values follow the trend k.(Dy) > k.(Ho) > k.(Tm),
reflecting the adsorption energies and d occupations.

Taking into account the magnetic bistability observed in the multiplet spectra of
Ho/Gr and Tm/Gr (Fig. 5.12), there exists a separation between the two ground
states with energy gaps of approximately AE ~ 14 meV and AFE ~ 18 meV, respec-
tively. When converting the vibrational frequencies of the rare-earth atoms’ modes
into vibrational energies, values ranging from hv = 60-70 meV are obtained. This im-
plies that magnetization reversal due to adatom vibrations, which would necessitate
AF = hv, is unlikely.

Dy/Gr 1155.54 1118.13 1.879 1.848
Ho/Gr 1029.05 1076.14 1.769 1.809
Tm/Gr 784.72 908.63 1.539 1.656

Table 5.10: Elastic force constants k. (N/m) and the respective vibration frequencies
v (s71) calculated with perpendicular and parallel magnetization for each
RE/Gr system.
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Figure 5.17: Total energy curves for each system as a function of d/dy, ranging from
0.90 to 1.04, with perpendicular and in-plane magnetization directions.
The blue dots represent the DFT+U data, while the red continuous lines
are the fitting functions obtained with Eq. 5.5. The parameters D,, b,
and the precise equilibrium distance dy are determined from each fitting.
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5.2.3 How is the MAE affected by the Hubbard U?

This section investigates the influence of the Hubbard U parameter on the out-of-
plane magnetic anisotropy energy curves. The total energy curves as a function of 6
are studied for three distinct U values in each system. One value is consistent with
the previous analyses (approximately 7 €V), while the other two differ by 2 eV, with
one being smaller and the other larger.

Figs. 5.18, 5.19, and 5.20 present the results for Dy/Gr, Ho/Gr, and Tm/Gr, respec-
tively, along with the spin-polarized 4f and 5d DOS for each U value (in red and
blue, respectively). Additionally, Gd/Gr is included as a half-filled 4 representative
in Fig. 5.21. The blue curves correspond to the values used throughout this study,
while the red and green curves represent the results obtained using smaller and larger
U values, respectively.

Overall, it can be observed that as the Hubbard U parameter decreases, the 4 f states
(depicted in red in the spin-resolved DOS) move closer to the Fermi energy. As a
result, they are more exposed to other high-energy valence states and interact more
strongly with the environment, generating larger MA effects. This trend is exempli-
fied by the Dy/Gr system, where the red curve corresponding to U = 5 €V reaches
higher energy values than for higher U values.

In the case of Ho/Gr and Tm/Gr, the shift of the 4f states is even causing them
to lie on the Fermi energy, indicating metallic behavior. Therefore, the MAE curves
obtained with small U values are not reliable and larger values must be used.

For U ~ 9, the MAE curves have similar energy scales to the U ~ 7 case. Additionally,
for Dy/Gr, the minima and maximum are close to the U = 7 eV value, and for Ho/Gr
and Tm/Gr, the canted easy-axis is also obtained with a larger Coulomb parameter.
Thus, it can be concluded that values of U ~ 7 ¢V are sufficient to obtain the electronic
and magnetic properties of 4 f-atoms quantitatively and qualitatively.

Fig. 5.21 illustrates the situation of the half-filled 4 f-shell of Gd. The choice of the
U value does not significantly affect the MAE in this case. This can be attributed to
the fact that the occupied 4f states are located deep in energy away from the Fermi
energy in all cases. Therefore, the MAE primarily arises from the 5d occupation,
which is always spin-polarized due to the large 4f magnetic moment.
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Figure 5.18: Dy/Gr: dependence of the out-of-plane MAE curve and spin-polarized

DOS on the Hubbard U value. The red curve corresponds to U =5 eV,
the blue curve to U =7 eV, and the green curve to U =9 eV.
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Figure 5.19: Ho/Gr: Dependence of the out-of-plane MAE curve and spin-polarized
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Figure 5.21: Gd/Gr: Dependence of the out-of-plane MAE curve and spin-polarized
DOS on the Hubbard U values. The red curve corresponds to U = 4.7
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5.3 The case of Dy deviating from Hund’s rules

