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Abstract
Brain-inspired computing proposes a set of algorithmic principles that hold promise for advancing
artificial intelligence. They endow systems with self learning capabilities, efficient energy usage,
and high storage capacity. A core concept that lies at the heart of brain computation is sequence
learning and prediction. This form of computation is essential for almost all our daily tasks such as
movement generation, perception, and language. Understanding how the brain performs such a
computation is not only important to advance neuroscience, but also to pave the way to new
technological brain-inspired applications. A previously developed spiking neural network
implementation of sequence prediction and recall learns complex, high-order sequences in an
unsupervised manner by local, biologically inspired plasticity rules. An emerging type of hardware
that may efficiently run this type of algorithm is neuromorphic hardware. It emulates the way the
brain processes information and maps neurons and synapses directly into a physical substrate.
Memristive devices have been identified as potential synaptic elements in neuromorphic hardware.
In particular, redox-induced resistive random access memories (ReRAM) devices stand out at
many aspects. They permit scalability, are energy efficient and fast, and can implement biological
plasticity rules. In this work, we study the feasibility of using ReRAM devices as a replacement of
the biological synapses in the sequence learning model. We implement and simulate the model
including the ReRAM plasticity using the neural network simulator NEST. We investigate two types
of ReRAMmemristive devices: (i) a gradual, analog switching device, and (ii) an abrupt, binary
switching device. We study the effect of different device properties on the performance
characteristics of the sequence learning model, and demonstrate that, in contrast to many other
artificial neural networks, this architecture is resilient with respect to changes in the on-off ratio
and the conductance resolution, device variability, and device failure.

1. Introduction

In many everyday tasks, such as learning, recognizing, or predicting objects in a noisy environment, the brain
outperforms conventional computing systems and deep learning algorithms at many aspects: it has a higher
capacity to generalize, can learn from small training examples, is robust with respect to perturbations and
failure, and is highly resource and energy efficient. To achieve this performance, it uses intricate biological
mechanisms and principles. Understanding these principles is essential for driving new advances in
neuroscience and for developing new real-world applications. For instance, it is known that biological neural
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networks are highly sparse in activity and connectivity and they can self-organize in the face of the incoming
sensory stimulus using unsupervised local learning rules. A number of biologically inspired algorithms
relying on these principles have been developed for sequence prediction and replay (Lazar et al 2009,
Hawkins and Ahmad 2016, Bouhadjar et al 2019, 2022), pattern recognition (Masquelier and Thorpe 2007,
Payeur et al 2021), and decision making (Neftci and Averbeck 2019). The spiking temporal memory (spiking
TM) network proposed by Bouhadjar et al (2022) learns high-order sequences in an unsupervised,
continuous manner using local learning rules. Owing to its highly sparse activity and connectivity, it provides
an energy-efficient sequence learning and prediction mechanism. After learning, the network successfully
predicts and recalls complex sequences in a context-specific manner, and signals anomalies in the data.

The spiking TM algorithm was originally implemented using the neural network simulator NEST
(Gewaltig and Diesmann 2007). While NEST provides a simulation platform optimized for running
large-scale networks efficiently in a reproducible manner, it is executed on standard von-Neumann-type
computers, i.e. on hardware that is not specifically optimized for neuromorphic computing. This results in
performance limitations as the simulation time and the energy dissipation become substantially high for
brain-scale neural networks (Kunkel et al 2014, Jordan et al 2018). For using spiking TM in edge-computing
applications, more efficient hardware is therefore required. Neuromorphic hardware offers a potential
solution to the high demands imposed by the natural-density connectivity of the brain and the resulting
communication load. This is achieved through dedicated solutions and specific circuit blocks that emulate
neuron and synapse functionalities (Burr et al 2016, Xia and Yang 2019, Markovíc et al 2020, Zhu et al 2020).
The local learning rules and the sparse neuronal activation of the spiking TMmodel allow for efficient
mapping of the algorithm on neuromorphic hardware.

Memristive devices were suggested as components in such a hardware (Yang et al 2013, Ielmini and Wong
2018, Yu 2018). They can be used to emulate certain synaptic functionalities using only a single device, by
replacing more complex complementary metal-oxide-semiconductor (CMOS) based circuits (Waser et al
2009, Dittmann and Strachan 2019) and thus can provide more energy-efficient computing in edge
applications (Xia and Yang 2019). Their intrinsic dynamics capture similar characteristics as the biological
synapses such as variability, weight dependence of the update, and non-volatility. A particular type of
memristive device is known as the valence change memory (VCM) ReRAM device (Waser 2012b). The
device conductivity can be strengthened (i.e. potentiated) or weakened (i.e. depressed) by means of an
applied voltage pulse. Depending on the initial resistance range and the voltage pulse amplitude and width, a
VCM ReRAM device can operate in two different modes, i.e. binary or analog (Cüppers et al 2019). In the
analog mode, the applied pulses result in a gradual monotonous change of the device conductance, for both
potentiation and depression. This operation mode can be used to implement electrically adjustable resistors
for example in analog electronics systems as well as in the implementation of spike-timing-dependent
plasticity (STDP) type of learning rules (Feldman 2012). It is, however, characterized by a limited
conductance range, and the device switching characteristics may slowly drift away from the analog behavior
to a more abrupt conductivity change. In the binary mode, the conductivity can only be switched between
two values, the low conductance state (LCS) and the high conductance state (HCS). The switching between
these two states occurs abruptly. In previous works, the abrupt, binary switching is achieved using single
program pulses with a sufficiently large amplitude (Cüppers et al 2019). In contrast, here, we study the
switching behavior of the device in response to a certain number of pulses of smaller amplitudes. As a
response to these pulses, an internal state variable NVO gradually increases (Fleck et al 2016). Only when this
NVO exceeds a certain threshold value, a thermal runaway condition is reached resulting in an abrupt
switching event. Due to intrinsic ReRAM device variabilities (Fantini et al 2013), the number of pulses to
reach this thermal runaway condition shows a strong device-to-device and cycle-to-cycle variation. During
the depression, the switching is intrinsically more gradual, due to the lack of an internal runaway mechanism
as present for the potentiation operation. Adding a series resistance (in or outside the device) can provide
such a runaway mechanism due to a voltage divider effect also in the RESET case (Hardtdegen et al 2018).
Hence, in both cases, the switching behavior can be summarized as follows: at first, only a gradual change of
the internal state variable NVO is observed, associated with only a minor change of the device conductivity,
followed by a strong switching effect when the internal state variable reaches a certain threshold (Suri et al
2013, Doevenspeck et al 2018, Yu 2018, Zhao et al 2019). This operation mode is of particular interest for this
study, as it is similar to the structural STDP plasticity discussed and implemented in the original spiking TM
model (Bouhadjar et al 2022).

