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Abstract
The one-atom-thick allotrope of graphite, C4 is called monolayer graphene and
was discovered in 2004. It is well known for its fantastic electro-mechanical prop-
erties. While transverse contraction and Poisson’s ratio were previously studied
only for homogeneous or crystalline two-dimensional (2D) mono- and bilayer
network structures under uniaxial tensile stress, we now numerically investigate
thesematerial properties for amorphous or non-crystallinemonolayer graphene.
Here, we pay special attention to the influence of the network heterogeneity. We
find the stress-strain correlation in good agreement with the literature, and we
find auxetic behavior, that is, negative Poisson’s ratio, over a wide range within
the elastic regime.

1 INTRODUCTION

In his pioneering work of 1932, Zachariasen published the Continuous Random Network (CRN) model as a two-
dimensional (2D) cartoon model for bulk Silica glass [1]. Each Silicon atom is connected to three neighboring Oxygen
atoms, forming sequences of corner-sharing triangles. A closed loop of 𝑛 Si-O triangles forms an 𝑛 ring, that is, a ring
containing 𝑛 members. The Si atoms link each of three randomly sized rings and, thus, form a network of randomly dis-
tributed 𝑛 rings. If the network structure consists purely of six-rings and therefore looks like a flat honeycomb structure,
we call it crystalline or homogeneous, in the case of a network of differently sized 𝑛-rings, as described above, we call it
amorphous or heterogeneous.
Beyond SiO2, the CRN model is well suited to describe the structure of many other flat materials which we include in

the group of 2D materials. A 2D material that consists of only a single layer is called monolayer material. If it has two
layers, we call it a bilayer. Up to 10 layers it is referred to as a few-layer material. Many groups reported on the production
of 2D materials [2–4], as well as on their (opto-)electronic [5, 6] and mechanical properties [7–9], and, the dependence of
the mechanical properties on structural defects [10, 11].
Graphene, the one-atom-thick allotrope of graphite, also belongs to the group of 2D materials. Its structure can be

directly deduced from the CRN model by replacing all Si atoms with C atoms and directly linking each to its three direct
neighbors. Graphene has been isolated for the first time in 2004 by Novoselov et al. [12]. Since then, various studies have
investigated its electronic and mechanical properties [13–15].
So far, several studies have been performed on Poisson’s ratios (PR) for different crystalline structures. Gao and Xu [16]

studied them for 𝛼-2D Silica (honeycomb structure, only six-rings). Gao et al. [17] found 𝛽-, 𝛾- and 𝛿-2D Silica, that is,
three new, but still crystalline structures, and discovered large negative PRs (NPR) in ab initio tensile test simulations.
Similar tensile tests with 𝛼- to 𝛾-2D Silica, but using MD simulations, have been performed by Safaei et al. [18].
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F IGURE 1 Monolayer 2D graphene sample with network heterogeneity ℎ = 0.6. 2D, two-dimensional.

The influence of the network heterogeneity on the transversal strain and the PR of non-crystalline or amorphous 2D
network structures has been investigated formono- and bilayer 2D Silica by Stratmann et al. [19, 20]. Now, we numerically
investigate transversal strain and PR with respect to the network heterogeneity of amorphous monolayer graphene.

2 METHODS

In our in-house tool JuMol [21], we simulate MD uniaxial tensile tests with monolayer graphene samples of five different
network heterogeneities, 10 samples of each heterogeneity. The samples were generated using the Monte Carlo bond
switching algorithm discussed by Bamer et al. [22].
Beginning with a crystalline sample that consists exclusively of rings of size 𝑛 = 6, a pair of directly bonded C4 triangles

are randomly chosen and flipped. Hereby, the sizes of the adjacent rings change: two opposite rings decrease their sizes,
while the two rings in between them increase their sizes by one.
We check the ring neighborhood statistics for unphysical clusters, meaning groups of directly neighbored small rings

(𝑛 < 6) or groups of adjacent large rings (𝑛 > 6), by means of the empirical law of Aboav [23]. Furthermore, we check
if the bond switch brings the ring size variance 𝜎 of the network structure closer to a target ring size variance 𝜎𝑡. The
latter is the scaled ring size variance of an experimentally realized 2D Silica sample, measured by Lichtenstein et al. [24],
𝜎𝑚:

𝜎𝑡 = ℎ𝜎𝑚 . (1)

In the following,Wewill callℎ the heterogeneity factor andwewill refer to the sample of Lichtenstein et al. as the reference
sample in which they observed ring sizes of 𝑛 = 4 ..10 [24].
Only if both criteria are fulfilled, the bond switch is accepted. The potential energy is thenminimized. Thisminimization

step brings the network from a purely geometrically consistent (all atoms are fully coordinated, except those located next
to the boundaries of the network) back to a physically meaningful structure.
Figure 1 depicts a network sample with heterogeneity of ℎ = 0.6 after a comparatively low number of accepted bond

switches. Many of the rings still maintained their original ring size of six shown in grey, while only a few changed their
sizes to mostly five (green) or seven (blue), even fewer either decreased their sizes to four (green) or increased them to
ring sizes beyond seven (magenta, cyan, and red). Note that larger rings have mostly small neighbored rings, as controlled
by the law of Aboav [23].
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F IGURE 2 Ring size distributions of the sample shown in Figure 1, and of the reference sample given by Lichtenstein et al. [24].

Figure 2 depicts the corresponding ring size distribution. Each bar has the same color corresponding to the coloring of
rings in Figure 1. The black line is the logarithmic envelope of all bars, as proposed by Büchner et al. [25]:

𝑃(𝑥𝑛, 𝜇𝑚, 𝜎𝑚) =
1

𝑥𝑛𝜎
√
2𝜋

exp
(log 𝑥𝑛 − 𝜇𝑚)

2

2𝜎2𝑚
. (2)

Here, 𝑥𝑛 is a continuous value range around the discrete ring sizes given in Figure 2, for example, 𝑥𝑛 =
[3.5, 3.6 .. 10.4, 10.5] which is needed for a continuous envelope for the discrete ring size distribution. The value 𝜇𝑚 rep-
resents the mean ring size measured by Lichtenstein et al. [24] which is equal to six. The value 𝜎 is the ring size variance
of the actual ring size distribution to be controlled. Since the depicted network sample already reached its target ring size
variance, it is 𝜎𝑡 = 0.6𝜎𝑚 here.
Thewider and blurred bars in the background represent the ring size distribution of the reference sample, and the thick,

gray line is their logarithmic envelope as given byEquation (2). The smaller ring size variance of the network sample shown
in Figure 1, shows up in a much higher, and, much thinner peak of the black graph compared to the gray one.
If we performmanymore acceptable bond switches on the network sample ofℎ = 0.6 in Figure 1, we obtain the structure

shown in Figure 3 with ℎ = 1.4. Figure 4 now tells us that more than 70% of all rings have changed their size, and the
network has a larger number of smaller (𝑛 < 6) and larger (𝑛 > 6) rings than the reference sample. The corresponding
peak of the logarithmic envelope (black) thus is slightly lower, and wider than that of the reference distribution (grey).
During the Monte Carlo bond switching algorithm, we use a pure 2D representation of the network structure. Before

starting the actual deformation process, we introduce a small noise into the out-of-plane (𝑧-) coordinate of every atom
and relax the structure. Figure 5 shows that it forms bumps in 𝑧-direction, as they can be found in monolayer graphene.
All samples are extended with a strain rate of 𝜀̇ = 0.5 ⋅ 10−3 over 750 steps according to the athermal quasistatic (AQS)

deformation protocol [22]. This protocol is defined by three consecutive steps: firstly, a box that contains all atoms is
deformed affinely. In our case, the box is stretched in 𝑥-direction with a given 𝑥-strain rate while the 𝑦-length is kept fixed.
In the second step, all atoms are displaced affinely, that is, according to their relative positions within the box. In our case,
all atoms are only displaced in 𝑥-direction. In the third step, we minimize the potential energy of the network structure
by adjusting the positions of all atoms in three dimensions with respect to their local field of potential energy. This step is
necessary to transfer the artificially deformed structure back into its local basin of the potential energy landscape, that is,
the non-affine displacements.
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F IGURE 3 Monolayer 2D graphene sample with network heterogeneity ℎ = 1.4. 2D, two-dimensional.

F IGURE 4 Ring size distributions of the sample shown in Figure 3, and of the reference sample given by Lichtenstein et al.[24].