In the sections discussed earlier, all systems displayed a Hund’s rule 4f occupation.
However, upon further analysis, it was found that in the case of Dy/Gr, a 4f10 oc-
cupation can result in a distinct orbital occupation. Specifically, one majority spin
electron migrates from the m; = 1 orbital to the m; = 0 orbital, resulting in the quench-
ing of the orbital moment of Dy to m; =5 ug. This phenomenon can be attributed to
the competition between the crystal field effects and the Hund’s exchange interaction,
leading to an orbital rearrangement.

Table 5.11 shows that the overall 4f occupation remains around 10 electrons with
a spin magnetic moment of 4.033 up, which is similar to Hund’s rules. However,
the orbital magnetic moment is reduced to 4.903 pp, which breaks Hund’s second
rule of maximizing the total orbital angular momentum. Consequently, the total
angular momentum of Dy/Gr is J = 7 instead of J = 8 as per the Hund’s rules.
Specifically, the energy difference calculated between the two observed magnetic states
is 0.28 €V in favor of the J = 7 situation. To examine the impact of this orbital
rearrangement on the magnetic properties, the out-of-plane and in-plane magnetic
anisotropy curves were evaluated in the J = 7 configuration and are depicted in
Fig. 5.22. The anisotropic behavior deviates from the J = 8 case (as seen in Fig. 5.9)
due to the altered geometrical shape of the 4f charge when one 4 f electron is moved
to the m; = 0 orbital. This difference can be visualized in Fig. 5.23. Upon examination
of Fig. 5.22, it can be observed that the out-of-plane curve demonstrates a minimum
at a canted angle of 6 = 51.82° and displays significant deviations from the J = 8 state
as the system moves from 0° to 90°. While the J = 8 state presented an energy hill,
the J =7 state exhibits an energy valley. This phenomenon can be attributed to the
magnetic anisotropy constants, which are compared in Table 5.12 for both magnetic
states.

The in-plane magnetic anisotropy energy curve exhibits a notable increase in en-
ergy, comparable in magnitude to the out-of-plane curve, and represents the largest
in-plane anisotropy among the studied systems. This enhanced contribution in the
in-plane direction can be attributed to the significant value of Ky, which induces a
notable shift in the energy minimum from the pure out-of-plane value. Specifically,

doce Joce mBE[ug] mEE|ug) met|ug]
0.260 9.898 4.033 4.903 4.168

Table 5.11: Ground state properties for Dy with orbital moment ~ 5 ug (J =7) on top
of Gr in the H-site: d and f occupation of the magnetic RE atom, spin
magnetic moment of the RE atom in ug, orbital magnetic moment of the
RE atom in up, and total spin magnetic moment of the RE/Gr system in
pp. Calculations have been performed in presence of SOC.
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Table 5.12: Dy/Gr: Magnetic anisotropy constants for the J = 7 and J = 8 magnetic
states. The values are reported in meV.

[XV;;
J=7 -14.29 13.10 -1.76 1.16
J=8 15.36 -18.92 1.54 -0.44
the minimum for the out-of-plane energy ([’gg'”' o=0°) occurs at 6 = 51.82°, while the

global minimum (8gg"|¢,:300) occurs at 57.93° due to the effect of K.

To offer a qualitative explanation for the substantial K, value, one can consider the
spin-down 4f charge density, which is the distinguishing feature between the J = 8
and J = 7 states, computed for an in-plane magnetization direction, as depicted in
Fig. 5.23. The J = 7 magnetic configuration reveals a more significant density in the
xy-plane relative to the J = 8 state, which lacks such distinct poles parallel to the
substrate. Thus, the J = 7 configuration results in a stronger interaction of the 4f
charge with the hexagonal crystal field. These results highlight the importance of a
meticulous evaluation of the 4 f orbital occupation in rare-earth based systems in low
dimensions. This is also important if one wants to use the above proposed reverse-
engineering method to determine the CFP, since it holds only valid in the context
of a Hund’s rule occupation, i.e. when the interelectronic repulsion and SOC effects
dominate and the crystal field can be treated as a perturbation.
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Figure 5.22: The figure shows the out-of-plane (blue) and in-plane (red) magnetic
anisotropy energy curves for Dy/Gr with Dy having an orbital moment
of m; =5 pp. The blue dots represent the DFT4U energies, while the
lines indicate the fitting.
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Figure 5.23: Top view of the charge density of the spin-down channel of Dy/Gr with
in-plane magnetization for the two different orbital moments: (a) m; =6

