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triggers cholemic nephropathy. cholestasis and an unmet clinical need. We demonstrate that

. . . . CN is triggered by the renal accumulation of bile acids (BAs)
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eath or proximal tubular epithelial cells, thereby preventing ically, the proximal tubular epithelial cells of the kidney take up

cholemic nephropathy. BAs via the apical sodium-dependent bile acid transporter
e Renal ASBT inhibition enhances urinary bile acid excretion (ASBT). We developed a therapeutic compound that blocks
and lowers the systemic bile acid pool. ASBT in the kidneys, prevents BA overload in tubular epithelial

. . . . . cells, and almost completely abolished all disease hallmarks in
* Renal ASBT expression is preserved in patients with a CN mouse model. Renal ASBT inhibition represents a po-
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https://doi.org/10.1016/j.jhep.2023.10.035
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/). J. Hepatol. 2024, 80, 268-281


mailto:ghallab@ifado.de
mailto:hengstler@ifado.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhep.2023.10.035&domain=pdf

Research Article JOURNAL
DILI, Autoimmune, Cholestatic and Genetic Diseases OF HEPATOLOGY

Inhibition of the renal apical sodium dependent bile acid
transporter prevents cholemic nephropathy in mice with
obstructive cholestasis

Ahmed Ghallab'?*, Daniela Gonzalez', Ellen Stringberg®, Ute Hofmann®, Maiju Myllys', Reham Hassan'?, Zaynab Hobloss’, Lisa Brackhagen',
Brigitte Begher-Tibbe', Julia C. Duda®, Carolin Drenda®, Franziska Kappenberg®, Joerg Reinders', Adrian Friebel°, Mihael Vucur’,
Monika Turajski', Abdel-latief Seddek?, Tahany Abbas®, Noha Abdelmageed®, Samy A.F. Morad'®, Walaa Morad®, Amira Hamdy?,
Wiebke Albrecht’, Naim Kittana'', Mohyeddin Assali'?, Nachiket Vartak', Christoph van Thriel’, Ansam Sous'?, Patrick Nell', Maria Villar-Fer-
nandez', Cristina Cadenas’, Erhan Genc'®, Rosemarie Marchan', Tom Luedde’, Peter Akerblad®, Jan Mattsson®, Hanns-Ulrich Marschall'**,
Stefan Hoehme®, Guido Stirnimann'®, Matthias Schwab™®'®'”, Peter Boor'®, Kerstin Amann'®, Jessica Schmitz’®, Jan H. Brisen®®,
Jorg Rahnenfiihrer®, Karolina Edlund’, Saul J. Karpen®', Benedikt Simbrunner®?3, Thomas Reiberger’>?3, Mattias Mandorfer®>?3,
Michael Trauner’®?*, Paul A. Dawson?®'*, Erik Lindstrom®*, Jan G. Hengstler'**

Journal of Hepatology 2024. vol. 80 | 268-281 W) Check for updates

See Editorial, pages 188-190

Background & Aims: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no
specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies.

Methods: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital
imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of
AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital
imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from
patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule
1) in patients with liver disease and hyperbilirubinemia.

Results: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal
TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by
AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice
with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels.
ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of
targeting ASBT to treat CN.

Conclusions: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting
renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction long been known that the risk of AKI is increased in jaundiced
patients.®® CN occurs in individuals with liver diseases of
different etiologies, including obstructive cholestasis, decom-
pensated cirrhosis/acute-on-chronic liver failure, alcohol-
associated hepatitis, and acute liver injury/failure.>®> Despite
their different etiology, all these disorders are associated with
variable degrees of cholestasis. The frequency of CN is likely
underestimated in clinical practice since the diagnosis is based
on biopsy-proven tubular injury with bilirubin casts. However,
kidney biopsies in patients with hepatic dysfunction are often

Acute kidney injury (AKI) is a frequent complication in patients
with liver disease that leads to high morbidity and mortality’-?
and has several causes, particularly hemodynamic changes,
and infections."*> However, an underestimated and increasingly
acknowledged®® cause of AKI in liver diseases is cholemic
nephropathy (CN),>®’ which describes renal dysfunction
together with characteristic renal histological features such as
tubular cell injury and Hall's stain-positive bilirubin casts. It has
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not performed because of a high risk of bleeding.® Postmortem
kidney autopsy studies of patients with decompensated
cirrhosis and acute-on-chronic liver failure hospitalized
because of AKI showed histologically proven CN in 75% and
25% of the samples, respectively.'

