
Bayesian Inference for CAD-Based Pose
Estimation on Depth Images for Robotic

Manipulation

Bayessche Inferenz für CAD-basierte Posenschätzung auf
Tiefenbildern zur Roboter-Objektmanipulation

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen
Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der

Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von
Tim Redick geb. Übelhör

Berichter/in: Univ.-Prof. Dr.-Ing. Dirk Abel
Univ.-Prof. Dr.-Ing. Barbara Hammer

Tag der mündlichen Prüfung: 15.04.2024

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online
verfügbar.

To my family

i

Abstract

Camera-based 6D Pose estimation is specifically relevant in the context of robotic
manipulation and augmented reality [1]. Robots require the pose estimates to
transform local plans, such as grasp points from the object’s coordinate frame
to the robot’s base frame. This thesis originated in medical applications, e.g.,
estimating the 6D pose of surgical instruments and tracking bones. The chal-
lenges are, however, similar to many industrial applications: Textures are missing
or unreliable, and parts of the object might be occluded.

Unlike deep learning methods, which recently dominated computer vision, proba-
bilistic/Bayesian methods can operate without large datasets and intuitively fuse
other sensor measurements or user inputs. Moreover, probabilistic methods in-
clude uncertainty estimates, enabling decision-making, e.g., by exploring different
viewpoints instead of cutting a bone if the uncertainty is high. Compared to deep
learning, insufficient utilization of the computational power of graphics processing
units (GPUs) holds back Bayesian inference on images.

This work develops probabilistic models and adapts sampling-based Bayesian
inference algorithms for the 6D object pose estimation with known CAD models
using depth images from a 3D camera. It only requires a prior for the position
of a point, which can be provided, e.g., by attaching tags to the objects or a
surgeon pointing onto a bone. Utilizing a GPU improves the method’s runtime to
enable robotic manipulation applications. Moreover, the experiments ablate the
influence of different model components and inference algorithms. Finally, this
thesis demonstrates the methods’ versatility in different applications: industry-
relevant Benchmark for 6D Object Pose Estimation (BOP) datasets, a synthetic
dataset of surgical instruments, and tracking the pose of a bone.

The results show that per-object runtimes of ≈1 s are possible, while achieving
an average recall of 0.475 on BOP for unseen objects. State-of-the-art methods
participating in the same category achieve recalls of 0.674, but additionally require
color images and per-image runtimes >30 s [2]. The Bayesian pose inference is
competitive if the runtime is limited. As the models have no semantic understand-
ing, combining them with learning-based methods might be a promising direction
for future research.

iii

Kurzfassung

Kamerabasierte 6D Posenschätzung ist insbesondere im Kontext der Roboter-
Objektmanipulation von Bedeutung [1]. Roboter benötigen diese, um lokale Pläne
wie Greifpunkte aus dem Koordinatensystem eines Objekts in das des Roboters
zu transformieren. Diese Arbeit hat ihren Ursprung in medizinischen Anwendun-
gen wie der Schätzung der 6D-Position von chirurgischen Instrumenten und dem
Tracking von Knochen. Jedoch bieten industrielle Anwendungen ähnliche Her-
ausforderungen: Texturen fehlen oder sind unzuverlässig, und Teile des Objekts
können verdeckt sein.

Im Gegensatz zu Deep Learning, dem aktuellen Goldstandard in der Bildverar-
beitung, benötigen Bayessche Methoden in der Regel keine großen Datensätze
und ermöglichen eine intuitive Einbindung weiterer Sensoren. Darüber hinaus
können die geschätzten Unsicherheiten eine informierte Entscheidungsfindung
ermöglichen. Im Vergleich zu Deep Learning wird in der Bayesschen Inferenz zur
Bildverarbeitung die verfügbare Rechenleistung von GPUs unzureichend genutzt,
was diese Methoden zurückhält.

In dieser Arbeit werden probabilistische Modelle für die Bayessche Inferenz auf
Tiefenbildern mit bekannten CAD-Modellen entwickelt und samplingbasierte In-
ferenzalgorithmen angepasst. Lediglich ein Vorwissen über die Position eines
Objektpunktes ist erforderlich. Durch die Verwendung einer GPU wird die Laufzeit
der Methode so weit verkürzt, dass der Einsatz im Rahmen robotischer Objektma-
nipulation möglich ist. Die Einflüsse verschiedener Modellkomponenten werden
systematisch evaluiert. Schließlich wird die Vielseitigkeit der gezeigten Methoden
für die Posenschätzung in diversen Anwendungen gezeigt: Industrielle Objekte,
chirurgische Instrumente und das Tracking von Knochenposen.

Die Ergebnisse zeigen, dass Laufzeiten von <1 s pro Objekt möglich sind, wäh-
rend ein durchschnittlicher Recall von 0,475 auf BOP Datensätzen für ungesehene
Objekte erreicht wird. Der Stand der Technik erreicht einen Recall von 0,674,
benötigt jedoch zusätzlich Farbbilder und Laufzeiten pro Bild von >30 s [2]. Die
Bayessche Poseninferenz ist bei begrenzter Laufzeit kompetitiv. Da die Modelle
kein semantisches Verständnis haben, könnte die Kombination mit lernbasierten
Methoden ein vielversprechender Ansatz für künftige Forschungen sein.

v

Contents

Abstract iii

Kurzfassung v

List of my Publications xii

List of Symbols xiii

Acronyms and Abbreviations xvii

1 Introduction 1
1.1 Scope . 2
1.2 Relevance . 3
1.3 Research Hypothesis and Structure 4

2 Theoretical Foundations and Notations 7
2.1 Foundations of Bayesian Statistics 7
2.2 Probability Distributions Used in This Thesis 8
2.3 Probabilistic Models . 10
2.4 Graphical Model for Inference . 11
2.5 6D Pose and Transformations . 13
2.6 3D Rotation Representations . 13
2.7 Pinhole Camera Model . 14
2.8 Summary . 15

3 Related Work on Camera-Based 6D Pose Estimation 17
3.1 Short History of Computer Vision 17
3.2 Object Detection and Segmentation 18
3.3 Classical Pose Estimation . 18
3.4 Learning-Based Pose Estimation 20
3.5 Pose Refinement And Tracking . 22
3.6 Bayesian Inference on Images . 25
3.7 Summary . 26

vii

Contents

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation 29
4.1 Probabilistic Model Overview . 29
4.2 Position and Orientation Models 32

4.2.1 Position Priors . 32
4.2.2 Position Proposals . 33
4.2.3 Orientation Priors . 34
4.2.4 Orientation Proposals - Quaternion Perturbations 35

4.3 Depth Image Models . 36
4.3.1 Generating Depth Images via Rendering 36
4.3.2 Resizing and Cropping the Pinhole Camera Model 38
4.3.3 Pixel Likelihood . 39
4.3.4 Handling Invalid Pixels . 42
4.3.5 Incorporating Masks: Pixel-Object Classification 44
4.3.6 Image Likelihood and Regularization 46

4.4 Performant Evaluation using Julia and the Graphics Processing Unit 48
4.5 Summary . 50

5 Approximate Bayesian Inference Algorithms 53
5.1 Overview of Approximate Inference Algorithms 53

5.1.1 Metropolis-Hastings . 55
5.1.2 Multiple-Try Metropolis . 56
5.1.3 Sequential Monte Carlo Samplers 58
5.1.4 Particle Filtering as Special Case of Sequential Monte Carlo

Samplers . 60
5.2 Best Practices and Sampler Modifications 61

5.2.1 Likelihood Tempering . 61
5.2.2 Adaptive Proposals for Sequential Monte Carlo Samplers . 61
5.2.3 Logarithmic Sampling . 62
5.2.4 Sampling in Constrained Domains 64
5.2.5 Metropolis Hastings in Unconstrained Domains 65
5.2.6 Sampling Blocks of Variables 67

5.3 Summary . 67

6 Experimental Comparison of Models and Samplers for 6D Pose
Estimation 69
6.1 Experiment Design . 70

6.1.1 Datasets . 70
6.1.2 Computer Hardware . 72
6.1.3 Pose Error Metrics . 72
6.1.4 Performance Score for Pose Estimation 75
6.1.5 Evaluation of Pose Distributions 77

viii

Contents

6.2 Baseline Model-Sampler Configurations 78
6.2.1 Probabilistic Model . 78
6.2.2 Samplers and their Proposals 79
6.2.3 Qualitative Analysis of Samplers 80

6.3 Image Resolution, Number of Particles, and Runtime 83
6.3.1 Influence of Image Resolution 83
6.3.2 Optimal Number of Particles and Inference Time 85

6.4 Quantitative Evaluation of Baseline Samplers on Synthetic Data . 87
6.5 Ablating the Probabilistic Model . 90

6.5.1 Choice of Priors for Position and Classification 90
6.5.2 Modeling Occlusions: Exponential Distribution, Classifica-

tion, Regularization . 92
6.6 Automatic Parameter Tuning . 94
6.7 Benchmark for 6D Object Pose Estimation: Results on Real Data . 98
6.8 Summary . 101

7 Applications in Medical Robotics 103
7.1 Pose Estimation of Surgical Instruments 103

7.1.1 Results for Simulated Instruments 104
7.1.2 Discussion on Pose Estimation of Surgical Instruments . . 105

7.2 Particle Filtering for 6D Pose Tracking of Iliac Crest Bones 107
7.2.1 Motivation, Boundary Conditions, and Goal 107
7.2.2 Motion and Observation Models 108
7.2.3 Filter Design . 109
7.2.4 Evaluation . 109
7.2.5 Results . 110
7.2.6 Discussion . 111

7.3 Practical Use of Pose Estimation in Robotic Manipulation Tasks . . 113
7.3.1 Local Plan: Model-Based Grasp Candidates 114
7.3.2 Transforming Local Plans using Camera-Based Pose Esti-

mates . 115
7.3.3 Collsion Free Motion and Task Planning 116
7.3.4 Compliant Control for Contacts 118
7.3.5 Using the Pose Estimator in Practice 118

7.4 Summary . 119

8 Conclusion 121
8.1 Outlook . 123

8.1.1 Future Directions for Bayesian Pose Estimation 123
8.1.2 Active Perception: Combining Vision and Control 125

ix

Contents

A Appendix 127
A.1 Source Code . 127
A.2 Failed Approaches . 127

A.2.1 Image Regularization . 128
A.2.2 Handling Invalid Pixels . 128
A.2.3 Gradient Based Samplers with Differentiable Renderers . . 128
A.2.4 Bootstrap SMC Kernel for Static problems 129
A.2.5 Forward Proposal Kernel for SMC 130
A.2.6 Cropping in Particle Filters 130

A.3 Gaussian Modified Truncated Exponential Distribution (Smooth
Truncated Exponential) . 130

A.4 Pose Estimation of Surgical Instruments 133
A.5 Incorporating Masks: Pixel-Object Classification 133
A.6 Runtime: Number of Particles and Inference Steps 134
A.7 Particle Filtering for 6D Pose Tracking of Iliac Crest Bones 135

Bibliography 139

x

List of my Publications

[1] Tim Redick, Christina Kohler, Kirsten Lena Voß, Christian Blume, Daniel
Delev, Hans Rainer Clusmann, Dirk Abel, and Heike Vallery. IMU-based
displacement detection of spinal vertebrae during image-based surgeries. In
Abstracts of the 57th Annual Meeting of the German Society of Biomedical
Engineering 26 – 28 September 2023, Duisburg, Including: The Artificial
Vision Symposium – the International Symposium on Visual Prosthetics,
volume 68 of Biomedical Engineering, page 87, Berlin [u.a.], 2023. de Gruyter
/ 57th Annual Meeting of the German Society of Biomedical Engineering 26 –
28 September 2023, Duisburg,. doi: 10.1515/bmte-2023-2001.

[74] Tim Übelhör, Jonas Gesenhues, Nassim Ayoub, Ali Modabber, and Dirk Abel.
3D camera-based markerless navigation system for robotic osteotomies. at -
Automatisierungstechnik, 68(10):863–879, October 2020. ISSN 2196-677X,
0178-2312. doi: 10.1515/auto-2020-0032.

[3] Tim Übelhör, Jonas Gesenhues, Nassim Ayoub, Ali Modabber, and Dirk Abel.
Augmented Reality Schablonen für intelligente kollaborative Roboter in der
Chirurgie;. In Automation 2020 : 21. Leitkongress Mess- u. Automatisierung-
stechnik : Shaping Automation for Our Future, 30. Juni u. 01. Juli 2020 /
VDI VDE Mess- Und Automatisierungstechnik, volume 2375 of VDI-Berichte /
Verein Deutscher Ingenieure. - Düsseldorf : VDI-Verl., 1955-, pages 603–615,
Düsseldorf, June 2020. VDI Verlag GmbH.

[4] Tim Übelhör, Jonas Gesenhues, Nassim Ayoub, Ali Modabber, and Dirk
Abel. Depth Camera Based Particle Filter for Robotic Osteotomy Navigation.
arXiv:1910.11116 [cs], October 2019.