For the third step, an interatomic potential is needed that describes the forces that each atom experiences from its
neighbors. We use the Reactive Empirical Bond Order (REBO) potential introduced by Brenner et al. [26]:

𝐸𝑏 =
∑

𝑏

∑

𝑗(>𝑖)

[
𝑉𝑅

(
𝑟𝑖𝑗

)
− 𝑏𝑖𝑗𝑉

𝐴
(
𝑟𝑖𝑗

)]
(3)

For each atom 𝑖, the potential 𝐸𝑏 sums up all repulsion forces of each neighbor atom 𝑗 in the repulsion potential 𝑉𝑅 and
its attraction forces in the attraction potential 𝑉𝐴, scaled by the bond order term 𝑏𝑖𝑗 . The latter takes into account if the
connection between both atoms is a single, a double, or even a triple bond.
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F IGURE 5 Initial state of a monolayer graphene sample with a network heterogeneity of ℎ = 1.0 before start of the AQS deformation
process. AQS, athermal quasistatic.

After the 𝑘-th deformation step, tensile strain in direction 𝛿 (𝛿 = 𝑥, 𝑦) is computed as

𝜀𝑘
𝛿
=
𝑙𝑘
𝛿
− 𝑙0

𝛿

𝑙0
𝛿

, (4)

by using the current and the initial box lengths in direction 𝛿, 𝑙𝑘
𝛿
, and, 𝑙0

𝛿
. We, then, compute the Poisson’s ratio as:

𝜈𝑘𝑥𝑦 = −
Δ𝜀𝑘𝑥

Δ𝜀𝑘𝑦
= −

𝜀𝑘𝑥 − 𝜀
𝑘−1
𝑥

𝜀𝑘𝑦 − 𝜀
𝑘−1
𝑦

. (5)

In the next section, we will consider several quantities□𝛿 (□ = 𝜎, 𝜀, 𝜈) averaged, over all𝑁 samples sharing the same
heterogeneity. The sample averages will be denoted by a bar overhead, □̄𝛿. The relation between a quantity□𝛿 and its
sample average □̄𝛿 is given by

□̄𝛿 =
1

𝑁

𝑁∑

𝑛=1

□𝛿 . (6)

3 RESULTS

3.1 Sample averaged 𝒙-tensile stress 𝝈̄𝒙 over sample averaged 𝒙-strain 𝜺𝒙

Ebrahem et al. carried out numerical tensile tests to investigate the stress-strain correlation for amorphous graphene
monolayers [27]. Figure 6 shows our numerically determined average tensile stress 𝜎̄𝑥 over average tensile strain 𝜀𝑥.
The maximum tensile strength 𝜎̄𝑥,𝑚𝑎𝑥 is reached by the samples of the lowest heterogeneity ℎ = 0.6 at strain values

of about 𝜀𝑥 ≈ 0.42 and decreases with increasing heterogeneity ℎ. This is in good agreement with the results of Ebrahem
et al. [27]. At 𝑥-strain values exceeding 0.35, the graphs start losing their smoothness and begin to oscillate, which can be
explained by first energy release events such as bond switches or isolated bond breaks.

3.2 Sample averaged 𝒚-strain 𝜺𝒚 over sample averaged 𝒙-strain 𝜺𝒙

In this section, we turn to the relation between average 𝑥- and 𝑦-strain shown in Figure 7.
During deformation, the sample sets of all heterogeneities show both negative and positive 𝑦-strain, that is, contraction

and expansion.
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F IGURE 6 Tensile 𝑥-stress 𝜎̄𝑥 over tensile 𝑥-strain 𝜀𝑥 , both averaged over five sets of each 10 of amorphous monolayer graphene
samples with levels of network heterogeneity ℎ = 0.6, 0.8, 1.0, 1.2, 1.4.

F IGURE 7 Transversal strain 𝜀𝑦 over tensile strain 𝜀𝑥 , both averaged over five sets of 10 amorphous monolayer graphene samples with
network heterogeneities ℎ = 0.6, 0.8, 1.0, 1.2, 1.4.

F IGURE 8 Detailed view on the graphs shown in Figure 7 within an average 𝑥-tensile strain range of 0.0 ≤ 𝜀𝑥 ≤ 0.02.

