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This dissertation introduces an innovative data-driven monitoring approach de-
signed for distribution systems, playing a crucial role in facilitating the integration 
of eco-friendly energy sources. Focused on grids that incorporate renewable 
sources and end consumers, the study proposes a distribution system state 
estimation method utilizing artifi cial neural networks (ANNs) and synchrophasor 
measurements.

Noteworthy contributions include the application of ANNs for mapping synch-
rophasor measurements to system states and the development of three-phase 
ANN-based estimators for unbalanced grids. 

Computational effi ciency is demonstrated through quantitative comparisons 
with model-based methods, highlighting the superiority of the proposed da-
ta-driven technique. The research also distributes the computational burden, 
employing parallel and multi-area architectures to enhance speed during the 
training phase and accuracy during the estimation phase.

An iterative linear power fl ow (PF) method is proposed to generate training data 
for ANN-based estimators. This method integrates linear current injection mo-
dels for both P-Q and P-V nodes. For cases with only P-Q nodes, the PF is sol-
ved in a single shot, while for those involving P-V nodes, it is iteratively solved. 
The convergence rate of the solver is controlled by utilizing a relaxation factor.
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Abstract

Motivation, Goal and Task of the Dissertation

To achieve greater independence from fossil fuels and address the challenges of climate
change, environmentally friendly energy sources (e.g., wind, solar photovoltaic, electric
vehicles, etc.) are rapidly integrating into power systems. The primary focus of this en-
ergy transition occurs within distribution grids, where end consumers and distributed
energy resources connect to the grid. To efficiently operate distribution systems in a
safe mode and establish synergy among active elements, distribution system operators
(DSOs) should employ strategies based on ongoing operating conditions. The operating
condition of the power system, in terms of its current state, must be determined timely
and accurately. To this end, this dissertation introduces a distribution system state es-
timation (DSSE) approach based on the data-driven artificial neural network (ANN)
modeling technique and synchrophasor measurements to provide a snapshot of the grid
state. Compared to state-of-the-art model-based state estimation methods, mostly rely-
ing on the weighted least squares (WLS) approach, the proposed ANN-based estima-
tor does not involve Jacobian matrix and gain matrix inverse calculations in runtime.
Therefore, the proposed ANN estimator is simpler and performs faster than model-
based methods. Thus, it can be considered a potential DSSE method that meets the
real-time requirements of automation functions in distribution grids.

Major Scientific Contributions

In this dissertation, the voltage magnitude and the phase angle of the grid buses rep-
resent the system states. Based on this, the major contributions of the dissertation are
summarized here:

1) The ANN, as one of the powerful non-linear regression methods, has been used to
map the synchrophasor measurements to the system states. The applied Pearson corre-
lation coefficient shows that there is a correlation with nonlinear dependency between
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synchrophasor measurements and the system states. According to the universal ap-
proximation theorem, a feedforward multilayer perceptron network with a linear out-
put layer and one hidden layer with a hyperbolic tangent (tanh) activation function can
fulfill the requirement of this mapping. Each layer requires several nodes. The num-
ber of nodes in the input and output layers is equal to the number of synchrophasor
measurements and the number of states, respectively. To improve the generalization ca-
pability of the ANN, only two neurons are considered in the hidden layer. Moreover, the
Bayesian regularization learning algorithm is used for training the ANN in this work to
make the estimator more robust against overfitting concern.

2) The proposed estimator estimates the system states in the polar coordinate. To obtain
accurate estimation results without bias, this estimator consists of two ANNs. One esti-
mates the voltage magnitude, and another calculates the phase angle. In addition to the
synchrophasor measurements, other measurements such as power measurements can
be added to the measurement inputs.

3) To consider the unbalanced nature of distribution grids, three independent ANN-
based estimators, corresponding to the three phases of the network, are trained in par-
allel with the training data generated by a three-phase power flow (PF) solver.

4) To understand how fast the proposed ANN-based estimator is executed, the com-
putational complexity of this technique has been compared with the model-based state
estimation methods in terms of elapsed time and the floating-point operation (FLOP)
number. Compared to elapsed time, FLOP is a machine-independent measure. And,
as shown in this dissertation, FLOP is a more reliable indicator than elapsed time for
assessing the computational effort of the DSSE problems in real-time applications.

5) To alleviate the computational burden during the training and estimation phase of
the ANN-based estimators, the estimation problem has been distributed over several
smaller problems in a parallel and in a multi-area architecture. In the parallel architec-
ture, the training dataset is divided into smaller training data packages, those contain-
ing the output training data associated with smaller portions of the power grid. Com-
pared to the integrated system, then, the smaller ANN-based estimators are trained
with the smaller data packages corresponding to the smaller grid subsections. Since
the training method maps all the measurements to a smaller number of states for each
sub-area, it can better tune the weights and biases of the ANNs. Consequently, more
accurate estimations are obtained by performing the state estimation in the parallel ar-
chitecture compared to performing the state estimation on the integrated system. In the
multi-area architecture, the power grid is divided into smaller sub-areas. The system is
split at the points where phasor measurement units (PMUs) are installed. Since PMUs
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measure both voltage magnitude and phase angle, the splitting points can be consid-
ered as the virtual slack buses. In this way, a big power flow (PF) problem is divided
into smaller PF problems for the divided sub-areas. By performing the PF over a wide
range of operating conditions, the training data is generated for each sub-area. Then,
the ANN-based estimator is trained for each sub-area. Finally, the state estimation is
performed in two steps. In the first step, upon receiving the measurements, the ANN
for each sub-area calculates the local estimations. The splitting point is an overlapping
node among the neighboring sub-areas. Therefore, there are multiple estimated states
for the splitting point calculated by the neighboring ANN-based estimators. To choose
the states of the overlapping nodes, then, the estimations from the most accurate local
estimator are selected. In the second step, the measurements of the overlapping nodes
are replaced with the selected states of the overlapping nodes. By doing so, the accu-
racy of the estimations is improved since the accuracy of the estimated states of the
overlapping nodes is better than the measured values at these points.

6) Finally, an iterative linear PF method has been introduced to generate the data re-
quired to train the proposed ANN state estimator. In this PF method, the linear current
injection model of P-Q and P-V nodes is integrated into the fixed-point-iteration algo-
rithm. In the case that there are only P-Q nodes in the grid, the PF is solved in a single
shot. However, some iterations are required when there are P-V nodes in the system.
The model of the P-V node is relaxed by a relaxation factor. Utilizing the optimal relax-
ation factor enhances the convergence rate of the PF problem.

In a nutshell, a fast data-driven monitoring approach for active distribution system has
been introduced in this dissertation. The training data is firstly generated by the power
flow calculations. Then, per phase, two ANNs are trained to map the corresponding
measurement inputs to the system states in the offline mode. And, at the final step, the
ANNs give the system states upon receiving the synchrophasor measurements in the
run-time.
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Chapter 1

Introduction

The energy transformation from the consumption of fossil fuels to cleaner, renewable
forms of energy is a promising solution to combat climate change in this century. The
main aim of this transformation is to limit global warming to the relatively safe 1.5°C
compared to pre-industrial times, according to the Intergovernmental Panel on Climate
Change [1]. To this end, the policy and regulatory frameworks need to be adjusted so
that the world’s share of renewable energy in the final energy supply would increase to
28% by 2030 and 66% by 2050 [2]. Energy efficiency and renewable energy technologies
are the core elements of this transition. The main part of this transition takes place in
distribution systems where end-consumers and distributed renewable energy resources
are connected to the grid side [3]. In this paradigm, the distribution systems change into
active distribution grids due to the rapid penetration of modern distributed energy re-
sources (DERs), especially wind, solar photovoltaic (PV), and increasing prosumers like
district heating systems and electromobility services. The intermittent behavior of ac-
tive elements (in both consumption and generation sides), on the one hand, makes fast
variations in the power system states. Consequently, the system might face abnormal
grid conditions like voltage drop, voltage rise, and overloading of the asset’s capacity.
On the other hand, the controllability feature of their grid interfaces (inverters, switches,
and so on) introduces the provision of several flexibility services like peak power shav-
ing and spinning reserves. Therefore, the traditional top-down approach for the oper-
ation of distribution grids based on predictable power flows in the electricity network
is not valid anymore in the active distribution grids where DERs lead to unpredictable
network flows [4]. Thus, distribution system operators (DSOs) require extensive man-
agement and monitoring tools to deliver power to end-consumers in accordance with
power quality standards like EN 50160 [5] or EN 61000 [6]. To operate active distribution
networks securely and to provide high-quality service to customers, system operators
should be able to monitor the behavior (states) of their systems within the appropriate
time resolution. Although many monitoring approaches based on the state estimation
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(SE) concept have been developed for more than four decades in the transmission net-
works [7], there are fewer such solutions for distribution grids. The state-of-the-art dis-
tribution system state estimation (DSSE) solutions are mostly developed based on the
physical model of the power system components [7, 8]. These methods might face con-
vergence issues in the case of applying an inappropriate initial condition, adjusting the
termination threshold too low, and dealing with ill-conditioned problems [9]. Addition-
ally, the algorithms associated with these solutions are rather complex and heavy. Thus,
they may not meet the requirements of fast automation functions. To alleviate compu-
tational complexity, some data-driven modeling solutions have been developed. How-
ever, these methods require a large number of measurements to fulfill the observability
requirement [10, 11]. Due to the lack of monitoring units in current distribution grids,
these solutions may not be applicable in these networks. To tackle the above-mentioned
challenges, this dissertation focuses on a new distribution system monitoring solution
based on the state estimation concept, which uses an artificial neural network (ANN)
as a data-driven modeling technique. This approach is fast, does not have convergence
issues, and requires only a handful of phasor measurement units (PMUs) to fulfill the
observability requirement [12].

1.1 Motivation

The economic and environmental benefits of integrating DERs, such as flexible loads
and small-scale generation units, are the main reasons that drive DSOs to be more
determined in utilizing green technologies in their networks [13]. From a technical
standpoint, the complex interactions of the DERs and demand-side management in dis-
tribution grids lead to several problems, making the operation of active distribution
grids more complex. These problems are described below and are recognized by the SE
method.

• Bidirectional Power Flow: there is a unidirectional power flow in passive grids,
from classical energy sources (e.g., coal or nuclear power plants) toward the end-
consumers. However, the presence of small-scale sources of energy in active distri-
bution grids causes bidirectional power flow that cannot occur in passive distribu-
tion systems. In this respect, the operation of active distribution systems becomes
more complex than passive grids [14] since power injection from DERs may lo-
cally either increase the voltage at the buses where DERs are connected or cause
overloading of the lines connected to the DER’s bus. Thanks to the SE solution,
nevertheless, the system operator can be aware of the current status of the system
at all buses and lines. Consequently, upon recognizing the contingency condition,
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they can apply the right control and protection schemes to keep the voltage below
the upper limit (defined in standards like EN 50160) and avoid unintended dis-
connection for end-consumers or unintended energizing of disconnected parts of
the grid.

• Overloading Condition: the presence of prosumers and electric vehicles (EVs) in
active distribution grids may lead to overloading of the grid assets and voltage
drop problems if multiple units request demand at the same time [14]. Through
the SE solution solution, however, the system operator can identify these con-
tingency conditions. Consequently, they can apply the correct control strategies
to safely operate the system, ensuring that the voltage remains above its defined
lower limit and the overloading condition is alleviated.

• Intermittency of Renewable Energy: the common approach, based on scheduling
power generation to manage the daily operation of the electric grid, does not work
in active distribution systems. This is primarily due to the intermittent behavior
of DERs, prosumers, and EVs [14]. This indeterminacy leads to rapid variations
in system states, caused by fast and unpredictable power exchanges between in-
termittent energy sources and the grid. By leveraging a state estimation solution,
system operators can assess the impact of power volatility on the system state. To
ensure safe operation, flexibility services, such as operating storage systems, can
be employed to compensate for this volatility.

Considering the fact that most of the automation functionalities, such as forecast algo-
rithms, the coordinated control of DERs, on-load tap changers, and SCADA systems,
are updated within a range of a few seconds [15], DSOs should apply a robust and fast
SE method to obtain a real-time snapshot of the operating state of the entire distribution
grid. In this context, the main contribution of this dissertation is described in the next
section.

1.2 Contribution

This dissertation presents the following contributions to solving the aforementioned
problems:

1. Propose a data-driven, node-voltage-based state estimation method in polar coor-
dinate for the distribution system in Chapter 3. This approach maps synchropha-
sor measurements into the complex node voltages (node voltage magnitudes and
node voltage phase angles) of the distribution system [12]. Compared to classical
SE methods, the proposed technique has the following advantages:
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• Fast: the proposed DSSE method is a data-driven technique based on ANN.
At runtime, this method does not involve the time-consuming calculations of
the Jacobian matrix and the gain matrix inverse, as in normal weighted least
squares (WLS) algorithms. In comparison to WLS methods, where the gain
matrix is decomposed (e.g., based on the Cholesky factorization technique),
and the solution is iteratively solved by forward–backward substitution [16,
17], the proposed method is linear and yields the solution in a single shot. In
contrast to linear WLS approaches using synchrophasor measurements [18,
19], the proposed method involves fewer floating-point operations (FLOPs),
as shown in Section 4.3. Therefore, to the best of the knowledge acquired from
the literature, the proposed method is the fastest approach for monitoring
distribution grids featuring a very large number of nodes.

• Convergence Guarantee: unlike existing convergence problems, which are
mainly caused by applying inappropriate initial conditions, adjusting termi-
nation thresholds too low, and the great disparity of values in the gain matrix
of classical SE problems [9, 16], the proposed DSSE approach does not involve
gain matrix calculation and its inversion. Instead, the proposed method lin-
early calculates the system states in a single shot through basic vector oper-
ations (e.g., addition and multiplication) over weights (W) and biases (B) of
the ANN; and does not exhibit convergence issues, as demonstrated in Sec-
tion 3.6 [12].

• Three-phase State Estimation: considering the unbalanced nature of distri-
bution systems, the states for the three phases of the power system should
be taken into account in the operation of active distribution grids. The three-
phase model of the power system in the classical model-based state estima-
tion formulation makes the execution of these methods much more cumber-
some. However, compared to the model-based methods, an independent
ANN-based estimator is dedicated to each phase of the system in the pro-
posed method, as explained in Section 3.7. This, in turn, makes the execution
of this DSSE problem much lighter in runtime.

• Noise Robustness: due to the high reporting rate feature (more than one
sample per second) of the PMU, this measurement unit is used in the pro-
posed monitoring system to satisfy the requirements of fast real-time automa-
tion functionalities [15]. However, the PMU measurement noise follows a
tailed distribution, which is non-Gaussian [20, 21]. As shown and explained
in the results (Section 3.9) of this dissertation, the proposed ANN-based esti-
mator provides accurate estimates under such a noise form.
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2. Measure the computational complexity of the proposed ANN-based state estima-
tion method by counting the required FLOPs number. Also, compare this com-
plexity with that of linear and non-linear WLS-based estimators in Chapter 4.

3. Introduce two distributed computation architectures for executing the proposed
SE method in Chapter 5.

• Parallel Architecture: to reduce the duration of the training process in offline
mode and alleviate the computational cost of the SE problem at runtime, mul-
tiple ANN three-phase estimators are executed in parallel.

• Multi-Area Architecture: to augment the proposed SE method with the scal-
ability feature in the operation of a large distribution network, a multi-area
architecture has been suggested in this dissertation, which splits the system
into several sub-areas. The entire training and estimation process is carried
out separately in each area. In addition to scalability, the SE problem is di-
vided into smaller sub-problems in this architecture. Consequently, the train-
ing duration and SE execution time are reduced.

4. Introduce a new linear power flow (PF) method that can be used for planning,
monitoring, and operating distribution grids in Chapter 6. This method integrates
the linear current injection model of P-Q and P-V buses in the fixed-point iter-
ative solver. As voltage is volatile in the distribution system due to the lack of
voltage regulators, the considered P-Q bus model is voltage-dependent, yielding
more accurate PF results. Nevertheless, the main feature of this PF technique is a
linearized model of a synchronous generator represented as a P-V node (voltage-
controlled node) [22]. This model is crucial in the analysis of active distribu-
tion systems where many active components control the system voltage by syn-
chronous generators or by grid-forming converters (e.g., battery storage systems).
In this dissertation, however, this PF method is exploited to generate the required
data for training the proposed data-driven DSSE model.

1.3 Dissertation Outline

The contents of this dissertation are organized based on the following structure:

Power system state estimation is defined in Chapter 2, and a literature review of var-
ious DSSE techniques has also been carried out in this part. In Chapter 3, the distri-
bution system state estimation method based on the data-driven ANN-based modeling
technique is introduced. After describing the required measurements and the ANN ar-
chitecture, the integration of the state estimation method in the three-phase system will
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be explained. The system observability check, which is an SE prerequisite, is covered
based on a probabilistic approach in this part. In the next chapter, Chapter 4, the com-
putational complexity of the proposed ANN-based state estimation method is quanti-
fied by counting the required FLOPs. Additionally, this complexity is compared with
the required FLOPs in linear and non-linear WLS-based state estimation techniques.
To alleviate the computational burden during the training and estimation phase of the
ANN-based estimators and to improve the estimation accuracy, in Chapter 5, the esti-
mation problem is distributed over several smaller problems in a parallel and multi-area
architecture. Since the proposed state estimation solution is based on the data modeling
concept, the required training data is generated by employing power flow calculation
in this dissertation. In this context, a new linear power flow method based on linear
models of load and generators is presented in Chapter 6. The peculiarity of this ap-
proach is in introducing a linear model of a synchronous generator that could emulate
the behavior of voltage controllers in distribution grids. Despite providing a specific
conclusion at the end of each chapter, an overall conclusion is provided in the last chap-
ter, Chapter 7, which briefly represents how the proposed state estimation method in
this dissertation can address the real-time requirements for the operation of active dis-
tribution grids. In this part, moreover, an outlook suggests conducting some studies to
ensure that the considered training data could be fast generated and could cover all the
scenarios that may put the system in contingency conditions.
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Chapter 2

Distribution System State Estimation &

Literature Review

In this chapter, the DSSE is presented as the fundamental core supporting all other dis-
tributed automation (DA) functions essential for the operation of active distribution
networks. In this respect, a literature review of the state-of-the-art on DSEE has been
also carried out in this chapter. This review takes into account both model-based and
data-driven DSSE techniques.

2.1 Introduction

In traditional power distribution networks, power flows from the head (HV/MV and
MV/LV substation) of each feeder towards the passive loads (consumers). Given this
one-way power flow, the grid components (including cables, transformers, switchgear,
and protective devices) could be designed during the planning stage to theoretically
endure any anticipated peak load throughout their operational lifespan [23]. And if
necessary, the measurements (usually the MV busbar voltage magnitude, the Ampere,
or active and reactive powers) from only the head of each feeder were sufficient to be
used to properly operate these passive systems. Thus, DSOs did not need to deploy
measurement units downstream of the feeder’s head to see what is going on there. In
contrast, the penetration of DERs in active distribution grids causes bidirectional power
flows, which may lead to the local congestion of the grid assets and even the malfunc-
tioning of the protection systems. These complex DER interactions with the grid, along
with the demand-side management schemes, make the network operation procedure
complex. Similar to the energy management system (EMS) in transmission networks,
there is a need for an advanced distribution management system (ADMS) for the safe
operation of future power distribution networks [23–25]. This system encompasses var-
ious DA functions, with the DSSE serving as the central component. The DSSE supplies
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crucial inputs for the remaining DAs, enabling them to execute real-time tasks such as
outage and congestion management, as well as offline tasks like maintenance, reliability
index calculations, and optimal network configuration on a seasonal basis.

2.2 Power System State Estimation

The concept of state estimation (SE) in power systems was initially proposed by Fred
Schweppe in the ’70s [26]. According to this reference, Schweppe defined the power
system states and the power system SE as follows:

“ The static state of an electric power system is defined as the vector of the voltage mag-
nitudes and angles at all network buses. The static-state estimator is a data process-
ing algorithm far converting redundant meter readings and other available information
into an estimate of the static-state vector ”.

Since that time, SE has been widely used in transmission networks. Due to the lack of
a sufficient number of real-time measurements, however, this monitoring function has
not been widely implemented on distribution systems [25]. In spite of this restriction,
with the emergence of the need for the distribution management system (DMS) in the
operation of distribution grids, primary investigations were conducted on the DSSE
in the ’90s [27–32]. The typical philosophies behind the classical DSSE solutions are
based on the developed algorithms for transmission system state estimation (TSSE).
Nevertheless, the TSSE solutions should be adapted to be suitable for DSSE since the
characteristics of the transmission and distribution systems are different.

2.3 Transmission versus Distribution Systems

To adapt TSSE algorithms for use in distribution grids and to develop new DSSE al-
gorithms, the characteristic differences between the transmission and distribution sys-
tems should be taken into account. This includes considerations regarding the network
model, measurements, and communication features. [7, 8, 23, 28]:

• Network model features:

– Within distribution grids, power lines exhibit higher resistance (R � X)
when contrasted with transmission lines. Consequently, the separation of
the system into active and reactive sub-problems [33] becomes impractical in
these distribution systems.

– The number of nodes in distribution systems is typically much higher than in
the transmission networks [34].
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– Compared to the transmission systems, which are usually highly meshed,
most of the distribution systems are radially operated (to simplify the ap-
plied protection schemes). This, in turn, enables the DSSE solution designers
to simplify the mathematical formulation of the DSSE problem. For exam-
ple, one can apply forward/backward tree sweeps instead of dealing with
building bus admittance or Jacobian matrices.

– In distribution grids, it is possible that short and long lines simultaneously
present at the same bus. This, in turn, may lead to the ill-scaling of the rows/-
columns of the involved matrices and accordingly cause the ill-conditioning
problem in dealing with the DSSE equation systems.

– Compared to the balanced transmission systems, distribution systems are un-
balanced. This, in turn, makes estimators based on the positive sequence
model unfit in distribution grids. Thus, three-phase models of the system
components should be taken into account in the DSSE mathematical formu-
lation, which complicates the resulting code.

– Precise network models for distribution networks, encompassing details like
branch impedances, current network configuration, and phase identification,
are seldom accessible, and even network models are missing.

• Measurement features:

– Unlike transmission systems, the scarcity of installed measurement units in
distribution systems causes these networks to be unobservable. To address
the observability issue (and complement the information gathered from the
field), pseudo-measurements, usually the DSO’s archived measurements and
load flows, are used in performing the DSSE.

– Compared to transmission networks, distribution grids usually consist of
many zero-injection buses that are exploited as zero-injection measurements
in DSSE methods. However, using these virtual measurements imposes the
ill-conditioning problem [9, 23] since they are much more accurate.

– Except for PMU measurements, the accuracy of measurements in distribution
systems is lower than that in transmission systems. Apart from the redun-
dancy issue, this factor also negatively impacts DSSE estimation accuracy.

– Exploiting Ampere measurements may impose numerical issues (null or un-
defined Jacobian coefficients, risk of multiple solutions) in the DSSE solver.
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– Except for PMU measurements, the latency of measurements in distribution
systems is higher (minutes or even hours, rather than seconds) than in trans-
mission networks. For example, smart meters often report every 1 hour or
at best every 15 minutes. This, in turn, leads to poor estimation results if the
interested time frame for operating the system is in the range of seconds or a
few minutes.

• Communication features:

– Compared to the transmission networks, there is a lack of voltage regula-
tors in distribution networks. As a result, frequent and rapid variations in
the system states occur due to sudden and more frequent load changes. To
accurately estimate the system states in this volatile environment, a high-
bandwidth communication network is imperative. This network should mit-
igate issues like latency and time skew arising from asynchronously captur-
ing a substantial volume of data. Presently, DSOs employ narrowband power
line carrier (PLC) technology and utilize public 4G networks for data collec-
tion. While PLC can traverse the entire network via power lines, it lacks the
necessary bandwidth for specific real-time applications. In comparison, 4G
networks exhibit lower latency than PLC technology, but their reliability di-
minishes, especially in certain rural areas where reaching all points becomes
a challenge.

– To protect the distribution networks against cyber threats such as false data
injection, topology attacks, and eavesdropping, it is essential to incorporate
cybersecurity measures into the management and control of active distribu-
tion systems.

2.4 State Estimation Components

Although the main focus of this dissertation is on the core estimation algorithm that cal-
culates the system states, SE consists of various functionalities responsible for preparing
the SE inputs and conducting pre- and post-assessments of the system inputs and out-
puts. Depending on the SE method, there are different functionalities, but they most
commonly include the following [34]:

• SE Algorithm: this is the core element of the SE system, calculating the system
states. Commonly, it is implemented based on the physical model of the power
system, as explained in detail in Section 2.6.
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• Bad Data Detection and Identification: this function detects the measurement in-
puts that are affected by considerable errors and filters them. The common sources
of error are:

– Random errors due to the finite accuracy of the meters and the telecommuni-
cation medium.

– Large measurement errors resulting from biases, drifts, or incorrect connec-
tions of the meters.

– Incorrect values, such as negative voltage magnitudes or measurements with
several orders of magnitude larger or smaller than expected values.

– Incorrect topology information.

Depending on the SE method, various bad data detection and identification tech-
niques may be performed before or after executing the core estimation algorithm.
However, for common WLS-based SE methods, this function is performed only
after the estimation process by processing the measurement residuals [9].

Topology Processor: this function uses circuit breaker status information and net-
work connectivity data to build the topology of the grid (i.e., a system admittance
matrix). The obtained topology is used as input to a network solution program,
either a state estimator or a power flow [35, 36].

Observability Analysis: considering the required estimation accuracy, this func-
tion evaluates whether there are enough real-time and pseudo-measurements for
the SE algorithm to converge to a solution.

Database: in addition to the network parameters, this unit contains historical mea-
surements, load flow data, and meteorological information.

2.5 DSSE Measurement Inputs

According to the definition of the SE function, the inputs, including the redundant meter
readings and other available information from all parts of the system, are mapped into
the state of the system. These measurement inputs are categorized as follows in power
distribution systems:

• Telemetered Measurements: these measurements may be both analog and digital
(on/off status of devices) types and are collected from metering devices deployed
in the system:
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– Remote Terminal Units (RTUs): these devices collect various types of mea-
surements, including the MV busbar voltage magnitude, along with ampere,
active and reactive measurements from the primary substation. They are re-
sponsible for transmitting measurements to the control center with a sam-
pling rate between a few seconds and a minute [9, 23].