In this work, we investigate how the intrinsic potentiation and depression characteristics of memristive
devices influence the learning of the model in (Bouhadjar et al 2022). Thereto, we adapt the original
neuroscientific synapse model to accommodate memristive-type potentiation/depression characteristics. The
performance of the system is assessed by varying device characteristics such as conductance values and
ranges, granularity of conductance change, and device variability. We investigate these for both the analog
and the binary operation modes.
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Figure 1. ReRAM control circuit. Sketch depicting the synapse model including the control circuit and the ReRAMmodel (red
box). The circuit is composed of a read/inference path (black arrows) and a write/programming path (gray arrows). The device
conductivity G is read out whenever a presynaptic neuron emits a spike, which results in a postsynaptic current I(t) = G ·Vread.
The device conductivity is updated by the programming path. The controller receives pre- and postsynaptic spikes and decides on
applying either a depression or a potentiation event (or both). In the next step, the model of device plasticity computes the
conductance increment/decrement∆G.

2. Results

2.1. A model of a ReRAM synapse
In this section, we introduce our model of the ReRAM device and its control circuitry, and characterize the
resulting model dynamics.

The conductance of ReRAM devices can be potentiated or depressed, mimicking the plasticity observed
in biological synapses. While single memristive devices may readily emulate the inference function, they
cannot emulate on their own plasticity rules such as STDP or homeostatic control. The change of the
memristive conductivity depends on the momentary voltage difference between its two terminals, and the
device has no memory of past spike events at either of its terminals nor of their relative timing. Hebbian
learning such as STDP therefore can only be emulated using a memristive device by ‘reshaping’ of the pre-
and post-synaptic spike events using complex voltage pulses, so that the spike-time dependency is translated
into a desired instantaneous voltage difference over the device (Zamarreño-Ramos et al 2011, Wang et al
2015). As a result, the learning rule is controlled outside the actual device (see figure 1). As for implementing
the learning, instead of using complex voltage pulse shapes, it is more efficient to use a controller to generate
simple rectangular voltage pulses that can effectuate the desired change of the device conductance in a better,
more energy efficient, and also more reliable way. The change of the device conductivity as a function of the
number of applied voltage pulses can hereby be seen as an intrinsic plasticity curve of the device, where the
actual pulse shape can be optimized toward desired potentiation and depression characteristics.

Previous studies suggested both physics-based and phenomenological models for VCM-type ReRAMs.
Physics-based models such as the JART model (Bengel et al 2020) capture detailed physical characteristics
and predict their specific experimental behavior. They require however long simulation time and lead to
convergence issues. On the other hand, the more phenomenological models give a high-level description of
the operational characteristics, have good accuracy, are computationally less demanding, and can hence be
combined with large-scale network models. In this study, we opt for a phenomenological model to
implement both the analog and the binary ReRAM device.

The conductivity of the device (i.e. synaptic weight) is either potentiated or depressed by following
learning rules similar to those outlined in the spiking TMmodel (Bouhadjar et al 2022). The learning rules
are implemented by the control circuit (figure 1) as follows: the synapse is depressed slightly at every
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presynaptic spike and potentiated if a postsynaptic spike follows after a presynaptic spike. In contrast to the
original spiking TMmodel, synapses are potentiated by a fixed amount irrespective of the relative timing
between the pre- and postsynaptic spikes. The potentiation is however enabled only if the time difference
between pre- and postsynaptic spikes is within the interval [∆tmin,∆tmax]. This prohibits synchronously
firing neurons from connecting to each other and leads to improved training (Bouhadjar et al 2022). The
control circuit further implements a homeostatic control mechanism (see section 2.2): in case the neuronal
firing rate exceeds a certain threshold, the potentiation is disabled and instead an additional depression
update is applied.

In the analog mode, the increment

∆Gij =


Gmax ·

(
λ+ ·

(
1−

Gij

Gmax

)µ+

+Xij

)
for potentiation

−Gmax ·
(
λ− ·

(
Gij

Gmax

)µ−

+Xij

)
for depression

(1)

in the conductivity Gij of the device connecting a presynaptic neuron j to a postsynaptic neuron i following a
potentiation or a depression event is modeled as in (Gütig et al 2003, Fusi and Abbott 2007), but with an
additional additive noise Xij. For each synapse and for each update, the noise Xij ∼N (0, σ2

w) is randomly
and independently drawn from a normal distribution with zero mean and standard deviation σw. The
conductance Gij evolves between a lower and an upper bound Gmin,ij and Gmax, and it is clipped at these
boundaries, with learning rates λ+ and λ− and weight dependence exponents µ+ and µ−. The conductance
changes linearly with the internal state variable NVO, thus no specification of the internal state variable is
necessary. The initial conductance Gmin,ij = Gij(0) is drawn for every new device from a uniform distribution
in the interval [G0,min,G0,max].

For the binary switching behavior, we use a similar model as the structural STDP model proposed by
Bouhadjar et al (2022). The switching of the conductance between the LCS and the HCS is controlled by a
permanence Pij. The permanence plays the role of the internal state variable NVO. If it is above a certain
threshold θP, the conductance Gij is set to Gmax, otherwise it is set to Gmin,ij :

Gij(t) =

{
Gmax if Pij(t)⩾ θP

Gmin,ij if Pij(t)< θP.
(2)

At each potentiation or depression step, the permanence P of the synapse j→ i is incremented by an amount

∆Pij =


Pmax ·

(
λ+ ·

(
1−

Pij
Pmax

)µ+

+Xij

)
for potentiation

−Pmax ·
(
λ− ·

(
Pij
Pmax

)µ−

+Xij

)
for depression,

(3)

similar to the conductance increment of the analog synapse. It has a lower and an upper bound Pmin,ij and
Pmax and it is clipped at these boundaries. While the maximum permanences Pmax are identical for synapses,
the minimal permanences Pmin,ij and conductances Gmin,ij are uniformly distributed in the intervals
[P0,min,P0,max] and [G0,min,G0,max], respectively.

In addition to the write noise introduced by means of the variable Xij, both the analog and the binary
synapse models incorporate a read noise. At each presynaptic spike of neuron j, a noisy component Z is
added to the synaptic current

Iij(t) = (Gij(t)+Gmax ·Zij) ·Vread = Gij(t) ·Vread, (4)

of neuron i, where Zij ∼N (0, σ2
r ) is randomly and independently drawn from a normal distribution with

zero mean and standard deviation σr, and V read is the applied voltage. In the course of this article, we use Gi,j

to denote the conductance incorporating both the read and the write noise. This conductance is clamped at
zero if it gets negative. In sections 2.3.3 and 3, we motivate these different types of noise both from the
hardware and the biological point of view.

