arXiv:2402.01402v1 [math.NA] 2 Feb 2024

A comparison study of supervised learning
techniques for the approximation of high
dimensional functions and feedback control

Mathias Oster!, Luca Saluzzi®", Tizian Wenzel?

1IGPM, RWTH Aachen, Templergraben 55, Aachen, 52062, Germany.
2*Department of Mathematics, Scuola Normale Superiore, P.za dei
Cavalieri, 7, Pisa, 56126, Italy.
3Department of Mathematics, Universitit Hamburg, Bundesstrae 55,
Hamburg, 20146, Germany.

*Corresponding author(s). E-mail(s): luca.saluzzi@sns.it;
Contributing authors: oster@igpm.rwth-aachen.de;
tizian.wenzel@Quni-hamburg.de;

Abstract

Approximation of high dimensional functions is in the focus of machine learning
and data-based scientific computing. In many applications, empirical risk min-
imisation techniques over nonlinear model classes are employed. Neural networks,
kernel methods and tensor decomposition techniques are among the most popu-
lar model classes. We provide a numerical study comparing the performance of
these methods on various high-dimensional functions with focus on optimal con-
trol problems, where the collection of the dataset is based on the application of
the State-Dependent Riccati Equation.

Keywords: Optimal Control, High-Dimensionality, Neural Networks, Kernel Methods,
Tensor Trains

1 Introduction

Finding surrogates for functions in high dimensions has become one of the key tasks
in scientific computing. One interesting example is the approximation of the value
function of the optimal control of PDEs, which leads, after semi-discretisation, to

http://arxiv.org/abs/2402.01402v1

very high-dimensional control problems. In optimal control the value function plays
a crucial role as it can provide optimal feedback laws. There are two major ways to
calculate the value function. First, one could solve the Bellman or Hamilton-Jacobi-
Bellman (HJB) equation [1-3]. For both equations there is a wide range of numerical
tools in optimal feedback control, see e.g. [4-19]. Second, simultaneously to the work
of Bellman, Pontryagin developed a set of necessary conditions for optimal problems
[20], the so-called Pontryagin maximum principle (PMP). This enables a pointwise
evaluation of the value function and can thus be used for the recovery of the value
function [21-24].

Most classical function approximation tools suffer from the curse of dimensional-
ity, i.e. the exponential growth of complexity with respect to the input dimension.
To break the curse various methods have been developed, most prominently neural
networks, kernel methods and tensor decomposition techniques. In most applications,
these methods are based on empirical Least-Squares methods on a nonlinear model
class, known as empirical risk minimization techniques [25, 26] in statistic learning.
For example, to approximate a function f : Q — R defined on some domain C R¢,
one minimizes the functional

1 N
N Z |f(1'z> - fM(»’Ci>|2

for N samples z; € Q distributed according to some density p within some model class
far € M C C(2). This means that one needs to be able to access the target function
f on given or chosen samples. Due to the high dimensionality of the input space
), one usually resorts to nonlinear model classes providing improved expressibility
compared to linear models of the same complexity, at the cost of increasingly difficult
optimization tasks when minimizing the empirical risk.

One of these nonlinear model classes is using structured representations of polyno-
mials like hierarchical tensor formats, which allow to reduce the number of parameters
within the coefficient tensor of a linear ansatz [27]. More precisely, we consider a sub-
manifold in ®?:1R"i defined by multi-linear parametrizations. Here we use tensor
trains which are a special case of a hierarchical or tree based tensor format [27]. Tensor
trains have been invented by [28, 29] and applied to various high-dimensional PDE’s
[30], however the parametrization has already been already used in quantum physics
much earlier. For good surveys we refer to [31-34]. The tensor train representation has
appealing properties, making them attractive for treatment of the present problems.
For example they contain sparse polynomials, but are much more flexible at a price of
a slightly larger overhead, see e.g. [35] for a comparison concerning parametric PDEs.

There has been extensive use of tensor trains in high dimensional optimal control
problems [36-38] and stochastic control problems [39-42]. In particular, in this paper
we will focus on two specific tensor train approaches: the TT Gradient Cross [43] and
the block-sparse tensor train [44]. Cross approximation methods [45-48] have been
introduced in order to adjust the sampling sets to reduce the conditioning of the
interpolation problem and enhance the accuracy of approximation. T'T Gradient Cross
makes use of the Cross interpolation to construct efficiently the interpolation indices

and takes into account the information of the gradient of the target function to improve
the stability. The block-sparse tensor train approach is exploiting sparsity patterns in
the cores of tensor trains to avoid overparametrization by identifying homogeneous
degree basis functions.

Another approach is the use of kernel methods [49], which comprise various tech-
niques in numerical approximation, machine learning and scientific computing. These
flexible tools allow to work with arbitrarily scattered data in high dimensional space
and allow for a convenient mathematical analysis based on reproducing kernel Hilbert
spaces.

Probably the most popular and widespread techniques in supervised learning are
neural networks. The last decade has seen an incredible development in machine learn-
ing since efficient back-propagation and optimization algorithms as well as powerful
hardware allowed for very complicated neural network architectures, see [50-53] for an
introduction to neural networks from a mathematical perspective. They are employed
in virtually all machine learning and scientific computing tasks [54, 55]. Also in opti-
mal control they were used to obtain (sub)optimal feedback laws and surrogates for
the value functions [56-68].

Lastly, we like to mention that also sparse polynomial techniques have been
successfully employed in the context of high dimensional optimal control [69-71].
However, they are not part of the numerical comparison in this study.

In this paper we conduct a numerical study comparing Tensor Trains, neural net-
works and kernel methods by approximating high dimensional functions and applying
them to value functions from high dimensional optimal control problems. After intro-
ducing the general optimal control problem in Section 2, we recall our nonlinear model
classes in Section 3. In Section 4 we provide a variety of numerical examples where we
compare the performance of the different methods. Section 5 concludes the paper.

2 The Optimal Control Problem

In this section we present the infinite horizon problem and the corresponding synthe-
sis of the feedback law. We first introduce the optimal control framework using the
Hamilton-Jacobi-Bellman (HJB) formalism, then we pass to the synthesis of subopti-
mal feedback laws which will provide the data for the supervised learning techniques.
We consider a dynamical system in control affine-form given by

y(s) = f(y(s)) + Bly(s))u(s), s € (0,400), (1)
y(0) = 2 € R%

We denote by y : [0,4+00) — R the state of the system, by u : [0,+00) — R™
the control signal and by U = L*°([0,+00);U) the set of admissible controls where
U C R™. The system dynamics f : R? - R% and B: R¢ = R? are assumed to be
CY(R9) functions.

We introduce the infinite horizon cost functional:
+o0
J(u(,x)) = / r(y(s)) + uT(s)Ru(s) ds, (2)
0

where r : RY — R+ and R € R™*™ is a symmetric positive definite matrix. Our
aim is to compute an optimal control in feedback form, e.g. a control signal fully
determined upon the current state of the system. We start by the definition of the
value function for a given initial condition z € R ¢:

Viw) = inf Ju(,0)). (3)

which satisfies the following Hamilton-Jacobi-Bellman PDE for every z € R4

min {(f(z) + B(z)u) ' VV(z) + r(z) + u' Ru} = 0. (4)

The HJB PDE (4) is a first-order fully nonlinear PDE defined over R?, where d
represents the dimension of the considered dynamical system. The dimension of the
problem may be large and this limitation is known as curse of dimensionality. In the
case, i.e. U = R™, the minimization in the equation (4) can be computed explicitly as

() = f%R’lB(z)TVV(z), (5)

leading to the following version of the HJIB PDE
1
VV(x)" f(x) — ZVV(gc)TB(:c)}rlB(x)TVV(x)+ r(z) =0. (6)

In this work, instead of considering directly the high-dimensional HJB PDE (6),
we are interested in retrieving an approximation of the value function using supervised
learning techniques. Indeed, we will consider an approximation of V' (z) in a regression
framework, where we assume measurements of the function at sampling points.