[104] Ali Modabber, Nassim Ayoub, Tim Redick, Jonas Gesenhues, Kristian
Kniha, Stephan Christian Möhlhenrich, Stefan Raith, Dirk Abel, Frank Hölzle,
and Philipp Winnand. Comparison of augmented reality and cutting guide
technology in assisted harvesting of iliac crest grafts – A cadaver study. Annals
of Anatomy - Anatomischer Anzeiger, 239:151834, January 2022. ISSN 0940-
9602. doi: 10.1016/j.aanat.2021.151834.

xi

List of my Publications

[6] Philipp Winnand, Nassim Ayoub, Tim Redick, Jonas Gesenhues, Marius
Heitzer, Florian Peters, Stefan Raith, Dirk Abel, Frank Hölzle, and Ali Mod-
abber. Navigation of iliac crest graft harvest using markerless augmented
reality and cutting guide technology: A pilot study. The International Journal
of Medical Robotics and Computer Assisted Surgery, August 2021. ISSN
1478-5951, 1478-596X. doi: 10.1002/rcs.2318.

[115] Johannes Kummert, Alexander Schulz, Tim Redick, Nassim Ayoub, Ali
Modabber, Dirk Abel, and Barbara Hammer. Efficient Reject Options for
Particle Filter Object Tracking in Medical Applications. Sensors, 21(6):2114,
January 2021. doi: 10.3390/s21062114.

ORCID Tim Redick: https://orcid.org/0000-0001-5719-297X

xii

https://orcid.org/0000-0001-5719-297X
https://orcid.org/0000-0001-5719-297X

List of Symbols

Symbol Description Unit

Greek Symbols

𝛼 Acceptance ratio

𝛽 Scale parameter

𝝁𝑖𝑚𝑔 Expected depth image m

𝜇 Mean

𝜽 Vector of generic parameters

Φ Random rotation rad

𝜎 Standard deviation

𝜏 Threshold

Latin Symbols

Bern Bern(𝑜) Bernoulli distribution with the probability 𝑜 for
the true event

K Kamera intrinsics matrix

Cat Cat(𝑝1, . . . , 𝑝𝑘) Categorical distribution with k cate-
gory probabilities

𝑐𝑥 Optical center in x-direction

𝑐𝑦 Optical center in y-direction

𝑐𝑜 Classification (is object)

𝑜 Classification probability

𝐿0 Image likelihood regularization using classification
probabilities

𝑐𝑟𝑒𝑔 Regularization constant

∅ Diameter m

ELBO Evidence lower bound

xiii

List of Symbols

𝑒 Error metric

erf Error function

E Expected value

Exp Exp(𝛽) Exponential distribution with scale parameter
𝛽

𝑓𝑥 Focal length in x-direction

𝑓𝑦 Focal length in y-direction

Gumbel Gumbel(𝜇, 𝛽) standard Gumbel distribution for 𝜇 =

0, 𝛽 = 1
𝑢 Horizontal image coordinate

𝑣 Vertical image coordinate

1 Indicator function

𝐽 Jacobian Matrix

KL Kullback–Leibler divergence

LSE LogSumExp

Mix Mix(𝑎, 𝑏) Mixture model of the distributions 𝑎 and 𝑏

𝑁𝑒 𝑓 𝑓 Effective sample size

N N(𝜇, 𝜎2) Normal distribution with mean 𝜇 and vari-
ance 𝜎2

𝑁𝑝𝑥 Number of pixels in an image

z Observation / measurements

P Pose as transformation matrix

pdf Probability density function

𝑝 Probability distribution

q Rotation as unit quaternion

R Real numbers

R Rotation as a R3×3 matrix

𝐿𝑝𝑥 Image likelihood regularization using number of pixels

x State vector

t Translation as vector m

U U(𝑎, 𝑏) Uniform distribution for interval [𝑎, 𝑏]
v Vertex or 3D point

𝑉𝑀 Vertices of a 3D model

xiv

List of Symbols

𝑤 Weight

𝑧𝑚𝑎𝑥 Upper bound of measured depth m

𝑧𝑚𝑖𝑛 Lower bound of measured depth m

xv

Acronyms and Abbreviations

ADD average distance of model points

ADD-S average distance of model points with indistin-
guishable views

API application programming interface

BOP Benchmark for 6D Object Pose Estimation

CAD computer-aided design

CNN convolutional neural network

CPU central processing unit

CT computed tomography

ESS effective sample size

FN false negative

FP false positive

GAN generative adversarial network

GPU graphics processing unit

HMC Hamiltonian Monte Carlo

ICP iterative closest point

ITODD MVTec industrial 3D object detection dataset

KNN k-nearest neighbors

LM Linemod

LM-O Linemod-Occluded

MCMC Markov chain Monte Carlo

MDD-S maximum distance of model points for symmetric
objects

MH Metropolis-Hastings

MSPD maximum symmetry-aware projection distance

xvii

Acronyms and Abbreviations

MSSD maximum symmetry-aware surface distance

MTM multiple-try Metropolis

PF particle filter

PnP perspective-n-point

PPL probabilistic programming language

RANSAC random sample consensus

RFID radio-frequency identification

ROS Robot Operating System

SE(3) 3D special Euclidean group

SMC sequential Monte Carlo

SO(3) 3D rotation group

STERI synthetic surgical instruments

T-LESS texture-less rigid objects

TN true negative

TP true positive

VI variational inference

VSD Visible Surface Discrepancy

xviii

1 Introduction

Robot base

3D Camera

Iliac crest bone

Tool

Figure 1.1: Robotic manipulator setup for 3D camera-based surgeries with relevant
coordinate systems.

This work originated in medical applications involving dangerous and repetitive
tasks predestined for robotic automation, such as sorting contaminated surgical
instruments for sterilization. Individualized applications like facial reconstruc-
tion surgeries require high precision and flexibility compared to these repetitive
applications. Collaborative robots can potentially relieve understaffed sectors,
e.g., the sterile supply, and offer the precision required to enable new surgical
applications.

Robotic manipulation of rigid objects, such as instruments and bones, requires
transforming a plan defined in the object’s coordinate frame to the robot’s base
frame to control the pose of a tool mounted to the robot. The 6D pose of an
object describes the required transformation rule. For example, when replacing
a defective jaw bone with pieces from the iliac crest (hip) bone, surgeons plan
the cutting edges in the bone’s frame as depicted in Fig. 1.1. Current robotic
surgery systems attach markers as local references to the bone and require an
additional registration step to align the plan to the bone in the marker frame.
Compared to application-specific marker systems, a 3D camera offers more
flexibility and is suitable for a broader range of applications, e.g., bin picking.
One challenge in medical and industrial applications is that the objects do not

1

1 Introduction

possess a reliable texture, which many computer vision algorithms require. 3D
cameras can overcome this challenge since depth images are purely geometric.
Recent 3D cameras1 enable capturing even difficult scenes with reflective and
small objects.

Nevertheless, using a 3D camera introduces uncertainty to the system, as it
perceives an unstructured environment and introduces sensor noise. Bayesian
methods can explicitly handle this uncertainty by formalizing the iterative inclusion
of new data. Moreover, formulating models for Bayesian inference follows an
intuitive description of the measurements’ generative process. Given a known
state, this generative process describes what the measurement would look like.
The Bayesian workflow allows models to be adapted to new applications by fusing
additional sensor measurements or including learned black-box models.

1.1 Scope

In addition to medical applications, the methods developed in this work also cover
industrial applications, which offer similar challenges and chances. Typically, 3D
camera-based pose estimation algorithms must handle a wide variety of rigid
objects for which 3D models are available, e.g., as computer-aided design (CAD)
models from the manufacturer or preoperative computed tomography (CT) scans
of bones.

Hodan et al. defined two different 6D pose estimation problems depending on
the prior information available: the 6D localization problem and the 6D detection
problem [3]. While the former provides the classes and number of object instances
in an image, the latter provides no information on how many objects are present.
Almost all pose estimation algorithms use one model to detect the objects and
another to estimate the pose in a second step [2]. This work focuses on the
second step and assumes that the detections are available from another model,
previous timesteps, or additional sensors, e.g., radio-frequency identification
(RFID) tags attached to the objects. The methodological focus of this work is the
application of sampling-based Bayesian inference algorithms to the problem of
6D pose estimation using depth images as the primary sensor signal.

1Zivid One+, Oslo, Norway

2

1.2 Relevance

1.2 Relevance

Deep neural networks have revolutionized the field of computer vision by providing
an approach that does not necessitate an extensive understanding of image
processing and feature engineering. This simplification has made the field more
accessible to various individuals and organizations. However, neural networks
typically require large annotated datasets for training. Often, these large datasets
are unavailable for specific medical or industrial applications. Simulators like
BlenderProc allow the generation of vast amounts of annotated data and reduce
the sim-to-real gap using high-fidelity ray tracing [2, 4]. However, medical and
industrial applications might require detecting thousands of classes. Scaling deep
learning methods to so many classes relies on zero-shot learning of multimodal
models, which can, for example, output detections from free text [5]. However,
how these methods perform with different variants of the same class remains
unclear, e.g., scissors and clamps of different sizes. Additional sensors like RFID
tags could provide per-instance classification. Integrating additional sensors into
neural networks is not straightforward and requires additional training steps and
data.

Generative models for image-based Bayesian inference replace complex fea-
ture engineering with a stochastic scene generator, a renderer, and a likelihood
model [6]. Moreover, generative modeling is a white-box approach that can
intuitively integrate expert knowledge and additional sensors. Besides, down-
stream decision-making and control tasks can use the uncertainty estimates that
Bayesian methods include.

Still, sampling-based Bayesian inference algorithms typically exhibit long compu-
tation times of several minutes, especially for high dimensional problems such
as image-based pose estimation [7]. Real-world robotic applications require
that the pose estimation finishes within the cycle time. Furthermore, the lack of
good tooling held back Bayesian inference compared to deep learning methods
[8, 9]. While tools for generative modeling and Bayesian inference have improved
recently, combining them with the rendering process is not straightforward. More-
over, state-of-the-art Bayesian inference algorithms use gradient information to
speed up convergence. Classical rasterization-based rendering does not offer
gradients, and differential renderers are in a research stage with prohibitively long
runtimes [8, 10].

3

1 Introduction

1.3 Research Hypothesis and Structure

The computational budget hinders the application of sampling-based inference
algorithms to image-based pose estimation. As no gradients are available to
enable advanced sampling algorithms, the straightforward alternative is to use
more computational power to generate more samples with a given time budget.
GPUs can enable this increase in computation power by using parallel processing.
Deep learning frameworks have simplified the efficient utilization of GPUs, which
is a primary reason for the breakthroughs of deep neural networks in a wide range
of applications. Thus, this work hypothesizes that Bayesian inference can be a
viable alternative to deep learning methods for 6D pose estimation when using a
GPU. Subsequently, this work answers the following research questions:

• What does a probabilistic model for depth image-based pose estimation
look like?

• Which Bayesian inference algorithms lend themselves for parallelization on
a GPU?

• How do the components of the models and inference algorithms influence
the performance?

• How competitive is the resulting method to the state of the art in a standard-
ized pose estimation benchmark?

• Are the developed methods applicable to various domains and tasks?

First, this work introduces relevant theoretical foundations on Bayesian statistics,
probabilistic models, 3D poses, and cameras in Chapter 2. The following Chap-
ter 3 explores related work focusing on image processing, pose estimation, and
image-based Bayesian inference.

Afterward, the modeling Chapter 4 answers the first research question by in-
troducing a generative model that draws depth images from 6D poses using
3D rendering on the GPU. Moreover, this chapter explores suitable distributions
to model the uncertainty of the position, orientation, and pixel measurements.
Special care is taken to formulate a model of the depth measurement for the
execution on the GPU. Moreover, this work proposes approaches to handle occlu-
sions and regularize an image’s likelihood. The subsequent Chapter 5 introduces
the Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) infer-
ence algorithms and explains which variants are suitable for the parallelization on
a GPU. Moreover, essential best practices are introduced for a successful pose
inference.

4

1.3 Research Hypothesis and Structure

Chapter 6 evaluates the algorithms and models developed throughout this work.
This chapter starts by selecting suitable datasets and metrics to calculate a
performance score. Then, the influence of individual components, for example,
the sampler runtime and occlusion models, is investigated. After an automatic
parameter tuning, the algorithms are tested on datasets of the Benchmark for
6D Object Pose Estimation (BOP) and compared to the state of the art. Finally,
two medical applications demonstrate the applicability of the methods to a wide
range of challenging problems, estimating the pose of slim surgical instruments
and tracking bone poses in Chapter 7.

Finally, Chapter 8 concludes the results and limitations of the developed methods.
Furthermore, possible directions for future research to improve the methods are
presented. Possible approaches to the use of probabilistic pose estimation for
decision-making and control of robot manipulators are given.

5

2 Theoretical Foundations and
Notations

This chapter introduces foundational concepts of Bayesian statistics used through-
out the thesis, based on the explanations from [11, 12]. 6D poses are described
as transformations by translational and rotational components. This chapter also
describes the pinhole camera model for transforming 3D points to 2D images,
which is the foundation for image-based pose estimation. Moreover, this chapter
explains the notations from this.