Figure 2 shows an exemplary switching behavior of the analog and binary synapse models for a specific
set of parameters using 100 consecutive potentiation (i.e. SET) and depression (i.e. RESET) updates. We
choose different learning rates (λ+ and λ−) for the two types of devices such that they switch from the LCS
to the HCS (and back) at about the same number of updates.

Learning in the spiking TMmodel is governed by a homeostatic form of STDP. Each presynaptic spike
triggers a small decrease in the synaptic weight (depression). If this presynaptic spike is immediately followed
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Figure 2. Intrinsic dynamics of the ReRAMmodel (simulation results). (a) Sketch of the experimental protocol and mapping of
pre- and postsynaptic spike timing (top) to the corresponding SET (potentiation; black) and RESET (depression; blue) operations
(bottom). Evolution of the conductance G in response to 100 SET (potentiation; black) updates, followed by 100 RESET
(depression; blue) updates, for the analog (b) and the binary ReRAMmodel (c). In (c), the permanence of the binary device is
plotted in gray. Parameters: learning rates λ+ = 0.1, λ− = λ+/3 (analog synapse), λ+ = 0.04, λ− = λ+/3 (binary synapse),
weight dependence exponents µ+ = 0.5, µ− = 0.5, and noise amplitudes σr = 0.03, σw = 0.01. For remaining parameters, see
table 2.

by a postsynaptic spike, this weight decrease is overwritten by a larger weight increase (potentiation). This
implementation ensures that synapses are potentiated only if a presynaptic spike is immediately followed by a
postsynaptic spike. Presynaptic firing without subsequent postsynaptic firing weakens the synapse. While the
potentiation is required to form sequence specific subnetworks, the depression is important to prune unused
connections and thereby helps to acquire sparsity and context specificity. Under normal operation, a
potentiation update is hence always accompanied by a small amount of depression (see figure S1 in the
supplementary materials). In the case of the analog synapse, the total synaptic growth in the absence of noise
is therefore governed by

∆Gij = Gmax

[
λ+ ·

(
1−

Gij

Gmax

)µ+

−λ− ·
(

Gij

Gmax

)µ−]
. (5)

The stationary solution of the device conductance (fixed point) G∗, obtained by setting∆Gij = 0, is always
below the maximum conductance Gmax (see figure S1(b) in the supplementary materials). The permanence
of the binary synapse is subject to this effect, too. After a number of potentiation steps, it reaches a value P∗

smaller than Pmax (see figure S1(c) in the supplementary materials). According to equation (2), the
conductance can however still assume Gmax. Only if the depression is too strong, the device may not reach
the maturity threshold θP, and thus not switch to the HCS.

In the next sections, we evaluate the effects of different characteristics of the analog and the binary
switching dynamics such as the weight dependence of the device update (µ+, µ−), the conductance range
(Gmin, Gmax), the learning rates (λ+, λ−), as well as the write and the read variability (σw, σr) on the learning
process of the spiking TMmodel.

2.2. A spiking neural networks with ReRAM synapses successful at sequence prediction
Sequence learning and prediction are principal computations performed by the brain and have a number of
potential technological applications. The spiking temporal memory (spiking TM) model proposed a
brain-inspired network of this type of computation Bouhadjar et al (2022). In this section, we utilize the
ReRAM device dynamics (see above) to replace the original synaptic model and evaluate the resulting
network performance on a sequence prediction task.

We briefly describe here the main mechanisms and principles of the spiking TMmodel. For an in-depth
analysis, we refer readers to (Bouhadjar et al 2022). The model is composed of a NE excitatory (‘E’) and NI

inhibitory (‘I’) neurons, which are randomly and sparsely connected. Excitatory neurons are organized into
M distinct subpopulations, where the neurons in each subpopulation represent a specific sequence element
and exhibit a shared stimulus preference (figure 3(a)). Excitatory neurons are recurrently connected to the
inhibitory neurons implementing a winner-take-all (WTA) mechanism. We model neurons using leaky
integrate-and-fire dynamics. Excitatory neurons are additionally equipped with nonlinear dendrites
mimicking dendritic action potentials (dAPs). We model the dAPs as follows: if the dendritic current a
threshold θdAP, it is instantly set and clamped to the dAP plateau current IdAP for a period of duration τdAP.
The dAP threshold is chosen such that the co-activation of γ presynaptic neurons reliably triggers a dAP in
the target neuron:

θdAP = Vread ·G+ · γ · p. (6)
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Figure 3. Network structure. (a) Sketch of the model architecture composed of a randomly and sparsely connected recurrent
network of excitatory and inhibitory neurons. The excitatory neuron population is subdivided into subpopulations according to
stimulus preference (gray circles). During learning, sequence specific, sparsely connected subnetworks with mature synapses are
formed (light and dark blue arrows). For the example discussed in the main text and in panel (b), the network learns four
high-order sequences {A,D,B,E,I}, {F,D,B,E,C}, {H,L,J,K,D} and {G,L,J,K,E}. In panel (a), only two of them are depicted for clarity.
The gray dashed lines depict the existence of further subpopulations, which are not shown in the sketch. (b) Connectivity matrix
of excitatory neurons after learning for the network with binary synapses. Target and source neurons are grouped into
stimulus-specific subpopulations (‘A’,…,‘F’). During the learning process, subsets of connections between subpopulations
corresponding to subsequent sequence elements become mature and effective ({A,D,B,E,I}: light blue, {F,D,B,E,C}: dark blue,
{H,L,J,K,D}: red, {G,L,J,K,E}: orange). Immature synapses are marked by light gray dots. Dark gray dots in panel (b) correspond
to mature connections between neurons that remain silent after learning. Only 1% of immature connections are shown for clarity.

In the case of the analog synapse, G+ is taken to be the steady-state conductance G∗, and in the case of the
binary synapse, it is taken to be Gmax. In addition to the dendritic input, the excitatory neurons are equipped
with additional inputs from external and inhibitory sources. Inhibitory neurons have only excitatory inputs.
The synapses between excitatory neurons are plastic evolving according to the analog or the binary ReRAM
models described in section 2.1. A homeostatic component further controls the synaptic growth: if the dAP
activity, i.e. the number of generated dAPs in a certain time window, is above a target z∗, the potentiation is
disabled and instead a depression pulse is applied (see section 5).