We are going to consider a fast, but suboptimal alternative: the State-Dependent
Riccati Equation (SDRE). This will allow to generate a synthetic dataset that allows
to approximate the value function, leading to the synthesis of a suboptimal control
which is still able to stabilize the dynamical system.

2.1 State-Dependent Riccati Equation

The State Dependent Riccati Equation (SDRE) is a powerful mathematical tool that
finds widespread applications [72, 73]. Originating from the classical Riccati Equation,
the SDRE extends its utility by incorporating state-dependent coefficients, thereby
accommodating systems with nonlinearity and time-varying dynamics. The approach
relies on sequential resolution of linear-quadratic control problems that stem from
progressive linearization of the dynamics along a trajectory.

Let us suppose that the cost functional (2) can be rewritten in the following form

—+oo

oo 7) = / y()T Q)Y (t) + u(t)T Ru(t) dt, (7)

0

with Q : R4 — R¥>4 Q(y) = 0 Vy € R? and the dynamical system expressed in
semilinear form

(1) = Aly(®)y () + By(t))u(t) (8)
y(0) ==. 9)

Assume the dynamics is linear in the state, i.e. A(y(t)) = A € R¥™? and B(y(t)) =
B € R™™ and that the matrix Q(y) = Q is constant in the state. This is called
Linear Quadratic Regulator (LQR) problem. If the pair (A, B) is stabilizable and the
pair (A, Q'/?) is detectable, then the optimal feedback control is computed via the
following formula

u(y) = —R™'B" Py. (10)
Here, P € R?* is the unique positive definite solution of the Algebraic Riccati
Equation (ARE)

A"P+PA—-PBR'B"P+Q=0.

Essentially, the SDRE technique extends this approach introducing the dependence
on the current state, that is,

u(y) =—R'B"(y)P(y)y, (11)

where P(y) now is the solution of a state-dependent ARE

AT (y)P(y) + P(y)Aly) — Py)Bly)R'B () P(y) + Q@ = —Qy), (12)

where A(y) and B(y) are fixed at the state y. This procedure can be iterated along
the trajectory, solving sequentially (12) as the state y(t) is evolving in time.

Assuming suitable stability hypothesis, it is possible to show that the closed loop
dynamics generated by the feedback law (11) are locally asymptotically stable (we
refer to [74] for the exact statement and further details).

3 Machine learning methods

3.1 Machine learning and least-squares loss

In this article we focus on the use of supervised machine learning techniques for high-
dimensional functions and optimal control problems. In each of the following numerical
example we aim to approximate a target function f. One way to do so is to minimize

an empirical L? loss between the target function and a nonlinear model class, i.e. we
are considering a problem of the form

lg)
f;?g}wN;If(%) far ()17, (13)
where x; are samples in 2 and M is the model class. This allows us to use random
samples. Another route is taken by the TT-Cross algorithm introduced in the following.
There an active learning strategy is employed to reduce the sample complexity.

All methods which will be introduced in the following do employ a global function
approximation, which is in contrast to localized methods such as as finite elements.
Furthermore, all model classes will be nonlinear except the kernel method.

3.2 Tree Based Tensor Representation - Tensor Trains

For the approximation of the value function (3), we define a nonlinear model class to
circumvent the curse of dimensionality. To this end, we choose an underlying finite
dimensional subspace for the approximation of the sought value function. For the
present purpose we take a space II; ,, = span{t;,,...,¥;,} of one-dimensional poly-
nomials of degree smaller than n; and consider the tensor product of such polynomial
spaces
Vp = Hl,nl R ® Hd,nd-

This is a space of multivariate (tensor product) polynomials with bounded multi-
degree. Its elements v € V,, can be represented as

Ni,...,Ng
v(@1,. .., %) = Z Cir,oiaWin (T1) - i, (Ta), (14)
i1,00058a=0

exhibiting that ¢ € R™~"d guffers from the curse of dimensionality. For the sake of
readability we will henceforth write c[i1, ..., iq4] = Ci,...,iy and say that c is an order d
tensor.

The tensor train decomposition aims to represent an order d tensor by a sequence
of order 3 tensors, connected by contractions. This means that we represent ¢ by

Uy e RMom Uy e Rrom2:m2 0 Uy 1 € RTd=2Md-1Td-1 and Uy € R74-1"4 guch that
1 Td—1
clit, ... ia) =Y -+ > Uiliv, n)Usljr, iz, o] - - Ualja—r, dal. (15)

ji=1 Ja—1=1

The TT-rank is introduced as the element wise smallest tuple r = (71, ...,74—1) such
that a decomposition of the form (15) exists. The TT-rank is well defined and, denoting
r = max{r; } and n = max{n;}, the tensors of fixed TT-rank form a smooth manifold
of dimension O(dnr?), which means that for fixed ranks the dimension of the manifold
does increase linearly with the order d. Quadratic functions [36] or weakly correlated

Gaussian functions [75], for example, admit an approximation with TT-rank growing
at most polynomial in d and poly-logarithmic in the approximation error.

Observing that the component tensors U; are connected via a single contrac-
tion/summation to U;—1 and U;y1, we can represent the decomposition in a graph,
by setting the components U; as nodes and indicate contractions by links between
the nodes. In the next step we plug the TT-decomposition of the coefficient ten-

T2 T3

n r
- - = U, ——{Us Us Us
T4 ni no ns Ty

Fig. 1 Graphical representation of a T'T representation of ¢ in four variables.

sor (15) into the representation in (14). To this end we introduce the short form
Wi(z;) = i, (i), - .- ¥i,(25)] € R™. Then

»Nd Ty Tn—1

v(@1, .. Z Z Uiliv, j1]Uzlj1, 42, j2] - - - Ualja—1, id

cold J1seendn—1

(U1 (1)) [ir](Wa(22))[i2] - - - (Palwa))lia), (16)

which means that every open index of the TT representation is contracted with the
one-dimensional basis functions. This representation is known as Functional Tensor
Train (FTT) format of the function v. The graphical representation of this tensor
network is given in Figure 2. Note that any basis can be chosen for ¥;. In this paper

- LI e B o B

v(z) = Ui] Uz] 1Us | [Ua
ni ng ns Ty
][] ()] [ate]

Fig. 2 Graphical representation of T'T tensor train induced polynomial in four variables.

we use a set of orthonormal polynomials. In this case, we have a Parseval formula
providing a norm equivalence between the function space and the Frobenius norm of
the coefficients, which guarantees stability of our representations.

It turns out, that optimization procedures in this TT format can be solved by
consecutively optimizing one component U; while the others are fixed. This alternating
Least-Squares (ALS) algorithm converges at least to a local minimum [76].

3.2.1 Block-Sparse Tensor Trains

One important observation is that in general, tensor trains will parameterize poly-
nomials with high-mixed degree which might lead to numerical instabilities if the

sought function has a bounded maximal degree. To overcome this superfluous degrees
of freedom one can employ the so-called block sparse tensor trains [44].

As it turns out, homogeneous polynomials of degree § exhibit a representation as
tensor trains for which the core admit a sparse representation with block sizes p 5
which also provide rank bounds. Very importantly these block sparse structures are
preserved under essential tensor train manipulation as TT-SVD and rounding. Fur-
thermore, the ALS algorithm can be restricted to respect these sparsity patterns. By
introducing an extra index in the last core one can also parameterize non-homogeneous
polynomials in a block sparse fashion.

Let us give a small example on how the cores will look like for the block-sparse

TTs.
Example 1 (Block Sparsity). Let p =4 and g = 3 be given and let ¢ be a tensor train
such that Lec = gc. Then for k = 2,...,d — 1 the component tensors Cy of ¢ exhibit
the following block sparsity (up to permutation). For indices i of order ri—1 and j of
order 7y,

*000 0«00

. . 0«00) . 00=x0
CelibLi) =g 40| “@G20=1500.
000 % 0000

00x%x0 000 %

. . 000 %)) 0000
Ck(l73a.7)_ 0000 Ck(l)47¢7)_ 0000
0000 0000

Another structural assumption that frequently can be found in application is a
certain grouping of variables, i.e. the function can be written as a sum of sub-functions
each of which depend only on few variables. To make use of this, the following notion
of locality is introduced:

Definition 1 ([44]). Letu € W; be a homogeneous polynomial and B be the symmetric
coefficient tensor. We say that u has a variable locality of Kioc if B(¢1,...,¢,) =0 for
all (4q,...,4y) € NJ with

max{|lm, — lmy| : mi,ma=1,...,9} > Kioc-

Note that the locality and degree bound will give rank bounds. All in all, we will
employ this block-sparse tensor train to reduce the complexity of the ansatz space.
We will comment in the numerical examples, where this ansatz will be too restrictive
and where it can provide benefits to the usual TTs.