– Intelligent Electronic Devices (IEDs): these devices consist of single or mul-
tiple microprocessors to send and receive data or control signals to or from an
external device (e.g., transducers, relays, control units, etc.). By augmenting
the standardization aspect, these units bring interoperability features to the
automation of substations. These units are replacing or complementing the
existing RTUs [9].

– Advanced Metering Infrastructure (AMI): smart meters (SMs), together with
the communication network and meter data management system, consti-
tute the AMI. As a key element, SM measures electric energy consumption
and provides two-way communication between electricity suppliers and cus-
tomers for customer billing and system monitoring. The measured data in-
cludes energy consumption, real power, reactive power, and voltage magni-
tude measurements. The measured values are not synchronized. SMs often
report every 1 hour or at best every 15 minutes [37–39].

– Synchrophasor Measurement Devices: unlike unsynchronized RTU mea-
surements, PMUs, as the most up-to-date metering technology for both trans-
mission and distribution, provide high-precision time-synchronized voltage
and current phasor measurements with low latency (high reporting rates in
the order of some tens of measurements per second). However, the high costs
of commercial PMUs currently available in the market represent an obstacle
to their effective deployment [40, 41]. Nevertheless, the adoption of low-cost
dedicated hardware platforms such as micro-PMU (μ PMU) or distribution-
level PMU (D-PMU) is contributing to their potential massive use in distri-
bution networks [42–44].

• Pseudo Measurements: these measurements are usually historical standard load
profiles used to address the observability problem arising from the lack of teleme-
tered measurements in the distribution grid [45].

• Virtual Measurements: these measurements contain no errors, such as zero injec-
tion buses which have neither load nor generation, zero voltage drops in closed
switching devices, and zero power flows in open switching devices [7, 16].



2.6. Model-Driven DSSE 13

Given the features, SE components, and measurement sources mentioned, it’s crucial
to carefully consider various design aspects to tailor the TSSE algorithms. Specifically,
the core estimation algorithm needs consideration for use in distribution grids. This en-
sures not only the avoidance of observability and convergence issues but also meets the
requirements for real-time applications. Besides adapting TSSE methods, these design
considerations are the foundation for creating other DSSE approaches, like data-driven
alternatives. In the following sections of this chapter, different state-of-the-art model-
based and data-driven methods are described and elaborated.

2.6 Model-Driven DSSE

In the domain of power system SE, model-driven methods utilize explicit knowledge
of the power system to derive the SE equations. As a common base, the measurement
functions corresponding to the available measurements are derived in these methods:

z = h(x) + e (2.1)

where z is a (m× 1) measurement vector, x is a (n× 1) state vector, h(·) is the function of
measurements, e is a (m× 1) measurement error vector, and m and n are the numbers of
measurements and states, respectively. In this respect, depending on the selected state
and measured variables, type of PF, and inclusion of phase models in PF equations,
the measurement function can have different forms, leading to differences between the
developed SE methods for transmission and distribution networks. The model-based
DSSE problem is mostly solved by applying the WLS methods [7]. Based on the choice
of state variables and the techniques to integrate various types of measurements, two
basic DSSE formulations have been provided in the literature:

2.6.1 Node Voltage Based DSSE Methods

In this approach, the DSSE typically calculates the system states in terms of bus voltage
magnitudes and angles. Traditionally, the measurement vector h(·) (in Equation 2.1)
includes the non-linear measurement models of the telemetered measurements (such
as real and reactive power flow, bus voltage magnitudes, and line current magnitudes)
along with pseudo measurements [28, 31]. Customarily, measurement error is assumed
to be Gaussian with zero mean

E(ei) = 0, i = 1, 2, 3, ..., m.
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and independent,
E(eiej) = 0,

Thus, the covariance matrix Cov(e) = E[e.eT] = R = diag(δ2
ii). δi is the standard devia-

tion of each measurement.

To obtain the system states, then, the following WLS scalar function is minimized:

J(x) =
m

∑
i=1

(zi − zi(x))2

Rii
= [z − h(x)]TW[z − h(x)], W = R−1 (2.2)

In this way, the gradient of J(x) is set to zero to satisfy the first-order optimality condi-
tions:

g(x) =
∂J(x)

∂x
= −HT(x)W[z − h(x)] = 0 (2.3)

where H is the Jacobian of h(x):

H(x) =
∂h(x)

∂x
The non-linear Equation 2.3 can be expanded into its Taylor series around the state
vector xk as [9]:

g(x) = g(xk) + G(xk)(x − xk) + · · · = 0

Finally, by neglecting the higher-order terms in the above series, the system states are
solved in an iterative mode based on the following Gauss-Newton method which is
known as the normal equations (NE):

xk+1 = xk − G(xk)−1.g(xk) (2.4)

where

k is the iteration index,

xk is the solution vector at iteration k,

G(xk) = ∂g(xk)
∂x = HT(xk)WH(xk) and it is called gain or information matrix,

g(xk) = −HT(xk)W(z − h(xk))

The gain matrix can be subjected to ill-conditioning, which is a significant problem in
converging this DSSE problem. The potential reasons for this issue could be a combina-
tion of various factors, as cited in [9, 23]:

• Simultaneous existence of short and long lines at the same bus

• Assignment of large weights to virtual measurements and low weights to pseudo-
measurements
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• A large proportion of injection measurements

In addition to these reasons, applying inappropriate initial conditions and setting a ter-
mination threshold too low may put the system at risk of convergence issues.

In addition to the considered polar coordinate in the described WLS approach, a new
formulation based on rectangular coordinate has been proposed in [29], which con-
verts the power measurements into their equivalent currents. On this basis, the Jaco-
bian terms are constant and equal to the admittance matrix elements. Consequently,
the gain matrix HTWH is constant, and it needs to be built and factorized only once.
Thus, the computational complexity is improved in this method. To cope with a large
number of zero injection measurements, moreover, a more robust alternative solution
that treats these measurements as equality constraints has been proposed in [46], in
which the system is formulated on the rectangular coordinate. In dealing with radial
networks, [47] introduces another node voltage-based DSSE approach known as the
branch-estimation-based state estimation method, which decomposes the WLS problem
of the whole system into a series of WLS sub-problems. Each WLS sub-problem deals
with only a single branch and can handle all kinds of measurements. Moreover, this
approach uses an efficient forward/backward sweep scheme similar to conventional
branch-oriented power-flow algorithms, which means that a sparse matrix/vector tech-
nique is not needed. To deal with radial or weakly-meshed large-scale medium-voltage
networks, a highly computationally efficient DSSE method has been introduced in [48],
which exploits a quasi-symmetric impedance matrix TRX to build the network mod-
els. However, the system formulation in this approach is complex. To overcome the
high computational burden of the pointed non-linear techniques, several works have
focused on linear approaches. In this context, despite the cost of introducing model-
ing errors, [49] has applied some approximations to derive a linear system. However,
without imposing the modeling errors, some other solutions [18, 41] have exploited the
PMU measurements to integrate a linear vector of measurement functions into the WLS
formulation and derived the linear DSSE systems.

2.6.2 Branch Current Based DSSE Methods

In this method, the feeder branch currents are chosen as state variables instead of the
customary bus voltages. This method is usually implemented in rectangular coordi-
nate and is computationally more efficient than conventional node voltage-based DSSE
methods. It can handle radial and weakly meshed feeders. Like conventional node
voltage-based SE methods, the system states (i.e., branch currents) are obtained by per-
forming the WLS approach. When only power and current magnitude measurements
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are available, however, the Jacobian matrix is composed of +1, -1, and zeros. Accord-
ingly, the gain matrix is constant and totally insensitive to the system state or line pa-
rameters [30, 50]. Consequently, not only is this method more suitable for application to
unbalanced systems, but also the computational complexity of this approach is less than
that of conventional node voltage-based SE methods. Given the branch current as the
system state, then, by applying the forward sweep, the node voltages are found [23, 50].
In weakly meshed systems, moreover, each loop adds an equality constraint on branch
currents based on Kirchhoff’s voltage law (KVL). These additional constraints can be
treated as virtual measurements [51] or exploited as equality constraints in the WLS
problem by using Lagrange multipliers [30, 50]. In the case of using voltage magnitude
measurements, however, the gain matrix is no longer constant [23, 52, 53].

The two above-mentioned types of WLS-based DSSE methods have been comprehen-
sively compared in [54], both in polar and rectangular coordinates. All four models
provide similar accuracy. However, the performance of rectangular formulations is sig-
nificantly better than that of other polar ones due to exploiting linear measurement
functions. From a computational complexity point of view, moreover, the rectangular
branch current-based DSSE is the fastest solution.

2.7 Data-Driven Models for DSSE Components

Instead of applying the explicit knowledge of the power system to derive the SE equa-
tions in model-based approaches, artificial intelligence techniques are applied to power
system data to derive mathematical equations called data-driven models for different
components of DSSE. These components include generating pseudo-measurements, op-
timal measurement placement, observability assessment, bad-data detection, topology
identification, and SE. For instance, a probabilistic neural network (PNN) is exploited
in [55] to allocate load profiles to loads in distribution systems. In [56], an ANN has
been used to generate pseudo-measurements from a few real measurements. Autoen-
coders are used in [57] to reconstruct missing data, including voltage and power values
or switch status information, as a way of generating pseudo-measurements. To design
a robust state estimator suitable for medium voltage distribution networks, a load esti-
mation mechanism has been developed in [58] using the concept of parallel distributed
processing networks (PDP). For short-term planning (e.g., hours/days ahead), an adap-
tive nonlinear auto-regressive eXogenous (NARX) model has been introduced in [59]
for load estimation in medium voltage distribution networks. A game-theoretic data-
driven approach has been introduced in [60] to generate pseudo-measurement sam-
ples for DSSE, enhancing the performance of pseudo-measurements and computational
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efficiency by exploiting load seasonal patterns. Moreover, many deep learning mod-
els based on convolutional neural networks (CNN) [61–63], fully connected networks
(FCN) [64, 65], and unshared convolutional neural networks (UCNN) [66] have been de-
veloped for load forecasting. Regarding optimal measurement selection for data-driven
monitoring approaches, several data-driven methods based on extensions of partial cor-
relation and minimal redundancy maximum relevance criteria to input variable selec-
tion (IVS) problems are analyzed in [67]. Concerning system observability, a data-driven
method based on the probabilistic concept is developed in [68], which makes it possible
to check if the system is observable or not. Bad data detection and identification so-
lutions using neural networks are also proposed in [69] and [70], which identify gross
or large errors that may arise from biases, wrong connections of meters, telecommuni-
cation system failures, or interference from certain devices. Using PMUs, furthermore,
the data-driven denoising framework explained in [71] and [72] can detect outliers from
measurement data, enhancing the quality of the measurements. To improve the perfor-
mance of model-based DSSE methods, some methods use historical data and conduct
supervised learning to obtain an educated initial guess [73, 74]. [75] describes a moni-
toring approach in which the ANN not only estimates the voltage magnitude but also is
used to identify the system configuration. A two-step data-driven technique has been
explained to identify the topology, estimate line parameters, and recover missing volt-
age angles without the measurement of voltage angles in [76]. By applying linear regres-
sion in the first step, a basic identification of possible topology, type, and initial values
for line parameters is obtained. Then, a joint data-and-model-driven method based on
the power flow equation and a specialized Newton-Raphson iteration is performed in
the second step to calculate line parameters, recover voltage angles, and further cor-
rect the topology. In this respect, moreover, [77] proposes a deep learning (DL)-based
approach for topology identification (TI) and unbalanced three-phase DSSE, which ex-
ploits sparse synchrophasor measurements. To optimally perform reconfiguration per
hour, furthermore, [78] proposes a data-driven method based on measurements from
μPMUs. Considering the core estimation algorithm, in a fully data-driven SE approach,
system states in terms of voltage magnitude and power injections are directly estimated
by the ANN in [10] using a large number of measurements, including voltage magni-
tude and power injections. In this direction, the rest of this dissertation focuses on a new
core DSSE estimation technique that uses sparse synchrophasor measurements. This so-
lution does not have the convergence issue as in the WLS method and can be executed
tremendously fast, even faster than linear WLS techniques. To satisfy the real-time re-
quirements in the operation of distribution grids, hence, it could be a potential method
to be integrated into the ADMS.
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Chapter 3

Data-Driven Distribution System State

Estimation Using Synchrophasors

This chapter focuses on the first contribution (highlighted in Section 1.2) of this disser-
tation, which introduces a new data-driven modeling technique based on ANNs. These
networks are utilized to perform three-phase distribution system state estimation upon
receiving synchrophasor measurements. Based on the design considerations, including
the selected architecture of the ANN as the core estimation component, the mathemat-
ical formulations correlating the measurement inputs to the system states (node volt-
ages) are articulated. The derived state equations reveal that not only can the proposed
estimator be executed significantly faster, but it also does not encounter convergence is-
sues, unlike classical model-based state estimators. Additionally, this chapter examines
the performance and robustness of the proposed estimator against various noises and
loading conditions.

3.1 Introduction

The lack of voltage regulators in distribution networks causes frequent variations in
system states (i.e., voltage magnitude and phase angle) due to changes in loads in tradi-
tional systems. The integration of RESs in active distribution grids, however, increases
the rate of change of these variations because of the RESs’ fast intermittent behavior.
To effectively operate active distribution systems, the ADMS should be fast executed
to quickly manage these rapid state variations. Since the DSSE function serves as the
backbone of ADMS, upon which any other distributed automation (DA) function is
based, there is not only a need for a fast DSSE function but also for a fast measurement
unit that provides the DSSS function with low-latency measurement inputs. As men-
tioned in Section 2.3, except for synchrophasor measurement devices such as PMUs and
μPMUs, the latency of other meters downstream of distribution systems is high, often in
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the range of minutes or even hours, making them unsuitable for tracking the fast vari-
ations of operating conditions. For instance, smart meters typically report every hour
or, at best, every 15 minutes. In this context, synchrophasor measurement devices play
a crucial role in monitoring the active distribution grid since their reporting rates are
high, for example, 10, 25 samples per second. Therefore, PMUs/μPMUs are considered
as source measurement inputs for the expected monitoring system in this dissertation.
On the other hand, a new core estimation technique based on ANN is presented in this
chapter and referred to as the ANN-based estimator, which can be executed extremely
fast upon receiving synchrophasor measurements. The rest of this chapter introduces
PMUs and μPMUs in more detail, provides a brief literature review on state-of-the-
art DSSE methods that leverage synchrophasor measurements, and describes the data-
driven monitoring approach along with the proposed ANN-based estimator. To meet
the observability requirement of the proposed ANN-based estimator, a developed prob-
abilistic approach in [68] is considered in this dissertation. Finally, the performance of
the proposed estimator is evaluated in the results section.

3.2 Synchrophasor Measurement Devices

PMUs are advanced measurement devices designed to measure synchrophasors, which
are time-synchronized numbers representing both the magnitude and phase angle of
the sine waves (such as voltage and current signals) found in power systems [40]. Us-
ing a source of time synchronization (e.g., the global positioning system (GPS) signal),
each measurement is tagged with the corresponding instant. Thus, wide-area visibil-
ity is achievable into what is happening across a wide interconnect power grid [41].
Although PMUs have been widely exploited in transmission systems [79], their use in
distribution networks is naturally limited by the high cost of these units [40, 41, 80].
Nevertheless, the adoption of low-cost dedicated hardware platforms such as micro-
PMU (μ PMU) or distribution-level PMU (D-PMU) is contributing to their potential
massive use in distribution networks [42–44]. The reporting rates of these devices are
high. Although PMUs can provide synchronized measurements to within a microsec-
ond [40], μ PMUs report phasor measurements once every 8 to 100 milliseconds [81, 82].
In this respect, the high reporting rates of these measurement devices have made it pos-
sible to capture the high dynamic of power distribution systems that cannot be taken by
other meters (e.g., smart meters) in these grids [83]. Out of a wide range of applications
of PMU/μ PMU in operation, monitoring, protection, modeling, and control of power
systems [40, 42], monitoring based on the state estimation concept is the main focus of
this dissertation. In this context, a lot of research has been conducted to use synchropha-
sor measurement in SE problems. In general, PMUs improve the system observability
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[84] and enhance the accuracy of the estimations [51]. The impact of the PMUs on the
accuracy of estimated results calculated by the weighted least squares estimators is dis-
cussed in [85]. [86] proposes an innovative adaptive DSSE solution that adjusts PMU
measurement accuracy values and adapts the rate of the DSSE based on operating con-
ditions (steady-state or dynamics) of the network. A model reduction approach based
on PMU measurements has been described in [80], which reduces the required number
of measurements while satisfying observability and enhancing computational perfor-
mance. From a mathematical point of view, using only synchrophasor measurements
in the WLS-based methods in the rectangular coordinate leads to a linear SE problem
[18, 19, 41, 87]. Although the linear WLS-PMU-based solution is computationally more
efficient than the non-linear WLS methods, Chapter 4 of this dissertation shows that the
proposed ANN-based estimator [12] is executed faster than the linear WLS counterparts
upon receiving synchrophasor measurements.

3.3 Data-Driven Monitoring Approach

Compared to model-based SE methods, which apply the laws of electricity to formulate
SE problems, data-driven SE methods apply artificial intelligence (AI) training algo-
rithms over a power system training dataset (D = Z|X) to train/derive mathematical
models that correlate measurement inputs (Z) to power system states (X). In the do-
main of AI methods, mapping some inputs to outputs is done by applying regression
models. On this basis, among the supervised learning methods, the ANN has been se-
lected to perform DSSE for distribution systems in this dissertation since it is one of
the powerful non-linear regression methods. Although the computational complexity
of ANN training algorithms is heavy, the obtained ANN-based SE mathematical model
is more undemanding compared to the complex model-based system of equations, as
shown in Chapter 4. Thus, it can be executed much faster than classical SE methods in
runtime. Therefore, it is more efficient in real-time applications.

Data is the main requirement in data-driven approaches. In this work, the dataset rep-
resents the entire behavior found in the power distribution network. In this respect,
the training data is collected either from archived DSO load flow data or from PF cal-
culations or real measured values. To generate the training data, this dissertation uses
the data generated by PF calculations. After generating data by performing PF calcula-
tions over thousands of random case scenarios, as shown in Fig 3.1, the obtained data
is segregated into training input and output datasets corresponding to synchrophasor
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measurements and system states, respectively. By applying an appropriate learning al-
gorithm over the input-output dataset, then, the ANN-based estimator is ready to calcu-
late/estimate the system states upon receiving synchrophasor measurements. Finally,
the estimated states are used in other distributed automation functions in ADMS.

Input Training Data

Output Training Data

Power Flow

Estimated States

PMU

FIGURE 3.1: Data-Driven Monitoring Approach
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3.4 ANN-Based State Estimation Components

In addition to the ANN-based estimator, which is the core estimation component in the
proposed data-driven DSSE method, the SE system consists of different components as
already explained in Section 2.4. In this respect, the proposed core estimation function,
explained in Section 3.6, can be equipped with the following developed components:

• Bad Data Detection and Identification: to identify gross or large errors that may
arise from biases, incorrect meter connections, telecommunication system failures,
or interference from certain devices, [69] and [70] have proposed methods using
neural networks. Since synchrophasor data is used as the measurement input,
furthermore, data-driven denoising techniques have been described in [71] and
[72], which detect outliers from measurement data and enhance the quality of the
measurements.

• Topology Processor: a configuration identification (CI) unit described in [75] ded-
icates appropriate ANN weights corresponding to the actual configuration of the
grid. In addition to this, [77] proposes a deep learning (DL)-based approach for
topology identification (TI) using sparse synchrophasor measurements.

• Observability Analysis: a probabilistic observability approach described in [68]
has been used in this dissertation to evaluate the system observability. This tech-
nique classifies a network as observable if, under normal operating conditions,
the SE is sufficiently accurate to determine whether the true values of the network
parameters are within their respective constraints.

• Database: in addition to the network parameters, the power flow calculations,
the archived DSO load flow data, synchrophasor measurements, and the trained
ANNs for different system configurations are stored in the database of this moni-
toring approach.

3.5 Quantifying Linear Relationships Between Power Dis-

tribution System Variables

As one of the powerful non-linear regression methods, the ANN has been utilized in
this work to map the measurements from PMUs to the system states. To assess the
degree of non-linearity between the input and output of the ANN in this study, the
Pearson correlation coefficient [88] is employed in this section to demonstrate the extent
to which paired data of system variables are linearly correlated.
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For two variables, A and B, and assuming that each variable has N scalar observations,
the Pearson correlation coefficient is defined as:

ρ(A, B) =
1

N − 1

N

∑
i=1

(
Ai − μA

σA
)(

Bi − μB

σB
) (3.1)

μ and σ are the mean and standard deviation, respectively. The correlation coefficient
matrix of these two variables is the matrix of correlation coefficients as follows:

r =

[
ρ(A, A) ρ(A, B)
ρ(B, A) ρ(B, B)

]

Considering the fact that each variable is perfectly correlated to itself, the above matrix
is written as:

r =

[
1 ρ(A, B)

ρ(B, A) 1

]

For the off-diagonal elements, however, the Pearson correlation coefficient is within the:

−1 ≤ r ≤ 1

The closer the value is to 1 or -1, the stronger the linear correlation. Positive and negative
values represent positive and negative linear correlations, respectively. Additionally,
there is no correlation if the value is equal to zero.

Since the aim of the proposed monitoring system is to map the PMU measurements
into the system states, it is important to investigate whether a linear relationship exists
between variables without having to fit a specific model (like ANN) to the data in ques-
tion. In this respect, the degree of linearity among different power system variables has
been quantified by the Pearson correlation coefficient over the obtained training data of
the considered test system (IEEE 123-bus network) in this work. There are 20,000 scalar
observations available for each grid variable in the training data set. The outcome of
this quantification is shown in Fig. 3.2 for some exemplary pairs of variables, including
the voltage magnitude of node 67 and one of the following variables:

• Voltage magnitude of nodes: 68, 40, 51, 1 and 149

• Voltage angles of nodes: 68, 40, 51, 1 and 149

• Current magnitude of lines: 67-68, 40-42, 50-51, 1-7 and 149 -1

This figure illustrates the dispersion of data for the considered pairs of variables. Addi-
tionally, the corresponding Pearson correlation coefficient values are provided. Among
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Voltage magnitude
w.r.t

Voltage magnitude

Voltage magnitude
w.r.t

Voltage angle

Voltage magnitude
w.r.t

Current magnitude

FIGURE 3.2: The scattered plots of various pairs of grid variables along
with their Pearson correlation coefficient values

the considered pairs, only the voltage magnitude pair of nodes (67, 68) exhibits a strong
linear relationship (r = 0.9997). The perfect correlation in this case may be attributed to
the fact that the measured voltages are obtained from neighboring nodes, where there
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are minimal relative voltage variations. The correlation coefficients for the other se-
lected pairs range from -0.043 (for the pair involving node 67 voltage magnitude and
the line 50-51 current magnitude) to 0.8293 (for the pair involving node 67 voltage mag-
nitude and node 40 voltage magnitude). In addition to the Fig. 3.2, the following figure

 

  
(a) (b) 

  
(c) (d) 

FIGURE 3.3: Pearson correlation coefficient: (a) of the voltage magnitude of
all nodes. (b) of the voltage magnitude and voltage angle of all nodes. (c)
of the voltage magnitude of all the nodes and the current magnitudes of all
the lines. (d) of the real part of the voltage of all the nodes and the real part

of the current of all the lines

gives a better picture of how the degree of linearity is changing on the whole system
with respect to the voltage magnitude of all nodes (Fig. 3.3 (a)), with respect to the volt-
age magnitude and voltage angle of all nodes (Fig. 3.3 (b)), with respect to the all nodes
voltage magnitude and lines current (Fig. 3.3 (c)), and even in the rectangular coordi-
nate with respect to the real parts of all nodes voltage and lines current (Fig. 3.3 (d)). It
is clear that the Pearson correlation coefficient of each variable with respect to itself is 1.
However, this measure is within the range of (-1,1) for the pairs including two different
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variables. Considering the voltage magnitude of the whole system, the Pearson corre-
lation coefficient (Fig. 3.3 (a)) is around 1 for all pairs including the neighboring nodes.
In the case of non-adjacent nodes, however, this measure has even reached the value of
around 0.4 for some pairs. For the pairs including the nodes’ voltage magnitude and
the nodes’ voltage angle, this measure is in the range of (0.07-0.4). This means that the
degree of linearity between these two variables is low. The degree of linearity could
reach the values around 0 for the pairs including the lines’ current magnitude and the
pairs including the lines’ current magnitude and the nodes’ voltage magnitudes (Fig.
3.3 (c)). It can be seen even the negative correlations for pairs including the lines’ cur-
rent magnitude and the nodes’ voltage magnitudes. Moreover, the same trends have
been seen with respect to the lines’ current angle. A similar observation has been also
seen between the real parts and imaginary parts of the variables in question in the rect-
angular coordinate. For instance, there are similar trends in both Fig. 3.3 (c) and Fig. 3.3
(d) for the pairs including the lines’ current and the voltage of the nodes in the polar and
rectangular coordinate, respectively. Finally, regardless of the type of system coordinate
(polar or rectangular), a linear relationship does not exist between PMU measurements
and most of the system states. Then, the ANN, as one of the powerful non-linear regres-
sion methods, has been exploited in this work to fulfill the requirements of this mapping
as explained in more detail in the next sections.

