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Derivativ-informierte Bayes’sche Inferenz für trainierbare geologische
Modellierung - in einem modernen Machine-Learning-Rahmen

von Zhouji Liang

Der Untergrund der Erde ist nach wie vor die wichtigste Energie- und Mineralien-
quelle für die Menschheit. Diese unterirdischen Ressourcen können jedoch nicht ohne
ein umfassendes Verständnis dessen, was unter unseren Füßen liegt, gewonnen wer-
den. Geowissenschaftler haben erhebliche Anstrengungen unternommen, den Unter-
grund zu charakterisieren, um Entscheidungen über die Erschließung von Ressourcen
zu tre�en, und haben sich dabei zunehmend auf Computermodellierungssoftware ver-
lassen. Ein geologisches 3D-Strukturmodell dient als ein solches Werkzeug, das das
Wissen der Geowissenschaftler bündelt und eine e�ziente Visualisierung, Kommu-
nikation und fortschrittliche Analyse ermöglicht. Die Sicherstellung einer getreuen
Darstellung des Untergrunds ist eine entscheidende Aufgabe für das geologische Mod-
ell, sowohl aus finanzieller Sicht als auch aus Sicherheitsgründen. Üblicherweise wird
ein einzelnes Modell auf der Grundlage des besten Wissens des Modellierers entwick-
elt. Jedes Kriterium, auf das sich das Modell über die tatsächliche Beobachtung hinaus
stützt, ist jedoch mit gewissen Unsicherheiten behaftet, z. B. die Eingangsdaten, die
Interpolation und das fehlende Wissen. Eine gute Quantifizierung dieser Unsicher-
heiten ist von grundlegender Bedeutung für den Erfolg der Anwendung von geologis-
chen Modellen.

Der Bayes’sche Rahmen bietet einen systematischen Ansatz zur gleichzeitigen Berück-
sichtigung der Unsicherheiten im Vorwissen und zusätzlicher Beobachtungen inner-
halb derWahrscheinlichkeitsfunktion. Die abgeleiteteWahrscheinlichkeit unter Berück-
sichtigung zusätzlicher Beobachtungen wird als Posteriorwahrscheinlichkeit bezeich-
net. Dieses Inferenzproblem kann oft nicht analytisch gelöst werden. Die Bewertung
der Posterior-Verteilung ist gleichbedeutend mit der Erkundung des Posterior-Raums
und wird häufig mit Markov Chain Monte Carlo Methoden (MCMC) gelöst.

In den Geowissenschaften werden geophysikalische Daten in großem Umfang zur
Charakterisierung des Untergrunds durch die Erfassung physikalischer Signale ver-
wendet. Das angesammelte wissenschaftliche Fachwissen und die gesammelten geo-
physikalischen Erhebungenmachen geophysikalische Daten zu einem attraktiven Kan-
didaten für die Quantifizierung der Unsicherheit. Die Integration geophysikalischer
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Beobachtungen in den Bayes’schen Rahmen ist jedoch eine Herausforderung, da es
schwierig ist, verkettete Ableitungen von geologischen Daten zu berechnen, gefolgt
von geophysikalischen Simulationen. In dieser Arbeit wird eine End-to-End-Methode
vorgestellt, um das Problem der Integration potenzieller Felddaten, insbesondere der
Gravimetrie, in den Bayes’schen Inferenzrahmen zu lösen, indem fortschrittliche abgeleit-
ete Inferenzmethoden genutzt werden, die in einer Software für maschinelles Lernen
- TensorFlow - implementiert sind.

Zunächst werden Methoden zur Simulation von Schwerfelddaten aus einem geol-
ogischen Modell unter Verwendung der impliziten Modellierungsmethode vorgestellt.
Die vorgeschlagenen Kernel-Methoden für die Schwerfeldsimulation nutzen den Vorteil
des Wertes, der an jeder beliebigen Position im Raum auf der Grundlage der impliziten
Modellierungsmethoden abgefragt werden kann, um eine e�zientere Schwerberech-
nung zu erreichen. Darüber hinaus wird eine Verfeinerungsstrategie vorgeschlagen,
um eine bessere Genauigkeit im Rahmen der probabilistischen Modellierung zu erre-
ichen.

Anschließend werden Methoden zur Erstellung trainierbarer geologischer Mod-
elle vorgestellt. Die vorgeschlagenen Methoden führen eine glatte Steigungsfunktion
ein, um Ableitungsdiskontinuitäten zwischen geologischer Modellierung und Schwer-
feldsimulation zu überbrücken. Die vorgeschlagene Methode ermöglicht die Berech-
nung aussagekräftiger Ableitungen aus einer geologischen Inversion, um die Anwen-
dung fortgeschrittener Inferenzmethoden zu ermöglichen. Eine Visualisierungsmeth-
ode, die die Technik der Ordnungsreduktion verwendet, wird zur Visualisierung des
trainierbaren Posteriorraums eingesetzt.

Durch die Kombination der vorgestellten Schwerfeldsimulationsmethoden und der
trainierbaren geologischenModellierung ist diese Studie der erste Versuch, fortgeschrit-
tene Inferenzmethoden zu verwenden, darunter die Hessian-informierte MCMC (gen-
eralisierte vorkonditionierte Crank-Nicolson, gpCN) und gradienteninformierte Varia-
tionsmethode (Stein Variational Gradient Descent, SVGD) für die Anwendung prob-
abilistischer geologischen Modellierung. Es wird ein Ansatz zur e�zienten Auswer-
tung des Hessian-Matrix Informationen auf der Grundlage des trainierbaren geolo-
gischen Konzepts vorgestellt. Die vorgeschlagene Methodik mit gpCN führt zu eine
überlegenen Posterior-Exploration im Vergleich zur State-of-the-Art MCMC-Methode
sowohl in synthetischen Beispielen als auch in realen Fallstudien und zeigt das Poten-
zial für kompliziertere Szenarien. Der SVGD Algorithmus wird vorgeschlagen, um
das multimodale Posterior zu bewältigen, was eine Herausforderung für viele MCMC
Algorithmen darstellt. Das vorläufige Ergebnis zeigt, dass der Posteriorraum bei der
geologischen Inversion mit Schwer als Wahrscheinlichkeit komplex sein könnte und
die multimodale Verteilung in der aktuellen Konfiguration schwer aufzulösen ist. Dies
zeigt, dass diese Methode weiter verbessert werden muss.

Der SVGD-Algorithmus wird vorgeschlagen, um das multimodale Posterior zu be-
wältigen, was für viele MCMC-Algorithmen eine Herausforderung darstellt. Vorläufige
Ergebnisse zeigen, dass der Posterior-Raum bei der geologischen Inversion mit Schwer
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als Wahrscheinlichkeit komplex sein könnte und dass die multimodale Verteilung in
der aktuellen Konfiguration schwer zu lösen ist. Dies soll die Möglichkeit der Anwen-
dung von SVGD zur Lösung des modellbasierten Inversionsproblems aufzeigen und
auf die Notwendigkeit einer weiteren Verbesserung hinweisen.
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Earth’s subsurface remains the most vital source of energy and minerals for hu-
mankind. However, these subsurface resources cannot be extracted without a com-
prehensive understanding of what lies beneath our feet. Geoscientists have dedicated
significant e�orts characterizing the subsurface to guide resource development deci-
sions and have increasingly relied on computer modeling software. A 3D structural
geological model serves as such a tool that encapsulates the knowledge of geoscien-
tists and provides an e�cient visualization, communication, and advanced analysis.
Ensuring a faithful representation of the subsurface is a crucial task for the geological
model, both from the financial point of view and for safety reasons. Conventionally, a
single model is developed based on the modeler’s best knowledge. Yet, any criteria the
model was based on beyond our actual observation is subject to certain uncertainties,
for example, the input data, the interpolation, and the missing knowledge. A good
quantification of these uncertainties is fundamental for the success of the application
of geological models.

The Bayesian framework o�ers a systematic approach to simultaneously consider
the uncertainties in the prior knowledge and additional observations within the like-
lihood function. The inferred probability with the consideration of additional obser-
vations is referred to as the posterior probability. This inference problem often cannot
be solved analytically. Evaluating the posterior distribution is equivalent to the ex-
ploration of the posterior space and is often solved using Markov Chain Monte Carlo
(MCMC) methods.

In the geosciences, geophysical data is widely used to characterize the subsur-
face through collection of observations of physical signals. The accumulated scientific
expertise and collected geophysical surveys make geophysical data an attractive can-
didate for uncertainty quantification. However, integrating geophysical observations
in the Bayesian Framework is challenging due to di�culties in calculating chained
derivatives of geological followed by geophysical simulations. This thesis presents
an end-to-end methodology to solve the problem of integrating potential field data,
specifically gravity, into the Bayesian inference framework by leveraging advanced
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derivative-informed inference methods, implemented in a Machine Learning frame-
work - TensorFlow.

First, methods are introduced to simulate gravity data from a geological model
using the implicit modeling method. The proposed kernel methods for gravity simula-
tion take advantage of the value that can be queried at any position in space based on
the implicit modeling methods to achieve a more e�cient gravity calculation. In addi-
tion, a refinement strategy is proposed to achieve better accuracy in the probabilistic
modeling framework.

Then, methods to create trainable geological models are introduced. The pro-
posed methods introduce a smooth slope function to bridge derivative discontinuities
between geological modeling and gravity simulation. The proposed method enables
meaningful derivatives to be calculated from a geological inversion to allow the ap-
plication of advanced inference methods. A visualization method using the order-
reduction technique is adopted to visualize the trainable posterior space.

Finally, by combining the introduced gravity simulation methods and trainable
geological modeling technique, this study is the first attempt to adopt advanced infer-
ence methods, including the Hessian-informed MCMC (generalized preconditioned
Crank-Nicolson, gpCN) and gradient-informed variational method (Stein Variational
Gradient Descent, SVGD) to the application of probabilistic geological modeling. The
approach to e�ciently evaluate Hessian information based on the trainable geological
concept is introduced. The proposed methodology using gpCN has demonstrated the
superior performance of posterior exploration compared to the state-of-the-art MCMC
method in both synthetic examples and real case studies and shows the potential for
more complex scenarios.

The SVGD algorithm is proposed in an attempt to tackle the multimodal poste-
rior, which is a challenge for many MCMC-type algorithms. Preliminary results show
that the posterior space in geological inversion with gravity as the likelihood could
be complex, and the multimodal distribution is di�cult to resolve in the current con-
figuration. This is intended to show the possibility of applying SVGD to solve the
model-based inversion problem and indicates the need for further improvement.
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Chapter 1

Introduction

1.1 Background and Motivation

The Earth’s lithosphere consists of highly heterogeneousmaterials, which bring human
society both rich natural resources (e.g., mineral deposits, hydrocarbon reservoirs) and
natural hazards (e.g., earthquakes, volcanic eruptions) in the meantime. In contrast
to the traditional ways of utilizing the subsurface, such as hydrocarbon extraction
and tunnels development, there are now many more ways, such as carbon capture
and storage (Boot-Handford et al., 2014), geothermal energy extraction (Rohit et al.,
2023), etc. Therefore, evaluating the spatial distribution of the properties is crucial
for many geological applications (e.g., Ross et al., 2005; Culshaw, 2005; Guglielmetti
et al., 2013; Rongier et al., 2014; Høyer et al., 2019).

Over the past decades, Geoscientists have put substantial e�orts into understand-
ing the subsurface for both practical and scientific purposes. Reliable visualization
tools to faithfully represent and communicate geological knowledge are essential (Wang
et al., 2015). The 3D structural geological model (also referred to as the geological
model), which represents the geometric elements, is able to capture large-scale hetero-
geneity. Hence, as an extension of the conventional geological mapping (Jones et al.,
2004; Carranza, 2011), 3D geological models are often used as an tool to visualize and
encapsulate the knowledge of the surface (Wu et al., 2005; Wellmann and Caumon,
2018; Caumon et al., 2009; Hillier et al., 2014). Various modeling schemes have been
developed for this purpose (Jessell et al., 2014).

Geological models are often based on the interpolation of observational data. They
are inevitably subject to uncertainties due to the input data uncertainties, inherent
randomness, and inadequate understanding of structural existence (Wellmann et al.,
2010). According to the previous studies on the uncertainties of the geological model,
it has a significant impact on the modeling results (Tacher et al., 2006; Wellmann
et al., 2010; Pirot et al., 2015; Linde et al., 2017; Wellmann and Caumon, 2018).
Hence, quantifying the uncertainties is crucial for decision making, and risk assess-
ment (Dominy et al., 2002; Singer and Menzie, 2010; Jessell et al., 2014). Methods
have been developed in recent years to simulate and quantify the uncertainties of a
geological model (Tacher et al., 2006; Wellmann et al., 2010; Lindsay et al., 2012;
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Jessell et al., 2014). Notably, Wellmann et al. (2010) proposed an approach for un-
certainty quantification using geological inversion, which generates realizations based
on simulated data sets, which provides the foundation for geological data-driven en-
semble modeling and inversion in the following development of Bayesian framework
in geological inversion by de la Varga and Wellmann (2016). The Bayesian framework
is also the methodology we follow in this study.

The Bayesian framework provides a systematic way to incorporate geological mod-
eling and additional data. Multiple sources of additional information have been intro-
duced in recent years as an external constraint to the model uncertainties. de la Varga
and Wellmann (2016) used layer thickness in the pioneering work of Bayesian geolog-
ical modeling. (Wellmann et al., 2018) used gravity data as an additional constraint
to the model uncertainties. Stamm et al. (2019) used multiple likelihoods, including
seal thickness, reservoir thickness, and Shale smear factor, as the likelihood function
for the study of reservoir assessment. Schaaf et al. (2021) constrains the model with
topology information as the likelihood. Each of these is useful for specific additional
information. Among these, potential-field data (e.g.,gravity, magnetic data) is espe-
cially attractive to geophysics due to the abundant available data collected over years
(Jessell et al., 2014; Nabighian et al., 2005a,b; Giraud et al., 2019b; Güdük et al.,
2021).

For a faithful and e�cient uncertainty quantification with potential-field data in
the Bayesian framework, e�orts must be made to address two aspects of the numer-
ical model, the forward modeling and inversion methods. On the one hand, the link
between geological modeling and forward gravity simulation has long been attracting
researchers (Jessell et al., 1993; Jessell and Valenta, 1996; Jessell, 2001; Jessell et al.,
2010; Lindsay et al., 2012). On the other hand, a comprehensive statistical analysis
of the uncertainties often requires characterizing the posterior probability to provide
in the Bayesian problem.

Until recently, many uncertainty quantification methods under the framework of
geological modeling were limited to algorithms such as Monte Carlo type algorithms
(Lindsay et al., 2013; Yamamoto et al., 2014; Thiele et al., 2016; Schweizer et al.,
2017; Pakyuz-Charrier et al., 2018; Giraud et al., 2019a; Schaaf et al., 2021), or
derivative-freeMarkov ChainMonte Carlo type algorithms (de la Varga andWellmann,
2016; Wellmann et al., 2018; Stamm et al., 2019; Scalzo et al., 2021). While these
methods are appropriate for problems with lower dimensionality, as the dimensional-
ity increases due to more complex models and input data, one has to face the curse of
dimensionality, and the conventional methods are ine�cient. To address this problem,
de la Varga et al. (2019) introduced the Automatic Di�erentiation (AD) framework to
the modeling software GemPy. AD aims to provide end-to-end di�erentiable geolog-
ical modeling to allow derivative information to be e�ciently evaluated through the
geological model. This work has provided a perfect pavement, but improvement in
this framework is still required to achieve a successful and e�cient uncertainty quan-
tification using potential-field data in the geological inversion. Therefore, the aim of
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this thesis is to improve the previous work and further develop under the current AD
and Bayesian framework to achieve a more feasible UQ for 3D geological modeling.

1.2 Research Objectives

As the entry to industry 4.0 (Wellmann, 2022), the number of data we are collect-
ing is growing, and in the meantime, the demand for e�ciency in the workflow is
also increasing. Hence, there is a rising need for a more e�cient and intelligent un-
certainty quantification workflow. In fact, advanced techniques and algorithms have
been rapidly developed in the community of applied mathematics and computer sci-
ence. However, applying these advanced algorithms to geological modeling problems
is not straightforward and requires some special tuning of the forward model.

To address the research gap, this thesis aims to extend the current probabilistic
geological inverse framework work and develop novel schemes for combined geo-
logical modeling and geophysical inversion. A graph representation of this thesis is
given in Figure 1.1. The topic of the thesis consists of two essential components un-
der the derivative-informed Bayesian inference framework, namely the forward part
and inverse part. In the forward part, we extend the previous di�erentiable modeling
framework of GemPy (de la Varga et al., 2019) and aim to provide e�cient and accu-
rate forward gravity simulation (Chapter 3) in the probabilistic modeling framework.
The inverse part aims to use advanced statistical tools to e�ciently solve the Bayesian
inference problem (Chapter 5,6). The derivative information provided by the train-
able forward modeling method (Chapter 4) links the two parts and is essential for the
success of the inverse methods. More specifically, the research objects are listed as
follows:

• Develop a new methodology to enable an e�cient and accurate gravity simu-
lation, by taking advantage of the fact that properties can be queried at any
locations using the meshless implicit modeling method and innovate new mesh-
ing refinement strategy for probability modeling framework.

• Develop an e�cient methodology which can provide appropriate derivatives in-
formation for the inversion. Investigate the posterior surface using novel ap-
proaches.

• Develop an e�cient methodology which adopting advanced derivative-informed
inference methods to solve the geological inversion problems with gravity data
as an additional constraint.

1.3 Outline

Chapter 2 presents a review of the implicit modeling method and the associated un-
certainties. A literature review is presented first, followed by a discussion about the
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uncertainties in the geological models. Then I will review the mathematical details of
the co-kriging modeling method used in the study. After that, a review of the Bayesian
framework to reduce and quantify the uncertainties in the geological modeling is
given. The method to use of additional geophysical data in the Bayesian framework
as an additional constraint to the modeling construction is introduced.

Chapter 3 presents a new methodology refered to as the kernel method for gravity
simulation in implicit modeling. The concept of the method is first demonstrated, and
the proposed subsequent refinement strategy is then presented. A numerical exam-
ple with a 3D model of the Greenstone-belt in Western Australia is presented for the
validation of the proposed methodology. Finally, computational e�ciency is discussed
at the end. This chapter is slightly modified from the manuscript under review: "Ker-
nel method for gravity forward simulation in implicit probabilistic geological modeling."
submitted to Geophysics, (under review).

Chapter 4 introduces a newmethodology to provide a trainablemodel in the frame-
work of gravity constrained probability geological modeling. The method is first ex-
plained using synthetic models and the application of the proposed step-function to
deal with di�erent types of discontinuities in the implicit modeling method. Finally, a
reduced-dimensional method is introduced to provide an intuitive and concise visual-
ization of the trainable posterior.

Chapter 5 proposes a new methodology for e�cient posterior exploration using
the Hessian-informed MCMC method in a probabilistic geological modeling frame-
work. First, the MCMC method - Generalized Preconditioned Crank-Nicolson (gpCN)
is presented. Then the method to e�ciently calculate the Hessian using Automatic-
Di�erentiation through the geological model is introduced. Finally, numerical exam-
ples are presented and compared with other methods. This chapter is slightly modi-
fied from the published paper: Liang, Zhouji, Florian Wellmann, and Omar Ghattas.
"Uncertainty quantification of geological model parameters in 3D gravity inversion by
Hessian-informed Markov Chain Monte Carlo." Geophysics 88.1 (2022): 1-78.



1.3. Outline 5

Chapter 6 discussed the multimodal posterior in the probabilistic geological model-
ing problemwith gravity data as the likelihood function. Themultimodality problem is
first presented, and the Stein-Variational gradient descent (SVGD) method is adopted
to solve the multimodal problem based on the trainable geological model introduced
in Chapter 4. Finally, the proposed method is demonstrated by using a synthetic ex-
ample.

Chapter 7 and 8 summarizes the thesis and gives recommendations to future re-
search.
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Chapter 2

Geological Modeling and
Uncertainty Quantification

2.1 Introduction

3D structural geological models have become increasingly important as tools to pro-
vide a comprehensive representation of subsurface geological structures. In various
fields of applications, e.g., geothermal energy exploration, groundwater, mining, and
hydrocarbon exploration, a faithful geological model is crucial for decision-making.
However, a geological model is naturally subject to inevitable uncertainties arising
from di�erent sources (Wellmann and Caumon, 2018). These include bias and im-
precision in the observation data, incomplete knowledge about the structures, and
ine�ciency and imperfectness of the modeling methods to capture the randomness
and stochasticity in interpolation and extrapolations (Wellmann et al., 2010). There-
fore, a better understanding and quantification of the uncertainties associated with
the geological model is crucial to the applications and attracted many researchers’ at-
tention in recent years (Lindsay et al., 2012; Rawlinson et al., 2014; Bond, 2015; de la
Varga and Wellmann, 2016; Jessell et al., 2018; Wellmann and Caumon, 2018). As
the center of quantifying the uncertainty associated with geological modeling, the ac-
curacy and also e�ciency of the modeling methods is the foundation of the problem.
An excellent review of the recent development of geological modeling and uncertainty
quantification in geological modeling is given by (Wellmann and Caumon, 2018). In
this Chapter, I will discuss the geological modeling methods and the link to uncertain-
ties. I will start by briefly reviewing the recent development of geological modeling
methods. Then I will review the implicit modeling method used in this study, the
universal co-kriging method, in theoretical detail. Finally, I will review the recent
development of the Bayesian inference framework for stochastic geological modeling.

2.2 Review of Recent Development of Geological Modeling

Various approaches to model the subsurface structures have been developed in recent
decades (see review: Caumon et al., 2009; Jessell et al., 2014; Wellmann and Cau-
mon, 2018). Despite the di�erences in the use of input data and geological knowledge
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in di�erent models, the common objective of geological modeling is seeking a faithful
numerical representation of the subsurface boundaries, which distinguishes rock units
with distinctive properties. These boundaries are generated due to various reasons, in-
cluding changing sedimentary environment, erosion process, tectonic movement, etc.
(Wellmann and Caumon, 2018). Therefore, rigorous surface modeling is fundamental
to represent the modelers’ understanding of the underlying geological process.

These surface modeling approaches can be generally classified into two categories:
explicit and implicit methods. Explicit modeling methods directly construct the sur-
face geometry by either triangulation or interpolation of points on the surface (Mallet,
1992; Wu et al., 2005; Caumon et al., 2009). This naturally requires detailed surface
data and is often used in the petroleum industry, where, more often, abundant seismic
data are accessible. However, topological relationships of the surfaces often require to
be handled with special care to satisfy the presumed structural constraints (Caumon
et al., 2004, 2009; Jessell et al., 2014). Here, topology is a term that refers to the re-
lationships of connection between the di�erent domains of a geological model. There-
fore, the model developing process using explicit methods can be time-consuming and
requires tedious work for modelers to carefully pick and tune the surfaces to force
a correct topological relationship (Jessell et al., 2014; Wellmann et al., 2018). Re-
cent development in explicit modeling methods attempts to find a more automatic
way of the modeling process while maintaining the topological relationships using a
wide range of methods, for example: automatically removing horizon data adjacent
to the fault (see review: Wellmann and Caumon, 2018), Voronoi polyhedra (Hale and
Emanuel, 2003; Merland et al., 2014), and more recent NURBS (non-uniform rational
B-splines) and subdivision surfaces (Moulaeifard et al., 2022)

In contrast, implicit modeling methods interpolate a scalar function based on the
interface locations and attitudes data together with additional spatial constraints. The
structural surfaces are represented by the iso-surfaces based on the interpolated scalar
field. Implicit modeling enables a fully automated model construction and represents
complex structures while considering the topological constraints implicitly. Therefore,
implicit methods have drawn increasing attention from the modelers, and diverse vari-
ants have been developed. These variants of the implicit modeling methods can be di-
vided into two branches: discrete and meshless. In the discrete branch, a predefined
mesh is required for computation. A notable method in the discrete branch of implicit
methods is using volumetric discrete smooth interpolation (DSI) on tetrahedral meshes
(Frank et al., 2007; Massiot and Caumon, 2010; Caumon et al., 2012). Another branch
is the meshless method which is widely adopted in various forms in several modeling
softwares due to its convenience and flexibility. Among these meshless methods, dif-
ferent methods can be distinguished from each other in the way of data interpolation
and the underlying criteria the interpolation follows. The software Noddy (Jessell,
1981) and its Python distribution PyNoddy (Wellmann et al., 2016) use kinematic
models to represent the tectonic events by the transformation of the scalar field. The
commercial software GeoModeller and the recently developed open-source package
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GemPy utilize the co-kriging method (Lajaunie et al., 1997) to interpolate the ob-
servational data. Turk and O’brien (2005); Carr et al. (2001); Hillier et al. (2014)
utilized radial basis functions for the scalar field interpolation. The more recently re-
leased package LoopStructural attempts to combine both the co-kriging and kinematic
methods (Grose et al., 2021). Other studies used Machine Learning methods to deter-
mine the boundaries between scattering data belonging to di�erent lithology groups
(Gonçalves et al., 2017; Hillier et al., 2021). After obtaining the scalar function, of-
ten a level-set or similar technique is used to define the surface boundaries. Further
discretization is then often required to extract the iso-surfaces for visualization (e.g.,
the Marching cube algorithm) and geophysical simulations purposes. In this study, we
will focus on the co-kriging method due to its abilities of fast model construction and
the close link to stochastic geological modeling.

2.3 Universal Co-kriging Method

The kriging method has long been used in Geostatistics in many di�erent applications
(Chiles and Delfiner, 2009). Kriging provides an unbiased estimation of the unknown
data based on the correlation between input data. Di�erent kriging methods mainly
di�er in the way of taking the values at unknown positions: simple kriging (zero
value), ordinary kriging (the mean value), and universal kriging (drifting functions).
Co-kriging allows the correlation between di�erent types of data to be considered si-
multaneously. The kriging method has been introduced to geological modeling since
the work by (Lajaunie et al., 1997) and drawn more attentions in recent development
(e.g., Calcagno et al., 2008; de la Varga et al., 2019).

In this study, we follow the implicit modeling method using universal co-kriging
implemented in GemPy (Lajaunie et al., 1997; de la Varga et al., 2019). Similar to
many other implicit methods discussed above, the co-kriging methods seek an artificial
auxiliary scalar function Z to represent interfaces of the subsurface. The scalar value
at a given position in three-dimensional space x = (x, y, z) œ R3 is given by Z(x). The
block of strata with similar lithology are grouped by level-set methods based on the
scalar field. This method takes two types of input data into the interpolation:

1. The surface point data, which contains the data location x and the correspond-
ing reference scalar value Zx of the interface of interest.

2. The orientation points, which contains of the data location x and the corre-
sponding attitudes data G (where G = (Gz

, G
y
, G

z) represents the gradient in
3D case).

One should note that the input data for surface points and orientation points do
not have to be at the same locations. We define surface points belonging to any spe-
cific interface k as xk. According to the constraining rules in the co-kriging approach
(Lajaunie et al., 1997), the scalar function at Z(xk) (simplified as Zk) should share
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the same scalar value Zxk . The gradient of the scalar filed at x is defined as ˆZ
ˆu (x)

with u being any unit vector (simplified as ÒZ), and takes the following analytical
form:

ˆZ
ˆu (x) = lim

Íæ0
Z(x + Íu) ≠ Z(x)

Í
(2.1)

The gradient at ÒZ(x) should be consistent with the attitudes data G(x) at the
given locations and should be pointing the stratigraphy younging direction of the
lithologies (perpendicular to the tangent of scalar field). The constants for the co-
kriging system can be summarized by the following equations (Lajaunie et al., 1997):

Y
____]

____[

ÒZ(xi) = G(xi) ’i œ I

ÈÒZ(xiÕ), · (xiÕ)Í = 0 ’i
Õ œ I

Õ

Z(xj) ≠ Z(xjÕ) = 0 ’j, j
Õ œ J

(2.2)

where I and J are data sets at a specific iso-surface for orientation points and sur-
face points, respectively. We denote arbitrary independent pair of point in jj

Õ œ P (Jk),
with P denotes one set of independent pairs at surface k

Õ, and surfaces with orienta-
tion data as i œ I and i

Õ œ I
Õ, and · is the tangent of the scalar field. The absolute

values of the scalar function at Z(x) have no significance to our application, while
only the relative values are needed to represent subsequential relationships between
the surfaces. Therefore, in practice, an arbitrary origin x0 from the input data is often
selected as a reference point for the calculation.

As a variant to the original co-kriging method, Lajaunie et al. (1997) introduced
a universal drift function as an external constraint to the scalar field to maintain a
subparallel pattern. The external drifting function is often defined using polynomial
functions fd (Lajaunie et al., 1997; de la Varga et al., 2019) and should also follow
the zero increment criteria, meaning:

fd(xi) ≠ fd(xiÕ) = 0 (2.3)

We will follow the notation for covariance and cross-covariance functions in Lajau-
nie et al. (1997) and de la Varga et al. (2019). We denote the covariance function of
Z as KZ , and denote the vector joining an arbitrary points xj and xjÕ as r = xÕ ≠ x.
Then we can write the definition of the covariance function:

KZ(r) = CZ(r) (2.4)

Where r = |r| is the modules, CZ is a chosen covariance kernel. We chose to use a
cubic covariance kernel in this study due to its twice-di�erentiability, robustness, and
its coherent geological description of the space (de la Varga et al., 2019).

By taking all the above-described constraints into consideration, the kriging system
takes the following form:
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where C is the covariance matrix, U is the universal drift matrix, ka,kb,kc,kd
contain the kriging parameters we solve. The covariance matrix C takes the following
form:

C =

S

WWWWWWWWWWWWWWWWU

KiÕi
Gx

KiÕi
GxGy

KiÕi
GxGz

Kji
GxZ ≠ KjÕi

GxZ

KiÕi
GyGx

KiÕi
Gy

KiÕi
GyGz

Kji
GyZ ≠ KjÕi

GyZ

KiÕi
GzGx

KiÕi
GzGy

KiÕi
Gz

Kji
GzZ ≠ KjÕi

GzZ

KiÕjÕÕ

ZGx
≠ KiÕjÕÕÕ

ZGx
KiÕjÕÕ

ZGy
≠ KiÕjÕÕÕ

ZGy
KiÕjÕÕ

ZGz
≠ KiÕjÕÕÕ

ZGz
KjÕjÕÕ

Z ≠ KjÕjÕÕÕ

Z ≠ KjÕjÕÕ

Z + KjÕjÕÕÕ

Z

T

XXXXXXXXXXXXXXXXV

(2.6)
where each of the entry in the covariance matrix is defined as follows. The covari-

ance function of the scalar function is defined and denoted as:

KjÕj
Z = KZ(xj ≠ xjÕ) = Cov (Zx(xi), Zx(xiÕ)) (2.7)

The covariance function of the gradient is defined as:

KiÕi
Gx

= KGx
(xi ≠ xiÕ) = Cov

!
Z

Õ

x(xi), Z
Õ

x(xiÕ)
"

(2.8)

The cross-covariance function of the gradient is defined as:

KiÕi
GxGy

= KGxGy
(xi ≠ xiÕ) = Cov

1
Z

Õ

x(xi), Z
Õ

y(xiÕ)
2

(2.9)

The cross-variance function between scalar field and its gradient is defined as:

Kij
ZGx

= Kij
ZGx

(xj ≠ xjÕ) = Cov
!
Z(xj), Z

Õ

x(xi)
"

(2.10)

where j
Õ
j

ÕÕ œ P (JkÕ). A comprehensive derivation for the kriging system is given
in Lajaunie et al. (1997).
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The universal drift matrix U is defined as

U =

S

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWU

1 0 0 xj ≠ xjÕ

0 1 0 yj ≠ yjÕ

0 0 1 zj ≠ zjÕ

2xj 0 0 x
2
j ≠ x

2
jÕ

0 2yj 0 y
2
j ≠ y

2
jÕ

0 0 2zj z
2
j ≠ z

2
jÕ

yj xj 0 xjyj ≠ xjÕyjÕ

zj 0 xj xjzj ≠ xjÕzjÕ

0 zj yj yjzj ≠ yjÕzjÕ

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXV

(2.11)

A continuous scalar field can be obtained by solving the co-kriging system. A 2D
scalar field example is given in Figure 2.1. Additionally, faults can be represented by an
extra term in the kriging function, and unconformities can be achieved by combining
several scalar fields, which are interpreted separately (de la Varga et al., 2019). The
geological model is represented by the iso-surfaces extracted from the scalar field by
further using a discretization method. In addition, the interpreted scalar field function
allows the scalar value at an arbitrary location to be queried individually, and this is
fundamental for the proposed kernel method described in Chapter 3.