3.2.2 TT-Gradient Cross

Given a target function V and its FTT representation (16) V, the TT-Gradient
Cross algorithm aims to solve for a given sample points {z;}}¥, and a dataset
{V(z;), VV (2;)}}, the following regression problem

N
min > |V(@i) = V(@) + A|VV (2:) = VV ()], (17)
Uty Ua <

where) is a parameter tuning the gradient information. The problem can be attacked
using fast algorithms based on the so-called cross interpolation [45]. Given a prefixed
set of collocation points X7 x ... x X4, we apply an alternating direction strategy
solving sequentially least square problems. At the k—th iteration our goal is to find
interpolation sets X ., C X1 X - x Xp_1 and X~j C Xpp1 X - - - X Xg with r,_; and
1, points, respectively. Let us suppose that in the k-th step the sets X o and Xy,
are given. We point out that the number of unknowns in Uy and the cardinality of the
set Y<k ® X, ® Y>k is equal to rp_1ngrg. Solving the least square problem related
to actual sampling points, one can compute the current U and thanks to pivoting
techniques (for example the maxvol method [77]), it is possible to select the next
sampling sets X411 and Xsi—1 as subsets of X & Xi and Xi @& Xs. This step
can be iterated for all k = 1,...,d and the TT cores are updated accordingly until the
algorithm converges. In this case we claim that the method converges if the norm of
the difference of the coefficients in Frobenius norm computed in two consecutive steps
is below a certain threshold denoted as tolstop.

In the context of optimal control problems, the target function V is the value
function and the surrogate model V helps for a fast synthesis of feedback controls.
Indeed, the optimal control is given by

u(z) = 7%R71B($)TVV(Z‘>,

where R and B(x) have been introduced in Section 2. Computed an approximation of
the FTT representation (16) by the TT Gradient Cross, in the online phase we need
to compute the gradient of the surrogate model obtaining the feedback control

i) = —%Rle(x)va/(x).

The TT format enables to compute the gradient in O(dnr?) operations per point,
resulting in an expedited synthesis of the feedback control. For a detailed description
of the method and its application we refer to [43].

3.3 Kernel methods

Another popular method in machine learning are summarized as kernel methods.
This class of methods revolves around the use of a kernel k, which is a symmetric
function k : Q x Q — R, that satisfies some definiteness properties like strict positive
definiteness, i.e. the kernel matrix (k(zi,z;))};—, is positive definite for any choice
of pairwise distinct points {x;}? , and any n € N. Some popular examples are the

Gaussian kernel or the exponential kernel,

kGaussian(xv y) = eXP(*”z - y||2)a (18)

kexp (#,y) = exp(—lz —yl|)
which are radial basis function kernels in R¢ for any d € N. It turns out, that every
strictly positive definite kernels gives rise to a unique reproducing kernel Hilbert
spaces (RKHS) Hj(€2), which allows for a thorough theoretical analysis. Under mild
assumptions on the domain €2, e.g. a Lipschitz boundary, these RKHS can frequently
characterized in terms of Sobolev spaces. For example, the RKHS of the exponential
kernel from Eq. (18) is norm equivalent to the Sobolev space H(?+1)/2(Q), while the
RKHS of the Gaussian kernel consists of analytic functions and a full characterization
is more sophisticated. A representer theorem for kernel approximation [26] states that
the optimal solution for the MSE loss task of Eq. (13) can be found as

M
sx(°) :Z%"f('v%‘), (19)

whereby the coefficients {aj}évil can be frequently computed directly. Such ker-
nel models are used for statistical learning [26], numerical approximation [49], PDE
approximation [78] and machine learning [79], among others. Recent machine learn-
ing research also aims at modifying the kernel, in order to obtain data-adapted or
deep kernel models [80-82]. In numerical approximation, based on assumptions like
f € Hi(Q) or also weaker ones, sharp error estimates for the residual f — sx on some
Lipschitz domain C R? can be derived in various norms, e.g. || - | L2(q), || - | Lo (q) or
even Sobolev norms [83, 84]. Similar to other approximation methods, such error esti-
mates suffer the curse of dimensionality, however target data adapted point choices
X C Q offer the possibility to break it [85]. Though the computation of the optimal
weights {aj}j]\il can be done explicitly, this can be challenging from the computa-
tional point of view for large amount of data points M > 1. Thus recent research aims
at scaling kernel methods to large amounts of data, e.g. via iterative preconditioned
training methods and efficient implementations [79, 86].

3.4 Neural Networks

The most prominent machine learning tools are (deep) neural networks [87], that are
used especially for high-dimensional approximation tasks like image recognition or
image generation. Although NN techniques proved to be very powerful for real world
applications, it turns out that they pose difficulties to obtain quantitative results for
approximation theoretical bounds due to the iterative and non-convex training proce-
dures. There is a plethora of sophisticated architectures and structures available like
convolutional neural networks, residual neural network and recurrent neural networks
aiming on different aspects of machine learning tasks as image and speech recogni-
tion. For high-dimensional unstructured data for function regression, we focus in the
forthcoming on plain feedforward (residual) neural networks, because neither a spatial

10

structure (as in image data) nor a temporal structure (as in time series) is assumed.
Standard feedforward networks are given as a concatenation of L consecutive layers,
each described by a simple nonlinear transform:

fi(@) = c(Wix + by). (20)

As it turns out, the feedforward NN can suffer some numerical instabilities that can be
partly elevated by the so-called residual network architecture where each layer takes
the form

filx) =+ oWz +b). (21)

The function o is called activation function, which is a pointwise acting nonlinear
function that introduces nonlinearity into the approach. A prominent example is the
ReLU function o(x) = max(z,0) or variants like Leaky ReLU, SeLU, GeLU among
others. The matrices W; and the bias vectors b; constitute the parameters of the
neural network, which can be optimized. Due to the highly-nonlinear structure of
the NN, a closed form solution for the optimal weights {W;}~ , and biases {b;}~,
is usually infeasible. Thus, in practice neural networks are optimized using gradient
descent like mini-batch optimization strategies, where the Adam optimizer [88] which
uses adaptive moment estimations is probably the most popular optimizer. In order to
improve generalization for neural networks, regularization strategies like DropOut and
Early Stopping are available, although modern neural network models are frequently
overparameterized, mitigating the need for explicit regularization. Despite there are
error bounds available which elucidate especially the benefits of deep neural networks
[89], they are rather of constructive nature. As it is highly unlikely that the stochastic
gradient based optimization realizes such constructions, these error bounds are usually
not practical. It is remarkable, that recently connections between the training of neural
network and kernel methods where found: In the limit of large width neural networks,
the training behaviour of neural networks is linearized in parameter space and can
thus be described with help of the neural tangent kernel [90].

4 Numerical tests

In this section, we embark on an exploration and comparison of the supervised learning
techniques introduced in the previous sections through a series of numerical tests. In
all the examples we employ sample-based algorithms for function regression. Given a
set of sample points {z;}}_;, we measure the error between the prediction s(z;) and
the true target value y; = f(x;) considering the following relative error in norm 2:

oo — \/ZJ 1y — s(@)P)

] 1|y]|

In the tables below, we add train or test in the subscript in order to define whether
the error was measured with respect to the training or the test set. In the last example

11

we will consider also the error in the computation of the total cost obtained along
the optimal trajectories. To this end, we introduce costsprr(x) as the total cost
computed using the SDRE feedback and cost () as the total cost calculated using
the gradient of the surrogate to the value functional as control signal in (5). Finally,
we define the error in the total cost at a given initial condition = € R ¢:

erreost(x) = |costspri () — costsur(2)].