A very short period of transverse contraction in 𝑦-direction (𝜀𝑦 < 0) shows up within the range 0.0 < 𝜀𝑥 < 0.02. We will
have a closer look at the minimum transversal strains within this tensile strain range in Figure 8.
The samples of ℎ = 1.0 reach the maximum value for the minimum transversal strain of 𝜀𝑦,1.0,𝑚𝑖𝑛 = −0.00033. With

both decreasing (ℎ = 1.0 → 0.6) and increasing network heterogeneity (ℎ = 1.0 → 1.4), the minimum transversal strain
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F IGURE 9 PR 𝜈̄𝑠𝑔𝑓(251,3)𝑥𝑦 for tensile strain 0.0 ≤ 𝜀𝑥 ≤ 0.35, averaged over five sets of 10 amorphous monolayer graphene samples with
levels of network heterogeneity ℎ = 0.6, 0.8, 1.0, 1.2, 1.4, and filtered using sgf of degree 𝑝 = 3 with a window length of 𝑤 = 251. sgf,
Savitzky-Golay filter.

decreases to 𝜀𝑦,0.6,𝑚𝑖𝑛 = −0.00052 for the lowest networkheterogeneity,ℎ = 0.6, and to 𝜀𝑦,1.4,𝑚𝑖𝑛 = −0.00069 for the highest
network heterogeneity, ℎ = 1.4. We depict it by the black arrow in Figure 8.
Here and in the following, we will observe that the set of samples with ℎ = 1.0 has an extreme value that becomes

smaller or greater the farther the heterogeneity moves away to extreme values (ℎ = 0.6, 1.4). Thus, we can state that
network samples with ℎ = 1.0 are in a saturated state. Since they have the same ring size distribution as the reference
sample realized by Lichtenstein et al. [24], one may refer to them as benchmark samples in the following and call the
effect described above “benchmark sample saturation”.
For tensile strains between 0.011 .. 0.018 < 𝜀𝑥 < 0.241 .. 0.278, the samples enter the second, much longer period of

transverse expansion (𝜀𝑦 > 0). The largest transverse strain 𝜀𝑦,𝑚𝑎𝑥 is achieved by the benchmark samples (ℎ = 1.0) and
decreases, the farther the heterogeneity moves to extremal values.
Furthermore, Figure 7 shows a difference between the graphs regarding the lower (ℎ < 1.0) and the larger hetero-

geneities (ℎ ≥ 1.0). Whereas the three 𝑥-𝑦-strain-graphs of the larger heterogeneities form a rather symmetric bow
between both zero crossings and reachmaximum transversal strains 𝜀𝑦,𝑚𝑎𝑥 of around 0.15, the graphs of ℎ = 0.6, 0.8 reach
their maxima earlier. For further increasing 𝑥-strains up to 𝜀𝑥 ∼ 0.2, the graphs decrease with low curvature, forming a
downwards-sloping plateau. For higher tensile strains, both slopes approach those of ℎ ≥ 1.0.

3.3 Sample averaged Poisson’s ratio 𝝂̄𝒙𝒚 over sample averaged 𝒙 strain 𝜺𝒙

Figure 9 shows the sample averaged PR in 𝑦-direction for tensile deformation in 𝑥-direction, 𝜈̄𝑦𝑥𝑦 , over the sample averaged
tensile strain in 𝑥-direction within the range 0.0 ≤ 𝜀𝑥 ≤ 0.35. The light gray graph depicts the progress of the sample
averaged PR, here exemplary visualized for ℎ = 0.6. As all graphs oscillate heavily, we apply a Savitzky-Golay filter (sgf)
with a window length of 𝑤 = 251 and a polynomial degree of 𝑝 = 3 to visualize the PR’s dependency of the network
heterogeneity. So, the five colored graphs in Figure 9 show the filtered, sample averaged PRs, denoted by 𝜈̄𝑠𝑔𝑓(251,3)𝑥𝑦 , instead
of 𝜈̄𝑥𝑦 .
After having passed aminimum value below zero near 𝜀𝑥 ≈ 0.05, the PRs of all five heterogeneities raise again to values

greater than zero. Since they are the derivatives of the transversal strains with respect to the tensile strain, the difference
between the lower (ℎ < 1.0) and the higher network heterogeneities (ℎ ≥ 1.0) shows up here again: the graphs for ℎ =
0.6, 0.8 make an S-shape and cross those of the higher heterogeneities. This phenomenon is especially pronounced for
ℎ = 0.6. Instead, the three graphs for ℎ ≥ 1.0 raise by a slightly raising slope

d𝜈̄𝑥𝑦

d𝜀𝑥
.