2.1 Foundations of Bayesian Statistics

Probability density functions describe how likely observing a variable 𝑥 is given
some parameters. For example, a normal distribution is parametrized by the mean
𝜇 and standard deviation 𝜎 and has the following probability density function:

𝑝N (𝑥) =
1

𝜎
√

2𝜋
exp(− (𝑥 − 𝜇)

2

2𝜎2) (2.1)

In this case, 𝑥 is a random variable, which states that 𝑥 is subject to uncertainty. If
a problem consists of multiple random variables, the probability of simultaneously
observing specific values for all variables is described by the joint probability
distribution. For example, 𝑝(𝑥, 𝑧) is the notation of a joint probability distribution
of the random variables 𝑥 and 𝑧. If the value of some variable is known or
observed, the joint probability distribution can be conditioned on it. The notation
of a conditional probability distribution for a known 𝑧 is 𝑝(𝑥 | 𝑧). It reads as: "the
probability of observing 𝑥 given 𝑧 has a known value."

The chain rule of probability allows the calculation of the joint probability distri-
bution using a conditional distribution. For example, the joint distribution of two
variables 𝑥 and 𝑧 can be calculated as:

𝑝(𝑥, 𝑧) = 𝑝(𝑥 | 𝑧)𝑝(𝑧) = 𝑝(𝑧 | 𝑥)𝑝(𝑥) (2.2)

7

2 Theoretical Foundations and Notations

It is important to note that conditioning on a variable is always possible. Indepen-
dence assumptions do, however, not always apply. If 𝑥 and 𝑧 are independent, the
probability of observing 𝑥 does not change if the value of 𝑧 changes - the same
holds for 𝑧 if 𝑥 is known. In this case, Eq. (2.2) simplifies to:

𝑝(𝑥 | 𝑧)𝑝(𝑧) = 𝑝(𝑧 | 𝑥)𝑝(𝑥) = 𝑝(𝑥)𝑝(𝑧) (2.3)

Conditional independence describes that two or more variables are independent
given other variables:

𝑝(𝑥, 𝑦 | 𝑧) = 𝑝(𝑥 | 𝑧)𝑝(𝑦 | 𝑧) (2.4)

Finally, a variable can be removed from the distribution via marginalization, also
known as the law of total probability. Marginalization integrates over all possible
values of a variable:

𝑝(𝑥) =
∫

𝑝(𝑥, 𝑧)𝑑𝑧 =
∫

𝑝(𝑥 | 𝑧)𝑝(𝑧)𝑑𝑧 (2.5)

If the variable is discrete, the integral becomes a sum. The notations used above
are handy for mathematical manipulation. Another common notation describes a
model as a generative process [13].

𝑥 ∼ Exp(𝛽) (2.6)
𝑧 ∼ N(𝑥, 𝜎) (2.7)

The first reads: "𝑥 is distributed according to an exponential distribution param-
etrized by 𝛽." which implies that 𝑥 can be generated by drawing samples from
the exponential distribution. Eq. (2.7) defines a hierarchical model where 𝑥 must
first be known or sampled to evaluate the normal distribution. Variables that do
not serve as parameters of other distributions are usually observed, while the
other variables are called hidden or latent variables. The objective is to infer the
posterior distribution 𝑝(𝑥 | 𝑧) of the hidden variable 𝑥 given the observation 𝑧.

2.2 Probability Distributions Used in This Thesis

As defined in Eq. (2.1), the normal distribution is a continuous probability distribu-
tion. It is a symmetric distribution centered around the mean 𝜇 with the standard
deviation 𝜎. Many noise characteristics can be modeled sufficiently well with a
normal distribution, and it is a common choice because of its analytical proper-
ties. Being a part of the exponential family of distributions allows for closed-form
solutions such as the Kalman filter [12].

8

2.2 Probability Distributions Used in This Thesis

Another member of the exponential family is the exponential distribution. It is
parametrized by the rate parameter 𝜆 or by the scale parameter 𝛽 = 𝜆−1. The
probability density function is defined as:

𝑝Exp(𝑥 | 𝛽) =
{

1
𝛽
𝑒
− 𝑥

𝛽 , 𝑥 ≥ 0
0 , 𝑥 < 0

(2.8)

Uniform distributions describe that a variable can take on any value in a given
interval [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]. As all values are equally likely, the uniform distribution de-
notes the absence of knowledge and is referred to as uninformed. The probability
density function is defined as:

𝑝U (𝑥 | 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =
{

1
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

, 𝑥 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]
0 , else

(2.9)

The Bernoulli distribution models the probability of a discrete binary event, which
is typically denoted by 0 for false and 1 for true. This distribution is parametrized
by a single variable 𝑜 ∈ [0, 1], which is the probability of the true event.

𝑝Bern(𝑥 | 𝑜) =
{
𝑜 , 𝑥 = 1
1 − 𝑜 , 𝑥 = 0

(2.10)

The Categorical distribution is a discrete probability distribution where a random
variable can be drawn from 𝑘 classes. Each class has a probability weight 𝑤𝑖
associated with it, where

∑𝑘
𝑖=1 𝑤𝑖 = 1. The probability density function is:

𝑝Cat(𝑥𝑖 | 𝑤1, . . . , 𝑤𝑘) = 𝑤𝑖, 𝑖 ∈ [1, . . . , 𝑘] (2.11)

Elements from a mixture distribution can be sampled using a categorical distri-
bution. A mixture distribution consists of 𝑘 distributions 𝑝𝑖 and the same number
of weights 𝑤𝑖. Generating random variables distributed according to a mixture
distribution requires two steps. First, draw a class 𝑖 according to the probability
weights 𝑤𝑖 from a categorical distribution parametrized by the same weights. Sec-
ond, draw a random value from the distribution 𝑝𝑖. Drawing from a mixture with
two components 𝑥 ∼ Mix(𝑝1, 𝑝2;𝑤1, 𝑤2) is equivalent to the following notation.

𝑖 ∼ Cat(𝑤1, 𝑤2)
(𝑥 | 𝑖 = 1) ∼ 𝑝1

(𝑥 | 𝑖 = 2) ∼ 𝑝2

(2.12)

9

2 Theoretical Foundations and Notations

This is similar to an if-else statement in programming: If 𝑖 = 1, draw from 𝑝1, else
if 𝑖 = 2, draw from 𝑝2. The probability density function of a mixture distribution is
defined as:

𝑝Mix (𝑥 | 𝑝1, . . . , 𝑝2;𝑤1, . . . , 𝑤𝑘) =
𝑘∑︁
𝑖=1

𝑤𝑖𝑝𝑖 (𝑥) (2.13)

Even though drawing from a mixture involves only a single component at a time,
the density functions of all components are evaluated and weighted accordingly.

2.3 Probabilistic Models

Historically, probabilistic models have been used to fit a set of parameters 𝜽 on
stateless data z using Bayesian inference [11]. In signal processing, the goal
is to estimate a time-variate state x(𝑡), sometimes jointly with the parameters
given a stream of measured observations z(𝑡), called filtering. Even though the
naming differs, the same methods can infer latent variables using a probabilistic
model given noisy data or measurements. This thesis focuses on estimating the
state, and the parameters are considered hyperparameters, so they are not part
of the inference problem. For static problems, the state x is time-independent,
and for the general case, the time variable 𝑡 is omitted and used as an index for
the algorithm step instead.

Bayes’ theorem is the basis of probabilistic models. It allows calculating the
posterior distribution of the state x given a set of observations z:

𝑝(x | z) = 𝑝(z | x)𝑝(x)
𝑝(z) (2.14)

The term 𝑝(z | x)𝑝(x) = 𝑝(z, x) is what will be referred to as probabilistic model
from here on. First, the probabilistic model contains the probability 𝑝(z | x) of
observing z for a specific state x, which is called likelihood. Second, the prior
𝑝(x) can encode an expert’s knowledge about the distribution of the state and
parameters. Another possibility is to use data and the posterior of one model as
the prior of another model.

The denominator of Eq. (2.14) is called marginal likelihood 𝑝(z) which is calculated
by marginalizing the latent variables x of the probabilistic model:

𝑝(z) =
∫

𝑝(z | x)𝑝(x)𝑑x (2.15)

Integrating over all latent variables can be interpreted as the probability that
the observations z have been generated from the specific probabilistic model.

10

2.4 Graphical Model for Inference

Intuitively, the value resulting from the integral increases if the model better fits
the data. Therefore, 𝑝(z) is often called the evidence of the model or model
evidence. Calculating the integral in Eq. (2.15) is intractable for most problems
with a continuous state-space. Conjugate priors and likelihoods are a special
case where a closed-form solution is generally possible. However, conjugate
priors significantly restrict the choice of models. One example is the exponential
family of distributions, where the conjugate prior is typically also a member of the
exponential family. For discrete state-spaces with a low dimensionality, it can also
be tractable to sum over all possible states and calculate a closed-form solution
of Eq. (2.15).

In most cases, it is sufficient if the posterior probabilities of states can be compared
relative to each other. In these cases, 𝑝(z) can be interpreted as a normalization
constant since it does not depend on the inferred state x. Thus, the probabilistic
model used in Bayesian inference is typically formulated proportional to the
posterior:

𝑝(x | z) ∝ 𝑝(z | x)𝑝(x) = 𝑝(z, x) (2.16)

The joint probability distribution 𝑝(z, x) is also called generative model, which
allows the simulation of synthetic data, ideally similar to actual observations [13].
This model can also be used for Bayesian inference, which will be examined in
Chapter 5.

2.4 Graphical Model for Inference

In practice, a probabilistic model is commonly formulated using a probabilistic
programming language (PPL). Probability distributions are defined for each latent
variable, which might depend on other latent variables. After defining the distri-
butions, a PPL engine compiles the model for inference. In the case of models
with a fixed number of variables, a Bayesian network can be generated which is a
directed acyclic graph [13].

Figure 2.1 represents the Bayesian network for the following exemplary model,
which consists of the latent variables 𝑎 and 𝑏, a deterministic node 𝑑, and the
observed variable 𝑐:

𝑎 ∼ N(0, 1)
𝑏 ∼ Exp(1)
𝑑 = 𝑎 + 𝑏
𝑐 ∼ N(𝑑, 1)

(2.17)

11

2 Theoretical Foundations and Notations

𝑎

𝑏

𝑑 𝑐

Figure 2.1: Example of a Bayesian network for Eq. (2.17).

𝑎 𝑏

𝑐

Figure 2.2: Bayesian network with multiple nodes conditioned on 𝑎.

In Bayesian networks, the arrows point to variables influenced by the predeces-
sors, so 𝑎 and 𝑏 are the parents of 𝑑. On the contrary, a program that processes
the graph stores the structure in the opposite direction where 𝑐 is the root node,
which knows 𝑑 as its child. This thesis uses the Bayesian convention. The
rhombus-shaped node represents a deterministic function. Moreover, nodes 𝑎
and 𝑏 also encode the prior of the model, while the 𝑐 represents the observation
by convention using a gray color. Prior nodes must be fully parametrized, while
child nodes are parametrized by their parents.

Sampling from this model is a forward evaluation: Generate random values
from the prior/root nodes, then generate random values for their child nodes, the
children of the children, and so forth until the leaf/observation nodes are evaluated.
Algorithmically, this can be implemented by running a depth-first search every
time the graph has to be evaluated; performing a topological sorting once can
improve the performance. Care has to be taken that a node is not evaluated twice
if multiple nodes are conditioned on the same node as in Fig. 2.2. Consequently,
all values have to be stored and associated with the node. A node can only be
asked to return a random sample if no value has been stored before. Storing
values for certain variables before sampling from the graph also adds a notion
of conditioning to the graph on these variables. Conditioning on variables is
specifically helpful if only blocks of variables are sampled, which is a common
practice in Bayesian inference; see Section 5.2.6.

During the evaluation, each variable has a value assigned to it. Subsequently, all
nodes are d-separated, and the network’s likelihood is the product of the individual
nodes given their ancestor’s values. In case of the network in Fig. 2.1 this results

12

2.5 6D Pose and Transformations

in:
𝑝(𝑐 | 𝑎, 𝑏, 𝑑) = 𝑝(𝑐 | 𝑑)𝑝(𝑎)𝑝(𝑏) (2.18)

After inference, the distribution of the latent variables is known, and one can use
this model to generate new data from the posterior predictive distribution.

2.5 6D Pose and Transformations

Generally, a 6D pose has three degrees of freedom for the position and three
degrees of freedom for the orientation. In the literature, a 6D pose is also referred
to as an element of the 3D special Euclidean group (SE(3)) [14]. For simplicity,
this work does not introduce SE(3) formally but uses it as a synonym for a
transformation rule P of a 3D point v expressed or measured from frame A to a
target frame B:

Bv = BPA Av (2.19)

Note that the notation B□A will be used for transformations throughout this thesis
describing the pose of a frame A measured from frame B. By convention, the
pose first rotates the point by a R3×3 R matrix and then translates it by a R3

translation vector t:
Bv = BRA Av + BtA (2.20)

This convention also enables one to express the same pose as an affine R4×4

transformation matrix and homogenous coordinates:(
Bv
1

)
=

(
BRA BtA

0T 1

) (
Av
1

)
(2.21)

Affine transformation matrices and homogenous coordinates are commonly used
in 3D computer graphics, which is the focus of Section 4.3.1.