2.4 Stochastic Geological Modeling and Bayesian Framework

2.4.1 Stochastic Geological Modeling

Conventional 3D structural modeling often constructs only a single model based on
the input data. However, both the input data and the modeling methods are prone to
including mismatches to the truth, especially at the early stage of exploration when
the data are sparse. Therefore, quantifying uncertainties in 3D structural models has
drawn increasing attention in recent years (Wellmann et al., 2010; Wellmann and
Regenauer-Lieb, 2012; Lindsay et al., 2012; Jessell et al., 2014). One method to quan-
tify these uncertainties is based on stochastic geological modeling (Wellmann et al.,
2010). In the stochastic modeling method, the input data is treated as stochastic
variables. Instead of considering the raw data directly in the final model, the input
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F����� 2.1: Interpolated scalar filed using co-kriging of interface points and orientation val-
ues. Isocurves represents the scalar values based on the interpolation of the surface points and

orientations.

data is taken into the modeling procedure, and the geological model is constructed by
simulation. The geological modeling process is treated as a deterministic forward pro-
cess. Realizations of geological models can be generated by sampling from the input
data distributions. Then, the ensembles of geological models can be used to evaluate
the uncertainties in either a visual and qualitative manner (Suzuki et al., 2008; Mal-
let and Tertois, 2010; de la Varga et al., 2019) or a quantitative manner (Wellmann
et al., 2010; Wellmann and Regenauer-Lieb, 2012). The implicit modeling method
using the co-kriging method is naturally a good candidate for the uncertainty quan-
tification purpose due to its low-dimensional parametric representation and e�ciency
in the model construction.

2.4.2 Bayesian Framework

Based on the stochastic modeling methods, de la Varga and Wellmann (2016) pro-
posed amethod to consider geological modeling as an inference problem. The Bayesian
framework is proposed to consider additional information as well as the prior knowl-
edge of themodeling parameters be the geological model construction. In the Bayesian
framework, this additional information could come from diverse resources, includ-
ing topological relationships (Schaaf et al., 2021), process simulations (Degen et al.,
2022b), geophysical observations (Wellmann et al., 2018), deterministic functions on
the constructed model (e.g., layer thickness) (de la Varga and Wellmann, 2016), other
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criteria based on decision theory (Stamm et al., 2019), etc. In this study, we focus on
the geophysical observations due to their significance linked to geophysics.

The geophysical observations dobs œ D in any forward problem can be described by
dobs = f(m) + ed, where m œ M is the set of model parameters, f is the parameter-
to-observation map that represents the modeling or simulation procedure. The er-
ror ed denotes the misfit between the observation and the forward simulation. Var-
ious sources could cause the misfit, for example, sparse and erroneous data raised
from dobs, imperfect forward modeling, and loss of information in the parameter-to-
observation map in f . This often leads to ill-posed Geophysical inversion problems
(Tikhonov and Arsenin, 1977). Therefore, in many cases, we are interested in not
only the best-fit parameter sets but also other plausible solutions that fit the observa-
tions within an uncertainty range and include our prior geological knowledge. Solving
such inversion problems then amounts to exploring the distribution of plausible model
parameters.

Bayesian inference starts from Bayes’ theorem,

p (m | dobs) = p (dobs | m) p(m)
p (dobs) (2.12)

where p (dobs | m) is known as the likelihood of the parameters, and p (m) repre-
sents the prior probability of the model parameters m. The posterior is normalized
by the denominator p (dobs) so that the integral of the right-hand side is equal to
one. The denominator is called the marginal likelihood or evidence. However, the
denominator, is intractable in most cases because of the infinite possibility of obser-
vations. Sampling methods, such as MCMC, are therefore often used to approximate
the integrals by sampling the posterior space. Here we briefly review two commonly
used MCMC methods, random-walk Metropolis-Hasting (RMH), which is derivative-
free, and Hamilton Monte Carlo (HMC), which is based on the first-order derivatives.
These two methods have been widely adopted in many applications in other fields and
are state-of-the-art methods in the geological modeling field. I will have a brief review
of the two algorithms.

2.4.3 Markov Chain Monte Carlo (MCMC)

In the RMH algorithm, which is the most well-known and intuitively simple MCMC
algorithm, a chain of samples is drawn based on a Gaussian proposal distribution, and
by an accept/reject step, the sampling chain can move from the previous state to a new
state based on an acceptance probability a. The accept/reject step restores the balance
of the reversibility condition, which makes the Markov kernel invariant with respect
to the probability of interest; therefore, the target distribution can be represented by
the chain of samples. The steps of the RMH can be expressed as follows:
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Set k = 0 and initiate with m(0)

while k < number of samples do
Propose mcand = mk + —›k, › ≥ N (0, C)
Set mk+1 = mcand with acceptance probability a
Set mk+1 = mk otherwise

end
Algorithm 1: M���������-H������ ���������

where acceptance probability a(mcand
, mk) = min

1
1,

p(mk
|dobs)

p(mcand|dobs)

2
, — is the step

size, and C is the covariance matrix of the proposal distribution. In the random-walk
method, a symmetric proposal is used. Therefore C is an identity matrix.

The random-walk method has limitations in cases of high dimensionality and high
correlations. Gradient information is therefore employed to assist in posterior explo-
ration. The most popular gradient-based method, the HMC algorithm, is designed to
draw independent samples and, therefore, e�ciently explore the state space (Duane
et al., 1987; Neal, 1993; Chen et al., 2014; Betancourt, 2017). HMC introduces auxil-
iary momentum variables r, with which we can express the Hamiltonian of a particle
as:

H(m, r) = K(r) + V (m) (2.13)

where K and V are kinetic and potential energies respectively and are defined as:

K(r) = 1
2

nÿ

i,j=1
riM

≠1
ij rj (2.14)

V (m) = ≠ log p(m | d) (2.15)

here, the mass matrix M is often set as the identity matrix (Chen et al., 2014)
Hamiltonian dynamics can be simulated by following Hamilton’s equations with

an artificially introduced time variable t:

dm

dt
= ˆH

ˆr
dr

dt
= ≠ ˆH

ˆm

(2.16)

The HMC algotithm requires that Hamilton’s equations are integrated using a sym-
plectic integrator. In practice, the "leapfrog" integrator is often used. The algorithm
can be summarized as follows (Chen et al., 2014):
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Set k = 0 and initiate with m(0) and step size ‘

while k < number of samples do
Sample momentum rk ≥ N (0, M)
Set (m0, r0) = (mk

, rk)
Simulate discretization of Hamiltonian dynamics in Eq. 2.16:
r0 = r0 ≠ ‘

2ÒV (m0)
for i=1,i< leapfrog steps n do

mi = m(i≠1) + ‘M≠1ri≠1

ri = ri≠1 ≠ ‘ÒV (mi)
end
Set rn = rn ≠ ‘

2ÒV (mn)
Propose (mcand

, rcand) = (mn, rn)
Set mk+1 = xcand with acceptance probability a
Set mk+1 = mk otherwise

end
Algorithm 2: H���������� M���� C���� ���������

where the acceptance probability a(mcand
, mk) = min

1
1, e

≠H(mcand
|rcand)+H(mk

|rk)2

RMH is simple to implement and gradient-free, while HMC uses gradient informa-
tion to obtain low autocorrelated samples; however, both methods are popular and
widely applied, and we will test our method using these two algorithms in the follow-
ing work.
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Chapter 3

Gravity Simulation

A manuscript with the text of this chapter has been published in Geophysics.

3.1 Introduction

The gravity method as a fundamental geophysical method has been actively developed
in recent decades and has been playing an important role in subsurface exploration
(Nabighian et al., 2005a; Hinze et al., 2013; Klitzke et al., 2016; Rodriguez Piceda
et al., 2021). A typical workflow of gravity exploration involves the collaboration of
both geophysicists and geologists. A 3D geological model is often combined with the
observed geophysical data. The model is then used to perform numerical simulations
for validation and predictions of the model developed. The process of constructing the
3D geological model and conducting geophysical simulation on this model is called the
forward process. The inverse process means inferring the properties of the subsurface
from observations (e.g., gravity data).

The uncertainties from developing the 3D model and from conducting simulations
on this model have recently received increasing attention (Wellmann and Regenauer-
Lieb, 2012; Pirot et al., 2015; Linde et al., 2017). The success of gravity exploration
requires a better control of the sources of uncertainties arising from both the forward
modeling and the inversion process.

Forward gravity modeling often begins with the construction of a 3D subsurface
structural model. The rock densities are essential for the preparation of the gravity
simulation. A widely used approach is the so-called voxel-based method, in which
voxel meshes or unstructured grids represent the subsurface units and rock properties
are directly assigned to each of the voxels or grid cells. Gravity can then be simulated
through using closed-form solutions for a regular voxel (Nagy, 1966) or numerical
solutions such as finite di�erence (FD) (e.g., Farquharson and Mosher, 2009) finite
volume (FVM) and finite element (FEM) methods (e.g., Jahandari and Farquharson,
2013; Rücker et al., 2017). Although the directly implemented forward gravity simu-
lation on voxels has the advantage of representing the heterogeneities of the density
distribution in the subsurface, the inversion conducted directly on voxels, however, suf-
fers from the high-dimensional parameters, and the smoothness of the property field
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due to pool regularizations; therefore a direct geometrical interpretation is unsuitable
and additional regulations are often required (Li and Oldenburg, 1998).

An alternative to the voxel-based method and a widely applied approach to model-
ing the subsurface follows the intuition of stratigraphy geology interpretation, which
constructs the boundaries of individual stratigraphy units (Chapter 2). The continuous
model is then projected onto a discrete volumetric mesh for geophysical simulation.
In contrast to the direct inversion on the voxels, surface-based methods will naturally
satisfy the geological interpretation. Surface-based modeling is suitable for structural
modeling, in which the each stratigraphy has distinct properties. Geophysical inver-
sion then act as a constraint on the 3D structure in surface-based modeling (Jessell,
2001).

As described previously in Chapter 2, the Bayesian perspective allows the prior ge-
ological knowledge and additional geophysical data to be combined in the modeling
procedure in a probabilistic manner. Therefore, uncertainties of the geological model
considering the geophysical observation can be estimated by evaluating the poste-
rior distribution (Wellmann et al., 2010; Jessell et al., 2010; Lindsay et al., 2012).
With the goal of accelerating the posterior exploration, further advances in model-
ing software introduce Automatic Di�erentiation (AD) (de la Varga et al., 2019), a
computational technique that enables a rapid evaluation of derivative, into geologi-
cal modeling and make the derivative informed Markov Chain Monte Carlo (MCMC)
methods (e.g., Betancourt, 2017; Liu andWang, 2016) feasible in geological modeling
(Güdük et al., 2021). Our study follows this implicit probabilistic structural modeling
method through universal co-Kriging (Lajaunie et al., 1997).

Implicit modeling method as a ’mesh-free’ method, a pre-defined mesh is not re-
quired during the early interpolation of the scalar field. However, projection on a
discretized mesh is necessary for the later stage of visualization and geophysical sim-
ulation. Due to the simplicity and easily accessible analytical solution of potential
field simulation, the tensor grid is often adopted in the potential field simulation ap-
plications (Li and Oldenburg, 1998; Boulanger and Chouteau, 2001; Fournier, 2019;
Scalzo et al., 2021, e.g.,) and software, e.g., SimPEG (Cockett et al., 2015), Geo-
modeller (Intrepid Geophysics), pynoddy (Wellmann et al., 2016) etc., using either
voxel-based or implicit modeling. We refer to the specific subclass of the tensor grid
with an identical shape for each voxel as a regular grid, which is an evenmore common
and easier option due to the simplicity and intuition (Scalzo et al., 2021). Through-
out, cell and voxel will be used interchangeably to represent the unit element of the
grid. When a regular grid is used, the user generally assumes no prior knowledge of
the voxel alignment with the interpreted geological structure. The lithologies at each
grid point of the model can be queried by the coordinates of the centers of the voxels
based on the interpolated scalar field. Computational visualization techniques such as
marching cubes are then applied to generate relatively smooth surfaces. Based on the
interpreted rock density, gravity response can also be simulated by integrating the grid
points using the closed-form solution (Nagy, 1966). To eliminate the boundary e�ect,
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an additional padding zone is often required to be added at the boundary of the model
(e.g., Boulanger and Chouteau, 2001; Rashidifard et al., 2021; Cockett et al., 2015).
The gravity anomaly is then computed sequentially at each receiver at the ground sur-
face. However, in a real-world application, gravity data are sometimes sparse or highly
correlated. A surface gravity field is then often interpolated based on scattered point
observations (e.g., Chasseriau and Chouteau, 2003; Rashidifard et al., 2021). There-
fore we argue that not all the data are available or necessary to be included in the
inversion due to the data correlation. Hence, to remove the requirement to perform
a 2-D interpolation first, we propose a kernel method. The kernel method constructs
an independent grid centered at each measurement location. This method benefits
from the fact that lithologies can be independently queried at locations of interest
based on the interpolated scalar field in the implicit modeling method. The kernel
method can save computational resources by only conducting computation within the
regions which are relevant to the gravity receivers. In addition, conventional gravity
methods using a regular grid are prone to slicing errors (described in the following
sections). This will lead to a imprecise forward simulation and therefore a poor in-
version result. Improvements in gravity forward algorithm to reduce the slicing errors
are being actively developed, e.g., in the space domain, Ren et al. (2018); Zhang
and Jiang (2017) used closed-form solutions for prismatic and polyhedra cells with
variable density; in the Fourier-domain, Wu and Chen (2016); Wu (2018) used a hy-
brid rectangular-Gaussian grid to reduce the slicing errors. The kernel method also
has more faithful simulation results compared to conventional methods by naturally
alleviating the slicing errors, and padding zones (which are often required to elimi-
nate the boundary e�ect) are embedded in each individual kernel. This concept of
the local kernel has been adopted previously by applications in the field of airborne
electromagnetic (AEM) surveys. For example, Cox et al. (2010) introduced the ’foot-
print’ method where only the local sensitivities matrix within limited spatial extent
is constructed and used in the inversion for each iteration; following that Yang et al.
(2014); Haber and Schwarzbach (2014) used a global mesh and a local mesh for each
sounding. Apart from the di�erence in the properties of interest, the main di�erence
here is instead of directly using the local sensitivities matrix in the inversion, there is
an implicit structural modeling step involved. Also, thanks to the implicit modeling
method, there is no need for constructing a global mesh and projecting on the local
mesh, and there is a lot more flexibility.

While the quality of the simulation is heavily dependent on the chosen resolution,
a high resolution can be prohibitive due to the limitation of available computational
resources, especially in the probabilistic geological modeling framework using AD. Re-
finement of the grid becomes a suitable solution to relocate the limited resources to
focus on more impactful regions. Refinement strategies have been intensively studied
in the field of gravity inversion for the past decades, mainly in the context of voxel-
based inversion (Fournier, 2019; Astic et al., 2020). However, many of these methods
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require prior knowledge of the geometry of the subsurface and some intermediate re-
meshing step will increase the numerical challenges and di�culties embedded in the
AD framework. In the case of implicit geological modeling, refining the grid based
on the geometry is not straightforward before interpolating the data. Additionally, the
probabilistic geological method will iteratively update the structural model. Hence, we
introduce an optional subsequent refinement strategy based on the proposed kernel
method. We refine a tensor mesh based on the sensitivity of each voxel to the indi-
vidual receiver. This method assigns high resolution to the more sensitive part of each
kernel and lower resolution to the distant region. We will use two numerical examples
to show the e�ciency and improved accuracy of the proposed kernel methods.

3.2 Methods

3.2.1 Gravity forward simulation

Gravity data has been one of the most important geophysical data and there is in-
creasing amount of data been collected and available in recent years. As previously
described, gravity data can be included in the modeling procedure as the observa-
tional data d œ D in a probabilistic or optimization framework to assess the quality of
a geological model. The gravity forward model can be described as

d = f(m) + ed (3.1)

where m œ � is the model parameters, f is the parameter-to-observation map that
represents the modeling or simulation procedure. The error ed denotes the misfit be-
tween the observation and the forward simulation. Various sources could cause the
misfit, for example, sparse and erroneous data raised from d, imperfect forward mod-
eling and loss of information in the parameter-to-observation map in f . Hence, the
quality of the forward simulation is an essential factor for the success of the stochastic
geological modelling. In the following sections, we will introduce our methodology to
improve the f under the framework of implicit modeling methods.

A typical geophysical simulation of a geological model can be summarized by the
following Figure 3.1. Voxel-based modeling methods, as described by the name, are
initialized with discretized voxels. Rock properties are then assigned to each cell to
calculate the geophysical simulation. In contrast, surface modeling methods initiated
with constructing the interfaces of the model and then a projection of the continuous
surfaces on the discretized grid. The geophysical simulation can then be solved by
numerical methods (FEM, FD) or by breaking the problem into several discrete object
modeling problems and solved by integrals of direct analytical solutions. The forward
model f can be described in a chain of two forward models (Scalzo et al., 2021) as
f := ÿ ¶ q : the map q: � æ G which projects the parameter space � into a discrete
volumetric representation in space G followed by the map ÿ: G æ D which projects
the discretizations into the observational data space. One of the characteristics that
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F����� 3.1: Graph representation of typical gravity forward approaches. The top two meth-
ods are the elementary methods for gravity simulation. Here the ’geophysical calculations’
represents either analytical solution or numerical solutions. In explicit surface modeling, the
surface model will firstly be constructed, and then either a discretization will be conducted
or the gravity can be directly calculated through methods, for example, line integrals (Zhou,
2009), the Gauss-fast Fourier transform (FFT) method (Wu and Chen, 2016) and analytical
formulas (Zhang and Jiang, 2017; Ren et al., 2018). Implicit modeling is a ’mesh-free’ method,
and discretization is only involved during visualization or geophysical computation. The sur-
face model can be extracted from the implicit function, and the same technique as in explicit
modeling can be used for geophysical calculation. Whereas implicit modeling can avoid ex-
plicit surface construction by directly performing geophysical calculations on the discretization

(as shown by the red arrow).

di�erentiate the implicit method from other surface modeling methods is that the step
of explicit surface construction is not necessary during forward modeling. One could
directly find the map q by, for example, by utilizing the co-kriging methods described
above.

Therefore, in cases of many-query problems, computation resources used for the
step of explicit surface construction can be saved by using directly implicit modeling
methods until for the visualization for the final result (Figure 3.1). This is fundamental
for the proposed method.

The gravitational field is the conservative field where its norm g is often referred to
as gravity in geophysics. g can be calculated following the integration of an elementary
volume dV and density fl

g(r) = ≠G

⁄

V
fl(r̃) r ≠ r̃

|r ≠ r̃|3 dV (3.2)

where r = (x, y, z) is position vector of the computation point, r̃ = (x̃, ỹ, z̃) is posi-
tion vector of the running integration point; G is the gravitational constant. Although
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F����� 3.2: Computing the gravity contribution of a rectangular prism. Here the positive z

are chosen to be pointing upwards for the consistency with elevation input data.

numerical methods (e.g., FEM, FVM) can be applied based on an irregular mesh (e.g.
Jahandari and Farquharson, 2013) for 3D gravity inversion, regular grids are mostly
adopted by modelers. Regular grids are dominating the application in gravity field
simulation due to their simplicity in data storage and visualization (Fedi and Rapolla,
1999; Li and Oldenburg, 1998; Portniaguine and Zhdanov, 1999; Commer, 2011;
…uma et al., 2012; Chen and Liu, 2019). Because the existence of the closed-form solu-
tion, it can conserve the AD framework. A rectangular prism at location xm can be de-
fined by the two diagonal corners xm1 = (xm1, ym1, zm1) and xm2 = (xm2, ym2, zm2)
(shown in Figure 3.2). The closed-form solution of the vertical component of the grav-
itational attraction at the nth measurement location Pn = (xn, yn, zn) caused by the
rectangular prism with limit x1 Æ x

Õ Æ x2, y1 Æ y
Õ Æ y2 and z1 Æ z

Õ Æ z2 can be
calculated by the the following equations (Nagy, 1966).

gzmn = tzmflm (3.3)

tzm = ≠|||xÕ ln(yÕ + r
Õ) + y

Õ ln(xÕ + r
Õ) ≠ z

Õ arctan
3

x
Õ
y

Õ

zÕrÕ

4
|x2
x1 |y2

y1 |z2
z1 (3.4)

where
r

Õ =
--rÕ

-- =
Ò

xÕ2 + yÕ2 + zÕ2 (3.5)

and fl is the density of the cell, (xÕ
, y

Õ
, z

Õ) are the Cartesian components from the
measurement point Pn to xm. All the coordinates in this study will have the verti-
cal axis z pointing upwards to keep consistency with the input elevation data. The
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synthetic gravitational attraction at the nth receiver can then be calculated as the
summation of the contribution of all the cells in the modeling domain.

gzn = tzfl (3.6)

where tz = (tz1, tz2, . . . , tzM ) and fl = (fl1, fl2, . . . , flM )T .
All the existing methods construct the 3D grids for the entire domain D as a whole,

regardless of the discretization methods. Additionally, if the region outside the mod-
eling area is considered to have zero density, this will generate an artificial anomaly
at the boundaries. A padding zone is often used to alleviate the distortion caused
at the boundaries, which further extends the domain of modeling, hence increasing
the computational resource consumption (e.g., Figure 3.3a). A conventional method
to simulate the gravity from the grid geological model is either using all cells in the
model to do the summation in Equation 3.6 or to choose a range of cells around the
receiver to be included in the corresponding summation. To make a fair comparison
of our method, we implement in this study the spatial convolution scheme (Jessell and
Valenta, 1996; Wellmann et al., 2016) illustrated in Figure 3.3a. The computation in
Equation 3.6 is conducted repeatedly through each receiver by summing the contribu-
tion in a windowed subdomain Dn, where n œ N , N is the number of receivers. This
leads to the following problems:

1. the receiver positions need to be configured at a distance from the edge of the
cell to avoid stability issues. This added more conditional operations in AD and
is also error-prone.

2. the actual range of cells included in the computation is dependent on the res-
olution. This will result in a row of cells being abruptly excluded or included
in the subdomain Dn and therefore add error to the computation. This is more
significant when the grid is coarse.

3. in the case of sparse data, for example, as shown by the sketch in Figure 3.3a,
many cells are not included in the computation of gravity, however still initial-
ized in the interpolation and cached in memory and therefore the computation
resource on those cells is wasted.

4. Equation 3.6 is revisited N times.

Hence we propose the kernel method aiming to improve the existing gravity sim-
ulation algorithm described in the following section.

3.2.2 Kernel methods

We develop the kernel based on individual receiver locations (as shown in Figure 3.3b).
In this method, the mesh is only constructed for a subdomain, or a kernel, Dn in a
certain defined range around each receiver Pn. The name is given after the kernel of
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(a) Spatial convolution scheme (b) Kernel method

F����� 3.3: Sketch comparison of spatial convolution scheme and kernel method. Green box is
the modeling area. Blue box is the actual meshing area. Red triangles are the receiver locations
(a) In the spatial convolution scheme, a padding zone is often added around the model block
to eliminate border e�ects. Gravity is simulated by a defined convolution window represented
by the yellow box. The dashed-line objects represents cases where the receiver is not aligned
at the center of a cell, then the actual simulated window is deviated. (b) Kernel method do

not need to generate grid for the entire model, but around the area of a receiver.

image preprocessing, where the kernel denotes the convolutionmatrix or mask used to
convolute through the image (Lecarme and Delvare, 2013). It can also be interpreted
by the meaning of ’kernelization’ in computer science, which stands for algorithms
that achieve e�ciency by a preprocessing stage to replace the inputs by a smaller
input (Abu-Khzam et al., 2017). The new modeling domain is then a collection of
each subdomain DÕ = {D1, D2, ..., Dn} ™ D.

Then, considering all the N receivers in a matrix form, we can augment Equa-
tion 3.3 as:

gz = Tzfl (3.7)

Tz œ RN◊M is the linear forward operator maps the density fl œ RM of M number
of cells over the gravity measured at N number of observation locations gz œ RN .
Tz = (tz1, tz2; . . . , tzN )t, where tzn = (tz1, tz2; . . . , tzM )t is also referred to as the
collection of sensitivity of each subdomain Dn. With the choice of identical kernel for
each receiver, the sensitivity matrix tz is also identical. The choice of identical kernel
allows the Tz to be pre-computed outside of the computational graph and reused at
each iteration of a many-query application (e.g., MCMC).

The kernel method improves the conventional spatial convolution algorithm in the
following aspects. First, when available data is sparse or highly correlated, or in some
applications (Güdük et al., 2021), only a limited amount of data need to be consid-
ered in the simulation, the collection DÕ is smaller than D. Also, the padding zone
is embedded in each kernel so that a global padding zone is not needed. Second,
this vectorized computation converts the previous sequential computation to a single
calculation and can simply parallelized. Third, the grid centered around the receiver
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in the kernel method avoids the singularity caused by a receiver accidentally align-
ing with the edge of a cell and eliminates the error of slicing the cells. In this study,
we use an identical kernel for each gravity receiver, therefore, in addition to the easy
preparation of Tz described above, it also makes further mesh refinement respecting
each receiver possible (introduced in the next section).

3.2.3 Optimized centered kernel

As discussed above, di�erent sources can cause the misfit ed between the data and for-
ward model. In many studies, a perfect forward model is assumed and therefore only
the error from the data is considered in the likelihood. However, it is not possible to
have a perfect model to represent reality. One source of error is the limited resolution
in the discretized volumetric representation of the continuous geological structures,
this is also referred to as the aliasing e�ect in some studies (Scalzo et al., 2021). With
limited computation resources, simulation accuracy and simulation e�ciency are not
easy to be achieved simultaneously. Some refinement strategies are used to alleviate
such an error. For example, an octree mesh is used to refine the mesh around the
geometry boundaries and to assign coarser meshes to the non-boundaries area (Well-
mann and Caumon, 2018; Fournier, 2019). However, aligning mesh cells along the
boundaries of the geometry of interest is not easy before evaluating the model. Ex-
isting refinement strategies are also often case-based (Fournier, 2019; Scalzo et al.,
2021).

We construct our grid in a tensor grid, which means the grid is divided into rectan-
gular prisms by straight lines/surfaces across the whole grid. There are several reasons
to use the tensor grid. As above discussed, it is challenging to align the mesh with the
subsurface geometry before interpreting the model. Hence, it is not only easier to im-
plement and store the data, but the tensor grid is also more general for an unknown
geometry. The easily accessible analytical solution is suitable for the AD framework.
The ability to easily parameterize and therefore optimize adds a further advantage.
As a specific configuration of the tensor grid, the regular grid is the simplest one to
implement and visualize. However, in the application of gravity simulation, using a
regular grid assigns the same resolution to the close and distant regions which have
di�erent sensitivities to a receiver at a given location. This results in that, with a lim-
ited resolution, the area with high sensitivity to the receiver is treated the same as the
lower sensitivity region. As described in Equation 3.1, ed is consists of uncertainties
caused by the measurement device edm and forward model edf . With a given mea-
suring device, the error from the data measurement edm is fixed. The total error is
then determined by the error of forward model edf . When the boundary of the den-
sity contrast is not known while building the grid, this will result in that the risk of an
aliasing e�ect appearing close to the receiver is the same as the distant region, while
the impact of the aliasing is more significant to the result at the former and trivial at
the later.
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To address this problem, an intuitive way is to assign a higher resolution to the
more sensitive region. The kernel method centers the mesh according to the location
of the receiver, therefore allowing a lateral grid refinement in addition to the depth-
dependent refinement. With the assumption of no prior knowledge of geometry before
interpolating the model, we focus only on the tz in Equation 3.3. Therefore, averaging
the risk of an aliasing e�ect is essentially finding a configuration of the grid, which has
a more uniform sensitivity tz for all the cells. Then the objective is to distribute the
limited resolution accordingly to the sensitivity tz, hence thewhole subdomainDn will
have a more balanced risk over all the cells. We can formulate the objective function as
the standard deviation ‡t of tz, then the optimized solution is the grid with minimized
‡t. In the ideal case, every cell will have the same tz, therefore ‡t = 0. In the 3D
scenario of the tensor grid, finding the optimal configuration is challenging. Hence,
we introduce the parametric representation of the grid and theMachine Learning (ML)
methods to solve the optimization problem.

First, we introduce how we parameterize the grid and then how we could op-
timize the grid. For simplicity and legibility, we use a 1D grid as an example for
demonstration. Due to the grid symmetry, we can consider only half of the axis.
Given user-defined resolution 2k ≠ 1, with k > 0 and extent R. We define a vec-
tor a = {a0, a1, . . . , ak}. The origin a0 = 0 is at the middle of the center cell. We
denote the distance from the (q ≠ 1)th node to the qth node as aq Ø 0. Therefore in
one direction of the grid, there are k number of cells {a1, a2, . . . , ak}, as illustrated in
Figure 3.4. By parameterizing only the spacing for each dimension, the grid will be
subject to a tensor grid automatically in any degree of dimensionality. Then following
this parameterization, the 1D regular grid with uniform cell size can be then written
as:

aq =

Y
]

[

2R
(2k≠1) , q = 2, 3, · · · k

R
(2k≠1) , q = 1

(3.8)

Inspired by the half-sphere geometry of the sensitivity matrix and the radial de-
caying property of gravity respecting the distance to the object in Equation 3.2, an
empirical exponential refinement of the grid with the cell length as a geometric pro-
gression of sequence has been successfully adopted in the recent work of Güdük et al.
(2021). This empirical exponential refinement strategy can be summarized as follow-
ing:

kÿ

q=1
aq = ‘ · 10

! log10 R≠log10 ‘

k

"
q (3.9)

where Á π R is a small number to maintain the stability.
Although the exponential grid distributes more resolution to the center part of the

grid (Figure 3.5), it has not reached the optimal criteria for tz we described above. In
order to find an optimized configuration of the grid, following the parameterization
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F����� 3.4: Simple sketch illustration of grid parameterization of di�erent grid scheme.

above, we can formulate this as the following optimization problem:

Min ‡(S(a)) = ‡ (tz) =
Úq

(tzq≠t̄z)2

k

s.t.
qk

q=1 aq = R , q = 1, 2, · · · , k

aq Ø 0 , q = 1, 2, · · · , k

(3.10)

where tzq denotes the sensitivity tz of qth cell, which can be calculated following
Equation 3.4 and Equation 3.5 for the 3D cases. Here for simplicity, tz does not exist
in a 1D grid, therefore we denote the map from the parameter of the grid a to the sen-
sitivity tz using a symbolic notation S. We denote the standard deviation as ‡. Solving
this optimization or finding a deterministic solution is not easy, especially in 3D where
there are two more dimensions to consider. Therefore, we program the grid in AD and
utilize the gradient evaluated from AD to solve this optimization problem. In order to
further simplify the computation, instead of defining a sequence of positive numbers
which subject to the constrain of the summation

qk
q=1 aq = R , q = 1, 2, · · · , k, we

design it using the softmax function ›, which is used widely in Machine learning appli-
cations of probability (e.g. Howard et al., 2017). The softmax matrix has the following
formula:

›q(u) = e
uq

qk
Â=1 e

uÂ

(3.11)

where q = 1, . . . , k, and u is the input vector which has element {u1, u2, . . . , uk},
k is the total number of elements same as above. The softmax function transfers an
arbitrary sequence of numbers to a positive sequence with a sum of 1. This property
allows the resulting sequence from the softmax function automatically fulfill the con-
straints in our optimization problem and result in one loss function to optimize for. By
adopting the softmax function, the elements of the vector can be represented by

aq = R · ›q(u) (3.12)

Next, we can compute the sensitivity matrix and loss function S. The gradient of



28 Chapter 3. Gravity Simulation

loss S with respect to the input vector u can be calculated by AD. Then we can use
any robust iterative optimization algorithm to solve this optimization problem. Here
we adopted Adam (Kingma and Ba, 2014), which is a gradient-based optimization
method to update u. We summarize the optimization algorithm below

Initialize a random vector u = {u1, u2, . . . , uk}, u ≥ U (≠1, 1)
while step < Number of steps do

Convert u to a by using softmax function ai = R · ›(u)i

Compute the loss S(a)
Compute the gradient ˆS

ˆu through AD
Update u following Adam algorithm (Kingma and Ba, 2014)

end
Algorithm 3: O����������� �� ��� ������ ����

In a 3D case, we simply extend u to u = (ux, uy, uz) and a to a = (ax, ay, az).
The user will need to define the resolution of the kernel and the window size, and

the algorithm will optimize the grid spacing automatically until reaching a designed
error or the maximum number of iterations. For a many-query application that uses a
fixed grid scheme, this optimization will only need to be conducted once for each given
resolution and window size and the resulting configuration can be reused without
additional cost. To illustrate the grid configuration computed by the optimization
algorithm, here we compare the centered optimized grid with a centered regular grid
and a centered exponential grid. The cross-sections of two 3-D grid examples with
resolutions of 21 ◊ 21 ◊ 10 and 51 ◊ 51 ◊ 30 are shown in Figure 3.5 and Figure 3.6. In
both examples, both exponential and optimal refinement strategies provide a smaller
standard deviation of tz compared to that of an unrefined regular grid. This illustrates
a more evenly distributed resolution respecting sensitivity. Moreover, the optimized
grid keeps a more balanced distribution of the grid, avoids over-dense resolution at
the top part compared to the empirical exponential refinement, and can eliminate the
individual cells with large tz, which appear at the closest area to the receiver and is
most sensitive to the simulation result.

