% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @ARTICLE{Truhn:982502, author = {Truhn, Daniel and Tayebi Arasteh, Soroosh and Saldanha, Oliver Lester and Müller-Franzes, Gustav and Khader, Firas and Quirke, Philip and West, Nicholas P. and Gray, Richard and Hutchins, Gordon G. A. and James, Jacqueline A. and Loughrey, Maurice B. and Salto-Tellez, Manuel and Brenner, Hermann and Brobeil, Alexander and Yuan, Tanwei and Chang-Claude, Jenny and Hoffmeister, Michael and Foersch, Sebastian and Han, Tianyu and Keil, Sebastian and Schulze-Hagen, Maximilian and Isfort, Peter and Bruners, Philipp and Kaissis, Georgios and Kuhl, Christiane and Nebelung, Sven and Kather, Jakob Nikolas}, title = {{E}ncrypted federated learning for secure decentralized collaboration in cancer image analysis}, journal = {Medical image analysis}, volume = {92}, issn = {1361-8423}, reportid = {RWTH-CONV-252585}, pages = {103059}, year = {2024}, cin = {532010-2 / 951320 / 811003-4 ; 924420}, cid = {$I:(DE-82)532010-2_20140620$ / $I:(DE-82)951320_20220218$ / $I:(DE-82)811003-4_20140620$}, typ = {PUB:(DE-HGF)16}, UT = {WOS:001138886700001}, pubmed = {pmid:38104402}, doi = {10.1016/j.media.2023.103059}, url = {https://publications.rwth-aachen.de/record/982502}, }