Despite the association with cholestasis, the underlying
pathophysiological mechanisms of CN remain unclear.>®
Common bile duct ligation (BDL) in mice caused renal tubular
epithelial cell (TEC) injury and histological as well as functional
alterations mimicking human CN, suggesting a pathogenic role
of bile acids (BAs)."" Increasing the hydrophilicity of the BA
pool either via norursodeoxycholic acid feeding or farnesoid X
receptor knockout ameliorated CN."? These findings suggest
that elevated circulating BA levels lead to increased glomerular
filtration, resulting in elevated renal levels of BAs that are
cytotoxic to epithelial cells lining the tubules and collecting
ducts. Nevertheless, there is an ongoing debate about the
causal role of BAs vs. other cholephiles that are increased in
cholestasis, such as bilirubin or inflammatory mediators, in the
development of CN.%"%:14

Here, we used intravital imaging'®>'® to directly observe
glomerular filtration and tubular BA reabsorption. We report that
massively increased reabsorption of BAs into proximal TECs in
cholestasis is critical for CN pathogenesis. Systemic inhibition
of the BA uptake carrier apical sodium-dependent BA trans-
porter (ASBT) with the novel compound AS0369 blocked BA
uptake from the tubular lumen and shows therapeutic potential
for the treatment of CN.

Materials and methods

A detailed description of all methods is provided in the sup-
plementary methods and in the supplementary CTAT table.

Renal biopsies of patients with CN and human serum

Renal biopsies from patients with CN (21) and without CN (11)
were collected from two cohorts: Hannover cohort (14 CN and 4
non-CN biopsies), and Erlangen cohort (7 CN and 7 non-CN bi-
opsies; Table S1A). Serum samples of patients with acute and/or
chronic liver disease (n = 67) and bilirubin >6 mg/dl undergoing
HVPG measurement + transjugular liver biopsy at the Vienna
Hepatic Hemodynamic Lab were selected from a prospective
registry with a biobank (Table S1B). Healthy individuals (n = 36)
were volunteers from Dortmund (Table S1B). The clinical studies
were conducted according to the ethical guidelines of the 1975
Helsinki Declaration and its later amendments as approved by
the local ethics committees (no. 1262/2017, 4415, 22-150-D).
Informed consent was obtained from all participants.

Mice, induction of obstructive cholestasis, and AS0369
administration

Eight-to-10-week-old male and female C57BL/6N (Janvier
Labs, France) or Cyp2c70”" and corresponding C57BL/6J wild-
type (Dawson, Karpen Lab) mice were used. All experiments
were approved by the local animal welfare committee (LANUV,
North Rhine-Westphalia, Germany, application number: 81-
02.04.2022.A286). To induce biliary obstruction, as a model for
severe cholestasis, the extrahepatic common bile duct was
ligated as previously described.’® A stock formulation of the
ASBT inhibitor AS0369 was prepared as a suspension, and
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doses of 15, 30, 60 and 120 mg/kg b.w. were administered
orally by gavage twice daily.

Intravital imaging

Functional intravital imaging of mouse livers and kidneys was
performed using a two-photon microscope (Zeiss, Germany) as
previously described.'®

Results

Enhanced uptake of BAs into renal TECs in obstructive
cholestasis

To study the mechanisms by which cholestatic liver disease
leads to nephropathy, the liver-kidney axis was analyzed time-
dependently in mice up to 12 weeks after BDL or sham opera-
tion. In agreement with previous studies,'"'®'® BDL led to
excessive accumulation of bile in the gallbladder, transient
elevation of plasma transaminases, and to time-dependent
elevation of plasma alkaline phosphatase activity (Fig. S1A-C).
Histological analysis of the liver showed progressive ductular
reaction, leukocyte infiltration, and fibrosis (Fig. S1D). Intravital
imaging of the liver after intravenous bolus injection of
fluorophore-coupled taurocholic acid (TCA) demonstrated effi-
cient uptake from the sinusoidal blood into hepatocytes within
minutes, followed by secretion into the bile canaliculi in control
mice. In contrast, TCA remained elevated in the sinusoidal blood
of BDL mice during the entire imaging period (Fig. S2; Video S1).