2.6 3D Rotation Representations

In the previous section, rotations have been described by R3×3 rotation matrices.
These matrices allow the transformation of a 3D point to be calculated simply
by multiplication. Nevertheless, representing the 3D rotations as matrices, often
called the 3D rotation group (SO(3)), requires nine instead of the minimal three
parameters.

13

2 Theoretical Foundations and Notations

In theory, three parameters are enough to describe a 3D orientation. For example,
Euler angles intuitively represent a rotation. Three consecutive rotations around
different axes describe an SO(3) rotation. One problem is that the specification of
the order of the axes and whether the axes are static or rotating with the object
often leads to confusion. Another problem is that Euler angles have singularities,
which lead to a phenomenon known as gimbal lock [15]. Moreover, 3D rendering
uses transformation matrices to transform vertices, and converting Euler angles to
R3×3 rotation matrices is expensive due to the trigonometric functions involved1.

It is considered best practice to use an alternative representation that does not
suffer from singularities. This work uses unit quaternions in the Hamiltonian
convention, and the equations used throughout this thesis are largely based on
Sola et al. [15]:

q = [𝑞𝑤, q𝑣]T = [𝑞𝑤, 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧]T (2.22)

The first part 𝑞𝑤 is the real part, and q𝑣 is the imaginary part of the quaternion. An
additional advantage of quaternions is that they can easily be converted to R3×3

rotation matrix using the exponential map, which does not involve trigonometric
functions2. Compared to Euler angles, one drawback is that four components are
an over-parametrization of SO(3) rotations, resulting in non-unique representa-
tions known as the double cover of SO(3). Specifically, negating a quaternion
results in the same rotation.

2.7 Pinhole Camera Model

The pinhole camera model is a simple approach to modeling the projection of 3D
points into an image. It neglects nonlinear effects like lens distortion, which can
be removed in a preprocessing step. A point Cv ∈ R3 measured in the camera
frame is transformed to image coordinates Iv ∈ R2 using the intrinsic camera
matrix K:

𝑤

©­­­«
𝑢

𝑣

1

ª®®®¬︸︷︷︸
Iv

=

©­­­«
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

ª®®®¬︸ ︷︷ ︸
K

©­­­«
𝑥

𝑦

𝑧

ª®®®¬︸︷︷︸
Cv

(2.23)

1Rotations.jl, RotMat(r::RotXYZ): 28.963 ± 6.799 ns
2Rotations.jl, RotMat(q::QuatRotation): 4.954 ± 1.993 ns

14

2.8 Summary

Note that the coordinates 𝑢 and 𝑣 represent the pixel coordinates. A third compo-
nent and the factor 𝑤 = 𝑧 are required for the formulation as an affine transforma-
tion. The parameters 𝑓𝑥 and 𝑓𝑦 in Eq. (2.23) are the focal lengths of the camera
in 𝑥- and 𝑦-direction, 𝑠 is the axis skew, and 𝑐𝑥 and 𝑐𝑦 describe the location of the
principal point in 𝑥- and 𝑦-direction. In addition, the nonlinear distortion caused
by the lens could be considered [16]. Because the datasets used in the evalu-
ation (Chapter 6) do not provide any distortion coefficients, distortions are not
considered further.

The extrinsic parameters describe the transformation RPC of a point in the optical
camera frame to a reference frame, e.g., the mounting point. In practice, 3D
cameras are either shipped pre-calibrated or can be calibrated easily using open-
source tools, for example, the Robot Operating System (ROS) camera_calibration
package which is based on OpenCV [16, 17, 18].

2.8 Summary

This chapter presented the theoretical foundations of Bayesian statistics and
probabilistic models. It showed that the full posterior distribution described re-
sulting from Bayes’ law is intractable in most cases. Therefore, the concept of
probabilistic models, which can be evaluated up to a constant factor, was intro-
duced. These probabilistic models use probability distributions to describe the
generative process of observations or measurements. Commonly used probability
distributions from this thesis were additionally introduced. Graphical models have
been introduced as a flexible and formal model description. Besides, graphical
models enable an efficient sampling and evaluation of the model.

The second half focused on the foundations of 6D poses, which transformation
rules can describe. 6D poses consist of a translational and a rotational component,
and quaternions were introduced to represent the latter. Quaternions are more
concise than rotation matrices and avoid problems of Euler angles like gimbal
lock. The pinhole camera model was introduced to bridge the transformation of
3D points to 2D images. It is the simplest model used to render 3D scenes to 2D
images.

15

3 Related Work on Camera-Based
6D Pose Estimation

The BOP challenge introduced standardized datasets and evaluation metrics in
2018, significantly improving the comparability of 6D pose estimation methods
[19]. Many datasets of this challenge focus on industrial applications with similar
challenges as the medical applications also considered in this thesis. Gorschlüter
et al. recently published an extensive survey that compares relevant 6D pose
estimation methods for industrial applications [1]. Both serve as a good starting
point for the literature review, and the BOP challenge is still open for submissions
in 2023.

Pose estimation is often a two-step approach of detecting the object first and
estimating its pose using a second algorithm or model [2]. After a short histor-
ical overview, Section 3.2 introduces object detection methods. The following
Sections 3.3 and 3.4 introduce general algorithms for pose estimation, which
can roughly be divided into classical methods focusing on heuristically designed
features and (deep) learning-based methods for 6D pose estimation. As many
pose estimators use a refinement step similar to pose tracking, Section 3.5 jointly
introduces these methods. The final Section 3.6 gives an overview of Bayesian
inference for image analysis.

3.1 Short History of Computer Vision

The beginnings of machine vision can be found in the 1950s, when James Gibson
introduced optical flow in his work [20]. In the 1960s, it was possible to extract
three-dimensional geometric information from 2D images. Subsequently, in the
early 1970s, methods were developed for low-level tasks, such as edge detection
and segmentation, to solve the problems in a bottom-up approach. In the 1970s
and 80s, research focused on understanding and reverse engineering human
vision. Researchers have explored the capabilities of neural networks during this
time, and most notably, Yann LeCun laid the foundation of using backpropagation
for training these networks together with Geoffrey Hinton [21]. Computational

17

3 Related Work on Camera-Based 6D Pose Estimation

power held these methods back, leading to the AI winter of the 1990s and 2000s.
During this period, research focused on hand-crafting color-based and geometric
image features. Deep learning methods got their breakthrough due to leveraging
the computational power of GPUs with AlexNet, known as the ImageNet moment
in 2012.

3.2 Object Detection and Segmentation

This thesis focuses on the 6D localization task. It assumes that some prior infor-
mation can be provided, for example, via the localization of RFID tags attached
to the object or surgeons pointing to the object of interest. An image-based
object detector can be a fallback solution for generating this prior information by
predicting the object center. Object (instance) segmentation is about classifying
whether a pixel belongs to an object and is an extension of the detection task.
Deep learning led to vast growth in the field, and the following methods only
represent an overview of practical and easy-to-use models.

In 2012, the convolutional neural network (CNN) AlexNet outperformed classical
feature-based methods, reducing the error by a large margin [22]. Soon afterward,
deep learning methods have also pushed state-of-the-art object detection bench-
marks like PASCAL VOC [23]. Usually, a base CNN like ResNet is trained on a
large dataset and used as the backbone with modified heads to output detections
and segmentations. An often-used example for a CNN-based object segmenta-
tion model with a ResNet backbone is Mask-RCNN [24]. If inference time is a
concern, the YOLO family with adaptions to segmentation like YOLACT++ is a
common choice [25].
Large transformer networks, known from large language models as foundation
models, have gained traction in object detection recently. While transformer
models dominate the language space, large CNNs still challenge these newer
architectures in the image space [26].

3.3 Classical Pose Estimation

Classical pose estimation is based on extracting sparse hand-crafted features,
which in term consists of two steps [16]: A detector localizes keypoints that can
be relocalized robustly in different scenes and lighting conditions: see Fig. 3.1 a).
The second step involves calculating a descriptor, which must be unique to match
the same keypoint in different views or a CAD model. Commonly used features

18

3.3 Classical Pose Estimation

a) b) c) d) e)

Figure 3.1: Principles of pose estimation illustrated on an iliac crest bone: a) matching
sparse features, b) template matching, c) dense object coordinates, d) surface
fragments, e) direct regression

include SIFT, SURF, and ORB [27]. After calculating and matching similar image
features to the model features, estimating the 6D object pose requires solving
the perspective-n-point (PnP) problem. As the matchings are noisy in practice,
the PnP problem is formulated as an optimization problem and solved using the
random sample consensus (RANSAC) algorithm.

Hinterstoisser et al. introduced Linemod as a template-matching method for 6D
pose estimation in 2013 [28]. They focus on estimating the pose of textureless
objects by creating templates of color gradients and surface normals and matching
them to the measured image: see Fig. 3.1 b). Afterward, they refine the pose
estimates using the iterative closest point (ICP) algorithm; see Section 3.5. This
method has gained particular notoriety as it published one of the first standardized
benchmark datasets with associated evaluation metrics. The Linemod dataset and
the corresponding point distance metrics are described in depth in Section 6.1.3.
Hodan et al. focus on improving the growing complexity of using more templates
by rigorously filtering detections and using a hash-based voting scheme [29].
Finally, they refine the pose using a particle swarm optimization algorithm, less
prone to getting stuck in a local optimum than ICP. Moreover, they achieve run
times of <1 s using a GPU implementation. As template-based methods require
larger parts of the object to be visible, they are prone to occlusions [1].

Methods that only require depth images or point clouds are invariant to colors, as
they purely rely on geometric features. Drost et al. introduced the sparse point
pair feature in 2010 to recognize objects and estimate their pose in point clouds;
compare for Fig. 3.1 a) [30]. This method selects two points on the object and
calculates a feature vector based on their distance and corresponding surface
normals. These features are invariant to rigid motions, which allows for the calcu-
lation of the object pose as a point cloud transformation.
Point pair features have the weakness that they are prone to sensor noise. Hinter-
stoisser et al. improved on this weakness by spatially spreading the features [31].
This allows them to be matched in other regions during the voting. Additionally,
they introduce a subsampling scheme to reduce the runtime significantly.

19

3 Related Work on Camera-Based 6D Pose Estimation

Only in 2020, deep learning-based methods were able to catch up to point pair
features, which was the best-performing method in the BOP challenge until then
[32].

3.4 Learning-Based Pose Estimation

Learning-based methods have made the image processing space accessible and
led to a significant increase in publications. Again, this thesis can only give an
overview of the many recent publications. Classical pose estimation requires
knowledge and experience to hand-craft features that work under various condi-
tions. Learning these features from data also requires less tunable parameters in
practice, making them more robust under varying conditions [1].
Learning-based methods differ in the input modalities (color, depth, or both modal-
ities), the learning method, and the output representation. Arguably, grouping the
methods based on the outputs and corresponding techniques to regress the pose
is more purposeful, similar to Hodan’s work [33].

One group of approaches aggregates pose predictions via Hough voting, initially
developed for detecting lines and later other shapes like circles [34]. Tejan et
al. adapt the Linemod template matching method into a scale-invariant patch
descriptor and train a Hough forest with it [35]. The forest processes image
patches, and the leaf nodes store votes for a pose. Accumulating the votes for the
position and then the votes for the orientation results in the final pose estimate.
Kehl et al. extended this method to introduce one of the first CNN-based pose es-
timators [36]. They train a convolutional autoencoder to extract scene descriptors
for local image patches. These descriptors are matched to pose votes using an
approximate k-nearest neighbors (KNN) algorithm.

Another early tried approach is to predict object coordinates, also called dense
2D-3D correspondences. Object coordinates assign a unique location on the
object’s 3D surface to the image pixels, shown via different colors in Fig. 3.1 c).
Brachmann et al. introduced this approach to 6D pose estimation using random
forests [37]. A random forest assigns votes for object class labels, and the object
coordinates to each image pixel. Afterward, they use a RANSAC optimization to
regress the pose from the noisy votes.
Krull et al. extended this method using a CNN in 2015, the earliest deep learning
approach for pose regression in this literature review [38]. They use Brachmann’s
random forest to generate predictions for the object class, object coordinates,
and pose. Subsequently, they render a depth image and an image of the object
coordinates. Finally, a CNN compares the rendered images to the observed
depth, the predicted object class, and coordinates.

20

3.4 Learning-Based Pose Estimation

While Krull et al. used color and depth images, Park et al. proposed a method that
regresses the object coordinates using only a color image [39]. They note that
training a CNN is difficult if the objects are symmetric, and propose a modified loss
function. Moreover, they handle occlusions by training a generative adversarial
network (GAN) to reconstruct the occluded parts.

Furthermore, a notable method regressing object coordinates from color images
is the GDR-NET by Wang et al. [40]. A modified version won almost all categories
of the latest BOP challenge in 2022 [2]. Their network outputs a segmentation
mask, a dense object coordinate map, and a map of surface fragments as
proposed by Hodan et al. [41]; see Fig. 3.1 d). They use the segmentation mask
only as a supervision signal during training and feed the other two representations
into another network, which has the task of solving the PnP problem instead
of using RANSAC. Using a network for regressing the pose allows end-to-end
training of the pose estimator and the intermediate representations.