During the learning process, the network is repeatedly presented with a given ensemble of sequences.
Before learning, presenting a sequence element causes all neurons in the respective subpopulation to fire,
except the subpopulation representing the first sequence element, where only a random subset of neurons is
activated. The repeated presentation of the sequences strengthens the connections between the
subpopulations representing subsequently presented elements. After sufficient learning, the activation of a
subpopulation by an external input causes a specific subset of neurons in the following subpopulation to
generate dAPs resulting in a long-lasting depolarization of the somata. Neurons that generate dAPs signal the
anticipated sequence element and are thus referred to as predictive neurons. When receiving an external
input, predictive neurons fire earlier as compared to non-predictive neurons. If a certain subpopulation
contains a sufficient number of predictive neurons, their advanced spike initiates fast and strong inhibitory
feedback to the entire subpopulation, ultimately suppressing the firing of the non-predictive neurons. The
randomness in the connectivity supplemented by the homeostatic control enables the generation of
sequence-specific sparse connectivity patterns between subsequently activated neuronal subpopulations
(figures 3(a) and (b)). For each pair of sequence elements in a given sequence ensemble, there is a unique set
of postsynaptic neurons generating dAPs. Consequently, after learning in response to the presentation of a
sequence element, the network predicts in a context-dependent manner the next element in the sequence by
activating the dAPs of the corresponding subpopulation.

Here, we study the prediction performance for the network with either the binary or the analog ReRAM
synapses (figure 4). We use the synaptic parameters fitted from the exemplary data discussed in section 2.1.
To quantify the sequence prediction performance, we repetitively stimulate the network using the same set of
sequences {A,D,B,E,I}, {F,D,B,E,C}, {H,L,J,K,D}, {G,L,J,K,E} and assess the prediction error by comparing the
anticipated next sequence element with the correct one (Bouhadjar et al 2022). To ensure the performance
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Figure 4. Prediction error. Dependence of the prediction error on the number of training episodes for the network with analog
(a) or binary synapses (b). Curves and error bands indicate the median as well as the 5% and 95% percentiles across an ensemble
of 5 different network realizations, respectively. Same parameters as in figure 2.

results are not specific to a single network, the evaluation is repeated for a number of randomly instantiated
network realizations with different initial connectivities. After each new network instantiation, the initial
prediction error is at 1 (figure 4). With an increasing number of training episodes, the prediction error for
both networks with either the binary or the analog synapses decreases to zero as both networks learn the
sequences and develop context-dependent pathways between successive sequence elements.

2.3. Influence of device characteristics on prediction performance
ReRAM devices reported in the literature exhibit different non-idealities, including (1) limited precision or
the number of synaptic levels; (2) limited dynamic range; (3) dependence of the synaptic updates on the
weight, also known as synaptic nonlinearity; (4) device variability, including read and write variability (see
Zhao et al 2020, for an overview). In this section, we study how these non-idealities affect the prediction
performance in the spiking TMmodel.

2.3.1. High prediction performance obtained for a broad range of on-off ratios and learning rates
The dynamic range is defined as the on-off ratio between the maximum (Gmax) and the minimum
conductance (Gmin). Most ReRAM devices exhibit an on-off ratio in a range of 2 to> 104 (Hong et al 2018).
Within the minimum and the maximum conductance, the synapse can assume different learning rates (λ+,
λ−). Here, we investigate the influence of different on-off ratios and learning rates on the prediction
performance. Note that the learning rates directly influence the number of synaptic levels, with higher rates
causing the conductance to transition more rapidly from LCS to HCS, resulting in fewer level crossings.

We first evaluate how the asymmetry in the learning rates between the potentiation and depression
operations (λ+ and λ−) affects the prediction performance. To study this effect, we fix λ+ and vary λ− with
the state dependence exponents µ+ and µ− being set to zero. The prediction error remains high if λ− ⩾ λ+

(see figure S2 in the supplementary materials). This is due to the plasticity dynamics of the spiking TM
model: the potentiation operation is applied only when the postsynaptic spike follows after the presynaptic
spike, in contrast, the RESET operation is applied every time the presynaptic neuron generates a spike.
Therefore, for effective synaptic growth, the potentiation needs to be stronger than depression.

We next vary the on-off ratio between 5 and 40 by keeping Gmin fixed and varying Gmax. As Gmin is drawn
from a uniform distribution in the interval [G0,min, G0,max], we compute the on-off ratio as Gmax/G∗

min,
where G∗

min = (G0,max +G0,min)/2. According to equation (6), a change in Gmax is accompanied by a change
in the dAP threshold. In addition, we vary the learning rate between 0.02 and 0.42 (figure 5). Parameters
such as the read and write variability and the weight dependence exponents are taken from the exemplary
data presented in section 2.1. We study the influence of the variability and the dependence of the synaptic
updates on the weight more systematically in the upcoming sections. Successful learning is obtained for
on-off ratios above 10 and 5 and for learning rates below 0.26 and 0.34 for the networks with analog and
binary synapses, respectively (figures 5(a) and (c)). For larger learning rates, the prediction performance
becomes less stable with occasional failures for some network realizations. While decreasing the learning rate
yields minimum prediction error, the number of episodes to solution (i.e. learning speed, see (Bouhadjar
et al 2022)) increases as either the conductances or permanences need more learning steps to reach their
maximum value (figures 5(b) and (d)). For our choice of parameters (such as θP), learning in the network
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Figure 5. Effect of the on-off ratio and the learning rate on the prediction performance. Dependence of the prediction error and
episodes to solution on the on-off ratio and the learning rate λ+ shown for the network with either analog (a), (b) or binary
synapses (c), (d). Data depicts the median across an ensemble of 5 different network realizations. Parameters: depression learning
rate λ− = λ+/3, weight dependence exponents µ+ = µ− = 0.5, and variability amplitudes σr = 0.03, σw = 0.01. For
remaining parameters see table 2.

with binary synapses is slightly faster, because, for identical learning rates, the number of update steps
required to switch from the LCS to the HCS is lower for the binary device, as compared to the analog device.

In general, the on-off ratio in the spiking TM network is limited due to the following: the transition of
the network activity from being initially non-sparse to becoming sparse after learning requires small initial
conductances to avoid spurious activation of the dAPs, but high conductances after learning to allow the
sparse set of active neurons to generate the dAP reliably. If the on-off ratio is too small this distinction
between high and small conductances cannot be realized. Moreover, for successful learning, the network with
analog synapses requires a higher minimal on-off ratio compared to the network with binary synapses. This is
due to the effect described in section 2.1 below equation (5), which prohibits the conductance from reaching
Gmax. Therefore, the effective on-off ratio is reduced. The learning mechanisms of the spiking TM also limit
the range of possible learning rates. Increasing the learning rate bears the risk that a large fraction of neurons
reaches the dAP threshold at the same time. The WTA mechanism selects then all neurons that generate dAP
to become active. This leads to a loss of sparseness, which results in impairing the prediction performance.
Decreasing the learning rate considerably is also not ideal as the network would learn very slowly.