3.3 Results

In this section, we first provide a synthetic gravity forward simulation example of a
spherical geobody, for which the analytical solution is available, to demonstrate the
kernel methods and the centered optimized grid, and compare it with the spatial con-
volution scheme. Then, we investigate the gravity forward simulation with di�erent
methods and grids on the Sandstone greenstone belt in Western Australia (Wellmann
et al., 2018).

3.3.1 Synthetic spherical object

There are many di�erent ways to describe the surface of a spherical object using the
implicit method. For simplicity, here we represent the scalar field of a spherical object
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F����� 3.5: Upper row shows the cross section of the three di�erent grid scheme with resolu-
tion 21 ◊ 21 ◊ 10. The red triangle presents the position of receiver at the ground surface. The
blue dots illustrates the center of the cell. Lower row shows the corresponding tz histogram.

The vertical axis is in log scale.

F����� 3.6: Upper row shows the cross section of the three di�erent grid scheme with resolu-
tion 51 ◊ 51 ◊ 30. The red triangle presents the position of receiver at the ground surface. The
blue dots illustrates the center of the cell. Lower row shows the corresponding tz histogram.

The vertical axis is in log scale.
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F����� 3.7: 3D synthetic spherical geobody (red) with identical y coordinates at 5000m,
radius of 100m and di�erent x and elevation, the inner green box is the modeling domain,
the outer blue box represents the actual meshing domain with an additional padding zone.

Receivers are placed at the top surface

in cartesian coordinates centered at xc, yc, zc by a radial function

Zsphere =
Ò

(x ≠ xc)2 + (y ≠ yc)2 + (z ≠ zc)2 (3.13)

where x, y, z denotes the coordinates of an arbitrary position. Then the surface of a
spherical object with radius r is simply Zsphere = r.

To simulate the situation of gravity anomalies received at the top surface due to
a spherical object of radius 100 m and density contrast �fl of 1 g/cm3, we define a
square prism modeling region with a total extent of of 10 000 m ◊ 10 000 m ◊ 1000 m
including a padding zone extended in both x and y direction. We found a window ra-
dius approximately 2000 m-5000 m,depending on di�erent input configuration, yields
reasonable simulation results while keeping su�cient resolution. We chose a window
radius of 2000 m for the gravity simulation of this model. The synthetic receivers and
the spherical object are all set at 5000 m. The spherical object is set at di�erent location
of xc = 5000 m, zc = 870 m and xc = 3000 m, zc = 100 m, as shown in Figure 3.7.

To make a fair comparison of the convolution scheme and kernel methods, the
equivalent window size used in the convolution scheme is used to define the centered
grid extent in the kernel method. The equivalent resolution is also applied. We fix
the vertical resolution of 40 and only vary the xy resolution and placed 11 synthetic
receivers evenly distributed between x = 2300 m,z = 1000 m and x = 7000 m,z =
1000 m. The configuration of the model is is shown in Figure 3.8 and Figure 3.9.

The analytical solution of a sphere is given by

gn = ≠108 4
3 fi

r
3 �fl G z

Õ
nÒ

(xÕ2
n + yÕ2

n + zÕ2
n )3

(3.14)

where x
Õ
n, y

Õ
n, z

Õ
n are the relative position of the center of the sphere to the ith

receiver, gn is the vertical component of the gravitational vector inmGal, r is the radius,
�fl is the density contrast to the surrounding domain of unit g/cm3. The negative sign
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F����� 3.8: Simulation results of the model shown in Figure 7(a) Upper row: forward gravity
simulated by three methods all with the window size equivalent to 150 ◊ 150 resolution con-
volution scheme; Middle row: cross-section of the model illustrating the subsurface geometry;

Lower row: RMSE to the analytical solution with di�erent equivalent resolution.

is due to the chosen z direction.
The Root Mean Square Error (RMSE) is calculated between the analytical solution

and the simulation results by the three di�erent methods (spatial convolution scheme,
kernel method with centered regular grid, and kernel method with centered optimal
grid) along all receivers

RMSE =

ÛqN
n=1 (gn ≠ ĝn)2

N
(3.15)

gn denotes the analytical solution at the nth receiver, ĝn represents the simulated
gravity at the nth receiver. N is the total number of receivers.

Results with a simultaneously increasing xy window resolution from 10 to 140
are demonstrated to show the performance di�erence and convergence. The positive
density anomalies leads to a negative gravity anomalies at the surface due to the choice
of positive z pointing upwards,

In both examples, all three methods show convergence or the tendency to converge
to the analytical solution at a high resolution. In the case where the object is placed
close to the top surface (zc = 870 m), kernel method with optimized grid shows signif-
icantly smaller RMSE starting from low resolution. Kernel method with regular grid
shows slightly smaller RMSE than that of convolution scheme, which demonstrates
the error due to slicing in convolution scheme. The superior performance of the op-
timized grid is not surprising as the top part of each grid is refined. Accordingly, a
less superior performance is expected in the case of the object appearing at the lower
part of the model. However, because the sensitivity of the lower part of the model is
orders of magnitude lower compared to the previous example, the RMSE di�erence
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F����� 3.9: Simulation results of the model shown in Figure 7(b) Upper row: forward gravity
simulated by three methods all with the window size equivalent to 150 ◊ 150 resolution con-
volution scheme, dashed lines shows the linear interpolation of the analytical solution; Middle
row: cross-section of the model illustrating the subsurface geometry; Lower row: RMSE to

the analytical solution with di�erent equivalent resolution.

is also less significant than in the previous scenario, all three methods show similar
performance. These two examples demonstrate the superior performance of kernel
methods with the kernel optimized grid to the most sensitive part of the model while
preserving the same performance for the lower part of the model. The slight wobble
at the beginning of the spatial convolution scheme shows again the error introduced
by slicing when the grid is coarse.

3.3.2 Sandstone Greenstone Belt

In the second example, we apply our methods to the Sandstone Greenstone Belt
(SSGB) in Western Australia. A comprehensive review of the regional setting and ex-
ploration was given by Davies et al. (2018). The SSGB is an Archaean greenstone
belt located between the conjunction of two major north–south-trending Younami
shear zone and Edale shear zone (Chen, 2005). The belt’s stratigraphy consists of
greenschist-facies metamorphism of mafic, ultramafic, and minor sedimentary se-
quences. The gold-rich deposits have received much interest in mineral exploration
(Davies et al., 2020). Due to the presence of heavy minerals, the gravity contrast
makes it a perfect case to test our methods. The previous study was done to model
this region based on surface mapping, shallow drill holes, and a seismic survey by
Wellmann et al. (2018). In this work, we adopt the model developed in (Wellmann
et al., 2018) and focus on the forward gravity simulation. We reproduce the 3D geo-
logical model of the greenstone belt in GemPy (Figure 3.10) and simulate the gravity
using the three di�erent schemes, similar to the previous example.
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(a) (b)

F����� 3.10: (a) 3D GemPy model of greenstone belt, lithology units id: 1: Early Granite; 2:
Simple Mafic II; 3: Simple BIF; 4: Simple Mafic I; 5: Merchison (b) forward simulated gravity
anomaly by spatial convolution scheme with a total resolution of 400 ◊ 400 ◊ 30, with window
resolution of 79 ◊ 59. The value is negative due to positive z is defined pointing upwards. The
white area represents area with no computation data and the approximate padding zone

The simplified lithology units and their corresponding densities are given as the
following: Early Granite 2.61 g/cm3, Simple Mafic II 2.92 g/cm3, Simple BIF 3.1 g/cm3,
Simple Mafic I 2.92 g/cm3, Murchison 2.61 g/cm3 (Figure 3.10). The model has an
input consisting of 69 surface points and 40 orientation points. It has an East-West
extent of 51 km, a North-South extent of 87 km and a depth of 20 km. The padding zone
required for the convolution scheme is included in the modeling extent. A window
radius of 5000 m ◊5000 m is used for the gravity simulation. 100 gravity receivers
are evenly placed at the top surface as shown in Figure 3.10. We found 400 ◊ 400 ◊
30 is a high enough resolution for a model with this scale while taking reasonable
computational resources, therefore we chose the forward gravity simulated using the
spatial convolution scheme with this resolution as a benchmark.

To have a fair comparison, we use an equivalent window resolution for both spatial
convolution schemes and kernel methods. The Residuals of simulated gravity from the
benchmark high-resolution simulation are shown in Figure 3.11. When a low window
resolution is applied (upper row of Figure 3.11), the slicing error has a significant
impact on the convolution scheme, hence a large RMSE. Both kernel methods show
closer simulated results to the benchmark, while the optimized grid shows a smaller
overall RMSE. In the case of medium resolution example (lower row of Figure 3.11).
Both kernel methods show comparable and superior results while the optimized grid
resolves the region of complex surface structure (e.g. southeast corner) slightly better.

3.4 Discussion

We provide in this work a perspective to mesh a geological model depending on the
positioning of the receivers for the gravity simulation in implicit geological modeling
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F����� 3.11: Residuals of simulated gravity from high resolution simulation with equivalent
window resolution of 79 ◊ 59. Upper row: equivalent low window resolution of 9 ◊ 7. Lower

row: equivalent medium window resolution of 29 ◊ 23
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and a subsequent refinement strategy based on the kernel methods. In this section,
we will summarize the advantages and some open questions.

The kernel method is developed based on the fact that a property can be queried
at an arbitrary location based on the interpolated scalar field in implicit geological
modeling methods. This allows us to construct meshes individually respecting each
receiver without an explicit surface construction. The closed-form solution of gravity
is used to achieve a fast computation and no requirement for an external numerical
solver. It also allows us to skip the step of explicit surface construction which saves
computational time. We used the same grid for each kernel in this work so that it is
easier to prepare the sensitivity matrix as a static input, however, each kernel does
not have to be identical. One can design the kernel based on individual measurement
receivers. For example, a higher resolution grid can be given to more precise receivers,
and this can be easily done in a kernel method. In addition, kernel methods diminish
the error arising from grid slicing as shown in the previous two examples. One could
also potentially define the window radius based on the receiver precision. This study
has constructed grids with flat top surfaces and the topography is ignored, which is
appropriate for Bouguer anomaly with terrain correction. However, we believe the
proposed method should also show similar results for topography e�ect.

The kernel method naturally provides a conformal grid that can be easily vec-
torized and therefore takes advantage of parallelized computation implemented in
modern software packages. When the number of observations is large, the sequential
computation to loop through the devices can be reduced to a single computation. The
conventional spatial convolution scheme is implemented in this study in an iterative
manner, which is adopted by most modeling softwares. Although this does not pre-
vent it from vectorized computation, extra processes might be required to obtain a
conformal grid. In cases where the number of observations is sparse on a large model,
although the computation for gravity is not conducted at regions without data, the
grid is initialized in those regions when using a spatial convolution scheme. The ker-
nel method saves memory by not constructing meshes in those regions where data
is unavailable, and also the padding zone is embedded in each kernel. As previously
described, a core objective of chaining the modeling and geophysical simulation is en-
abling the use of derivative-informed Bayesian inference methods (e.g., HMC, SVGD,
etc.). The introduced kernel method also provides a correspondingly simpler program
structure with less conditional statements and sequential computation steps. This
simpler structure improves the e�ciency under the framework of AD in the context of
probabilistic geological modeling (de la Varga et al., 2019). While the key values of
interest are often the derivatives of posterior probability (or log posterior probability)
with respect to the parameters of interests, this can often be reduced to the derivative
of likelihood (Equation 3.2) when the prior has a known analytical form. This further
reduced the problem to evaluating the derivative of simulation results (here is gravity)
with respect to the parameters through AD. Therefore, in this work, we compare the
computation time of evaluating the first-order derivative (jacobian) of the simulated
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F����� 3.12: Computation time (in seconds) of evaluating jacobian of gravity over the input
surface points(69◊3 parameters) using backpropagation algorithm (AD) using kernel method
and convolution scheme respecting to di�erent number of devices on the Green stone model.

gravity at each receiver with respect to the input surface points position of the Green-
stone model through a backpropagation algorithm, and the results are shown in Figure
3.12. The experiment is performed on a single Tesla P100 GPUwith a di�erent number
of receivers. Although a growing matrices size due to the vectorization in the kernel
method introduces some computational overhead and leads to a non-constant compu-
tational time, the 9◊7 kernel is still twice faster than a 50◊50 convolution scheme and
four times faster than a 150◊150 convolution scheme, while the kernel methods could
have less error depending on the grid chosen (Figure 3.11). The vectorized computa-
tion compared to the loop structure in AD and the corresponding memory usage and
compute speedup trade-o� is still actively investigated by researchers (Bagby et al.,
2018; Agarwal, 2019). We believe that the memory overhead can be addressed with
the fast-evolving hardware or batching algorithm in the future.

The subsequent refinement strategy we suggested is on the basis of the centered
grid of the kernel method. A similar idea of receiver-dependent refinement was adopted
in the study of the gravitational terrain e�ect (Capponi et al., 2018), where the authors
define an inner and outer regime based on the receiver location and applied di�erent
simulation methods and grid, and also the application of AEM by (Yang et al., 2014).
The main di�erence of the refinement strategy in our work is that the refinement is
based on the sensitivity Tz rather than simply two di�erent regimes. The refinement
strategy aiming to evenly relocating the limited resolution according to the sensitiv-
ity is based on the assumption that the geological interfaces are not known before
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interpolating the model and the underlying structure could vary due to the inference
procedure. The choice of a fixed grid (which is independent of the interpreted geolog-
ical model) allows reusing the same grid repeatedly in a many-query problem without
embedding the mesh adaptation in the probabilistic framework. In this work, we chose
a tensor mesh as a subsequent extension to the regular grid. However, choices of other
types of mesh are possible, for example, an octree mesh. More advanced mesh adap-
tation methods can be applied while still keeping a rectangular mesh (Fuster et al.,
2009; Fournier, 2019) and therefore apply the closed-form solution.

Although a more sophisticated refinement strategy will provide a more evenly dis-
tributed grid respecting Tz, we have shown in this study a more evenly distributed
grid can lower the risk of aliasing e�ect to some extent for a geological model with
unknown structure before interpolation, we want to emphasize that the final quality
of the forward simulation still depends on the interpreted geometry. For example,
in cases where subsurface structure with features appear only at the distant region
to the receiver or coincidentally align poorly with the cell, a better-optimized grid
does not guarantee a better result. Therefore extra e�ort might not gain more benefit
in this sense. A refinement stratigraphy respecting the fuzzy prior knowledge of the
geological model is a potential future study topic.

The numerical examples provided in this study are meant to demonstrate the gen-
eral principle of the proposed methods, rather than an exhaustive proof of the valida-
tion. With di�erent geometry, the refinement strategy performs di�erently according
to the actual structure. We argue that if the subsurface geometry is known before
interpretation, the best refinement strategy should be combined or guided by prior
knowledge of the structure, but the resulting grid should also be applicable for the
purpose of varying model in probabilistic modeling.

In this Chapter, we focused on the forward simulation and backward propagation,
however, we can expect the same better performance on the inversion which is directly
based on the results of many-query forward simulations.

3.5 Conclusion

We proposed in this study a kernel method for gravity computation in the implicit
modeling framework to improve the conventional gravity forward method. The kernel
method di�ers from the conventional methods by only meshing around the receiver
position. This method provides higher simulation accuracy and simpler program com-
plexity which is beneficial for an integration into probabilistic geological modelling
frameworks. The kernel method potentially saves memory in scenarios where data
is sparse. To further improve the accuracy of the simulation, we provide an optional
subsequent refinement strategy which refines the tensor mesh in each individual ker-
nel based on the sensitivity. This refinement allows better resolution to be assigned to
more sensitive area under the assumption that the subsurface structure is not know
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prior to the interpolation. The numerical results show that the kernel methods to-
gether with the refinement strategy provides a superior performance compare to the
conventional spatial convolution scheme and is more suitable for the gradient based
probabilistic geological modelling framework.
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Chapter 4

Trainable Geological Modeling

4.1 Introduction

Recent developments in probabilistic inversion workflows incorporate forward geo-
physics based on forward-modeled 3-D structural geology. Bayesian inference pro-
vides a systematic way to quantify the uncertainties in geological modeling. In the
framework of Bayesian inference, Geophysical data is introduced in the modeling pro-
cedure as the likelihood function (see Section 2.4.2). The likelihood function acts as
an additional constant to the prior knowledge of the model, which can further con-
trol the uncertainty range. Instead of finding the best-fit solution, Bayesian inference
often seeks the full geometry of the high-probability region. Therefore, solving the
uncertainty quantification problem in the Bayesian inference problem means a full
exploration of the posterior probability space. A common technique called Markov
Chain Monte Carlo (MCMC) is often adopted to e�ciently draw chains of samples
from the posterior space based on the probability relationships between the current
status and the previous status in the chain. The simple but also widely used random-
walk Metropolis-Hastings (RMH) algorithm is often used. However, as the parameter
dimension increases, the convergency rate of RMH dramatically slows down, which
will require drawing more samples (Cotter et al., 2013). Many algorithms have been
proposed recently to accelerate MCMC. While some algorithms make simple modifica-
tions to the original algorithms without additional information (Green, 1995; Andrieu
and Thoms, 2008; Cotter et al., 2013, e.g.,), other algorithms achieve better e�ciency
by using the derivative information of the log posterior space. The most popular meth-
ods using the first-order derivatives are the Metropolis-adjusted Langevin algorithm
(MALA) (Roberts et al., 1996) and Hamiltonian Monte Carlo (HMC) (Betancourt,
2017; Beskos et al., 2013), which uses Langevin dynamics and Hamiltonian dynam-
ics, respectively, to guide the proposed sample moving towards the high probability
regionwhich keeps the target density invariant. Recent advances in Bayesian inference
methods introduced higher-order derivatives to accelerate the posterior exploration by
capturing the posterior geometry (Qi and Minka, 2002; Petra et al., 2014; Isaac et al.,
2015; Villa et al., 2021). The other branch of solving a Bayesian inference problem
is by using the so-called variational inference methods (e.g., Rezende and Mohamed,
2015; Tran et al., 2015a; Liu and Wang, 2016; Detommaso et al., 2018, etc.). The
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variational inference methods approximate the target distribution by the transforma-
tion of a predefined simpler distribution. While di�erent variational methods mainly
di�er from each other by choice of the predefined distribution, derivative information
is generally required.

Although a handful of inference methods are available to solve the Bayesian prob-
lem, methods are limited to derivative-free algorithms in the application of geological
modeling (e.g., Wellmann et al., 2018; Pollack et al., 2021). This is mainly due to
the extra cost of deriving the derivatives using numerical methods. To solve this issue,
de la Varga et al. (2019) introduced Automatic Di�erentiation (AD) to geological mod-
eling and subsequent geophysical simulation in the open-source software GemPy. AD
constructs a computational graph that keeps a record of the operations in the forward
calculation and applies the chain rule to calculate the derivatives. Although the AD
framework provides the possibility to e�ciently calculate the derivative, that does not
guarantee that the calculated derivatives from the geological model properly fit our
purpose. This is mainly due to the discontinuities handled by level-set like methods in
implicit modeling, which will be further discussed in detail in this Chapter.

Hence, in this study, we introduce the method which can make the geological
model end-to-end trainable. The term ’trainable’ is adopted from the field of machine
learning (ML). In recent advances in ML, the widely applied Artificial Neural Networks
(ANN) technique seeks the underlying relationships between the input features and
the output prediction criteria by constructing a sequence of interconnected artificial
neurons. The neurons are connected by some parameters (weights, bias). The typical
problem in ANN is optimizing the parameters to find the best-fit map according to the
learning rule (Goodfellow et al., 2016). This optimization process is also referred to
as the training process and often requires the derivative information of the learning
criteria with respect to the parameters. Hence, a ’trainable’ ANN can be interpreted
as its ability to be optimized by the derivative information (Shi et al., 2016; Frankle
and Carbin, 2018; Li et al., 2018). Similarly, we are seeking a method to e�ciently
evaluate the derivatives of the modeling parameters, and we can use the calculated
derivatives to guide optimization and inference. This leads to a smooth transition be-
tween the discontinuities. Therefore, we introduce a smooth function to replace the
conventional level-set methods in the implicit modeling procedure, and we will dis-
cuss in detail how the proposed method can be used in dealing with di�erent types
of discontinuities in the co-kriging method. A relevant study by Scalzo et al. (2021)
introduced a method where they attempt to solve the so-called aliasing e�ect by fitting
an anti-aliasing function. The method seeks an interpolation between the values in the
discretized mesh and aims to generate faithful simulation results without an aliasing
e�ect. While their method produces good simulation results, the method requires the
calculation of the norm of the surface at the discretized mesh. Our approach di�ers
from their work by directly interacting with the scalar function. Therefore there is no
need to calculate the norm independently. Although with di�erent initiatives, both
methods are aiming for smoothness at the discretization.
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Finally, we propose a method to visualize the high-dimensional posterior (or likeli-
hood) landscape in an intuitive and concise way. We adopt the method of visualizing
the loss landscape in ANN (Li et al., 2018). The proposed method can be used to
qualitatively evaluate the ability of ’trainable’ in geological modeling, and intuitive
visualization of the e�ect of the smooth function on the posterior (or likelihood)

4.2 Automatic Di�erentiation

AD is the fundamental to the trainable geological modeling, therefore we will have a
brief review of the AD technique.

4.2.1 Automatic Di�erentiation principle

Derivative information is often required in many traditional learning algorithms. Gen-
erally speaking, there are four categories of methods to evaluate the derivatives in
computational science: (1) manually derive and code the derivatives; (2) numeri-
cal di�erentiation using finite-di�erence approximation; (3) symbolic di�erentiation
using expression manipulation; (4) automatic di�erentiation (Baydin et al., 2018).
Manually deriving the derivatives is time-consuming and is not flexible to di�erent
model configurations for our application. Numerical di�erentiation is subject to preci-
sions limit due to round-o� and truncation errors (Jerrell, 1997). Symbolic di�eren-
tiation addresses the issues in both manual and numerical methods but often results
in complex expressions, which will lead to the so-called problem of ’Expression Swell’
(Corliss, 1988) and requires a closed-form expression which is the same as the manual
method. AD compensates this by performing a partly numerical and partly symbolical
style technique (Griewank, 2003). AD has been widely adopted in several fields of
applications due to its accuracy, e�ciency, and flexibility. Many general-purpose AD
software package are also developed in recent years, for example: Theano (Bastien
et al., 2012), TensorFlow (Abadi et al., 2015), autograd (Maclaurin et al., 2015) and
more recent such as PyTorch (Paszke et al., 2017) and JAX (Bradbury et al., 2018).

AD performs an operator overloading of the original computer program and con-
structs a computational graph that will keep track of all the intermediate operations
from the parameters of interest to the output value. Then, the derivatives of the out-
put with respect to the parameters of interest can be evaluated by applying the chain
rules of di�erential calculus. Consider an arbitrary function y = F (x), where F is the
mapping function which maps the input parameters x = x1, x2, ...xi, (x œ R

D0) to
the cost function y = y1, y2, ..., yj , (y œ R

D1). The first-order partial derivative, also
known as the Jacobian matrix, is given as follows:

(JF )i
j (x) = ˆ (F )i

ˆxj
(x) (4.1)

by constructing the composite function F = FN ¶ FN≠1 ¶ · · · ¶ F2 ¶ F1 and ignoring
i, the Jacobian matrix can be represented by iteratively applying the chain rule:
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JF (x) = ˆ (F )
ˆxj

(x) = ˆ (FN )
ˆ (FN≠1) . . .

ˆ (F2)
ˆ (F1)

ˆ (F1)
ˆx

(x) (4.2)

AD records the derivative of each fundamental operator in a program and builds
a computational graph to record the dependency of each operator. The derivative of
the output with respect to the input parameter of interest is evaluated by a forward
or a backward propagation using the chain rule based on the computational graph.
Forward mode and backward mode both have their advantages and disadvantages. By
combining these two methods, we get an e�cient method for second-order derivative
evaluation. The approach is summarized in the following.

To evaluate the gradient in the forward mode AD, a tangent vector v is selected at
the evaluation point x,

JF (x) · v =
3

ˆ (FN )
ˆ (FN≠1) . . .

3
ˆ (F2)
ˆ (F1)

3
ˆ (F1)

ˆx
(x) · v

444
(4.3)

For example, ˆ(F )i

ˆ(x1) can be evaluated by a tangent vector v = (1, 0, . . . , 0), v œ R
i.

Thus, the forward mode AD provides the directional derivative.
In contrast, backward mode AD evaluation is based on a fixed dependent variable,

and the quantity of interest is the adjoint

J i
F (x) =

333
ˆ (FN )

ˆ (FN≠1)

4
. . .

ˆ (F2)
ˆ (F1)

4
ˆ (F1)

ˆx
(x)

4
(4.4)

Evidently, for a problem RDI æ RDO , where DI denotes the dimension of the
input, and Do denotes the dimension of the output, if DI ∫ DO, backward propa-
gation is more e�cient, which matches the cases of many machine learning problems
and the Bayesian inference in our study, where the output is a single cost function, so
DO = 1. In contrast, forward propagation is more e�cient when DI π DO, requiring
less memory.

AD has been widely adopted as an e�cient and accurate way to calculate deriva-
tives in many di�erent applications in geophysics, for example, seismic wave (Sam-
bridge et al., 2007) , electromagnetics (Enciu et al., 2009), groundwater flow (Rath
et al., 2006), gravity (Abad and Lacruz, 2013) etc. Only recently, de la Varga et al.
(2019) introduced AD to geological modeling in the software package GemPy. In this
study, we seek improvements following the workflow of GemPy.

4.2.2 Computational Graph

To fully adapt to AD, we implement the program in TensorFlow and TensorFlow Prob-
ability for the probabilistic modeling purpose. The forward model chains the implicit
geological modeling and geophysical simulation in a computational graph. The imple-
mented model is best visualized in the form of a network graph, analogous to typical
ANN graphs, and shown in Figure 4.1. The graph mainly consists of three blocks:
geological modeling, geophysical simulation, and Bayesian inference. The inputs to
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the graph are also the parameters of interest describing the parametric representation
of the structural geological model. Each of the input parameters can be treated as a
probabilistic variable or fixed as a static tensor, depending on the problem formula-
tion. The inputs are passed to the calculation of the aforementioned implicit modeling
algorithm (Sec. 2.3). The main elements in the modeling graph are the kernel ma-
trix blocks in Equation 2.6 (or covariance matrix in geostatistics nomenclature), the
kernel hyperparameters (or kriging parameters in geostatistics), and the mapping val-
ues for the scalar field values (e.g., rock unit IDs or density). These elements are
calculated through a sequence of deterministic computations implemented using Ten-
sorFlow operations and represented by the black lines. The elements can be seen as
the counterpart to nodes in an ANN. The grid node represents di�erent discretization
methods applied to visualize the surfaces or to obtain the tesselation for the geo-
physical simulation on the implicit scalar function and is here treated as a constant
parameter in the graph. In this gravity example, The forward gravity is then evaluated
based on the properties and scalar values based on the summation of the analytical
solution of discretized elements Nagy (1966). In analogy to the training data in an
ANN, the observation data from the field is another constant value to the graph. At
this stage, di�erent loss functions can be constructed depending on the problem. In a
deterministic inversion case, one can directly seek the optimal solution by minimizing
the di�erences between the simulation result and data, for example, by minimizing
the 2-norm

min
...d̄ ≠ dobs

...
2
. (4.5)

In a probabilistic framework, the inputs are implemented using TensorFlow Probabil-
ity distributions. The loss function can be constructed in a Bayesian manner either to
optimize the maximum likelihood estimate or, in combination with the prior distribu-
tions of the parameters, to explore the full posterior distribution ppost (m | dobs ) where
m is the parameter set and can be any subset of the parameters m œ {I, G, F, · · · , fl}.

By constructing the computational graph in the TensorFlow framework, the deriva-
tives of the loss function with respect to the parameters of interest can be traced
through the computational graph by repeated application of the chain rules. The im-
plementation, therefore, opens-up the path to an application of derivative-based sam-
pling methods such as HMC for joint geological modeling and geophysical inversion
in a probabilistic machine learning framework.

4.3 Trainable Geological Models

By adopting AD in geological modeling, one can calculate derivatives of the output
with respect to the parameters of interest e�ciently through the computational graph
with minor modifications to the forward program. However, AD does not guarantee
the calculated derivatives are feasible for training and inference purposes. This is
mainly due to the level-set during the discretization process.
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F����� 4.1: Illustration of the TensorFlow graph structure. Characteristic parameter are rep-
resented in blue nodes. Grey and yellow nodes represents the inference and input parameter

implemented in TFP. Purple nodes denotes constant input to the model.

4.3.1 Vanishing Gradient

As previously discussed in Section 3.2.1, the forwardmodeling consists of two chaining
maps: f := ÿ ¶ q. The first map ÿ mapping the parameter m œ � into a discrete
volumetric representation fl œ G. This mapping ÿ can be further divided into two parts
as ÿ := ÿ1 ¶ ÿ2, where the first part ÿ1 maps the parameters m into a function Z, and
the second part ÿ2 maps the discontinuous function into a discrete representation fl.
The first map ÿ1 is the co-kriging, where all the calculation is continuous. However, the
secondmap often involves level-set-style methods, which utilizes a heavy-side function
and leads to a discontinuous and non-di�erentiable function. To better illustrate the
reason for the vanishing gradient in the level-set method, we demonstrate a simplified
1D dummy problem. We construct a dummy function with one variable c and define
the minimization problem in the following form:

Min L = Î
ÿ

xœxs

f(c, x) ≠ S target Î (4.6)

where xs is a fixed set of evaluation positions, S target is an arbitrary target value we
are trying to fit to the sum of function f evaluated at xs.The aim of the problem is to
find the optimized control point c, which minimizes the loss L. Here the evaluation
points are analogous to the property matrix in a geological model, and the controlling
point c is analogous to the surfaces point or orientation points. When the function f

is a heavy-side function and has the following form:

f(c, x) =

Y
]

[
0 if x Æ c

1 if x > c

(4.7)
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(a) Simple function with level-set method

(b) Simple function with step-function

F����� 4.2: Illustration of vanishing gradient with a simple function with level-set method
and with smooth step-function.