To visualize the transport of BAs in the kidney of mice with
obstructive cholestasis, a bolus of the fluorophore-coupled TCA
was administered into the tail vein on day 21 after BDL or sham
operation, and intravital videos were recorded. In the controls, a
transient, very weak increase of TCA-associated fluorescence
was quantified in the peritubular capillaries, then in the tubular
lumen and the corresponding TEC (Fig. 1A,B; Video S2A). After
BDL, the intensity of the TCA signal was higher and remained
increased in the peritubular capillaries (Fig. 1A,C; Video S2B). In
addition, a strong uptake of TCA via the apical membrane was
observed in some TECs, further named type A, while only a minor
increase was seen in other TECs, named type B (Fig. 1A, C).
Thus, spatio-temporal intravital analysis revealed strongly
reduced BA uptake by the liver, consequently higher and
persistently increased blood concentrations, enhanced
glomerular filtration and enrichment of BAs in TECs after BDL.

To investigate whether these observations could be repro-
duced without the use of fluorescent markers, a time-resolved
comprehensive analysis of endogenous BAs was performed up
to 12 weeks after BDL (Fig. 1D). First, TCA, an abundant endog-
enous BA in mice, was analyzed in liver and kidney tissues by
matrix-assisted laser desorption ionization-mass spectrometry
imaging (MALDI-MSI). In liver tissue, BDL caused a transient TCA
increase on day 1, which decreased thereafter, but remained
above control values (Figs 1E,F and S3). In contrast, in the kidneys,
a progressive time-dependent increase in endogenous TCA was
detected after BDL (Figs 1E,F and Fig. S3). The results of MALDI-
MSI were confirmed by liquid chromatography-tandem mass
spectrometry analysis of endogenous BAs in tissue homogenate
(Fig. 1G). Blood concentrations of BAs were massively increased
at all time intervals after BDL (Fig. 1G). Altogether, these data
confirmthe adaptive response of the liver to cholestatic conditions
and suggest an impaired ability of the kidney to adapt.
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Fig. 1. Enhanced uptake of bile acids into renal tubular epithelial cells in obstructive cholestasis. (A-C) Stills from intravital videos of sham controls and mice 21
days after BDL, and corresponding quantifications. Red: TMRE; green: TCA,; blue: Hoechst. Scale bars: 50 um (Video S2). (D) Experimental schedule. (E,F). MALDI-MSI
analysis of mouse livers and kidneys at different time intervals after BDL, and corresponding quantifications. (G) LC-MS/MS analysis of BAs in liver and kidney tissues
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Key events of CN: proximal TEC death and leakiness of
peritubular capillaries

To study the consequences of chronic cholestasis on kidney
function and morphology, kidney injury biomarkers in blood and
urine, and kidney histopathology were analyzed time-dependently
after BDL. Urea decreased in urine and increased in blood
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(Fig. S4A, B). Bilirubin increased in blood and urine of BDL mice
compared to controls (Fig. S4A, B). Creatinine concentrations
decreased in urine while the urinary output increased (Fig. S4C).
Macroscopically, a green discoloration of the kidneys was
observed after BDL (Fig. S4D). H&E staining showed tubular cystic
dilatation at week 1 after BDL, increasing thereafter, and at week 9
onwards, glomerular cysts were observed. Leukocyte infiltration
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and Hall’s positive casts occurred 3 days after BDL, with fibrosis
appearing at week 6 and intensifying thereafter (Fig. S4D).

To differentiate proximal and distal tubules as well as col-
lecting ducts, kidney tissue was co-immunostained for aqua-
porin (AQP)1, TSC (thiazide sensitive NaCl cotransporter) and
AQP2 (Fig. 2A). Dilatation and casts were observed in the distal
tubules and collecting ducts at day 3 and week 1, respectively,
but not in proximal tubules. To understand the mechanism of this
damage pattern, intravital imaging was performed using the
oxidative stress marker H.DCFDA (Fig. 2B; Fig. S5A). Proximal
tubules were differentiated from distal tubules by their higher
TMRE (tetramethylrhodamine, ethyl ester) intensity (Fig. S5A, B).
As little as 4 h after BDL, oxidative stress was seen specifically in
proximal TECs, which intensified until day one. This seemingly
contradictory pattern, with dilatation and casts in distal TECs but
oxidative stress in proximal TECs was further studied on intravital
videos using the cytotoxicity marker SYTOX green and the
mitochondrial marker TMRE. Already at day 1 after BDL, death of
proximal but not distal TECs occurred (Figs 2C and S5B). The
dead proximal TECs released cellular debris into the tubular
lumen from where it floated downstream (Fig. 2C; Video S3A).
Some of this detritus attached to the surface of distal tubules and
collecting ducts forming casts and leading to dilatation
(Fig. 2B,C; Video S3A). At week 3 after BDL, massive damage of
renal tubules occurred, coinciding with green autofluorescence —
possibly due to bilirubin — in and around peritubular capillaries
(Figs 2B and S5A). To study if this autofluorescence is due to
leaky capillaries, immunostaining of endothelial cells was per-
formed using anti-MECA-32 antibodies. Severely compromised
peritubular capillaries were observed particularly at week 3 after
BDL and later (Fig. S6A). Intravital imaging was conducted using
Evans blue, which under normal conditions does not leak from
the capillaries.’” As expected, Evans blue remained within the
blood capillaries in sham-operated mice (Figs 2D,E and S6B;
Video S4A). In contrast, 3 weeks after BDL, strong leakage was
observed from peritubular capillaries into the interstitium (Figs
2D,E and S6B; Video S4B). At week 12, glomerular cysts man-
ifested as dilatation of Bowman’s space (Figs 2B and S5A; Video
S3B). The imaging data corresponded to the time course of the
proximal TEC marker KIM-1, which increased until week 1 before
plateauing and decreasing thereafter (Fig. 2F); the proximal and
distal TEC marker neutrophil gelatinase-associated lipocalin
(NGAL) remained elevated until the end of the observation
period, while the glomerular filtration marker cystatin C increased
only at the longest periods of 9 and 12 weeks after BDL (Fig. 2F).