3.6 ANN-Based SE

Among AI methods, ANN is a common and powerful solution to establish an accurate
mathematical correlation between the input and output training data. According to the
universal approximation theorem [89], a feedforward multilayer perceptron network
with a linear output layer and at least one hidden layer featuring any "squashing" acti-
vation function (such as the logistic sigmoid activation function) can approximate any
nonlinear function. To map the synchrophasor measurements (inputs) to the system
states (outputs) in either polar or rectangular coordinate, a proper training algorithm,
later described in this section, is applied to a feedforward network consisting of input,
output, and hidden layers. This process is employed to build the data-driven distribu-
tion system state estimation (DDDSSE) in this dissertation:

DDDSSE : Z ANN−−−→ X (3.2)

Both polar and rectangular coordinates can be taken into account to map the synchropha-
sor measurements to the system states. Since the measurement accuracy has usually
been defined in polar coordinate for PMU measurements in most research work, such
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as [15] (1% for voltage and current magnitude and 1crad for voltage and current phase
angle measurements), this coordinate system has also been selected in this work to fulfill
the requirement of the following mapping:

DDDSSE : Z ANN−−−→ X(V, δ)

ANN, as a supervised learning method, requires training data, including input and
output datasets. In this dissertation, the training data is generated by means of a three-
phase power flow solver, which has been executed over a wide range of operating con-
ditions (thousands of random case scenarios) in which the load powers are randomly
varied. To consider the impact of environmental noise on the measurements, the PF
data corresponding to the measurements have been corrupted by Gaussian noise ( 3SD
= 1% for the voltage/current magnitudes and 3SD= 1crad for phase angles).

In addition to the training data, an appropriate node character, network architecture,
and learning algorithm should be exploited to minimize the estimation inaccuracy. The
main component in the ANN is the neuron. Each neuron is responsible for collecting
data from either inputs or other neurons and then scaling it via activation functions.
As already explained, a feedforward network consisting of an input, an output, and a
hidden layer shapes the network architecture for the proposed estimator. Each layer
consists of a set of neurons. In general, it is not possible to analytically calculate the
number of layers or the number of nodes to be used per layer in an artificial neural
network to address a specific real-world predictive modeling problem. As discussed
in [75], however, acceptable solutions for estimating voltage magnitudes are obtained
when two neurons are considered in the hidden layer. Considering system states classi-
fication with respect to voltage magnitude and phase angle in the output training data,
as explained in more detail later in this section, the same number of hidden neurons
(two neurons) is also considered in this work to obtain an accurate estimation of both
voltage magnitude and voltage angles. The number of neurons in the input and output
layers is equal to the number of synchrophasor measurements and the number of con-
sidered system states, respectively. To obtain more accurate estimation results, a greater
number of neurons (more than two) in the hidden layer or a greater number of hidden
layers (more than one) or both may be selected in the ANN architecture. However, a
larger ANN architecture may put the ANN-based estimator at risk of the overfitting
issue. In this respect, the number of neurons and layers can be gradually increased to
meet the required estimation accuracy. In addition to keeping the ANN architecture as
small as possible, the Bayesian regularization learning algorithm is used for training the
ANN in this work to make the estimator more robust against the overfitting concern.
This algorithm makes the estimator less likely to overfit the training patterns [90].
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As already pointed out, the flowing data through the ANN network is scaled via ac-
tivation functions. Referring to the universal approximation theorem, any squashing
activation function, such as the logistic sigmoid, can be used for the hidden neurons.
As explained later in this section, however, the hyperbolic tangent activation function
(tanh) typically performs better than the logistic sigmoid [89]. Therefore, this function
(instead of the logistic sigmoid) has been used in this work for the hidden neurons.

(a) (b) (c)

FIGURE 3.4: The output range of both tanh and the logistic sigmoid func-
tions and their rates of change

Fig. 3.4 shows the output range of both the tanh and logistic sigmoid functions. Since
tanh(0) = 0 and logsig(0) = 1

2 , the tanh function more closely behaves like the identity
function. Therefore, training a deep neural network y = bOy + OWy(tanh(IWyx + bIy))

would be similar to training a linear model y = bOy + OWy(IWyx + bIy) as long as the
activations of the network can be kept small. This makes training the tanh network
easier [89]. In addition, the output of an activation function in the hidden layer is fed
as an input to the nodes in the following layer. Therefore, when the sigmoid is the ac-
tivation function of the nodes in the hidden layer, the directions of the inputs of the
following layer (output of the sigmoid is always positive, as shown in Fig. 3.4-(a)) are
not changed. Accordingly, the connecting weights of nodes can either all increase or
all decrease at the same time in a single step of gradient descent during the training
process. By using the tanh activation function in the hidden layer instead, the sign of
inputs of the following layer can vary (the output of the tanh could be both positive and
negative values, as shown in Fig. 3.4-(b)). Therefore, the directions of the connecting
weights of nodes are independent of one another. This makes the learning more flexible
[91, 92]. Furthermore, since the rate of change of the tanh function is greater than that of
the sigmoid, as shown in Fig. 3.4-(c), the network with the tanh activation function may
be learned much more quickly. This is useful when dealing with big data, as the train-
ing method could quickly find the local or global minimum for the network using the
tanh activation function compared to the network consisting of the sigmoid activation
function [92].
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The training data mainly consists of various dimensions like volt, radians, and Am-
peres in this work. The differences within the scales throughout the entire variables
may make it difficult to train the estimator [93]. To improve the convergence and gen-
eralization tasks, the training data is generally normalized [93, 94]. In this respect, the
training input and output matrices are scaled into the range [-1, 1] in this work. To do
so, Equation 3.3 is used to process input and output training data matrices by mapping
row minimum and maximum values to [ymin ymax]=[-1 1]:

y =
(ymax − ymin)(x − xmin)

(xmax − xmin)
+ ymin (3.3)

In this work, each row corresponds to a measurement and a system state in the input
and output training matrices, respectively.

It should be noted that mapping the synchrophasor measurements to the system states
is a multi-output regression problem since all the system states are expected to be esti-
mated at the same time [95]. Although, in theory, based on the universal approximation
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FIGURE 3.5: Training ANNs on different groups of states

theorem, it is possible to fit a feedforward network to satisfy the requirements of this
mapping, there would be a problem with the processing time and memory when train-
ing the network in the case of large distribution systems. Distributed-based estimation
can tackle this issue. It is feasible to divide the target states into smaller groups, each
comprising a different combination of the system states. Then, a unique ANN is trained
to map the measurements to the states of each group. Thanks to synchronized PMU
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measurements, all the trained ANNs of the divided groups simultaneously receive the
measurement inputs. Consequently, all the system states are calculated at the same
time. To assess the efficiency of the distributed approach, three scenarios are evaluated
in which different ANNs, as shown in Fig. 3.5, are trained to map the measurements
from 4 PMUs (at nodes 51, 55, 67, and 91) to all phase-A system states of the test system
IEEE 123-bus network. In the first scenario, an ANN, as shown in Fig. 3.5-(a), is trained
to estimate all the system states. As the training process is rather demanding (trained
for nearly 10000s) in this case, the distributed scheme is considered in the second and
third scenarios. In this way, in the first step, the output training data is segregated into
two groups, with each group containing half of the number of states. In the second
scenario, the voltage magnitude and the phase angle of half of the nodes are grouped
in group 1, and the voltage magnitude and the phase angle of the remaining nodes are
gathered in group 2. In the third scenario, however, the voltage magnitude of all the

(a) (b)

(c) (d)

FIGURE 3.6: Standard deviation and average of the estimation errors

nodes is grouped in Group 1, and the phase angle of all the nodes is gathered in Group
2. In the second step, two ANNs are trained to map the PMU measurements to the
system states per group, as shown in Fig. 3.5-(b,c). The training process time for each
ANN takes nearly 2000 seconds, which is substantially less than the required time to
train only one ANN to estimate all the states. To assess the quality of the estimated
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states (explained in more detail in the results Section 3.9), the standard deviation and
the average of the errors are evaluated. The former indicator indicates how close the
obtained estimations are to the true value (PF data), and the latter indicator shows if
the estimator has bias. The corresponding results are shown in Fig. 3.6. Fig. 3.6-(a,b)
indicate that the estimated states, particularly in scenarios (b) and (c), are very close
to the true values in all three scenarios. Except for the trained ANN for scenario (c),
there are biases in the estimations of the trained estimators in scenarios (a) and (b). The
reason for this could be related to the distribution of the output data. Fig. 3.7 shows
how the normalized output data is distributed in scenarios (a) and (b). As can be seen,

FIGURE 3.7: Distribution of normalized states in scenario (a) and (b)

the data output is accumulated near the ranges [0.8,1] and [-0.8,-1]. The positively nor-

(a) (b)

FIGURE 3.8: Distribution of normalized states in scenario (c)

malized data are related to the voltage magnitude, and the negatively normalized data
correspond to the phase angle. In scenario (c), however, the distribution of output data
is in the range of [-1, 1] for both voltage magnitude and the phase angle, as shown in
Fig. 3.8-(a) and Fig. 3.8-(b), respectively. Compared to scenarios (a) and (b), the train-
ing algorithm has more flexibility to map the measurements to a wide output range in
scenario (c). In other words, it seems that the trained ANNs are overfitted to map the
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measurements into the pointed small output ranges in scenarios (a) and (b). To obtain
accurate estimation results without biases, the proposed ANN-based estimator consists
of two ANNs, as shown in Fig. 3.9 in this dissertation. One estimates the voltage magni-
tude, and the other calculates the phase angle. Considering these networks, the system
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FIGURE 3.9: ANN-Based Estimator

states are mathematically articulated based on the following linear systems:

V = bOv + OWv(tanh(IWv I + bIv)) (3.4)

D = bOδ + OWδ(tanh(IWδ I + bIδ)) (3.5)

where

V : Estimated voltage magnitude vector

D : Estimated voltage angle vector
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I : ANN input vector

IW : Weight vector of the ANN hidden neurons

OW : Weight vector of the ANN output neurons

R : Number of elements in ANN input vector

N : Number of elements in ANN output vector

n : ANN hidden neuron number

o : ANN output neuron number

The hyperbolic tangent terms correspond to the activation functions in the hidden layer.
According to the SE classifications outlined in Section 2.6, the proposed ANN-based
estimation approach is a node-voltage-based SE technique in polar coordinate in this
dissertation.

Considering the described basic vector calculations, the proposed estimator does not
involve the time-consuming calculations of the Jacobian matrix and the gain matrix
inverse, as in normal WLS algorithms. It also does not require network parameters to
calculate the grid states in real-time. In this context, the FLOPs number of the proposed
SE method is compared with those in other linear and non-linear techniques in the next
chapter. Based on this, the proposed ANN-based estimation solution is computationally
very low-demanding compared to other DSSE methods. Furthermore, compared to the
exploited WLS method in the results section, the computational cost of the proposed
approach is significantly low (a few milliseconds). Thus, considering the reporting rate
of fP MU > 1Hz, by coupling the PMUs to the proposed estimator, a very fast monitoring
system, which is the goal of this dissertation, is achieved.

The proposed automation architecture based on international standards (CIM, IEC 61850,
and so on) in the IDE4L project [96] can be used to exchange the required data (grid
model, measured values, GIS mapping, etc.) from the field to the operating stations.

To deal with changing the system configuration, the ANN weights corresponding to the
actual configuration of the grid section are selected based on the output of the configu-
ration identification (CI) unit proposed in [75].

Noise in the environment is another important aspect to be dealt with by the estimator.
In this context, the PMU measurement noise follows a tailed distribution, which is non-
Gaussian ([20], [21]). Despite the tailed distribution of the PMU measurement noise, as
shown in Section 3.9, adding random Gaussian noise to the input training data makes
the estimator robust against measurement uncertainty and the impact of the noise.
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Providing the training input and output datasets, the ANN-based estimator is trained
through a supervised learning method. This, in turn, overcomes the observability is-
sue since the trained estimator calculates one good solution even with very few inputs.
However, based on the observability assessment method used in this dissertation (ex-
plained in Subsection 3.8) and the shown results in Subsection 3.9, observability im-
proves with considering more inputs in the training process. In this regard, PMUs can
enhance system observability since they provide more inputs (the number of measured
variables) to the estimator compared to traditional measurement devices. Via multiple
PMU channels, it provides the measured voltage phasor (voltage magnitude and phase
angle) of the connected bus and also the measured current phasors (current magnitude
and phase angle) of lines that connect the PMU bus to the adjacent buses. As a result,
by exploiting PMUs, the number of required measurement units to achieve a target es-
timation accuracy is decreased.

3.7 Three-Phase ANN-Based SE

Unlike the transmission networks, the presence of unbalanced loads, non-transposed
lines, and single, double, and three-phase lines causes unbalanced conditions in dis-
tribution grids. Thus, the three-phase model of the power system with all the phase
quantities, as well as the phase couplings (as shown in Fig. 3.10), is required in the
operation of distribution systems. Hence, the TSSE methods based on the positive se-
quence model are not the right techniques for distribution systems. In addition to this,
the formulation of the full three-phase system model, instead of a single-phase one,
significantly adds more computational burden in performing the classical SE problems
[97]. In this respect, the proposed ANN-based estimator is a powerful technique since
not only is it a lightweight solution from the computational point of view, but also it can
be easily implemented for all the system phases. To do so, an independent ANN-based
estimator is dedicated to each phase of the system while its input training data consist
of the synchrophasor measurements of all the phases. For instance, Fig. 3.10 shows the
PMU three-phase measurement inputs. Compared to traditional monitoring units, a
fewer number of measurement units are required in this approach since the PMUs mea-
sure the voltage and current phasors for all three phases of the system (through PMU
channels). The input-output training data is calculated by a three-phase PF method
or obtained from the three-phase load flow DSO archived data. Therefore, the gener-
ated data considers the phase coupling. The proposed PF method described in Chapter
6 generates the training data for the considered case studies in this dissertation. The
training output elements are Va, δa, Vb, δb, and Vc, δc. As the training and the execution
of the ANN-based estimator for each phase are independent, these tasks are executed in
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FIGURE 3.10: PMU Three-Phase Measuremnt Inputs

parallel. The algorithm in Fig. 3.11 shows how the three-phase ANN-based estimator is
built in offline mode. In the first step, the three-phase load flow solver calculates the bus
voltage phasors and the line current phasors for all three phases of the system over a
large number of random case scenarios. Then, in the second step, the generated PF data
set is segregated into three smaller data packages corresponding to each phase. To make
the estimator robust against the impact of noise, the calculated input data correspond-
ing to the synchrophasor measurements are corrupted by random Gaussian noise. In
the last step, ANN-based estimators are trained by the Bayesian regularization learning
algorithm to synthesize the weights and biases. The created three-phase estimator is
ready to be used by DSOs to operate their networks based on power quality standards
like EN 50160 [5] or EN 61000 [6]. For instance, they can check if the system voltage is
confined within its limits or they can quantify the voltage unbalance to efficiently oper-
ate the distribution grids.
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FIGURE 3.11: Algorithm 1
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3.8 Observability Assessment

The system observability check is an SE prerequisite. By providing a set of measure-
ments (considering their locations), this assessment indicates whether the estimator is
able to calculate the system states. In this respect, the probabilistic observability ap-
proach explained in [68] has been used to make the observability check of the proposed
ANN-based estimator possible. Considering normal operating conditions, a network is
classified as observable by this approach if the estimated states are accurate enough to
ensure that the critical grid variables are within their limits (defined in the power qual-
ity standards). In the offline mode, accordingly, the following steps should be taken into
account for the observability assessment of the ANN-based estimator over the provided
testing data set:

1. Confidence Interval Calculation: to assess the accuracy of the estimated value,
this interval is considered. The endpoints of the confidence interval (CI) are repre-
sented by the maximum expected difference between the estimated variable and
its true value over the provided test data. Moreover, with a predefined confidence
level (CL), the true value is expected to be within this interval. To put it differ-
ently, CL is represented as the probability that the true value lies outside of the CI.
Thus, the lower CL leads to a higher risk, and vice versa. To calculate the CI, the
probability density function (PDF) of the estimated variable is obtained. As the
ANN-based estimated states have a Gaussian distribution, the CI is calculated by
multiplying the standard deviation (SD) by the coverage factor (k) associated with
the predefined CL. Considering n test samples, the CI for the mean μ and different
CLs is represented as:

[ai,min, ai,max] =

[
μn − k.SD√

n
, μn +

k.SD√
n

]
(3.6)

where ai,min and ai,max are the CI endpoints.

2. Required Accuracy of an Estimated Variable: from the safe operating point of
view, the true value of the grid voltage should be confined within its operational
constraints described in the power quality standards. To satisfy the working lim-
its, then, the estimated states should be sufficiently accurate. In this respect, the
difference between the estimated voltage value and its constraints (e.g. ±10 % as
per EN 50160) is the considered criterion for the required accuracy.

MAi,min = [Lmin − Xi] (3.7)

MAi,max = [Lmax − Xi] (3.8)
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where Lmin and Lmax are the minimum and maximum values of the limits, respec-
tively.

3. Worst Case Scenarios: in spite of infinite operating conditions, only a limited
number of worst-case scenarios are considered. The network’s operating limits
are most likely to be violated in these scenarios. In general, there are two worst-
case scenarios:

(a) maximum load and minimum generation

(b) minimum load and maximum generation

4. Observability Criterion: given the above-mentioned steps, a network fulfills the
observability criterion if the accuracy of every estimated state is equal to or greater
than their respective required accuracy values.

ai,min ≥ MAi,min ∧ ai,max ≤ MAi,max (3.9)

5. Observability Level (Compliance Ratio): obtaining the ratio between the number
of estimates (those that satisfy the observability criterion) and the total number of
performed simulations. For example, if the compliance ratio of an estimated vari-
able is equal to 0.99, then the confidence of the estimated value to satisfy Equation
(3.9) is 99% of the time.

Finally, a network is classified as observable if the observability level of the system state
is equal to or greater than the desired DSO value. In the case that a system does not
meet the expected compliance ratio, installing additional PMUs improves the accuracy
of estimations, as shown in the next section.

3.9 Results

The ability of the proposed ANN-based estimator for calculating accurate estimations is
evaluated in this section. Initially, its performance is compared with the classical WLS-
based method. The robustness of the proposed ANN-based estimator against various
noise magnitudes and loading conditions has also been assessed. In addition to syn-
chrophasor measurements, other types of measurements can be added to the inputs. In
this regard, the estimator’s performance when power measurements are included in the
inputs is also evaluated. It has been demonstrated that the proposed estimator is robust
against both Gaussian and non-Gaussian noises. Finally, its observability is checked
using the proposed probabilistic method. To conduct the evaluations, the IEEE 123-bus
benchmark test system, as shown in Fig. 3.12, has been used. This system operates at
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FIGURE 3.12: IEEE 123-bus Benchmark Test System

the nominal voltage (Vn) of 4.16 kV. The grid parameters and the load values are avail-
able in [98]. All the tests have been executed using the MATLAB platform on an Intel
Core i5-6500 CPU @ 3.20 GHz with 8 GB of RAM.

1. ANN- vs WLS-Based Estimator

Through Monte Carlo analysis, the performance of the proposed ANN-based esti-
mator is compared with the rectangular WLS branch-current estimator explained
in [54] in this section. The chosen WLS method is as accurate as other WLS esti-
mators but has a lighter computational burden. Thus, the average and standard
deviation (SD) of the errors of voltage magnitude and its angle are considered as
accuracy criteria for each phase of the system. The training data, including mea-
surement inputs and system states, are produced by the PF calculations, ensuring
that the variation of active and reactive power of loads is based on the normal dis-
tribution, as per PF calculation. For the WLS estimator, pseudo-measurements of
powers are generated similarly to the load variations to produce the training data
sets, which are then corrupted by random noise with uncertainty equal to 50%.
The maximum execution time values of both estimators during the Monte Carlo
trials are chosen to assess how much faster the proposed ANN-based estimator is
compared to the WLS method. To train and execute the estimator, the following
assumptions are considered:

• The training datasets include 20,000 different operating conditions. To this
end, the number of Monte Carlo simulations is adjusted to 20,000.

• During the PF calculations, the loads are normally varied in such a way that
their provided values in [98] are centered as the mean value, and the desired
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SD is 100%
3 . Under these assumptions, the system voltage drop exceeds 10%

of the system nominal voltage along the feeder. Furthermore, over the per-
formed 20,000 PF calculations, as shown in Fig. 3.13, the voltage variation
per node for phase A changes from nearly 3% to 8%. However, the maxi-
mum voltage variation is approximately 6.5% and 7% for phases B and C,
respectively.

FIGURE 3.13: Node voltage variation w.r.t nominal voltage

• The inputs are synchrophasor measurements monitored at the following nodes:

(a) Set 1: 51, 67.

(b) Set 2: 51, 55, 67, and 91.

• To model the PMU measurements, Gaussian errors with 3 SD = 1% and 3
SD = 1 crad are added to the voltage/current magnitudes and phase angles,
respectively. These values are calculated by the PF solver and correspond to
the synchrophasor measurements.

As already mentioned, the estimators are compared with each other from the fol-
lowing perspectives:

(a) Estimator Execution Time: the execution time of both WLS- and ANN-based
estimators elapsed during the Monte Carlo trials. The heaviest computational
cost for the ANN-based estimator was around a few milliseconds (≈ 4ms),
and for the WLS-based estimator, it was around a second. However, the
WLS-based estimator under test was not optimized to perform real-time fast
operations.

(b) Average Error: the estimator bias is the difference between the population
mean of the estimated values and the true values. Thus, the average value
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[99] of the estimation error represents this quality measure. Considering the
already measured sets (Set 1 and Set 2), the maximum mean of estimated
state errors for voltage magnitude and phase angle, calculated over all nodes,
is tabulated in Tables 3.1 - 3.4. Considering two termination tolerance values
of 10−3 and 10−5 for the WLS-based estimator, these results are tabulated per
phase in Table 3.1 and Table 3.3 for voltage magnitude and voltage angle esti-
mation errors, respectively. For the ANN-based estimator, the corresponding
results are indicated in Table 3.2 and Table 3.4.

Input Set
Termination tolerance value

10−3 10−5

Phase A Phase B Phase C Phase A Phase B Phase C

1 0.2296 0.3831 0.1332 0.1808 0.1039 0.3027

2 0.2814 0.1837 0.2045 0.3363 0.1150 0.1672

TABLE 3.1: WLS-Based Estimator: Maximum Average Voltage Magnitude Error (V)

Input Set Phase A Phase B Phase C

Set 1 0.2185 -0.0236 0.1947

Set 2 0.0748 0.1070 0.2323

TABLE 3.2: ANN-Based Estimator: Maximum Average Voltage Magnitude Error(V)

Input Set
Termination tolerance value

10−3 10−5

Phase A Phase B Phase C Phase A Phase B Phase C

1 0 2.53e-05 8.86e-05 4.52e-05 0 4.12e-05

2 0 1.04e-04 6.04e-05 9.42e-05 4.43e-05 1.53e-04

TABLE 3.3: WLS-Based Estimator: Maximum Average Voltage Angle Error (rad)

Input Set Phase A Phase B Phase C

Set 1 1.0880e-04 5.9315e-05 3.8435e-05

Set 2 1.1971e-04 7.6084e-05 1.7222e-04

TABLE 3.4: ANN-Based Estimator: Maximum Average Voltage Angle Error (rad)

According to the above-tabulated results, there is no biased under- or overes-
timation of the true values, as the maximum average error of both estimators
is close to zero.

(c) Standard Deviation of the Error: as another quality measure, the precision
of the estimator is evaluated by the statistical variance [99] of the estimation
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errors in this dissertation. To do so, the maximum SD of errors for the esti-
mated voltage magnitudes and phase angles observed over all the network
nodes is summarized in Tables 3.5 - 3.8. It should be noted that, for 68.2%
of the generated random operating conditions, the estimation error of the
magnitude and the phase angle over all the nodes falls within the tabulated
SDs as per phase. As shown in Tables 3.5 and 3.7, in general, more accurate
estimation results are obtained by the WLS-based estimator when there is a
lower termination tolerance value. Nevertheless, the tabulated results for the
ANN-based estimator in Tables 3.6 and 3.8 are more accurate in comparison
with those obtained by the WLS-based estimator. The main reason for this
may come from the fact that the ANN-based estimator is trained with the
system states that are obtained by the PF solver, which uses the exact loading
values. However, the utilized pseudo-measurements [45] in the WLS meth-
ods are usually extracted from load profiles that are not exact and deteriorate
the estimation accuracy in these problems.

Input Set
Termination tolerance value

10−3 10−5

Phase A Phase B Phase C Phase A Phase B Phase C

1 8.3740 9.6753 9.5616 8.4642 7.7906 8.6967

2 8.1376 8.7192 8.9338 7.9962 7.4531 8.2378

TABLE 3.5: WLS-Based Estimator: Maximum SD of Voltage Magnitude Error (V)

Input Set Phase A Phase B Phase C

Set 1 6.5815 7.1454 9.6701

Set 2 6.3730 6.2742 8.3752

TABLE 3.6: ANN-Based Estimator: Maximum SD of Voltage Magnitude Error (V)

Input Set
Termination tolerance value

10−3 10−5

Phase A Phase B Phase C Phase A Phase B Phase C

1 0.0049 0.0040 0.0046 0.0044 0.0039 0.0045

2 0.0045 0.0039 0.0045 0.0044 0.0038 0.0045

TABLE 3.7: WLS-Based Estimator: Maximum SD of Voltage Angle Error (rad)

Input Set Phase A Phase B Phase C

Set 1 0.0030 0.0031 0.0039

Set 2 0.0028 0.0025 0.0034

TABLE 3.8: ANN-Based Estimator: Maximum SD of Voltage Angle Error (rad)
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In general, more accurate estimation results are obtained when the input of
the estimators consists of a larger number of measurements. As can be seen
in the tables above, using measurement Set 2 rather than Set 1 yields more
accurate estimation results.