UB (J=8) (b) ml:5uB (J=7)

5.4 Diluted rare-earth atoms: 4 x 4 graphene supercell

In order to investigate the effect of varying concentrations of rare-earth atoms ad-
sorbed onto the Gr sheet, a 4 x 4 supercell containing 33 atoms (32 C atoms and 1
RE atom) was simulated, with the magnetic adatom positioned in the H-site. This
configuration corresponds to a much more diluted RE concentration, with one RE
adatom per 32 C atoms instead of one per 6 C atoms. The perpendicular distance
between the RE and Gr atoms was held constant, matching the value obtained from
the smaller v/3 x /3 simulation cells.

The ground state electronic properties of Eu and Gd without SOC, as well as those of
the open 4 f-shells in the presence of SOC, are presented in Table 5.13. Commencing
the discussion with a comparison of the d electron occupations in the two simulation
cells, it can be observed that in all instances, the d,.. is lower in the 4 x 4 cell as
compared to the v/3 x v/3 configuration. Specifically, for Eu, the dy. is 0.196 as op-
posed to 0.332; for Dy, it is 0.181 in contrast to 0.262; for Ho, it is 0.165 compared to
0.250; and for Tm, it is 0.155 as against 0.237 in the V3 xv/3 cell. The sole exception
to this trend is Gd/Gr, where the dilute configuration yields almost a full d electron
(0.935 d electrons) in the valence shell, as compared to a fraction of 0.866 observed
in the higher coverage scenario (\/_ x \/§) These observations provide evidence of a
transition towards a more atomic-like nature of the magnetic 4 f-adatoms. The in-
creased separation between RE atoms reduces the delocalized charge for each RE-RE
interaction as well as the electrons involved in the RE-Gr interaction, resulting in a
reduced metallic behavior of the RE layer. This transformation is reflected in a shift
from a RE monolayer to a more isolated atomic configuration.

Specifically, Gd tends to retain its 5d electron in the valence configuration, making
it less available for bonding and thus resulting in weaker interaction with Gr and the
surrounding Gd atoms. In contrast, all the other RE atoms acquire fewer d electrons
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from the environment, leading to reduced interaction. The transition from metallic to
atomic behavior is also reflected in the 4 f orbital occupation, which exhibits a slight
increase across all cases, with a stronger trend towards following the Hund’s rules.

From the perspective of the spin magnetic moment of the RE atoms (mEF), it is noted
that their values are higher of around 0.1 pp in the dilute situation, which can be
attributed to the presence of induced f — s spin polarization (see Table 5.14) that is
absent in the high-coverage state. In the case of Gd/Gr, the value of mEF is roughly
0.41 pg larger in the 4 x 4 supercell than in the v/3 x /3 cell, driven by both the
f — s spin polarization and the enhanced f —d spin polarization. These effects are
observable in Fig. 5.24, which displays the s (green), d (blue), and f (red) states of the
RE adatom for each system, in addition to the TDOS (grey). Additionally, a zoomed-
in view of the s states around the Fermi energy is provided for each RE/Gr system.
Here, it can be noticed how the 4f peaks shift deeper to lower energies compared
to the /3 x v/3 cell, reflecting the isolated-atom picture. The appearance of a sharp
occupied spin-up s peak just before the Fermi energy is especially noteworthy. This
feature can also be observed in other studies in the literature for large simulation
cells, including 4 x 4 [193, 203] and 5 x 5 [204] supercells.

The appearance of the sharp s peak seems to be linked to the RE atoms nearing the
dilute limit, as demonstrated by simulating a single RE atom per simulation cell and
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