Identification of renal ASBT as a possible therapeutic target
in CN

As shown above, BA enrichment in proximal TECs is a key early
event in CN progression. The main carrier responsible for
reabsorption of the non-sulfated BAs in TECs is ASBT'®
(Fig. 3A). In contrast to the adaptive changes of BA trans-
porters in the liver (Fig. S7), renal Asbt expression was not
significantly downregulated up to 6 weeks after BDL (Fig. 3B).
Renal multidrug resistance-associated protein (MRP)2, which
pumps BAs into the tubular lumen, was only moderately altered,
whereas MRP4, which also exports BAs at the luminal apical
membrane, was significantly upregulated (Fig. 3C). Interestingly,
the basolateral BA exporters MRP3 and OSTa (organic solute
transporter alpha) were significantly upregulated after BDL
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(Fig. 3D), suggesting that BAs may be more efficiently exported
into the interstitium, from where they can reach the peritubular
capillaries. In agreement with the RNA analysis, immunostaining
of ASBT in the kidneys of mice after BDL did not show major
changes compared to controls (Fig. 3E). Expression of ASBT
occurred at the luminal side of TECs and was exclusively
observed in AQP1-positive cells, a marker of proximal tubules
(Fig. S8A). This is consistent with the functional analysis where
fluorophore-coupled TCA showed a mosaic pattern with tubules
that either do or do not reabsorb BAs (Fig. S8B). MALDI-MSI
analysis of TCA supported the selective enrichment of TCA in
ASBT-positive proximal TECs (Fig. S8C).

To study the translational relevance of the preserved ASBT
expression in kidneys of cholestatic mice, a set of kidney bi-
opsies from patients with early and advanced stages of CN,
identified based on histopathological examination, was
analyzed. Importantly, ASBT expression was preserved in pa-
tients with CN even at the late stages of the disease (Fig. 3F).

Evaluation of a systemic ASBT-specific inhibitor

To investigate the possible role of renal ASBT in the develop-
ment of CN, we performed intervention studies with the novel
compound AS0369 which has an IC5y of 1.31 nM for mouse
ASBT and has >100-fold greater specificity for mouse ASBT vs.
mouse NTCP (sodium-taurocholate co-transporting poly-
peptide) (Fig. 4A). After administration of 10 mg/kg AS0369 (per
os) to wild-type mice, the mean C.,. in blood was 222 nM
(Fig. 4A; Fig. S9A) and the half-life was 2 h. Appreciable levels
of AS0369 were also found in kidney tissue and in urine
(Fig. 4A). To test the efficacy of AS0369 in the inhibition of renal
ASBT in vivo, a pilot experiment was designed using female
mice to allow for repeated urine collection by a urinary bladder
catheter. Starting from day 7 post-BDL, the mice received
various doses of AS0369 (15-120 mg/kg) orally twice per day
for 5 days (Fig. 4B). Urine samples were collected daily, and
blood samples were obtained 4-7 h post-dosing at day 5 for
determination of plasma AS0369 and BA concentrations (Figs
4B and S9B). The lowest dose tested (15 mg/kg) increased
urinary excretion of non-sulfated BAs (Fig. 4C). In contrast, little
effect was observed on sulfated BAs, which are poor sub-
strates of ASBT. Plasma concentrations of BAs were reduced
with all tested doses of AS0369, but doses of 30-120 mg/kg
were more effective than 15 mg/kg (Fig. 4D).