2.3.2. Resilience against weight dependent updates
The conductance of realistic analog ReRAM devices grows or decays in a nonlinear manner as a function of
the number of potentiation or depression update steps. The synapse model in section 2.1 captures this effect
by the weight dependence exponents (µ+, µ−). During the potentiation process, the conductance tends to
change rapidly at the beginning but saturates at the end of the process (see figure 6(a)). Similar behavior is
also observed during the RESET. The potentiation and depression updates have, however, different
dependencies on the device conductance. For high conductances, the potentiation increments are much
smaller than the depression decrements. This asymmetry in the behavior can be further enhanced if the
learning rates are different during the potentiation and depression operations. Similarly, it is reasonable to
assume that for the binary synapses the evolution of the permanence may exhibit a weight dependence and
an asymmetric behavior between the potentiation and depression dynamics (figure 6(d)).

Here, we assess the prediction performance as a function of different weight dependence exponents for
both potentiation and depression (µ+ and µ−, respectively, see figure 6). For most exponent combinations
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Figure 6. Effect of weight dependence on plasticity dynamics and network performance. Evolution of the synaptic conductance G
((a),(d), black and blue) and permanence (d, gray) during a sequence of 100 SET (potentiation; black) and 100 RESET events
(depression; blue) for an analog (a) and a binary synapse (d) and different weight dependence exponents µ+ = µ− = 0 (large
dot), µ+ = µ− = 0.5 (small dot), and µ+ = µ− = 1 (tiny dot). Parameters: learning rates λ+ = 0.1, λ− = λ+/3 (analog
synapse), λ+ = 0.04, λ− = λ+/3 (binary synapse), and variability amplitudes σw = 0, σr = 0. (b),(c),(e), and (f) Effect of the
weight dependence exponent on the prediction performance. Dependence of the prediction error and episodes to solution on the
weight dependence exponents for both potentiation and depression (µ+ and µ−) shown for the networks with either analog
(b),(c) or binary synapses (e),(f). Data depicts the median across an ensemble of 5 different network realizations. Parameters:
learning rates λ+ = 0.1, λ− = λ+/3 (analog synapse), λ+ = 0.04, λ− = λ+/3 (binary synapse), and variability amplitudes
σw = 0.01, σr = 0.03. For remaining parameters see table 2.

studied here, the prediction error is low and varies only mildly with µ+ and µ− (figures 6(b) and (e)). For
larger values of µ+, the learning slows down as it takes longer for either the conductance or the permanence
to reach their maximum values (see figures 6(c) and (f)). Decreasing µ− makes learning faster again as the
depression becomes weaker compared to the potentiation. In the binary case, the steady-state permanence P∗

may end up below the maturity threshold θP such that the synapses can mature only due to the noise. The
learning is therefore slowed down for large values of µ+ or even unsuccessful if the devices do not switch to
the HCS. In the model, θP could be adjusted to P∗ (similarly to adjusting θdAP to G∗ in the analog synapse;
see above). In this case, the learning in the analog and the binary networks may be similarly fast. In the
physical device, however, the maturity threshold θP can hardly be changed.

2.3.3. Resilience against read and write variability
The resistive switching process (i.e. write process) of ReRAM devices involves the drift and diffusion of the
oxygen vacancies. This phenomenon is highly stochastic and shows considerable variation from device to
device, and even from pulse to pulse within one device (Zhao et al 2020). Further, even when no switching
occurs, the oxygen vacancies exhibit random microscopic displacements resulting in read variability. In our
work, we capture these effects by the read and write variability introduced in section 2.1. The influence of the
read and write variability on the conductance curves is illustrated for both the analog and binary synapses in
figure 7. For different trials, the write variability results in different conductance trajectories. The read
variability, on the other hand, causes only a jitter in the conductance curves.

To study how the variability influences the prediction performance, we assess the prediction error and
episodes to solution for different magnitudes of the read and write variability σr and σw, respectively. Both
networks with either analog or binary synapses allow similar read and write noise levels, with the binary
synapse being slightly more resilient toward the read noise (figures 7(c) and (g)). In both cases, the write
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Figure 7. Effect of read and write variability on plasticity dynamics and network performance. Evolution of the synaptic
conductance ((a), (b), (e), (f), blue and black) and permanence ((e), (f), gray) during a sequence of 100 SET (potentiation; black)
and 100 RESET events (depression; blue) for an analog (a), (b) and a binary synapse (e), (f) in the presence of read noise
(σr = 0.03, (a), (e)) or write noise (σw = 0.03, (b), (d)). Each experiment is repeated 3 times (see the different curves in each
panel). Parameters: learning rates λ+ = 0.1, λ− = λ+/3 (analog synapse), λ+ = 0.04, λ− = λ+/3 (binary synapse), and
weight dependence exponents µ+ = µ− = 0.5. For remaining parameters see table 2. (c), (d), (g), and (h) Effect of the
variability on the prediction performance. Dependence of the prediction error and episodes to solution on the read and write
variability σr, σw, shown for the networks with either analog (c), (d) or binary synapse (g), (h). Data depicts the median across an
ensemble of 5 different network realizations. Parameters: learning rates λ+ = 0.1, λ− = λ+/3 (analog synapse), λ+ = 0.04,
λ− = λ+/3 (binary synapse), and weight dependence exponents µ+ = µ− = 0.5. To gain more robustness with respect to the
variability (decrease false negatives), we decrease θdAP by 10% as compared to the default value described in equation (6). For
remaining parameters see table 2.

noise is more detrimental as it accumulates across the different learning episodes and can therefore have a
higher impact on the learning performance. The read noise tends to average out as it is independent across
the learning episodes. Overall, increasing the read or write variability beyond what is acceptable leads to a
spurious activation of the dAPs, i.e. predictions, and a decline in the prediction performance. The learning
speed (episodes to solution) varies only slightly within the parameter region where learning is successful
(figures 7(d) and (h)).

2.3.4. Robustness with respect to device failure
When operating ReRAM devices, they risk failing by getting trapped in the HCS even after applying voltage
pulses with the appropriate magnitude across them (Kumar et al 2017). To study how device failure affects
the prediction performance, we first train the network till it reaches zero prediction error (after 150 episodes
in figure 8). Then, the conductance of a random fraction of synapses is set to the HCS. We quantify the level
of device failure by the ratio between the number of failed synapses and the total number of existing
synapses. In the spiking TMmodel, a neuron may falsely generate a dAP if a sufficient number of its synapses
are randomly switched to the HCS (this number can be approximated as the ratio θdAP/Gmax, where θdAP is
the dAP threshold and Gmax is the maximum conductance). This may result in generating false positives and
thus an increase in the prediction error. This is confirmed by our results presented in figures 8(a) and (b). At
up to 10% device failure no impact is observed on the prediction performance (figures 8(a) and (b)). At
greater than 10% device failure the performance of the network declines and does not recover.