2. ANN-based Estimator Operating Point

As a supervised learning method, ANN has been used to satisfy the requirement
of the non-linear regression state estimation model in this dissertation. Consid-
ering thousands of random operating scenarios, the training data is generated by
PF calculations. To make the ANN robust against environmental noise, the in-
put dataset corresponding to the available measurements is taken from the PF re-
sults and corrupted by Gaussian noise according to the uncertainty characteristics
of the measurement. The learning method trains the ANN to map the modeled
measurements to the system states. Then, upon receiving the measurements, the
trained ANN-based estimator calculates the system states based on what it has
learned during the learning process. The trained ANN-based estimator accurately
estimates the states as long as there are no changes in the system topology, mea-
surement accuracy, load variation per node, and so on. Changes in the pointed
conditions may either impact the estimation accuracy or impose bias on the ob-
tained estimations. For instance, five scenarios (a-e) are considered in Fig. 3.14
to show the impact of measurement uncertainty on the estimation accuracy of the
phase-A nodes over 2000 test random cases. It is assumed that there are PMUs at
nodes 51, 55, 67, and 91 in all of these scenarios. In scenario (a), the measurement
uncertainty of inputs is the same as the considered measurement uncertainty (e.g.
3SD = 1% for the voltage/current magnitudes and 3SD = 1crad for phase angles)
during the training process. According to the obtained results in this scenario (as
shown in Fig. 3.14-(a)), 3SD of the voltage magnitude error and voltage angle er-
ror are 0.5268% and 0.5221 crad, respectively. By increasing the uncertainty of the
angle measurements to 2 crad in scenario (b), 3SD of the voltage magnitude er-
ror and voltage angle error are increased to 0.5605% and 0.7989 crad, respectively.
This scenario shows that changing the measurement angle uncertainty mainly im-
pacts the accuracy of voltage angle estimations and not the estimation accuracy of
the voltage magnitude. The vice versa results have been seen in scenario (c) i.e.
changing the measurement magnitude uncertainty mainly impacts the accuracy
of voltage magnitude estimations and not the estimation accuracy of the voltage
angle. The estimation uncertainty of both voltage magnitude and phase angle
is increased to 0.8496% and 0.8195 crad, respectively, in scenario (d) where 2 %
and 2 crad uncertainty are considered for the magnitude and angle measurements.
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Scenario Measurement 
Uncertainty Phase A

a

UVm = 1%

UVδ = 1 crad

UIm = 1%

UIδ = 1 crad

Average SD of voltage 
magnitude error (V) =  4.2346 V

Average SD of voltage angle 
error (rad) = 0.0017 rad

b

UVm = 1%

UVδ = 2 crad

UIm = 1%

UIδ = 2 crad
Average SD of voltage 

magnitude error (V) =  4.4872 V
Average SD of voltage angle 

error (rad) = 0.0027 rad

c

UVm = 2%

UVδ = 1 crad

UIm = 2%

UIδ = 1 crad
Average SD of voltage 

magnitude error (V) =  6.4884 V
Average SD of voltage angle 

error (rad) = 0.0018 rad

d

UVm = 2%

UVδ = 2 crad

UIm = 2%

UIδ = 2 crad
Average SD of voltage 

magnitude error (V) =  6.8020 V
Average SD of voltage angle 

error (rad) = 0.0027 rad

e

UVm = 10%

UVδ = 1 crad

UIm = 10%

UIδ = 1 crad
Average SD of voltage 

magnitude error (V) =  27.926 V
Average SD of voltage angle 

error (rad) = 0.0035 rad

FIGURE 3.14: Impact of measurement uncertainty on the estimation accuracy
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Maintaining the angle measurement uncertainty at 1 crad and increasing the mag-
nitude measurement uncertainty to 10 % yields the voltage magnitude and phase
angle estimation uncertainties of 3.4882% and 1.0509 crad, respectively, in scenario
(e). In this case, similar to scenario (c), the magnitude measurement uncertainty
has the dominant impact on the accuracy of voltage magnitude estimations and
not on the estimation accuracy of the voltage angle.

Changing the measurement uncertainty impacts the estimation accuracy without
imposing any bias. However, when changing the base value of the load per node,
biases are introduced in the estimation results. To illustrate this impact, two sce-
narios are considered in Fig. 3.15. It is assumed that PMUs are present at nodes
51, 55, 67, and 91 in these scenarios. In scenario (a), similar to the load variation
in the training phase, the trained ANN-based estimator is tested over 2000 ran-
domly generated test cases in which the loads are randomly changed over their
base values (per node). In scenario (b), however, the loads are randomly varied
to two times their base values (per node) during the tests. As can be seen, chang-
ing the base values of the load deteriorates the estimation quality since biases are
present in both voltage magnitude and phase angle estimations. Additionally, the
distribution profiles of the estimations are not Gaussian in this scenario (b).

Scenario Loading Phase A

a 1 * base load

b 2 * base load

FIGURE 3.15: Impact of changing the loads on the estimation quality
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3. Adding Power Measurements in the Input Set

Although the main focus of this dissertation is using synchrophasor measure-
ments to perform state estimation by the proposed estimator, it is also possible
to include other types of measurements (such as power and even meteorological
measurements) in the input set. Considering the fact that some power measure-
ments might already be installed in the substations, in addition to the synchropha-
sor measurements, the flow of active and reactive powers (with a measurement
uncertainty of 1% [100]) is also considered in the input set in this part. To this end,
the following input sets are used in training the proposed ANN-based estimator:

(a) Set 1: synchrophasor measurements at nodes 51 and 67

(b) Set 2: active and reactive power flow at substation and synchrophasor mea-
surements at nodes 51 and 67

(c) Set 3: synchrophasor measurements at nodes 51, 55, 67, and 91

(d) Set 4: active and reactive power flow at substation and synchrophasor mea-
surements at nodes 51, 55, 67, and 91

The accuracy of estimation results, in terms of the maximum SD of the voltage
magnitude error and the maximum SD of the voltage angle error, is provided in
Table 3.9. As can be seen, in general, adding power measurements to the input set
improves the estimation accuracy. The summarized average of estimation results
in Table 3.10 indicates that there are no biases in the estimations.

Input Set
Maximum SD of Vm error (V) Maximum SD of Vδ error (rad)
Phase A Phase B Phase C Phase A Phase B Phase C

1 6.5815 7.1454 9.6701 0.0030 0.0031 0.0039

2 6.7221 6.8156 9.2302 0.0027 0.0025 0.0034

3 6.3730 6.2742 8.3752 0.0028 0.0025 0.0034

4 6.5401 6.2858 8.0970 0.0026 0.0022 0.0031

TABLE 3.9: Maximum SD of Voltage Magnitude and Voltage Angle Error

Input
Set

Maximum mean of Vm error (V) Maximum mean of Vδ error (rad)
Phase A Phase B Phase C Phase A Phase B Phase C

1 0.2185 -0.0236 0.1947 1.08e-04 5.93e-05 3.84e-05

2 0.1015 0.3271 0.0635 4.03e-05 6.08e-05 3.77e-05

3 0.0748 0.1070 0.2323 1.19e-04 7.60e-05 1.72e-04

4 0.1916 -0.0763 0.0999 8.47e-05 4.72e-05 3.11e-05

TABLE 3.10: Maximum Average of Voltage Magnitude and Voltage Angle Error
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4. Noise Robustness of the ANN-Based Estimator

It is shown in [75] that the trained monitoring unit is robust against noise when
the training input data are corrupted by random Gaussian errors. However, its
effectiveness against non-Gaussian noise has not been taken into account. Here,
the robustness of the ANN-based estimator against noise is assessed:

(a) Gaussian Noise: as already pointed out, an estimator trained with input cor-
rupted by Gaussian noise is robust against this type of noise. In this manner, a
Gaussian error with 3SD = 1% and 3SD = 1 crad is added to the phasor mag-
nitude and phasor angle of the calculated synchrophasor measurements (via
PF solver), respectively. For instance, Fig. 3.16 shows the corrupted voltage
magnitude of node 67 during the 20,000 Monte Carlo simulations. Addition-
ally, the other inputs are similarly corrupted with Gaussian noise.

FIGURE 3.16: Corrupted voltage magnitude of the node 67 by the Gaussian noise

Providing training input data Set 2 (synchrophasor measurements at nodes
51, 55, 67, and 91) and adding the input elements with Gaussian error, the
performance of the trained estimator in estimating the voltage magnitude at
each node is shown in Fig. 3.17.

FIGURE 3.17: Per Node voltage estimation error under the Gaussian Noise
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The same performance has been observed for the voltage angle on the other
phases (Phase B and Phase C) as well. As can be seen, there is no bias in
the estimated voltage magnitude of all the nodes. Moreover, the estimator
calculates very accurate estimations.

(b) Non-Gaussian Noise: considering the fact that the PMU measurement noise
follows a tailed distribution, non-Gaussian noise, created by the mixture of
two different Gaussian distributions with the following components, is added
to the input elements:

FIGURE 3.18: Node 67 corrupted voltage magnitude by the non-Gaussian noise

i. Gaussian distribution 1: (Mean, SD) = (−2.40V, 2.64V)

ii. Gaussian distribution 2: (Mean, SD) = (4.8V, 7.93V)

Fig. 3.18, as an example, displays the Gaussian mixture distribution error of
the voltage magnitude at node 67. The same distribution is applied to the
other inputs when assessing the performance of the estimator.

FIGURE 3.19: Per Node Voltage estimated valu of phase A under the non-Gaussian
Noise

By conducting 20,000 Monte Carlo tests, it has been found that the proposed
ANN-based estimator is robust against non-Gaussian noise. Its estimations
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exhibit no bias and are highly accurate, as illustrated in Fig. 3.19. This ro-
bustness is also evident in voltage angle estimation and other phases.

5. Observability Check

The observability of the proposed ANN-based estimator, according to the sug-
gested probabilistic observability approach, is numerically quantified here, as-
suming that the desired compliance ratio and the confidence level (CL) are 0.99
and 95 % respectively. The considered lower bound voltage limit in the exploited
passive grid is 2161.6 V, (Vn − (0.1Vn)). In a stepwise manner, various ANN-
based estimators, based on the following synchrophasor measurement sets, were
constructed.

• Set 1:V67, δ67.

• Set 2:V67, δ67, V51, δ51.

• Set 3:V67, δ67, V51, δ51, V55, δ55.

• Set 4:V67, δ67, V51, δ51, V55, δ55, V91, δ91.

In this study, 10,000 Monte Carlo tests were conducted to calculate the observ-
ability level of the ANN-based estimators created. As explained in the following,
system observability is achieved when the estimator is trained with the input set 4.
In this regard, the voltage estimation error bars across all grid nodes and the con-
vergence trend of the compliance ratio for the non-observable nodes are depicted
in Fig. 3.20. All grid nodes, except N110, N111, N112, N113, and N114, are fully
observable with the estimator trained using input Set 1, resulting in a calculated
compliance ratio of 100. However, Fig. (3.20-a) illustrates the error bars corre-
sponding to the mentioned nodes (N110, N111, N112, N113, and N114) exceeding
the lower bound voltage constraint (depicted by the red dotted line). For further
insight, Fig. (3.20-b) indicates that only nodes N113 and N114 are not observable,
as the compliance ratio for these nodes (N110, N111, N112, N113, and N114) con-
verges to 99.98, 99.60, 99.30, 95.30 and 93.55, respectively, over 10000 simulation
tests. Therefore, only nodes N113 and N114 fail to meet the desired compliance
ratio, necessitating additional measurements to achieve the desired observability
level. By incorporating additional synchrophasor measurements from Node 51,
the compliance ratio is increased. However, Fig. (3.20-c) shows that the voltage
constraint of the mentioned nodes are crossed. As illustrated in Fig. (3.20-d) ,
nodes N114 and N115 remain unobservable. While nodes N110, N111, and N112
do not exceed the voltage limit (as shown in Fig. (3.20-e)) when using inputs from
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 3.20: Observability using different PMUs. Voltage estimation error bar: (a) a PMU is on
N67, (c) PMUs are on N67 and N51, (e) PMUs are on N67, N51, and N55, and (g) PMUs are on
N67, N51, N55, and N91. Observability level: (b) a PMU is on N67, (d) PMUs are on N67 and

N51, (f) PMUs are on N67, N51, and N55, and (h) PMUs are on N67, N51, N55, and N91.
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Set 3, Fig. (3.20- f ) reveals that nodes N113 and N114 fail to achieve 0.99 observ-
ability. Finally, the desired system observability is achieved when the estimator
is trained using measurement inputs from Set 4. In this case, not only is there no
overlap between the error bars and the voltage limit (as shown in Fig. (3.20-g)),
but Fig. (3.20-h) also indicates that the compliance ratios for all five nodes are
above 0.99. For other phases (phase B and phase C), observability is addressed
using only measurements from Set 1.

3.10 Conclusion

A new distribution system state estimation, exploiting artificial neural networks, is in-
troduced in this chapter. Although the accuracy of the proposed data-driven model is
comparable to the classical model-based WLS state estimation technique, it is executed
significantly faster than model-based solutions as it does not involve the calculation of
the Jacobian matrix and the gain matrix inverse. As shown in the results section, the
computational cost of the proposed data-driven method is in the range of just a few
milliseconds. Moreover, it has been described how the proposed estimator can be easily
expanded for all system phases to recognize the system’s unbalanced conditions and
how observability is achieved by exploiting a few PMUs. It has also been explained
that when input measurements are provided by the PMUs, it is possible to quickly cap-
ture the behavior of the distribution grids within a range of seconds. Consequently, the
monitoring system, consisting of the proposed ANN-based estimator and the PMUs,
can track any fast control actions occurring in the distribution networks.
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Chapter 4

Distribution Systems State Estimation

Computational Complexity

In this chapter, the computational complexity of different types of DSSE methods, in-
cluding non-linear and linear WLS-based techniques, and the proposed data-driven
ANN-based approach, is compared across various sizes of distribution networks. This is
done through the elapsed time, serving as a machine-dependent indicator, and FLOPs,
acting as a machine-independent measure.

4.1 Introduction

As discussed in Chapter 1, there are fast and significant changes in the active dis-
tribution system states (e.g., the voltage magnitude and the phase angle) due to fre-
quent topological changes and the intermittency of renewable and distributed energy
resources. Depending on the requirements of the DSO, a real-time snapshot of the cur-
rent operating state of the entire distribution grid should be provided at a specific time
granularity by the monitoring system. In this respect, the computational burden of the
used DSSE method, as the core function in the monitoring system, should be taken
into account in the designing procedure, since its reporting rate is limited between the
reporting rate of the measurement units and the system operator’s expected time res-
olution for applying automation functionalities, such as forecast algorithms, the coor-
dinated control of DERs, on-load tap changers, and SCADA systems [15]. Commonly,
elapsed time is the used indicator for assessing the computational cost of DSSE meth-
ods in the literature [12, 25, 74, 81, 101–104]. However, this time is a machine-dependent
measure since it is affected by the properties of the machine on which the algorithms,
including DSSEs, are being run. These machine properties, for example, are clock rate,
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pipelines, parallel processing, caches, storage hierarchy, programming language, com-
piler, and even the pair of jobs being executed. As a result of these machine depen-
dencies, nevertheless, this measure is not a reliable indicator and might misguide the
system designer to pick out a fast enough estimator if the benchmark test grid consists
of a small number of nodes and measurements. To understand to what extent a DSSE
technique can run quicker than another, regardless of data acquisition and bad data de-
tection steps, this dissertation has exploited the FLOP as a machine-independent crite-
rion instead of elapsed time. In this way, the number of FLOPs, per iteration in the case
of iterative solvers, needed for executing different DSSE methods including non-linear
[16, 46, 50, 51, 105, 106] and linear WLS-based [18, 19] techniques, and the proposed
data-driven ANN-based approach [12], are counted and compared with each other in
this chapter. The gain matrix inversion is the heaviest computational part in solving
the non-linear DSSE methods. The required FLOPs for the matrix inversion cubically
increase with the matrix size. In the case of the DSSE gain matrix, the matrix size is
equal to the number of nodes in the distribution grids, which is typically a large num-
ber. Therefore, this matrix is heavily inverted for large distribution systems. To subside
the computational burden, the gain matrix can be factorized into its Cholesky factors [9].
In [46], moreover, the gain matrix can be decoupled into the real and imaginary parts,
and as shown in this chapter, the required number of FLOPs quadratically increases
with the number of nodes. To further alleviate the computational burden, exploiting
the PMU measurements in the rectangular coordinate leads to the linear WLS-based
DSSE method in [18, 19]. Based on the counted FLOPs for this case, the computational
cost is linearly dependent on the product of the number of nodes and the number of
measurements. As expected, therefore, it runs quicker than the non-linear problems.
As a model-based technique, the laws of electricity have been applied to derive this
linear problem. On this basis, this method needs the grid parameters in its problem
formulation. To be independent of the grid model, [10–12, 75] have used ANN to per-
form the state estimation. These approaches are tremendously fast. In the context of the
proposed ANN-based estimation in this dissertation, the required number of FLOPs is
linearly dependent on the sum of the number of nodes and the number of measure-
ments. Consequently, it is executed more quickly than the pointed linear WLS state
estimation problem. This chapter, then, shows how the computational complexity for
pointed DSSE techniques is evaluated based on the FLOPs. It is worth noting, more-
over, the counted FLOP numbers could guide the system designer to select a proper
central processing unit (CPU) on which the DSSE algorithm would be run [107, 108]. In
the rest of this chapter, the FLOP as a machine-independent complexity measure is in-
troduced and based on which the computational burdens of the pointed DSSE methods
are derived and compared with their computational burdens in terms of elapsed time.
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4.2 Computational Complexity Based on FLOPs

As a machine-independent measure, the computational complexity of a solver can be
represented in terms of floating-point operations or FLOPs required to find the solu-
tion. In a mathematical operation, a FLOP is considered a basic unit of computation,
including addition, subtraction, and multiplication or division. This criterion is used in
practical situations when a rough estimation of the solver’s computational burden is in-
teresting. Then, compared to the elapsed time affected by machine-dependent aspects
like clock rate, pipelines, parallel processing, caches, storage hierarchy, programming
language, compiler, and even the pair of jobs being executed, the FLOP mathematically
delves into the complexity of an algorithm like the DSSE. Considering the matrix mul-
tiplication of C = AB (where A ∈ IRm×n and B ∈ IRn×p), as an example, the result is
obtained through the dot product of matrix A and B as:

cij =
n

∑
k=1

aikbkj

Where each cij requires n multiplies and n − 1 adds. Thus, the required number of
FLOPs for this product is represented as:

O(C) = O(AB) = mp(2n − 1) = 2mnp − mp

As an effective approach, then, this criterion is exploited in this dissertation to obtain
a rough computational cost estimation of the proposed ANN-based estimator. In this
context, moreover, this complexity is compared with that in the pointed linear and non-
linear WLS-based estimators in the following section.

4.3 DSSE Computational Complexity Based on FLOPs

Considering the pointed ANN-based estimation approach [12], as well as the non-linear
methods [16, 46, 50, 51, 105, 106] and linear WLS-based methods [18, 19] for state estima-
tion, their computational complexities are derived based on the FLOP in the following
subsections. For the sake of simplicity, the required FLOPs for calculating the Jacobian
matrices in the WLS methods are neglected in this dissertation. Additionally, this com-
plexity is counted per iteration in the case of non-linear solvers.
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4.3.1 Normal WLS-Based Estimation Method

As explained in Subsection 2.6.1, the system states are iteratively calculated using Equa-
tion 2.4, ensuring that an appropriate tolerance is reached for Δxk. Neglecting the mea-
surement models and the calculation of the Jacobian matrix, the required FLOPs to up-
date the states in this iterative approach are counted per iteration by assessing the nec-
essary FLOPs for the indicated sub-matrices, which are numbered based on their order
in the calculation process:

xk+1 =

[M5]n×1︷ ︸︸ ︷

xk + G−1
k

[M3]n×1︷ ︸︸ ︷
HT

k W[

[M1]m×1︷ ︸︸ ︷
z − h(xk)]︸ ︷︷ ︸
[M2]m×1︸ ︷︷ ︸

[M4]n×1

(4.1)

Where n in the matrix dimension is equal to the number of states
(
3(2N − 1)

)
, and m

is the number of measurement inputs. Thus, the required FLOPs to update xk+1 are
counted over the ordered sub-matrices:

Order 1 : O([M1]m×1) = O([z]m×1 − [h(xk)]m×1) = m

Order 2: O([M2]m×1) = O([W]m×m [M1]m×1) = 2m2 − m

Knowing that the transposition operator needs no FLOP [109], the complexity of matrix
M3 is:

Order 3: O([M3]n×m) = O([HT
k ]n×m [M2]m×1) = 2nm − n

According to [110], the matrix inversion operation requires n3 FLOPs. Therefore, the
complexity over the next order is:

Order 4: O([M4]n×1) = O([G−1]n×n [M3]n×1) = n3 + 2n2 − n

Taking into account the n adds in M5, the corresponding required number of FLOPs is
counted in the last order as:

Order 5: O([M5]n×1) = O([xk]n×1 + [M4]n×1) = n

Finally, the required total number of FLOPs per iteration in this approach is obtained by
the sum of FLOPs over the pointed orders:

OEstimator =
order

∑
i=1

O(Mi) = n3 + 2n2 + n(2m − 1) + 2m2 (4.2)
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The most demanding operation in the indicated orders is related to the gain matrix
inversion. To deal with this heavy burden, instead, the gain matrix can be factorized
into either its QR or Cholesky factors [9, 110]. To demonstrate how this decomposition
can alleviate the computational complexity, only the Cholesky method is considered in
this dissertation, as it is more efficient than the QR technique [110]:

• Cholesky Decomposition: since the gain matrix is symmetric and positive def-
inite, it is possible to represent this matrix as the product of a lower triangular
matrix L and its transpose [110]. This decomposition requires n3

3 FLOPs [110]:

A = Gk = LLT

In this way, the Equation 2.4 can be represented as:

LLT︸︷︷︸
A

Δxk︸︷︷︸
x

= HT
k W[z − h(xk)]︸ ︷︷ ︸

b

Then, the obtained Ax = b can be solved by applying the forward/backward
substitution steps:

1. Forward Substitution Step: in the forward step the matrix y is calculated as:

y = (L)−1b

2. Backward Substitution Step: in the backward step, then, the system solu-
tions are obtained as follows:

x = (LT)−1y

According to Appendix A and [110], the required number of FLOPs for each
forward and backward step is n2. Considering the number of FLOPs in the
previous first three orders, vector b takes n(2m− 1)+ 2m2 FLOPs. In addition
to this, n adds are required to update the system states (xk+1 = xk + Δxk). All
in all, the needed FLOPs to solve the system of Equation 2.4 per iteration are:

OEstimator = Odecomposition +OForwardStep +OBackwardStep +Ob +O(xk+1=xk+Δxk)
=

order

∑
i=1

O(Mi) =
n3

3
+ 2n2 + 2nm + 2m2 (4.3)

Compared to the calculated sum in Equation 4.2, the required number of FLOPs is
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smaller when the gain matrix is decomposed into its Cholesky factors (as counted in
the sum indicated in Equation 4.3).

4.3.2 State Estimation Method with Equality Constraints

In addition to telemetry and pseudo-measurements, [16, 46] have utilized zero injection
buses, as described in Section 2.5, as equality constraints in the WLS problem. In the ap-
proach known as "current-based fast-decoupled SE with equality constraints (CFD/C)",
inspired by reference [46], the Lagrange multipliers technique is applied. This technique
involves factorizing the gain matrix, which is then decoupled into its real and imagi-
nary parts. Consequently, this method can run more efficiently than traditional WLS
methods. To support this claim, the corresponding number of FLOPs for this method
is calculated in this subsection after providing a brief problem description. In this SE
problem, the system states (x = vre + jvim) are calculated by minimizing the following
WLS objective function in the rectangular coordinate:

minJ(x) =
1
2

rT(x)R−1r(x) (4.4)

s.t.

c(x) = 0

Where r = Δz is the measurement residual of z − h(x) derived from the measurement
function vector (2.1). The equality constraint vector, which includes zero injections (vir-
tual measurements), has the dimension of l × 1. Considering the Lagrangian optimiza-
tion problem, the system of Equation 4.4 is solved as:

L(x, λ) =
1
2

r(x)TR−1r(x) + λTc(x) (4.5)

Where λ is the Lagrange multiplier vector. Considering the optimality conditions, then,
the estimated states are iteratively calculated by solving the following system:

[
G(xk)

] [Δxk

λk

]
=

[
HTR−1Δzk

−c(xk)

]
(4.6)

Where gain matrix G is:

G(xk) =

[
HTR−1H CT

C 0

]

In this approach, equivalent current measurements (ECM) of the power measurements
are taken into account at every iteration. Considering the current-based model of the
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feeder in [46], the corresponding Jacobian matrix (which is shown in the following sys-
tem of state equations) is found: [

H
] [

Δxk
]
=
[
ΔIk
]

(4.7)

where

H =

[
G −B
B G

]

G and B correspond to the conductance and the susceptance matrices in the ECM-based
Jacobian matrix H. On this basis, the term HTR−1H in the gain matrix could be written
as: ⎡

⎢⎣ GTR−1
p G + BTR−1

q B −GTR−1
p G + BTR−1

q G

−BTR−1
p G + GTR−1

q B GTR−1
q G + BTR−1

q B

⎤
⎥⎦ (4.8)

The matrix 4.8 can be simplified in the following matrix since the balanced structured
off-diagonal blocks would be much smaller than the corresponding terms in the diago-
nal blocks: ⎡

⎢⎣GTR−1
p G + BTR−1

p B 0

0 GTR−1
p G + BTR−1

p B

⎤
⎥⎦ (4.9)

In this way, the term HTR−1Δz in system of Equation 4.6 is represented as:

⎡
⎢⎣ GTR−1

p Δzre + BTR−1
p Δzim

−BTR−1
p Δzre + GTR−1

p Δzim

⎤
⎥⎦ (4.10)

The Jacobian matrix for the ECM-based zero injection measurements, moreover, is rep-
resented as:

C(x) =

[
ZG −ZB

ZB ZG

]
(4.11)

Where ZG and ZB contains of Gijs and Bijs. Then, the SE problem is reformulated in
system of Equation 4.12 by substituting matrices 4.9-4.11 into Equation 4.6.⎡

⎢⎢⎢⎢⎣
Gp ZG 0 ZT

B

ZG 0 −ZT
B 0

0 −ZB Gp ZG

ZB 0 ZG 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Δvre

λre

Δvim

λim

⎤
⎥⎥⎥⎥⎦ = (4.12)
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⎡
⎢⎢⎢⎢⎣

GTR−1
p Δzre + BTR−1

p Δzim

−Ire

−BTR−1
p Δzre + GTR−1

p Δzim

−Iim

⎤
⎥⎥⎥⎥⎦

Ire and Iim are the real and imaginary parts of the current of zero-injection measure-
ments in the previous equation. Knowing that G > B in the distribution system, the
off-diagonal blocks in Equation 4.12 can be neglected. The following decoupled es-
timation formulas in the rectangular coordinate are derived, and these are separately
calculated in parallel: [

Gp ZG

ZG 0

] [
Δvre

γ1

]
= F(x)

[
Δvre

γ1

]
= (4.13)

[
GTR−1

p Δzre + BTR−1
p Δzim

−Ire

]

[
Gp ZG

ZG 0

] [
Δvim

γ2

]
= F(x)

[
Δvim

γ2

]
= (4.14)

[
−BTR−1

p Δzre + GTR−1
p Δzim

−Iim

]

Therefore, not only is the gain matrix decoupled into two "identical" sub-gain matri-
ces, but also the update and factorization of the sub-gain matrix need to be done only
once. Compared to the normal WLS methods, then, a large SE problem is split into two
smaller systems where there is no need to update the gain matrix. As a result, it is ex-
pected that the CFD/C state estimation algorithm will run faster than the normal WLS
counterparts. In this respect, the required FLOPs in this approach are counted for only
one of the above estimation problems, for example, the system of Equation 4.13 in this
subsection. In this way, this system can be written based on the Cholesky factorization
(done in offline mode) as:

F(x)︸︷︷︸
LLT

[
Δvre

γ1

]
︸ ︷︷ ︸

x

=

[
GTR−1

p Δzre + BTR−1
p Δzim

−Ire

]
︸ ︷︷ ︸

b

Then, the states are calculated by applying forward–backward substitution at each itera-
tion. In this context, solving b = Ly yields y = LTx in the forward step. In the backward
step, the updated states are then found from y = LTx. Thus, the total needed FLOPs
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are counted over these two steps. It should be noted that the FLOPs associated with
the ECM-based measurement models are neglected in this dissertation. In this process,
however, the number of FLOPs associated with the first element (b1) of the right-hand
side vector (b) in Equation 4.13 is counted based on the order of operations over the
following indicated sub-matrices:

b1 =

[M4]NV×1︷ ︸︸ ︷
GT Rp

−1Δzre︸ ︷︷ ︸
[M3]NV×1

+

[M2]NV×1︷ ︸︸ ︷
BT Rp

−1Δzim︸ ︷︷ ︸
[M1]NV×1︸ ︷︷ ︸

[M5]NV×1

The dimension NV in these matrices is equal to 3N, where N is the number of nodes in
the grid.