For a further pilot experiment with intravital imaging, a dose
of 60 mg/kg AS0369 was selected; this dose evoked excessive
increases in urinary BAs and was well tolerated. Interestingly,
twice daily administration of AS0369 for 2 days, beginning on
the day of BDL, strongly reduced the uptake of TCA into TECs
(Fig. 4E), ameliorated oxidative stress in proximal TECs and
tubular casts in distal tubules compared to vehicle-treated BDL
mice (Fig. 4F). Therefore, a dose of 60 mg/kg was used for
comprehensive efficacy studies.

Efficient prevention of CN by inhibition of renal ASBT

To evaluate the efficacy of AS0369 in the prevention of CN, a
study design with female mice subjected to BDL and simulta-
neously treated with AS0369 (60 mg/kg, twice daily) or with
vehicle for 6 weeks was performed. Sham-operated mice
treated with vehicle served as controls (Fig. 5A). Treatment with
AS0369 prevented mortality throughout the study period
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compared to ~50% mortality in the vehicle-treated BDL group
(Fig. 5B). In addition, BDL-induced body weight loss was pre-
vented by treatment with AS0369 (Fig. 5C). The apparent body
weight recovery in the BDL vehicle group by 6 weeks may be
due in part to a dramatically increased gallbladder volume (Figs
5D,E and S10A). The BDL-associated increase in gallbladder
volume was reduced by AS0369 (Fig. 5E). Furthermore, kidneys
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with a normal reddish-brown gross morphology were observed
in the AS0369-treated BDL mice compared to kidneys with a
greenish discoloration in the BDL vehicle group (Fig. 5D). The
kidney-to-body weight ratio was not significantly altered in all
groups, but the liver-to-body weight ratio showed a significant
increase in the BDL vehicle group compared to the sham
controls, which was ameliorated by AS0369 (Fig. S10B,C).
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Next, the effect of systemic ASBT inhibition with AS0369 on  massively increased in the AS0369-treated vs. vehicle-treated
BA concentrations in relevant compartments was investigated. BDL mice and were strongly reduced in liver and kidney tissue
Urinary and renal tissue BA concentrations in the sham controls and in blood, whereas BA concentrations in bile were slightly
were very low, while they were elevated in response to BDL increased (Fig. 5F). In agreement, MALDI-MSI analysis of TCA in
(Fig. 5F). Nonetheless, BA concentrations in urine were liver and kidney tissues showed a strongly reduced signal in the
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AS0369-treated mice compared to the BDL vehicle-treated
group (Fig. 5G, H; Fig. S11). Treatment with AS0369 signifi-
cantly reduced total serum bilirubin, alkaline phosphatase, and
blood urea nitrogen, but not the liver damage biomarkers alanine
and aspartate aminotransferase (Fig. 5I). AS0369 particularly
reduced the TEC damage biomarker NGAL in urine (Fig. 5J). To
study the effect of AS0369 at the tissue level, histological anal-
ysis of the kidney was performed. A strong reduction in leuko-
cyte infiltration, fibrosis, tubule damage, cast formation, and
endothelial cell damage was observed in the AS0369-treated
BDL mice compared to vehicle-treated BDL mice (Figs 6A,B,
S12 and 13A). In agreement, expression of early growth
response protein 1, which plays a critical role in kidney fibro-
genesis, was upregulated in kidney tissue after BDL and reduced
to control levels by AS0369 (Fig. 6C). Furthermore, vascular
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leakage of Evans blue into the interstitium of kidney tissue after
BDL was almost completely prevented by AS0369 (Figs 6D,G
and S13B; Videos S5A-C). Sirius red staining of the liver showed
periportal and perisinusoidal fibrosis in the vehicle treated BDL
mice (Fig. S14). Treatment with AS0369 reduced the peri-
sinusoidal fibrosis, and ameliorated canalicular dilata-
tion (Fig. S14).

Next, the influence of ASBT inhibition on BA carrier expres-
sion in the liver and kidney and Cyp7al expression in the liver
was analyzed. AS0369 treatment did not significantly alter
expression of the BA carriers in the liver compared to the BDL
vehicle group, except that the BDL-induced upregulation of
MRP4 was ameliorated in response to AS0369 (Fig. S15A).
However, Cyp7al expression was upregulated after AS0369
treatment (Fig. S15A). In kidney tissue, AS0369 treatment
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prevented the BDL-induced dysregulation of BA carrier expres-
sion except for MRP4 (Fig. S15B).