If we take xs = {≠2, ≠1, 0, 1, 2}, the controlling point with initial value of c = ≠0.5
and target S target = 4, we can illustrate the problem in Figure 4.2a. It is obvious that
one cannot find a smooth transition from the initial position to the target position by
using gradient-informed optimization methods such as gradient descent because the
gradient ˆL

ˆc does not exist.
To solve this problem, one can replace this heavy-side function with a smooth step-

function, similar to the activation function in a neural network (Sharma et al., 2017).
Here we chose a sigmoid function that extends to infinity:

f(c, x) = 1
1 + el(≠x+c) (4.8)

where l is the slope of the sigmoid function. We illustrate the smoothed function
with l = 10 in Figure 4.2b. The step-function provides a smooth gradient ˆL

ˆc . Hence
one could solve the above-described problem by using o�-the-shelf gradient-informed
optimization techniques.
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4.3.2 Vanishing Gradient in implicit geological modeling

There are mainly three types of discontinuities a�ected in the current implementation
of implicit modeling using the co-kriging method, namely layer interfaces, unconfor-
mities, and faults. These discontinuities interpreted by the heavy-side function directly
cause the vanishing derivatives (here, we focus on the gradient). Therefore, in this
section, I will first explain the reason for the vanishing gradient in each of the discon-
tinuity cases and demonstrate the methods to keep the gradient using a smooth the
step-function.

Layering model

In the simplest case of a layer cake model without unconformities and faults, the calcu-
lation involves only one single series of co-kriging calculation. Following the notation
in Section 2.3, where the artificial auxiliary scalar field is denoted as Z, and scalar
value at any given location x = (x, y, z) in Cartesian coordinates as Z(x). We further
denote the lithological layers from younger to older by using i = 1, 2, . . . ,L in an as-
cending order, where L is the total number of layers. An identical rock property value
fli is assigned to the corresponding ith layer. Then we denote the scalar value at the
interface between the ith layer and the (i + 1)th layer as Zi. We can simply express
the properties fl at location x by using the level-set method in the implicit geological
modeling as follows:

fl(x) =

Y
____]

____[

fl1, if Z(x) > Z1

fli, if Zi≠1 > Z(x) > Zi, ’i = 2, 3, ...,L ≠ 1
flL, if ZL≠1 > Z(x)

(4.9)

An example of the resulting discrete volumetric representation is shown in Figure
4.3.

Unconformities model

An unconformity can be implemented by stacking scalar fields from di�erent deposi-
tional series in the co-kriging modeling method (de la Varga et al., 2019). Considering
two contacting series with the younger rock series I intercepting, the older rock se-
ries II by the erosional surface at the bottom of series I. The scalar field of the two
series ZI and ZII can be interpolated individually with the input geological data at
each series following the method described in the layering model. The combination
of the two series is done by interpreting a binary mask from the bottom layer of series
I. The binary mask is obtained by using the same level-set method to separate only
the volume which is above or below the last surface LI in series I. The implemented
level-set method for the discretization of unconformities can be summarized as:
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fl(x) =

Y
]

[
flI(x), if ZI(x) > ZIL≠1

flII(x), if ZIL≠1 > ZI(x)
(4.10)

where flI and flII are individual functions ruling the discretization in its own do-
main following Equation 4.9. A more complex sequence of unconformities can be
implemented by repeating Equation 4.10. An example of an unconformity using this
method is shown in Figure 4.4.

Fault model

Currently, only infinite faults are implemented. The infinite faults can be implemented
as an extension to the co-kriging framework (Equation 2.5) by adding a drifting term
to the kriging system (Marechal, 1984; de la Varga et al., 2019), shown as follows:

Cd◊d =

S

WWWWWWWWWWU

C Ut Ft

U 0 0

F 0 0

T

XXXXXXXXXXV

(4.11)

Kd◊1 =

S

WWWWWWWWWWWWWWWWWWWWWU

ka

kb

kc

kd

kf

T

XXXXXXXXXXXXXXXXXXXXXV

(4.12)

Gd◊1 =

S

WWWWWWWWWWWWWWWWU

G
x
i

G
y
i

G
z
i

0

T

XXXXXXXXXXXXXXXXV

(4.13)

CK = G (4.14)
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where d = nc ◊ nu ◊ nf presents the dimension of the matrix, nc is the length
of the covariance matrix in Equation 2.6, nu is 9 for a second order universal drifting
(Equation 2.11), nf is the number of series of faults, F = [FZ , FG] is the fault matrix,
FZ is the fault drifting function evaluated at the surface points locations and FG is the
derivative of the drifting function evaluated at the orientation points; kf is additional
unknown kriging parameter to be solved. The drifting function itself can be computed
by using the same co-kriging method with the fault interface points and orientation
points in the ’fault series’ prior to the interpolation in Equation 4.14. A fault matrix is
obtained at the grid locations from the drifting function. The same level-set method is
applied to segment locations x from the foot-wall and hanging-wall depending on the
fault compartment. A unique constant value is applied to the locations at each side of
the fault based on the segmentation. The impact of the level-set method appears in
both the two series of the scalar field. An example of this fault construction workflow
is illustrated in Figure 4.5.

4.3.3 Method: Smooth Step-Function

To keep the gradient in the geological modeling at the discretization procedure, we
introduce a smooth step-function. The introduced step-function can be applied to all
three types of discontinuities described above.

Layering model

We construct the step-function with the sigmoid function described above. For the in-
terface between two lithologies, the smooth step-function is constructed by connecting
two sigmoid functions which takes the general form:

fl(x) = fli

1 ≠ el(Z(x)≠Zi) + fli+1
1 ≠ e≠l(Z(x)≠Zi) (4.15)

Where l is the slope of the step-function, fli and fli+1 are the property of the contact-
ing layers i and i + 1. A sequence of layering can be done by repeating this formula.
The step-function naturally interacts in the orthogonal directions to the interfaces.
Hence the step-function is also tangent to the norm of the interfaces and requires no
additional approximations and calculations. The e�ect of the smooth step-function to
the properties matrix compared to level-set method is demonstrated in a simple 3D
anticline model and shown in Figure 4.3.

Unconformities model

The step-function can be easily extended to unconformity models. By adopting the
step-function, the binary masking between the sequential series is replaced by a mask
with values smoothly transferred from one status to another. The Equation 4.10 is
then replaced by the form:
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F����� 4.3: Workflow of 3D layering model construction.

F����� 4.4: Workflow of 3D unconformities model construction.

fl(x) = flI

1 ≠ el(Z(x)≠Zi) + flII

1 ≠ e≠l(Z(x)≠Zi) (4.16)

A 3D example of an unconformity between two series are demonstrated to shown
the di�erent property blocks using di�erent methods in Figure 4.4.

Fault model

As discussed previously, a fault in the implicit modeling method using the kriging al-
gorithm is implemented by an extra drifting function. The introduced step-function
takes action in both series of kriging interpolation. First, the fault matrix is extracted
at the first series of interpolation to distinguish the evaluation points on the foot-
wall and hanging wall. Instead of a binary fault matrix obtained using the level-set
method, a fault matrix with a smooth transition from the footwall to the hanging wall
is obtained using the smooth step-function (example in Figure 4.5). Then the drifting
term obtained from the first interpolation is integrated into the second interpolation.
The resulting second scalar field has a curved shape which is similar to the ’dragging
folds’ and ’clay smearing’ of a fault in a realistic scenario (Grasemann et al., 2005).
The properties matrix is smoothed at both the faults and interfaces. By using the step-
function, the gradient of the property blocks with respect to both the fault and surface
input data are conserved.
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4.3.4 E�ect on Gravity Forward Simulation

The introduced smooth step-function generates geological models which are end-to-
end trainable from the gravity simulation to the input parameters. However, the re-
sulting property block is also smoothed with the artificially introduced step-function
and therefore impacts the forward gravity simulation results. Hence in this section,
we will discuss the impact of the step-function on the simulation results.

We use the same anticlinemodel demonstrated previously in Figure 4.3. Themodel
has a simple anticline geometry with three layers. A 5 ◊ 5 grid of receivers is deployed
at the top surface of the model. The densities are set for demonstration purpose as
1 g/cm3, 4 g/cm3 and 2 g/cm3 from top to bottom. We simulated the gravity at a high
resolution with the cell size of 1.43 m ◊ 1.43 m ◊ 1.43 m using the method without
smoothing as a benchmark. Themodel contains 36 surface points in total and is loosely
constrained by two orientation points. The 3D model is demonstrated in an extended
extent to illustrate the slightly curved surface at a distant area along the y axis without
data constraints (Figure 4.6). This curved surface explains the gravity drop in the
simulation results in an apparent 2.5D model. The gravity is calculated using the
kernel method with a regular grid (as described in Chapter 3).

We compare the forward simulation result using both the level-set method with
heavy-side function and the smooth step-function simulated in a lower resolution
model with the cell size of 5 m ◊ 5 m ◊ 5 m. While a more accurate forward simu-
lation is not our primary objective, the simulated gravity with the smooth model gives
a lower RMSE compared to the simulated result by using the level-set method. This is
mainly due to the fact that the voxels which are at the interfaces are classified based on
the value evaluated at the center of the voxel, and the interface is poorly interpreted
due to the limited resolution. This is also known as the aliasing problem (Scalzo et al.,
2021). While in the smoothed matrix, the properties of the voxels close to the in-
terface will take an intermediate value and, therefore, could be more faithful to the
simulation for a potential field problem, for example, gravity and magnetic. This re-
sult is also consistent with the result given by the anti-aliasing method used by Scalzo
et al. (2021).

4.3.5 Choice of the Step Function

In the above example, the simulation result shows better accuracy when using step-
function. The choice of the slope l has a significant impact on the simulation and
trainability of the model. It is obvious that when l is chosen to be unreasonably large,
which means the slope is very steep, the step-function basically degenerates into a
heavy-side function and loses the trainability. Although the sigmoid function extends
to infinity, the gradient value can not reach infinity in practice. Using the previous
1D example in Figure 4.2. The gradient is ˆL

ˆc = q
xœxs f(c, x). When the evaluation

point is at a large distance to the control point (i.e., |xi ≠ c| >> 0), the gradient
ˆxi

ˆc might have a numerical value of NaN. This causes problems in some AD software
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(e.g., Theano) that a single NaN will turn the whole result into an error, although
these gradients are trivial and have no impact on the learning. A solution to keep the
stability in the previous AD framework is to add an artificial activation function tanh
at the tail of the step-function (de la Varga et al., 2019). In the modern AD frameworks
(e.g., TensorFlow, PyTorch, etc.), this is solved by simply assigning NaN values to zero.

In contrast, when the slope l is extremely small, the model has a high trainability,
but the property matrix will be smoothed out, and the simulation result is no longer
faithful.

Therefore, we propose a subsequent optimization method to have a faithful simu-
lation result and keep the trainability at the same time. We construct this in another
optimization problem, where we generate data from a high-resolution model as the
target simulation result we would like to achieve. We define the upper bound of the
slope lmax taking the following form:

lmax = ⁄ · 2/ddiag · rf (4.17)

where rf is the scaling factor in GemPy to scale the input extent to unit scale for
computation and ddiag is the diagonal distance of a rectangular prism cell. We found a
scale value ⁄ = 1.5 is su�cient to keep the gradient when dealing with most problems
using a double float data type. The slope l can be then defined using another sigmoid
function with variable ”l as:

l = lmax · ‡(”l) (4.18)

Benefitions from the fact that the whole model is constructed in a computational
graph (Section 4.2.2), we can further consider the variable ”l as a TensorFlow variable
and use AD to calculate the gradient of the misfit with respect to the variable. Here we
use the gradient descent method to update ”, and the result is shown in Figure 4.7. A
slight improvement of the forward simulation is gained by the optimization.

4.4 Posterior Visualization - a dimension reduction method

4.4.1 Morphology of Posterior Space

Similar to the loss function in an ANN discussed above, the posterior probability func-
tion could have a complex geometry in high-dimensional space. The qualitative char-
acterization of the posterior landscape and the impact of the step-function on the
posterior is helpful to comprehend the inference problem we are solving. While the
prior is often chosen to be a well-defined distribution (e.g., normal distribution, uni-
form distribution), the e�ect of the prior on the posterior is known to be smooth.
The smoothness of posterior landscape is mainly controlled by the likelihood func-
tion. Hence, in the following description, we will only use the likelihood for simplicity
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F����� 4.6: 3D plot of the anticline model

and to emphasize the impact of the step-function, but the method applies equally to
posterior functions.

The two common approaches to represent the posterior distribution are the cor-
ner plot and the cross-section plot. A corner plot provides complete pictures of the
posterior space by plotting the marginal distributions of each pair of parameters. It
is suitable for plotting the empirical distribution of samples generated from the distri-
bution. However, when it comes to plotting the exhaustive posterior distribution with
grid-based analytical solutions, plotting conner plots becomes expensive. For distri-
bution with P numbers of parameters, a corner plot will contain (P ≠ 1) ◊ (P ≠ 1)
number of subplots. If each plot has a grid dimension of K ◊ K, the total number of
evaluations will be K(P ≠ 1). This exponentially growing computational cost is also
the reason for the use of sampling methods like the Monte Carlo method.

As an alternative, in the lower dimension, cross-section plots are often used (Scalzo
et al., 2021). Unlike the corner plot evaluates the posterior exhaustively, the cross-
section plot fixes the other dimension (often at the origin) and plots the posterior only
at two chosen dimensions. This method is suitable for dealing with low-dimensional
distribution. However, it could be misleading in higher dimensional distributions with
more complex geometry. To illustrate this complexity and potential bias caused by a
cross-section plot, we construct a modified banana-shape distribution in 4-dimension:

y | ◊ ≥ N
1
µy, ‡

2
y

2
, µy := ◊1 + ◊

2
2 + 0.3◊3 ≠ 0.5◊

2
4

◊i
iid≥ N

1
0, ‡

2
◊

2 (4.19)

We generate N = 100 number of data {yn}N
n=1 with µy = 1, ‡y = 2 and ‡◊ = 1.

The resulting distribution is shown in the cross-section plots in Figure 4.8. Although
a simple distribution, the morphology is quite complex: the first and third plots show
two modes in the distribution, while the mid-plot shows a single mode. However,
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F����� 4.7: Gravity forward simulations. The first row shows the benchmark model with a
high-resolution level-set method. The second row shows the low-resolution geological model
and its forward gravity error with level-set method. Third row is the low-resolution geological
model and forward gravity error with a non-optimized slope. The forth row shows is the low-

resolution geological model and forward gravity error with the optimized slope.
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F����� 4.8: Cross section of the distribution described in Equation 4.19 with N = 100,µy = 1,
‡y = 2 and ‡◊ = 1

only by combining the three plots can one comprehend the actual geometry. The
parameters in a geological model are higher-dimensional and could correlate in a
more complex manner. This will be di�cult to visualize. Hence, to have a concise and
comprehensive visualization of the posterior, we propose a method to visualize the
posterior by adapting the dimension-reduction visualization method of loss surfaces
in ANN (Li et al., 2018) as a qualitative way to evaluate a trainable geological model.

4.4.2 Loss Landscape Method

We propose to adopt the 2D random direction method as a dimensional-reduction
visualization method for the posterior distribution. This original method plots the loss
function with the following form:

f(–, —) = L (mú + –” + —÷) (4.20)

where ” and ÷ are two randomly chosen direction vectors, – and — are two scalar
parameters, mú is the center point, and L is the loss function. This method has been
used to provide an empirical analysis of the deep neural network loss function, and the
optimization algorithms (Goodfellow et al., 2014; Im et al., 2016). This 2D method
has advantages over its 1D counterpart to better visualize the non-convexity in the
loss function (Goodfellow et al., 2014). A variant of this method with a "filter normal-
ization" is used to analyze the trainability of neural networks (Li et al., 2018).

In the case of Bayesian inference in a geological model, the loss function is replaced
by the posterior probability function p and plots the following function:

f(–, —) = p (mú + –” + —÷ | dobs) (4.21)

A numerical example of the posterior (likelihood) surface is plotted using this
method and discussed in the following section.
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(a) likelihood without step-function (b) likelihood wit step-function

F����� 4.9: The likelihood surfaces with/without step-function.

4.5 Numerical examples

4.5.1 Posterior Landscape of the geological model

We use the above-described visualization method to plot the posterior landscape of
the geological model in Figure 4.7. We use the synthetic data from the high-resolution
model as the observational data for the inference and analyze the posterior surface of
the model with level-set method and step-function. The parameters of interest are
the z values of the surface points, which are 36 in total. To emphasize the e�ect of
the aliased e�ect, we chose to only plot the likelihood function, which is essentially
equivalent to using a uniform prior distribution. The resulting plots are shown in
Figure 4.9.

The likelihood function surface of the model using the level-set method (Figure
4.9a) displays strong non-convexities. In contrast, the model using a step-function
shows a smooth surface and displays convex contours in the region of plot. The value
scale di�erence between the two plots is evident in the simulation misfit discussed
in Figure 4.7. However, we should emphasize that the displayed likelihood surface
is continuous in the contour plot, although it shows significant non-convexity. This
continuity does not imply continuity in the actual likelihood function. The derivative
information does not exist in the level-set models (as previously discussed in Section
4.3.1).

4.5.2 Numerical example of probabilistic gravity inversion

We evaluate the above-described ’trainable’ concept in a simplified proof of concept
resembling a 3D dome structure. These types of structures often exist in sedimentary
basins, for example, in the Gulf of Mexico (Stern et al., 2011), Gulf Coast (Barton,
1933). In our simplified representation, the dome structure consists of a basement at
the bottom, with the dense dome body in the middle and overlain by lighter rocks.
To prove the concept, we only take the eight surface points at the upper surface as
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True model Prior Mean Posterior Mean 2D projection

(a) (b) (c) (d)

F����� 4.10: 3D example of a dome structure. (a) synthetic true model (b) prior mean and
initial position (c) posterior mean by 1000 iterations HMC (d) 2D project of the surface points,

black arrow illustrates the movement of distribution after inversion

probabilistic variables while we keep the other parameters fixed. We generate syn-
thetic gravity data by forward simulation, and subsequently invert for the x, y, and
z coordinates of the 8 surface points at the upper surface, resulting in a total of 24
probabilistic parameters implemented by TensorFlow Probability distributions.

We assigned the model with a weak prior with the mean position to be at a flat
surface at z = 650, and all x- and y-positions deviated from the truth. The prior
distribution is given as an independent multivariate normal distribution with the mean
shown in Figure 4.10. The synthetic observation data is in a grid at the top surface.
We perform three runs with individual chains using both RMH and HMC methods.
Each chain with 1000 iterations. 1000 Burn-in steps for RMH and 100 Burn-in for
HMC, resulting in chains of 1000 samples from the posterior distribution.

The result shows that, even with an extremely weak prior knowledge of the input
parameters, withMonte Carlomethods, the general geometric setting can be retrieved.
We compared the potential scale reduction factor R̂ (Gelman and Rubin, 1992) as a
measure of chain convergence using the implementation in TensorFlow Probability
(Lao et al., 2020) over the three individual chains shown in Figure 4.11. The com-
parison shows that HMC generally leads to better-mixed chains when compared to
the derivative-free RMH, resulting in more e�cient posterior exploration and a better
ability to capture the diversity of the realizations. This observation is consistent with
findings by other researchers using HMC (Izmailov et al., 2021). However, the devi-
ation of the posterior distribution also shows the limitation of HMC to jump between
poorly connected modes in multimodal density (Mangoubi et al., 2018). This implies
that good prior knowledge from geologists to the input of the model is indispensable.
The purpose of this example is to show how the gradient information can assist in
the sampling of the posterior distribution in the context of geological modeling and
geophysical inversion.

4.6 Discussion

We have shown in the chapter that the introduced smooth step-function provides
a smooth posterior landscape and grants trainability to the geological model. Our
method is di�erent from the anti-aliasing method proposed by (Scalzo et al., 2021).



58 Chapter 4. Trainable Geological Modeling

F����� 4.11: Inversion results of three runs with individual chains using RMH (a) and HMC
(b) . sfp#n stands the nth surface points on the top surface in the dome inversion example.
The x coordinates represent the value of the parameters. The blue bar shows the resulting
mean value (dots) and 95% credible intervals. The orange bars present the prior distribution.

The red dots represent the parameters for the true model
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While Scalzo et al. (2021) also aimed to achieve a smooth posterior surface, the
method is based on the interpolation of the values close to the surface boundaries.
Our method directly interacts with the scalar field, and no additional cost is required
to approximate the partial volumes and calculate the unit normal of the surfaces. One
could choose di�erent slopes for di�erent interfaces and could even adapt the slope
to the sensitivity matrix based on their choice.

However, there are some limitations to the proposed method. First, although the
numerical example shows that the smoothed model gives more faithful simulation re-
sults in the low-resolution case, better results are not guaranteed. In the case where
the geological interface is exactly aligned with the surfaces of the regular grid, the
level-set method will provide the exact result with no aliasing e�ect, regardless of
the resolution. On the contrary, the step-function will generate a smooth surface by
choice of an upper-bound value lmax. This is mainly because the step-function is not
designed primarily to provide a more faithful gravity simulation. Rather, it is designed
to keep the derivatives over the sharp interface. A unique slope value can not satisfy
the optimal simulation results with a varying structure. Second, the defined slope
function is suitable for a regular tensor grid. For grids with more complex configu-
rations, for example, the ML optimized grid (in Chapter 3) and the octree mesh, the
unique slope value could lead to over-smoothing in the part with smaller cells and
gradient-vanishing in the other part with larger cells. Hence, the unique slope value
choice is no longer the best option in this scenario, and future study is needed to
address the step-function in more complex grid configurations.

The choice of the step-function in this study is a sigmoid function that extends
to the infinite. Compared to other smooth step-functions with limited extension, for
example, cubic polynomial and quartic polynomial, the main advantage of this type
of infinite step function is the flexibility of the chosen grid type. The step-function
acts directly on the scalar field, which means that any choices of the grid can be used
to query the property values after the interpolation of the scalar field. Although that
won’t guarantee that the simulation result can be kept faithful, and the problem of
vanishing gradient could appear with a badly chosen grid, but it opens the probability
of choosing an irregular grid.

The optimization method for the slope function used here is gradient-descent. It
does not guarantee a global minima to be found. However, the slope function is a
1D problem. One could certainly use a more expensive grid-based search method for
the optimization. Nevertheless, the optimization of a pre-computation of the high-
resolution model, and the optimized slope might not be optimal once the geometry
is updated. Also, the improvement given by the optimization depends heavily on the
geometry at that state. One should consider the use of an optimization based on the
actual application scenarios. With a fixed, regular grid configuration, other options
of finite step-functions are also possible and will provide similar results with a proper
choice of scaling, etc. However, when it comes to the application of second-order
derivatives, the chosen step-function should be twice-di�erentiable at the parameter
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locations, which is the origin of the step-function in the current configuration. Hence
the infinitely di�erentiable sigmoid function is a good choice for this purpose.

The posterior surface visualization method proposed in this study provides an intu-
itive and concise view of the posterior in high dimensions. However, with the dramatic
dimension reduction, the plot is rather a qualitative characterization of the posterior
function rather than a rigorous display of the posterior convexity. The apparent con-
vexity in the reduced-dimension surface does not mean true convexity in the high-
dimensional function. Rather it shows the function is dominated by positive curva-
tures or a positive mean curvature (Li et al., 2018). However, when non-convexity is
present in the reduced-dimensional plot (e.g., Figure 4.9a), the non-convexities must
be present in the full-dimensional function. In the case of a multimodal posterior sur-
face, the introduced smooth step-function also helps to remove the ’fake’ multimodality
caused by the discretization.

4.7 Conclusion

In this chapter, we have introduced the use of smooth step-function to generate train-
able geological modeling in a gravity inference problem. The model is implemented
end-to-end trainable in the AD package TensorFlow. The primary goal of the step-
function is to provide the trainability to the geological to allow updating using deriva-
tive information. Trainability is the foundation for the application of the advanced
derivative-informed inference method, and we have shown a successful application of
the HMC method on a synthetic dome model. The step-function also provides better
gravity simulation results in the cases of aliased low-resolution models.
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Chapter 5

Hessian-informed MCMC

The text in this chapter is published in Geophysics (Liang et al., 2022).

5.1 Introduction

In many geoscience applications, inversion methods are used to estimate subsurface
properties (e.g., structure, density and porosity) from observed geophysical data. Con-
ventional geophysical inversion aims to find the best-fit parameter sets that minimize
the error between observed geophysical data and simulation results. However, in prac-
tical cases, observational data has the general di�culties of sparsity and noise. The
uncertainties in the data are combined with the geometry errors from the geological
model constructions, leading to numerous possible solutions within the uncertainty
range, and hence ill-posedness. Geoscientists are therefore interested in not only the
best-fit model parameters but also a quantification of uncertainties associated with
these parameters (e.g., Sen and Sto�a, 1996; Wellmann et al., 2018; Witter et al.,
2019; Chauhan et al., 2021).

In this study, we focus on the uncertainty quantification in model-based inversion
problems. Developments in geomodeling have provided us with tools to generate 3D
structural geological models based on interface and orientation information from ob-
served or inferred data (Caumon et al., 2009; Caumon, 2010; Wellmann and Caumon,
2018). In contrast to directly inverting the property field (e.g. density or thermal
conductivity field), parametric geological models have the advantage of easy inter-
pretability and low parameter dimensionality. Geophysical data can be used as an
additional constrained to the developed model. The gravity method has been widely
applied in geophysics to investigate subsurface geometries and properties (Nabighian
et al., 2005a). While conventional gravity inversion often su�ers from ill-posedness
due to insu�cient data and intrinsic ambiguity (Skeels, 1947; Parker, 1975, 1974), it
is suitable as additional data to constrain a geological model.

Recent developments in structural geomodeling methods allow geoscientists to
quantify the uncertainties in geological models based on prior geological knowledge
and additional geophysical data in a Bayesian inference approach (Wellmann et al.,
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2010; de la Varga and Wellmann, 2016; Wellmann et al., 2018). The Bayesian ap-
proach has long been used as a tool to quantitatively combine uncertainties from var-
ious sources in a probabilistic workflow (Tarantola and Valette, 1982; Mosegaard and
Tarantola, 1995; Sambridge and Mosegaard, 2002; Sambridge et al., 2013). In a
Bayesian inference problem, the expert knowledge of the geological model (prior in-
formation) and the observational data (likelihood function) are combined probabilis-
tically. The inference provides us the updated uncertainty range of the parameters of
interest given the observational data. This output uncertainty range is known as the
posterior, which is also a distribution. However, it is often not possible to calculate the
posterior uncertainty analytically. The Markov chain Monte Carlo (MCMC) is used to
sample from the posterior distribution by generating Markov chains of samples e.g. ac-
cording to the Metroplis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970).
The posterior distribution can then be approximated by the density distribution of the
generated samples. The samples can also provide useful statistical information about
the posterior probability density function (PDF) (e.g., mean and standard deviation).

The random walk Metropolis-Hasting (RMH) algorithm is likely the most popular
MCMC method. It is the simplest algorithm and has been widely adopted from the pi-
oneering applications in traditional geophysical inversion (Mosegaard and Tarantola,
1995; Malinverno and Leaney, 2000; Malinverno, 2002) through the recent applica-
tions of geological modeling inversion (de la Varga and Wellmann, 2016; Wellmann
et al., 2018; de la Varga et al., 2019). While the classical RMH algorithm is simple
in its intuition and implementation, it is often ine�cient for complex posterior distri-
butions. Complexity may result from high dimensionality or strong nonlinearities of
the model. This leads to slow convergence of the MCMC chain (Ruggeri et al., 2015).
The ine�ciency results primarily from the mismatch between the proposal distribu-
tion used in the random walk method and the actual posterior distribution. The recent
work of Scalzo et al. (2019) used a preconditioned Crank–Nicolson (pCN) method to
address the high dimensionality problem in the context of the joint geophysical inver-
sion problems.

In cases where the gradient of the negative logarithm of the posterior with respect
to the parameters can be obtained easily and e�ciently, gradient information can ac-
celerate a MCMC method by biasing samples toward higher probability regions. The
Metropolis adjusted Langevin algorithm (MALA) (Rossky et al., 1978; Roberts et al.,
1996), which involves Langevin di�usions, utilizes gradient information to confine
the induced pseudodynamics (Betancourt, 2019). MALA can significantly increase
the e�ciency of MCMC, however, its performance deteriorates for strongly anisotropic
distributions since the gradient may no longer point in a globally useful direction. A
recent example of the application of this algorithm to the seismic inversion problem
can be found in the work of Mosser et al. (2020). Another popular gradient-informed
algorithm, the Hamiltonian Monte Carlo (HMC) method, also known as hybrid Monte
Carlo, was first introduced by Duane et al. (1987). HMC utilizes gradient information
to find the next independent sampling points to achieve a more e�cient exploration
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of the typical set at the cost of numerical integrator for solving the Hamiltonian equa-
tion at each step. (Betancourt, 2019). In addition, the parameters for the leapfrog
iterations require careful tuning, and the computational cost of leapfrog steps can be
substantial (Girolami and Calderhead, 2011). Recent studies have shown the applica-
tions of HMC in geophysical inversion (Muir and Tkalcic, 2015; Fichtner et al., 2019).

The use of higher-order derivative information in MCMC, in particular the Hes-
sian of the negative log-posterior has been shown to lead to more rapid exploration
of the posterior by adapting to the posterior curvature and anisotropy (Geweke and
Tanizaki, 1999; Qi and Minka, 2002). However, explicitly constructing the Hessian for
high dimensional inverse problems is prohibitive. Instead, for many ill-posed inverse
problems, the Hessian of the negative log-likelihood admits a low rank approxima-
tion, and this can be e�ciently computed using a randomized eigensolver along with
higher order adjoints (Martin et al., 2012; Petra et al., 2014; Isaac et al., 2015). A
number of advanced Hessian-based MCMC methods for large-scale inverse problems
have appeared in the past decade, for example, the stochastic Newton MCMC method
(Martin et al., 2012), dimension-independent, likelihood-informed MCMC (Cui et al.,
2016) and adaptive Gaussian process emulated geometric Monte Carlo (Lan et al.,
2016). These Hessian-based methods overcome the slow convergence of gradient-
only MCMC for ill-posed problems and are applicable in high-dimensional parameter
space.

Developing first and higher order adjoints for complex simulations can be challeng-
ing. As an alternative, automatic di�erentiation (AD) can be employed. The earlier
development of geological modelingmethods by de la Varga et al. (2019) utilized auto-
matic di�erentiation (AD) to make gradient evaluations easily tractable. Recent work
of Güdük et al. (2021) presented the successful application of this technique to model-
based probabilistic inversion using HMC. In this work, we introduce the Hessian-based
MCMCmethod as a tool to conduct e�cient uncertainty quantification in model-based
geophysical simulation. We follow the implicit geological modeling method and for-
ward geophysical simulation introduced by de la Varga et al. (2015, 2019) and adapted
the Hessian-based MCMC algorithm developed by Villa et al. (2018). Here, we first
find the maximum a posteriori (MAP) point by using Adam, a adaptive gradient-based
optimization method (Kingma and Ba, 2014). Then we construct the Laplace approx-
imation of the posterior PDF by equating the posterior covariance to the inverse of the
Hessian of the negative-log posterior at the MAP point. A generalized preconditioned
Crank-Nicolson proposal (gpCN) (Pinski et al., 2015) is then applied to conduct the
MCMC sampling. Most importantly, to e�ciently calculate the second-order deriva-
tives, we further extend the geomodeling framework GemPy (de la Varga et al., 2019)
to an implementation in TensorFlow (Abadi et al., 2015), a machine-learning frame-
work that allows fast derivative evaluation through AD. The second-order derivative
is calculated by a forward-over-backward propagation to achieve time and memory
e�ciency. We establish a conceptual 3D fold model and a case study of Kevitsa de-
posit 3D model in order to compare the e�ciency of the proposed method using gpCN
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algorithm against the RMH and HMC methods. The results show the potential of
Hessian-based MCMC methods in real-world geophysical inversion applications.