Considering RI = Rp
−1 (that is calculated in the offline mode) and NV subtractions

in Δzim, then, the number of counted FLOPs over the first and the second orders are
counted as:

Order 1: O([M1]NV×1) = O([RI ]NV×NV [Δzim]NV×1) = 2N2
V

Order 2: O([M2]NV×1) = O([BT]NV×NV [M1]NV×1) = 2N2
V − NV

There are NV subtractions, moreover, in Δzre. Then, the number of FLOPs in the next
orders is:

Order 3: O([M3]NV×1) = O([RI ]NV×NV [Δzre]NV×1) = 2N2
V

Order 4: O([M4]NV×1) = O([GT]NV×NV [M3]NV×1) = 2N2
V − NV

Order 5: O([M5]NV×1) = O([M4]NV×1 + [M2]NV×1) = NV

Considering the counted FLOPs over the previous orders, the total FLOPs for the ele-
ment b1 are obtained as:

O(b1) =
order

∑
i=1

O(Mi) = NV(8NV − 1)

Focusing on the forward-backward substitution steps, the required FLOPs are counted
per iteration as follows:

1. Forward Substitution Step: in the forward step the matrix y is calculated from
b = Ly. Matrices L and b have dimensions of (NV + l)× (NV + l) and (NV + l)× 1,
respectively. According to the Appendix A, the require number of FLOPs in this
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step is:
OForwardStep = (NV + l)2

2. Backward Substitution Step: system states are calculated from the system equa-
tion of y = LTx in the backward step. As shown in Appendix A, this step takes
the same number of FLOPs as the forward step:

OBackwardStep = OForwardStep = (NV + l)2

And, NV FLOPs are required to updated the system states (vk+1
re = vk

re + Δvk
re). There-

fore, the total FLOPs required to solve the states per iteration in this method are calcu-
lated by the following summation:

OEstimator = Ob1
+OForwardStep +OBackwardStep +O

vk+1
re =vk

re+Δvk
re

(4.15)

= 10N2
V + 4NVl + 2l2

4.3.3 Linear WLS-Based State Estimation Method

Exploiting the non-linear model of traditional SCADA measurements in the already-
discussed WLS approaches makes the state estimation system non-linear. However,
the use of PMU measurements in the WLS approach results in a linear SE system in
the rectangular coordinate, as these measurements exhibit a linear relationship with the
system states. As demonstrated in [18, 19], this linear system can be expressed as:

x = [hTWh]−1hTWz (4.16)

where ⎡
⎢⎣hV

hI

hS

⎤
⎥⎦

︸ ︷︷ ︸
h

x =

⎡
⎢⎣zV

zI

zS

⎤
⎥⎦

︸ ︷︷ ︸
z

And, hV and hI are linear voltage and current measurements:[
ui 0
0 ui

]
︸ ︷︷ ︸

hV

x =

[

{Vi}
�{Vi}

]
︸ ︷︷ ︸

zv

,

[
Gij −Bij

Bij Gij

]
︸ ︷︷ ︸

hI

x =

[

{Iij}
�{Iij}

]
︸ ︷︷ ︸

zI
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Where ui =
[
0, . . . , 1, . . . , 0

]
is 1 × n unitary vector whose element ith is equal to 1 and

other elements are zero. In hI, Gij and Bij are the real part and imaginary part of the
admittance of the line ij. hS is the linear pseudo-measurements model.[

Gbus[i] + uiPi −Bbus[i]− uiQi

Bbus[i]− uiQi Gbus[i]− uiPi

]
︸ ︷︷ ︸

hS

x = 2

[

{Pi}

−�{Qi}

]
︸ ︷︷ ︸

zS

where Gbus[i] is a 1 × n vector whose ith is ∑i∈Nj
Gij and jth element is −Gij; Bbus[i] is

a 1 × n vector whose ith is ∑i∈Nj
Bij and jth element is −Bij. And, Nj is the set of the

nodes that are connected to node i. After calculating hV , hI and hS in the offline mode,
the equation 4.16 is simplified as:

x = Mz (4.17)

Where M = [hTWh]−1hTW and has dimension of 6N × m. Therefore, the number of
FLOPs taken by the linear WLS estimation problem is:

OEstimator = O([M]6N×m[z]m×1) = 6N(2m − 1) (4.18)

4.3.4 Data-Driven ANN-Based Estimation Method

As explained in Section 3.6, two independent ANN-based estimators are trained to map
the PMU measurements to the voltage magnitude and phase angle. This mapping is
based on the system of Equations 3.4 and 3.5, respectively. Since these two systems
are executed in parallel at runtime, the required number of FLOPs is counted for one
estimator. For example, the voltage magnitude estimation function is considered in this
subsection. In this manner, based on the order of operations in Equation 3.4, certain
sub-matrices are identified as:

v =

[M5]N×1︷ ︸︸ ︷

bOv + OWv(

[M3]2×1︷ ︸︸ ︷
tanh(

[M1]2×1︷︸︸︷
IWv I +bIv︸ ︷︷ ︸

[M2]2×1

))

︸ ︷︷ ︸
[M4]N×1

It is worth noting that the dimensions of sub-matrices correspond to the selected artifi-
cial neural network architecture shown in Fig. 3.9. In this respect, 2, M, and N are as-
sociated with the number of hidden neurons, the number of synchrophasors from PMU
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measurements as the system inputs, and ANN outputs, respectively, which are the esti-
mated voltages of buses in this case. On this basis, the required FLOPs are counted for
each sub-matrix based on the following order:

Order 1: O([M1]2×1) = O([IWv ]2×M [I]M×1) = 4M − 2

Order 2: O([M2]2×1) = O([M1]2×1 + [bIv ]2×1) = 2

The required number of FLOPs for the tanh function should be considered in counting
the FLOPs in the third order. According to the [111, 112], however, the complexity of
the tanh function is equivalent to five multiplications and three additions, therefore, it
requires eight FLOPs in total. Thus, the number of FLOPs taken by order 3 is:

Order 3: O([M3]2×1) = O(tanh([M2]2×1)) = 8 × 2

Since the matrix multiplication and matrix summation are performed in order 4 and
order 5, respectively, the corresponding number of FLOPs in these orders are:

Order 4: O([M4]N×1) = O([OWv ]N×2 [M3]2×1) = 3N

Order 5: O([M5]N×1) = O([bOv ]N×1 + [M4]N×1) = N

Therefore, the computational burden of the proposed ANN-based estimation technique
is obtained by adding the counted FLOPs over the pointed orders:

OEstimator =
order

∑
i=1

O(Mi) = 4(N + M + 4) (4.19)

SE Method Number of FLOPs

ANN 4(N + M + 4)

Linear WLS 6N(2m − 1)

CFD/C k
(
10(3N)2 + 4(3N)l + 2l2)

Normal WLS with Cholesky factorization k
(

n3

3 + 2n2 + 2nm + 2m2
)

Normal WLS without factorization k
(

n3 + 2n2 + n(2m − 1) + 2m2
)

TABLE 4.1: FLOPs for Different SE Methods.

After all, the obtained FLOP numbers for the pointed SE techniques are summarized
in Table 4.1. As pointed out in Section 3.7, three independent ANN-based estimators
are dedicated to the system phases. On this basis, the provided FLOPs for the ANN-
based estimator correspond to only one phase of the system. The number of states
in the normal WLS method is n, and N is the number of buses. m is the number of
measurements (including telemetry and pseudo-measurements) in the pointed WLS-
based SE methods. To satisfy the observability criterion, the redundancy should be
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sufficiently large (m > n) [113, 114]. M is the number of telemetry measurements (M <

m). As pointed out in Section 3.6, since the ANN-based estimator has been trained
with PF training data in the offline mode, it does not need to make itself observable by
using pseudo-measurements as in the WLS-based approaches in runtime. Considering
these points, it can be found that the computational burden of the proposed ANN-based
estimator is much less than its WLS-based counterparts. The provided results in the
next section could numerically give a relatively rough estimation of the burden of the
pointed SE methods.

4.4 Results

To demonstrate the effectiveness of FLOPs in evaluating the computational complexity
of DSSE methods, the required number of FLOPs has been counted for various SE tech-
niques outlined in the preceding section. This count was performed across four bench-
mark test distribution networks in the present section. The FLOPs were determined
based on the semi-derived SE system of equations pertaining to these benchmark test
grids. In addition to the FLOP metric, the corresponding measured elapsed times were
obtained using the MATLAB profiling approach on an Intel Core i5-6500 CPU @ 3.20
GHz with 8 GB of RAM. Despite the DSSE methods used providing sufficiently accu-
rate states, they may demand varying numbers of measurements due to differences in
their methodologies. For example, the ANN-based estimator relies solely on telemetry
measurements, while WLS-based algorithms also incorporate other measurement types
(such as pseudo-measurements and zero-injections) during runtime. In the reference
[46], the model of three distribution grids with 15, 30, and 60 nodes (each node con-
sisting of three phase-buses) was utilized to evaluate the performance of the CFD/C
SE algorithm. In this section, we consider a modified model of these three systems to
compare the complexity of different DSSE solutions. Additionally, to address a larger
system, the modified IEEE 123-bus distribution system, where each node consists of a
three-phase bus, has been employed. In this case, the measurements used were selected
in accordance with [12, 105] to ensure system observability. The number of measure-
ments associated with each system is presented in Table 4.2.

Measurement type 15-bus 30-bus 60-bus 123-bus

Telemetry 24 30 48 72

Pseudo measurements 90 180 360 738

Zero-Injection 5 22 38 114

TABLE 4.2: Number of measurements used in SE methods.
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Considering the required number of measurements and the size of distribution grids,
the computational complexity of the already-discussed estimation methods is tabulated
in terms of elapsed time and FLOPs in Tables 4.3 and 4.4, respectively.

SE Method 15-bus 30-bus 60-bus 123-bus

ANN 0.007 0.008 0.008 0.010

Linear WLS 0.038 0.053 0.184 0.995

CFD/C 0.323 0.839 5.804 49.256

Normal WLS (Cholesky factorization) 0.790 2.523 25.654 162.748

Normal WLS (No factorization) 4.950 15.492 74.079 456.593

TABLE 4.3: Required elapsed time(s) for SE methods.

SE Method 15-bus 30-bus 60-bus 123-bus

ANN 172 256 448 796

Linear WLS 20430 75420 293400 1194822

CFD/C 21200 89888 354248 1555866

Normal WLS (Cholesky factorization) 280467 2073609 16045569 135938475

Normal WLS (No factorization) 719382 5770254 46378074 400647990

TABLE 4.4: Required FLOPs for SE methods.

The elapsed time values in Table 4.3 have been measured by the MATLAB profiler over
10,000 trial tests. For example, the measured time for the proposed ANN-based and the
linear WLS-based estimation techniques performed on the 15-bus system are shown on
the left and right-hand sides of Fig. 4.1. These profilers reveal the percentage of time
that has been spent by different parts of the code during solving these SE problems. As

 

ANN Linear WLS 

  

FIGURE 4.1: SE elapsed time taken by MATLAB profiler
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can be seen in this figure, the for loop, tic, and toc functions take nearly 52.6% and 21.6%
of the total executed time in the case of ANN-based and the linear WLS-based estima-
tors over 10,000 tests, respectively. Thus, as a machine-dependent aspect, this example
reveals that the elapsed time depends on the way a code is implemented. To observe
the impact of the machine-dependent nature of the elapsed time, moreover, Fig. 4.2
shows that the measured time varies over the performed 10,000 tests and occasionally
surpasses the standard deviation band by several orders of magnitude. Focusing on the

FIGURE 4.2: Measured elapsed time over 10000 tests.

tabulated values in Table 4.3 and Table 4.4, as expected, the larger test grids yield higher
values for both elapsed time and the number of FLOPs. Moreover, the non-linear SE
methods are more demanding than other approaches. In this regard, the gain matrix
decomposition technique significantly contributes to improving the computational per-
formance of non-linear solutions. For instance, the profiler measures 456.593 seconds
for performing normal WLS SE on the IEEE 123 test system over 10,000 trial tests where
the gain matrix has been inverted. However, by applying Cholesky factorization, this
time is reduced to 162.748 seconds. By examining the elapsed time and FLOPs cor-
responding to the ANN- and linear WLS-based estimators for the 15-bus system, the
power of FLOP over elapsed time becomes evident. According to Table 4.3, applying
MATLAB profilers on the ANN- and linear WLS-based estimators results in 0.007 sec-
onds and 0.039 seconds, respectively, over 10,000 tests. The ratio of these elapsed times
(0.039

0.007) is 5.571. The corresponding number of FLOPs for the linear WLS estimator and
the ANN-based estimator is 20, 430 and 172, respectively. In this case, however, the
FLOP ratio of the linear WLS with respect to the ANN is 118.8, which is way larger than
their corresponding ratio of elapsed times. In this way, the FLOP ratio and the elapsed
time ratio of linear WLS with respect to the ANN-based estimator are plotted for these
four distribution grids in Fig. 4.3. Although both ratios increase with the size of the net-
work, the rate of increase of the FLOP ratio is much larger than the elapsed time ratio.



68 Chapter 4. Distribution Systems State Estimation Computational Complexity

FIGURE 4.3: Computational complexity ratio of linear WLS- over ANN-
estimator.

Thus, as a relative performance measure, FLOP is a better indicator than elapsed time.
In the case of the bus-30 and bus-60 grids, furthermore, the measured elapsed time by
the profiler for the corresponding ANN-based estimators is the same with a value of
0.008s over 10,000 tests (shown in Table 4.3). However, taking a look at the correspond-
ing counted FLOPs in Table 4.4, it is found that the ANN-based estimator trained for the
bus-60 system takes 488 FLOPS compared to the 256 FLOPs counted for the trained one
in the bus-30 test grid. These case studies, then, show the effectiveness of FLOP over the
measured elapsed time in the evaluation of the computational complexity of the DSSE
techniques.

4.5 Conclusion

FLOP, as a fair complexity measure, is introduced as a machine-independent indica-
tor in this chapter. Therefore, unlike elapsed time, it cannot be affected by machine
properties such as clock rate, pipelines, parallel processing, caches, storage hierarchy,
programming language, compiler, and even the pair of jobs being executed. In this
respect, FLOP is a robust and reliable indicator. On this basis, the computational bur-
den of different DSSE methods has been compared across various distribution networks
consisting of different numbers of buses. Based on the obtained results, in general, the
burden of each SE solver increases with the grid size. However, when dealing with sys-
tems with a small number of nodes, FLOP proves to be a more effective measure than
elapsed time in evaluating the system’s complexity. Based on the derived FLOP func-
tions and the corresponding results, it has been shown that the proposed ANN-based
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estimator is quicker than WLS-based estimators. To meet the real-time requirements of
the monitoring system in large distribution power systems, therefore, it is a potential
solution that can be integrated into the ADMS systems.
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Chapter 5

Distributed State Estimation

Computation

Although the proposed ANN-based estimator has a very light computational burden,
the training process of this data-driven model is a demanding task performed in of-
fline mode. One way to reduce the learning computational complexity is to split this
task into several smaller problems dealing with smaller training datasets. To this end,
this chapter describes two distributed ANN-based state estimation architectures named
"parallel" and "multi-area". Both architectures contribute to reducing the training and
executing burden of the ANN-based estimator in offline and runtime, respectively. In
addition to this, the proposed multi-area approach fulfills the requirement of a scalable
method, allowing multiple desired grid areas to be independently monitored by multi-
ple ANN-based estimators.

5.1 Introduction

The generated huge power at conventional power plants, onshore and offshore wind
farms, PV plants, and other large power generating units is transmitted through several
high-voltage substations and transmission lines towards distribution systems where the
power is distributed to different residential, commercial, and industrial areas via many
substations and distribution lines. Compared to the transmission systems, however, dis-
tribution systems operate at different voltage levels associated with the medium voltage
and the low voltage grids. The integration of RESs in the distribution systems, more-
over, leads to the already-mentioned power quality issues (in Chapter 1) that should be
observed and fixed. To apply suitable countermeasures to operate the system in safe
mode, observability downstream of the substations would be required. Nevertheless,
applying the appropriate control strategies over the large distribution grid, including
several thousand nodes and a large number of active players (e.g., RESs, BESS, and
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prosumers), requires not only exchanging a huge amount of data between monitoring
devices and the control entities but also performing heavy automation function algo-
rithms (like SE, PF, and so on). Therefore, operating a large distribution network is a
cumbersome task if the control and monitoring functions are applied to the integrated
system. To address this issue, distribution grids can be divided into smaller subsec-
tions (as shown in Fig. 5.1) that do not include a large number of nodes and can be
independently operated by a single control entity. Accordingly, the dedicated manage-

Transmission 
Network

Area A

Area E

Area C

Area B

Area D

FIGURE 5.1: Sub-Areas in Distribution Network

ment system for each subsection requires performing much lighter automation func-
tions compared to those devised for the integrated large network. Considering the key
role of the SE function in the distribution system automation loop, there is a need for SE
computation in a distributed manner. To this end, the following sections focus on how
a big SE problem can be divided into smaller solutions computed in parallel.

5.2 Parallel Architecture

To enhance the accuracy of the SE and accelerate the training and execution process of
the ANN-based estimator for a large integrated power system, the training dataset is
divided into smaller packages containing output training data associated with smaller
portions of the power grid in this architecture. Instead of dealing with a large dataset
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and a large ANN architecture consisting of numerous neurons (associated with many
buses) in the output layer, several smaller ANN-based estimators are trained with the
smaller data packages corresponding to smaller grid subsections. The divided data
packages contain the system states (or training output data) corresponding to the in-
volved buses in the subsections. The synchrophasor measurements from all installed
PMUs in the integrated grid, however, serve as the training input data. Therefore, a
fewer number of weights and biases are tuned during the training process in each di-
vided area over the same measurement inputs. This, in turn, reduces the computational
cost in the training phase. As fewer weights and biases are processed in the SE phase
in this approach as well, the ANN-based estimator executes faster than the estimator
trained for the integrated system. Considering similar input datasets in both the in-
tegrated and the proposed parallel approach, the training algorithm for all the ANN-
based estimators dedicated to the sub-areas deals with fewer numbers of weights and
biases. Therefore, it has more freedom to more accurately map the input measurements
to a fewer number of system states for each area. As a result, the aggregated estimated
states from all the sub-areas are more accurate than those calculated by the estimator
designed for the integrated grid. It is worth mentioning that the training and the execu-
tion of the dedicated estimators for the sub-areas are independent of each other. There-
fore, the required computations (e.g., training and executing) for the divided areas are
treated in parallel. This is why the described distributed computation for the proposed
ANN-based estimation approach is named the "Parallel Architecture." To minimize the
overall execution time of SE and prevent a scenario where no ANNs serve as bottlenecks
in the parallel computation process, allocating an equal number of nodes per divided
area would be the ideal criterion for segregating the training data into smaller packages.
As already mentioned in Subsection 3.7, three independent ANN-based estimators for
the three phases of the system are trained and executed in parallel. Subsequently, these
estimators are seamlessly integrated into the proposed parallel architecture. In this con-
text, the proposed approach is schematically demonstrated in Fig. 5.2. The exemplary
grid shown in this figure is divided into three sub-areas: A1, A2, and A3. Aside from the
nodes (indicated by the red cubes) monitored by the PMUs, the number of other nodes
is consistent in each subsection (eight cubes). The entire segregated data packages, in-
dicated in light gray, gray, and black colors, corresponding to each area, along with the
monitored data, are also displayed. To train the ANN-based estimators for each area in
the parallel architecture, the entire data package is divided into three smaller packages
based on the designated colors. Subsequently, three datasets associated with the three
phases of the grid are extracted from each data package. From a parallel computation
perspective, an ANN-based estimator for each phase of the system in all the divided
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packages is simultaneously trained. Finally, the estimated states are calculated by par-
allel execution of the ANN-based estimators upon receiving the PMUs’ measurements.
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FIGURE 5.2: Parallel Training and Execution of ANN-Based Estimators
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5.3 Multi-Area Architecture

As another distributed computation method, multi-area architecture is an important
concept applied in wide-area interconnected power systems to distribute the monitor-
ing, automation, and control computation burdens over different local management sys-
tems. Apart from reducing the automation function execution time, this concept allows
system operators to independently operate their grids. In this way, the power system is
split into several sub-areas (zones), where local management systems operate and con-
trol their zones. Focusing on the SE function, several studies have been conducted to
implement this concept. Various state-of-the-art multi-area SE (MASE) approaches for
transmission grids have been introduced in the literature, differentiated in terms of the
subdivision procedure, the type of estimator, and how multi-area is performed in the
estimator [115–118]. Due to the different specifications of these systems with respect
to distribution grids pointed out in Subsection 3.1, however, these methods cannot be
directly applied in distribution systems [119]. In this context, nevertheless, few works
are focusing on distribution grids. Garcia and Grenard introduced a two-step MASE
method for distribution grids in [120]. The system states are locally calculated by the
WLS estimators in the first step. Then, the system voltage profile is centrally harmo-
nized among the subareas in the second step. However, the computational burden is
rather heavy in this method since the exploited estimation algorithm is based on the
WLS formulations. A data-driven multi-area approach based on a differential evolu-
tion algorithm has been introduced in [121]. The cost of communication is high in this
method as the local estimators require exchanging data with the adjacent zones in each
iteration of the algorithm. To subside the computational burden, make it possible to
use low data exchange among the subareas, perform SE in a decentralized scheme, and
improve the SE accuracy, different two-step multi-area techniques, in which the local es-
timators are WLS-based, are also presented in [119], [122], and [105]. The computational
burden of the algorithm is rather heavy since the estimation solution in these works is
nonlinear. To have a much lighter solution, a decentralized ANN-based SE approach is
proposed in [11]. In this approach, the ANN estimates the loads’ consumption of the
balanced systems. This solution exploits the non-synchronized measured values from
a large number of smart meters and requires the load flow data from the integrated
system. Therefore, independent operators should share their grid parameters and run
the PF calculations on large grids, which is a cumbersome task. In this dissertation, a
data-driven MASE based on the proposed ANN-based estimation technique is intro-
duced, which is executed very fast and needs low data exchange among neighboring
areas. It can be integrated into both centralized and decentralized schemes. The design
considerations and the solution are described in detail in the following parts.
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1. Multi-Area Design Considerations:

The following factors are considered in designing the MASE:

(a) A decentralized scheme is exploited in this dissertation, based on which the
local system management independently performs the following tasks:

• PF calculations for data generation

• Training the local estimators

• SE execution

(b) As one of the grid decomposition factors in this work, zone partitioning is
done based on possibly having a similar number of nodes for each zone.

(c) As another grid decomposition factor, the zones are decoupled from each
other at the overlapping nodes.

(d) PMU presence at the overlapping nodes is intended to fulfill:

• The observability of different areas with a fewer number of measurement
points

• Data synchronization of different areas

2. Data-Driven Multi-Area DSSE Solution:

The proposed ANN-based multi-area DSSE method consists of the following two
phases:

(a) Training Phase: to train the dedicated ANN-based estimators for the divided
sub-areas, the training data specific to each zone is required. To this end, the
training dataset for each subarea is generated through PF calculations in a
decentralized manner, as follows:

• The presence of a large number of nodes in the integrated distribution
grids, along with the inclusion of the three-phase power system model in
the PF formulation, results in a significant computational burden during
each PF run. Therefore, the decentralized execution of the PF problem,
organized by zone, serves to distribute the computational cost of a large
PF problem into smaller and more manageable sub-problems.

• A scalable solution is desired. In the operation of the power system, grid
monitoring is not deemed essential for certain portions of the grid, and a
sophisticated control scheme is unnecessary for these sections (e.g., pas-
sive sections). Therefore, there is no need to generate training data or
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allocate state estimators for these areas. Additionally, in some cases, grid
parameters are unavailable for certain parts of the system. Consequently,
training data cannot be generated, and as a result, state estimation is not
applied in these specific areas.