Since the main intervention study was performed in female
mice, we repeated the intervention experiment using male mice,
with the difference that urine was only collected at the end of the
6-week treatment. The results confirmed the remarkable pro-
tection against development of CN conferred by AS0369 and
showed that this effect is not sex specific (Figs S16 and S17).
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RNA-sequencing reveals large effect size of ASBT inhibition

To perform an unbiased evaluation of the effect of ASBT inhi-
bition at the transcriptional level, kidney and liver tissues were
analyzed by RNA-sequencing. The kidney samples from BDL
mice treated with AS0369 clustered closer to controls than to
vehicle-treated BDL mice in a principal component analysis
(Fig. 7A), indicating a sizable effect of AS0369 treatment in the
kidney, which was also reflected by many significantly up and
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downregulated genes (Fig. 7B). To further investigate this effect,
genes were plotted by their log2-fold-changes over controls for
vehicle-treated (x-axis) and AS0369-treated (y-axis) BDL mice
(Fig. 7C), delineating five gene groups: genes in group 1a and 2a
were upregulated by BDL and downregulated by AS0369, either
completely to control levels (1a) or partially (2a). Conversely,
genes in 1b and 2b were downregulated in response to BDL,
which was either completely (1b) or partially (2b) prevented by
AS0369. Only relatively few genes were induced by AS0369
treatment but not affected by BDL, representing AS0369-
specific response genes (3a). Overrepresentation analysis
demonstrated an enrichment in inflammation-associated gene
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ontology groups for genes upregulated due to BDL, while
the downregulated genes were associated with metabolic pro-
cesses (Fig. 7D). Correspondingly, genes upregulated by BDL
and downregulated to control levels by AS0369 (1a) were also
inflammation-associated, and genes downregulated by BDL and
increased to control levels by AS0369 (1b) also represented
metabolic gene ontology groups (Fig. 7E). The most down-
regulated gene upon ASBT inhibition in group 1a was the
extracellular matrix protein COL10A1, and the most upregulated
gene in group 1b was histidine decarboxylase, which catalyzes
the synthesis of histamine (Fig. 7F). Qualitatively similar conse-
quences of ASBT inhibition were observed in the livers of the
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same mice, but the effect was smaller (Fig. 7G-L). Nevertheless,
the overlaps of altered genes in the liver and kidney were higher
than randomly expected (Fig. S18). Altogether, the RNA-
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sequencing analysis demonstrated that AS0369 treatment
ameliorated BDL-induced gene expression in the kidney, while
the effects in the liver were smaller.
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Fig. 7. RNA-seq analysis of BDL mice confirms the protective effect of ASBT inhibition in the kidney and liver. (A) PCA plots of sham vehicle mice, BDL mice
treated with the vehicle, and BDL mice treated with AS0369. Each dot represents an individual mouse. (B) Volcano plots illustrating differential genes between vehicle-
treated (left panel) and AS0369-treated (right panel) mice with BDL and controls (sham vehicle). (C) DiPa plots illustrating the response to AS0369. Each dot represents
an individual gene. (D, E) Plots of overrepresented GO groups in the indicated differential gene sets. The size of the dots represents the number of genes in the
individual GO groups and the color code the adjusted (adj) p value. (F) Genes most influenced by AS0369 in groups 1a and 1b of the DiPa plot. (G-L) correspond to A-F
but were performed with liver tissue. The data are from female mice. BDL, bile duct ligation; PCA, Principal component analysis. (This figure appears in color on

the web.)
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Translational relevance

Large differences in BA synthesis and composition are known
between humans and mice. Therefore, we used the Cyp2070'/ .
mice with humanized BA spectrum'® that — like humans — have
lower total BAs but higher concentrations of the more toxic BA
chenodeoxycholic acid, and very low levels of hydrophilic
muricholate BA (Fig. 8A-C). AS0369 also increased sum BA
concentrations in the urine of the Cyp2c70™ mice (Fig. 8A),
including BAs that are formed by humans but not (or only at
very low concentrations) by mice, such as taurochenodeox-
ycholic acid (Fig. 8B). Upon BDL, Cyp2c70”~ mice showed
aggravated kidney injury compared to wild-type mice, as
illustrated by higher levels of NGAL (Fig. 8C). Cyp2c70™" mice
could not be analyzed for periods longer than 24 h after BDL,
because of their poor health status that was much worse
compared to that of wild-type mice. It took about 1 week for
AS0369 to reduce NGAL in WT mice after BDL (Fig. 5J).
However, in Cyp2070'/' mice, a significant reduction in NGAL
was already seen at day 1 in male mice, with a trend in female
mice (Fig. 8C). Thus, AS0369 also enhances urinary excretion
of a humanized and more hydrophobic spectrum of BAs and
ameliorated BDL-induced kidney injury.