In a second experiment, instead of turning a selection of random synapses to the HCS, we turn them to
the LCS. For the different levels of device failures, the performance of the network initially declines. Due to
the failing synapses, which are stuck at the LCS, the neurons in certain subpopulations do not receive enough
current and are thus not able to generate dAPs, i.e. make predictions. After further training episodes, the
prediction errors converge back to zero as the network relearns using other synapses (figures 8(c) and (d)).
At greater than 20% device failure the performance does not recover due to the absence of alternative
connections to form sequence-specific pathways.
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Figure 8. Effect of device failure on the prediction performance. Dependence of the prediction error on the number of training
episodes and different levels of device failure (red 10%, orange 20%, black 30%) shown for both the analog ((a), (c)) and the
binary synapse ((b), (d)). We implement the device failure by fixing a random selection of synapses to be stuck at the HCS (ON
stuck; (a) and (b)) or stuck at the LCS (OFF stuck; (c) and (d)). The device failure is introduced at episode 150. Curves and error
bands indicate the median as well as the 5% and 95% percentiles across an ensemble of 5 different network realizations,
respectively. Same parameters as in figure 2.

3. Discussion

3.1. Summary
In this work, we demonstrate that the learning rules of the spiking temporal memory (spiking TM) model
proposed by Bouhadjar et al (2022) can be realized using memristive dynamics. We investigate this for a
particular type of memristive device known as VCM ReRAM (Waser 2012a). We show that the spiking TM
retains high prediction performance for a broad range of on-off ratios and learning rates. The model is
resilient toward the write and read variability as well as the dependence of the synaptic updates on the
weight. Moreover, our results show that the VCM-type ReRAM device can be operated either in the binary or
the gradual switching regime without performance loss. We note only slight differences: the network with
binary synapse is more resilient toward read noise and requires less synaptic on-off ratio. The analog synapse
is more robust to larger values of the weight-dependent coefficient µ+. The ability of the network to retain
successful performance with both types of synapses (for a broad range of parameters) is in line with the
original spiking TM implementation (Bouhadjar et al 2022), which shows that the learning rule can either be
implemented using structural plasticity where the weight abruptly changes between two levels or a
conventional form of STDP where the weight gradually changes. This suggests that the intrinsic dynamics of
the VCM ReRAM capture not only synaptic properties of biological synapses such as the variability and the
dependence of the synaptic updates on the weight but also can implement known forms of plasticity in the
neuroscientific literature. Our study thereby contributes to establishing a dynamical and functional
correspondence between biological synapses and memristive devices.

3.2. Relationship to previous models
In artificial neural networks trained by gradient-based approaches, ReRAM non-idealities can severely
undermine the overall performance (Fouda et al 2020). Due to the ReRAM variability, devices can be hardly
programmed to a desired state, and the asymmetry in the conductance change can affect the propagation of
the gradient and lead to performance loss. Correcting for these non-idealities can be costly and may require
additional circuitry (Chen et al 2015, Agarwal et al 2016, Ambrogio et al 2018, Hong et al 2018, Yu 2018,
Adnan et al 2021). We know that biological neuronal networks carry out accurate computations despite their
synaptic non-ideal characteristics such as variability. This suggests the existence of biological principles
accommodating that, which we need to understand and port to successfully implement neuromorphic
hardware. The spiking TM and other brain-inspired self-organizing networks (Lazar et al 2009, Yi et al 2022)
suggest a set of biological concepts that might be at the heart of brain processing capabilities. For instance,
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the highly sparse connectivity and activity of the spiking TM are observed in biological networks, and they
are essential for increasing the capacity of the system and decreasing energy consumption.

There are a number of biologically motivated sequence learning models that are closely related to the
spiking TM, such as the self-organizing recurrent neural network model (SORN, Lazar et al 2009). Recent
work incorporated memristive dynamics into the synapses and neurons of the SORN model and showed that
it retains successful performance (Payvand et al 2022). The authors studied the role of variability and showed
that it can improve the prediction performance. However, the other memristive non-idealities were not
studied systematically. It remains also to be investigated whether the model can learn high-order sequences
similar to the ones presented in our work.

3.3. Outlook
Neuromorphic hardware that relies on components implemented in the analog domain is noisy and
heterogeneous, similar to real brains (Zhu et al 2020). To date, there are only speculations on how the brain
contributes to sensible and reliable behavior in the face of these imperfections. By using neuromorphic
hardware as a test substrate, we expect to gain new insights into the neuronal principles that solve this issue.
In this study, it is apparent that ReRAM devices share the same characteristics as biological synapses
including the weight dependence of the synaptic updates, limited dynamic range, and variability. Throughout
the work on these neuromorphic systems, we can develop intuitions of how the biological synapse exploits
these different characteristics. For instance, in biology, the write noise represents the variability in the
synaptic weight change following a pre- and/or postsynaptic spike, such as the variability in the postsynaptic
receptor synthesis. The read noise, instead, refers to the momentary variability in the postsynaptic response
amplitude, which is, for example, caused by a variability in the amount of neurotransmitter released by
individual presynaptic spikes. Note that the write noise is accumulated over time, whereas the read noise
affects the synaptic weight (conductance) only during the presynaptic spike. In neuroscience studies, synaptic
stochasticity (including synaptic failure) is typically regarded as read noise. The role of the write noise is often
ignored. So far, it is not clear how these different characteristics contribute to the learning dynamics in the
biological system. Neuromorphic hardware can provide an environment where this question can be studied.

In this work, we show that the model is resilient toward synaptic variability. Other works show that
synaptic variability can even have a computational benefit (Dalgaty et al 2021). For example, in probabilistic
computing frameworks, the variability is considered a prerequisite for efficient probabilistic inference
(Buesing et al 2011, Suri et al 2013, Maass 2014, Neftci et al 2016, Dutta et al 2022). It allows the system to
explore the state space and come up with an estimate of how likely is each solution. Similarly, a recent
extension of the spiking TMmodel shows that the model can learn to replay probabilistic sequences using
noise (Bouhadjar et al 2023). The study demonstrated that, in a network context, variability can only serve
exploration if it is locally correlated and hence not averaged out. Understanding whether synaptic or
memristive variability could contribute to such a form of noise remains the subject of future studies.

Ultimately, the goal is to implement the spiking TMmodel on a standalone neuromorphic chip. In this
work, we only investigate how the intrinsic properties of the memristive device affect the learning in the
spiking TM. A study by (Siegel et al 2023a) provided a specific instance of an electronic circuit design of the
hardware implementing the different components of the spiking TM and showed in simulations that the
system supports successful prediction performance. A follow-up study by (Siegel et al 2023b) taped out a
memristive synaptic array of a simplified spiking TMmodel and showed successful performance on a simple
sequence learning problem. A future study needs to upscale the array size and task difficulty.