To implement decentralized PF calculations, network decomposition is car-
ried out based on the parent-child relationship, as illustrated in Fig. 5.3. In
this process, the overlapping nodes play a crucial role.
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FIGURE 5.3: Grid Decomposition at Overlapping Node

In this approach, the parent area encompasses the reference slack bus, which
is connected to the HV/MV substation for the MV networks and the MV/LV
substation for the LV grids, respectively. However, for the child areas, the
overlapping nodes serve as local slack buses, acting as reference points for
conducting local PF calculations. Upon decomposing the grid, it is essential
to replace the equivalent load model of the child area within the parent area
to ensure that the PF results in the parent area align with the results of the in-
tegrated grid. To achieve this, the average values of active and reactive PFs of
the connecting branches from the child area to the parent area are considered
as the equivalent load of the child zone, to be connected to the overlapping
node in the parent area. PF calculations on the integrated system, conducted
over a wide range of random operating conditions or using real PMU mea-
surements at the overlapping nodes, are employed to calculate the equivalent
power of the child areas. To generate training data for each area, the varia-
tion range of the variables for the child slack bus is set as three times the SD
of the voltage magnitude and phase angle. The angles of the three phases of
the child’s slack bus are determined with respect to the angles of the parent
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reference slack bus, assumed to be 0°, 120°, and −120°. Providing the train-
ing data sets, three ANN-based estimators are trained to estimate the system
states for each phase in each sub-area.

(b) SE Phase: upon receiving synchrophasor measurements from PMUs, all the
ANN-based estimators dedicated to the divided zones calculate the system
states in parallel. It’s important to note that the dedicated estimators in each
area receive measurements from the installed PMUs in the associated area.
In this context, the states of the overlapping nodes are simultaneously calcu-
lated by the adjacent areas. The number of provided estimated variables at a
specific overlapping node equals the number of zones that include the over-
lapping node. Therefore, one of those estimations should represent the states
of this node. To achieve this, the most accurate estimations calculated by the
involved zonal ANN-based estimator are selected. For the test dataset, in of-
fline mode, the uncertainty of the estimated states of the overlapping nodes
from the estimators of neighboring areas is calculated and compared after the
training process. The estimator with the best accuracy is chosen to provide
the overlapping node states. Despite estimating sufficiently accurate states
by the local estimators, the accuracy of the estimated voltage profile is en-
hanced by substituting the real PMU measurements in the estimator input set
with the corresponding estimates of the overlapping nodes obtained from the
most accurate local estimator. The state estimation of the overlapping nodes
is more accurate than the corresponding measured values when enough syn-
chrophasor measurements are available. The propagation of measurement
uncertainty through layers of the ANN is evaluated based on Monte Carlo
simulation. This approach is chosen as the propagation is intractable due
to the nonlinearities of the ANN in the proposed SE method. This fact has
been validated in [123]. In Section 5.4, the results demonstrate that provid-
ing the magnitude and phase angle of the measured voltage phasor (as the
inputs) gives more accurate estimates of the measured variables. Using these
"more accurate" estimates of the overlapping nodes instead of the measured
values in the other neighboring local estimators improves the SE accuracy in
those neighboring sub-areas. In summary, Algorithm 2 shown in Fig. 5.4 out-
lines that the proposed MASE method is based on a two-step state estimation
scheme. The states are estimated from the local estimators in parallel in the
first step. In the second step, the estimations from the most accurate zonal
estimator are substituted with the corresponding measurements in the other
local neighboring estimators, improving the accuracy of SEs in those areas.
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FIGURE 5.4: Algorithm 2 (Proposed MASE Method)

5.4 Results

In this subsection, the proposed distributed computation approaches are evaluated on
the integrated IEEE 123 distribution benchmark system described in Subsection 3.9 in
Chapter 3. The network under consideration is divided into four sub-areas, with an
attempt to involve similar numbers of nodes in each zone for both architectures, as
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explained in the following sections. The selected installation points for PMUs are nodes
149, 18, and 67.

1. ANN-Based State Estimation in Parallel Architecture

In this distributed method, the IEEE 123 integrated system (depicted in Fig. 3.12)
is divided into Zone A, Zone B, Zone C, and Zone D, as illustrated in Fig. 5.5. The
entire training data for the IEEE 123 network is accordingly divided into four data
packages, each containing the training data for these smaller portions of the grid.
PMUs are located in Zone A, Zone B, and Zone D. The PF calculations associated
with synchrophasor measurements from these PMUs serve as input training data
for dedicated ANN-based estimators in each zone. Considering the presence of
non-Gaussian noises, the SD of the error of the three-phase state estimates for all
nodes is aggregated for both the integrated and parallel methods, represented in
red and black colors, respectively, in Fig. 5.6.
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FIGURE 5.5: Zones in the Parallel Architecture

As evident, overall, the accuracy of the SE in the parallel approach surpasses the
results calculated by the estimators trained for the integrated grid. This improve-
ment can be attributed to the fact that the measured values of the entire system
are mapped to the state of fewer nodes by the estimator dedicated to each zone.
Consequently, the training algorithm has greater flexibility to adjust the weights
and biases more effectively. The variation in nodes’ estimation uncertainty can be
discussed based on the electrical distance of each zone with respect to the slack
bus and taking into account the locations of the PMUs.
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FIGURE 5.6: Uncertainty of the Estimated States of the Integrated System and the Parallel
Approach.
To induce the maximum voltage drop, the network is operated radially. Moving
from the substation toward the end of the radial feeder, the voltage variation gen-
erally increases per node in radial grids. Due to this radial operation, the voltage
variation for nodes located closer to the slack bus is less than for nodes located
farther from this bus. Consequently, the weights and biases of the ANN-based
estimators are better tuned for nodes closer to the slack bus. Based on the results
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shown in Fig. 5.6, the estimation uncertainty generally increases from Zone A to
Zone D. Compared to the other zones, the estimation accuracy is less precise in
Zone C. This is attributed to the fact that Zone C is not only far away from the
slack bus, but its behavior is primarily captured from a few measurements by the
PMU installed at node 67, as the locations of the other PMUs are distant from Zone
C. Among the trained estimators for the divided areas, the estimation results ob-
tained in sub-area B are more accurate than the other zones. This is because Zone
B is not only close to the slack bus but also benefits from the proximity of the
PMUs located at nodes 149 and 18. Node 67 serves as the connection point for
Zone D, linked via a branch to both Zone A and Zone C. Similar to Zone C, Zone
D is located far from the slack bus. However, as a PMU monitors the state of node
67, more synchrophasor measurements from this point can effectively represent
the behavior of Zone D. Therefore, the estimation uncertainty of Zone D is lower
than that of Zone C but still larger than Zone B. It is noteworthy that all the phases
exhibit the same trend, as depicted in Fig. 5.6.

2. ANN-Based State Estimation in Multi-Area Architecture

According to the described parent-child scheme and considering the overlapping
buses where the PMU existence is necessary, the IEEE 123 integrated network is
divided into four sub-areas shown in Fig. 5.7. Zone A is the parent area, and
the other zones are the children. To generate the training data, three-phase PF
calculations are independently performed for each zone. The input training data
include the voltage magnitude and voltage phase angle of the PMU installation
point (only the overlapping node in this case), along with the current magnitude
and current phase angles of the connected branches to this point. The input pha-
sors corresponding to each zone are represented as follows:

• Input training data set for Zone A:

[V149, V18, V67, I149−1, I13−18, I60−67].

• Input training data set for Zone B:

[V18, I18−19, I18−35, I18−21].

• Input training data set for Zone C:

[V67, I67−72].

• Input training data set for Zone D:

[V67, I67−68, I67−97].

Node 18 is the decoupling point between zone A and zone B as shown in Fig. 5.7.
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FIGURE 5.7: IEEE 123-Bus Test System Zones in the Multi-Area Architecture

The other two zones are decoupled at node 67. Since the decoupling nodes are the
points of common coupling between the parent and child zones, these nodes are
considered the connecting points of the equivalent load model of the child zones.
In performing the PF calculations, these points play the role of slack buses for the
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child zones. The variation of the voltage magnitude of the reference slack bus lo-
cated in the parent area (Zone A) is around 1 pu. In this respect, a 1 % variation
in the voltage on the high-voltage side is considered in this work. Subsection 5.3,
however, describes that the applied voltage variation of the slack bus is obtained
by the PF calculation of the integrated system or from real PMU measurements. To
this end, in this dissertation, the voltage of the overlapping nodes is calculated by
the PF calculations on the integrated system over a wide range of random scenar-
ios (10,000 Monte Carlo simulations) in which the active and reactive powers were
randomly varied based on a Gaussian distribution with (3 SD = 100%). The vari-
ation range of the variables of the child slack buses is then set as three times the
SD of the calculated voltage magnitude and phase angle. Providing the training
datasets, the ANN-based estimators are trained for each zone. To determine which
estimator should provide the state estimation of the overlapping nodes in the state
estimation phase in the proposed MASE approach, the estimation uncertainty of
the local estimators is compared in the offline mode via a test dataset. Estimation
uncertainty of the local estimators in the presence of Gaussian and non-Gaussian
noises is tabulated in Tables 5.1 and 5.2, respectively.

Overlapped Node Node 18 Node 67

Zone A B A C D

SD (Vmag PE (%)) 0.31 0.33 0.29 0.33 0.33

SD (Vang PE (crad)) 0.20 0.31 0.29 0.33 0.33

TABLE 5.1: Estimation uncertainty of the local estimator for the
overlapped nodes in the presence of Gaussian noise

Overlapped Node Node 18 Node 67

Zone A B A C D

SD (Vmag PE (%)) 0.24 0.25 0.22 0.25 0.24

SD (Vang PE (crad)) 0.16 0.22 0.21 0.23 0.23

TABLE 5.2: Estimation uncertainty of the local estimator for the
overlapped nodes in the presence of non-Gaussian noise

It has been observed that the local estimator of Zone A can provide more accurate
estimations for the overlapping nodes in Phase A (similar outcomes have been ob-
served for the other two phases). Therefore, this estimator is selected to provide
the overlapping node state estimation for the proposed two-step MASE method.
Upon receiving the synchrophasor measurements, the local ANN-based estima-
tors calculate the local estimations in parallel in the first step, as shown in black
in Fig. 5.8. In the next step, the synchrophasor measurements of nodes 18 and 67
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are replaced, in the input sets of the local estimators of Zones B–D, by their corre-
sponding estimations estimated by the dedicated estimator for the parent area.

(a) (b)

(c) (d)

(e) (f)

FIGURE 5.8: IEEE 123-Bus Test System Zones in the Multi-Area Architecture

Due to the low amount of data (state estimations of the overlapping node) com-
municated among the neighboring zones, the cost of the required communication
infrastructure is low in this architecture. It should be noted that the estimation ac-
curacy of the parent’s estimator is better than the PMU measurements. As a result,
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more accurate estimations are obtained for Zones B–D in the second step of SE, as
shown in red in Fig. 5.8. In this context, according to [124], the estimation accu-
racy of the ANN-based estimator is equivalent to or better than its inputs when
it takes inputs corrupted by Gaussian noise while training to recover the original
undistorted inputs. To quantify this fact in accordance with the proposed ANN-
based estimator, the trained local ANN-based estimators are executed for 10,000
random scenarios based on the following inputs:

• Set 1: δ67

• Set 2: V67

• Set 3: V67, δ67

• Set 4: Input training data set for zone D

Gaussian errors with 3 SD = 1% and 3 SD = 1 crad are added to the true values
(PF calculated values) of the voltage magnitudes and phase angles, respectively, to
model the uncertainty of the synchrophasor measurements. Table 3.3 indicates the
uncertainty of PMU measurements and their corresponding estimations of node
67 in terms of standard deviation percentage error (PE) and the average error (AE)
for voltage magnitude and the phase angle, respectively. The tabulated results for
the input Set 1 indicate that the uncertainty of the voltage magnitude estimation
is greater than the measurement uncertainty of the voltage angle of node 67. The
vice versa situation is seen for the input Set 2.

Input Set

Node 67
PMU 67 Estimation

Vmag Vang Vmag Vang

PE (%) AE (crad) PE (%) AE (crad)

1 - 0.33 0.47 0.30

2 0.33 - 0.31 0.39

3 0.34 0.33 0.34 0.30

4 0.33 0.33 0.33 0.31

TABLE 5.3: Uncertainty of Measurement (Corrupted by Gaussian Noise) and
Estimation of Node 67

It should be noted that the first two sets are considered here only to demonstrate
how the ANN propagates the uncertainty of the measurements into the estimated
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states. In the real case, however, the provided synchrophasor measurements in-
clude both voltage magnitude and voltage angle. Therefore, the minimum num-
ber of measured variables is two in input Set 3 and Set 4, compared to one mea-
surement in the first two input sets. Thus, exploiting the voltage magnitude and
the voltage phase angle measurements in the training process results in estimation
accuracy better than that of the measured values, as shown for the last two input
sets in Table 5.3. The same outcome has been observed when the measurements
are affected by non-Gaussian noises. For instance, the mean square error (MSE) of
the measurement and estimation is provided in Table 5.4. In this case, the MSE is
chosen as an indicator for the accuracy assessment since the distribution of noise
on the measurements is non-Gaussian.

Input Set

Node 67
PMU 67 Estimation

Vmag Vang Vmag Vang

Error (V) Error (crad) Error (V) Error (crad)

4 29.0191 5.8655e-04 23.1393 4.5550e-04

TABLE 5.4: Uncertainty of Measurement (Corrupted by non-Gaussian Noise) and
Estimation of Node 67

Therefore, the estimation accuracy of the voltage profile in the proposed data-
driven ANN-based MASE is enhanced by performing the second step SE. Al-
though the estimation results are comparable with proposed WLS-based solutions
in [119], [122], and [105], the computational cost of the ANN-based estimator is
lower.

5.5 Conclusion

To enable the execution of the proposed ANN-based estimation technique within a dis-
tributed computation framework, this chapter discusses both a parallel and a multi-area
architecture. In both architectures, a large distribution grid is divided into smaller sub-
areas, with each divided area containing a possibly similar number of nodes. In the
parallel architecture, dedicated ANN-based estimators for each divided zone map syn-
chrophasor measurements from all the installed PMUs in the integrated network into
the states of the nodes in each zone. Consequently, the training algorithm has more
degrees of freedom to better tune a fewer number of weights and biases compared to
the case where the ANN is trained to provide state estimations for the entire integrated
grid. As a result, more accurate estimations are obtained in the parallel architecture. In
cases where performing PF calculations is heavy or it is desired to monitor only specific
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subareas, PF calculations and state estimation are independently executed based on the
proposed multi-area approach. In this approach, the grid is split based on the parent-
child relationship at decoupling nodes where PMUs are available. The parent area con-
sists of the reference slack bus (main substation), and the equivalent load model of the
child area is connected to the parent area at the decoupling points after grid decomposi-
tion. Nevertheless, the decoupling points are utilized as slack buses for the child areas.
The training data is then produced by PF calculations specific to each area. After the
training process, a two-step state estimation is performed. In the first step, the local es-
timators estimate the system states in each zone. Then, the accuracy of the estimation is
enhanced in the second step by substituting the overlapping node measurements with
their corresponding estimations calculated by the most accurate estimator.
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Chapter 6

Linear Iterative Current Injection Power

Flow Method

In this chapter, a new fast PF approach tailored for distribution system studies has been
introduced. The core of this method relies on a fixed-point iteration solver, incorporat-
ing a linearized current injection model of P-Q and P-V nodes. Notably, the applied
P-Q node model in this method is voltage-dependent, considering voltage variations in
distribution grids. While traditional distribution grids typically have few or no voltage
control components, the controllability of power converters has opened the possibil-
ity to operate certain distributed energy resources, such as battery storage systems, as
voltage controllers or P-V nodes in active distribution grids. In line with this, a linear
model of the P-V node based on the current injection concept has been developed in this
dissertation. Beyond the various applications of PF in the planning, operation, automa-
tion, and control of power systems, the primary objective of utilizing the proposed PF
method in this dissertation is to rapidly generate training data for the proposed data-
driven monitoring system.

6.1 Introduction

To ensure efficient operation of power systems within their operating limits, system op-
erators conduct PF studies, examining the impact of power flowing through network
branches from generation units to customers. PF studies have diverse applications in
planning, automation, and operation of power systems. The role of PF in planning and
operating distribution grids is discussed in [125], emphasizing its use in evaluating net-
work behavior and managing alternatives based on voltage regulation, power factor
targets, and generation constraints. From an automation perspective, PF is utilized for
monitoring distribution grids, as demonstrated in [126–128]. Traditional PF methods,
such as Gauss-Seidel and Newton-based approaches, designed for transmission grids
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[129], may not be optimal for distribution systems due to different network characteris-
tics, as pointed out in Section 2.3. Common solutions for distribution systems include
the backward-forward sweep [130, 131] and the current injection method (CIM) [132].
However, these solutions encounter convergence issues in the presence of more than
one voltage-controlled node (or P-V node). Moreover, conventional PF approaches for
distribution systems have a high computational burden [133], making them unsuitable
for fast real-time automation and operation functions. To address these challenges, re-
search has focused on increasing the convergence rate of nonlinear PF methods, lin-
earizing the PF problem, and leveraging data-driven techniques for faster solutions
[134–136]. Linearization is a common approach to simplify and accelerate PF calcu-
lations. A classical direct-current (DC) PF method is described in [137], mainly used for
MW-oriented applications where the effects of network voltage and VAR conditions are
minimal. However, this approach cannot be applied in distribution systems due to com-
parable resistive and reactive parts of line impedances [138, 139]. In comparison, the DC
PF approach proposed in [140] considers the exact effect of net reactive loads on phase
angles and has acceptable accuracy even under cold-start conditions. However, it faces
the drawback that voltage magnitude and phase angle are not completely decoupled,
leading to a quadratic programming (QP) problem if used for optimization. Address-
ing this issue, a decoupled linearized power flow (DLPF) model with respect to volt-
age magnitude and phase angle is introduced in [141], assuming uniform resistance-to-
reactance ratios and a radial network. A sparse linear approximation of feasible power
flows is derived in [142] based on a geometric approach, suitable for unbalanced three-
phase power systems. Another linear balanced PF model is proposed in [143] for radial
distribution systems, neglecting the load voltage-dependent characteristic. Considering
small voltage drops along branches and an operating voltage magnitude around 1 pu,
[144] proposes a linear expression-based PF solution. However, this approach does not
consider PV buses and ZIP load. In [138], a linear power flow approach is introduced for
distribution systems, incorporating the ZIP load model but not considering P-V nodes.
In distribution grids, the voltage-dependent characteristic of the load is addressed in
a novel linear non-iterative PF formulation based on the ZI load type, as presented in
[145]. This method utilizes the curve-fitting technique to derive the load model, a tech-
nique also adopted in the PF approach proposed in this chapter. While [145] employs
the P-Q model (negative load) for modeling DG units, the proposed approach in [146]
lacks coverage of DGs as voltage regulators (voltage-controlled nodes). To address this
limitation, this chapter focuses on a PF formulation based on the fixed-point iteration
technique (described in Section 6.2). It integrates a proposed linear model of the syn-
chronous generator (explained in Section 6.3), representing it as a P-V node (the bus
where the voltage is controlled either by synchronous generators or by grid-forming
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converters [147]). Additionally, it incorporates the linear ZI load model derived in [145]
(explained in Section 6.4). To facilitate this integration, the power angle of the generator
is relaxed using the relaxation method and a relaxation factor. From the perspective of
distribution system imbalances, three-phase linear PF approaches have been introduced
in [148] and [149]. The proposed linearized model of the synchronous generator in this
dissertation can also be applied in [139], which represents the three-phase extension of
the balanced PF formulation proposed in [145]. The computational complexity of the
proposed method is compared with the Newton-Raphson PF technique in Section 6.5.
Finally, the performance of the proposed linear PF approach is assessed in the results,
Section 6.6.

6.2 Fixed-Point PF Solver

The system of linear equations (SLE) in (6.1) is obtained by applying Kirchhoff’s Current
Law to a power system consisting of n nodes, along with the equivalent current injection
model of sink and source components.

Yv = i(v) (6.1)

Given the admittance matrix Y ∈ Cn×n and the current injection vector i ∈ Cn (which
includes the load and generator equivalent current injection models within the frame-
work of this dissertation), the vector of node voltages v ∈ Cn is determined by solving
the system of linear equations in (6.1). To achieve this, the dissertation employs the
general fixed-point iteration (FPI) solver described in Algorithm 1. This solver is faster
than the Newton and Dishonest Newton methods [150]. The rate of convergence for this
problem is significantly improved in the proposed PF solution due to the integration of
the linear current injection model of P-Q and P-V nodes, as demonstrated in Section 6.5.
A hybrid solution is observed in terms of the required number of iterations. On one

Algorithm 1: CIM Using Fixed-Point Iteration
Data: Network parameters and load data
Result: Voltage magnitude and voltage phase angle
k = 0;
while E ≥ ε do

update current injections i(v) ;
solve Yv = i(v);
E =

∥∥vk+1 − vk
∥∥;

k ← k + 1;
end
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hand, the system, including only P-Q nodes, converges without any iteration. On the
other hand, iteration is necessary when a P-V node is present in the system. As illus-
trated in Fig. 6.1, the equivalent current injection model of nodes and the node voltages
are updated during the iteration process, while the admittance matrix remains constant.
The independence of all these current elements allows them to be executed in parallel

i1Y v = i. i2 in

FP iteration 
loop

Parallel computing

FIGURE 6.1: Parallel Computing of Current Injections

using a high-performance multi-core computer. This is a key advantage of the proposed
PF formulation over other existing PF methods. The iteration process concludes when
the difference between two consecutive results, calculated by the SLE in (6.1), meets the
predefined tolerance (ε). The initial guess for the system’s bus voltages is taken from
the unloaded grid condition. However, the previous solution serves as a more accurate
initial guess for solving the next problem. Generally, a closer initial voltage guess to the
final solution enhances the rate of convergence.

6.3 P-V Node Current Injection Model

In the context of PF calculation, net real power and voltage magnitude are regulated
at P-V nodes through synchronous generators and grid-forming converters, serving as
conventional and modern voltage regulators, respectively. To integrate the current in-
jection model of this node into the proposed FPI power flow approach, the equivalent
current injection model of the rotating synchronous generator is derived in this disser-
tation under the assumption that the resistance of the armature winding is neglected.
In this regard, the correlation between net active power and voltage magnitude of the
synchronous generator is expressed as [151]:

pg =
E.vg

xg
sin (δ) (6.2)

where

E: Electromotive force (emf) (i.e. the internal voltage of the machine)

xg: Generator’s synchronous reactance

vg: Terminal voltage of the generator
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δ: Power angle, the angle between the terminal voltage and the generator emf

The Thévenin equivalent circuit model of the synchronous generator along with its pha-
sor diagram is shown in Fig. 6.2. In performing the proposed PF calculation, the gener-

vgig

E

ᵟ E

jxg

vg

ig

FIGURE 6.2: Single-line and Phasor Diagram of Synchronous Generator

ator reference operating settings (Ere f , Pre f ) are adjusted to the P-V node target values
(Ptarget, Vtarget); Ere f = Vtarget and Pre f = Ptarget. Consequently, the generator injected
current ig needs to be adjusted to meet these targets. As per the phasor diagram de-
picted in Fig. 6.2, the machine emf is expressed as:

E = Ere f exp
(

j(δ +∠vg)
)

(6.3)

Given that the magnitude of E is set to be Ere f , the power angle and the terminal voltage
of the generator are the only variables changing the emf during the PF iteration process
so that the generator equivalent current injection ig can meet the Pre f . In this manner,
the changing rate (per iteration) of the power angle is calculated using a linearized form
of Equation 6.2, derived by applying the partial derivative rule as follows:

Δpg =
E.Δvg

xg
sin (δ)︸ ︷︷ ︸

Term 1

+
E.vg

xg
cos (δ)︸ ︷︷ ︸

Term 2

.Δδ (6.4)

Then, the changing rate of the power angle is obtained based on the defined terms (Term
1 and Term 2) in the Equation 6.4:

Δδ =
Δpg − Term 1

Term 2
(6.5)

Δpg is the difference between of Pre f and the generator’s active power (pg):

Δpg = Pre f − pg (6.6)
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To align the generator with the reference power, the described FPI procedure aims to
make this difference zero:

FPI : Δpg → 0 (6.7)

While the linearized form of the generator active power is utilized to calculate the power
difference in Equation 6.6 in this dissertation, the active power of the generator is up-
dated by extracting the real part of the generator complex power (sg), as follows:

sg = pg + jqg = vg.i∗g = vg.
(E − vg

jxg

)∗
(6.8)

pg = Re

(
vg.
(E − vg

jxg

)∗)
(6.9)

The multiplication of the generator terminal voltage (vg) and its current injection con-
jugate (i∗g) yields the generator complex power (sg). Both of these variables vary so
that the generator’s active power meets the active power reference point (Pre f ) during
the FPI process. Considering the zero initial power angle value, the initial generator’s
active power would be zero. However, in the FPI process, the power angle is increased
until the generator’s active power reaches Pre f . In this iteration process, the generator
terminal voltage is updated by solving, per iteration, the SLE in system of Equations
6.1. Simultaneously, the power angle varies based on the changing rate calculated in
Equation 6.5. To achieve this, the power angle is relaxed through the applied relaxation
factor (γ) as follows:

δ ← δ + γ.Δδ (6.10)

The relaxation method has been explained in Appendix B. The rate of change of the
generator current injection and, consequently, the power flow rate of convergence are
altered by γ. When γ = 1 (Gauss-Seidel method), it is the boundary between under-
relaxation and over-relaxation. Under over-relaxation conditions (γ > 1), the solution
decays with oscillations, while under under-relaxation conditions (γ < 1), there are no
oscillations. The relaxation factor serves as a convergence-controlling parameter, de-
termining whether the system reaches the solution with oscillations or not. Selecting
the right value for the relaxation factor minimizes the number of iterations required to
reach the solution. In this respect, Monte Carlo simulation based on random operating
conditions is taken into account to obtain the optimum value for the relaxation factor
in this dissertation, as shown in Section 6.6. During this process, while the number
of required iterations satisfying the solutions is counted, γ varies in a range starting
from under-relaxation mode and ending at a point in the over-relaxation mode for each
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Monte Carlo trail. The γ resulting in the minimum number of required iterations repre-
sents the optimal relaxation factor.