To address the translational relevance of the findings in
mice, we studied patients with acute and/or chronic liver dis-
ease with serum bilirubin >6 mg/dl (n = 67) and healthy volun-
teers (n = 36) and focused on the relationship between sum BA
and bilirubin concentrations in serum and the proximal TEC
damage marker KIM-1 (patient characteristics: Table S1B).
Besides liver enzymes, bilirubin, and BA, blood urea nitrogen,
cystatin C, NGAL, and KIM-1 were significantly increased in
patients compared to healthy volunteers (Fig. 8D). Among pa-
tients with acute and/or chronic liver disease, sum BA con-
centrations correlated positively with bilirubin levels (Fig. 8E)
and both bilirubin and BA correlated positively with KIM-1
(Fig. 8F,G). In a multiple linear regression model after back-
ward selection, only sum BA was kept as an explanatory vari-
able for KIM-1, while bilirubin, C-reactive protein (a marker of
systemic inflammation, which may contribute to kidney injury),
and ursodeoxycholic acid therapy were excluded (Fig. 8H).

Discussion

The mechanisms of CN pathogenesis remain poorly under-
stood, and no specific treatments are available.>® Therefore,
we studied the pathomechanisms of BDL-induced CN in mice
by intravital imaging and observed five subsequent events: i.
BA increase in blood and enrichment in proximal TECs (almost
immediately after BDL); ii. oxidative stress in proximal TECs (4 h
onwards); iii. death of proximal TECs with release of debris into
the tubular lumen, which travels downstream and forms casts
in the distal tubules and collecting ducts, followed by dilatation
of tubules (day 1-3 onwards); iv. peritubular capillary damage
and leakiness (week 3 onwards); and v. glomerular cysts (week
6 onwards).

ASBT is known to transport BAs from the tubular lumen into
TECs. Therefore, to study a possible causal relationship be-
tween BA enrichment and oxidative stress, as well as cell death
of proximal TECs, we utilized the systemically bioavailable
specific ASBT inhibitor, AS0369, which blocked the uptake of
BAs into TECs almost completely. A remarkable finding was the
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large effect size of AS0369, and the renal protective effects
associated with decreasing kidney BA levels. All CN hallmarks
(event i-v) were almost completely absent with twice daily
AS0369 administration over a 6-week period after BDL.

Targeting renal ASBT not only provides renal protective ef-
fects but also serves as a means of lowering overall BA load in
the body by increasing urinary excretion. Indeed, plasma BA
concentrations decreased strongly in response to AS0369.
Importantly, the elevated urine BA levels induced by AS0369
also offer a non-invasive biomarker of renal ASBT target
engagement which may have translational value. Plasma levels
of AS0369 dosed at 60 mg/kg were approximately 200 nmol/L
4-7 h after administration. Since AS0369 is tightly protein
bound (>99%), free plasma levels were approximately 1-
2 nmol/L which equates to the ASBT ICso suggesting that the
observed efficacy was not due to off-target interactions.

While TEC death occurred within the first days after BDL
(event i-iii), compromised capillary endothelial cells were
observed at week 3 onwards (event iv). This led to peritubular
capillary leakage and is possibly explained by endothelial cell
damage caused by an elevated flux of BAs from the tubule
lumen into the interstitial space, although elevated circulating
BAs could also contribute. Nonetheless, AS0369 treatment
substantially improved renal peritubular capillary integrity.

The protective effect of AS0369 in the kidneys was also re-
flected in the genome-wide analyses, where AS0369 reduced the
number of genes deregulated by BDL to a larger degree in the
kidney than the liver. A plausible explanation for the stronger
effectin the kidney is that TECs are specifically protected against
BA overload by AS0369, since ASBT appears to be the sole
mechanism for reabsorption of non-sulfated BAs from the tubule
lumen. Conversely, hepatocytes continue to synthesize BAs and
AS0369 does not affect hepatocellular sinusoidal BA uptake via
NTCP and OATPs (organic anion transporting proteins). As such,
the liver BA content remains elevated above normal levels in this
model of complete biliary tract obstruction. These findings
generally agree with a recently published study, where whole
body ASBT knockout mice showed decreased liver damage 5
days after BDL.?° In addition, administration of an intestine-
restricted ASBT inhibitor in combination with the farnesoid X
receptor agonist obeticholic acid lowered the BA pool, and
ameliorated liver injury 2-days post-BDL.*°