Dense object correspondences also lend themselves to the pose estimation of
unknown objects, also known as category-level pose estimation. The work of
Wang et al. introduces a so-called normalized object coordinate space where
all category instances are consistently oriented. For example, the tip of a shoe
always points in the same direction [42]. Li et al. developed this idea further by
including constraints for articulated objects, e.g., scissors or human joints [43].
Another approach has been presented by Park et al., who employ a neural network
as a differentiable renderer [44]. This method does not require a CAD model, but
only a few annotated images of the object for learning an internal representation.
As the neural network is differentiable, they can use a gradient descent approach
to compare the renderings to the measurements and optimize the pose.

A similar approach is to predict sparse keypoints and match them, like in the
classical approaches of Section 3.3 and Fig. 3.1 a). For example, Peng et al.
generate a vote for each pixel that points to keypoints and then solve the PnP
problem in an uncertainty-driven way [45]. Other approaches rely on manually
annotated keypoints, which can be tedious and prohibit a widespread application
[46].

The final line of works regresses direct pose outputs without the need for solving
the PnP problem, as shown in Fig. 3.1 e). Xiang et al. use a CNN architecture
for color images, which solves multiple tasks to output pose estimates [47]: It
predicts object labels, the object center, the center distance, and a quaternion for
the orientation. They use the ICP algorithm to refine the pose if a depth image is
available.
Meanwhile, Wang et al. focus on regressing the pose from color images and point
clouds [48]. They use a CNN to extract a dense feature vector from a color image,
and a PointNet [49] to extract another feature vector from the corresponding

21

3 Related Work on Camera-Based 6D Pose Estimation

t+1 t+1 t+1

Figure 3.2: Pose refinement iteratively improves an initial guess for a static image (left).
Pose tracking updates the pose for a sequence of images (right).

point cloud. After concatenating the feature vectors, a pose predictor network
regresses a pose and a confidence value for each pixel in the image. They use
the pose with the highest confidence score for the final pose output.
Compared to the previous method and many others, Wu et al. do not require a
color image for a detection step. Instead, they create the segmentation mask
as an intermediate step from a point cloud [50]. Afterward, they use a keypoint
voting scheme to regress the 6D pose of the object.

By discretizing the output space, the pose estimation task can be reformu-
lated as a classification problem. Kehl et al. extended the single-shot detection
paradigm to 6D pose estimation [51]. A single-shot 2D detector discretizes the
color image into overlapping bounding boxes and outputs classification labels
for each box. In addition to the classification labels, Kehl et al. output scores for
discrete viewpoints and in-plane rotations. For the final output, they select the
viewpoint with the highest score and apply an ICP refinement if a depth image is
available.
Sundermeyer et al. increase the flexibility of this approach by training an object-
independent autoencoder instead of training one network with a given set of
classes [52]. Training the autoencoder to reconstruct the object is only an aux-
iliary task, and the method uses the internal feature embedding for the pose
estimation. A codebook can be generated by rendering synthetic views of an
object and storing the feature embeddings in a codebook. Similar views result in
similar feature embeddings, so they use a KNN algorithm to find the most similar
embeddings and use the pose of the corresponding rendering as the estimate.

3.5 Pose Refinement And Tracking

Pose refinement and tracking are similar problems because they assume a prior
pose (distribution) close to the measured pose to be available. Conceptually,
pose refinement is often formulated as an optimization problem that iteratively
predicts the difference between the current pose and the measured one; see
Fig. 3.2 left. In contrast, pose tracking is usually formulated as a probabilistic

22

3.5 Pose Refinement And Tracking

filter. Filters include a motion model to predict the pose distribution for the next
image and a measurement model to update the distribution: see Fig. 3.2 right.
Moreover, tracking typically requires that the algorithm runs at the frame rate of
the camera. Optimization and filtering approaches can be used to some extent
for the refinement and tracking problems.

Many pose estimation methods rely on a depth-image or point cloud-based
refinement step to improve the performance in benchmarks [32]. Commonly, the
ICP algorithm is used for refinement. This algorithm iteratively matches the closest
points of the source and target cloud to minimize the point-to-point distances. For
large point clouds, the algorithm can become costly, at worst O(𝑁2) for 𝑁 points
in each cloud [53]. Tree-based algorithms can improve the performance of ICP
but require more memory [54].
Another approach to refinement is to use a differentiable renderer to compare a
rendered image of the pose to the measured image and use a gradient-based
optimization [55]. The neural network-based differentiable renderer introduced in
Section 3.4 refines the Pose estimate similarly [44]. Li et al. train a neural network
to compare a rendered image of the object pose and the measured image to
predict the difference directly [56]. Their method is also applied iteratively to
achieve better results.

Robotic control and augmented reality applications require tracking an object at a
high frame rate to reduce latency. Even if a high tracking frequency is not required,
a higher tracking frequency reduces the distance an object can travel from image
to image. Kalman and particle filters have been successfully applied to the
localization of mobile robots in 2D since the late 1990s [57]. The computational
cost of sampling-based algorithms like particle filters grows exponentially with the
problem’s dimensionality, known as the curse of dimensionality.
It took almost fifteen years until Choi et al. introduced the first real-time capable
algorithm to track 6D poses [58]. They use OpenGL-CUDA interop to efficiently
render color, depth, and normal images of pose hypotheses and access them to
calculate the likelihood function of a particle filter directly on the GPU.
As Choi’s method is not robust against occlusions, Wüthrich et al. added an
estimate for each pixel’s occlusion probability to the particle filter [59]. They use a
relatively complex formulation for the likelihood of a range measurement, involving
marginalizing variables via an analytical integration.
In contrast to said approach, Krull et al. focus on improving the proposal model
to reduce the number of required particles by placing them in better locations
[60]. They use the random forest-based object coordinate predictor from [37] to
generate global proposals and mix them with local proposals from the motion
model.

23

3 Related Work on Camera-Based 6D Pose Estimation

Another line of work applies gradient-based optimization specifically to tracking
applications. Early examples use a region-based approach, which estimates a
segmentation mask discriminating between the object’s foreground and back-
ground and compares it with color images [7]. They implement various steps
of their algorithm on the GPU to achieve a tracking rate of ≈20 − 25 Hz. Tjaden
et al. improved this method by deriving a Gauß-Newton optimization scheme,
which allows them to run the calculations on the central processing unit (CPU) at
≈50 − 60 Hz [61].
One limitation of the region-based trackers is that they either require textured
objects or that the object must be distinguishable from the background. Therefore,
Kehl et al. have included depth images in their tracking algorithm [62]. They
have also improved the performance to ≈370 Hz on the CPU by pre-calculating
information in an offline rendering step and using a sparse approximation for the
optimization. Stoiber et al. improved the performance even further to ≈790 Hz
by combining a Gauß-Newton optimization and a sparse precomputed viewpoint
model for the region-based model. Region-based optimizations generally have
the disadvantage that the object must be distinguishable from the background,
which often is not the case in industrial or medical applications [63].

Most learning-based methods for tracking predict the difference/error between
the current pose and the next measured image. Tan et al. use random forests
to solve this regression problem [64]. The forests learn how the object’s pose
should change for a given change of the depth images and can be executed on
the CPU at 500 Hz. However, this approach can only handle mild occlusions.
Building on the success of deep learning in other applications, Garon et al. train
a CNN to predict the pose difference between a render and a measured image
[65]. It is similar to the approach for pose refinement in [56], which has also
been applied to tracking. Using a CNN makes these methods relatively robust
to occlusions and allows them to recover from large errors. This approach can
achieve a tracking rate of ≈100 Hz using a GPU for inference.
Deng et al. combine deep learning with a particle filter using Rao–Blackwellization
[66]. They extend the work of Sundermeyer et al. on using autoencoders to
match views to a codebook of feature embeddings for the application in tracking.
Compared to Sundermeyer, their method maps the observation’s feature embed-
dings and the codebook to a probability distribution over the discrete orientations
instead of selecting the most similar embedding. By marginalizing the orientations,
they can also calculate the likelihood of the position.

24

3.6 Bayesian Inference on Images

3.6 Bayesian Inference on Images

Few publications exist on using Bayesian inference for 6D object pose estimation
most likely due to the curse of dimensionality [67]. Therefore, this section first
highlights pose estimation and tracking algorithms from the previous sections,
which contain probabilistic elements. Then, it gives an overview of the previous
applications of Bayesian inference on general image analysis. Finally, it presents
prior work on sampling-based pose estimation.

Some methods introduced in Section 3.4 contain probabilistic/Bayesian elements.
For example, the forest-based methods for voting and predicting object coor-
dinates output probabilities [35, 37]. Krull et al. use MCMC for approximate
Bayesian inference to train a CNN, which calculates an energy function. This
energy function is used in a probability distribution of the predicted object coordi-
nates [60].

Bayesian inference uses a generative model that describes how the data might
have been generated instead of building complex bottom-up processing pipelines.
This approach has been used since the late 1990s to localize planar robots, and
2013 for tracking 6D object poses using particle filters; see Section 3.5 [57, 59].
Particle filters are sampling-based Bayesian inference algorithms for temporal
data.
Early applications of using the Bayesian inference algorithm MCMC on images
are based on low-level visual features like color histograms or edges. In 2002, Tu
et al. segmented gray-scale images into regions of four texture types: uniform,
clutter, textured, and shaded [68]. Vikash et al. have shown that images can be
analyzed using compact probabilistic programs, e.g., for recognizing characters
and detecting road lanes [6].

Picture is a probabilistic programming language specifically for image analysis
introduced by Kulkarni et al. [10]. It has been applied to human pose estimation,
face reconstruction, and 3D shape reconstruction. The authors rely on third-party
renderers like Blender to generate images and compare them using a likelihood
or distance function to the measured image. Using the differentiable renderer
OpenDR allowed them to use advanced gradient-based samplers like Hamiltonian
Monte Carlo (HMC) even though they note that it only "somewhat" speeds up
inference [69]. Moreover, they use the idea of data-driven proposals from Jampani
et al. to improve convergence [70]. Data-driven proposals mix samples from a
global discriminative model like a CNN with the local proposals of the sampler.
General probabilistic programming languages like Gen.jl and Turing.jl have been
developed since then, which allow formulating almost any problem as a generative
model [8, 9]. They offer an even wider range of general inference algorithms,

25

3 Related Work on Camera-Based 6D Pose Estimation

although obtaining gradients for image-based inference still requires a third-party
differentiable renderer.

Bayesian inference for 6D pose estimation using an iterated likelihood weighting
has been proposed by Chen et al. [67]. They initialize the sampler using bounding
box detections from a CNN to achieve robustness in adversarial scenarios. The
slow runtime of ≈10 s per inference has been addressed in a follow-up work. By
implementing the method on a field programmable gate array and a GPU, the
inference times have been reduced to ≈1 second [71].
Gothoskar et al. estimate a full scene graph that contains multiple objects, whether
the objects are stacked on each other, and the poses [72]. Their method uses the
point cloud-based pose estimator "DenseFusion" from [48] to initialize their pose
estimator. The estimated poses of their method are slightly better when inferring
the scene graph than not. They indicate that their method is ≈20 x slower than
their own DenseFusion baseline; the authors of DenseFusion report 16 Hz which
results in ≈1.25 Hz.
Finally, Pavlasek et al. introduce belief propagation via message passing for the
inference of poses of the articulated object [73]. It is inspired by human pose
estimation and uses a CNN, which outputs a score for the object classes to
evaluate the likelihood function.

3.7 Summary

Approaches for image-based pose inference vary with different input modalities
like color, depth, or both. The variety of methods, their respective preprocessing
steps, and outputs are much larger. This chapter first introduced classical ap-
proaches that use hand-crafted features and templates. Features engineered for
color images are often not robust enough for adversarial conditions like challeng-
ing lighting. Purely geometric features for point clouds like the point pairs have
proven to be very competitive for 6D pose estimation until now.

Learning-based methods promise to be more robust as they can internally learn
feature representations that suit different conditions from the dataset. Deep
learning methods have caught up to point pair features in 2020 and surpassed
them in the 2022 BOP challenge [2]. While object coordinate predictors are
currently the best-performing methods in the benchmark, discretizing methods
trade off sampling accuracy for inference time and are typically faster than other
methods. Therefore, these methods are also used in the refinement and tracking
applications which Section 3.5 presents.

26

3.7 Summary

Bayesian inference has been applied to mobile localization since the late 1990s
with the use of Kalman and particle filters. Later, these filters were also applied to
track an object’s 6D pose. Optimization-based tracking algorithms run faster at
≈790 Hz using only the CPU compared to particle filters at ≈90 Hz on the GPU
[74]. However, optimization-based trackers are less intuitive to implement as they
require a careful derivation of the gradients, Hessian, and are constrained to local
minima [63]. Probabilistic methods also provide an intuitive way of incorporating
additional sensors. Tracking using (deep) learning is relatively new and does not
outperform other methods yet. If the trend in other image processing tasks can be
extrapolated, deep learning might soon outperform other methods on the tracking
task [2, 22].

However, Bayesian inference has rarely been applied to the pose estimation
problem without temporal priors. The few practical implementations are informed
by a CNN to guide samplers in the right direction in the light of the curse of
dimensionality.