4. Conclusion

Neuromorphic hardware centered around memristive devices is a potential hardware substrate for efficient
execution of machine learning algorithms. Memristive devices are however characterized by non-ideal
characteristics such as variability, nonlinearity, and finite precision, which were shown to degrade the
performance of machine learning models. Addressing these non-idealities can be an expensive process and
may necessitate the integration of additional circuitry.

This work demonstrates that a bio-inspired sequence learning model is robust with respect to the
non-idealities exhibited by memristive devices (and biological synapses). The model learns complex
sequences in an unsupervised manner using biologically inspired, local learning rules. It can be implemented
with both analog and binary memristive synapses, and shows high performance even in the presence of
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memristive variability, nonlinearity, and finite precision. It thereby lays the foundation for novel algorithmic
principles that can be implemented in edge applications.

5. Methods

In the following tables (table 1), we provide an overview of the network model, the training protocol, and the
simulation details. Parameter values can be found in table 2. See (Bouhadjar et al 2022) for a detailed
description of the model.

5.1. Model tables

Table 1. Description of the network model (continued on next page). Parameter values are given in table 2.

Summary

Populations Excitatory neurons (E), inhibitory neurons (I), external spike sources (X ); E and I composed of
M disjoint subpopulationsMk and Ik (k= 1, . . . ,M)

Connectivity • Sparse random connectivity between excitatory neurons (plastic)
• Local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model • Excitatory neurons: leaky integrate-and-fire (LIF) with nonlinear input integration (dendritic
action potentials)

• Inhibitory neurons: leaky integrate-and-fire (LIF)
Synapse model Exponential postsynaptic currents (PSCs)
Plasticity Homeostatic spike-timing dependent plasticity in excitatory-to-excitatory connections

Populations

Name Elements Size

E = ∪M
i=kMk Excitatory (E) neurons NE

I = ∪M
i=kIk Inhibitory (I) neurons NI

Mk Excitatory neurons in subpopulation k,Mk ∩Ml = ∅(∀k ̸= l ∈ [1,M]) nE
Ik Inhibitory neurons in subpopulation k, Ik ∩Il = ∅(∀k ̸= l ∈ [1,M]) nI
X = {x1, . . . ,xM} External spike sources M

Connectivity

Source
population

Target
population Pattern

E E Random; fixed in-degrees Ki = KEE, delays dij = dEE, synaptic time constants
τij = dEE plastic weights Gij ∈ {0,Gij} (∀i ∈ E , ∀j ∈ E ; ‘EE connections’)

Mk Ik All-to-all; fixed delays dij = dIE, synaptic time constants τij = τIE, and weights
Gij = GIE (∀i ∈Mk, ∀j ∈ Ik, ∀k ∈ [1,M]; ‘IE connections’)

Ik Mk All-to-all; fixed delays dij = dEI, synaptic time constants τij = τEI, and weights
Gij = GEI (∀i ∈ Ik, ∀j ∈Mk, ∀k ∈ [1,M]; ‘EI connections’)

Ik Ik None (∀k ∈ [1,M]; ‘II connections’)
Xk = xk Mk One-to-all; fixed delays dik = dEX, synaptic time constants τij = τEX, and weights

Gik = GEX (∀i ∈Mk, ∀k ∈ [1,M]; ‘EX connections’)

No self-connections (‘autapses’), no multiple connections (‘multapses’)
All unmentioned connectionsMk →Il, Ik →Ml, Ik →Il, Xk →Ml (∀k ̸= l) are absent

(Continued.)
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Table 1. (Continued.)

Neuron and synapse

Neuron

Type Leaky integrate-and-fire (LIF) dynamics

Description Dynamics of membrane potential Vi(t) of neuron i:
• Emission of the kth spike of neuron i at time tki if

Vi(t
k
i )⩾ θi (7)

with somatic spike threshold θi
• Reset and refractoriness:

Vi(t) = Vr ∀k, ∀t ∈
(
tki , t

k
i + τref,i

]
with refractory time τref,i and reset potential Vr

• Spike train: si(t) =
∑

k δ(t− tik)
• Subthreshold dynamics:

τm,iV̇i(t) =−Vi(t)+Rm,iIi(t) (∀k, ∀t /∈ [tki , t
k
i + τref,i)) (8)

with membrane resistance Rm,i =
τm,i

Cm,i
, membrane time constant τm,i, and total synaptic input

current Ii(t)
• τm,i = τm,E, Cm,i = Cm, θi = θE, τref,i = τref,E (∀i ∈ E)
• τm,i = τm,I, Cm,i = Cm, θi = θI, τref,i = τref,I (∀i ∈ I)

Synapse

Type Exponential or alpha-shaped postsynaptic currents (PSCs)

Description • Total synaptic input current

Ii(t) = IED,i(t)+ IEX,i(t)+ IEI,i(t),∀i ∈ E (9)
Ii(t) = IIE,i(t),∀i ∈ I

with dendritic, inhibitory, external and excitatory input currents IED,i(t), IEI,i(t), IEX,i(t), IIE,i(t)
evolving according to

IED,i(t) =
∑

j∈E(αij ∗ sj)(t− dij) (10)

with αij(t) = VreadGij
e

τED
te−t/τEDΘ(t) andΘ(t) =

{
1 t⩾ 0

0 else

τEI İEI,i =−IEI,i(t)+Vread
∑

j∈I Gijsj(t− dij) (11)

τEX İEX,i =−IEX,i(t)+Vread
∑

j∈X Gijsj(t− dij) (12)

τIE İIE,i =−IIE,i(t)+Vread
∑

j∈E Gijsj(t− dij)) (13)

with synaptic time constants τEX, τEI, and τIE of EX, EI, and IE connections, respectively, Gij the
synaptic weight, and the read voltage V read

• dAP generation:
– Emission of lth dAP of neuron i at time tli if IED,i(t

l
i)⩾ θdAP

– dAP current plateau:

IED,i(t) = IdAP ∀l, ∀t ∈
(
tli, t

l
i + τdAP

]
(14)

with dAP current plateau amplitude IdAP, dAP current duration τdAP, and dAP activation
threshold θdAP.

Plasticity

Type Hebbian-type plasticity and dAP-rate homeostasis

EE synapses • Hebbian plasticity described in section 2.1 controlled by
• homeostatic control:

– If zi(t)> z∗: a depression pulse is applied (see equation (1) or equation (3))
– If zi(t)⩽ z∗: a potentiation pulse is applied (see equation (1) or equation (3))

with the dAP trace zi(t) and target dAP activity z∗.
• dAP trace zi(t) of postsynaptic neuron i, evolving according to

dzi
dt =−τ−1

h zi(t)+
∑

k δ(t− tkdAP,i)

with onset time tkdAP,i of the kth dAP, homeostasis time constant τh

All other synapses Non-plastic

(Continued.)
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Table 1. (Continued.)