Remark 1. Notice that the methods were running on different machines and with
different languages. Especially, the TT cross methods is based on a very performative
implementation, while the block-sparse T'T and kernel approrimation did not use such
tuned implementations. Moreover, the TT Gradient Cross and its applications are
Matlab-based, while the rest of the codes are written in Python and Julia.

4.1 Low against high rank

First, we consider the following three test cases

a) f(x) = exp(— i, 2./ (2d), @€ [-1,1]%,
b) f(z) =exp(=ITi_ @), @€ [~1,1]%,
¢) f(z) =exp(— H?Zl r;), x€0,2]%

We note that f(z) = exp(— Z?Zl x;/(2d)) has a rank one decomposition in a func-
tional tensor train in contrast to the other two examples. The functions reported in
the cases (b) and (¢) are not low-rank and this is reflected in the numerical results.
The difference between cases (b) and (c¢) are the different domains. Test case () is set
in [~1,1]¢ and the function is almost 1 for a significant part of the domain, while in
case (c) the function takes values between 0 and 1.

For each of three test cases, the methods described in Section 3 were applied.
The approximation take place in dimension d = 16 and the tables for each methods
display the train and test error as well as the degrees of freedom (DoFs), the CPU
time and the sample size. The test error is based on a 10* uniform random samples in
the respective domain.

For the TT Gradient Cross, the space domain is discretized with 7 Legendre-
Gauss nodes for each direction. We fix the stopping error tols:,, equal to 107°. For
the block sparse TT we consider degree 7 Legendre polynomials and a locality to
match the degrees of freedom of the TT Cross results. Throughout the experiments,
the stopping criterion was set to 107! or a maximal ALS iteration. For the kernel
approximation, we considered 5000 low discrepancy points within the given domain,
and use the quadratic Matérn kernel with shape parameter in { ﬁ, 4—\1/3, ﬁ} and
without explicit regularization. For the neural network, as standard setup and training
was used: The neural networks used three fully connected layers of width 512, and the
training was done using mini batches of size 128, the Adam optimizer and an initial
learning rate of le-3.

As the function considered in case (a) has an exact TT decomposition with rank 1,
it can be approximated arbitrary well by the TT Gradient Cross, as described by both

12

ETTtrain,2 ad €rTiest 2. Also the low number of samples and the small CPU times are
due to the low rank structure of the function. Similar, the block-sparse TT methods
behaves very well. The cases (b) and (¢) are more tricky and the magnitudes of the
error indicators drops of several orders with respect to the first case. Especially for the
third case for which the number of training samples increases drastically, obtaining just
a testing error of order O(1071) for the block sparse approach and O(10~2) for the TT
Gradient Cross. For the block sparse TT format, an additional difficulty is due to the
functions (b) and (¢) not satisfying a locality bound. As no rounding was employed in
the block sparse format, the number of degrees of freedom might be an overestimation.
The kernel methods also are able to recover the chosen functions, despite the errors are
not as small. Especially the function (¢) is the most challenging one with an error in
O(1071). This numbers are an indicator, that the kernel approximation using a radial
kernel together with uniformly distributed samples is clearly affected from the curse of
dimensionality. Note that the kernel methods use significantly less samples and degrees
of freedom. The neural networks achieve an error of O(107!) or O(1072), which is
frequently sufficient for machine learning purposes, however here not on par with the
kernel methods or the tensor trains. Due to the stochastic iterative training procedure
of the neural networks, some time had to be spent to find suitable hyperparameters,
while there are likely still further options to tune the NN and its training. Overall, the
TT Cross approximation provides the best approximations.

| €TTirain,2 €TTtest,2 DoF's # train sample CPU train (s) CPU test (s)

TT Cross (a) 6.97e-16 7.60e-16 420 1253 0.11 0.47
(b) 1.56e-7 3.16e-8 3612 13937 0.23 0.33

(c) 7.66e-4 2.76e-2 35196 293265 3.45 0.41

BSTT (a) 6.90e-11 1.28e-09 434 1900 27.5 0.15
(b) 4.40e-5 1.54e-4 3689 14000 1262.5 0.60

(c) 6.03e-3 9.05e-2 27935 100000 43973.7 28.0

NN (a) 1.23e-2 1.56e-2 797185 5000 46.48 0.13
(b) 9.39e-3 1.41e-2 797185 5000 56.04 0.12

(c) 6.32e-2 1.14e-1 797185 5000 32.12 0.11

Kernel (a) 4.76-12 9.35e-6 5000 5000 2.30 2.54
(b) 2.98e-10 9.63e-4 5000 5000 2.39 2.60

(c) 2.98e-10 3.61e-1 5000 5000 2.36 2.55

Table 1 Results of the different methods for Test 4.1 (d = 16).

4.2 Regularity test

For the next test, we are interested in the effects of non-differentiablities of the target
functions on the expressability of our model classes. To that end, we consider the
following family of functions

F@) = Xollall® + Mz =yl + Ao/ Jlw w2,z € [-1,1],

13

where y; = (0.5,...,0.5) and yo = (—0.5,...,—0.5) and consider the cases of
A = (Mo, M1, A2) € {(1,0,0),(1,0.5,0), (1,0.5,0.5), (0,0.5,0), (0,0,0.5)}. Again, all the
method described in Section 3 are applied.

For the TT Gradient Cross, the intervall [—1,1] is discretized using 7 Legendre-
Gauss nodes per direction and a stopping tolerance of tolst,, = 1077 is fixed. The block
sparse TT where chosen to have the same complexity as the TT Cross approximation.
Both the kernel approximation and the neural network are using the same setup as
in the previous example. For every method, the test error is evaluated on 10* random
samples in [—1,1]9.

In this example one can see that, as expected, non-differentiablilities are more
difficult to approximate with all of our methods. Here, again the TT Cross method
outperforms the other model classes providing results with improved accuracy of two
orders of magnitude compared to the block sparse format and the kernel methods and
up to four orders of magnitude compared to the NN approach. The T'T methods can
recover the squared norm almost exactly. Interestingly, there is almost no difference
between the approximation error for f(x) = ||z|| and f(x) = +/||z|| within the different
model classes respectively. This is likely due to the fact that the non-differentiability
is very localized and thus not properly detected by the 10* randomly sampled test
points. This is displayed in Figure 4.2. We note that TT-Cross algorithm is able to
mimic the behaviour around the kink, while the kernel and NN approximation simply
leave out this localized kink.

| Ao A1 A2 | erTirain,2 €TTtest,2 DoFs # train samples
TT Cross 1 0 0 7.50e-16 9.64e-16 924 1994
1 0.5 0 7.67e-T7 1.57e-6 6608 14879
1 0.5 0.5 1.49e-6 3.33e-6 13293 32235
0 0.5 0 2.85e-7 2.19e-6 7322 16776
0 0.5 5.83e-7 2.56e-6 7308 17334
BSTT 1 0 9.62¢e-12 4.57e-11 96 1994
1 0.5 0 1.41e-05 5.02e-5 5069 10000
1 0.5 0.5 2.57e-05 7.4e-5 12786 32000
0 0.5 0 8.56e-05 3.4e-4 7378 16000
0 0 0.5 8.12e-05 3.1le-4 7378 17334
NN 1 0 0 1.86e-2 3.13e-2 797185 5000
1 0.5 0 1.501-2 2.62e-2 797185 5000
1 0.5 0.5 9.82¢-3 2.17e-2 797185 5000
0 0.5 0 4.78e-3 9.05e-3 797185 5000
0 0 0.5 8.41e-3 1.11e-2 797185 5000
Kernel 1 0 0 9.74e-8 1.07e-4 5000 5000
1 0.5 0 9.01e-9 2.83e-4 5000 5000
1 0.5 0.5 3.75e-7 2.18e-4 5000 5000
0 0.5 0 4.34e-13 1.14e-3 5000 5000
0 0 0.5 4.28e-13 1.08e-3 5000 5000

Table 2 Results for the different methods for Section 4.2 (d = 16).