5.2 Method: Generalized Preconditioned Crank-Nicolson (gpCN)

In this section, we conducted an end-to-end procedure from the model construction
to the geophysical simulation and finally to Bayesian inference. We first generated
a geological model by using the implicit modeling method. A synthetic gravity field
was then simulated based on the model. Finally, we apply three di�erent MCMC al-
gorithms, namely RMH, HMC, and gpCN to solve the Bayesian inference on the same
synthetic model. In this section, we describe the automatic di�erentiation method
which links the geological modeling and Bayesian inference framework and makes the
high-order derivative evaluation tractable, and present, how the high-order derivative
information can be used to accelerate MCMC.

Although it is intuitively simple, the RMH algorithm su�ers from the problem of di-
mensionality (Cotter et al., 2013; Betancourt, 2017). As the dimension increases, the
naive symmetric proposal used in the RMH algorithmwill result in most of the samples
being rejected, and thereby resulting in an ine�cient exploration of the posterior. A de-
cent volumetric explanation was established by Betancourt (2017). Thus, researchers
have been searching for an alternative to the RMH algorithm. Cotter et al. (2013) in-
troduced the preconditioned Crank–Nicolson (pCN) proposal, which is a slight modi-
fication to the original RMH algorithm but provides its scalability to high-dimensional
problems.

In recent years, the idea of employing the geometry of the posterior to accelerate
the exploration has attracted many researchers (Girolami and Calderhead, 2011; Mar-
tin et al., 2012; Law, 2014; Cui et al., 2016), where the first-order or second-order
derivative information or either both (Martin et al., 2012) are utilized. Among those
studies, Pinski et al. (2015) and Villa et al. (2018) introduced the proposal precondi-
tioned by the Gaussian approximations of the probability measure of interest (which
we referred as the gpCN here) to improve the pCN proposal. This is a modified version
of gpCN which di�ers from the original gpCN (Rudolf and Sprungk, 2018) by the way
of keeping the reversibility of the algorithms.

Villa et al. (2018) introduced the method to evaluate the posterior covariance by
using a Laplacian approximation (Stigler, 1986;Wong, 2001; Evans and Swartz, 2000;
Kerkering, 2003; Tierney and Kadane, 1986) with the Hessian of the log likelihood
Hmisfit at the MAP point m‹ and covariance of the prior Cprior

C‹ = H (m‹)≠1 =
1
Hmisfit (m‹) + C

≠1
prior

2
≠1

(5.1)

where H (m‹) is the Hessian of the log posterior evaluated at the MAP point m‹ ,

m‹ := arg minJ (m) :=
A

�(m, dobs) + 1
2

...m ≠ mprior
...

2

C≠1
prior

B

(5.2)
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Here, we applied the recently developed first-order gradient optimization algo-
rithm Adam (Kingma and Ba, 2014) to find the MAP. The update rule of Adam is
given as follows:

bt Ω —1 · bt≠1 + (1 ≠ —1) · gt

vt Ω —2 · vt≠1 + (1 ≠ —2) · g
2
t

b̂t Ω bt/

1
1 ≠ —

t
1
2

v̂ Ω vt/

1
1 ≠ —

t
2
2

mt+1 Ω mt ≠ –Ô
v̂t + ‘

b̂t

where – is the learning rate, t denotes the time step. —1, —2 and ‘ are parameters.
A normal configuration of the parameters is —1 = 0.9,—2 = 0.999 and ‘ = 10≠8. b and
v are the bias-corrected first and second momentum vector estimates of the gradients,
respectively. The momentum term averages the past gradient and thus accelerates the
convergence rate compared with the standard gradient descent algorithm, while the
second momentum which averages the past squared gradients adapts its learning rate.

Here we follows the original form of gpCN introduced by Pinski et al. (2015). The
key idea of this algorithm is to employ the covariance of the posterior C‹ to construct
a proposal distribution that adapts the posterior geometry (Figure 5.1). The algorithm
can be summarized as follows:

Set k = 0 and initiate with m(0)

while k < number of samples do
Propose mcand = m‹ +


(1 ≠ —2)(mk ≠ m‹) + —›k, › ≥ N (0, C‹)

Set mk+1 = mcand with acceptance probability a
Set mk+1 = mk otherwise

end
Algorithm 4: ����������� �������������� C����–N������� ��������� ��-
������� (Pinski et al., 2015; Villa et al., 2018)

where the acceptance probability a(mcand
, mk) = min

Ó
1, exp

1
�

1
mk

2
≠ �

1
mcand

22Ô
,

and �(m) = m‹ ≠ 1
2 Îm ≠ m‹Î2

C≠1
‹

,
�(m, dobs) is the negative log likelihood function: �(m, dobs) = 1

2 Îf(m) ≠ dobsÎ2
�≠1

noise

5.3 E�cient Hessian Calculation

Implementing derivative-informed MCMC methods such as HMC and gpCN in geo-
modeling requires the derivative information in several steps such as finding the MAP
point and constructing the posterior covariance approximation. This derivative refers
to the derivative of the posterior (or negative log posterior) with respect to the model
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F����� 5.1: Di�erent proposal distribution illustrated on the 2D Gaussian posterior distribu-
tion d|m ≥ N (µ, I), µ := x1 ≠ 0.7x2 , where xi

iid≥ N (0, I). Left shows the Gaussian proposal
without preconditioning. Right shows the proposal distribution with Laplacian approximation

at MAP.

input parameters (e.g., surface points and orientation points). By tracing the deriva-
tive from the Bayesian inference through the geophysical simulation, geological mod-
eling of the input parameters is nontrivial. Although evaluating the derivatives from
the co-Kriging and gravity simulation is simple individually, the combination of them
into a geological modeling framework is not straightforward. An analytical solution of
the derivatives is di�cult or even impossible to find. Using numerical methods such
as finite di�erence (FD) is not only computationally costly but also can su�er from
numerical inaccuracy. Therefore, we adopted the automatic di�erentiation (AD) tech-
nique, which is widely applied in the field of artificial intelligence and is critical to the
success of training neural networks. Here we briefly introduce how AD works and how
gradient and higher-order derivatives can be evaluated e�ciently using AD.

E�cient second-order derivate calculation for multivariate input and single output
problems is given by the combination of a forward-over-backward propagation. Apply-
ing backward propagation gives us the Jacobian matrix JF (x) = [ ˆF

ˆx1
,

ˆF
ˆx2

, . . . ,
ˆF
ˆxj

].
The second derivative then evaluates the partial derivative over the Jacobian, which
is an RDI æ RDI problem. Considering the memory e�ciency, we can evaluate the
Hessian vector product e�ciently by an additional forward sweep over the backward
propagation. Each forward-over-backward iteration will return a column of the Hes-
sian matrix; therefore, this method has an O(n) complexity, where n is the dimension
of the parameter of interest. It is significantly more e�cient than evaluating the Hes-
sian by the FD method, which has a complexity of O(n2). A comprehensive review
of AD and its implementation can be found in Betancourt (2018) and Margossian
(2019).

Programming the geological model by adopting AD, a second-order derivative can
be e�ciently evaluated. The numerical comparison of the computational e�ciency
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and precision are discussed in the following sections.

5.4 Results

5.4.1 Synthetic Models

To configure such a problem in a Bayesian inference framework as described above,
both the prior information and the likelihood must be expressed in terms of a prob-
ability distribution. Three 3D geological models with a gradually increasing com-
plexity are established using the methods described above and the numerical results
are presented below. The numerical implementation is based on the previously de-
veloped modeling methods of the GemPy software (https://www.gempy.org/) and
specific extension in the di�erentiable programming framework TensorFlow (https:
//www.tensorflow.org/). All the presented results were run on a single Tesla-P100
GPU.

Model A: Simple Dome

In the first example, a simple model is established to validate the proposed method.
The example model has a simple dome geometry, replicating a conceptual setting that
is often observed in real-world geology. It consists of three layers, representing three
distinct lithologies. The model has an extent from 0 m to 1,000 m for all three axes.
The positions (x-y coordinates) of the interface points are fixed, and the depth z values
of the top layer (rock 2) interface points are the uncertain parameters in this study.
Both the ground truth layout of the interface points and forward simulated gravity
is shown in Figure 5.2. To simplify the problem, we assume a constant thickness be-
tween the two surfaces at configuration interfaces positions and only vary the upper
interface points. In other words, the lower surface moves parallel in dependence of the
upper surface; therefore, a roughly constant thickness of the middle layer is expected.
Interpolation could introduce some variation to the thickness at locations where no
interface points are given. Sixteen gravity receivers are evenly located at the ground
surface, which is the top surface of the model. The grid resolution for gravity calcu-
lation was selected to be 10 ◊ 10 ◊ 30 to have a higher resolution in the vertical axis
because the parameters of interest vary along the z axis. Our goal is to estimate the
updated uncertainties of the depth position of the interface points of the upper surface
considering the additional gravity information.

We assume a simple Gaussian prior to all eight interface points with the mean at
a flat surface as m0 = 780 and a standard deviation ‡0 of 100 m. Therefore, the prior
distribution can be expressed as a multivariate normal distribution centered at m0 and
a diagonal covariance matrix assuming no correlations between the parameters in our
prior information as pm

iid≥ N (m0, ‡0). An uniform density for each layer is used for
simplification. The density of each lithology is assigned as 2.6 g/cm3 , 3.5 g/cm3

https://www.gempy.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
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(m)

(m
)

F����� 5.2: Left: 3D plot of the base-case geological model. The ground truth z value of
the top layer interface points are placed at depth 705 m and 805 m. Gravity receivers are
placed at the top denoted by the cones. Surface points are numbered and denoted as spheres.
Orientations are denoted as arrows. Right: forward gravity simulation of the ground truth
model. The dashed line denotes the cross-section to evaluate entropy. Gravity data used in
the inference at a 6 ◊ 6 grid receivers are denoted by the blue dots. A dense 30 ◊ 30 grid of

gravity is evaluated for visualization and evaluation.

and 2.0 g/cm3 respectively from top to bottom. The observation data dobs was gen-
erated by a forward simulation of the ground truth model. The likelihood function is
defined as another multivariate normal distribution p (dobs | m) ≥N (f(m), 0.01) with
the mean at the forward simulation of a given parameter sets m.

To solve the Bayesian inference by MCMC, specifically by using the gpCN, we
first search for the Maximum a Posteriori (MAP) point mMAP in the posterior space.
mMAP can be su�ciently found by Adam with the assistance of the gradient of the
target negative log posterior with respect to the variable (depth value). The gradient
is evaluated through AD. The time cost for each gradient evaluation is within 1 s de-
pending on the model size. The initial status is generated by randomly sampling the
prior distribution. The convergence speed depends on the model configuration, step-
size, and the initial status. The full Hessian matrix of the target negative log posterior
with respect to the variable is evaluated at the MAP point through the forward-over-
backward propagation described above.

To compare the performance of gpCN, we implemented the two other most com-
monly usedmethods, namely RMH andHMC, to solve the same inference problem. We
used 3 and 10 leapfrog steps for HMC, with the stepsize of 0.7. To have a fair compar-
ison, we tune the acceptance rate of RMH and gpCN at both around 80% and neglect
the high acceptance rate of HMC due to the algorithm design. The resulting sampling
chain, posterior, and e�ciency are compared below. Figure 5.3 shows the trace plot
of the same two interface points for each algorithm. We observe that better-mixed
chains are obtained by both HMC and gpCN, but the chain of RMH is poorly mixed,
and far from convergent. The lag k autocorrelation is often used to quantitatively as-
sess the Markov chains which is defined as the autocorrelation between samples at k
steps apart (Cowles and Carlin, 1996; Roy, 2020). Here the lag k autocorrelation of
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F����� 5.3: Trace plot of RMH, HMC, and gpCN. HMC with 3 and 10 leapfrog steps and
stepsize of 0.7. The true values are denoted by dashed lines.

the results from all three methods are plotted in Figure 5.4. The plotted autocorrela-
tion shows the mean and variation of all dimensions. gpCN and HMC with 10 leapfrog
steps show generally less correlated samples, while samples by RMH and HMC with
few leapfrog steps are highly autocorrelated with a similar acceptance rate. One can
always tune the stepsize of MCMC to achieve fewer autocorrelated samples, but this
will also lead to a lower acceptance rate.

While gpCN and HMC have comparable results in terms of autocorrelation, what
is often not mentioned in the application of HMC is the cost of the numerical integra-
tion (leapfrog integrator used in this study). The e�ciency of HMC depends on the
e�ciency of the gradient evaluation. While the gradient is easily accessible in some
applications, in the case of geological modeling described in this work, the cost of the
leapfrog integrator is a computationally demanding process even using AD, when the
cost accumulated through a large number of leapfrog steps and MCMC iterations. The
same demanding leapfrog integration to use HMC is also described in literatures (Neal
et al., 2011, e.g.). The choice of stepsize and the number of steps used for the leapfrog
integration are essential for the performance and e�ciency of HMC. Large stepsize re-
sults in large integration error, while small stepsize will require more steps to draw
uncorrelated samples. Because HMC is intended to find an uncorrelated point by us-
ing several evaluations, the theoretical acceptance rate of HMC is 100%, but slightly
lower due to the imperfection of numerical integration. The impact of the error of
integration caused by too large stepsize will also be reflected in the deviation of the
acceptance rate. In terms of the number of steps, too few steps will result in a bad
integration, and therefore, more correlated samples, while an increased number of
steps will increase the computational cost. gpCN is more e�cient in terms of compu-
tational cost with no accumulated cost for derivative evaluation. In order to assess the
computational e�ciency, in addition to the acceptance rate and the autocorrelation,
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F����� 5.4: Autocorrelation plot of the MCMC chain of all three methods on Model A. The
solid lines represent the mean autocorrelation among di�erent variables, and the shadow rep-

resents the 95% confidence interval of the autocorrelation on di�erent dimensions.

we also compared the e�ective sample size ne� (Liu, 2008, p. 125) per unit time. The
e�ective sample size ne� is defined as follows:

ne� = nmax
1 + 2 q

Œ

k=1 flk
(5.3)

where flk is the autocorrelation coe�cient at lag k. A higher number of ne� means
a better mixing Markov chain. Our numerical experiments indicate that gpCN outper-
formed carefully tuning HMC in terms of the AvgNeff (Table 5.1), while preserving
the computational e�ciency.

The main reason for the superior performance of gpCN is the correlated posterior.
To demonstrate that, we plot the adopted proposal distribution of the gpCN on the
posterior distribution (Figure 5.5), we can see that the proposal distribution captured
the dominating posterior geometry, therefore a higher acceptance rate is expected in
gpCN.

Finally, we represent the uncertainties following the information entropy method
introduced by Wellmann and Regenauer-Lieb (2012). In Figure 5.6, we compared the
uncertainties of the prior and posterior. We generated 1000 samples from the prior
distribution and build the geological models based on the sampled parameters. The
samples drawn by the gpCN MCMC are used to generate geological models for pos-
terior representation. By converting the lithology changes into information entropy,
we can see that the uncertainty range of the position of the interfaces is significantly
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F����� 5.5: Illustration of the samples of surface points 5 and 7 by gpCN (grey dots). Black
contour denotes the approximate probability density. The red contour denotes the proposal
distribution used in gpCN which captures the geometry of posterior distribution. The green
square and green lines denote the ground truth positions. The red square denotes the MAP

points.
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F����� 5.6: Information entropy plot of prior and posterior of model A evaluated on cross-
section shown in Figure 5.2. High entropy represents high uncertainties.

reduced by additional gravity data which also successfully captures the true geometry.

Model B: Thickness as Additional Variables and Prior

In the next example we consider the uncertainty of the positions of both layer sur-
face points. The ground truth model is the same as the previous example. The same
6 ◊ 6 grid of receivers are deployed at the top surface for the evaluation. The prior
distribution of the upper layer surface points is defined as pmu

iid≥ N (mu, ‡u), where
mu = 780 and ‡u = 60. The lower surface points are defined as pml

iid≥ N (ml, ‡l),
where ml = 200 + ’, sigmal = 50 and ’

iid≥ N (0, 30). The prior distribution pm is then
defined as the joint distribution pm = pmupml. The likelihood is defiend as a normal
distribution with the standard deviation set to 0.5. Normalization is applied to the
parameters according to the prior before MCMC due to the di�erence in the scales.
In total 16 parameters are considered in the inversion problem. The initial states are
randomly chosen in the prior distribution, and the same MCMC methods as in the
previous example (Model A) are applied.

Similar superior e�ciency is observed in the inference results ( Figure 5.8 and Ta-
ble 5.1). We present instances sampled from prior and posterior as well as the corre-
sponding gravity in Figure 5.9. Each instance represents one realization generated by
the modeling parameters randomly sampled from the prior and posterior. Compared
to the ground truth model and gravity observation (Figure 5.2) forward simulation,
the gravity simulation from the prior samples largely deviates from the truth. This
large deviation illustrates poorly-constrained prior models and large uncertainties in
the prior. The inferred posterior samples, however, captured the main geometry of the
ground truth and reduced the uncertainty range. The posterior shows that the upper
surface has a lower uncertainty than the lower layer, which results from the fact that
the sensitivity of the gravity is high in the near-surface regions. The resulting forward
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F����� 5.7: Empirical density by gpCN and HMC and the MCMC chains for model A. RMH
acceptance rate: 83.4 %, HMC with 3 leapfrog steps acceptance rate 98.8 %, HMC with 10

leapfrog steps acceptance rate 99.3 %, gpCN acceptance rate 70.2%

gravity from the posterior samples does not fit perfectly with the ground truth value
due to the less restricted likelihood function chosen. This allows us to keep the infor-
mation of the prior knowledge and prevent it from reducing back to a maximum like-
lihood problem. This is the fundamental di�erence between Bayesian inference and
minimizing the data misfit in conventional gravity inversion. The exhaustive chains
and marginal distribution are summarized in Figure 5.10.

5.4.2 Case Study: Kevitsa Deposit

The Kevitsa deposit is located in northern Finland with a large amount of nickel/-
copper reserves. The main ore body is hosted by an ultramatic unit and overlain by
younger carbonaceous phyllite and basaltic komatiites units. This geologically com-
plex region is interesting to both the mining industry as well as structural geologi-
cal studies: e.g., Kevitsa 3D models (Koivisto et al., 2015; Güdük et al., 2021), Ke-
vitsa gravity inversion (Fournier, 2019). The Kevitsa main intrusion mainly consists of
olivine pyroxenites and olivine websterites. We chose this region to test the proposed
method due to the interesting geological structure and rich available gravity data for
validation.

Although a large number of drill holes are available in the study area, the depth of
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F����� 5.8: Autocorrelation plot of the MCMC chain of all three methods on Model B. The
solid lines represent the mean autocorrelation among di�erent variables, and the shadow rep-

resents the 95% confidence interval of the autocorrelation on di�erent dimensions.
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F����� 5.9: Left: Model instances sampled from prior and posterior with the corresponding
forward gravity plotted below each instance. Forward simulations are evaluated on 50 by 50
grid. The data locations used in the inference are denoted as blue dots. The cross-sections
used to plot the entropy are denoted by the black dashed lines; Right: the entropy plot of
prior and posterior on cross-sections at the dashed line. Gravity is using the same color scale

as the measurement in Figure 5.2
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F����� 5.10: Empirical density by gpCN and HMC and the MCMC chains for model B. RMH
acceptance rate: 93.8%, HMC with 3 leapfrog steps acceptance rate 99.8 %, gpCN acceptance

rate 75.0 %. The RMH chain is not shown due to the poor mixing.
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these drill holes is limited in shallow areas. The deepest available drill hole KV297 lo-
cated at the center of the deposit only reaches 1366 m which left the lower boundaries
with large uncertainty. The 3D geological model is developed based on the stratigra-
phy described in two geological cross-sections by along southwest–northeast (A) and
southeast–northwest (B) directions which are interpreted based on seismic profiles
Koivisto et al. (2015), and the 2D plot is evaluated on cross-section (A). The model is
represented on the intrusion scale by simplifying following the same lithology category
used by Güdük et al. (2021) with a di�erent parameter configuration from the work
of Güdük et al. (2021). The subsurface lithology is represented by three components:
the overburden (OVB), the group of ultramafic pyroxenite (UPX), and the host rock
and Paleoproterozoic basement as one unit. The OVB is modeled as an unconformity
unit in the described implicit modeling method which increases the complexity of the
model compared to previous two examples. Faults are not considered in this case for
simplification. The modeling area is centered at the deposit with an extent 4500 m
in North-South direction and 6300 m in the East-West direction. The density of each
lithology has a large range of variation (Malehmir et al., 2011; Koivisto et al., 2015;
Fournier, 2019), which makes the modeling using a single density for the whole en-
tire simplified unit challenging to capture the reality. We use the estimated mean rock
density in the literature for the forward simulation. We configure the surface points as
a multivariate normal distribution with the mean as the interpretation and assigning
with a large standard deviation of 100 to provide the model the room to transform.
Di�erent from the previous model, where we know the ground truth gravity, here we
use the field measurement extrapolated at a regular grid receiver positions shown in
Figure 5.11. Instead of absolute values used in the previous examples, we use the
relative Bouguer anomaly. A wider likelihood function with a standard deviation of
1.9 is used to consider the simplification of the model and the complexity of the re-
ality. A 10 ◊ 10 grid of receivers is evaluated in the inference. In total 14 parameters
including the z values of 5 interface points for OVB surface and 9 interface points for
UPX surface are considered in the inversion problem.

As shown in Figure 5.12, the instances sampled from the prior can already capture
some geometrical information about the gravity field as well as the ellipsoid geometry
of the ore body. By constraining the model using the same inference methodology
described above, the instances sampled from the posterior show a shallower OVB layer
to the East of the ore body at cross-section (A). Although the forward gravity simulated
from the simplified model shows a deviation from the measurement. The posterior
models show a better fit to the gravity data. This is evident in the southeast region,
central region, and west region. Due to the simplified model configuration, the ability
to represent reality is limited, but one can already see how gravity data can be included
to improve the geological model and reduce uncertainties. The 3D model of the mean
posterior is shown in Figure 5.13.

Similar MCMC e�ciency results are shown by comparing the Markov chains and
autocorrelation plots of di�erent inferencemethods (Figure 5.15 and Figure 5.14).This
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F����� 5.11: The gravity data in the modeling area. The geological data locations used in the
inference are denoted as blue dots. The field gravity measurement locations are denoted as
orange dots. The drill hole locations are denoted as black dots. The deepest drill hole KV297

is shown by the green star. Cross-sections are denoted by black lines.
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F����� 5.12: Left: Model instances of Kevitsa deposit sampled from prior and posterior with
the corresponding forward gravity plotted below each instance. Forward simulations are eval-
uated on a 50 by 50 grid. The data locations used in the inference are denoted as blue dots.
The cross-sections (A) used to plot the entropy are denoted by the black dashed lines; Right:
the entropy plot of prior and posterior evaluated at cross-section (A). Gravity is using the same

color scale as the measurement if Figure 5.11
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F����� 5.13: 3D Kevitsa model of the mean posterior.

example demonstrates that better-mixed chains of sampling can be obtained by gpCN
while still preserving the computational e�ciency in the meantime.

5.5 Discussion

5.5.1 Comparison to Conventional Gravity Inversion

The prior model used in this study is favorable to the inversion compared to conven-
tional gravity inversion problems. We argue that, in the presence of prior knowledge
of the structure as well as the geophysical data, constraining uncertainties by addi-
tional data is the more relevant goal in the framework of Bayesian inference. The
model-based gravity inversion in the framework of Bayesian inference di�ers from the
conventional gravity inversion in several ways. The implicit modeling method seeks
a low-dimensional representation of the subsurface structure. Without a proper con-
strain a reasonable subsurface structure is di�cult to be retrieved. In this work, we
have experimented with the inversion under poor prior knowledge (in models A and
B). We observe the impact of poor prior knowledge on the inversion results. However,
in a realistic application (e.g., Model C in this work), one should consider configur-
ing the prior information as close as possible to the knowledge of geological experts.
We did not seek the maximum likelihood solution to allow the prior knowledge to be
considered comprehensively. A small number of receivers are used in the inversion in
this study to replicate cases where gravity data is sparse or correlated. The variation
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F����� 5.14: Autocorrelation plot of the MCMC chain of all three methods on Model C.
The solid lines represent the mean autocorrelation among di�erent variables, and the shadow

represents the 95% confidence interval of the autocorrelation on di�erent dimensions.

Models Methods
Computation time for

3000 samples
ne�

AvgNeff

per 100s

model A

RMH 67s 8.5 12.5

HMC 3 593s 14.0 2.3

HMC 10 1824s 40.1 2.2

gpCN 40s 113.9 284.8

model B

RMH 106.8 5.8 5.5

HMC 3 2245.0 9.3 0.4

gpCN 81.5 94.3 116.5

model C

RMH 209.0 7.5 3.6

HMC 3 3349.4 108.8 3.2

gpCN 187.5 261.5 139.4

T���� 5.1: Computational e�ciency of di�erent methods. The number after HMC denotes
the leapfrog steps used. The computational time for di�erent models with the same method
is related to the grid resolution, number of receivers, parameters dimensionality and number

of leapfrog steps.
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F����� 5.15: Empirical density by gpCN and HMC and the MCMC chains for model C. RMH
acceptance rate: 76.2 %, HMC with 50 leapfrog steps acceptance rate 98.8 %, gpCN accep-

tance rate 80.0 %
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F����� 5.16: Finite di�erence gradient check

of likelihood plays a role in weighting the importance of prior knowledge and data in
the final results.

5.5.2 Verification of Derivatives

To verify the correctness of AD, we compared the Jacobian and Hessian with the cen-
tral finite di�erence scheme. We use the same configuration as model B with the
exclusion of density parameters to alleviate the e�ect of sensitivity to the results. We
illustrate the mean square error between AD and FD with di�erent finite di�erence
step size ‘F D in Figure 5.16 and Figure 5.17. Comparable results are obtained by
AD and FD. The di�erence shown can be evidence of the typical pattern of truncation
error, and roundo� error of numerical di�erentiation methods (Flannery et al., 1992;
Seidl and Granzow, 2022). The larger error of Hessian evaluated by the FD method
shows its di�culty of choosing ‘F D and insu�ciency to preserve precision through the
complex computational graph.

5.5.3 Computational E�ciency

The gpCN method we adopted in this study is a MAP-based method. These MAP-based
methods utilize a global Hessian evaluated at the MAP point. According to our exper-
iments, the main obstacle for HMC in probabilistic geomodeling is the computational
cost for leapfrog steps. While each gradient evaluation is e�cient through AD, the cu-
mulative cost is detrimental to the e�ciency of HMC. The primary advantage of gpCN
compared with the gradient-based methods such as HMC is that the Hessian matrix
is only required to be evaluated once. In addition to the adoption of pCN and the
adapted proposal, gpCN outperforms RMH in high-dimension problems and a highly
correlated posterior. Additionally, finding the MAP and starting the MCMC from the
MAP saves the burn-in computation typically required in MCMC because the MAP is
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F����� 5.17: Finite di�erence Hessian check

already in the typical set. While finding the MAP seems essential for the success of
the application of gpCN, it depends on the actual geometry of the posterior space in
practice.

Our work is di�erent from other works where the derivatives are accessible through
an analytical solution. For example, Pankratov and Kuvshinov (2016) adopted the
stochastic Newton MCMC method developed by Martin et al. (2012) to the applica-
tion of electro-magnetic inversion. However, the work is similar to other successful
adoption of Hessian information in the application of seismic inversion where the for-
ward model has an analytical form, and therefore, the adjoint method can be applied
for the Hessian evaluation. It utilizes the same concept of utilizing Hessian information
to incorporate information on the measure of interest.

The high computational cost of the higher-order derivative is the main obstacle
to applying advanced MCMC methods involving higher-order derivatives. The e�-
cient computation of higher-order derivatives remains an open research problem (Laue
et al., 2018; Nilsen et al., 2019; Margossian, 2019). In our work, the computation time
required for a single Hessian calculation with the current implementation depends on
the complexity of the computational graph used in AD and the number of parameters
of interest. Although the full Hessian matrix evaluation is still more expensive than
the gradient evaluation using a single backward propagation in AD, it is significantly
faster than computing the Hessian by the FD method, regardless of the precision. The
numerical analysis is conducted on model A, and the results are shown in Figure 5.18.
Although AD has an O(M) complexity in theory, the overhead of memory due to the
large matrix operations in the computational graph harms the computational time and
deviates the resulting computation time away from a straight line. The numerical re-
sults of the central FD scheme match the theoretical O(M2) complexity (Figure 5.18).
A full Hessian matrix requires M2+M

2 ◊ 4 ◊ t by using FD, where M represents the
dimension of the parameter of interest, and t is the time cost for a single forward
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simulation.
In addition to the computational e�ciency, the computational graph employed in

AD also allows any variable in the graph to be traced with a derivative with minor
modifications to the computer program.

5.5.4 Limitations

While the global Hessian method is e�cient in high-dimensional problems and has
the advantage of the single Hessian evaluation, it is likely to perform less optimally
than methods with derivatives evaluated (once or several times) at each iteration (e.g.
HMC) in a highly nonlinear posterior. Hessian evaluated at the MAP point are not the
same representative in those scenarios, and therefore, leading to a poor exploration
in regions far away from the MAP. In such cases, the method can be extended into
the state-dependent local approximation with additional computational costs (Petra
et al., 2014; Rudolf and Sprungk, 2018).

Another di�culty is raised by the multimodal posterior. While in many cases where
a geological likelihood (e.g. Stamm et al., 2019; Wellmann et al., 2018; de la Varga
and Wellmann, 2016), or a simple geophysical likelihood as described in this study is
used, the posterior distribution is subject to a single modal distribution. The design
of the likelihood function can lead to a multimodal posterior. Most MCMC methods
will be trapped in isolated modes. Small stepsizes will localize the chain and prevent
it from jumping between di�erent modes, while larger steps will cause the accep-
tance rate to be extremely low. The ability of gradient-based methods (e.g., HMC) to
explore the multimodal distribution depends on the connectivity of di�erent modes.
The proposed methods can be potentially combined with the existing framework to
address multimodal posterior, for example parallel-tempered MCMC scheme (Robert
et al., 2018; Scalzo et al., 2019) and adaptive MCMC (Pompe et al., 2020) or stacking
independent chains (Yao et al., 2020). The proposed method is believed to explore
each isolated mode e�ciently compared to other MCMC methods.

5.6 Conclusion

In summary, this study extended the previous development of stochastic geological
modeling methods and is the first attempt to exploit the higher-order derivatives to
solve the probabilistic model-based gravity inversion. More specifically, we used the
automatic di�erential technique implemented in TensorFlow to allow second-order
derivative information to be e�ciently evaluated in geological models. We applied the
recently developed Hessian-informed MCMC, the generalized preconditioned Crank-
Nicolson (gpCN), to solve the Bayesian inference problem on a synthetic three-layer
geological model and a real-case model of the Kevitsa deposit. We compared gpCN
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F����� 5.18: Comparison of computation time of a full Hessian matrix by Finite Di�er-
ence(FD) method and Auto-Di�(AD). FD computation time is approximated by extrapolating
the computation time for a single forward simulation. AD computation time is simulated with
the same configuration used in the previous example. Experiments conducted on Tesla-P100

GPU
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with the two commonly used MCMC methods, including RMH and the state-of-the-
art HMC. The results demonstrate that with a single Hessian evaluation, gpCN out-
performs RMH while preserving the computational e�ciency, with no additional ac-
cumulated computational cost at each sampling step, which has the potential to be
generalized to more complex models.
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Chapter 6

Multimodality in Geological
Modeling

6.1 Multimodality Problem

In the previous studies, we have introduced the smooth step-function to remove the
’artificial’ multimodality in the posterior function of a probabilistic geological inference
problem using gravity data in Chapter 4. However, this does not guarantee that the
posterior is a unimodal modal distribution, and that the maximum a posteriori prob-
ability (MAP) point can always be found using gradient descent (GD). As previously
discussed, the interpolation of gravity data is well-known to be ambiguous (Skeels,
1947) and methods have been developed over the last decades to constrain gravity
inversion by adding regularization to the inverse problem (e.g., Reamer and Ferguson,
1989; Li and Oldenburg, 1998; Boulanger and Chouteau, 2001; Fournier, 2019). In
the model-based geological inversion problem, the ambiguity emerged in two proce-
dures: first, due to the use of a low-dimensional deterministic parametric representa-
tion of the geological model using an implicit modeling method, di�erent parameter
sets could construct similar or identical geological models; second, due to the intrin-
sic ambiguity of gravity interpolation, di�erent geological structures could generate
comparable gravity data. Hence, without a proper constraint, the model-based inverse
problem is prone to ambiguities. If the discrepancy between the possible realizations
is connected by transitional structures with lower possibility, the posterior distribution
can exhibit multimodality.