6.4 P-Q Node Current Injection Model

The voltage-independent load model is conventionally used in load flow calculations.
This type of load is suitable for performing the PF at the transmission levels where the
voltage variation is limited, as TSOs regulate the voltage at most nodes. To integrate
this model into the FPI technique, the load current injection model is derived from the
load’s complex power (sl) and relaxed through the formulation in B.2 as follows:

sl = pl + jql = vl.i∗l (6.11)

il ← (1 − γ)il + γ.
( pl + jql

vl

)∗
(6.12)

Due to the absence of voltage control devices, the voltages can vary widely along the
system feeders in distribution grids. To obtain more accurate system operating points,
the load voltage-dependent characteristic should be taken into account in PF studies
in these networks. A more accurate PF result can lead to cost reduction in delivering
power to end customers, as there is no need for under or over-compensation for voltage
regulation. In this context, the constant active and reactive power in 6.12 should be
replaced with a load voltage-dependent equivalent characteristic, as follows:

il ← (1 − γ)il + γ.
( pl(vl) + jql(vl)

vl

)∗
(6.13)

In this context, the load voltage dependency models are commonly expressed as:

• Exponential Load Model: the following exponential load model is one of the com-
mon ways of characterizing the voltage dependency of the active and reactive
power [151]:

pl(vl)

pl0
=
( vl

vl0

)α
(6.14)

ql(vl)

ql0
=
( vl

vl0

)β
(6.15)

The nominal values are indicated by a zero subscript in these representations. The
load exponents α and β are determined from the load-measured data.

• ZIP Load Model: another common way for load voltage dependency representa-
tion is the polynomial model [151]. This model takes part three elements:
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1. a constant-impedance (Z)

2. a constant-current (I)

3. a constant-power (P)

This model is formulated here:

pl(vl)

pl0
= FZ.

( vl
vl0

)2
+ FI .

( vl
vl0

)
+ FP (6.16)

ql(vl)

ql0
= F

′
Z.
( vl

vl0

)2
+ F

′
I .
( vl

vl0

)
+ F

′
P (6.17)

The constant coefficients F and F
′

are extracted from the measurements and the
subscripts Z, I, and P corresponded to the mentioned ZIP elements. There are only
two independent parameters in formulas 6.16 and 6.17 since FZ + FI + FP = 1 and
F
′
Z + F

′
I + F

′
P = 1.

• ZI Load Model: this model has been introduced in [145] and is a kind of modifica-
tion of the ZIP polynomial load model in which the vertical intercept is assumed
to be zero:

pl(vl)

pl0
= CZ.

( vl
vl0

)2
+ CI .

( vl
vl0

)
(6.18)

ql(vl)

ql0
= C

′
Z.
( vl

vl0

)2
+ C

′
I .
( vl

vl0

)
(6.19)

Compared to the ZIP load model, the number of load-independent parameters
decreases by one (CZ + CI = 1 and C

′
Z + C

′
I = 1) in ZI load model while the

accuracy of the PF results is not affected.

Utilizing the above-mentioned load models, the equivalent current injection model of
6.12 is updated at each iteration, ensuring that the PF problem converges to the correct
states in distribution grids. Nevertheless, these load models introduce non-linearities on
the right-hand side of the SLE in 6.1. Assuming that the imaginary part of the voltage

ip jiq GL jBL vL

FIGURE 6.3: ZI Load Model
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is much smaller than the real part by several orders of magnitude (vim � vre), a ZI load
model is obtained. This model includes an impedance (Z) in parallel with a current
source (I), as shown in Fig. 6.3. It converts the non-linear PF problem into a linear non-
iterative one [145] when there are only P-Q nodes in the power network. To derive this
linearized model, the active and reactive load components in the mentioned polynomial
ZI load model are used in the load complex power.

il =
( pl + jql

vl

)∗
= (6.20)

(
pl0.
(
CZ.( vl

vl0
)2 + CI .(

vl
vl0
)
)
+ jql0.

(
C

′
Z.( vl

vl0
)2 + C

′
I .(

vl
vl0
)
)

vl

)∗
=

( pl0CZvlre + ql0C
′
Zvlim

v2
l0

+
pl0CIvlre + ql0C

′
Ivlim

vl0vl

)
︸ ︷︷ ︸


{il}
+

j
( pl0CZvlim − ql0C

′
Zvlre

v2
l0

+
pl0CIvlim − ql0C

′
Ivlre

vl0vl

)
︸ ︷︷ ︸

�{il}

Considering vlre
vl

= vlre√
v2

lre+v2
lim

, vlim
vl

= vlre√
v2

lre+v2
lim

and assuming that vlim ≈ 0, the above

equation simplifies as:

ilre = 
{il} ≈ ql0C
′
Z

v2
l0

vlim +
pl0CZ

v2
l0

vlre +
pl0CI

vl0
(6.21)

ilim = �{il} ≈ pl0CZ

v2
l0

vlim − pl0C
′
Z

v2
l0

vlre −
ql0C

′
I

vl0
(6.22)

Taking into account formula 6.21 and 6.22, a ZI load model is extracted as:

il = ilre + jilim = (6.23)

( pl0CZ

v2
l0

vlre −
pl0C

′
Z

v2
l0

vlim

)
+ j
(ql0C

′
Z

v2
l0

vlre +
pl0CZ

v2
l0

vlim

)
+

pl0CI

vl0
− j

ql0C
′
I

vl0

=⇒ il =
( pl0CZ

v2
l0

− ql0C
′
Z

v2
l0

)
.(vlre + jvlim) +

( pl0CI

vl0
− j

ql0C
′
I

vl0

)
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=⇒ il =
( pl0CZ

v2
l0

− j
ql0C

′
Z

v2
l0

)
︸ ︷︷ ︸

GL + jBL︸ ︷︷ ︸
YL

.(vl) +
( pl0CI

vl0
− j

ql0C
′
I

vl0

)
︸ ︷︷ ︸

ip + jiq︸ ︷︷ ︸
IL

Therefore, the extracted load current is represented as an admittance (YL) in parallel
with a current source (IL), as shown in Fig 6.3. Considering P-V and Q-V characteristics
based on the collected measured data, the load coefficients (CZ, CI , C

′
Z, and C

′
I) are cal-

culated using the curve fitting technique [145]. This ZI load model is easily integrated
into the SLE in 6.1. In this respect, the impedance of the loads and the load current
sources are added to the admittance matrix diagonal elements and the current vector,
respectively. Exploiting this ZI load model along with the proposed current injection
model of a synchronous generator leads to a linear iterative PF formulation. According
to the obtained results in Section 6.6, this PF method is accurate enough to be used in
the operation of distribution grids. However, due to assumptions taken into account in
the derivation of the ZI load model, it is shown that the calculated results cannot ex-
actly match those obtained via non-linear PF (NLPF) methods. To compensate for this
discrepancy, the following non-linear ZI load model based on the active and reactive
powers in formulas 6.18 and 6.19 can be used in the proposed FPI PF method:

il ← (1 − γ)il + γ.
( pl + jql

vl

)∗
(6.24)

=

(
pl0.
(
CZ.( vl

vl0
)2 + CI .(

vl
vl0
)
)
+ jql0.

(
C

′
Z.( vl

vl0
)2 + C

′
I .(

vl
vl0
)
)

vl

)∗

il ← (1 − γ)il + γ.
(( pl0CZ

v2
l0

− j
ql0C

′
Z

v2
l0

)
︸ ︷︷ ︸

Admittance Part

.vl +
( pl0CI

vl0
− j

ql0C
′
I

vl0

)
︸ ︷︷ ︸

Current Part

)

When integrating this model into the SLE, the load voltage, and consequently, the load
equivalent current injection are updated in each iteration so that the solver can meet
the predefined tolerance (ε). The PF approach in this dissertation, however, utilizes
the linear ZI load model and the proposed current injection model of the synchronous
generator, representing the P-Q and the P-V nodes, respectively. The implementation of
the proposed approach is shown in Algorithm 2.
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Algorithm 2: Linear Iterative PF Algorithm
Data: Network parameters, Power flow data, Iteration, Tolerances (ε; ε), Power

plant settings (Ere f ;pre f ), Relaxation factor (γ), Load Fitting coefficients (Cz;
C′

z; CI and C′
I )

Result: Voltage magnitude and voltage phase angle
Per Unit Values Conversion;
Building Admittance Matrix (including the equivalent load impedance defined in
(6.23)):Y;

Calculate Impedance Matrix: Z = Y−1;
initialization: v = v0;
k = 0;
while E ≥ ε do

Update generators current injection model ig :

ik∗
g =

(Ek−vk
g

jxg

)∗
;

pk
g = Re(vk

g.ik∗
g );

Δpk
g = pre f − pk

g;

tk
1 =

Ek.(vk
g−vk−1

g )

xg
;

tk
2 =

Ek.vk
g

xg
cos(δk);

Δδk =
pk

g−tk
1

tk
2

;

if t2 > ε then

δk+1 = δk + γΔδk;
end

Ek+1 = Ere f exp
(

j(δk+1 + vk
g)
)
;

Solve v = Z.i(v) for vk+1;
e =

∥∥vk+1 − vk
∥∥

2;
k ← k + 1;

end

6.5 Computational Burden Assessment

To demonstrate the computational efficiency of the proposed linear iterative PF tech-
nique compared to classical PF methods, the computational burden of the proposed FPI
approach is compared with the Newton-Raphson method in this section. This compar-
ison is based on a rough estimation of the FLOPs for the main required mathematical
operation functions and the solution convergence rate.
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• FLOPs

The computational burden of the PF problem is directly related to the number
of mathematical operations executed in the PF algorithms. In this context, the
number of FLOPs used in the proposed FPI and the classical Newton-Raphson
method is compared here. To understand the general picture of PF algorithms, the
systems of equations for both approaches are represented here:

1. Newton-Raphson Solution

Equation 6.25 shows how the voltage solutions are updated by the multipli-
cation of the Jacobian matrix inverse and the power mismatch formulation.

Δvk = −[Jk]−1 ×
[

ΔP(vk)

ΔQ(vk)

]
(6.25)

The dimensions of the Jacobian matrix along with its elements (submatrices)
are indicated here:

(2N − 2 − M)× (2N − 2 − M)︷︸︸︷
[Jk] =

⎡
⎢⎢⎢⎢⎣

(N − 1)× (N − 1)︷︸︸︷
[Jk

Pθ]

(N − 1)× (N − M)︷ ︸︸ ︷
[Jk

PV ]
(N − M)× (N − 1)︷︸︸︷

[Jk
Qθ]

(N − M)× (N − M)︷ ︸︸ ︷
[Jk

QV ]

⎤
⎥⎥⎥⎥⎦ (6.26)

N and M are the number of buses and the number of P-V nodes in the grid, re-
spectively. The submatrices and the power mismatch formulation are found
in the Appendix C.

2. Proposed Linear Iterative PF Solution

The voltage solution for the proposed linear iterative solution is updated
based on formula 6.27:

Δvk =

N × N︷︸︸︷
[Z] ×

[
ik
g(v)
il

]
(6.27)

To assess the computational burden of the proposed linear iterative PF method
in comparison to the classical Newton-Raphson approach, the number of FLOPs
in formula 6.25, representing the Newton-Raphson method, should be compared
with the number of FLOPs in formula 6.27 for the proposed method. The main
adverse impact on the execution time of equation 6.25 comes from the Jacobian
matrix inversion function and the multiplication of this matrix with the power
mismatches. For the sake of simplicity, the FLOPs for mathematical operators
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altogether used in the Jacobian matrix and the power mismatch matrices are ne-
glected, as this number is significantly larger than the FLOPs corresponding to
the operators used in the current injection matrix in formula 6.27. Considering a
square matrix with a size of (N × N), the computational complexity in terms of
the required number of FLOPs is cubically O(N3) and quadratically O(N2) de-
pendent on the size of this matrix when executing the matrix inversion and matrix
multiplication functions, respectively [152, 153]. In this respect, Fig. 6.4 shows
the executed MATLAB computational time for inverting square matrices where
the size increases from 1 × 1 to 5000 × 5000; along with the required computa-
tional time for their multiplication with columns whose size increases from 1 × 1
to 5000 × 1.

FIGURE 6.4: Computational Cost of Matrix Inversion and Multiplication

The matrix elements have been randomly selected. As the inversion task is heavy
for large matrices (and consequently time-consuming), this operation has ended
when the matrix size reaches 5000 × 5000. However, the matrix inversion and
multiplication execution times for matrices with sizes between 5000 × 5000 and
10000 × 10000 have been estimated using the MATLAB curve fitting tool. To
check the effectiveness of this estimation, a matrix with a size of 9000 × 9000
has been inverted. The elapsed time for inverting this matrix is around 23 sec-
onds, which is compatible with the shown inversion-fitted curve. However, the
impedance matrix (Z) is constant in the proposed PF method. Then, taking into
account equations 6.25 and 6.27, the proposed PF solution does not involve the
time-consuming calculations of the Jacobian matrix elements and the matrix in-
version, with O((2N − 2 − M)3) complexity, in each iteration as in the Newton-
Raphson algorithm. In terms of the matrix multiplication operation, moreover,
the Newton-Raphson and the proposed solutions have O((2N − 2 − M)2) and
O(MN) complexities per iteration, respectively, when there are M P-V nodes in
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the system. The O(MN) complexity is obtained based on the following two sce-
narios:

1. Grid Consisting of Only P-Q Nodes

As already mentioned, no iteration is required to solve the problem in this
case. In this context, the equivalent constant values of the load impedance
and load current injection model are integrated into the SLE of 6.28:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N

Z31 Z32 · · · Z3N
...

... . . . ...
ZN1 ZN2 · · · ZNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iL1

iL2

iL3

iL4
...

iLN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4
...

vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.28)

=⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 = Z11iL1 + Z12iL2 + Z13iL3 + · · ·+ Z1NiLN︸ ︷︷ ︸
V1

v2 = Z21iL1 + Z22iL2 + Z23iL3 + · · ·+ Z2NiLN︸ ︷︷ ︸
V2

v3 = Z31iL1 + Z32iL2 + Z33iL3 + · · ·+ Z3NiLN︸ ︷︷ ︸
V3

...
vN = ZN1iL1 + ZN2iL2 + ZN3iL3 + · · ·+ ZNNiLN︸ ︷︷ ︸

VN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 = V1

v2 = V2

v3 = V3

v4 = V4
...

vN = VN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Compared to the Newton-Raphson algorithm, less complexity is required to
reach the solution using the proposed PF method. The complexity of the
proposed method is O(N2), while the complexity of the Newton-Raphson
method is O((2N − 2)3 + (2N − 2)2

)
in each iteration.

2. Grid Consisting of Both P-Q and P-V Nodes

In the case of the existence of a P-V node in the system, the solver obtains the
solution after executing the SLE through several iterations. In this context, the
complexity of the matrix multiplication operation in 6.27 is O(MN) per iter-
ation. Considering that there are only a few P-V nodes in distribution grids
(M < N), this complexity is significantly lower than the FLOPs (O((2N −
2 − M)2

)
) for the same operation in the Newton-Raphson method. To illus-

trate how this complexity is derived in the proposed PF method, let’s assume
that only one P-V node (at node 2) is present in the system in the initial step.
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The corresponding SLE is then described in Equation 6.29:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N

Z31 Z32 · · · Z3N
...

... . . . ...
ZN1 ZN2 · · · ZNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iL1

iL2 + ik
G1

iL3

iL4
...

iLN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vk
1

vk
2

vk
3

vk
4
...

vk
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=⇒ (6.29)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk
1 = Z11iL1 + Z12iL2︸ ︷︷ ︸

V11

+Z12ik
G1 + Z13iL3 + · · ·+ Z1NiLN︸ ︷︷ ︸

V12

vk
2 = Z21iL1 + Z22iL2︸ ︷︷ ︸

V21

+Z22ik
G1 + Z23iL3 + · · ·+ Z2NiLN︸ ︷︷ ︸

V22

vk
3 = Z31iL1 + Z32iL2︸ ︷︷ ︸

V31

+Z32ik
G1 + Z33iL3 + · · ·+ Z3NiLN︸ ︷︷ ︸

V32

...
vk

N = ZN1iL1 + ZN2iL2︸ ︷︷ ︸
VN1

+ZN2ik
G1 + ZN3iL3 + · · ·+ ZNNiLN︸ ︷︷ ︸

VN2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk
1 = Z12ik

G1 + V11 + V12︸ ︷︷ ︸
V1

vk
2 = Z22ik

G1 + V21 + V22︸ ︷︷ ︸
V2

vk
3 = Z32ik

G1 + V31 + V32︸ ︷︷ ︸
V3

...
vk

N = ZN2ik
G1 + VN1 + VN2︸ ︷︷ ︸

VN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vk
1 = Z12ik

G1 + V1

vk
2 = Z22ik

G1 + V2

vk
3 = Z32ik

G1 + V3
...

vk
N = ZN2ik

G1 + V4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z12

Z22

Z32
...

ZN2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
×
[
ik
G1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vk
1 − V1

vk
2 − V2

vk
3 − V3

...
vk

N − VN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The constant values are shown in black, as they are computed before the it-
eration process. However, the red terms are updated in the iterations. In
the final derived formulation indicated in bold, the Z matrix size is N × 1.
Therefore, its complexity is O(N × 1) FLOPs in each iteration. When adding
an additional P-V node in the grid, for instance at node 4, the SLE of 6.30 is
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derived, which requires O(N × 2) FLOPs per iteration.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N

Z31 Z32 · · · Z3N
...

... . . . ...
ZN1 ZN2 · · · ZNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iL1

iL2 + ik
G1

iL3

iL4 + ik
G2

...
iLN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vk
1

vk
2

vk
3

vk
4
...

vk
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=⇒ (6.30)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk
1 = Z11iL1 + Z12iL2︸ ︷︷ ︸

V11

+Z12ik
G1 + Z13iL3︸ ︷︷ ︸

V12

+Z14ik
G2 + Z14iL4 + · · ·+ Z1NiLN︸ ︷︷ ︸

V13

vk
2 = Z21iL1 + Z22iL2︸ ︷︷ ︸

V21

+Z22ik
G1 + Z23iL3︸ ︷︷ ︸

V22

+Z24ik
G2 + Z24iL4 + · · ·+ Z2NiLN︸ ︷︷ ︸

V23

vk
3 = Z31iL1 + Z32iL2︸ ︷︷ ︸

V31

+Z32ik
G1 + Z33iL3︸ ︷︷ ︸

V32

+Z34ik
G2 + Z34iL4 + · · ·+ Z3NiLN︸ ︷︷ ︸

V33

...
vk

N = ZN1iL1 + ZN2iL2︸ ︷︷ ︸
VN1

+ZN2ik
G1 + ZN3iL3︸ ︷︷ ︸

VN2

+ZN4ik
G2 + ZN4iL4 + · · ·+ ZNNiLN︸ ︷︷ ︸

VN3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk
1 = Z12ik

G1 + Z14ik
G2 + V11 + V12 + V13︸ ︷︷ ︸

V1

vk
2 = Z22ik

G1 + Z24ik
G2 + V21 + V22 + V23︸ ︷︷ ︸

V2

vk
3 = Z32ik

G1 + Z34ik
G2 + V31 + V32 + V33︸ ︷︷ ︸

V3

...
vk

N = ZN2ik
G1 + ZN4ik

G2 + VN1 + VN2 + VN3︸ ︷︷ ︸
VN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vk
1 = Z12ik

G1 + Z14ik
G2 + V1

vk
2 = Z22ik

G1 + Z24ik
G2 + V2

vk
3 = Z32ik

G1 + Z34ik
G2 + V3

...
vk

N = ZN2ik
G1 + ZN4ik

G2 + V4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z12 Z14

Z22 Z24

Z32 Z34
...

...
ZN2 ZN4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
×
[

ik
G1

ik
G2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vk
1 − V1

vk
2 − V2

vk
3 − V3

...
vk

N − VN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Finally, when the number of P-V nodes in the system is M, the SLE of 6.31 is
formulated, which requires O(N × M) FLOPs in each iteration.⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Z12 Z14 · · · Z1M

Z22 Z24 · · · Z2M

Z32 Z34 · · · Z3M
...

... . . . ...
ZN2 ZN4 · · · ZN M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎣

ik
G1

ik
G2
...

ik
GM

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vk
1 − V1

vk
2 − V2

vk
3 − V3

...
vk

N − VN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.31)

The required FLOPs for the proposed method (PM) and the Newton-Raphson
technique are tabulated in Table 6.1, per iteration. As indicated, the required
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FLOPs, O(NM), for the PM are significantly less than the required FLOPs, O((2N −
2 − M)3)+O((2N − 2 − M)2), for the Newton-Raphson method in each solution
iteration.

FLOPs
Method

Newton-Raphson PM

Inversion O((2N − 2 − M)3) 0

Multiplication O((2N − 2 − M)2) O(NM)

TABLE 6.1: Number of FLOPs of the solution as per iteration

• Convergence Rate

The Newton-Raphson and the proposed PF method are iterated multiple times
until the predefined tolerance (ε) is satisfied. While Newton’s method is quadrati-
cally convergent, the fixed-point iteration technique converges linearly to the solu-
tion [154]. From the convergence rate point of view, the Newton-Raphson method
has an advantage over the fixed-point iteration technique. However, the proposed
Fixed-Point Iteration PF solution exploits the linearized model of the load and gen-
erator, significantly simplifying the SLE as of 6.31, which reduces the solver exe-
cution time due to dealing with fewer FLOPs in the process. Additionally, the rate
of convergence is enhanced by applying the optimal relaxation factor associated
with the P-V nodes [155].

In this context, conducting an exact comparison of the computational burden between
the solvers is not feasible due to potential differences in how the PF algorithms have
been programmed and implemented, which may not be optimal. Additionally, the
computational cost of iterative solvers depends on the required number of iterations
to reach a solution. Given the various operating conditions (such as node number, sys-
tem loading, line parameters, and the number of P-V nodes), as well as the solver’s
initial set points, the number of required iterations can vary across different problems.
Despite the challenges in determining the exact number of required iterations to solve
a PF problem, knowing the required FLOPs for each iteration and the solver’s conver-
gence rate allows for a rough estimation of the computational burden of the solvers.
This estimation serves as an indication of solver speed assessment. In this regard, the
MATLAB execution time for the main Newton-Raphson operation functions (i.e., matrix
inversion and multiplication), as shown in Fig. (6.5-b), is divided by the execution time
for the main operation function (i.e., matrix multiplication) of the proposed PF method,
shown in Fig. (6.5-a). The division outcome, as illustrated in Fig. (6.5-c), indicates that
the PF method is much faster than the Newton-Raphson approach when the system is
large. For instance, in each iteration, the proposed method is approximately 2000 times
faster than the Newton-Raphson method when there are 15 P-V nodes in a grid with
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(a) (b) 

 
(c) 

 

FIGURE 6.5: MATLAB execution time of the required FLOPs for the ma-
trix inversion and multiplication. (a) shows the elapsed time of [Z]N×M ×
[iG]1×M. (b) shows the elapsed time of [J]−1

(2N−2N−M)×(2N−2N−M)
×

[P; Q]1×2N−2−M. (c) shows how many times the PM is faster than NR
method per iteration.

2500 nodes. In other words, to match the computational cost of the Newton-Raphson
method, the PM has 2000 iteration chances to converge, while Newton-Raphson solves
the PF problem in one iteration. Considering that the FPI and Newton approaches are
linearly and quadratically convergent, respectively, and the fact that the FPI solution
generally converges well for most distribution systems (connected to the dominant bulk
power source) with adequate capacity to serve the load [156], the mentioned number of
iteration chances is much more than the required number of iterations to solve the PF
problem by the PM method. Therefore, the proposed method is faster than the Newton-
Raphson method for large grids. It is worth noting that the same outcome has been
observed in other fields of study dealing with solving systems of non-linear equations
[157] when the number of elements in the Jacobian matrix is large.
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6.6 Results

The PF results calculated by the proposed method (PM) are compared with those ob-
tained by DIgSILENT PowerFactory [158] on the benchmark IEEE 33-bus test system
and on the "Seebach" distribution grid, a large medium voltage (MV) network (20 kV)
operated by Bayernwerk AG [159] in Germany. This MV grid has 555 nodes, of which
three nodes include distributed generators operating in P-Q mode. The effectiveness of
the proposed linearized generator model is assessed by assuming that the grid has one
voltage regulator. It has been shown that this PM is stable in terms of convergence when
there are multiple P-V nodes in the system. DIgSILENT PowerFactory has its own in-
terface, which calculates the solution based on the Newton-Raphson method. However,
the PM has not been computationally compared with DIgSILENT PowerFactory since
it has been implemented in MATLAB. From an accuracy point of view, the obtained
PM results track well those calculated by DIgSILENT PowerFactory. In this respect,
the considered quantification indices are the maximum percentage error in the voltage
magnitude and the maximum error in the voltage phase angle over all nodes. From
a computational efficiency perspective, moreover, the computational cost and conver-
gence rate of the PM solver are compared for different relaxation factors.

• Case A: IEEE 33-Bus Including P-Q Nodes

Fig. 6.6 shows the node connections through branches in the IEEE 33-Bus system.
Except for node 1, all nodes include a load. The grid parameters for this system
are found in Appendix D.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

26 27 28 29 30 31 32 33

23 24 25

 

FIGURE 6.6: IEEE 33-bus Test System (including only loads)

Considering the passive system, the obtained PF results (voltage magnitude and
voltage angle) by DIgSILENT PowerFactory and the proposed FPI solver, includ-
ing either only the linear ZI load model (named LPF) or only the proposed non-
linear load model (called NLPF), are shown in Fig. 6.7 and Fig. 6.8. The fitted ZI
load coefficients are: CZ = −1, C

′
Z = −1, CI = 2, and C

′
I = 2.
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FIGURE 6.7: Node Voltage magnitude

As seen in Fig. 6.7, the solvers obtain the same calculated voltage magnitudes. Al-
though the calculated voltage angles by the non-linear solvers (DIgSILENT Pow-
erFactory and NLPF) are the same, the LPF results (shown in Fig. 6.8) do not
exactly match those calculated by the non-linear solvers for the nodes at the end
of the feeder.

FIGURE 6.8: Node Voltage Angle

Table 6.2 indicates the maximum percentage error (PE) in voltage magnitude and
the maximum absolute error (AE) in voltage angle over all nodes.