14

f(x) TT surrogate

08

06

04

02
1
0
0 -1
-1
1 X,

NN surrogate Kernel surrogate

1 = 1
08 08
06 06

04 04

02
1 1
0
A
0 05 0
. 0 on
1 %,

Fig. 3 Function and surrogate model for d = 16 and X = (0, 0.5,0) for the different methods on the
plane (z1,x2,0.5,...,0.5). The localized kink is only fitted properly by the TT approximation.

4.3 Academic Optimal Control Example

In this numerical example we want to deal with the application of the mentioned
techniques to an “academic” optimal control problem. Following the idea described in
[91], our aim is to consider a control problem with a prefixed value function V. Now,
consider the dynamical system

t=u, z(0)=ux (23)

and the cost functional

+oo
Hanu) = [rla0) + gt P, (24)

where r(z) will be chosen to obtain the value function V. In this case the HJB equation
reads

S IVV@? +r(z) = 0.

Then, choosing exactly r(z) = 1|[VV (z)||?, we obtain that the optimal control problem
(23)-(24) admits V' as value function. The aim of this example is twofold: We want
to test the accuracy of the SDRE approach in the approximation of the feedback law

15

and we want to compare the supervised learning techniques varying the dimension of
the problem.

SDRE approximation

In this paragraph we focus on the accuracy of the SDRE approximation of the opti-

mal control problem (23)-(24). The dynamical system (23) can be written easily in

semilinear form (9) with A(x) = 04 and B(z) = I4, where 04 € R 4% is a matrix of all

zeros and I; € R4*? is the identity matrix. The cost functional (24) is then written
1

in a state-dependent quadratic form (7) with R(x) = 514 and fixing Q(x) such that

7T Qa)r = r(x) = S|V ()P
In this case the associated SDRE for x €) reads
—2P(z)? + Q(x) =0
with solutions 4/Q(x)/2. Since we are interested in the positive definite solution, we

choose P(z) = 1/Q(x)/2. We note that the choice of Q(z) is crucial (see [92, 93] for
a discussion on the importance of the representation of the system). Indeed, choosing

1oV /a?
|axdv|2/$3
the solution of the SDRE reads
1 8I1V/z1
P == .,
() =5 | ,
ade/xd

and the corresponding feedback control can be computed via the formula (10):

u(z) = —%P(m)x = !

4VV,

retrieving exactly the formula of the optimal feedback control (5). In this specific
example the exactness of the SDRE approach comes only in case we are able to extract
the norms of the single partial derivatives |0z, V|? from the the given cost function
r(z) = 5llVI*.

16

Supervised learning approrimation

Now let us compare the different techniques on a specific example. Let us choose the
value function of the form

2 2
llz—pqll llz—poll

V(z)=|lzlI*(e -t +e &) (25)

where ju1, 1o € R? and 01,00 € Rt are parameters denoting respectively the means
and the standard deviations of the corresponding gaussian functions. We can see
immediately that the value function can be expressed in the form V(z) = zT P(x)x
defining

2 2
_lz—pqll _llz—poll

L

2 2
_llz—pqll _llz—pall

(e 1 +e 2)

First of all, we fix i = 0-1, g = 0.5-1, 01 = 02 = 1, where 1 € R? is a vector
with all ones. The dimension of the problem d will vary in the set

D={3,...,16}

and the initial condition xq will be taken randomly in the set Q2 = [—1,1]%. As the vari-
ance is dimension independent one would expect the function to become smoother with
increased dimension. Indeed, the TT Cross method has an improving approximation
error with respect to the dimensions.

The TT-Gradient Cross is implemented using a stopping tolerance 10™® and 7
Legendre-Gauss polynomials per dimension. We see that as we increase the dimension
the error improves, but stagnating around the order 10~3. On the hand, the CPU is
keeping an almost constant behaviour of order O(1), due to the fact that the TT rank
is at most 5 for all the considered dimensions.

For the kernel approximation, we employ the quadratic Matérn kernel using 10000
low-discrepancy points within [—1,1]¢ and choose the shape parameter as 2—\1/3. The
kernel approximation is the best approximation up to dimension 5, while its error
increases as the dimension grows. The behaviour of the CPU time is more or less
constant of O(10), as it mainly depends on the number of sample points. Finally, the
NN approach, which uses the same setup as in the previous examples, obtains the
worst results in terms of both indicators, with an increasing error between O(1072)
and O(107!) as the dimension d of the problem grows and a CPU time varying between
0O(10) and O(10?).

17

. /// S \X,_’i, X- =X 102 75 o x
ol o 2T e 1o 77T e
T - 1 %7 Tx A N
X x ><”>< 4 X‘X’*\X:gg::?@
X - X <5 X . X
10724 el 10! < x X e e
et P =]
£107° S & ,
+ x O
L 10° <
X TT E TT
10t/]
; -x- NN] -x- NN
o - x- Kernel b - x- Kernel
T T T T T T T T T T T T T T
4 6 8 10 12 14 16 4 6 8 10 12 14 16
dimension d dimension d

Fig. 4 Visualization of the test error (22) (left) and the CPU time (right) for approximation of the
value function (25) depending on the dimension d (z-axis).

4.4 Control of the Allen-Cahn equation

Let us consider the following nonlinear Allen-Cahn PDE with homogeneous Neumann
boundary conditions:

{ Oy(t,) = 00uy(t, x) +y(t, 2)(1 — y(t, 2)?) + ult, z),
y(0,2) = yo(z),

with = € [0,1] and ¢ € (0, 400) and the following cost functional

I, o) = / h / Iyt 2)[2 + Afult, 2)?)de dt.

Approximating the PDE by finite difference schemes with d grid points, we obtain the
following ODEs system

with
Aly) = 0Ao + Iy — diag(y © y), y€ER?,

where ® is the Hadamard product, I; € R%*? is the identity matrix and Ag is the
tridiagonal matrix arising from the discretization of the Laplacian with Neumann
boundary conditions. We fix o = 1072 and d = 30. The different techniques will be
tested on a set of initial conditions of the form

yo(z) = Z a_; cos(2ﬂ'k:13)k:_ﬂ, a, € {0,1}, (26)
k

4
=1

18

where the parameter § is related to the decay of the Fourier coefficients and to the
regularity we want to assume. We fix 8 = 3. The vector = [z1, ..., 4] contains the
discretization points of the interval [0, 1].

The supervised learning techniques will be trained over the domain [—1,1]¢, while
for the test phase we are going to consider 4 initial conditions in the form (26) varying
the vector a = [a1, a2, as, a4]. To evaluate the feedback law induced by the surrogates
of the test functions we integrate the dynamical systems with these controls until a
final time tg,, = 60 and use the trapezoidal rule to estimate the costs along these
trajectories. We compare this to the costs induced by the SDRE feedback in err.ys:.

We start applying the TT Gradient Cross for the approximation of the value func-
tion. We fix n = 6 Gauss-Legendre nodes per dimension and a stopping tolerance
tolstop = 107%. After 17 iterations the algorithm stopped reaching the prescribed
tolerance and the final TT rank r is equal to 18. Table 3 reports the errors, the com-
putational cost and the number of samples used during the training phase. We note
that for the error erry,qin,2 for TT Gradient Cross is below the prescribed tolerance
(107%) and it completes the training of the surrogate model in just almost 20 seconds.
The number of training samples is comparable to the complexity of the TT structure
which we recall to be equal to O(dnr?).

The kernel approximation uses the Gaussian kernel with shape parameter 1/ Vi,
which gave slightly better results than the use of the quadratic Matérn kernel. The
neural network uses the same setup and training hyperparameters as in the previous
examples. Both the kernel approximation and the neural network are trained using
5000 samples, which were generated randomly in Fourier space. The kernel approxima-
tion accuracy is comparable to the TT approximation, while the NN performs worse.
In terms of the training time, the kernel methods performs best, while the NN has
a long training time due to its iterative stochastic gradient descent optimization. We
note that the kernel approximation performs comparably well here compared to the
TT, because it is only trained on meaningful inputs which were sampled in Fourier
space, while the TT likely provides a suitable approximation of the value function in
the whole domain.