Input

• Repetitive stimulation of the network using the same set S = {s1, . . . , sS} of sequences si = {ζi,1, ζi,2, . . . , ζi,Ci} of
ordered discrete items ζi,j with number of sequences S and length Ci of ith sequence

• Presentation of sequence element ζi,j at time ti,j modeled by a single spike xk(t) = δ(t− ti,j) generated by the
corresponding external source xk

• Inter-stimulus interval∆T= ti,j+1 − ti,j between subsequent sequence elements ζi,j and ζi,j+1 within a sequence si
• Inter-sequence time interval∆Tseq = ti+1,1 − ti,Ci between subsequent sequences si and si+1

• Example sequence sets:
– Sequence set: S = {{A,D,B,E,I}, {F,D,B,E,C}, {H,L,J,K,D}, {G,L,J,K,E}}

Output

• Somatic spike times {tki |∀i ∈ E ,k= 1,2, . . .}
• Dendritic currents IED,i(t) (∀i ∈ E)

Initial conditions and network realizations

• Membrane potentials: Vi(0) = Vr (∀i ∈ E ∪I)
• Dendritic currents: IED,i(0) = 0 (∀i ∈ E)
• External currents: IEX,i(0) = 0 (∀i ∈ E)
• Inhibitory currents: IEI,i(0) = 0 (∀i ∈ E)
• Excitatory currents: IIE,i(0) = 0 (∀i ∈ I)
• Synaptic permanences: Pij(0) = Pmin,ij with Pmin,ij ∼ U(P0,min,P0,max) (∀i, j ∈ E)
• Synaptic weights: Gij(0) = Gmin,ij with Gmin,ij ∼ U(G0,min,G0,max) (∀i, j ∈ E) (analog synapse)
• Synaptic weights: Gij(0) = Gmin (∀i, j ∈ E) (binary synapse)
• Spike traces: xi(0) = 0 (∀i ∈ E)
• dAP traces: zi(0) = 0 (∀i ∈ E)
• Potential connectivity and initial permanences randomly and independently drawn for each network realization

Simulation details

• Network simulations performed in NEST (Gewaltig and Diesmann 2007) version 3.0 (Hahne et al 2021)
• Definition of excitatory neuron model using NESTML (Plotnikov et al 2016, Nagendra Babu et al 2021)
• Synchronous update using exact integration of system dynamics on discrete-time grid with step size∆t (Rotter and
Diesmann 1999)

5.2. Model and simulation parameters

Table 2.Model and simulation parameters (continued on next page).

Name Value Description

Network

NE 1800 Total number of excitatory neurons
NI 12 Total number of inhibitory neurons
M 12 Number of excitatory subpopulations (= number of external spike sources)
nE NE/M= 150 Number of excitatory neurons per subpopulation
nI NI/M= 1 Number of inhibitory neurons per subpopulation
ρ 20 (target) number of active neurons per subpopulation after learning=minimal

number of coincident excitatory inputs required to trigger a spike in
postsynaptic inhibitory neurons

(Potential) Connectivity

KEE 450 Number of excitatory inputs per excitatory neuron (EE in-degree)
p KEE/NE = 0.25 Probability of potential (excitatory) connections
KEI nI = 1 Number of inhibitory inputs per excitatory neuron (EI in-degree)
KIE nE Number of excitatory inputs per inhibitory neuron (IE in-degree)
KII 0 Number of inhibitory inputs per inhibitory neuron (II in-degree)

(Continued.)
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Table 2. (Continued.)

Name Value Description

Excitatory neurons

τm,E 10ms Membrane time constant
τref,E 20ms Absolute refractory period
Cm 250µF Membrane capacity
Vr 0mV Reset potential
θE 30mV Somatic spike threshold
IdAP 200µA dAP current plateau amplitude
τdAP 60ms dAP duration
θdAP see equation (6) dAP threshold

Inhibitory neurons

τm,I 5ms Membrane time constant
τref,I 2ms Absolute refractory period
Cm 250µF Membrane capacity
Vr 0mV Reset potential
θI 15mV Spike threshold
Name Value Description

Synapse

G̃IE 0.9mV Weight of IE connections (EPSP amplitude)
GIE 581.19µS Weight of IE connections (EPSC amplitude)
G̃EI −60mV Weight of EI connections (IPSP amplitude)
GEI −19 373.24µS Weight of EI connections (IPSC amplitude)
G̃EX 33mV Weight of EX connections (EPSP amplitude)
GEX 6168.31µS Weight of EX connections (EPSC amplitude)
τEE 2ms Synaptic time constant of EE connections
τIE 0.5ms Synaptic time constant of IE connections
τEI 1ms Synaptic time constant of EI connections
τEX 2ms Synaptic time constant of EX connection
dEE 2ms Delay of EE connections (dendritic)
dIE 0.1ms Delay of IE connections
dEI 0.1ms Delay of EI connections
dEX 0.1ms Delay of EX connections
V read 1V Read voltage

Plasticity

λ+ {0.02, . . . ,0.1, . . . ,0.42}
(analog synapse),

Potentiation learning rate

{0.02, . . . ,0.04, . . . ,0.42}
(binary synapse)

λ− λ+/β Depression rate
β {0.5,1,2,3} Ratio between depression and potentiation learning rates
λh λ− Homeostasis rate
µ+ {0,0.5,1} Weight dependence (potentiation) exponent (default parameter)
µ− {0,0.5,1} Weight dependence (depression) exponent (default parameter)
θP 10 Synapse maturity threshold
Pmin,ij ∼ U(P0,min,P0,max) Minimum permanence
Gmin,ij ∼ U(G0,min,G0,max) Minimum conductance
Gmax {50, . . . ,300, . . . ,400}µS Maximum conductance
G0,min 7.5µS Minimal initial conductance
G0,max 12.5µS Maximal initial conductance
P0,max 8 Maximal initial permanence
P0,min 0 Minimal initial permanence
P0,max 8 Maximal initial permanence
σr {0, . . . ,0.03, . . . ,0.1} Read noise
σw {0, . . . ,0.01, . . . ,0.2} Write noise
z∗ 1.8 Target dAP activity
τh 1040ms Homeostasis time constant
∆tmin 4ms Minimum time lag between pairs of pre- and postsynaptic spikes at which

synapses are potentiated
∆tmax 50ms Maximum time lag between pairs of pre- and postsynaptic spikes at which

synapses are potentiated

(Continued.)
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Table 2. (Continued.)

Name Value Description

Input

S 4 Number of sequences per set
C 5 Number of characters per sequence
A 12 Alphabet length
∆T 40ms Inter-stimulus interval
∆Tseq 100ms Inter-sequence interval

Simulation

∆t 0.1ms Time resolution
K {200, 400} Number of training episodes
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