Many ideas for tracking an object’s 6D pose with particle filters influenced this
thesis. For example, explicitly modeling occlusions efficiently using the GPU; see
Chapters 4 and 5. The idea of offloading implementations into a generic rendering
and inference engine allows for rapid prototyping and comparing different models
[6, 10].

27

4 Probabilistic Models for 3D
Camera-Based 6D Pose
Estimation

Formulating the probabilistic model is one essential part of Bayesian inference,
besides developing and tuning the inference algorithms described in Chapter 5.
It is possible to use existing probabilistic programming languages (PPL) like
Turing.jl to write the model for 3D camera-based pose estimation. These PPLs
are designed for general applicability. Therefore, computational optimizations like
using a GPU can only be implemented with difficulty. Accordingly, the runtime of
the algorithms is too slow and can, at most, enable a proof of concept.

This chapter explains the probabilistic top-down modeling approach, starting
with an overview by intuitively describing it as a generative model for the data in
Section 4.1. Afterward, Section 4.2 elaborates on modeling the translational and
rotational components of the pose. Furthermore, Section 4.3 deals with modeling
depth images generated by a calibrated 3D camera, the possibility of including
pixel-object classifications, and how to deal with overconfident image likelihoods
using regularization. Finally, Section 4.4 highlights performance considerations to
enable inference times shorter than typical robot cycle times.

4.1 Probabilistic Model Overview

Hand-deriving a model for the posterior 𝑝(x | z) can be tedious and error-prone
[13]. Often, an analytical solution does not even exist. An intuitive alternative
that has gained popularity in probabilistic programming is to define a generative
model 𝑝(x, z) = 𝑝(z | x)𝑝(x) and use an inference algorithm from Chapter 5, to
approximate the posterior (see Section 2.3).

Using domain knowledge, a prior can be defined for the 6D pose, which consists
of the position t and orientation R. The pose is defined in the camera frame

29

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

x-pixels / px
50 100 150

50

100

150

Expectation μ

x-pixels / px
50 100 150

50

100

150

μ + Noise

x-pixels / px
0 50 100 150

y-
pi

xe
ls

 /
px

0

50

100

150

Measurement z

close

far

Figure 4.1: Left: measured depth overlaid onto the color image, middle: rendered image
for a pose sampled from the prior, right: noise added from the likelihood
model.

for the image-based pose estimation. Moreover, t and R are assumed to be
independent:

𝑝(x) = 𝑝(t,R) = 𝑝(t)𝑝(R) (4.1)

Specifically, a normal distribution parametrized by the prior position t0 and stan-
dard deviation 𝝈0 can be used for the position t and a uniform distribution for
Quaternions U𝑞 for the orientation R. More details follow in Sections 4.2.1
and 4.2.3.

t ∼ N(t0,𝝈t0)
R ∼ U𝑞

(4.2)

As the name generative model implies, it describes how to generate the ob-
servations given the latent state. Rather than determining the likelihood of an
observation, the approach is reversed to model how an observation is generated
from latent variables, such as the state x. Generating a synthetic (depth) image
from a scene description is called rendering. A scene description minimally in-
cludes an object’s 3D model, the object’s pose, and a parametrized camera with a
pose. Rendering using a calibrated camera is described in detail in Sections 2.7
and 4.3.1. The result is a deterministic function that generates the expected depth
image 𝝁𝑖𝑚𝑔 for a given pose state x = [t,R] as visualized in Fig. 4.1. This image
would result if the sensor measurements did not exhibit any noise.

Each camera pixel is assumed to be independent to generate images with sensor
noise similar to the measured image z as visualized in Fig. 4.1. A mixture of the

30

4.1 Probabilistic Model Overview

R

t

𝝁𝑖𝑚𝑔 z

Figure 4.2: Bayesian network for the model of Eqs. (4.2) and (4.3) with the latent variables
R and t. The expected depth 𝝁𝑖𝑚𝑔 results from deterministic rendering, and
z is observed.

following distributions models three noise sources:

𝑖 ∼ Cat(𝑤𝑛, 𝑤𝑒, 𝑤𝑢)
(𝑧 | 𝑖 = 𝑛) ∼ N (𝜇, 𝜎𝑧)
(𝑧 | 𝑖 = 𝑒) ∼ Exp(𝛽)
(𝑧 | 𝑖 = 𝑢) ∼ U(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥)

(4.3)

Sensor noise is modeled by a normal distribution centered at the expected depth
𝜇 with the standard deviation 𝜎𝑧 weighted by 𝑤𝑛. Occlusions are modeled using
an exponential distribution with the scale parameter 𝛽 and random outliers by
a uniform distribution parametrized by the minimum and maximum ranges 𝑧𝑚𝑖𝑛
and 𝑧𝑚𝑎𝑥. Section 4.3.3 discusses the pixel model choices and the results of
generating noise from Eq. (4.3). The model from Section 4.1 can be compiled to
the graphical representation shown in Fig. 4.2 as described in Section 2.4.

Besides a relatively simple model generating the noise, the independence as-
sumption also simplifies the calculation of the image likelihood, which is the
product of the pixel likelihoods over all 𝑁𝑝𝑥 pixels:

𝑝(z | 𝝁𝑖𝑚𝑔) =
𝑁𝑝𝑥∏
𝑖

𝑝(𝑧𝑖 | 𝜇𝑖) (4.4)

Naturally, this assumption is oversimplified as nearby pixels often correlate and
share the same noise characteristics [12]. Examples are occluding objects or
over-exposure due to bright lighting or reflective object surfaces. Occlusions are
therefore modeled in Section 4.3.5 and Section 4.3.6 introduces regularization
strategies to counter the over-confidence of the model.

31

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

4.2 Position and Orientation Models

Estimating a pose posterior involves estimating a position t and an orientation
R. This section introduces prior and proposal models for both components.
Both priors require centering the object’s origin coordinate frame inside the CAD
model.

4.2.1 Position Priors

An informative prior is mandatory as the solution space would otherwise be
infinitely large. Even if a region of interest can be defined, e.g., a tabletop,
sampling the whole region to find an object is prohibitively expensive. This thesis
considers two sources for the position prior, depending on the use case:

Mask priors from camera images: Deep learning-based object detectors can
output bounding boxes and segmentation masks of different object instances.
This scenario is considered in the BOP challenge and can be adapted to a wide
range of use cases since only a color image is required. However, this approach
might not scale well for thousands of similar object classes. For example, for
surgical instruments, only subtle differences like a slightly longer blade might
separate these classes.

Typically, object detectors output 2D bounding boxes in the image coordinates
with the center point (𝑢, 𝑣). Inverting the pinhole camera model from Section 2.7
allows us to reproject the image coordinates to 3D. Reprojecting the 2D coordi-
nates requires that a depth value 𝑧 is known. This depth can be extracted from
the measured depth image. A single pixel in the center of the bounding box
might have a high uncertainty, or might even belong to another occluding object.
Subsequently, the median depth 𝑧 is calculated over all measured pixel 𝑧𝑖, which
are part of the segmentation mask 𝑜𝑖 = 1 that is robust against outliers:

𝑧 = med{𝑧𝑖 | 𝑧𝑖 ∈ z ∧ 𝑜𝑖 = 1} (4.5)

If no pixels are part of the mask, the depth value at the center of the bounding
box can be used as a fallback solution. Only the front of an object is visible, so
the 𝑧 component is always biased towards the camera. Afterward, Eq. (2.23) can
be used to calculate the missing 𝑥 and 𝑦 coordinates of the prior given the 𝑢 and
𝑣 coordinates in the image:

𝑦 =
𝑧

𝑓𝑦
(𝑣 − 𝑐𝑦) (4.6)

𝑥 =
𝑧

𝑓𝑥
(𝑢 − 𝑐𝑥) (4.7)

32

4.2 Position and Orientation Models

These estimates might also be biased depending on the object geometry or if
parts are occluded. Each component of the position (𝑥, 𝑦, 𝑧)T is modeled using
a normal distribution, which encodes local uncertainty. All components of the
position prior share the same standard deviation 𝜎𝑡 :

t ∼ (N (𝑥, 𝜎𝑡),N(𝑦, 𝜎𝑡),N(𝑧, 𝜎𝑡))T (4.8)

This formulation neglects possible cross-correlations of the 𝑥, 𝑦, and 𝑧 compo-
nents, which might be possible to extract from the images. As segmentation
masks do not contain semantic information about the visible object parts, a heuris-
tic for the cross-correlations would be speculative. For this reason, the preferred
solution is tuning a single parameter, the position’s standard deviation 𝜎𝑡 ; refer to
Section 6.6.

Point priors from additional sensors: New generations of RFID sensors could
allow directly triangulating the tag’s position in addition to the object identifier.
Moreover, a covariance matrix may be provided alongside it. However, these
sensors are currently unavailable and part of ongoing research. Thus, the same
prior from Eq. (4.8) is used, centered at the annotated ground truth position.
A possible disadvantage of this approach is that it does not provide any prior
segmentation masks for object instances.

4.2.2 Position Proposals

Proposal models suggest the next state to be evaluated in sampling algorithms.
One possibility is to sample from the prior distribution, which is often regarded as
a global move, since the prior’s support must cover all possible realizations of the
variables.

t𝑘+1 ∼ 𝑝(t𝑘+1 | t𝑘) = 𝑝(t) (4.9)

Sampling from the prior makes it hard for the algorithm to explore regions of higher
probability. Alternatively, local moves like in the original version of the Metropolis-
Hastings algorithm can be used. Usually, a normal distribution centered at the
previous estimate t𝑘 is used:

t𝑘+1 ∼ N(t𝑘 ,𝝈𝑡+1) (4.10)

Local proposals allow the sampler to explore other regions if the standard deviation
𝝈𝑡+1 is sufficiently large. If 𝝈𝑡+1 is too large, the algorithm might fail to converge.
In contrast, if 𝝈𝑡+1 is too small, the algorithm tends to refine a local optimum.
Properly tuning 𝝈𝑡+1 is essential for a good tradeoff between exploration and
exploitation. Algorithms like SMC have been developed to support adaptive
proposals to avoid the tuning; see Section 5.1.3.

33

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

x
y

ZYX-Euler

x
y

z

Quaternion

de
ns

ity
 /

-

0.0

0.5

1.0

-1
0

1

-1
0

1

0

1

-1
0

1

-1
0

1

0

1

Figure 4.3: The density of a point [0, 0, 1]T which is rotated using 500 000 randomly
sampled rotations on the unit sphere. Brighter colors designate areas with a
higher density.

4.2.3 Orientation Priors

While it is possible to extract approximate position priors from image-based object
detectors, extracting an orientation from a bounding box or segmentation mask is
not straightforward. Even if additional sensors like RFID tags are placed on the
object, at least three sensors are required to determine a 3D orientation. A uniform
distribution over SO(3) rotations describes the absence of prior knowledge.

However, it is not straightforward to sample rotations uniformly. For example,
uniformly sampling Euler angles in ZYX order would result in a higher rotation
density around the poles of the SO(3) manifold, as shown inf Fig. 4.3. In contrast,
a uniform distribution Uq for quaternions can be defined using standard normal
distributions for each component 𝑞∗ of the quaternion [75]:

Uq =
(𝑞𝑤 ∼ N , 𝑞𝑥 ∼ N , 𝑞𝑦 ∼ N , 𝑞𝑧 ∼ N)T

(𝑞𝑤, 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧)T

2

(4.11)

First, the four components of a quaternion q = (𝑞𝑤, 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧)T are drawn individu-
ally from a normal distribution. Second, the randomly drawn quaternion must be
normalized as rotations are represented by unit quaternions. Formally, the prior
distribution of orientations can be written as follows:

𝑝(R) = Uq (4.12)

34

4.2 Position and Orientation Models

4.2.4 Orientation Proposals - Quaternion Perturbations

Similar to the position proposals in Section 4.2.2, one could either sample global
moves from the prior 𝑝(R) or choose local moves 𝑝(R𝑘+1 | R𝑘) depending on
the current state. Using global moves for the orientation is especially useful to
escape local optima as the posterior distribution of the orientation is expected
to be multimodal. Objects may look similar from different viewpoints or have the
same appearance as symmetric objects. Moreover, fewer features are visible
for heavily occluded objects, and multiple orientations might explain the visible
features equally well.

In contrast to the position prior, which might focus on a biased location, uniformly
sampled rotations are truly global. Still, local moves can be helpful to refine the
estimates because it takes many samples to sufficiently cover the support of
SO(3), i.e., all possible 3D rotations. Sola et al. describe local moves on SO(3) by
defining a plus operator ⊕ which composes a reference quaternion q𝑟𝑒 𝑓 with a
typically small random rotation Φ ∈ R3 [15]:

q𝑛𝑒𝑤 = q𝑟𝑒 𝑓 ⊕ Φ = q𝑟𝑒 𝑓 ⊗ Exp(Φ) (4.13)

With ⊗ denoting the quaternion product and Exp the exponential map from the Lie
algebra to the Lie group. The reader can refer to [15] for an extensive explanation
of quaternions and Lie algebra. Intuitively, Φ is defined in the velocity space
using a discrete integral of the angular velocity 𝜔Δ𝑡. The exponential map can
be interpreted as a tool to convert angular perturbations to quaternions and is
readily implemented in programming libraries like Quaternions.jl.