Surrogate model | eTTtrain,?2 | CPU train (s) | # train samples
TT Gradient Cross 3.48e-5 20.10 121906
NN 2.03e-2 45.80 5000
Kernel 2.147e-5 2.82 5000

Table 3 Comparison in terms of the training phase for the different
supervised learning techniques.

Table 4 compares the different surrogate models in the testing phase using 4 initial
conditions in the form (26) varying the vector a € R*. As regards TT Gradient Cross,
the erryes: reaches the same order of magnitude of the prescribed stopping tolerance
for all the studied cases, while for the err.,s; we loose two orders of magnitude with
respect to the errcs:, due to the fact that the error in the cost takes into account the
construction of the control, hence depending on the gradient of the surrogate models.

19

The kernel approximation and the neural network fail to stabilize the dynamical system
in a neighbourhood of the origin: More specifically, when the norm of the trajectories
is below a certain threshold denoted by arp, the error in the approximation of the
gradient leads to the synthesis of a non-stabilizing feedback control and the solution
is driven far away from the origin. To this end, we consider a modification in the
computation of the feedback control already introduced in [43] and denoted as Two-
Boxes (TB) approach. More precisely, in the region in which the surrogate is not able
to stabilize the system, we substitute the surrogate control with a control given by the
Linear Quadratic Regulator, i.e. the solution of the SDRE at the origin. Denoted by Py
the solution of the Riccati equation corresponding to the Linear Quadratic Regulator,
we define the surrogate-TB feedback control as:

U*(ZL'> _ _R_lBTP-Ta ||$H S ars,
=\ -LRB@) Wi (@), izl > arp,

where VVyy,(x) is the gradient of the surrogate model for the approximation of the
value function.

Using this strategy, we note by Table 4 that TT and Kernel-TB achieve almost
the same errqqs¢, while NN-TB gets slightly higher results. Regarding the err;.s; we
observe that Kernel method achieves the best accuracy with order O(107%), while the
NN approach gets better results increasing the number of the terms in the Fourier
expansion (26).

TT Gradient Cross NN-TB Kernel-TB

ETTtest ETTcost ETTtest E€TTcost ETTtest ETTcost
[1,0,0,0] | 1.77e-4 0.0320 1.90e-3 0.0545 1.32¢-6 0.0341
[1,1,0,0] | 2.00e-4 0.0330 2.13e-3 0.0572 | 8.62e-6 0.0350
[1,1,1,0] | 2.00e-4 0.0333 8.11e-4 0.0577 1.24e-5 0.0360

)

[1,1,1,1] | 1.98e-4 0.0333 8.37e-5 0.0580 | 1.64e-5 0.0364
Table 4 Comparison in terms of the testing phase with 4 initial
conditions in the form (26) for the different supervised learning techniques.

Finally, we show the plots of the uncontrolled and of the controlled solutions of the
Allen-Cahn PDE. The top left panel of Figure 5 displays the uncontrolled solution and
we can note that at the final time it converges to the stable solution g, (z) = 1. In the
top right panel and in both lower panels of Figure 5 we can observe the behaviour of
the Allen-Cahn solution controlled via the TT Gradient Cross, the Kernel-Two Boxes
and the NN-Two Boxes approaches. We note that the control is driving the solution
to the unstable equilibrium 7, (z) = 0 already at the very first time instances, keeping
the solution close to P, () for the remaining time instances.

5 Conclusions

Overall, supervised learning schemes based on tensor trains, kernel methods and neural
networks are able to recover high dimensional functions in an error regime between
0(107%) and O(10~3) quite reliable. The experiments very nicely show the influence

20

Uncontrolled TT Controlled

Time 0 o h % Time 0 o h X

Kernel-TB Controlled NN-TB Controlled

06

Time 0 o0) %

Fig. 5 Solution for the Allen-Cahn equation for the uncontrolled dynamics (top left), the TT Gradi-
ent Cross controlled dynamics (top right), the Kernel-Two Boxes controlled dynamics (bottom left)
and NN controlled dynamics (bottom right)

of intrinsic structures as regularity and separability (as used in functional tensor train
ranks) on the approximation errors. As most of our test cases exhibit some kind of
regularity, the TT methods performed very well, as they exploit such assumptions.
The kernels models and neural networks could not quite beat tensor trains but allow
for a much more general usage: an important advantage of kernel methods and neural
networks compared to the TT Cross is especially the ability to use scattered data for
the approximation, while TT Cross depends on an active learning mode by adding
samples based on a subset of grid points, which makes it difficult to employ on real
world data. One can also observe that the metric used to evaluate the functions plays
an important role in the assessment of the methods, as the mean squared error used
here does not necessarily identify non-differentiabilities or localizations.

The use of available a priori information should be in the centre of high dimensional
approximation tasks, when a reasonable high accuracy is required.

Acknowledgements

This manuscript is dedicated to the memory of Maurizio Falcone. Maurizio was not
only a great mathematician and an academic father, but also a father figure following
all the steps of his academic ”sons”. He was really interested in high-dimensional

21

optimal control problems and I hope he will enjoy this paper, whenever he is. Thank
you for sharing all your knowledge, your passion for research and your smiles.

Declarations
Ethical Approval Not applicable.
Competing interests The authors have no competing interests.

Authors’ contributions All the authors equally contributed to the preparation of
the submitted manuscript.

Funding L. Saluzzi was supported by ” Gruppo Nazionale per il Calcolo Scientifico”
(GNCS - INdAM) and was "titolare di borsa per l’estero dell’Istituto Nazionale di
Alta Matematica”. M. Oster acknowledges funding by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) - Project number 442047500 through
the Collaborative Research Center ”Sparsity and Singular Structures” (SFB 1481).

Data Availability Statement A Github repository will be made available upon
publication of this work. No data has been used in this paper.

References
[1] Bellman, R.: Dynamic programming. Science 153(3731), 34-37 (1966)

[2] Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of
Hamilton-Jacobi-Bellman Equations. Birkduser, Boston (1997)

[3] Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear
and Hamilton—Jacobi Equations. STAM, Philadelphia, PA (2013)

[4] Kalise, D., Kunisch, K.: Polynomial approximation of high-dimensional Hamilton-
Jacobi-Bellman equations and applications to feedback control of semilinear
parabolic PDEs. SIAM J. Sci. Comput. 40(2), 629-652 (2018)

[5] Alla, A., Falcone, M., Kalise, D.: An efficient policy iteration algorithm for
dynamic programming equations. STAM Journal on Scientific Computing 37(1),
181-200 (2015)

[6] Zhao, Z., Yang, Y., Li, H., Liu, D.: Approximate finite-horizon optimal control
with policy iteration. In: Proceedings of the 33rd Chinese Control Conference,
pp- 8895-8900 (2014)

[7] Tahirovic, A., Astolfi, A.: Optimal control for continuous- time nonlinear systems

based on a linear-like policy iteration. In: 2019 IEEE 58th Conference on Decision
and Control (CDC), pp. 5238-5243 (2019)

22

(8]

[11]

[12]

[13]

[17]

18]

He, S., Fang, H., Zhang, M., Liu, F., Ding, Z.: Adaptive optimal control for a class
of nonlinear systems: The online policy iteration approach. IEEE Transactions
on Neural Networks and Learning Systems 31(2), 549-558 (2020)

Luo, B., Wu, H.-N., Huang, T., Liu, D.: Data-based approximate policy iteration
for affine nonlinear continuous-time optimal control design. Automatica 50(12),
3281-3290 (2014)

Pakkhesal, S., Shamaghdari, S.: Sum-of-squares-based policy iteration for sub-
optimal control of polynomial time-varying systems. Asian Journal of Control
n/a

Yazdani, N., Moghaddam, R., Kiumarsi, B., Modares, H.: A safety-certified policy
iteration algorithm for control of constrained nonlinear systems. IEEE Control
Systems Letters 4(3), 686-691 (2020)

