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Preface – Joint special issue on nanomechanical testing in materials research and 
development VIII 

We are delighted to introduce this virtual special issue (VSI) focused 
on nanomechanical testing, featuring contributions from the 2022 
Nanomechanical Testing in Materials Research and Development VIII 
meeting held in Split, Croatia. With nearly 130 delegates from 15 
countries from across the globe in attendance after the Covid19 
pandemic, this conference provided one of the first opportunities for the 
community to meet again and exchange ideas in person. In this way, it 
continued the tradition of serving as a platform for sharing advance
ments in nanomechanical testing through 67 oral presentations and 59 
poster contributions. The event fostered scientific discussions, 
networking opportunities, and received active participation and spon
sorship from numerous companies showcasing their latest developments 
in the field, including Alemnis AG, Bruker Nano GmbH, FemtoTools AG, 
KLA, NanoMEGAS SPRL, Micro Materials Ltd., SURFACE systems +
technology GmbH + Co KG, and ZEISS Microscopy. 

This conference series began nearly two decades ago and has wit
nessed exciting developments in nano- and micromechanical testing, 
revolutionizing research and development in the field. Some of the key 
advancements comprise instrumentation, in-situ and operando testing 
including different environments, testing across multiple scales with 
progressive miniaturisation as well as application of small-scale testing 
to ever increasing areas and volumes, advancements towards high- 
throughput methodologies and data-driven approaches. The develop
ment of advanced nanomechanical testing instruments has enabled 
precise and accurate measurements of mechanical properties down to 
the nanoscale. With the integration of imaging techniques, such as 
electron microscopy and optical microscopy, with mechanical testing we 
can now perform real-time observations of material deformation and 
failure mechanisms, providing valuable insights into mechanical 
behaviour. These are now available for very different and well- 
controlled conditions, such as elevated temperatures, corrosive envi
ronments, and dynamic loading conditions, providing a more 

comprehensive understanding of material response in real-world ap
plications. The ability to cross multiple length-scales in this way has 
facilitated a deeper understanding of the size-dependent mechanical 
properties and deformation mechanisms of materials. The development 
of automated testing platforms and methods including rapid screening 
across wide ranges of composition, microstructure and test parameters 
continues to contribute to these important advances. At the same time, 
the integration of data science and machine learning now enables the 
analysis and interpretation of such large volumes of mechanical testing 
data, leading to the discovery of new relationships, trends, and predic
tive models. 

Overall, these developments have continued expanded our knowl
edge of material behaviour and continue to fascinate and attract re
searchers from many areas of materials science. They strive to 
understand and design materials with tailored mechanical properties for 
a wide range of applications, including structural materials microelec
tronics, biomaterials, energy and many other functional materials. 

All of these aspects form part of the collection of papers in this virtual 
special issue and we are particularly delighted to include the important 
contributions of the early career researchers who contributed 
outstanding research, providing a tough challenge for the juries of the 
respective best poster and newly created oral presentations awards. 

The applications of nanomechanical testing covered in this special 
issue range from the basic deformation mechanisms over studies of 
materials that possess intrinsically small length scales from their pro
cessing history to advancing the test methods and correlations with 
other ex- and in-situ methods. Fundamental deformation mecha
nisms have been studids experimentally and by different modelling 
approaches relating to different classes of materials, such as fcc [1,2] 
and bcc metals [3] including after charging with hydrogen [4], bulk 
metallic glasses [5,6], Laves phases [7], silicon [8,9], a CrCoNi medium 
entropy alloy [10], Ni-Mn-Ga shape-memory alloys [11], barium 
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titanate thin films [12]. Several contributions also consider composites 
or materials intrinsically structured at the microscale. This includes lath 
martensite [13], bainitic and ferritic HSLA steel constituents [14], Ni/Al 
nanolaminates [15], nanoporous gold [16], particle composites [17], 
supercrystalline nanocomposites [18], and brittle coatings and Al/Al2O3 
multilayers on flexible substrates [19,20]. The properties and mech
anisms encountered for different material processing methods are 
included in this special issue with respect to additive manufacturing 
[21,22], laser welding [23], multi-metal carbide coatings [24], 3D 
printed micorpillars [25], high-pressure torsion [26] and strain-path 
dependent damage [27]. Nanomechanically testing is traditionally 

also closely related to the use of other ex- and in-situ characterisation 
methods to give a holistic picture of the mechanisms giving rise to the 
properties of structural or functional materials. Here, in-situ microscopy 
for imaging of high-temperature processes [28] and in-situ x-ray to
mography to characterise damage [29] are among the topics covered in 
this issue. In the future, we look forward to many applications also of the 
new or improved characterisation methods that have been developed 
recently, such as to advance fracture testing [30,31,32], enable high- 
throughput fracture testing at small scales [33],to study creep and fa
tigue using bulge testing of freestanding thin films [34], to enable the 
quantitative determination of directional elastic properties from nano
indentation [35], and to explore temperature- and rate-dependent 
properties by high-temperature scanning indentation [2] and strain 
rate sweeping [36]. In the application of microstructural and nano
mechanical characterisation, the use of artificial intelligence is also on 
the rise. Examples of this covered in this issue include a study on the 
three-dimensional nature of damage [37], mapping hierarchical and 
heterogeneous micromechanics [38]. 

The Nanomechanical Testing conference series began in 2005 with 
the first meeting in Crete, Greece, and continued in 2009 in Barga, Italy; 
2011 on Lanzarote, Spain; 2013 and 2015 in Olhao and Albufeira, 
Portugal, 2017 in Dubrovnik, Croatia, and 2019 in Malaga, Spain before 
returning to Split in Croatia in 2022 after the Covid19 pandemic. 

The Editors express their gratitude to the Steering Committee 
members: George Pharr, Texas A&M, USA; Mathias Göken, FAU Erlan
gen-Nürnberg, Germany; Gerhard Dehm, MPIE Düsseldorf, Germany; 
Johann Michler, EMPA Thun, Switzerland; Marc Legros, CEMES-CNRS, 
France; Karsten. Durst, TU Darmstadt, Germany; and Jon M. Molina- 
Aldareguia, IMDEA Materials Institute, Spain. The Editors are also 
grateful to publishers at Elsevier, the editorial teams of Materials & 
Design and Materials Science and Engineering A, and all reviewers and 
contributors for creating this body of published work.   
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