Now, the local proposal model can be defined using a small local perturbation ro-
tation ΔΦ sampled using a zero-centered normal distribution with a small standard
deviation 𝜎𝑟+1:

ΔΦ ∼ (N (0, 𝜎𝑟+1),N(0, 𝜎𝑟+1),N(0, 𝜎𝑟+1)) (4.14)

Using the quaternion perturbation from Eq. (4.13), the local proposal becomes:

q𝑘+1 = q𝑘 ⊕ ΔΦ (4.15)

Sola et al. state that using small angle approximation for Eq. (4.15) should result
in a shorter runtime. A significant advantage could however not be reproduced
in benchmark experiments1. Finally, Eq. (4.15) can be interpreted as drawing
a random rotation distributed around the previous rotation. This results in a
description of the local proposal model similar to the one for the position, see
Eq. (4.10):

R𝑘+1 ∼ N(𝜇 = R𝑘 ,𝝈𝑟+1) (4.16)

1Quaternions.jl exponential map 1.461 ± 0.476 ns, small angle approximation 1.396 ± 0.840 ns

35

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

4.3 Depth Image Models

Depth images represent the observations in the probabilistic model and are used
in the likelihood function to update the pose prior. This section describes gener-
ating depth images and formulating pixel-wise probabilistic models to consider
the different sources of noise. Moreover, this section combines the individual
pixel models in an image likelihood and introduces strategies for regularizing this
image likelihood.

4.3.1 Generating Depth Images via Rendering

Rendering generates 2D depth images from a 3D scene, typically consisting
of a calibrated camera (see Section 2.7), 3D mesh models, and lights. GPUs
have been developed for rendering and offer general computing capabilities today.
One can render images with high-level 3D render engines like Unity and Unreal
Engine or low-level application programming interfaces (APIs) like OpenGL or
Vulkan. While render engines offer much functionality out of the box, they usually
target game development, with the goal of rendering a single color image to the
screen. Parallel evaluations of multiple pose hypotheses for a single object are
required to enable short inference times. Moreover, the communication between
the CPU and GPU is slow. Ideally, multiple calculations are transferred from the
CPU to the GPU at once. Consequently, this work uses an OpenGL pipeline,
which is interoperable with the NVIDIA CUDA compute library for the GPU and
allows avoiding memory transfers; see Section 4.4. This section sketches out the
rendering pipeline. The detailed implementation is available in the accompanying
code of SciGL.jl2.

Since depth images are purely geometric, the rendered scene only contains the
mesh of the object and a camera but no lights. Both scene elements have a pose
measured from the world frame associated with them, WPO for the object and
WPC for the camera. The first step is to transform each vertex Ov𝑖 of the object’s
mesh into the camera frame:

Cv𝑖 = CPW WPO Ov𝑖 =
(
WPC

)−1 WPO Ov𝑖 (4.17)

In 3D graphics, CPW is commonly called the view matrix and WPO the model
matrix. A caveat of OpenGL is that it uses a different convention than OpenCV or
ROS, which are commonly used for calibrating and integrating cameras. Thus,

2SciGL.jl: https://github.com/rwth-irt/SciGL.jl

36

https://github.com/rwth-irt/SciGL.jl

4.3 Depth Image Models

the respective rows for the y and z components of the homogenous coordinates
of the view matrix have to be negated to convert the OpenCV view matrix PW

𝐶𝑉
to

the corresponding OpenGL matrix CPW
𝐺𝐿

:

CPW
𝐺𝐿 =

©­­­­­«
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

ª®®®®®¬
CPW

𝐶𝑉 (4.18)

After this transformation, the model vertices are in the camera’s view. OpenGL
uses normalized device coordinates to define a clipping space by a cube ranging
from −1 to +1 in x-, y-, and z-direction. All vertices outside this cube are discarded
for rendering. To transform the vertices from the camera’s view to the clipping
space, a projection matrix can be constructed using a perspective M𝑝𝑒𝑟𝑠𝑝 and an
orthographic projection M𝑜𝑟𝑡ℎ𝑜:

M𝑝𝑟𝑜 𝑗 = M𝑜𝑟𝑡ℎ𝑜M𝑝𝑒𝑟𝑠𝑝 (4.19)

The matrices are left-multiplied to the vertices, so the perspective projection
is applied first. Perspective projection describes the geometrical optics of the
camera - in this case as a pinhole camera model from Eq. (2.23):

M𝑝𝑒𝑟𝑠𝑝 =

©­­­­­«
𝑓𝑥 −𝑠 −𝑐𝑥 0
0 − 𝑓𝑦 −𝑐𝑦 0
0 0 𝑧𝑚𝑖𝑛 + 𝑧𝑚𝑎𝑥 𝑧𝑚𝑖𝑛 · 𝑧𝑚𝑎𝑥
0 0 −1 0

ª®®®®®¬
(4.20)

Compared to the OpenCV intrinsic camera matrix from Eq. (2.23), some com-
ponents are negated to account for the different coordinate system conventions
in OpenGL. If the intrinsic matrix has been modified, e.g., because of cropping,
the respective entries at the location of the original intrinsics matrix can be used.
Moreover, 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥, as well as a −1 entry in the last, are introduced to map
the z-component to the range [−𝑧𝑚𝑎𝑥 ,−𝑧𝑚𝑖𝑛]. Choosing 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 determines
the precision of the GPU’s depth buffer, determining which vertices are in front of
others. The precision of the depth values in the rendered image is not affected
by the choice of 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 as they can be extracted in the OpenGL program
before the projection. The fourth component of the homogenous coordinates is
used for normalization by OpenGL.

37

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

After the perspective projection, the visible vertices are located in a cube, which
has to be resized to [−1, 1] by an orthographic projection:

M𝑜𝑟𝑡ℎ𝑜 =

©­­­­­­«

2
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

0 0 − 𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

0 − 2
𝑦𝑚𝑎𝑥

0 − 𝑦𝑚𝑖𝑛+𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛−𝑦𝑚𝑎𝑥

0 0 − 2
𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛

− 𝑧𝑚𝑎𝑥+𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛

0 0 0 1

ª®®®®®®¬
(4.21)

Combining the previous equations leads to the following formulation to transform
the model points for rendering in normalized device coordinates:

NDCv𝑖 = M𝑝𝑟𝑜 𝑗
CPW

𝐺𝐿
WPO Ov𝑖 (4.22)

If modeling the lens distortion is required, the reader can refer to [74].

4.3.2 Resizing and Cropping the Pinhole Camera Model

Resizing rasterized images not only reduces the number of computational opera-
tions, but also the information on the respective image. Cropping before resizing
the image to a region of interest reduces the loss of information and lets the
algorithms focus on the scene’s relevant parts.

When resizing an image, the intrinsic parameters change as well. Intuitively, the
new image pixels must point at the same object vertices as the old ones prior to the
operation. Given the scaling factors 𝛾𝑥 = 𝑤𝑖𝑑𝑡ℎ𝑛𝑒𝑤/𝑤𝑖𝑑𝑡ℎ𝑜𝑙𝑑 and 𝛾𝑦 = ℎ𝑒𝑖𝑔ℎ𝑡𝑛𝑒𝑤/ℎ𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑,
the rows of the intrinsic matrix K can be scaled via:

resize(K) =
©­­­«
𝛾𝑥 0 0
0 𝛾𝑦 0
0 0 1

ª®®®¬ K (4.23)

Only a region of interest is kept when cropping an image. For this operation, only
the principal point of the intrinsic matrix has to be adjusted by the new origin
(𝑢0 , 𝑣0):

crop(K) = K −
©­­­«
0 0 𝑢0

0 0 𝑣0

0 0 0

ª®®®¬ =

©­­­«
𝑓𝑥 𝑠 (𝑐𝑥 − 𝑢0)
0 𝑓𝑦 (𝑐𝑦 − 𝑣0)
0 0 1

ª®®®¬ (4.24)

38

4.3 Depth Image Models

The operations can be chained. For example, a crop followed by a resize operation
results in the following camera matrix:

(resize ◦ crop) (K) =
©­­­«
𝛾𝑥 𝑓𝑥 𝛾𝑥𝑠 𝛾𝑥 (𝑐𝑥 − 𝑢0)

0 𝛾𝑦 𝑓𝑦 𝛾𝑦 (𝑐𝑦 − 𝑣0)
0 0 1

ª®®®¬ (4.25)

4.3.3 Pixel Likelihood

A beam-based model is commonly employed to model 3D sensors like laser
scanners or depth cameras [12, 59]. Under the assumption of conditional in-
dependence given an expected depth image 𝝁𝑖𝑚𝑔 for the state x as shown in
Fig. 4.2, each pixel of a depth camera can be modeled individually as 𝑝(𝑧 | 𝜇).
The following model includes three causes of uncertainty for the individual beams:
sensor noise, random outliers, and occlusions. As described by Thrun et al. and
in Section 4.1, if each pixel is generated differently for each cause, the resulting
model is a mixture of different probability distributions [12]:

𝑖 ∼ Cat(𝑤𝑛, 𝑤𝑒, 𝑤𝑢)
(𝑧 | 𝑖 = 𝑛) ∼ N (𝜇, 𝜎𝑧)
(𝑧 | 𝑖 = 𝑒) ∼ Exp(𝛽)
(𝑧 | 𝑖 = 𝑢) ∼ U𝑡𝑎𝑖𝑙

(4.26)

The sensor noise is relevant if a depth pixel captures the object of interest. A
normal distribution centered at the rendered expected depth 𝜇 models the sensor
noise of the depth camera with a standard deviation of 𝜎𝑧. Strictly speaking, 𝜎𝑧
grows quadratically for stereo and structured light cameras [74, 76]. However, a
quadratic model contains more tunable parameters, and the region of interest
usually covers only a small range of depth measurements. Therefore, this thesis
neglects the effects of the measured distance on the noise and overestimates a
constant 𝜎𝑧 as it is common practice in Bayesian filtering [12]. Overestimating the
standard deviation also helps with inaccuracies in the 3D model. Moreover, this
work omits truncating and normalizing the normal distribution to the measurable
range as the standard deviation is much smaller than this range:

𝜎𝑧 ≪ 𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛. (4.27)

Stereo sensors often produce random outliers if the feature matching of the
image pairs fails. Textureless objects and overexposed areas, e.g., on specular
surfaces, are problematic. Usually, an invalid measurement returns a depth value

39

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

of zero, which cannot physically be measured, or random values in the range
of the sensor. Differentiating between the causes of outliers would only change
the likelihood function at the minimum and maximum measurable depth, so they
do not change the likelihood function in the region of 𝜇. Moreover, a non-zero
term is crucial, as the image likelihood is the product of all pixel likelihoods; see
Eq. (4.4). To cover the long tail of the measurements, an unnormalized uniform
distribution U𝑡𝑎𝑖𝑙 assigns the same constant probability, even if outliers exceed
the measurable range.

Occlusions are often modeled using an exponential distribution in the literature
[12, 59, 74]. The idea is to cast a ray from the pixel to the object of interest and
divide the ray into equidistant segments. If no information exists, whether an
existing object is in a segment or not, all segments share the same probability that
they could contain an occluding object. A segment is only visible if no previous
segment contains an occluding object, so the probabilities must be multiplied.
For the limit of infinitesimally small segments, this results in an exponential
distribution. Another limit exists for only one segment: the constant probability of
an outlier or, in other words, a uniform distribution. The latter case leads to the
simplest version of the depth pixel model:

𝑖 ∼ Cat(𝑤𝑛, 𝑤𝑢)
(𝑧 | 𝑖 = 𝑛) ∼ N (𝜇, 𝜎𝑧)
(𝑧 | 𝑖 = 𝑢) ∼ U𝑡𝑎𝑖𝑙

(4.28)

Fig. 4.4 displays the resulting probability density as only uniform among other
more complex occlusion formulations. Mixing the exponential and the normal
distribution causes the mode at 1 m to skew slightly towards a shorter distance.
However, the exponential distribution is scaled in the figure to emphasize the
effect. In practice, values of 𝜎𝑧 = 0.01 m and equal weights 𝑤𝑛 = 𝑤𝑒 = 𝑤𝑢 are
reasonable choices that reduce the effect.

As argued by Thrun et al. [12], occlusions can only occur in front of the object.
Truncating the exponential distribution at the expected depth 𝜇 also involves recal-
culating the normalization constant, which is not negligible; compare unmodified
and truncated in Fig. 4.4.