Tonon, D., Aronna, M., Kalise, D.: Optimal Control: Novel Directions and
Applications. Springer, International (2017)

Debrabant, K., Jakobsen, E.: Semi-Lagrangian schemes for linear and fully non-
linear Hamilton-Jacobi-Bellman equations. In: Hyperbolic Problems: Theory,
Numerics, Applications, pp. 483-490. Springer, International (2014)

Falcone, M.: A numerical approach to the infinite horizon problem of deterministic
control theory. Applied Mathematics and Optimization 15(1), 1-13 (1987)

Falcone, M., Lanucara, P., Seghini, A.: A splitting algorithm for Hamilton-Jacobi-
Bellman equations. Applied Numerical Mathematics 15(2), 207-218 (1994)

Kafash, B., Delavarkhalafi, A., Karbassi, S.M.: Application of variational iteration
method for Hamilton-Jacobi-Bellman. Applied Mathematical Modelling 37(6),
3917-3928 (2013)

Alla, A., Saluzzi, L.: A HIB-POD approach for the control of nonlinear PDEs on
a tree structure. Applied Numerical Mathematics 155, 192207 (2020)

Akian, M., Gaubert, S., Lakhoua, A.: Convergence analysis of the max-plus finite
element method for solving deterministic optimal control problems. In: Proceed-
ings of the IEEE Conference on Decision and Control, pp. 927-934. IEEE, NY
(2009)

Akian, M., Fodjo, E.: Probabilistic Max-Plus Schemes for Solving Hamilton-
Jacobi-Bellman Equations, pp. 183-209. Springer, International (2018)

Pontryagin, L., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: The Mathemat-
ical Theory of Optimal Processes. Translated from the Russian by K. N. Trirogoff;
edited by L. W.Neustadt. Wiley, New York, NY (1962)

23

[21]

[22]

23]

[24]

[26]

[27]

[28]

[29]

[30]

Beeler, S., Tran, H., Banks, H.: Feedback control methodologies for nonlinear
systems. Journal of optimization theory and applications 107(1), 1-33 (2000)

Kang, W., Wilcox, L.: Mitigating the curse of dimensionality: sparse grid charac-
teristics method for optimal feedback control and hjb equations. Computational
Optimization and Applications 68(2), 289-315 (2017)

Nakamura-Zimmerer, T., Gong, Q., Kang, W.: Adaptive deep learning for high-
dimensional hamilton—jacobi-bellman equations. STAM Journal on Scientific
Computing 43(2), 1221-1247 (2021)

Azmi, B., Kalise, D., Kunisch, K.: Optimal feedback law recovery by gradient-
augmented sparse polynomial regression. Journal of Machine Learning Research
22, 1-32 (2021)

Vapnik, V.: Principles of risk minimization for learning theory. In: Advances in
Neural Information Processing Systems, pp. 831-838 (1992)

Steinwart, I., Christmann, A.: Support Vector Machines. Springer, Berlin (2008)

Hackbusch, W.: Tensor Spaces And Numerical Tensor Calculus. Springer, Berlin
(2012)

Oseledets, 1., Tyrtyshnikov, E.: Breaking the curse of dimensionality, or how to
use SVD in many dimensions. STAM J. Sci. Comput. 31, 3744-3759 (2009)

Oseledets, 1.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295
2317 (2011)

Khoromskij, B.N.: Tensors-structured numerical methods in scientific computing
: survey on recent advances. Chemometrics and intelligent laboratory systems
110(1), 1-19 (2011)

Hackbusch, W., Schneider, R.: Tensor Spaces and Hierarchical Tensor Represen-
tations, pp. 237-261. Springer, Cham (2014)

Bachmayr, M., Schneider, R., Uschmajew, A.: Tensor networks and hierarchical
tensors for the solution of high-dimensional partial differential equations. Found.
Comput. Math. 16(6), 1423-1472 (2016)

Szalay, S., Pfeffer, M., Murg, V., Barcza, G., Verstraete, F., Schneider, R., Legeza:
Tensor product methods and entanglement optimization for ab initio quantum
chemistry. International j. of quantum chemistry 115(19), 1342-1391 (2015)

Hackbusch, W.: Numerical tensor calculus. Acta numerica 23, 651-742 (2014)
Bachmayr, M., Cohen, A., Dahmen, W.: Parametric PDEs: sparse or low-rank
approximations? IMA J. of Numerical Analysis 38(4), 1661-1708 (2017)

24

[36]

[45]

[46]

[47]

Dolgov, S., Kalise, D., Kunisch, K.K.: Tensor Decomposition Methods for High-
dimensional Hamilton-Jacobi-Bellman Equations. STAM Journal on Scientific
Computing 43(3), 1625-1650 (2021)

Oster, M., Sallandt, L., Schneider, R.: Approximating optimal feedback con-
trollers of finite horizon control problems using hierarchical tensor formats. STAM
Journal on Scientific Computing 44(3), 746-770 (2022)

Oster, M., Sallandt, L., Schneider, R.: Approximating the stationary bellman
equation by hierarchical tensor products. Journal of Computational Mathematics
(2019)

Stefansson, E., Leong, Y.: Sequential alternating least squares for solving high
dimensional linear hamilton-jacobi-bellman equation. In: 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 3757-3764
(2016)

Horowitz, A. M.and Damle, Burdick, J.: Linear Hamilton Jacobi Bellman
equations in high dimensions. In: 53rd IEEE Conference on Decision and Control,
pp. 5880-5887 (2014). IEEE

Fackeldey, K., Oster, M., Sallandt, L., Schneider, R.: Approximative policy iter-
ation for exit time feedback control problems driven by stochastic differential
equations using tensor train format. Multiscale Modeling & Simulation 20(1),
379-403 (2022)

Gorodetsky, A., Karaman, S., Marzouk, Y.: High-dimensional stochastic opti-
mal control using continuous tensor decompositions. The International Journal

of Robotics Research 37(2-3), 340-377 (2018)

Dolgov, S., Kalise, D., Saluzzi, L.: Data-driven tensor train gradient cross approx-
imation for hamilton—jacobi-bellman equations. STAM Journal on Scientific
Computing 45(5), 2153-2184 (2023)

Gotte, M., Schneider, R., Trunschke, P.: A block-sparse tensor train format
for sample-efficient high-dimensional polynomial regression. Frontiers in Applied
Mathematics and Statistics 7 (2021)

Oseledets, I.V., Tyrtyshnikov, E.E.: TT-cross approximation for multidimensional
arrays. Linear Algebra Appl. 432(1), 70-88 (2010)

Savostyanov, D.V., Oseledets, 1.V.: Fast adaptive interpolation of multi-
dimensional arrays in tensor train format. In: Proceedings of 7th International
Workshop on Multidimensional Systems (nDS). IEEE, NY (2011)

Grasedyck, L., Kriemann, R., Lobbert, C., Nagel, A., Wittum, G., Xylouris,
K.: Parallel tensor sampling in the hierarchical Tucker format. Computing and

25

[50]

[51]

[52]

[53]

[54]

Visualization in Science 17(2), 67-78 (2015)

Savostyanov, D.V.: Quasioptimality of maximum—volume cross interpolation of
tensors. Linear Algebra Appl. 458, 217-244 (2014)

Wendland, H.: Scattered Data Approximation. Cambridge Monographs on
Applied and Computational Mathematics, vol. 17. Cambridge University Press,
Cambridge (2005)

Berner, J., Grohs, P., Kutyniok, G., Petersen, P.: The modern mathematics of
deep learning. In: Mathematical Aspects of Deep Learning, pp. 1-111. Cambridge
University Press, Cambridge (2022)

DeVore, R.A., Hanin, B., Petrova, G.: Neural network approximation. Acta
Numerica 30, 327-444 (2021)

E, W., Ma, C., Wojtowytsch, S., Wu, L.: Towards a Mathematical Understanding
of Neural Network-Based Machine Learning: what we know and what we don’t.
arXiv (2020)

Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathe-
maticians. SITAM Review 61(4), 860-891 (2019)