In fact, the posterior could be highly multimodal due to the lack of identifiability
of the parameters in the general Bayesian model (Stephens, 2000). In the Bayesian
framework, the posterior probability is proportional to the product of the prior and
likelihood function. The additional geophysical data and the a priori information are
mutual constraints to each other. Hence both prior and likelihood both could intro-
duce multimodality to the posterior distribution. If the prior distribution is defined
by a multimodal distribution, the posterior is distinctly possible to be a multimodal
distribution. A multimodal prior distribution is often used in the inversion problem
involved with petrophysical data (e.g., Sun and Li, 2016; de Figueiredo et al., 2019).
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In the case of the model-based gravity inversion, prior are often the structural geo-
logical data. Multimodal prior distribution might be used in cases where the density
distribution is heterogeneous or the input structural data ambiguous. This prior dis-
tribution is, however, more often based on the modelers’ choices. On the other hand,
the likelihood function is controlled by the observational gravity data and the for-
ward modeling and gravity simulation. Even with the prior distribution defined using
unimodal distributions, the posterior could result in multimodality due to the low-
dimensional parametric representation and the above-mentioned intrinsic ambiguity.
This multimodal phenomenon in gravity inverse problems has been investigated in the
previous studies (e.g., Scalzo et al., 2019, 2021).

Although one could use MCMC methods to characterize the statistical properties
of the multimodal posterior distribution in theory, the majority of MCMC methods us-
ing localized proposal are tuned toward local approximate optimality (Gelman et al.,
1997; Roberts and Rosenthal, 2001; Rudoy and Wolfe, 2006) and have been shown to
mix slowly for multimodal distributions separated by low probability regions (Holmes
et al., 2017; Aleardi et al., 2018; Scalzo et al., 2019). Methods utilizing gradient infor-
mation tend to guide the chain toward local high probability area, and therefore op-
posite to the multimodality setting (Robert et al., 2018). For example, HMC is shown
to have similar performance compared to RMH in multimodality settings (Mangoubi
et al., 2018). Other methods combining local maxima information and MCMC are
also ine�cient for the multimodal problem, for example, the Hessian-informed MCMC
(Chapter 5) and stochastic sampling using genetic algorithms andMCMC (Galley et al.,
2020).

A simple alternative solution is sampling the posterior usingmultipleMCMC chains.
However, in high-dimensional posterior space, the target distribution could be highly
localized by separated modes leading to an ine�cient sampling. Mixing sampling
chains trapped in the local maxima is also challenging (Yao et al., 2020). Some MCMC
methods specifically tuned for resolving the multimodal distribution include: Orthog-
onal MCMCmethods run parallel chains using random-walk proposal and periodically
exchange information between the chains to achieve the global exploration of multi-
modal distribution (Martino et al., 2016); The power tempering methods, including
the simulated tempering algorithm, which uses a single Markov-chain, as well as its
multi-chain variant parallel tempering (Geyer, 1991; Marinari and Parisi, 1992; Scalzo
et al., 2019, 2021; Olierook et al., 2021), utilize an auxiliary temperature parameter
to assist the sampling in a multimodality setting. However, the tempering method can
be ine�cient as the dimension increases (Robert et al., 2018).

Another branch of inference methods is variational inference. The variational in-
ference method seeks an approximation to the target distribution within a predeter-
mined family of probabilistic probability distributions by minimizing the Kullback-
Leibler (KL) divergence. KL divergence is a measurement of the di�erence between
two distributions (Kullback and Leibler, 1951). Various variational inference methods
have been developed and mainly di�er in the choice of those approximating families.
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For example, mean-field variational inference (Bishop and Nasrabadi, 2006; Blei et al.,
2017), or structured stochastic variational inference (Saul and Jordan, 1995; Ho�man
and Blei, 2015). Recent development in variational methods seeks more generally
applicable methods than the ones using simple families. For example, ”black box”
variational inference methods (Kingma and Welling, 2013; Ranganath et al., 2014),
Kucukelbir et al. (2017) proposed the automatic variational inference method which
uses a Gaussian variational family. Another group of methods which seeks a probabil-
ity transformations has also been proposed (Rezende andMohamed, 2015; Tran et al.,
2015b; Marzouk et al., 2016). Liu and Wang (2016) proposed the Stein variational
gradient descent (SVGD), which is based on a sequence of incremental transforma-
tions to minimize the KL divergence based on the gradient information. In addition
to the scalability, SVGD has also the flexibility of resolving multimodal posterior dis-
tribution and adapting to di�erent applications. Therefore, SVGD has been adopted
in some recent studies of uncertainty quantification (Zhang and Curtis, 2020a,b; Zhu
and Zabaras, 2018; Zhang et al., 2019).

In this study, we attempt to apply SVGD to explore the multimodal posterior in a
geomodeling inversion problem. The multimodality introduced by the prior is rela-
tively simple to analyze and control. Therefore, here we focus on the multimodality
introduced by the likelihood function, and the proposed method is generally applica-
ble to both scenarios. I will first review the SVGD, which closely follows the original
description of SVGD in (Liu and Wang, 2016). Then I will show some preliminary
results on geomodeling inversion applications.

6.2 Method: Stein Variational Gradient Descent (SVGD)

To introduce the SVGD algorithm, let us first recall the Bayes’ theorem from Chapter
2:

p (m | dobs) = p (dobs | m) p(m)
p (dobs) (6.1)

where m = [m1, m2, . . . , mM ] œ RM is the set of parameters.
At the core of the variational methods, is to approximate the posterior p (m | dobs)

with a family (set) of predefined distributions Q = {q(m)} by minimizing the KL
divergence. The KL divergence is a measure of the di�erence between two distribution
which is defined as (Kullback and Leibler, 1951):

KL [q(m)Îp (m | dobs)] = Eq[log q(m)] ≠ Eq [log p (m | dobs)] (6.2)

By combining Equation 6.1 and 6.2, the we get:

KL [q(m)Îp (m | dobs)] = Eq[log q(m)] ≠ Eq [log p (m, dobs)] + log p (dobs) (6.3)
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Liu andWang (2016) proposed the SVGD algorithm to minimize the KL divergence
by a sequence of smooth transformations T . The transformation T takes the following
form:

T (m) = m + ‘„(m) (6.4)

where ‘ is a small step size, and „(m) œ RM is the direction the perturbation trans-
formation takes.

Let’s take the target distribution as p̂(m) supported on X ™ RM . If we take a dif-
ferent probability distribution of q̂(m) also supported in X , and its transformation by
T as qT (m), one can find the maximal decreases of the KL divergence by the gradient
(see derivation in: Liu and Wang, 2016; Zhang and Curtis, 2020a):

Ò‘KL [q̂T Îp̂]|‘=0 = ≠Eq [trace (Ap„(m))] (6.5)

where Ap is the Stein operator and has the form:

Ap„(m) = Òm log p̂(m)„(m)T + Òm„(m) (6.6)

Liu and Wang (2016) proposed to use the kernelized Stein discrepancy to max-
imize the negative gradient of the KL divergence. The Stein discrepancy takes the
following form:

D(q̂, p̂) = max
„œF

{Em≥q̂ [trace (Ap„(m))]} (6.7)

where the proper choice of the function set F for „ is critical (Liu andWang, 2016).
The above optimization problem in Equation 6.7 can be solved in a simpler way in a
closed form by maximizing „ in the unit ball of a reproducing kernel Hilbert space
(RKHS) (Liu and Wang, 2016), where the Stein discrepancy becomes the Kernelized
Stein discrepancy (KSD):

D(q̂, p̂) = max
„œHM

{Em≥q̂ [trace (Ap„(m))] , s.t. Î„ÎHM Æ 1} (6.8)

where HM is the Hilbert space of M -dimensional vector functions. if we define
a kernel function k(x, y) =< Ï(m), Ï(mÕ) >H, then, its RKHS H is defined as the
closure of linear span {f : f(x) = qm

i=1 aik (x, xi) , ai œ R, m œ N, xi œ X } with
inner products Èf, hÍH = q

ij aibjk (xi, xj) for h(x) = q
i bik (x, xi). The so-called re-

producing property of RKHS is referred to as: f(x) = Èf (mÕ) , k (mÕ
, m)Í

H
. The right-

hand side has the optimal solution (Liu et al., 2016; Oates et al., 2017; Chwialkowski
et al., 2016):

„(x) = „
ú

q̂,p̂(x)/
...„

ú

q̂,p̂

...
HM

(6.9)

where

„
ú

q̂,p̂(m) = EmÕ≥q̂
#
Apk(mÕ

, m)
$

(6.10)
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and the KSD becomes:

D(q̂, p̂) =
...„

ú

q̂,p̂

...
HM

(6.11)

Hence, the optimal perturbation direction „ that maximize the negative gradient
in Equation 6.4 is „

ú

q̂,p̂(x) and „
ú

q̂,p̂(x) takes the form:

„
ú

q̂,p̂(m) = EmÕ≥q̂
#
ÒÕ

m log p̂(mÕ)k(mÕ, m) + ÒÕ

mk(mÕ
, m)

$
(6.12)

The resulting Equation 6.12 shows that one can use a sequence of transformations
T ú

¸ (m) = m+ ‘¸ ·„ú

q̂¸,p̂(m) to transform an initial set of particles taken from reference
distribution q̂0 to the target p̂, where ¸ is the number of iterations.

The Stein variational gradient descent algorithm is given below:

Initialize a set (W number) of particles
)
m0

i

*W

i=1
while ¸ < Max number of iterations do

m¸+1
i Ω m¸

i + ‘¸„̂
ú

1
m¸

i

2

where „̂
ú(m) = 1

W

q
W

j=1
Ë
k

1
m¸

j , m
2

Òm¸

j

log p

1
m¸

j

2
+ Òm¸

j

k

1
m¸

j , m
2È
,

and ‘¸ is the step size at iteration ¸

end
Algorithm 5: S���� ����������� �������� ������� (Liu and Wang, 2016)

6.3 Results

6.3.1 Dummy 2D-Example

To demonstrate exploring amultimodal distribution using SVGD,we construct a dummy
2DGaussian-mixturemodel. The three-modemixturemodel with variablem = [m1, m2] œ
R2 (shown in Figure 6.1) is defined as :

p(m) =
Kÿ

i=1
’i

1
Ò

(2fi)K |Ci|
exp

3
≠1

2 (m ≠ µi)T C≠1
i (m ≠ µi)

4
(6.13)

where K is the total number of mode, ’ is the weights, µ is the mean and C is the
covariance matrix.

We explore the distribution with RMH, HMC, and SVGD, and the results are shown
below (gpCN is not included here as it’s designed specifically for singal modal distri-
bution). In both the MCMC methods, the sampling chains are trapped in a local mode
with the chosen parameters (Figure 6.2). One could potentially use a larger step size
in both methods and more leapfrog numbers in HMC to achieve a better posterior
exploration, but the acceptance ratio will also be a�ected and might lead to a less
e�cient sampling. Based on the experiments, the MCMC chains can potentially jump
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F����� 6.1: Probability of a multimodal Gaussian mixture model with K = 3,
[’1, ’2, ’3] = [0.3, 0.4, 0.3], [µ1, µ2, µ3] = [(0.7, 0.7), (≠0.7, ≠0.7), (≠1, 1)]. [C1, C2, C3] =

[diag(0.2, 0.2), diag(0.2, 0.2), diag(0.2, 0.2)].

between di�erent modes but achieving a convergence takes a long time. This problem
will be more significant when the dimension increases.

The SVGD methods randomly initialize 250 particles from a multivariate Gaussian
distribution N ≥ (µ0, C0), with µ0 = (0, 0) and C0 = diag(1, 1). The particles move
towards the probability high area and can achieve a relatively good representation of
the target distribution within tens of steps with all modes recovered (shown in Figure
6.3). While the demonstrated example is simplified, it shows the ability of SVGD to
deal with multimodal distributions, and we can expect the same performance in a real
geological inverse problem.

6.3.2 Application in Geological Modeling Inversion

To demonstrate the ability of SVGD to solve a multimodal distribution in a geological
inversion, the geological model with a normal fault described in Section 4.3.3 is used
to test the SVGD algorithm. The model configuration is shown in Figure 6.4. The
smooth step-function introduced in Chapter 4 is applied. The ground truth model has
two interfaces defined by 4 surface points and 2 orientation points, respectively. The
normal fault is defined with 2 fault surface points 1 orientation point, all at the same
elevation to construct a flat fault surface.

The variables m which we treat as probabilistic parameters contain the elevation z

of the surface points, the dip angle of the fault È and the density values for the three
lithology units fl:

m = [z1, z1, . . . , z8, È, fl1, fl2, fl3] (6.14)

To avoid negative values in density and preserve the normal fault (whichmeans dip
angle ), the parameters are defined using constrained distributions which are trans-
formed from the unbounded normal distributions. The transformation Ã follows the
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(a) RMH

(b) HMC

F����� 6.2: Sampling the dummy multimodal distribution with MCMC methods: RMH and
HMC. 500 samples in both methods. MCMC methods could miss unseen mode complete with

finite number of samples.
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(a) step: 0

(b) step: 10

(c) step: 50

F����� 6.3: Inference result on the dummy multimodal distribution using SVGD with 250
particles showing at iteration 0, 10 and 50. Step size ‘ = 0.2. Black arrows show the particle

moving direction.
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F����� 6.4: Cross-section of the density matrix of the fault model.

widely applied invertible logarithmic transform (Team et al., 2016; Zhang and Curtis,
2020a):

◊i = Ã (mi) = log (mi ≠ lbi) ≠ log (ubi ≠ mi) (6.15)

mi = Ã
≠1 (◊i) = lbi + (ubi ≠ lbi)

1 + exp (≠◊i)
(6.16)

where lb and ub are the lower bound and upper bound, ◊ is the unconstrained trans-
formation of parameters.

The model configuration is summarized in Table 6.1, and the mean value of the
variables are set to the true values, which are highlighted in boldface 6.1. A 3 ◊ 3
grid of gravity receivers is set at the top of the model, and gravity is calculated using
the gravity kernel method (Chapter 3). The likelihood function is defined as a mul-
tivariate normal distribution with covariance C = diag[0.05, 0.05, . . . , 0.05]. The prior
distribution is defined as a multivariate standard normal distribution. The bounds are
set to ±60 m for all the surface points, ±20 ¶ for the fault dig angle and ±0.6 g/cm3

for the densities. The constrained and unconstrained prior distribution is illustrated
in Figure 6.5

We first use the GD method with random initial status sampled from the prior to
find the MAP points. Each initial status converges to di�erent local minima, which
suggests the existence of the multimodality in the posterior distribution (shown in
Figure 6.6). One can further confirm that the Hessian matrices at these MAP points
are positive definite by using the method described in Chapter 5.

We initialized 500 particles in the prior distribution and applied the SVGD method
to infer the posterior probability. The SVGD is run for 100 iterations with the learning
rate ‘ set to 0.08. The result is shown in Figure 6.6.

We can observe that particles have shown a significantly larger movement in the
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surface name surface points orientations dip density

x y z x y z in g/cm3

rock unit 1

200 200 800
100 500 800 0

4
200 800 800

800 200 400
900 500 400 0

800 800 400

rock unit 2

200 200 600
100 500 600 0

2
200 800 600

800 200 200
900 500 200 0

800 800 200

basement \ \ \ \ \ \ \ 3

fault surface
500 200 500

500 500 500 60 \
500 800 500

T���� 6.1: Input data for the fault model. Probabilistic variables means are shown in boldface.

F����� 6.5: Illustration of the prior distribution in the original domain (in yellow) and trans-
formed domain (in green). Each pair of the plot have the unconstrained plot above and the
constrained plot below. The probability distribution is illustrated using Monte Carlo samples
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F����� 6.6: Corner plot of the prior and posterior distribution. The kernel density estimation
is given in the diagonal plots. Red dots are the MAP points found by GD method.
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dimension of the density value of the top layer fl1. This indicates that the posterior
is most sensitive to the top layer density. The movement in the other dimensions is
subtle in comparison. The individual local modes are not clearly seen in the posterior
particles, but the MAP points found by GD all lie in the high posterior region in the fl1

dimension.
The above observations suggest that both GD and SVGD are largely impacted by the

significant sensitivity di�erence in the parameters. This sensitivity di�erence might
lead to slow convergence of both GD and SVGD, where most of the movement hap-
pens in the dominating direction. This might lead SVGD to require a large number of
iterations to resolve the posterior on the other dimensions. In addition, only 500 par-
ticles are considered in this experiment. The number of particles directly links to the
resolution of the estimated distribution. When only one particle is used, the SVGD al-
gorithm degenerates to a GD (Liu andWang, 2016). This might suggest more particles
are needed to resolve a more detailed posterior in higher dimensions.

Another point worth noticing is the choice of prior and likelihood function un-
certainty range. In this study, we have chosen to set the likelihood function with an
extremely small uncertainty range to construct a multimodal scenario for research.
This leads to the likelihood function dominating the posterior probability, and the
prior has a weak constraint to the inversion. Without a proper constraint of the prior,
the posterior is dominantly controlled by the likelihood function in high-dimensional
space and could have complex structures. This complexity might emerge due to the
relatively low-dimensional parametric representation of the geological model (as de-
scribed in Chapter 2). One should also consider if the existing modes make sense. For
example, some of the MAP points found in this study have a lower probability com-
pared to others, is this mode important to the result is an open question and needs
further analysis. Overall, to clearly explain the complexity of the posterior morphology
and the application of SVGD to solve the multimodal posterior problem in geological
modeling, further research is needed. One might find a model more balanced sensitiv-
ity parameter configuration and more clear multimodality to better demonstrate the
use of SVGD.

6.4 Conclusion

In conclusion, this chapter proposed using the SVGD algorithm to solve the Bayesian
inference problem in geological modeling using gravity as the likelihood. The pre-
sented experiment was designed to solve the multimodal posterior distribution prob-
lem, which is challenging for conventional MCMC methods. The preliminary result
indicates that SVGD can be successfully applied to explore the posterior space to some
extent, but the ability to resolve the multimodality is unclear. A large number of itera-
tions and a better-constraint posterior might be needed. This study is the first attempt
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to adopt a gradient-based variational inference method to solve the model-based geo-
logical inversion. The presented work intended to provide guidance to future research
in this direction.
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Chapter 7

Discussion and Outlook

In the presented work, I have demonstrated an end-to-end trainable geological inver-
sion framework. The framework mainly contains of two parts, forward modeling and
inversion. The two fundamental elements of forward modeling are the implicit ge-
ological modeling and gravity forward simulation. In the inversion part, I focus on
uncertainty quantification with the Bayesian inference method. Both the forward and
inverse parts play important roles in the success of the introduced framework. In this
chapter, I will first present some discussions from both the forward modeling perspec-
tive and the inversion perspective. Some recommendations for future research will
also be given from my own perspective based on the conducted experiments.

7.1 Forward Modeling

The introduced forward modeling contains two chaining parts, geological modeling
and gravity simulation, and it is end-to-end trainable, meaning that continuous deriva-
tives can be evaluated through the model. However, the introduced UQ framework
and the inference methods introduced to the geological inversion problem are gener-
ally applicable. The main obstacle to the application using other geological modeling
approaches and other geophysical simulations is the di�culties and e�ciency in the
evaluation of derivatives. In this study, we have shown an AD framework to evaluate
the derivatives and shown that AD is more e�cient and accurate compared to the nu-
merical method - FD (Chapter 5). However, we have also shown that by just blindly
applying AD, a meaningful derivative is not guaranteed to be used for training pur-
poses. The current workflow is demonstratedwith gravity field forward simulation, but
it can also be extended to other potential-field methods, for example, magnetic field
measurements (Güdük et al., 2021). However, it is still limited in the potential-field
methods due to the simplicity of the forward simulation. The combination of geological
modeling with other geophysical simulations (e.g., seismic tomography, geothermic,
electrical resistivity tomography, etc.) is extremely interesting and important for the
application of geological modeling and uncertainty quantification study to a broader
set of problems. The potential link to these PDE-based problems is through the ad-
joint. However, the PDE problems often require a redefined mesh and are solved by
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numerical methods using FDM/FEM, which is di�cult to be integrated into the cur-
rent workflow. Attempts have been made to bypass the numerical solution by using
computationally cheaper surrogate models, for example, Physics-informed neural net-
works (PINN) (Raissi et al., 2019; Liang et al., 2021; Degen et al., 2022a), a Gaussian
process emulation (Zhao and Kowalski, 2022). However, the link to structural geolog-
ical modeling is still unclear and it would be interesting to address this approach in
future studies.

The geological modelingmethodwe adopted in this study is the co-krigingmethod.
While the co-kriging method has many advantages (see Chapter 2), the current im-
plementation of co-kriging has limitations in representing, for example, finite faults,
strike-slip faults, complex objects, and non-stationary models. A possible solution for
the issue of strike-slip faults and non-stationary models might be using an additional
external drift function similar to the universal drift described in Chapter 2. However,
future research is still needed to allow a wider application of the proposed framework.

The computational graph (in Figure 4.1) is an analogue to an ANN. One of the
advantages of ANN using AD technique is that batched data can be passed into the
model to fully take advantage of the GPU architecture (Paszke et al., 2017). However,
this is limited in the current geological modeling framework implemented using the
AD techniques and accelerated using GPU. This limitation prevents parallel MCMC
chains from being executed on a non-distributed scheme and the application in SVGD.
A batched implementation would be significantly beneficial for the SVGD methods,
where the particles can be evaluated simultaneously. The implementation issue asso-
ciated with memory usage will be discussed in the following section.

7.2 Bayesian Inference, Uncertainty Quantification

In this study, the Bayesian inference framework is adopted to simultaneously consider
the prior knowledge of the input parameters and additional gravity data. Hence both
the likelihood and the prior are important to the Bayesian inference.

Prior

The parameters considered in this study are mainly the position (x, y, and z) of the
surface points, the dipping angle of the fault, and the density values for the litholo-
gies. The proposed framework can be easily extended to other parameters in the
geological model, for example, the position, azimuth, polarity (which controls the
scalar field changing rate), and other parameters in co-kriging (range, nuggets e�ect,
covariance), and also the parameters in gravity calculation. However, the current im-
plementation still requires some manual configuration of the inference model but is
also more flexible. Considering more parameters in the inference is possible but also
makes the inversion more challenging. Also, the number of input data can vary. For
example, one can find infinite numbers of points on the same flat surface to produce
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the same structural geological model. The increasing number of parameters increases
the number of possible combinations of parameter sets and therefore requires better
constraints by either geophysical data or prior knowledge. The increasing number of
parameters also reduces the model’s ability to learn as it is more constrained. For ex-
ample, the surface structure is more and more constrained with an increasing number
of surface points, and it will end up defining the surface without any interpolation in
between the data.

Therefore, it is crucial for the modeler to decide which parameters should and
should not be taken into the inversion. For example, considering the x y coordinates
in a model with only Horizontal surfaces, varying the x and y coordinates have no im-
pact on the resulting structure, and so is the gravity simulation. This will add mean-
ingless dimensions to the parameter space and cost more computational resources.
However, deciding the parameters to be included is non-trivial. One possible solution
is to analyze the eigenvalues in the Hessian matrix, which gives the sensitivity of the
parameters.

Likelihood function

For the likelihood function, this study focused on gravity data. This is mainly due to
the simplicity of the gravity calculation and widely available data. The same concept
for choosing the prior parameters applies to the choices of data points taking into the
inversion. New data could be expensive to collect and taking the full collection of data
could introduce unnecessary correlations and increase the computational cost. One
might consider the use of optimal experimental design to better select the included
data (Aretz-Nellesen et al., 2021; Wu et al., 2022).

Considering other types of likelihoods, including other types of geophysical sim-
ulation in the current framework, is challenging due to the di�culties in evaluating
derivatives, as discussed above. Another issue linked to the use of additional like-
lihoods is the choice of the definition of the likelihood function. In this study, the
gravity likelihood is defined as a multivariate normal distribution. However, other
types of distributions are used in the gravity likelihood function. For example, Well-
mann et al. (2018) used the squared error likelihood with a half Cauchy distribution,
(Scalzo et al., 2021) defined each likelihood function as a t-distribution and calculated
the joint probability. All these likelihood definitions are essentially equivalent to the
exact choice of distributions. The choice of the uncertainty range of the likelihood is
mentioned in Chapter 3, which should not be decided only based on the uncertainty
in the observational data as in the conventional gravity inversion problems. In the
model-based inversion, the misfit in the simulation result and the observational data
comes from both the noise data, the simulation approach (e.g., aliased e�ect in Chap-
ter 2), and the simplification of the model. The latter arguably has more impact on the
uncertainty of the likelihood function. Other types of likelihood functions are possible
to be included in the framework (see Chapter 2). Here, I would specifically mention
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the topological constraints. Schaaf et al. (2021) proposed to use topology informa-
tion in the Bayesian inference and the method has recently been applied to analyse 3D
model of complex fold-and-thrust belts (Brisson et al., 2023). Topology provides an
important constraint so that the meaningful structure of the geological model can be
preserved. However, the method is limited to derivatives-free inference problems due
to the discretized topology matrix. One could potentially adopt the smooth step func-
tion (introduced in Chapter 4) to generate a smooth version of the topology matrix
and allow the derivative-informed inference method to be applied.

7.3 Implementation

The forward geological modeling and gravity simulation is implemented in TensorFlow
(Abadi et al., 2015) as an AD tool, but the implementation is not limited to the choice
of software packages. Here, I would like to discuss some of the bottlenecks in the
current implementation.

Software Packages

TensorFlow, as one of the most popular ML frameworks, has been actively developed
since the recent surge of ML applications. The choice of TensorFlow is due to its good
readability, good community support and scalability, GPU support, and parallelization
ability (Abadi et al., 2015)

The current implementation of the forward modeling in TensorFlow is not optimal.
This is mainly presented in two aspects. The first aspect is the memory e�ciency in
the current implementation. The second aspect is the implementation of the derivative
implementation with the TensorFlow Autograph function.

In this study, we have demonstrated the inverse problem with observational grav-
ity data. We have developed the kernel method, which takes advantage of the implicit
modeling methods and constructs meshes only around the receivers’ locations to re-
duce memory usage in the case of sparse observational data. However, there are still
many cases where gravity data is abundant. Whether these data are informative to
the inversion or not is an open question, which we will discuss in the following sec-
tion. Modeling all the data itself is a challenge in the current implementation. On
the other hand, in the conventional convolution scheme implemented in an iterative
manner, the sequential computation is time-consuming (see Chapter 3). By using the
vectorized computation, for example, the kernel methods in Chapter 3 consumes a
large amount of memory and limits the number of data points we can consider. One
reason for this demanding memory consumption emerged from the inflexible tensor
manipulation in TensorFlow. A tensor is a data type that contains a multi-dimensional
array in TensorFlow and does not support value assignment. The alternative data
type, TensorFlow Variable, also does not support assigned values partially (by the
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time of writing, with TensorFlow version 2.10.0). This is mainly required in the ge-
ological modeling parts where we need to dynamically vary the matrix. The current
implementation bypasses this di�culty by using concatenation operators. However,
the concatenation operators seem to allocate new memories for the newly constructed
tensor, and due to the use of a computational graph, the old tensor is not cleared. The
matrix contains the dimension of the resolution of the mesh and could scale with the
number of receivers depending on the gravity method used. Therefore it demands a
large amount of memory, especially on a GPU. This problem becomes more significant
with the second-order derivatives. This is less of an issue for other software, such as
Theano (Bastien et al., 2012) and Pytorch (Paszke et al., 2017) , where the tensor is
more flexible. However, other unknown issues might emerge. Alternative methods are
currently being explored, and a flexible framework that can be adapted to di�erent
software packages is currently being developed.

Some potential solutions for the current implementation issues with Tensorflow
are discussed here. The first is to use an alternative operation to concatenation in
TensorFlow or to use other software. The second is to use an octree mesh. However,
this still has di�culties in adopting the stochastic framework, as the geometry varies
at each step, and the mesh would need to be refined at each iteration. Third is using
TPU (Tensor processing unit), which is hardware developed by Google specifically for
tensor processing (Abadi et al., 2016). Accordingly the preliminary experiments on
TPU, the TPU overcomes the memory issue by using more e�cient parallelization and
could achieve more e�cient calculations.

Computational Time

The second limitation in the current implementation in TensorFlow is the use of the
Autograph function. As discussed in Chapter 4, AD constructs a computational graph
to track the adjoint of each operator in the computation in the forward path to allow
for e�cient derivative calculation. This graph construction process is called ’tracing’.
Then, the constructed graph is revisited in each iterationwithout construction, and this
process is called ’executing’. ’tracing’ takes significantly more computational resources
than ’executing’. Therefore an e�cient framework requires a stationary computational
graph to be executed. In TensorFlow, this is called graphmode execution. On the oppo-
site, one has the option to execute the code with ’eager execution’, where the computa-
tional graph is not stationary and will be constructed at each iteration. This is referred
to as the eager mode. The Autograph function in TensorFlow converts the program
automatically in the graph code and allows the graph mode execution. This is done by
using the decoration function ’tf.function’. The use of decoration is still unclear and
under experiment. I found that a nested style of decoration (decorating each inner
function) could achieve a roughly 10% boost in performance. However, in the current
implementation, the decoration is limited only to first-order derivatives. The reason
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F����� 7.1: Comparison of computation time (in seconds) for di�erent functions - Forward
modeling and gravity (forward), Jacobian and Hessian vector product (hvp), on GPU and
CPU, and with (w) and without (w/o) TensorFlow autograph decoration. The computation
time plotted in striped pattern is an estimated value based on the ratio of e�ciency gain of

Jacobian computation.

for the failure in the application of the Hessian calculation is still unknown. This prob-
lem only occurs when a specific control flow is used in TensorFlow. This is probably
due to the limited functionality in the implemented forward-mode AD. Further inves-
tigation is needed. Here, we compare the performance of graph model execution on
the forward function, the first-order derivative (Jacobian with back-propagation), and
the second-order derivatives (Hessian vector production, using the method described
in Chapter 5).

The computation time is compared based on the Greenstone model with four re-
ceivers and the low-resolution kernel method described in Chapter 3. The result is
shown in Figure 7.1. The same code was run with Intel Xeon CPU and Tesla K80 GPU
on Google Colab. The forward simulation, Jacobian and Hessian-vector product (hvp,
described in Chaprter 5) are conducted with and without the Autograph technique.
We can see that the static graph generated greatly improved the e�ciency in all the
computations. The acceleration is greater for the GPU, which is consistent with the
advantage in large tensor computation in GPU. The hvp with Autograph failed in the
experiment with both CPU and GPU. Based on the improvement in the computation
of the forward function and the Jacobian, the predicted computation time is given
at ≥ ◊2 in CPU and ≥ ◊12 in GPU. Hence, successful implementation of a static
computational graph would greatly improve the Hessian computation and provide the
potential for the application of inference method with step-wise Hessian calculation,
for example, the Stein Variation Newton method (Detommaso et al., 2018).

All the points discussed above are important for the application of the stochastic
geological modeling. Future research is needed to address these issues.
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Chapter 8

Conclusion

This thesis presents an end-to-end trainable geological modeling and uncertainty quan-
tification framework that allows advanced derivative-informed Bayesian inferencemeth-
ods to be e�ciently applied. The thesis presents a leap forward from current Bayesian
practices, with the ability to explore large parameter spaces orders of magnitude faster
than traditional MCMC based methods. This speed computationally enables the use
of Bayesian methods in real life applications that often have larger parameter spaces
(and where it would be computationally infeasible to use trational methods). Is is an
important step forward for the application of automated uncertainty quantification in
geological modeling.

