h1

h2

h3

h4

h5
h6


001     977985
005     20240419074442.0
024 7 _ |2 ISSN
|a 2045-2322
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-85179925344
024 7 _ |2 WOS
|a WOS:001132995200024
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2024-01043
024 7 _ |2 doi
|a 10.1038/s41598-023-49956-8
024 7 _ |2 pmid
|a pmid:38114729
037 _ _ |a RWTH-2024-01043
041 _ _ |a English
082 _ _ |a 600
100 1 _ |0 P:(DE-82)IDM05457
|a Tayebi Arasteh, Soroosh
|b 0
|e Corresponding author
|u rwth
245 _ _ |a Enhancing domain generalization in the AI-based analysis of chest radiographs with federated learning
|h online
260 _ _ |a [London]
|b Macmillan Publishers Limited, part of Springer Nature
|c 2023
300 _ _ |a 12 Seiten
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
536 _ _ |0 G:(DE-82)X021000-OA
|a OA - Open Access Publikation mit Unterstützung der Universitätsbibliothek der RWTH Aachen University (X021000-OA)
|c X021000-OA
|x 0
536 _ _ |0 G:(DE-82)BMBF-01KX2021
|a BMBF 01KX2021 - Nationales Forschungsnetzwerk der Universitätsmedizin zu Covid-19 (BMBF-01KX2021)
|c BMBF-01KX2021
|x 1
536 _ _ |0 G:(BMBF)031L0312A
|a BMBF 031L0312A - CompLS - Runde 5 - Verbundprojekt: TRANSFORM LIVER - Weiterentwicklung von Vision Transformern zur Entdeckung von Biomarkern bei Lebererkrankungen - Teilprojekt A (031L0312A)
|c 031L0312A
|x 2
536 _ _ |0 G:(EU-Grant)101057091
|a ODELIA - Open Consortium for Decentralized Medical Artificial Intelligence (101057091)
|c 101057091
|f HORIZON-HLTH-2021-CARE-05
|x 3
536 _ _ |0 G:(BMBF)01KD2215B
|a BMBF 01KD2215B - Verbund SWAG - SchWArmlernen und Generative Modelle zur Synthese und Nutzbarmachung hochqualitativer Daten in der Krebsmedizin - Standort Universitätsklinikum Aachen (01KD2215B)
|c 01KD2215B
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: publications.rwth-aachen.de
591 _ _ |a Germany
700 1 _ |0 P:(DE-82)012075
|a Kuhl, Christiane
|b 1
|u rwth
700 1 _ |0 P:(DE-82)852434
|a Sähn, Marwin-Jonathan
|b 2
|u rwth
700 1 _ |0 P:(DE-82)198352
|a Isfort, Peter
|b 3
|u rwth
700 1 _ |0 P:(DE-82)IDM06179
|a Truhn, Daniel
|b 4
|u rwth
700 1 _ |0 P:(DE-82)030404
|a Nebelung, Sven
|b 5
|u rwth
773 _ _ |0 PERI:(DE-600)2615211-3
|a 10.1038/s41598-023-49956-8
|p 22576
|t Scientific reports
|v 13
|x 2045-2322
|y 2023
856 4 _ |u https://publications.rwth-aachen.de/record/977985/files/977985.pdf
|y OpenAccess
876 7 _ |c 1740.68
|d 2024-01-31
|e APC
|j DEAL
|v 330.73
909 C O |o oai:publications.rwth-aachen.de:977985
|p openaire
|p open_access
|p openCost
|p ec_fundedresources
|p driver
|p dnbdelivery
|p VDB
|p OpenAPC
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM05457
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)012075
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)852434
|a RWTH Aachen
|b 2
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)198352
|a RWTH Aachen
|b 3
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM06179
|a RWTH Aachen
|b 4
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)030404
|a RWTH Aachen
|b 5
|k RWTH
914 1 _ |y 2023
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:11:06Z
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SCI REP-UK : 2022
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2023-04-12T15:11:06Z
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2023-04-12T15:11:06Z
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2023-08-24
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 p c |0 PC:(DE-HGF)0003
|2 APC
|a DOAJ Journal
920 1 _ |0 I:(DE-82)951320_20220218
|k 951320 ; 951310
|l Lehr- und Forschungsgebiet Interventionelle Radiologie
|x 0
920 1 _ |0 I:(DE-82)532010-2_20140620
|k 936210
|l Klinik und Lehrstuhl für Diagnostische und Interventionelle Radiologie
|x 1
980 1 _ |a FullTexts
980 _ _ |a APC
980 _ _ |a I:(DE-82)532010-2_20140620
980 _ _ |a I:(DE-82)951320_20220218
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21