Systemic ASBT inhibition has multiple favorable conse-
quences in advanced liver diseases. Blocking renal ASBT
specifically protects a subset of TECs that are vulnerable to BA
toxicity and prevents CN (so-called organ-protection). More-
over, increased urinary elimination of non-sulfated BAs, which
lowers the overall BA pool, is favorable for all cell types
compromised by exposure to high levels of circulating BAs.
Importantly, in Cyp2c70”" mice, that have a humanized BA
composition,'® we observed that AS0369 also enhanced uri-
nary excretion of the more toxic hydrophobic BAs, such as
taurochenodeoxycholic acid, and ameliorated kidney injury af-
ter BDL, indicating a possible human relevance.

An initial key event of CN in mice is the accumulation of BAs
in proximal TECs, cell death and the release of KIM-1 from this
cell type. Since KIM-1 is also considered a marker of proximal
TEC injury in humans,® we analyzed KIM-1 in serum of patients
with acute and/or chronic liver disease and hyperbilirubinemia.
The sum BA concentration was the key explanatory variable in
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Fig. 8. Translational relevance. (A-C) Analysis of mice with humanized BA spectrum; Cyp2c70™". (A) Urine BAs in mice after sham surgery, BDL and vehicle
administration, and BDL plus 60 mg/kg AS0369 twice, on day 1. (B) Individual BAs in wild-type and Cyp2c70'/' mice. (C) Urine NGAL in male and female wild-type and
Cyp2c70'/' mice. *p <0.01, **p <0.001; Tukey’s multiple comparisons test. (D-H) Analysis of patients with acute and/or chronic liver disease and hyperbilirubinemia. (D)
Liver enzymes, bilirubin, BA and kidney injury markers in serum of patients and in healthy volunteers (controls). *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001; Unpaired
t-test. (E-G) Spearmans correlation of BA, bilirubin, and KIM-1 in serum of patients (red circles) and heathy volunteers (blue circles); R: correlation coefficient; P:
Spearman’s p value. (H) Multiple linear regression analysis with serum KIM-1 as a dependent variable. ALP, alkaline phosphatase; ALT, alanine transaminase; BDL, bile
duct ligation; BUN, blood urea nitrogen; KIM1, kidney injury molecule; NGAL, neutrophil gelatinase-associated lipocalin. (This figure appears in color on the web.)

a multiple linear regression model with KIM-1 as the dependent
variable, suggesting that BAs may play a pivotal role in human
kidney injury in the context of liver dysfunction. The present
human data does not exclude that bilirubin (and possibly
additional cholephiles released from the liver) may be relevant,
considering that patients were selected based on a cut-off of
>6 mg bilirubin/dl. The latter was chosen as it denotes liver
dysfunction in the context of decompensated cirrhosis* and an
analysis of 1,372 patients included in the above-mentioned
registry study found that profound elevations of BA are un-
common in patients with lower bilirubin values (data not
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shown). Notably, mean arterial pressure (as a marker of circu-
latory dysfunction) was not included in our models, as all bar
two patients with mean arterial pressures of 64 mmHg had
pressures 265 mmHg and C-reactive protein (as a marker of
systemic inflammation) was less closely associated with prox-
imal TEC injury than sum BA concentration.

At first glance, it may be surprising that the earliest key
events of CN occur in proximal tubules in the present mouse
study, as casts are observed in distal tubules in human bi-
opsies.? The herein described mechanism resolves this
discrepancy, since debris from dead proximal TECs travels
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downstream in the tubule lumen to induce cast formation in
distal tubules and collecting ducts; compartments with a high
luminal osmolarity. In biopsies only the latter cast formation but
not the initial death events in proximal TECs can be detected. A
further translationally relevant component of the herein
described mechanisms is that ASBT expression is preserved in
patients with CN at the luminal side of proximal TECs.

In conclusion, a mouse model of CN identified BA enrich-
ment in TECs as a critical pathomechanism. Blocking renal
ASBT-mediated BA reabsorption prevented CN development
and systemically decreased BA concentrations. Taken
together, systemically available ASBT inhibitors reaching the
kidney may exert reno-protective effects in conditions of kidney
injury secondary to liver disease.
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