The framework contains three essential components, namely the forward geolog-
ical modeling using the implicit cokriging method; the gravity simulation in the im-
plicit modeling framework; and e�cient Bayesian inference approaches utilizing the
liklihood’s derivatives to accelerate the posterior exploration based on the trainable
modeling approach. The contributions to these three components are detailed below.

Chapter 3 introduced a novel approach for gravity simulation for the implicit mod-
eling method. In the framework of stochastic geological modeling, gravity data serves
as an additional constraint to the model construction. The gravity data can be in-
cluded in the modeling process as the likelihood function in a probabilistic joint inver-
sion framework and allows the quantification of uncertainty in geological modeling
directly. A fast but also precise forward gravity simulation is essential to the success
of the probabilistic inversion. The proposed kernel method is based on the widely
adopted analytical solution on a discretized grid. As opposed to a globally refined reg-
ular mesh, we construct local tensor grids for individual gravity receivers, respecting
the gravimeter locations and the local sensitivities. I have demonstrated that the ker-
nel method is e�cient in terms of both computing and memory use for mesh-free im-
plicit geological modeling approaches. This design makes the method well-suited for
many-query applications like Bayesian machine learning using gradient information
calculated from Automatic Di�erentiation (AD). Optimal grid design without knowing
the underlying geometry is not straightforward before evaluating the model. There-
fore, a novel perspective on a refinement strategy for the kernel method based on the
sensitivity of the cell to the corresponding receiver is developed. Numerical results
are presented and show superior performance compared to the conventional spatial
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convolution method.
Chapter 4 investigated the posterior landscape and introduced a method using

step-functions to allow continuous derivatives to be evaluated in the geological model.
The presented work bridged the gap between the application of geological modeling
using a AD framework and gravity simulation. The introduced method is the founda-
tion of the successful application of the derivative-informed Bayesian inferencemethod
in the model-based gravity inversion. The introduced dimension-reduction visualiza-
tion method provides an intuitive way to analyze the posterior probability distribution,
which is often in high dimensions. It provides a qualitative indication of the trainability
of a geological inverse problem.

To achieve a more e�cient posterior exploration, advances in MCMC methods
utilize derivative information. Hence, Chapter 5 has introduced an approach to ef-
ficiently evaluate second-order derivatives in geological modeling based on the intro-
duced trainable approach and adopt a Hessian-informed MCMC method, the gener-
alized preconditioned Crank-Nicolson (gpCN), as a tool to solve the 3D model-based
gravity Bayesian inversion problem. The result is compared with two other widely
applied MCMC methods, random walk Metropolis-Hasting and Hamiltonian Monte
Carlo, on a synthetic geological model and a realistic structural model of the Kevitsa
deposit. The experiment demonstrates that superior performance is achieved by the
gpCN compared to the other two state-of-the-art sampling methods. This indicates
the potential of the proposed method to be generalized to more complex models.

Preliminary results of the experiment using SVGD to solve the model-based gravity
inversion problem is also shown. The results of a successful application of SVGD to
the uncertainty quantification, but the ability to resolve a multimodal posterior distri-
bution is not clear. This indicates improvements and further research are required in
the future.

This thesis demonstrated novel methods to address the uncertainty quantification
problems in 3D geological modeling and geophysical simulation. It is a fundamen-
tal step towards the wider application of advanced Bayesian inference methods for
geomodel-based inversions in various areas of geosciences.



xxi

List of Figures

1.1 Structure of research questions addressed in this thesis. . . . . . . . . . 4

2.1 Interpolated scalar filed using co-kriging of interface points and ori-
entation values. Isocurves represents the scalar values based on the
interpolation of the surface points and orientations. . . . . . . . . . . 13

3.1 Graph representation of typical gravity forward approaches. The top
two methods are the elementary methods for gravity simulation. Here
the ’geophysical calculations’ represents either analytical solution or
numerical solutions. In explicit surface modeling, the surface model
will firstly be constructed, and then either a discretization will be con-
ducted or the gravity can be directly calculated through methods, for
example, line integrals (Zhou, 2009), the Gauss-fast Fourier transform
(FFT) method (Wu and Chen, 2016) and analytical formulas (Zhang
and Jiang, 2017; Ren et al., 2018). Implicit modeling is a ’mesh-free’
method, and discretization is only involved during visualization or geo-
physical computation. The surface model can be extracted from the im-
plicit function, and the same technique as in explicit modeling can be
used for geophysical calculation. Whereas implicit modeling can avoid
explicit surface construction by directly performing geophysical calcu-
lations on the discretization (as shown by the red arrow). . . . . . . . . 21

3.2 Computing the gravity contribution of a rectangular prism. Here the
positive z are chosen to be pointing upwards for the consistency with
elevation input data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Sketch comparison of spatial convolution scheme and kernel method.
Green box is the modeling area. Blue box is the actual meshing area.
Red triangles are the receiver locations (a) In the spatial convolution
scheme, a padding zone is often added around the model block to elim-
inate border e�ects. Gravity is simulated by a defined convolution win-
dow represented by the yellow box. The dashed-line objects represents
cases where the receiver is not aligned at the center of a cell, then the
actual simulated window is deviated. (b) Kernel method do not need
to generate grid for the entire model, but around the area of a receiver. 24

3.4 Simple sketch illustration of grid parameterization of di�erent grid scheme. 27



xxii List of Figures

3.5 Upper row shows the cross section of the three di�erent grid scheme
with resolution 21 ◊ 21 ◊ 10. The red triangle presents the position of
receiver at the ground surface. The blue dots illustrates the center of
the cell. Lower row shows the corresponding tz histogram. The vertical
axis is in log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Upper row shows the cross section of the three di�erent grid scheme
with resolution 51 ◊ 51 ◊ 30. The red triangle presents the position of
receiver at the ground surface. The blue dots illustrates the center of
the cell. Lower row shows the corresponding tz histogram. The vertical
axis is in log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 3D synthetic spherical geobody (red) with identical y coordinates at
5000m, radius of 100m and di�erent x and elevation, the inner green
box is the modeling domain, the outer blue box represents the actual
meshing domain with an additional padding zone. Receivers are placed
at the top surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Simulation results of the model shown in Figure 7(a) Upper row: for-
ward gravity simulated by three methods all with the window size
equivalent to 150 ◊ 150 resolution convolution scheme; Middle row:
cross-section of the model illustrating the subsurface geometry; Lower
row: RMSE to the analytical solution with di�erent equivalent resolu-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 Simulation results of the model shown in Figure 7(b) Upper row: for-
ward gravity simulated by three methods all with the window size
equivalent to 150 ◊ 150 resolution convolution scheme, dashed lines
shows the linear interpolation of the analytical solution; Middle row:
cross-section of the model illustrating the subsurface geometry; Lower
row: RMSE to the analytical solution with di�erent equivalent resolu-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 (a) 3D GemPy model of greenstone belt, lithology units id: 1: Early
Granite; 2: Simple Mafic II; 3: Simple BIF; 4: Simple Mafic I; 5: Mer-
chison (b) forward simulated gravity anomaly by spatial convolution
scheme with a total resolution of 400 ◊ 400 ◊ 30, with window resolu-
tion of 79◊59. The value is negative due to positive z is defined pointing
upwards. The white area represents area with no computation data and
the approximate padding zone . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Residuals of simulated gravity from high resolution simulation with
equivalent window resolution of 79 ◊ 59. Upper row: equivalent low
window resolution of 9 ◊ 7. Lower row: equivalent medium window
resolution of 29 ◊ 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



List of Figures xxiii

3.12 Computation time (in seconds) of evaluating jacobian of gravity over
the input surface points(69 ◊ 3 parameters) using backpropagation al-
gorithm (AD) using kernel method and convolution scheme respecting
to di�erent number of devices on the Green stone model. . . . . . . . 36

4.1 Illustration of the TensorFlow graph structure. Characteristic parame-
ter are represented in blue nodes. Grey and yellow nodes represents
the inference and input parameter implemented in TFP. Purple nodes
denotes constant input to the model. . . . . . . . . . . . . . . . . . . . 44

4.2 Illustration of vanishing gradient with a simple function with level-set
method and with smooth step-function. . . . . . . . . . . . . . . . . . 45

4.3 Workflow of 3D layering model construction. . . . . . . . . . . . . . . 49
4.4 Workflow of 3D unconformities model construction. . . . . . . . . . . 49
4.5 Workflow of 3D fault model construction. First, the fault points (sur-

face points and orientation points) are interpolated in the first series
of scalar field 1. A fault relationship matrix is constructed based on
the interpolated fault scalar field 1. The fault matrix is added to the
co-kriging equation as an additional drifting term to interpolate scalar
field 2. The final property matrix is obtained based on scalar field 2. Up-
per and Lower rows demonstrates the e�ect of heavy-side function and
step-function to the model construction, respectively. Both the work-
flow construct the first scalar field identically. The scalar field 2 using
the level-set method is plotted using a contour plot, therefore the sharp
discontinuities are connected due to the same scalar value on two sides
of the fault with an o�-set. The apparent perturbation is due to the
limited resolution used to generate the plot. . . . . . . . . . . . . . . . 50

4.6 3D plot of the anticline model . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 Gravity forward simulations. The first row shows the benchmark model

with a high-resolution level-set method. The second row shows the low-
resolution geological model and its forward gravity error with level-set
method. Third row is the low-resolution geological model and forward
gravity error with a non-optimized slope. The forth row shows is the
low-resolution geological model and forward gravity error with the op-
timized slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Cross section of the distribution described in Equation 4.19 with N =
100,µy = 1, ‡y = 2 and ‡◊ = 1 . . . . . . . . . . . . . . . . . . . . . . 55

4.9 The likelihood surfaces with/without step-function. . . . . . . . . . . 56
4.10 3D example of a dome structure. (a) synthetic true model (b) prior

mean and initial position (c) posterior mean by 1000 iterations HMC (d)
2D project of the surface points, black arrow illustrates the movement
of distribution after inversion . . . . . . . . . . . . . . . . . . . . . . . 57



xxiv List of Figures

4.11 Inversion results of three runs with individual chains using RMH (a) and
HMC (b) . sfp#n stands the nth surface points on the top surface in the
dome inversion example. The x coordinates represent the value of the
parameters. The blue bar shows the resulting mean value (dots) and
95% credible intervals. The orange bars present the prior distribution.
The red dots represent the parameters for the true model . . . . . . . . 58

5.1 Di�erent proposal distribution illustrated on the 2D Gaussian posterior
distribution d|m ≥ N (µ, I), µ := x1 ≠0.7x2 , where xi

iid≥ N (0, I). Left
shows the Gaussian proposal without preconditioning. Right shows the
proposal distribution with Laplacian approximation at MAP. . . . . . . 66

5.2 Left: 3D plot of the base-case geological model. The ground truth z

value of the top layer interface points are placed at depth 705 m and
805 m. Gravity receivers are placed at the top denoted by the cones.
Surface points are numbered and denoted as spheres. Orientations are
denoted as arrows. Right: forward gravity simulation of the ground
truth model. The dashed line denotes the cross-section to evaluate en-
tropy. Gravity data used in the inference at a 6 ◊ 6 grid receivers are
denoted by the blue dots. A dense 30 ◊ 30 grid of gravity is evaluated
for visualization and evaluation. . . . . . . . . . . . . . . . . . . . . . 68

5.3 Trace plot of RMH, HMC, and gpCN. HMC with 3 and 10 leapfrog steps
and stepsize of 0.7. The true values are denoted by dashed lines. . . . 69

5.4 Autocorrelation plot of the MCMC chain of all three methods on Model
A. The solid lines represent the mean autocorrelation among di�erent
variables, and the shadow represents the 95% confidence interval of
the autocorrelation on di�erent dimensions. . . . . . . . . . . . . . . . 70

5.5 Illustration of the samples of surface points 5 and 7 by gpCN (grey dots).
Black contour denotes the approximate probability density. The red
contour denotes the proposal distribution used in gpCN which captures
the geometry of posterior distribution. The green square and green
lines denote the ground truth positions. The red square denotes the
MAP points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Information entropy plot of prior and posterior of model A evaluated
on cross-section shown in Figure 5.2. High entropy represents high
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Empirical density by gpCN andHMC and theMCMC chains for model A.
RMH acceptance rate: 83.4 %, HMC with 3 leapfrog steps acceptance
rate 98.8 %, HMC with 10 leapfrog steps acceptance rate 99.3 %, gpCN
acceptance rate 70.2% . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



List of Figures xxv

5.8 Autocorrelation plot of the MCMC chain of all three methods on Model
B. The solid lines represent the mean autocorrelation among di�erent
variables, and the shadow represents the 95% confidence interval of
the autocorrelation on di�erent dimensions. . . . . . . . . . . . . . . . 74

5.9 Left: Model instances sampled from prior and posterior with the corre-
sponding forward gravity plotted below each instance. Forward simu-
lations are evaluated on 50 by 50 grid. The data locations used in the
inference are denoted as blue dots. The cross-sections used to plot the
entropy are denoted by the black dashed lines; Right: the entropy plot
of prior and posterior on cross-sections at the dashed line. Gravity is
using the same color scale as the measurement in Figure 5.2 . . . . . . 74

5.10 Empirical density by gpCN and HMC and the MCMC chains for model
B. RMH acceptance rate: 93.8%, HMCwith 3 leapfrog steps acceptance
rate 99.8%, gpCN acceptance rate 75.0%. The RMH chain is not shown
due to the poor mixing. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.11 The gravity data in the modeling area. The geological data locations
used in the inference are denoted as blue dots. The field gravity mea-
surement locations are denoted as orange dots. The drill hole locations
are denoted as black dots. The deepest drill hole KV297 is shown by
the green star. Cross-sections are denoted by black lines. . . . . . . . . 77

5.12 Left: Model instances of Kevitsa deposit sampled from prior and pos-
terior with the corresponding forward gravity plotted below each in-
stance. Forward simulations are evaluated on a 50 by 50 grid. The
data locations used in the inference are denoted as blue dots. The cross-
sections (A) used to plot the entropy are denoted by the black dashed
lines; Right: the entropy plot of prior and posterior evaluated at cross-
section (A). Gravity is using the same color scale as the measurement
if Figure 5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.13 3D Kevitsa model of the mean posterior. . . . . . . . . . . . . . . . . . 78
5.14 Autocorrelation plot of the MCMC chain of all three methods on Model

C. The solid lines represent the mean autocorrelation among di�erent
variables, and the shadow represents the 95% confidence interval of
the autocorrelation on di�erent dimensions. . . . . . . . . . . . . . . . 79

5.15 Empirical density by gpCN andHMC and theMCMC chains for model C.
RMH acceptance rate: 76.2 %, HMC with 50 leapfrog steps acceptance
rate 98.8 %, gpCN acceptance rate 80.0 % . . . . . . . . . . . . . . . . 80

5.16 Finite di�erence gradient check . . . . . . . . . . . . . . . . . . . . . . 81
5.17 Finite di�erence Hessian check . . . . . . . . . . . . . . . . . . . . . . 82



xxvi List of Figures

5.18 Comparison of computation time of a full Hessian matrix by Finite Dif-
ference(FD) method and Auto-Di�(AD). FD computation time is ap-
proximated by extrapolating the computation time for a single forward
simulation. AD computation time is simulated with the same configu-
ration used in the previous example. Experiments conducted on Tesla-
P100 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Probability of amultimodal Gaussianmixturemodel withK = 3, [’1, ’2, ’3] =
[0.3, 0.4, 0.3], [µ1, µ2, µ3] = [(0.7, 0.7), (≠0.7, ≠0.7), (≠1, 1)]. [C1, C2, C3] =
[diag(0.2, 0.2), diag(0.2, 0.2), diag(0.2, 0.2)]. . . . . . . . . . . . . . . . . 92

6.2 Sampling the dummy multimodal distribution with MCMC methods:
RMH and HMC. 500 samples in both methods. MCMC methods could
miss unseen mode complete with finite number of samples. . . . . . . . 93

6.3 Inference result on the dummy multimodal distribution using SVGD
with 250 particles showing at iteration 0, 10 and 50. Step size ‘ = 0.2.
Black arrows show the particle moving direction. . . . . . . . . . . . . 94

6.4 Cross-section of the density matrix of the fault model. . . . . . . . . . . 95
6.5 Illustration of the prior distribution in the original domain (in yellow)

and transformed domain (in green). Each pair of the plot have the un-
constrained plot above and the constrained plot below. The probability
distribution is illustrated using Monte Carlo samples . . . . . . . . . . 96

6.6 Corner plot of the prior and posterior distribution. The kernel density
estimation is given in the diagonal plots. Red dots are the MAP points
found by GD method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Comparison of computation time (in seconds) for di�erent functions -
Forward modeling and gravity (forward), Jacobian and Hessian vector
product (hvp), on GPU and CPU, and with (w) and without (w/o) Ten-
sorFlow autograph decoration. The computation time plotted in striped
pattern is an estimated value based on the ratio of e�ciency gain of Ja-
cobian computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



xxvii

List of Tables

5.1 Computational e�ciency of di�erent methods. The number after HMC
denotes the leapfrog steps used. The computational time for di�erent
models with the same method is related to the grid resolution, number
of receivers, parameters dimensionality and number of leapfrog steps. . 79

6.1 Input data for the fault model. Probabilistic variables means are shown
in boldface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96





xxix

Bibliography

Abad, A. and Lacruz, E. (2013). Computing derivatives of a gravity potential by
using automatic di�erentiation. Celestial Mechanics and Dynamical Astronomy,
117(2):187–200.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals,
O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). Tensor-
Flow: Large-scale machine learning on heterogeneous systems. Software available
from tensorflow.org.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operating systems design and implemen-
tation ({OSDI} 16), pages 265–283.

Abu-Khzam, F. N., Collins, R. L., Fellows, M. R., Langston, M. A., Suters, W. H., and
Symons, C. T. (2017). Kernelization algorithms for the vertex cover problem.

Agarwal, A. (2019). Static automatic batching in tensorflow. In International Confer-
ence on Machine Learning, pages 92–101. PMLR.

Aleardi, M., Ciabarri, F., and Gukov, T. (2018). A two-step inversion approach for
seismic-reservoir characterization and a comparison with a single-loop markov-
chain monte carlo algorithmts and sl inversion algorithms. Geophysics, 83(3):R227–
R244.

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive mcmc. Statistics and com-
puting, 18(4):343–373.

Aretz-Nellesen, N., Chen, P., Grepl, M. A., and Veroy, K. (2021). A sequential sen-
sor selection strategy for hyper-parameterized linear bayesian inverse problems. In
Numerical Mathematics and Advanced Applications ENUMATH 2019, pages 489–497.
Springer.

Astic, T., Fournier, D., and Oldenburg, D. W. (2020). Joint inversion of potential-
fields data over the do-27 kimberlite pipe using a gaussian mixture model prior.
Interpretation, 8(4):SS47–SS62.



xxx BIBLIOGRAPHY

Bagby, T., Rao, K., and Sim, K. C. (2018). E�cient implementation of recurrent neu-
ral network transducer in tensorflow. In 2018 IEEE Spoken Language Technology
Workshop (SLT), pages 506–512. IEEE.

Barton, D. C. (1933). Mechanics of formation of salt domes with special reference to
gulf coast salt domes of texas and louisiana. AAPG Bulletin, 17(9):1025–1083.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,
Bouchard, N., Warde-Farley, D., and Bengio, Y. (2012). Theano: new features and
speed improvements. arXiv preprint arXiv:1211.5590.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018). Automatic
di�erentiation in machine learning: a survey. Journal of machine learning research,
18.

Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J.-M., and Stuart, A. (2013). Optimal
tuning of the hybrid monte carlo algorithm. Bernoulli, 19(5A):1501–1534.

Betancourt, M. (2017). A conceptual introduction to hamiltonian monte carlo. arXiv
preprint arXiv:1701.02434.

Betancourt, M. (2018). A geometric theory of higher-order automatic di�erentiation.
arXiv preprint arXiv:1812.11592.

Betancourt, M. (2019). The convergence of markov chain monte carlo methods:
from the metropolis method to hamiltonian monte carlo. Annalen der Physik,
531(3):1700214.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine learning,
volume 4. Springer.

Blei, D. M., Kucukelbir, A., and McAuli�e, J. D. (2017). Variational inference: A review
for statisticians. Journal of the American statistical Association, 112(518):859–877.

Bond, C. E. (2015). Uncertainty in structural interpretation: Lessons to be learnt.
Journal of Structural Geology, 74:185–200.

Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S.,
Mac Dowell, N., Fernández, J. R., Ferrari, M.-C., Gross, R., Hallett, J. P., et al. (2014).
Carbon capture and storage update. Energy & Environmental Science, 7(1):130–189.

Boulanger, O. and Chouteau, M. (2001). Constraints in 3d gravity inversion. Geophys-
ical prospecting, 49(2):265–280.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula,
G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX:
composable transformations of Python+NumPy programs.



BIBLIOGRAPHY xxxi

Brisson, S., Wellmann, F., Chudalla, N., von Harten, J., and von Hagke, C. (2023). Es-
timating uncertainties in 3-d models of complex fold-and-thrust belts: A case study
of the eastern alps triangle zone. Applied Computing and Geosciences, 18:100115.

Calcagno, P., Chilès, J.-P., Courrioux, G., and Guillen, A. (2008). Geological modelling
from field data and geological knowledge: Part i. modelling method coupling 3d
potential-field interpolation and geological rules. Physics of the Earth and Planetary
Interiors, 171(1-4):147–157.

Capponi, M., Mansi, A. H., and Sampietro, D. (2018). Improving the computation of
the gravitational terrain e�ect close to ground stations in the gte software. Studia
Geophysica et Geodaetica, 62(2):206–222.

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C.,
and Evans, T. R. (2001). Reconstruction and representation of 3d objects with radial
basis functions. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 67–76.

Carranza, E. J. (2011). From predictive mapping of mineral prospectivity to quantita-
tive estimation of number of undiscovered prospects. Resource Geology, 61(1):30–
51.

Caumon, G. (2010). Towards stochastic time-varying geological modeling. Mathemat-
ical Geosciences, 42(5):555–569.

Caumon, G., Collon-Drouaillet, P., De Veslud, C. L. C., Viseur, S., and Sausse, J.
(2009). Surface-based 3d modeling of geological structures. Mathematical Geo-
sciences, 41(8):927–945.

Caumon, G., Gray, G., Antoine, C., and Titeux, M.-O. (2012). Three-dimensional im-
plicit stratigraphic model building from remote sensing data on tetrahedral meshes:
Theory and application to a regional model of la popa basin, ne mexico. IEEE Trans-
actions on Geoscience and Remote Sensing, 51(3):1613–1621.

Caumon, G., Lepage, F., Sword, C. H., and Mallet, J.-L. (2004). Building and editing
a sealed geological model. Mathematical Geology, 36(4):405–424.

Chasseriau, P. and Chouteau, M. (2003). 3d gravity inversion using a model of pa-
rameter covariance. Journal of applied geophysics, 52(1):59–74.

Chauhan, M. S., Pierri, I., Sen, M. K., and Fedi, M. (2021). Assessingmodel uncertainty
for the scaling function inversion of potential fields. Geophysics, 86(6):G89–G98.

Chen, L. and Liu, L. (2019). Fast and accurate forward modelling of gravity field using
prismatic grids. Geophysical Journal International, 216(2):1062–1071.

Chen, S. F. (2005). Geology of the Atley, Rays Rocks, and Southern Sandstone 1: 100
000 Sheets. Geological Survey of Western Australia.



xxxii BIBLIOGRAPHY

Chen, T., Fox, E., and Guestrin, C. (2014). Stochastic gradient hamiltonian monte
carlo. In International conference on machine learning, pages 1683–1691.

Chiles, J.-P. and Delfiner, P. (2009). Geostatistics: modeling spatial uncertainty, volume
497. John Wiley & Sons.

Chwialkowski, K., Strathmann, H., and Gretton, A. (2016). A kernel test of goodness
of fit. In International conference on machine learning, pages 2606–2615. PMLR.

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., andOldenburg, D.W. (2015). Simpeg:
An open source framework for simulation and gradient based parameter estimation
in geophysical applications. Computers & Geosciences, 85:142–154.

Commer, M. (2011). Three-dimensional gravity modelling and focusing inversion us-
ing rectangular meshes. Geophysical Prospecting, 59(Modelling Methods for Geo-
physical Imaging: Trends and Perspectives):966–979.

Corliss, G. F. (1988). Application of di�erentiation arithmetic, volume 19 of perspec-
tives in computing.

Cotter, S. L., Roberts, G. O., Stuart, A. M., and White, D. (2013). Mcmc methods for
functions: modifying old algorithms to make them faster. Statistical Science, pages
424–446.

Cowles, M. K. and Carlin, B. P. (1996). Markov chain monte carlo convergence di-
agnostics: a comparative review. Journal of the American Statistical Association,
91(434):883–904.

Cox, L. H., Wilson, G. A., and Zhdanov, M. S. (2010). 3d inversion of airborne electro-
magnetic data using a moving footprint. Exploration Geophysics, 41(4):250–259.

Cui, T., Law, K. J., and Marzouk, Y. M. (2016). Dimension-independent likelihood-
informed mcmc. Journal of Computational Physics, 304:109–137.

Culshaw, M. (2005). From concept towards reality: developing the attributed 3d
geological model of the shallow subsurface. Quarterly Journal of Engineering Geology
and Hydrogeology, 38(3):231–284.

…uma, M., Wilson, G. A., and Zhdanov, M. S. (2012). Large-scale 3d inversion of
potential field data. Geophysical Prospecting, 60(6):1186–1199.

Davies, R. S., Groves, D. I., Trench, A., Dentith, M., and Sykes, J. P. (2020). Appraisal of
the usgs three-part mineral resource assessment through estimation of the orogenic
gold endowment of the sandstone greenstone belt, yilgarn craton, western australia.
Mineralium Deposita, 55(5):1009–1028.

Davies, R. S., Groves, D. I., Trench, A., Sykes, J., and Standing, J. G. (2018). Enter-
ing an immature exploration search space: Assessment of the potential orogenic



BIBLIOGRAPHY xxxiii

gold endowment of the sandstone greenstone belt, yilgarn craton, by application of
zipf ’s law and comparison with the adjacent agnew goldfield. Ore Geology Reviews,
94:326–350.

de Figueiredo, L. P., Grana, D., Roisenberg, M., and Rodrigues, B. B. (2019). Multi-
modal markov chain monte carlo method for nonlinear petrophysical seismic inver-
sion. Geophysics, 84(5):M1–M13.

de la Varga, M., Schaaf, A., and Wellmann, F. (2019). Gempy 1.0: open-source
stochastic geological modeling and inversion. Geoscientific Model Development.

de la Varga, M., Wellmann, F., andMurdie, R. (2015). Adding geological knowledge to
improve uncertain geological models: a bayesian perspective. Geotectonic Research,
97(1):18–20.

de la Varga, M. and Wellmann, J. F. (2016). Structural geologic modeling as an infer-
ence problem: A bayesian perspective. Interpretation, 4(3):SM1–SM16.

Degen, D., Cacace, M., and Wellmann, F. (2022a). 3d multi-physics uncertainty quan-
tification using physics-based machine learning.

Degen, D., Veroy, K., and Wellmann, F. (2022b). Uncertainty quantification for basin-
scale geothermal conduction models. Scientific reports, 12(1):1–10.

Detommaso, G., Cui, T., Marzouk, Y., Spantini, A., and Scheichl, R. (2018). A stein
variational newton method. Advances in Neural Information Processing Systems, 31.

Dominy, S. C., Noppé, M. A., and Annels, A. E. (2002). Errors and uncertainty in
mineral resource and ore reserve estimation: The importance of getting it right.
Exploration and Mining Geology, 11(1-4):77–98.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte
carlo. Physics letters B, 195(2):216–222.

Enciu, P., Wurtz, F., Gerbaud, L., and Delinchant, B. (2009). Automatic di�erentiation
for electromagnetic models used in optimization. COMPEL-The international journal
for computation and mathematics in electrical and electronic engineering.

Evans, M. and Swartz, T. (2000). Approximating integrals via monte carlo and deter-
ministic methods.

Farquharson, C. and Mosher, C. (2009). Three-dimensional modelling of gravity data
using finite di�erences. Journal of Applied Geophysics, 68(3):417–422.

Fedi, M. and Rapolla, A. (1999). 3-d inversion of gravity andmagnetic data with depth
resolution. Geophysics, 64(2):452–460.



xxxiv BIBLIOGRAPHY

Fichtner, A., Zunino, A., and Gebraad, L. (2019). Hamiltonian monte carlo solution
of tomographic inverse problems. Geophysical Journal International, 216(2):1344–
1363.

Flannery, B. P., Press, W. H., Teukolsky, S. A., and Vetterling, W. (1992). Numerical
recipes in c. Press Syndicate of the University of Cambridge, New York, 24(78):186–
189.

Fournier, D. (2019). Advanced potential field data inversion with lp-norm regularization.
PhD thesis, University of British Columbia.

Frank, T., Tertois, A.-L., and Mallet, J.-L. (2007). 3d-reconstruction of complex ge-
ological interfaces from irregularly distributed and noisy point data. Computers &
Geosciences, 33(7):932–943.

Frankle, J. and Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635.

Fuster, D., Bagué, A., Boeck, T., Le Moyne, L., Leboissetier, A., Popinet, S., Ray, P.,
Scardovelli, R., and Zaleski, S. (2009). Simulation of primary atomization with an
octree adaptive mesh refinement and vof method. International Journal of Multi-
phase Flow, 35(6):550–565.

Galley, C. G., Lelièvre, P. G., and Farquharson, C. G. (2020). Geophysical inversion for
3d contact surface geometry. Geophysics, 85(6):K27–K45.

Gelman, A., Gilks, W. R., and Roberts, G. O. (1997). Weak convergence and optimal
scaling of random walk metropolis algorithms. The annals of applied probability,
7(1):110–120.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation usingmultiple
sequences. Statistical science, 7(4):457–472.

Geweke, J. and Tanizaki, H. (1999). Onmarkov chain monte carlo methods for nonlin-
ear and non-gaussian state-space models. Communications in Statistics-Simulation
and Computation, 28(4):867–894.

Geyer, C. J. (1991). Markov chain monte carlo maximum likelihood.

Giraud, J., Lindsay, M., Ogarko, V., Jessell, M., Martin, R., and Pakyuz-Charrier,
E. (2019a). Integration of geoscientific uncertainty into geophysical inversion by
means of local gradient regularization. Solid Earth, 10(1):193–210.

Giraud, J., Ogarko, V., Lindsay, M., Pakyuz-Charrier, E., Jessell, M., and Martin, R.
(2019b). Sensitivity of constrained joint inversions to geological and petrophysi-
cal input data uncertainties with posterior geological analysis. Geophysical Journal
International, 218(1):666–688.



BIBLIOGRAPHY xxxv

Girolami, M. and Calderhead, B. (2011). Riemannmanifold langevin and hamiltonian
monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214.

Gonçalves, Í. G., Kumaira, S., and Guadagnin, F. (2017). A machine learning ap-
proach to the potential-field method for implicit modeling of geological structures.
Computers & Geosciences, 103:173–182.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Goodfellow, I. J., Vinyals, O., and Saxe, A. M. (2014). Qualitatively characterizing
neural network optimization problems. arXiv preprint arXiv:1412.6544.

Grasemann, B., Martel, S., and Passchier, C. (2005). Reverse and normal drag along
a fault. Journal of Structural Geology, 27(6):999–1010.

Green, P. J. (1995). Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrika, 82(4):711–732.

Griewank, A. (2003). A mathematical view of automatic di�erentiation. Acta Numer-
ica, 12:321–398.

Grose, L., Ailleres, L., Laurent, G., and Jessell, M. (2021). Loopstructural 1.0: time-
aware geological modelling. Geoscientific Model Development, 14(6):3915–3937.

Güdük, N., de la Varga, M., Kaukolinna, J., and Wellmann, F. (2021). Model-based
probabilistic inversion using magnetic data: A case study on the kevitsa deposit.
Geosciences, 11(4):150.

Guglielmetti, L., Comina, C., Abdelfettah, Y., Schill, E., and Mandrone, G. (2013). In-
tegration of 3d geological modeling and gravity surveys for geothermal prospection
in an alpine region. Tectonophysics, 608:1025–1036.