Pak, M., Kim, S.: A review of deep learning in image recognition. In: 2017 4th
International Conference on Computer Applications and Information Processing
Technology (CAIPT), pp. 1-3 (2017)

Beck, C., Hutzenthaler, M., Jentzen, A., Kuckuck, B.: An overview on deep
learning-based approximation methods for partial differential equations. Discrete
and Continuous Dynamical Systems - B 28(6), 3697-3746 (2023)

Kunisch, Karl, Walter, Daniel: Semiglobal optimal feedback stabilization of
autonomous systems via deep neural network approximation. ESAIM: COCV 27,
16 (2021)

Kunisch, K., Walter, D.: Optimal feedback control of dynamical systems via value-
function approximation. arXiv preprint arXiv:2302.13122 (2023)

Darbon, J., Langlois, G.P., Meng, T.: Overcoming the curse of dimensional-
ity for some hamilton—jacobi partial differential equations via neural network
architectures. Research in the Mathematical Sciences 7(3), 1-50 (2020)

Niisken, N., Richter, L.: Solving high-dimensional hamilton—jacobi—bellman pdes
using neural networks: perspectives from the theory of controlled diffusions and
measures on path space. Partial Differential Equations and Applications 2(4),
1-48 (2021)

26

[60]

[61]

[68]

[69]

Ito, K., Reisinger, C., Zhang, Y.: A neural network-based policy iteration algo-
rithm with global h? -superlinear convergence for stochastic games on domains.
Foundations of Computational Mathematics, 1-44 (2020)

Demo, N., Strazzullo, M., Rozza, G.: An extended physics informed neural net-
work for preliminary analysis of parametric optimal control problems. Computers
& Mathematics with Applications 143, 383-396 (2023)

Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences 115(34),
8505-8510 (2018)

Meng, T., Zhang, Z., Darbon, J., Karniadakis, G.E.: SympOCnet: Solving optimal
control problems with applications to high-dimensional multi-agent path planning
problems. arXiv. OPTdoi: 10.48550/ARXIV.2201.05475 (2022)

Zhou, M., Han, J., Lu, J.: Actor-critic method for high dimensional static
hamilton—jacobi—-bellman partial differential equations based on neural networks.
SIAM Journal on Scientific Computing 43(6), 4043-4066 (2021)

Onken, D., Nurbekyan, L., Li, X., Fung, S.W., Osher, S., Ruthotto, L.: A neu-
ral network approach applied to multi-agent optimal control. In: 2021 European
Control Conference (ECC). IEEE, NY (2021)

Ruthotto, L., Osher, S.J., Li, W., Nurbekyan, L., Fung, S.W.: A machine learning
framework for solving high-dimensional mean field game and mean field control
problems. Proceedings of the National Academy of Sciences 117(17), 9183-9193
(2020)

Albi, G., Bicego, S., Kalise, D.: Gradient-augmented Supervised Learning of
Optimal Feedback Laws Using State-Dependent Riccat Equations. IEEE Control
Systems Letters 6, 836-841 (2022)

Griine, L.: Computing lyapunov functions using deep neural networks. arXiv
preprint arXiv:2005.08965 (2020)

Kunisch, K., Rodrigues, S.S., Walter, D.: Learning an optimal feedback operator
semiglobally stabilizing semilinear parabolic equations. Applied Mathematics &
Optimization 84(1), 277-318 (2021)

Kunisch, K., Vasquez-Varas, D., Walter, D.: Learning Optimal Feedback Opera-
tors and their Polynomial Approximation. arXiv (2022)

Azmi, B., Kalise, D., Kunisch, K.: Optimal feedback law recovery by gradient-

augmented sparse polynomial regression. Journal of Machine Learning Research
22(48), 1-32 (2021)

27

[72]

[73]

[74]

[75]

[76]

Cimen, T.: State-dependent Riccati equation (SDRE) control: a survey. IFAC
Proceedings Volumes 41(2), 3761-3775 (2008)

Alla, A., Kalise, D., Simoncini, V.: State-dependent Riccati equation feedback
stabilization for nonlinear PDEs. OPTdoi: 10.48550/ARXIV.2106.07163 (2021)

Banks, H.T., Lewis, B.M., Tran, H.T.: Nonlinear feedback controllers and
compensators: a state-dependent Riccati equation approach. Computational
Optimization and Applications 37(2), 177-218 (2007)

Rohrbach, P.B., Dolgov, S., Grasedyck, L., Scheichl, R.: Rank bounds for approx-
imating Gaussian densities in the Tensor-Train format. SIAM/ASA Journal on
Uncertainty Quantification 10(3), 1191-1224 (2022)

Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor
optimization in the tensor train format. SIAM J. Sci. Comput. 34(2), 683-713
(2012)

Goreinov, S.A., Oseledets, 1.V., Savostyanov, D.V., Tyrtyshnikov, E.E., Zama-
rashkin, N.L.: How to find a good submatrix. In: Olshevsky, V., Tyrtyshnikov,
E. (eds.) Matrix Methods: Theory, Algorithms, Applications, pp. 247-256. World
Scientific, Hackensack, NY, NY (2010)

Chen, Y., Hosseini, B., Owhadi, H., Stuart, A.M.: Solving and learning nonlinear
pdes with gaussian processes. Journal of Computational Physics 447, 110668
(2021)

Meanti, G., Carratino, L., De Vito, E., Rosasco, L.: Efficient hyperparameter
tuning for large scale kernel ridge regression. In: International Conference on
Artificial Intelligence and Statistics, pp. 6554—6572 (2022)

Owhadi, H., Yoo, G.R.: Kernel flows: From learning kernels from data into the
abyss. Journal of Computational Physics 389, 22-47 (2019)

Suykens, J.A.: Deep restricted kernel machines using conjugate feature duality.
Neural computation 29(8), 2123-2163 (2017)

Wenzel, T., Marchetti, F., Perracchione, E.: Data-driven kernel designs for
optimized greedy schemes: A machine learning perspective. arXiv preprint
arXiv:2301.08047 (2023). Accepted for publication in SISC.

Narcowich, F., Ward, J., Wendland, H.: Sobolev bounds on functions with scat-
tered zeros, with applications to radial basis function surface fitting. Mathematics
of Computation 74(250), 743-763 (2005)

Wendland, H., Rieger, C.: Approximate interpolation with applications to select-
ing smoothing parameters. Numerische Mathematik 101(4), 729-748 (2005)

28

[85]

Wenzel, T., Santin, G., Haasdonk, B.: Analysis of target data-dependent greedy
kernel algorithms: Convergence rates for f-, f P-and f/P-greedy. Constructive
Approximation 57(1), 45-74 (2023)

Ma, S., Belkin, M.: Kernel machines that adapt to gpus for effective large batch
training. Proceedings of Machine Learning and Systems 1, 360-373 (2019)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Telgarsky, M.: Representation benefits of deep feedforward networks. arXiv
preprint arXiv:1509.08101 (2015)

Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: Convergence and gener-
alization in neural networks. Advances in Neural Information Processing Systems
31 (2018)

Ehring, T., Haasdonk, B.: Hermite kernel surrogates for the value function of high-

dimensional nonlinear optimal control problems. arXiv preprint arXiv:2305.06122
(2023)

Dolgov, S., Kalise, D., Saluzzi, L.: Optimizing semilinear representations for state-
dependent riccati equation-based feedback control. IFAC-PapersOnLine 55(30),
510-515 (2022)

Jones, A.) Astolfi, A.: On the solution of optimal control problems using param-

eterized state-dependent Riccati equations. In: 2020 59th IEEE Conference on
Decision and Control (CDC), pp. 1098-1103 (2020)

29

	Introduction
	The Optimal Control Problem
	State-Dependent Riccati Equation

	Machine learning methods
	Machine learning and least-squares loss
	Tree Based Tensor Representation - Tensor Trains
	Block-Sparse Tensor Trains
	TT-Gradient Cross

	Kernel methods
	Neural Networks

	Numerical tests
	Low against high rank
	Regularity test
	Academic Optimal Control Example
	SDRE approximation
	Supervised learning approximation

	Control of the Allen-Cahn equation

	Conclusions

