h1

h2

h3

h4

h5
h6


001     980502
005     20250207123836.0
024 7 _ |2 ISSN
|a 0021-9991
024 7 _ |2 ISSN
|a 1090-2716
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-85178346406
024 7 _ |2 WOS
|a WOS:001129846900001
024 7 _ |2 doi
|a 10.1016/j.jcp.2023.112599
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2024-02307
037 _ _ |a RWTH-2024-02307
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Aretz, Nicole
|b 0
245 _ _ |a A greedy sensor selection algorithm for hyperparameterized linear Bayesian inverse problems with correlated noise models
|h online
260 _ _ |a Amsterdam
|b Elsevier
|c 2024
300 _ _ |a [1]-24
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
536 _ _ |0 G:(GEPRIS)24613455
|a DFG project 24613455 - GSC 111: Aachener Graduiertenschule für computergestützte Natur- und Ingenieurwissenschaften (24613455)
|c 24613455
|x 0
536 _ _ |0 G:(GEPRIS)333849990
|a GRK 2379 - GRK 2379: Hierarchische und hybride Ansätze für moderne inverse Probleme (333849990)
|c 333849990
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: publications.rwth-aachen.de
591 _ _ |a Germany
591 _ _ |a Netherlands
591 _ _ |a USA
700 1 _ |a Chen, Peng
|b 1
700 1 _ |0 P:(DE-82)IDM02406
|a Degen, Denise Melanie
|b 2
|u rwth
700 1 _ |0 P:(DE-82)IDM00323
|a Veroy-Grepl, Karen
|b 3
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1469164-4
|a 10.1016/j.jcp.2023.112599
|p 112599
|t Journal of computational physics
|v 498
|x 1090-2716
|y 2024
856 4 _ |u https://publications.rwth-aachen.de/record/980502/files/980502.pdf
|y OpenAccess
909 C O |o oai:publications.rwth-aachen.de:980502
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM02406
|a RWTH Aachen
|b 2
|k RWTH
914 1 _ |y 2024
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-10-21
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J COMPUT PHYS : 2022
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2023-10-21
|w ger
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-10-21
920 1 _ |0 I:(DE-82)532610_20140620
|k 532610
|l Lehrstuhl für Numerische Geowissenschaften, Geothermie und Reservoirgeophysik
|x 0
920 1 _ |0 I:(DE-82)530000_20140620
|k 530000
|l Fachgruppe für Geowissenschaften und Geographie
|x 1
920 1 _ |0 I:(DE-82)080052_20160101
|k 080052
|l E.ON Energy Research Center
|x 2
980 1 _ |a FullTexts
980 _ _ |a I:(DE-82)080052_20160101
980 _ _ |a I:(DE-82)530000_20140620
980 _ _ |a I:(DE-82)532610_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21