Haber, E. and Schwarzbach, C. (2014). Parallel inversion of large-scale airborne
time-domain electromagnetic data with multiple octree meshes. Inverse Problems,
30(5):055011.

Hale, D. and Emanuel, J. (2003). Seismic interpretation using global image segmenta-
tion. In SEG Technical Program Expanded Abstracts 2003, pages 2410–2413. Society
of Exploration Geophysicists.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their
applications.

Hillier, M., Wellmann, F., Brodaric, B., de Kemp, E., and Schetselaar, E. (2021). Three-
dimensional structural geological modeling using graph neural networks. Mathe-
matical Geosciences, 53(8):1725–1749.



xxxvi BIBLIOGRAPHY

Hillier, M. J., Schetselaar, E. M., de Kemp, E. A., and Perron, G. (2014). Three-
dimensional modelling of geological surfaces using generalized interpolation with
radial basis functions. Mathematical Geosciences, 46(8):931–953.

Hinze, W. J., Von Frese, R. R., Von Frese, R., and Saad, A. H. (2013). Gravity and
magnetic exploration: Principles, practices, and applications. Cambridge University
Press.

Ho�man, M. D. and Blei, D. M. (2015). Structured stochastic variational inference. In
Artificial Intelligence and Statistics, pages 361–369.

Holmes, C., Krzysztof, L., and Pompe, E. (2017). Adaptive mcmc for multimodal dis-
tributions. Technical report, Technical report.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: E�cient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861.

Høyer, A.-S., Klint, K., Fiandaca, G., Maurya, P., Christiansen, A., Balbarini, N., Bjerg,
P., Hansen, T., andMøller, I. (2019). Development of a high-resolution 3d geological
model for landfill leachate risk assessment. Engineering Geology, 249:45–59.

Im, D. J., Tao, M., and Branson, K. (2016). An empirical analysis of the optimization
of deep network loss surfaces. arXiv preprint arXiv:1612.04010.

Isaac, T., Petra, N., Stadler, G., and Ghattas, O. (2015). Scalable and e�cient algo-
rithms for the propagation of uncertainty from data through inference to prediction
for large-scale problems, with application to flow of the antarctic ice sheet. Journal
of Computational Physics, 296:348–368.

Izmailov, P., Vikram, S., Ho�man, M. D., and Wilson, A. G. (2021). What are bayesian
neural network posteriors really like? arXiv preprint arXiv:2104.14421.

Jahandari, H. and Farquharson, C. G. (2013). Forward modeling of gravity data us-
ing finite-volume and finite-element methods on unstructured grids. Geophysics,
78(3):G69–G80.

Jerrell, M. E. (1997). Interval arithmetic for input-output models with inexact data.
Computational Economics, 10(1):89–100.

Jessell, M. (2001). Three-dimensional geological modelling of potential-field data.
Computers & Geosciences, 27(4):455–465.

Jessell, M., Aillères, L., De Kemp, E., Lindsay, M., Wellmann, J. F., Hillier, M., Lau-
rent, G., Carmichael, T., and Martin, R. (2014). Next generation three-dimensional
geologic modeling and inversion. Society of Economic Geologists Special Publication,
18(18):261–272.



BIBLIOGRAPHY xxxvii

Jessell, M., Pakyuz-Charrier, E., Lindsay, M., Giraud, J., de Kemp, E., Arribas, A., and
Mauk, J. (2018). Assessing and mitigating uncertainty in three-dimensional geo-
logic models in contrasting geologic scenarios. Metals, Minerals, and Society, 21:63–
74.

Jessell, M., Valenta, R., Jung, G., Cull, J., and Geiro, A. (1993). Structural geophysics.
Exploration Geophysics, 24(4):599–602.

Jessell, M. W. (1981). Noddy: an interactive map creation package. unpublished MSc
thesis, University of London.

Jessell, M.W., Ailleres, L., and De Kemp, E. A. (2010). Towards an integrated inversion
of geoscientific data: What price of geology? Tectonophysics, 490(3-4):294–306.

Jessell, M. W. and Valenta, R. K. (1996). Structural geophysics: integrated structural
and geophysical modelling. 15:303–324.

Jones, R. R., McCa�rey, K. J., Wilson, R. W., and Holdsworth, R. E. (2004). Digital field
data acquisition: towards increased quantification of uncertainty during geological
mapping. Geological Society, London, Special Publications, 239(1):43–56.

Kerkering, J. C. (2003). Subjective and objective bayesian statistics: Principles, mod-
els, and applications.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Klitzke, P., Sippel, J., Faleide, J. I., and Scheck-Wenderoth, M. (2016). A 3d gravity
and thermal model for the barents sea and kara sea. Tectonophysics, 684:131–147.

Koivisto, E., Malehmir, A., Hellqvist, N., Voipio, T., and Wijns, C. (2015). Building
a 3d model of lithological contacts and near-mine structures in the kevitsa mining
and exploration site, northern finland: constraints from 2d and 3d reflection seismic
data. Geophysical Prospecting, 63(4-Hard Rock Seismic imaging):754–773.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M. (2017). Automatic
di�erentiation variational inference. Journal of machine learning research.

Kullback, S. and Leibler, R. A. (1951). On information and su�ciency. The annals of
mathematical statistics, 22(1):79–86.

Lajaunie, C., Courrioux, G., andManuel, L. (1997). Foliation fields and 3d cartography
in geology: principles of a method based on potential interpolation. Mathematical
Geology, 29(4):571–584.



xxxviii BIBLIOGRAPHY

Lan, S., Bui-Thanh, T., Christie, M., and Girolami, M. (2016). Emulation of higher-
order tensors in manifold monte carlo methods for bayesian inverse problems. Jour-
nal of Computational Physics, 308:81–101.

Lao, J., Suter, C., Langmore, I., Chimisov, C., Saxena, A., Sountsov, P., Moore, D.,
Saurous, R. A., Ho�man, M. D., and Dillon, J. V. (2020). tfp. mcmc: Mod-
ern markov chain monte carlo tools built for modern hardware. arXiv preprint
arXiv:2002.01184.

Laue, S., Mitterreiter, M., and Giesen, J. (2018). Computing higher order derivatives of
matrix and tensor expressions. In Advances in Neural Information Processing Systems,
pages 2750–2759.

Law, K. J. (2014). Proposals which speed up function-space mcmc. Journal of Compu-
tational and Applied Mathematics, 262:127–138.

Lecarme, O. and Delvare, K. (2013). The book of GIMP: A complete guide to nearly
everything. No Starch Press.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31.

Li, Y. and Oldenburg, D. W. (1998). 3-d inversion of gravity data. Geophysics,
63(1):109–119.

Liang, Z., Degen, D., and Wellmann, F. (2021). The application of neural operator in
subsurface process simulation. In EGU General Assembly Conference Abstracts, pages
EGU21–12940.

Liang, Z., Wellmann, F., and Ghattas, O. (2022). Uncertainty quantification of geo-
logical model parameters in 3d gravity inversion by hessian-informed markov chain
monte carlo. Geophysics, 88(1):1–78.

Linde, N., Ginsbourger, D., Irving, J., Nobile, F., and Doucet, A. (2017). On uncertainty
quantification in hydrogeology and hydrogeophysics. Advances in Water Resources,
110:166–181.

Lindsay, M. D., Aillères, L., Jessell, M. W., de Kemp, E. A., and Betts, P. G. (2012). Lo-
cating and quantifying geological uncertainty in three-dimensional models: Analy-
sis of the gippsland basin, southeastern australia. Tectonophysics, 546:10–27.

Lindsay, M. D., Perrouty, S., Jessell, M. W., and Ailleres, L. (2013). Making the link
between geological and geophysical uncertainty: geodiversity in the ashanti green-
stone belt. Geophysical Journal International, 195(2):903–922.

Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer Science &
Business Media.



BIBLIOGRAPHY xxxix

Liu, Q., Lee, J., and Jordan, M. (2016). A kernelized stein discrepancy for goodness-
of-fit tests. In International conference on machine learning, pages 276–284. PMLR.

Liu, Q. and Wang, D. (2016). Stein variational gradient descent: A general purpose
bayesian inference algorithm. Advances in neural information processing systems, 29.

Maclaurin, D., Duvenaud, D., and Adams, R. (2015). Gradient-based hyperparameter
optimization through reversible learning. In International conference on machine
learning, pages 2113–2122. PMLR.

Malehmir, A., Juhlin, C., Wijns, C., Urosevic, M., Valasti, P., Koivisto, E., Paananen,
M., Kukkonen, I., and Heikkinen, P. (2011). 3d reflection seismic investigation for
mine planning and exploration in the kevitsa ni-cu pge deposit, northern finland.
In 2011 SEG Annual Meeting. OnePetro.

Malinverno, A. (2002). Parsimonious bayesian markov chain monte carlo inversion in
a nonlinear geophysical problem. Geophysical Journal International, 151(3):675–
688.

Malinverno, A. and Leaney, S. (2000). A monte carlo method to quantify uncertainty
in the inversion of zero-o�set vsp data. In SEG Technical Program Expanded Abstracts
2000, pages 2393–2396. Society of Exploration Geophysicists.

Mallet, J.-L. (1992). Discrete smooth interpolation in geometric modelling. Computer-
aided design, 24(4):178–191.

Mallet, J.-L. and Tertois, A.-L. (2010). Solid earth modeling and geometric uncertain-
ties. In SPE annual technical conference and exhibition. OnePetro.

Mangoubi, O., Pillai, N. S., and Smith, A. (2018). Does hamiltonian monte
carlo mix faster than a random walk on multimodal densities? arXiv preprint
arXiv:1808.03230.

Marechal, A. (1984). Kriging seismic data in presence of faults. In Geostatistics for
natural resources characterization, pages 271–294. Springer.

Margossian, C. C. (2019). A review of automatic di�erentiation and its e�cient imple-
mentation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
9(4):e1305.

Marinari, E. and Parisi, G. (1992). Simulated tempering: a new monte carlo scheme.
EPL (Europhysics Letters), 19(6):451.

Martin, J., Wilcox, L. C., Burstedde, C., and Ghattas, O. (2012). A stochastic newton
mcmc method for large-scale statistical inverse problems with application to seismic
inversion. SIAM Journal on Scientific Computing, 34(3):A1460–A1487.



xl BIBLIOGRAPHY

Martino, L., Elvira, V., Luengo, D., Corander, J., and Louzada, F. (2016). Orthogonal
parallel mcmc methods for sampling and optimization. Digital Signal Processing,
58:64–84.

Marzouk, Y., Moselhy, T., Parno, M., and Spantini, A. (2016). An introduction to
sampling via measure transport. arXiv preprint arXiv:1602.05023.

Massiot, C. and Caumon, G. (2010). Accounting for axial directions, cleavages and
folding style during 3d structural modeling. In 30th GocadMeeting Proceedings, 30th
Gocad meeting.

Merland, R., Caumon, G., Lévy, B., and Collon-Drouaillet, P. (2014). Voronoi grids
conforming to 3d structural features. Computational Geosciences, 18(3):373–383.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of state calculations by fast computing machines. The journal
of chemical physics, 21(6):1087–1092.

Mosegaard, K. and Tarantola, A. (1995). Monte carlo sampling of solutions to inverse
problems. Journal of Geophysical Research: Solid Earth, 100(B7):12431–12447.

Mosser, L., Dubrule, O., and Blunt, M. J. (2020). Stochastic seismic waveform in-
version using generative adversarial networks as a geological prior. Mathematical
Geosciences, 52(1):53–79.

Moulaeifard, M., Wellmann, F., Bernard, S., de la Varga, M., and Bommes, D. (2022).
Subdivide and conquer: Adapting non-manifold subdivision surfaces to surface-
based representation and reconstruction of complex geological structures. Math-
ematical Geosciences, pages 1–31.

Muir, J. B. and Tkalcic, H. (2015). Probabilistic joint inversion of lowermost mantle p-
wave velocities and core mantle boundary topography using di�erential travel times
and hierarchical hamiltonian monte-carlo sampling. AGUFM, 2015:S14A–03.

Nabighian, M. N., Ander, M., Grauch, V., Hansen, R., LaFehr, T., Li, Y., Pearson, W.,
Peirce, J., Phillips, J., and Ruder, M. (2005a). Historical development of the gravity
method in exploration. Geophysics, 70(6):63ND–89ND.

Nabighian, M. N., Grauch, V., Hansen, R., LaFehr, T., Li, Y., Peirce, J. W., Phillips,
J. D., and Ruder, M. (2005b). The historical development of the magnetic method
in exploration. Geophysics, 70(6):33ND–61ND.

Nagy, D. (1966). The gravitational attraction of a right rectangular prism. Geophysics,
31(2):362–371.

Neal, R. M. (1993). Bayesian learning via stochastic dynamics. In Advances in neural
information processing systems, pages 475–482.



BIBLIOGRAPHY xli

Neal, R. M. et al. (2011). Mcmc using hamiltonian dynamics. Handbook of markov
chain monte carlo, 2(11):2.

Nilsen, G. K., Munthe-Kaas, A. Z., Skaug, H. J., and Brun, M. (2019). E�cient com-
putation of hessian matrices in tensorflow. arXiv preprint arXiv:1905.05559.

Oates, C. J., Girolami, M., and Chopin, N. (2017). Control functionals for monte carlo
integration. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
79(3):695–718.

Olierook, H. K., Scalzo, R., Kohn, D., Chandra, R., Farahbakhsh, E., Clark, C., Reddy,
S. M., and Müller, R. D. (2021). Bayesian geological and geophysical data fusion for
the construction and uncertainty quantification of 3d geological models. Geoscience
Frontiers, 12(1):479–493.

Pakyuz-Charrier, E., Lindsay, M., Ogarko, V., Giraud, J., and Jessell, M. (2018). Monte
carlo simulation for uncertainty estimation on structural data in implicit 3-d geolog-
ical modeling, a guide for disturbance distribution selection and parameterization.
Solid Earth, 9(2):385–402.

Pankratov, O. and Kuvshinov, A. (2016). Applied mathematics in em studies with spe-
cial emphasis on an uncertainty quantification and 3-d integral equation modelling.
Surveys in Geophysics, 37(1):109–147.

Parker, R. L. (1974). Best bounds on density and depth from gravity data. Geophysics,
39(5):644–649.

Parker, R. L. (1975). The theory of ideal bodies for gravity interpretation. Geophysical
Journal International, 42(2):315–334.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. (2017). Automatic di�erentiation in pytorch.

Petra, N., Martin, J., Stadler, G., and Ghattas, O. (2014). A computational frame-
work for infinite-dimensional bayesian inverse problems, part ii: Stochastic newton
mcmc with application to ice sheet flow inverse problems. SIAM Journal on Scientific
Computing, 36(4):A1525–A1555.

Pinski, F. J., Simpson, G., Stuart, A. M., and Weber, H. (2015). Algorithms for
kullback–leibler approximation of probability measures in infinite dimensions. SIAM
Journal on Scientific Computing, 37(6):A2733–A2757.

Pirot, G., Renard, P., Huber, E., Straubhaar, J., and Huggenberger, P. (2015). Influence
of conceptual model uncertainty on contaminant transport forecasting in braided
river aquifers. Journal of Hydrology, 531:124–141.

Pollack, A., Cladouhos, T. T., Swyer, M. W., Siler, D., Mukerji, T., and Horne, R. N.
(2021). Stochastic inversion of gravity, magnetic, tracer, lithology, and fault data for



xlii BIBLIOGRAPHY

geologically realistic structural models: Patua geothermal field case study. Geother-
mics, 95:102129.

Pompe, E., Holmes, C., and ˙atuszy˝ski, K. (2020). A framework for adaptive mcmc
targeting multimodal distributions. The Annals of Statistics, 48(5):2930–2952.

Portniaguine, O. and Zhdanov, M. S. (1999). Focusing geophysical inversion images.
Geophysics, 64(3):874–887.

Qi, Y. and Minka, T. P. (2002). Hessian-based markov chain monte-carlo algorithms.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial di�erential equations. Journal of Computational physics,
378:686–707.

Ranganath, R., Gerrish, S., and Blei, D. (2014). Black box variational inference. In
Artificial intelligence and statistics, pages 814–822. PMLR.

Rashidifard, M., Giraud, J., Lindsay, M., Jessell, M., and Ogarko, V. (2021). Con-
straining 3d geometric gravity inversion with 2d reflection seismic profile using a
generalized level-set approach: application to eastern yilgarn craton. Solid Earth
Discussions, pages 1–35.

Rath, V., Wolf, A., and Bücker, H. (2006). Joint three-dimensional inversion of coupled
groundwater flow and heat transfer based on automatic di�erentiation: sensitivity
calculation, verification, and synthetic examples. Geophysical Journal International,
167(1):453–466.

Rawlinson, N., Fichtner, A., Sambridge, M., and Young, M. K. (2014). Seismic tomog-
raphy and the assessment of uncertainty. Advances in geophysics, 55:1–76.

Reamer, S. K. and Ferguson, J. F. (1989). Regularized two-dimensional fourier gravity
inversion method with application to the silent canyon caldera, nevada. Geophysics,
54(4):486–496.

Ren, Z., Zhong, Y., Chen, C., Tang, J., and Pan, K. (2018). Gravity anomalies of
arbitrary 3d polyhedral bodies with horizontal and vertical mass contrasts up to
cubic order. Geophysics, 83(1):G1–G13.

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows.
In International conference on machine learning, pages 1530–1538. PMLR.

Robert, C. P., Elvira, V., Tawn, N., and Wu, C. (2018). Accelerating mcmc algorithms.
Wiley Interdisciplinary Reviews: Computational Statistics, 10(5):e1435.

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various metropolis-
hastings algorithms. Statistical science, 16(4):351–367.



BIBLIOGRAPHY xliii

Roberts, G. O., Tweedie, R. L., et al. (1996). Exponential convergence of langevin
distributions and their discrete approximations. Bernoulli, 2(4):341–363.

Rodriguez Piceda, C., Scheck Wenderoth, M., Gomez Dacal, M. L., Bott, J., Prezzi,
C. B., and Strecker, M. R. (2021). Lithospheric density structure of the southern
central andes constrained by 3d data-integrative gravity modelling. International
Journal of Earth Sciences, 110(7):2333–2359.

Rohit, R., Kiplangat, D. C., Veena, R., Jose, R., Pradeepkumar, A., Kumar, K. S., et al.
(2023). Tracing the evolution and charting the future of geothermal energy research
and development. Renewable and Sustainable Energy Reviews, 184:113531.

Rongier, G., Collon-Drouaillet, P., and Filipponi, M. (2014). Simulation of 3d karst
conduits with an object-distance based method integrating geological knowledge.
Geomorphology, 217:152–164.

Ross, M., Parent, M., and Lefebvre, R. (2005). 3d geologic framework models for
regional hydrogeology and land-use management: a case study from a quaternary
basin of southwestern quebec, canada. Hydrogeology Journal, 13(5):690–707.

Rossky, P. J., Doll, J., and Friedman, H. (1978). Brownian dynamics as smart monte
carlo simulation. The Journal of Chemical Physics, 69(10):4628–4633.

Roy, V. (2020). Convergence diagnostics for markov chain monte carlo. Annual Review
of Statistics and Its Application, 7:387–412.

Rücker, C., Günther, T., andWagner, F. M. (2017). pyGIMLi: An open-source library for
modelling and inversion in geophysics. Computers and Geosciences, 109:106–123.

Rudolf, D. and Sprungk, B. (2018). On a generalization of the preconditioned
crank–nicolson metropolis algorithm. Foundations of Computational Mathematics,
18(2):309–343.

Rudoy, D. and Wolfe, P. J. (2006). Monte carlo methods for multi-modal distribu-
tions. In 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, pages
2019–2023. IEEE.

Ruggeri, P., Irving, J., and Holliger, K. (2015). Systematic evaluation of sequential
geostatistical resampling within mcmc for posterior sampling of near-surface geo-
physical inverse problems. Geophysical Journal International, 202(2):961–975.

Sambridge, M., Bodin, T., Gallagher, K., and Tkal iƒ, H. (2013). Transdimensional
inference in the geosciences. Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 371(1984):20110547.

Sambridge, M. andMosegaard, K. (2002). Monte carlo methods in geophysical inverse
problems. Reviews of Geophysics, 40(3):3–1.



xliv BIBLIOGRAPHY

Sambridge, M., Rickwood, P., Rawlinson, N., and Sommacal, S. (2007). Automatic
di�erentiation in geophysical inverse problems. Geophysical Journal International,
170(1):1–8.

Saul, L. and Jordan, M. (1995). Exploiting tractable substructures in intractable net-
works. Advances in neural information processing systems, 8.

Scalzo, R., Kohn, D., Olierook, H., Houseman, G., Chandra, R., Girolami, M., and
Cripps, S. (2019). E�ciency and robustness in monte carlo sampling for 3-d geo-
physical inversions with obsidian v0. 1.2: setting up for success. Geoscientific Model
Development, 12(7):2941–2960.

Scalzo, R., Lindsay, M., Jessell, M., Pirot, G., Giraud, J., Cripps, E., and Cripps, S.
(2021). Blockworlds 0.1. 0: A demonstration of anti-aliased geophysics for proba-
bilistic inversions of implicit and kinematic geological models. Geoscientific Model
Development Discussions, pages 1–33.

Schaaf, A., de la Varga, M., Wellmann, F., and Bond, C. E. (2021). Constraining
stochastic 3-d structural geological models with topology information using ap-
proximate bayesian computation in gempy 2.1. Geoscientific Model Development,
14(6):3899–3913.

Schweizer, D., Blum, P., and Butscher, C. (2017). Uncertainty assessment in 3-d geo-
logical models of increasing complexity. Solid Earth, 8(2):515–530.

Seidl, D. T. and Granzow, B. N. (2022). Calibration of elastoplastic constitutive model
parameters from full-field data with automatic di�erentiation-based sensitivities.
International Journal for Numerical Methods in Engineering, 123(1):69–100.

Sen, M. K. and Sto�a, P. L. (1996). Bayesian inference, gibbs’ sampler and uncertainty
estimation in geophysical inversion 1. Geophysical Prospecting, 44(2):313–350.

Sharma, S., Sharma, S., and Athaiya, A. (2017). Activation functions in neural net-
works. Towards Data Sci, 6(12):310–316.

Shi, B., Bai, X., and Yao, C. (2016). An end-to-end trainable neural network for image-
based sequence recognition and its application to scene text recognition. IEEE trans-
actions on pattern analysis and machine intelligence, 39(11):2298–2304.

Singer, D. and Menzie, W. D. (2010). Quantitative mineral resource assessments: An
integrated approach. Oxford University Press.

Skeels, D. C. (1947). Ambiguity in gravity interpretation. Geophysics, 12(1):43–56.

Stamm, F. A., de la Varga, M., and Wellmann, F. (2019). Actors, actions, and un-
certainties: optimizing decision-making based on 3-d structural geological models.
Solid Earth, 10(6).



BIBLIOGRAPHY xlv

Stephens, M. (2000). Dealing with multimodal posteriors and non-identifiability in
mixture models. Journal of the Royal Statistical Society, Series B, xx (xx).

Stern, R. J., Anthony, E. Y., Ren, M., Lock, B. E., Norton, I., Kimura, J.-I., Miyazaki, T.,
Hanyu, T., Chang, Q., and Hirahara, Y. (2011). Southern louisiana salt dome xeno-
liths: First glimpse of jurassic (ca. 160ma) gulf of mexico crust. Geology, 39(4):315–
318.

Stigler, S. M. (1986). Laplace’s 1774 memoir on inverse probability. Statistical Science,
1(3):359–363.

Sun, J. and Li, Y. (2016). Joint inversion of multiple geophysical data using guided
fuzzy c-means clustering. Geophysics, 81(3):ID37–ID57.

Suzuki, S., Caumon, G., and Caers, J. (2008). Dynamic data integration for structural
modeling: model screening approach using a distance-based model parameteriza-
tion. Computational Geosciences, 12(1):105–119.

Tacher, L., Pomian-Srzednicki, I., and Parriaux, A. (2006). Geological uncertainties
associated with 3-d subsurface models. Computers & Geosciences, 32(2):212–221.

Tarantola, A. and Valette, B. (1982). Generalized nonlinear inverse problems solved
using the least squares criterion. Reviews of Geophysics, 20(2):219–232.

Team, S. D. et al. (2016). Stan modeling language users guide and reference manual.
Team SD.

Thiele, S. T., Jessell, M. W., Lindsay, M., Wellmann, J. F., and Pakyuz-Charrier, E.
(2016). The topology of geology 2: Topological uncertainty. Journal of Structural
Geology, 91:74–87.

Tierney, L. and Kadane, J. B. (1986). Accurate approximations for posterior moments
and marginal densities. Journal of the american statistical association, 81(393):82–
86.

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of ill-posed problems. New York,
pages 1–30.

Tran, D., Blei, D., and Airoldi, E. M. (2015a). Copula variational inference. Advances
in neural information processing systems, 28.

Tran, D., Ranganath, R., and Blei, D. M. (2015b). The variational gaussian process.
arXiv preprint arXiv:1511.06499.

Turk, G. and O’brien, J. F. (2005). Shape transformation using variational implicit
functions. In ACM SIGGRAPH 2005 Courses, pages 13–es.

Villa, U., Petra, N., and Ghattas, O. (2018). hippylib: An extensible software frame-
work for large-scale inverse problems. Journal of Open Source Software, 3(30):940.



xlvi BIBLIOGRAPHY

Villa, U., Petra, N., and Ghattas, O. (2021). hippylib: An extensible software frame-
work for large-scale inverse problems governed by pdes: Part i: Deterministic inver-
sion and linearized bayesian inference. ACM Transactions on Mathematical Software
(TOMS), 47(2):1–34.

Wang, G., Li, R., Carranza, E. J. M., Zhang, S., Yan, C., Zhu, Y., Qu, J., Hong, D., Song,
Y., Han, J., et al. (2015). 3d geological modeling for prediction of subsurface mo
targets in the luanchuan district, china. Ore Geology Reviews, 71:592–610.

Wellmann, F. (2022). Geological modeling 4.0. In Handbook Industry 4.0, pages 807–
819. Springer.

Wellmann, F. and Caumon, G. (2018). 3-d structural geological models: Concepts,
methods, and uncertainties. 59:1–121.

Wellmann, J. F., de la Varga, M., Murdie, R. E., Gessner, K., and Jessell, M. (2018).
Uncertainty estimation for a geological model of the sandstone greenstone belt,
western australia–insights from integrated geological and geophysical inversion in
a bayesian inference framework. Geological Society, London, Special Publications,
453(1):41–56.

Wellmann, J. F., Horowitz, F. G., Schill, E., and Regenauer-Lieb, K. (2010). Towards in-
corporating uncertainty of structural data in 3d geological inversion. Tectonophysics,
490(3-4):141–151.

Wellmann, J. F. and Regenauer-Lieb, K. (2012). Uncertainties have a meaning: In-
formation entropy as a quality measure for 3-d geological models. Tectonophysics,
526:207–216.

Wellmann, J. F., Thiele, S. T., Lindsay, M. D., and Jessell, M. W. (2016). pynoddy 1.0:
an experimental platform for automated 3-d kinematic and potential field mod-
elling. Geoscientific Model Development, 9(3):1019–1035.

Witter, J. B., Trainor-Guitton, W. J., and Siler, D. L. (2019). Uncertainty and risk eval-
uation during the exploration stage of geothermal development: A review. Geother-
mics, 78:233–242.

Wong, R. (2001). Asymptotic approximations of integrals. society for industrial and
applied mathematics.

Wu, K., O’Leary-Roseberry, T., Chen, P., and Ghattas, O. (2022). Derivative-informed
projected neural network for large-scale bayesian optimal experimental design.
arXiv preprint arXiv:2201.07925.

Wu, L. (2018). E�cient modeling of gravity fields caused by sources with arbitrary
geometry and arbitrary density distribution. Surveys in Geophysics, 39(3):401–434.



BIBLIOGRAPHY xlvii

Wu, L. and Chen, L. (2016). Fourier forward modeling of vector and tensor gravity
fields due to prismatic bodies with variable density contrastvariable density contrast.
Geophysics, 81(1):G13–G26.

Wu, Q., Xu, H., and Zou, X. (2005). An e�ective method for 3d geological modeling
with multi-source data integration. Computers & geosciences, 31(1):35–43.

Yamamoto, J. K., Koike, K., Kikuda, A. T., da Cruz Campanha, G. A., and Endlen,
A. (2014). Post-processing for uncertainty reduction in computed 3d geological
models. Tectonophysics, 633:232–245.

Yang, D., Oldenburg, D. W., and Haber, E. (2014). 3-d inversion of airborne electro-
magnetic data parallelized and accelerated by local mesh and adaptive soundings.
Geophysical Journal International, 196(3):1492–1507.

Yao, Y., Vehtari, A., and Gelman, A. (2020). Stacking for non-mixing bayesian
computations: The curse and blessing of multimodal posteriors. arXiv preprint
arXiv:2006.12335.

Zhang, J. and Jiang, L. (2017). Analytical expressions for the gravitational vector field
of a 3-d rectangular prism with density varying as an arbitrary-order polynomial
function. Geophysical Journal International, 210(2):1176–1190.

Zhang, X. and Curtis, A. (2020a). Seismic tomography using variational inference
methods. Journal of Geophysical Research: Solid Earth, 125(4):e2019JB018589.

Zhang, X. and Curtis, A. (2020b). Variational full-waveform inversion. Geophysical
Journal International, 222(1):406–411.

Zhang, Y. et al. (2019). Bayesian semi-supervised learning for uncertainty-
calibrated prediction of molecular properties and active learning. Chemical science,
10(35):8154–8163.

Zhao, H. and Kowalski, J. (2022). Bayesian active learning for parameter calibration
of landslide run-out models. Landslides, pages 1–13.

Zhou, X. (2009). 3d vector gravity potential and line integrals for the gravity anomaly
of a rectangular prism with 3d variable density contrast. Geophysics, 74(6):I43–I53.

Zhu, Y. and Zabaras, N. (2018). Bayesian deep convolutional encoder–decoder net-
works for surrogate modeling and uncertainty quantification. Journal of Computa-
tional Physics, 366:415–447.


	Kurzzusammenfassung
	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Research Objectives
	Outline

	Geological Modeling and Uncertainty Quantification
	Introduction
	Review of Recent Development of Geological Modeling
	Universal Co-kriging Method
	Stochastic Geological Modeling and Bayesian Framework
	Stochastic Geological Modeling
	Bayesian Framework
	Markov Chain Monte Carlo (MCMC)


	Gravity Simulation
	Introduction
	Methods
	Gravity forward simulation
	Kernel methods
	Optimized centered kernel

	Results
	Synthetic spherical object
	Sandstone Greenstone Belt

	Discussion
	Conclusion

	Trainable Geological Modeling
	Introduction
	Automatic Differentiation
	Automatic Differentiation principle
	Computational Graph

	Trainable Geological Models
	Vanishing Gradient
	Vanishing Gradient in implicit geological modeling
	Method: Smooth Step-Function
	Effect on Gravity Forward Simulation
	Choice of the Step Function

	Posterior Visualization - a dimension reduction method
	Morphology of Posterior Space
	Loss Landscape Method

	Numerical examples
	Posterior Landscape of the geological model
	Numerical example of probabilistic gravity inversion

	Discussion
	Conclusion

	Hessian-informed MCMC
	Introduction
	Method: Generalized Preconditioned Crank-Nicolson (gpCN)
	Efficient Hessian Calculation
	Results
	Synthetic Models
	Model A: Simple Dome
	Model B: Thickness as Additional Variables and Prior

	Case Study: Kevitsa Deposit

	Discussion
	Comparison to Conventional Gravity Inversion
	Verification of Derivatives
	Computational Efficiency
	Limitations

	Conclusion

	Multimodality in Geological Modeling
	Multimodality Problem
	Method: Stein Variational Gradient Descent (SVGD)
	Results
	Dummy 2D-Example
	Application in Geological Modeling Inversion

	Conclusion

	Discussion and Outlook
	Forward Modeling
	Bayesian Inference, Uncertainty Quantification
	Implementation

	Conclusion