It is important to note that all five PRs exceed values of 0.5. This is no contradiction to classical mechanics because, for
2D materials, the upper limit of PR is 1.0 instead of 0.5, so 𝜈̄

𝑥𝑦,2𝐷,𝑚𝑎𝑥
= 1.0 [28].

Figure 10 offers a closer look at the filtered, sample averaged PR within the tensile strain range of the auxetic behav-
ior (0.025 ≤ 𝜀𝑥 ≤ 0.225). All samples of all heterogeneities show NPRs because they expand in 𝑦-direction while being
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F IGURE 10 Detailed view on the graphs shown in Figure 9 within an average 𝑥-tensile strain range of 0.025 ≤ 𝜀𝑥 ≤ 0.225.

stretched in 𝑥-direction. Considering the corresponding minimum values, we observe that the absolute minimum value
is reached by the samples of ℎ = 1.2 with 𝜈̄

𝑥𝑦,𝑚𝑖𝑛
= 𝜈̄

𝑥𝑦,𝑚𝑖𝑛,1.2
= −0.156 at a tensile strain of 𝜀𝑥,𝜈̄

𝑥𝑦,𝑚𝑖𝑛,1.2
= 0.056.

Nevertheless, the minimum value for the benchmark samples (ℎ = 1.0), is not much higher with 𝜈̄
𝑥𝑦,𝑚𝑖𝑛,1.0

= −0.154,
occurring at a tensile strain of 𝜀𝑥,𝜈̄

𝑥𝑦,𝑚𝑖𝑛,1.0
= 0.053. If we now assume that the slightly lower minimum PR of the samples

with ℎ = 1.2 compared to the one of ℎ = 1.0 is due to some statistical fluctuations by taking into account the relatively
low number of 10 samples per heterogeneity set, we can state that the minimum PR increases with ℎ moving away from
the value of the benchmark samples, ℎ = 1.0, to either smaller (ℎ → 0.6) or greater values (ℎ → 1.4). And we conclude
that the benchmark sample saturation shows up here again, highlighted by the blue arrow in Figure 10.
The zero crossings following the minimum PRs show this phenomenon at first glance: with the network heterogeneity

moving away from ℎ = 1.0, the zero crossing of each graph shifts to lower tensile strains, with the absolute maximum
at 𝜀𝑥,0,𝑚𝑎𝑥 = 𝜀𝑥,0,1.0 = 0.165, and the minimum at 𝜀𝑥,0,𝑚𝑖𝑛 = 𝜀𝑥,0,0.6 = 0.090. We visualize this phenomenon by the green
arrow in Figure 10.

4 CONCLUSION AND OUTLOOK

As a groundwork formultiscalemembranemodeling of electronic devices, we numerically investigate the influence of the
network heterogeneity ℎ on the transversal strain and PR of monolayer graphene samples under uniaxial tensile stress.
We, therefore, perform molecular dynamics tensile test simulations with five groups of different network heterogeneities
ℎ = 0.6, 0.8, 1.0, 1.2, 1.4, 10 samples in each group.
The stress-strain response that we obtain for each heterogeneity is in good agreement with the literature. All five sample

sets reveal auxetic behavior, meaning positive transverse strains due to tensile loading, and, as a consequence, NPR. For
the correlations of transverse strain and PR over tensile strain, the greatest or lowest extreme values are reached by the
heterogeneity of ℎ = 1.0 instead of the minimum (resp. maximum) one and shift to moderate values with ℎ moving to
either ℎ = 0.6 or ℎ = 1.4. Since the network samples with ℎ = 1.0 have the same ring size variance as an experimentally
realized reference sample, we refer to these samples as benchmark samples and we name the phenomenon as benchmark
sample saturation.
In all three correlations (stress, transversal strain, and PR over tensile strain), we observe that the graphs for the lower

heterogeneities, namely ℎ = 0.6, 0.8, are different than those of the higher heterogeneities, ℎ ≥ 1.0. This difference is
worth being investigated further, together with the benchmark sample saturation.
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