Method w.r.t
DIgSILENT

Voltage magnitude Voltage angle
PE (%) AE (deg)

LPF 0.0799 0.0349

NLPF 0.0542 0.0029

TABLE 6.2: Number of FLOPs of the solution as per iteration
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According to the standard EN 50160 (or EN 61000), the voltage deviation should
be confined within a range of ±10% of nominal voltage in distribution grids. As
the voltage drop in this scenario is about 10%, the proposed method is accurate
in such a high voltage drop, as indicated by the tabulated results. The MATLAB
execution times for the LPF and LNPF solvers are 2.0269e-04 s and 3.0890e-04 s, re-
spectively, in this case. Considering two additional high load conditions in which
the system loading is 150% and 200%, the accuracy of the proposed PF method is
assessed here.

FIGURE 6.9: Node Voltage magnitude

FIGURE 6.10: Node Voltage Angle

The calculated voltage magnitudes and voltage angles by the PF results are shown
in Fig. 6.9 and Fig. 6.10, respectively. For 150% and 200% loading conditions, the
maximum percentage errors in voltage magnitude are 0.3140% and 0.9051%, while
the maximum absolute errors in voltage angle are 0.0874 degrees and 0.17 degrees,
respectively. The slack bus voltage is assumed to be 1 pu in this case. However,
more accurate PF results are achieved when a higher voltage is set for the slack
bus.
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• Case B: IEEE 33-Bus Including P-Q and P-V Nodes

In this scenario, the grid is assumed to be operated with both P-Q and P-V nodes.
Accordingly, a model of the proposed synchronous generator is added to the end
of the main branch at node 18, as shown in Fig. 6.11.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

26 27 28 29 30 31 32 33

23 24 25 G

FIGURE 6.11: IEEE 33-bus Test System (including both P-V and P-Q)

FIGURE 6.12: Node Voltage magnitude

FIGURE 6.13: Node Voltage Angle
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The internal voltage of the synchronous machine is set to 0.98 pu. To evaluate the
effectiveness of the proposed linearized generator model, the PF results are com-
pared with those calculated by DIgSILENT PowerFactory and the NLPF method.
The impact of two different generator powers, 0.5 MW and 1 MW, on the voltage
magnitude and voltage angle over all nodes is shown in Fig. 6.12 and Fig. 6.13,
respectively. The maximum PE in voltage magnitude and the maximum AE in
voltage angle over all nodes, along with the solver’s execution times, are summa-
rized in Table 6.3 and Table 6.4, respectively.

Method w.r.t
DIgSILENT

Voltage magnitude Voltage angle
PE (%) AE (deg)

PM (Pre f=1MW) 0.0585 0.2624

NLPF (Pre f=1MW) 0.0253 0.0133

PM (Pre f=0.5MW) 0.0494 0.0477

TABLE 6.3: Error of voltage magnitude and phase angle

Method Computational Time (s)

PM (Pre f=1MW) 2.0269e-04

NLPF (Pre f=1MW) 3.0890e0-04

PM (Pre f=0.5MW) 1.8184e-04

TABLE 6.4: Solver Execution Time

According to the tabulated results, the proposed methods are comparable with
DIgSILENT PowerFactory. Nevertheless, at the expense of more execution time,
the use of the non-linear load model yields more accurate results than exploiting
the linear load model. In another scenario, considering the internal voltage of 0.95
pu, the proposed linear PF results are compared with DIgSILENT PowerFactory
in Table 6.5 when the synchronous reactances are set to 1 pu and 1.7 pu.

Synchronous
reactance

Voltage magnitude Voltage angle
PE (%) AE (deg)

X = 1 pu 0.0636 0.3572

X = 1.7 pu 0.0867 0.3566

TABLE 6.5: Error of voltage magnitude and phase angle

All in all, the obtained results indicate that the proposed linear model of the syn-
chronous generator is accurate enough to be used as the P-V node in the PF cal-
culations. Apart from accuracy, the convergence rate of the proposed method is
adjusted by the relaxation factor (γ), as explained in Subsection 6.3. In this respect,
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the relaxation factor that yields the minimum number of required iterations is se-
lected over 5000 Monte Carlo simulations, varying γ with steps of 0.01 from 0.2 to
1.9 for each trial.

FIGURE 6.14: gamma

The internal voltage and the active power set point of the generator are 0.98 pu
and 1 MW, respectively, for all the trials. As shown in Fig. 6.14, the optimum γ is
found to be 1.76, which yields the minimum number of required iterations, specif-
ically 27, in all scenarios where loads are randomly varied. To visually illustrate
how γ affects the PF convergence rate, a specific problem is solved using different
relaxation factors.

FIGURE 6.15: Power angle variation for different relaxation factors

Fig. 6.15 and Fig. 6.16, respectively, show the impact of the relaxation factor on the
power angle and on the generator’s active power. In this context, the power angle
changes to ensure that the generator supplies the reference set value of 1 MW to
the system.



6.6. Results 113

FIGURE 6.16: Generator active power variation for different relaxation factors

As shown in the figures, the solver converges to the solution with and without os-
cillations under over- and under-relaxation modes, respectively. However, com-
pared to the chosen relaxation factors, the value γ = 1.76 yields the minimum
number of iterations required to satisfy the target. It is worth noting that depend-
ing on the installation point and the number of installed generators in the system,
the number of required iterations may vary. To illustrate this, the same generator
is gradually added to all the grid nodes starting from node 1 to node 33, and the
number of iterations required to solve the problem is counted.

FIGURE 6.17: GenLocations

Fig. 6.17 shows that the lowest number of iterations (two iterations) is obtained
when a generator is installed on node 1, where the electrical distance is short.
However, the number of iterations sharply increases from 2 to 190 iterations by
gradually adding other generators from node 1 to node 18 as the electrical dis-
tance of the newly added generators increases. The iteration number does not
significantly change when other generators are installed from node 19 to node 33.
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These tests demonstrate that the proposed PF method is robust when there is more
than one generator in the grid.

• Case C: "Seebach" Distribution Grid

The performance of the PM for a large distribution grid is assessed in this section.
PF calculations by the PM and DIgSILENT solvers have been performed for the
"Seebach" grid, as depicted in Fig. 6.18, operated by Bayernwerk Netz GmbH.

FIGURE 6.18: "Seebach" MV Network

As this network includes both radial and mesh feeders, the capability of the PM
in solving systems with complicated structures is also demonstrated in this case.
Different operating conditions are considered here:

1. Passive System: it is assumed that only passive loads are energized in this
scenario. The PF results, including the voltage magnitude and the voltage
angle for the radial section consisting of 10 nodes, are shown in Fig. 6.19 and
Fig. 6.20, respectively. There is a sharp voltage drop from node 542 to node
544, as the first three line segments (L533-536, L536-539, and L539-542) have
considerably smaller lengths than the other lines. Due to the absence of DGs
in the passive system, the voltage magnitude does not exceed the substation
voltage (1 pu). The maximum percentage error in voltage magnitude and
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the maximum absolute error in voltage angle over all nodes with respect to
DIgSILENT are 3.7065e-05% and 1.8745e-06 deg, respectively. The PM solves
the PF problem without iteration in a single shot, as there is no P-V node in
the network. The solving execution time is 9.7494e-04 s for the PM.

FIGURE 6.19: Node Voltage magnitude

FIGURE 6.20: Node Voltage Angle

2. Active System: in this scenario, it is assumed that three DGs operating in
P-Q mode are connected to node 343, node 424, and node 503. The installa-
tion points of these DGs are shown in Fig. 6.21. The injected power by the
DGs leads to bidirectional flowing power and consequently voltage rise in
the network. As an example, the impact of the DG connected to node 343 on
the voltage magnitude and the voltage angle of the grid section where nodes
are radially connected is shown in Fig. 6.22 and Fig. 6.23, respectively. As
can be seen, the voltage magnitude of the two nodes at the end of the section
has increased more than the others. Considering the DIgSILENT PF results as
the reference, the maximum percentage error in voltage magnitude and the
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maximum absolute error in voltage angle over all nodes are 9.4360e-05% and
4.7331e-04 deg, respectively.

G2 at Node 424,
Operated in P-Q mode

G1 at Node 343,
Operated in P-Q mode

G3 at Node 503,
Operated in P-Q mode

FIGURE 6.21: "Seebach" MV Network Including DGs Operating in P-Q
Mode

FIGURE 6.22: Node Voltage magnitude



6.6. Results 117

FIGURE 6.23: Node Voltage Angle

Since the DGs are modeled as the negative load in this case, no iteration is
required to meet the solution. The solver takes 9.7214e-04 s to solve this prob-
lem.

3. Operating Node 153 in P-V Mode: in addition to the passive and negative
loads, node 153 is assumed to be operated in P-V mode in this scenario.

G2 at Node 424,
Operated in P-Q mode

G1 at Node 343,
Operated in P-Q mode

G3 at Node 503,
Operated in P-Q mode

G4 at Node 153,
Operated in P-V mode

FIGURE 6.24: Bus 153 as a P-V node in"Seebach" MV Network
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FIGURE 6.25: Node Voltage magnitude
This P-V node is illustrated in Fig. 6.24. The reference voltage and power
working points are considered to be 0.98 pu and 10 MW, respectively. To
demonstrate how the voltage is controlled at this node, the calculated voltage
magnitude and the voltage angle for a grid section consisting of 10 nodes that
are radially connected are shown in Fig. 6.25 and Fig. 6.26, respectively.

FIGURE 6.26: Node Voltage Angle

The maximum percentage error in voltage magnitude and the maximum ab-
solute error in voltage angle over all nodes are 6.8265e-04% and 0.0046 deg,
respectively. Due to the presence of the P-V node, the solver requires some
iterations to converge to the solution. MATLAB took 9.8374e-04 s to solve this
problem using the PM.

4. Operating Node 554 in P-V Mode: instead of node 153, node 554 is assumed
to operate as the P-V node in this scenario. The P-V node is shown in Fig.
6.27.
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G2 at Node 424,
Operated in P-Q mode

G1 at Node 343,
Operated in P-Q mode

G3 at Node 503,
Operated in P-Q mode

G5 at Node 554,
Operated in P-V mode

FIGURE 6.27: Bus 554 as a P-V node in"Seebach" MV Network

For the radially connected 10 nodes, including the P-V node, the voltage pro-
files, including the voltage magnitude and the phase angle, are shown in Fig.
6.28 and Fig. 6.29, respectively.

FIGURE 6.28: Node Voltage magnitude

The maximum percentage error in voltage magnitude and the maximum ab-
solute error in voltage angle over all nodes are 0.0041% and 0.0291 deg, re-
spectively, with respect to DIgSILENT. The solver takes 0.0011 s to reach the
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solution for this problem.

FIGURE 6.29: Node Voltage Angle

FIGURE 6.30: Power angle variation for different relaxation factors

FIGURE 6.31: active power variation for different relaxation factors
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To illustrate the impact of the relaxation factor (γ) on the rate of convergence,
Fig. 6.31 and Fig. 6.30 depict how the power angle and, accordingly, the
generator power vary for different γ. As observed, the solver reaches the
solution more quickly when γ = 1. However, as explained earlier, under
over-relaxation and under-relaxation modes, the solver approaches the solu-
tion with and without oscillations, respectively. Nevertheless, as shown in
Fig. 6.32 and Fig. 6.33, the solver becomes unstable when γ = 1.8.

FIGURE 6.32: Power angle variation for relaxation factor of 1.8

FIGURE 6.33: Active power variation for relaxation factor of 1.8.
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6.7 Conclusion

In this chapter, a novel model-based PF approach for distribution systems has been in-
troduced. The backbone of the solver is based on the fixed-point iteration algorithm.
This solution integrates a linear current injection model for loads and generators, repre-
senting the P-Q and P-V nodes, respectively. The linear load current injection model is
an already developed ZI load model, leading to a SLE that can be solved without itera-
tion when there are only P-Q nodes in the network. The linear generator current injec-
tion model is derived by applying the partial derivative rule to the synchronous gener-
ator active power formula. In this way, the generator power angle is relaxed using a re-
laxation factor, which can influence the rate of convergence. To maximize this rate, it has
been demonstrated how the optimum relaxation factor is obtained through Monte Carlo
simulations. Additionally, the proposed solution requires significantly fewer FLOPs per
iteration compared to the classical Newton-Raphson method. However, the results sec-
tion reveals that the PF flow results are comparable to those calculated by DIgSILENT
PowerFactory, which utilizes the Newton-Raphson method.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

System monitoring is the most essential task in the automation of complex power sys-
tems (ACS). In this context, monitoring the distribution systems based on the state esti-
mation concept is the main focus of this dissertation. In Chapter 1, it has been explained
that the integration of a large number of active elements, including distributed gener-
ation (PV and wind farms), battery storage systems, and prosumers, imposes network
contingencies. To address this issue, the system operator should be able to oversee the
system behavior with an appropriate time granularity. Considering the lack of measure-
ment units in distribution systems, the described state estimation concept in Chapter 2
can provide system operators with an accurate estimation of whole system states (e.g.,
voltage magnitude and phase angle) so that the right decision can be made confidently
to apply suitable control strategies for the safe operation of the power network. To
meet this goal, a new data-driven distribution system state estimation technique is in-
troduced in Chapter 3. As a data-driven method, the proposed estimation approach
exploits an ANN modeled as a state estimator. The ANN-based estimator, derived
by applying the Bayesian regularization learning technique to the training data, is a
mathematical model that does not involve the time-consuming calculations of the Ja-
cobian matrix and the gain matrix inverse, as in model-based WLS algorithms. Thus,
the proposed estimator is tremendously fast and executes in a few milliseconds with-
out convergence issues. To obtain a fast monitoring system capturing the system states,
the proposed ANN-based estimator is coupled with PMUs, since the reporting rate of
these modern monitoring devices is above 1 Hz. Consequently, by adjusting the re-
porting rate of the ANN-based estimator to a few seconds, the proposed monitoring
system can rapidly capture the system states (ideally once per second). In this con-
text, moreover, the computational complexity of the proposed ANN-based estimator
has been compared with linear- and nonlinear-model-based DSSE problems in Chapter
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4 in terms of FLOPs and the elapsed time. As a result, it has been found that the compu-
tational burden of the proposed estimator is less than that of model-based DSSE prob-
lems. Therefore, it can be used in ADMS systems to satisfy the requirements of real-time
applications. To make this solution scalable, two distributed architectures, parallel and
multi-area, are described in Chapter 5. In both architectures, the estimation accuracy is
enhanced, and the computational burden is distributed over small problems. Last but
not least, a linear fast power flow method for distribution grids is proposed in Chapter
6, which is used to produce the training data for the proposed ANN-based estimator. In
this method, the linear current injection model of P-Q and P-V nodes is integrated into
the fixed-point iteration technique. When the power system is passive or includes active
components operated in P-Q mode, the power flow solution meets the solution with-
out iteration. However, iteration is needed when there are P-V nodes in the network.
In this case, nevertheless, the rate of convergence is increased by applying the optimal
relaxation factor. Moreover, it has been shown that the proposed method is faster than
the classical Newton method for large distribution grids. Thus, both the proposed state
estimation and the linear power flow approach are potential fast solutions that can be
used in distribution automation and operational functions.

7.2 Future Work

The proposed ANN-based estimator maps synchrophasor measurements to node volt-
ages in polar coordinate. In addition to synchrophasor measurements, active and reac-
tive power flows can be considered in the input set, as demonstrated in some scenarios
in this dissertation. It is also suggested to incorporate other available measurements,
such as meteorological data, in the input dataset to further improve estimation accu-
racy. Although the proposed estimator provides state estimations with good accuracy,
training the estimator to map measurements into system states for all probable scenar-
ios, which are infinite, is not feasible. Therefore, it is recommended to consider solutions
based on the system’s worst-case conditions, as highlighted in the system observability
assessment. This concern becomes more critical in systems involving switches. If the
number of switches is limited, it is possible to generate the required training for all sce-
narios based on different combinations of the switches’ statuses. However, in the case
of multiple switches in the grid, numerous scenarios correspond to different switches’
statuses. With n switches in the system, there are 2n different network typologies yields,
accordingly, 2n different problems. Then, generating the 2n training datasets may not
be feasible when there is a large number of switches in the grid. In such cases, it is
recommended to develop a solution that can determine which switches have the dom-
inant impact on the system states and accordingly eliminate scenarios where changing
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the switch status does not significantly affect the states. To generate training data con-
sidering more switches, the power flow technique should quickly calculate the solution.
While the proposed power flow approach uses an optimal relaxation factor to increase
the rate of convergence, obtaining this factor through the Monte Carlo approach in this
work may be time-consuming, especially with a large number of switches. To address
this issue, further research should be conducted to derive a closed-form solution for ob-
taining the optimal relaxation factor instead of relying on the Monte Carlo method.
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Appendix A

Forward and Backward Substitution

FLOPs

The number of counted FLOPs in forward and backward substitution steps is repre-
sented here:

• Forward Substitution

If A is a lower triangular matrix with non-zero diagonal elements, the system of
equations Ax = b is written as:

⎡
⎢⎢⎢⎢⎣

a11 0 . . . 0
a21 a22 . . . 0
...

... . . . ...
am1 am2 . . . amm

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2
...

xm

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎥⎦

The solutions can be represented as:

x1 = b1
a11

x2 = (b2−a21x1)
a22

...

xm =
(bm−am1x1−am2x2−...−am,m−1xm−1)

amm

As can be observed, x1 requires only one FLOP, which is a single division. x2 needs
three FLOPs, involving 1 multiplication, 1 division, and 1 subtraction. Similarly,
x3 requires five FLOPs, comprising 2 multiplications, 1 division, and 2 subtrac-
tions. Following this pattern, computing xm require (2m − 1) FLOPs. Therefore,
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the total number of FLOPs required for forward substitution is:

OForwardStep = 1 + 3 + 5 + . . . + (2m − 1) = m2

• Backward Substitution

Instead of the lower triangular matrix, the matrix A is a upper triangular in this
step:

⎡
⎢⎢⎢⎢⎣

a11 . . . a1,m−1 a1m
... . . . ...

...
0 . . . am−1,m−1 am−1,m

0 0 . . . amm

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1
...

xm−1

xm

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1
...

bm−1

bm

⎤
⎥⎥⎥⎥⎦

The solutions can be represented as:

xm = bm
amm

xm−1 =
(bm−1−am−1,mxm)

am−1,m−1

xm−2 =
(bm−2−am−2,mxm−am−2,m−1xm−1)

am−2,m−2

...

x1 =
(b1−a12x2−a13x3−...−a1,mxm)

a11

Thus, the overall FLOPs required for backward substitution are the same as for
forward substitution:

OBackwardStep = OForwardStep = m2
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Appendix B

Relaxation Method

The relaxation method is an iterative solution for solving the system of linear equations
Ax = b. This approach generalizes the Gauss-Seidel method by introducing a relaxation
factor γ > 0. By determining the optimal value for γ, the convergence rate of the
solution xk is enhanced by adjusting the size of the correction:

xk+1
i = xk

i +
γ

Aii

(
bi −

i−1

∑
j=1

Aiixk+1
j −

n

∑
j=i

Aiixk
j

)
(B.1)

Where 1 ≤ i ≤ n

This method is known as the successive relaxation (SR) method, where the system
reaches the solution either with oscillations under over-relaxation mode or without os-
cillations in under-relaxation mode:

• 0 ≤ γ ≤ 1 → under − relaxation

• γ = 1 → Gauss − Seidel

• γ ≥ 1 → over − relaxation

Formula B.1 is employed to relax the power angle (6.10) in this dissertation. To relax the
load equivalent current model (6.12), another form of B.1 is utilized:

xk+1
i = (1 − γ)xk

i +
γ

Aii

(
bi −

i−1

∑
j=1

Aiixk+1
j −

n

∑
j=i

Aiixk
j

)
(B.2)
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Appendix C

Jacobian Submatrices and Power

Mismatch Formulation

• Jacobian Submatrices [155]:

JPθ
jk =

∂Pj(v)
∂θk

= |Vj||Vk|
(
Gjk sin (θj − θk)− Bjk cos (θj − θk)

)
JPθ
jj =

∂Pj(v)
∂θj

= −Qj(v)− Bjj|Vj|2

JQθ
jk =

∂Qj(v)
∂θk

= −|Vj||Vk|
(
Gjk cos (θj − θk) + Bjk sin (θj − θk)

)
JQθ
jj =

∂Qj(v)
∂θk

= Pj(v)− Gjj|Vj|2

JPV
jk =

∂Pj(v)
∂|Vk| = |Vj|

(
Gjk cos (θj − θk) + Bjk sin (θj − θk)

)
JPV
jj =

∂Pj(v)
∂|Vj| =

Pj(v)
|Vj| + Gjj|Vj|

JQV
jk =

∂Qj(v)
∂|Vk| = |Vj|

(
Gjk sin (θj − θk)− Bjk cos (θj − θk)

)
JQV
jj =

∂Qj(v)
∂|Vj| =

Qj(v)
|Vj| − Bjj|Vj|

• Power Mismatch Formulation [155]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P2(v)− P2
...

PN(v)− PN

−−−−−−−−
QNG+1(v)− QNG+1

...
QN(v)− QN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑N
j=1 |V2||Vj|

(
G2j cos (θ2 − θj) + B2j sin (θ2 − θj)

)− P2
...

∑N
j=1 |VN ||Vj|

(
GNj cos (θN − θj) + BNj sin (θN − θj)

)− PN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∑N

j=1 |VNG + 1||Vj|
(
GNg+1,j sin (θNG+1 − θj) + BNg+1,j sin (θNG+1 − θj)

)− QNG+1
...

∑N
j=1 |VN ||Vj|

(
GNj sin (θN − θj) + BNj sin (θN − θj)

)− QN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Appendix D

IEEE 33 Grid Parameters

Line Data Load Data

Line No. From Bus To Bus R(Ω) X(Ω) Bus No. P (kW) Q (kVAR)

1 0 1 0 0 1 0 0

2 1 2 0.0922 0.0470 2 100 60

3 2 3 0.4930 0.2511 3 90 40

4 3 4 0.3660 0.1864 4 120 80

5 4 5 0.3811 0.1941 5 60 30

6 5 6 0.8190 0.7070 6 60 20

7 6 7 0.1872 0.6188 7 200 100

8 7 8 0.7114 0.2351 8 200 100

9 8 9 1.0300 0.7400 9 60 20

10 9 10 1.0440 0.7400 10 60 20

11 10 11 0.1966 0.0650 11 45 30

12 11 12 0.3744 0.1238 12 60 35

13 12 13 1.4680 1.1550 13 60 35

14 13 14 0.5416 0.7129 14 120 80

15 14 15 0.5910 0.5260 15 60 10

16 15 16 0.7463 0.5450 16 60 20

17 16 17 1.2890 1.7210 17 60 20

18 17 18 0.7320 0.5740 18 90 40

19 2 19 0.1640 0.1565 19 90 40

20 19 20 1.5042 1.3554 20 90 40

21 20 21 0.4095 0.4784 21 90 40

22 21 22 0.7089 0.9373 22 90 40

23 3 23 0.4512 0.3083 23 90 50

24 23 24 0.8980 0.7091 24 420 200

25 24 25 0.8960 0.7011 25 420 200

26 6 26 0.2030 0.1034 26 60 25

27 26 27 0.2842 0.1447 27 60 25

28 27 28 1.0590 0.9337 28 60 20

29 28 29 0.8042 0.7006 29 120 70

30 29 30 0.5075 0.2585 30 200 600

31 30 31 0.9744 0.9630 31 150 70

32 31 32 0.3105 0.3619 32 210 100

33 32 33 0.3410 0.5302 33 60 40
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List of Abbreviations

ACS automation of complex power systems
ADMS advanced distribution management system
AI artificial intelligence
AMI advanced metering infrastructure
ANN artificial neural network
CI confidence interval
CI configuration identification
CIM current injection method
CL confidence level
CFD/C current-based fast-decoupled
CNN convolutional neural network
CPU central processing unit
DA distributed automation
DC direct-current
DDDSSE data-driven distribution system state estimation
DERs distributed energy resources
DG distributed generation
DL deep learning
DLPF decoupled linearized power flow
DMS distribution moanagement system
DSOs distribution system operators
DSSE distribution system state estimation
ECM equivalent-current-measurements
emf eectromotive force
EMS energy moanagement system
EVs electrical vehicles
FCN fully connected network
FLOPs floating-point operations
FPI fixed-point iteration
GPS global positioning system
IED intelligent electronic device
IVS iuput variable selection
KVL kirchhoff voltage law
MASE multi-area state estimation
MSE means square error
NARX nonlinear auto-regressive eXogenous
NLPF non-linear power flow
PDF probability density function
PDP parallel distributed processing
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PF power flow
PM proposed method
PMUs phasor measurement units
PNN probabilistic neural network
PV photovoltaic
QP quadratic programming
RESs renewable energy sources
RTU remote terminal unit
SCADA supervisory and control data acquisition
SD standard deviation
SE state estimation
SLE system of linear equations
SM smart meter
SR stuccessive relaxation
TI topology identification
TSOs transmisson system operators
TSSE transmission system state estimation
UCNN unshared convolutional neural network
WLS weighted least squares
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This dissertation introduces an innovative data-driven monitoring approach de-
signed for distribution systems, playing a crucial role in facilitating the integration 
of eco-friendly energy sources. Focused on grids that incorporate renewable 
sources and end consumers, the study proposes a distribution system state 
estimation method utilizing artifi cial neural networks (ANNs) and synchrophasor 
measurements.

Noteworthy contributions include the application of ANNs for mapping synch-
rophasor measurements to system states and the development of three-phase 
ANN-based estimators for unbalanced grids. 

Computational effi ciency is demonstrated through quantitative comparisons 
with model-based methods, highlighting the superiority of the proposed da-
ta-driven technique. The research also distributes the computational burden, 
employing parallel and multi-area architectures to enhance speed during the 
training phase and accuracy during the estimation phase.

An iterative linear power fl ow (PF) method is proposed to generate training data 
for ANN-based estimators. This method integrates linear current injection mo-
dels for both P-Q and P-V nodes. For cases with only P-Q nodes, the PF is sol-
ved in a single shot, while for those involving P-V nodes, it is iteratively solved. 
The convergence rate of the solver is controlled by utilizing a relaxation factor.

Data-Driven Distribution System State Estimation 
Using Synchrophasor Measurements

Behzad Zargar
Institute for Automation of Complex Power Systems 
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