𝑝Exp(𝑧 | 𝛽, 𝑧 ≤ 𝜇) =
1

𝛽(1 − 𝑒−
𝜇

𝛽)
𝑒
− 𝑧

𝛽 (4.29)

Here, 𝑧 ≤ 𝜇 denotes the truncation of the distribution. Naturally, the resulting
density function has a discontinuity at 𝜇, and after that, the truncated occlusion
model has the same course as the only uniform one. The mode of the truncated
exponential is also slightly skewed towards the shorter distance. Pixels with an

40

4.3 Depth Image Models

depth / m
0.0 0.5 1.0 1.5

de
ns

ity
 /

-

0.0

0.5

1.0

1.5

Occlusion Model

depth / m
0.0 0.5 1.0 1.5

0.0

2.5

5.0

7.5

10.0

Depth Pixel Model

only uniform unmodified truncated smooth

Figure 4.4: Left: plot of different occlusion models. Right: full depth pixel model, including
the occlusion models as described in Eq. (4.26). Parameters: 𝜇 = 1 m,
𝜎𝑧 = 0.1 m, 𝛽 = 1, 𝑧𝑚𝑖𝑛 = 0.5 m, 𝑧𝑚𝑎𝑥 = 1.5 m. The exponential and uniform
distributions are scaled by a factor of five for improved visualizations.

invalid rendered distance of 𝜇 = 0 would cause a division by zero in Eq. (4.29).
Section 4.3.4 explains handling these invalid depth values to consider them as
outliers.

While the discontinuity poses no problem for the sampling-based inference al-
gorithms used in this thesis per se, it might result in a more complex likelihood
landscape with hard-to-escape minima. Instead of truncating the exponential
distribution at the expected value, this thesis uses the idea that measurements
of occluding objects are also subject to sensor noise. Introducing an auxiliary
variable 𝑎 that represents the true depth of an occluding object yields the following
model of a compound distribution similar to [59]:

𝑎 ∼ Exp(𝛽 | 𝑎 ≤ 𝜇)
𝑖 ∼ Cat(𝑤𝑢, 𝑤𝑛)

(𝑧 | 𝑖 = 𝑢) ∼ U(0, 𝑧𝑚𝑎𝑥)
(𝑧 | 𝑖 = 𝑛) ∼ N (𝑎, 𝜎𝑧)

(4.30)

In this case, an occlusion might appear between the camera lens and the object
of interest, yielding the right truncation of the exponential distribution to 𝜇. The
model in Eq. (4.30) is similar to the mixture model in Eq. (4.28) with the only
difference that the normal distribution is centered at the depth of the occluding
object 𝑎. To handle the newly introduced variable 𝑎, two choices arise:

1. Add the depth image containing the estimated depth 𝑎 of every pixel to
the state variables. Even for low resolutions of 30 px × 30 px, this results in
900 additional state variables.

41

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

2. Marginalize 𝑎 from the model. An analytical solution exists as 𝑎 and 𝑧 are
sampled from the exponential family of probability distributions.

Choice number one leads to an intractable inference problem, while choice
number two involves solving the following convolution:

𝑝𝑠 (𝑧 | 𝜇) =
∫

𝑝N (𝑧 | 𝑎, 𝜇)𝑝Exp(𝑎 | 𝛽, 𝑎 ≤ 𝜇)) 𝑑𝑎 (4.31)

Here, the truncated exponential distribution 𝑝Exp(𝑎 | 𝛽, 𝑎 ≤ 𝜇) models the occlu-
sion, and 𝑝N (𝑧 | 𝑎, 𝜇) models the noise and random outliers the sensor produces.
Inserting the respective probability density functions yields:

𝑝𝑠 (𝑧 | 𝜇) =
∫ (

𝑤𝑢

𝑧𝑚𝑎𝑥︸︷︷︸
U

+𝑤𝑛
1√︁

2𝜋𝜎2
𝑧

𝑒
− (𝑧−𝑎)

2

2𝜎2
𝑧︸ ︷︷ ︸

N

)
1(0,𝜇) (𝑎)

𝑒
− 𝑎

𝛽

𝛽(1 − 𝑒−
𝜇

𝛽)︸ ︷︷ ︸
truncated Exp

𝑑𝑎 (4.32)

Where 1(0,𝜇) denotes the indicator function, which is one if 𝑎 ∈ (0, 𝜇) or zero
otherwise. The reader can find details on this equation and the steps for solving
the integral in Appendix A.3. The following equation presents the resulting density
function:

𝑝𝑠 (𝑧 | 𝜇) =
𝑤𝑢

𝑧𝑚𝑎𝑥︸︷︷︸
U

+𝑤𝑛
𝑒
− 𝑧

𝛽
+ 1

2

(
𝜎𝑧
𝛽

)2

2𝛽(1 − 𝑒−
𝜇

𝛽)︸ ︷︷ ︸
Exp

erf ©­«
𝜇 + 𝜎2

𝑧

𝛽
− 𝑧√︁

2𝜎2
𝑧

ª®¬ − erf ©­«
𝜎2
𝑧

𝛽
− 𝑧√︁

2𝜎2
𝑧

ª®¬
 (4.33)

Conveniently, the uniform distribution for the outliers yields a uniform distribution
after the integration, so the mixture distribution from Eq. (4.26) can still be used.
However, the second term replaces the unmodified exponential distribution con-
sisting of a shifted and normalized exponential distribution and two error functions,
denoted by erf. The error functions replace the truncated exponential distribution’s
lower and upper bound with smooth limits according to the normal distribution’s
standard deviation 𝜎𝑧; displayed as smooth in Fig. 4.4. Compared to the unmodi-
fied and truncated occlusion models, the smooth version is skewed even further
towards closer distances. Section 4.3.5 shows that the skewness depends on the
weights associated with the exponential and normal distributions.

4.3.4 Handling Invalid Pixels

Pixels in the rendered image not showing the object have a value of 𝜇 = 0 and
do supposedly not add any information for the inference. Moreover, 𝜇 = 0 can

42

4.3 Depth Image Models

cause a division by zero in the truncated distributions in Eqs. (4.29) and (4.33),
which must be avoided. Naturally, pixels with an invalid depth of zero should be
considered outliers, meaning only the uniform distribution should contribute to the
mixture.

One possibility is ignoring pixels with 𝜇 = 0 because they do not contain any
information and always assign a likelihood of one. Nevertheless, this introduces
more complexity, leading to even more complexity in the regularization in Sec-
tion 4.3.6.

Introducing a preprocessing for the measurement z is a more straightforward ap-
proach that does not require fiddling with the regularization. This step replaces all
zero-valued pixels of z with positive infinity. Subsequently, the mixture Eq. (4.26)
behaves as desired because the (truncated) exponential and the normal distri-
bution have a zero density for infinity measurements, avoiding the division by
zero. Therefore, invalid measurements are considered outliers; only the uniform
distribution contributes to the pixel likelihood.

The preprocessing does not alter the model’s behavior for pixels with a mea-
surement 𝑧 ≠ 0 and a rendered depth of 𝜇 = 0. Evaluating the densities of all
distributions from the mixtures with such a measurement results in:

• Normal N : As the standard deviation is much smaller than the typically
measured distance 𝜎𝑧 ≪ 𝑧, the density is almost zero3. Consequently, the
normal distribution does not contribute to the mixture

• Uniform U: This distribution covers the long tail of measurements and
always returns the same value.

• (Smoothly) truncated exponential Exp(𝛽 | 𝑧 ≤ 0): Truncating to [0, 0] means
that any measurement 𝑧 ≠ 0 is outside the support of the distribution and
results in a zero probability.

• Unmodified Exponential Exp: This distribution still gets evaluated and re-
turns different probabilities for different values of 𝑧.

In conclusion, only the uniform distributions and the unmodified exponential
contribute to the mixture. As intended, the uniform distribution always contributes
the same uninformed probability. Only the unmodified exponential distribution
returns varying values depending on the measured depth, which might lead
to undesired behaviors. Using a truncated version might be preferable, and
Section 6.5.2 evaluates this hypothesis.

3Often equal to zero due to floating-point numerics.

43

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

depth / m
0.0 0.5 1.0 1.5

de
ns

ity
 /

-

0

1

2

3
o = 0.2
o = 0.4
o = 0.6
o = 0.8

Figure 4.5: Probability density of the likelihood model in Eq. (4.34) for a smooth trun-
cated exponential distribution and varying object classification probabilities 𝑜.
Parameters: 𝜇 = 1 m, 𝜎𝑧 = 0.1 m, 𝛽 = 1, 𝑧𝑚𝑖𝑛 = 0.5 m, 𝑧𝑚𝑎𝑥 = 1.5 m.

4.3.5 Incorporating Masks: Pixel-Object Classification

Pixel-object classifications are typically the output of machine-learning models
called segmentation masks. Other methods use these masks to cut out the objects
from the image, reducing distractions with the danger of discarding information if
the segmentation masks are inaccurate. Including the classification of pixel-object
classifications in the probabilistic model allows updating these masks as required
and using them softly as the weights of the mixture model in Eq. (4.26). Moreover,
explicitly including the pixel-to-object classification in the model might remove the
requirement of prior segmentation masks.

Wüthrich et al. explicitly model whether an object is occluded in their particle
filter formulation [59]. Similarly, this work extends pixel model with a categorical
variable 𝑐𝑜 ∈ [0, 1], estimating the probability of a pixel showing the object of
interest. Using the probability 𝑜 as an adaptive weight allows shape the pixel
likelihood from Eq. (4.3) to the densities shown in Fig. 4.5:

𝑐𝑜 ∼ Bern(𝑜)
(𝑧 | 𝑐𝑜 = 1) ∼ N (𝜇, 𝜎𝑧)
(𝑧 | 𝑐𝑜 = 0) ∼ Mix(Exp(𝛽),U(𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥);𝑤𝑒, 𝑤𝑢)

(4.34)

Classifying a pixel as the object (𝑐𝑜 = 1) or not (𝑐𝑜 = 0) has a binary outcome
modeled using a Bernoulli distribution parametrized by the classification probability
𝑜. A natural choice for the prior 𝑜 is the beta distribution as the conjugate prior
of the Bernoulli distribution. If objects are always placed in a similar location,
the beta distribution parameters could be calculated analytically from a labeled
dataset. Otherwise, the beta distribution reduces to a uniform distribution without
any prior data. For high probabilities of 𝑜, the normal distribution dominates the

44

4.3 Depth Image Models

R

t

𝝁𝑖𝑚𝑔

o C𝑜

z

(a) additional variables

R

t

𝝁𝑖𝑚𝑔

o

z

(b) marginalizing C𝑜

Figure 4.6: Bayesian networks for including the pixel classification.

density, and the skewness of the mode towards closer distances disappears. In
contrast, low probabilities increase the influence of the exponential and uniform
distributions. Hence, this approach should make the likelihood model more robust
to outliers and occlusions.

Figure 4.6a depicts the Bayesian network for Eq. (4.34) with o as an additional
variable from which the classification labels C𝑜 are drawn. Again, introducing a
new variable per pixel would result in an intractable problem because of the curse
of dimensionality.

Another alternative is to use deep learning-based methods like YOLACT++ to
predict a segmentation image C𝑜 = 𝑓 (z). Segmentation neural networks usually
use a softmax or sigmoid function to assign class confidences to the pixels.
These confidences are, strictly speaking, no probabilities but could be used
as an estimate for o = 𝑝(C𝑜 | z) [77]. Usually, the confidences are compared
to a threshold to generate binary classification labels that can be used for C𝑜.
Both approaches exclude o from the inference problem, reducing the number of
variables. On the downside, removing the variables from the inference problem
prevents updating them if the neural network is wrong. The training data for
both approaches could be generated automatically by a physical simulator using
BlenderProc [4].

Lastly, it is possible to marginalize the two states of the binary variable 𝑐𝑜 to
infer the classification probability 𝑜 for each pixel analytically. This approach is
called collapsed Gibbs sampling, and the resulting model is presented in Fig. 4.6b.
Although nearby pixels likely share the same classification in practice, assuming
that the pixels are independent simplifies the derivation. Using Bayes’ law results

45

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

in the following formulation:

𝑜 = 𝑝(𝑐𝑜 | 𝑧, 𝜇)

=
𝑝(𝑧 | 𝜇, 𝑐𝑜)𝑝(𝑐𝑜 | 𝜇)���𝑝(𝜇)

𝑝(𝑧 | 𝜇)���𝑝(𝜇)

=
𝑝(𝑧 | 𝜇, 𝑐𝑜)𝑝(𝑐𝑜 | 𝜇)∫
𝑝(𝑧 | 𝜇, 𝑐𝑜)𝑝(𝑐𝑜 | 𝜇) 𝑑𝑐𝑜

(4.35)

From Fig. 4.6a, it follows that 𝑧 and 𝑐𝑜 are independent causes of the mea-
sured depth 𝑧 and are therefore independent as long as 𝑧 is not involved. Thus,
𝑝(𝑐𝑜 | 𝜇) simplifies to 𝑝(𝑐𝑜). Since 𝑐𝑜 = 1, 𝑐𝑜 = 0 are discrete, the integral in the
denominator turns into a sum:

𝑜 =
𝑝(𝑧 | 𝜇, 𝑐𝑜)𝑝(𝑐𝑜)

𝑝(𝑧 | 𝜇, 𝑐𝑜)𝑝(𝑐𝑜) + 𝑝(𝑧 | 𝜇, 𝑐𝑜)𝑝(𝑐𝑜)
(4.36)

The prior for 𝑝(𝑐𝑜) is a single number, and from the Bernoulli distributed 𝑐𝑜
follows that 𝑝(𝑐𝑜) = 1 − 𝑝(𝑐𝑜). Without prior knowledge, 𝑝(𝑐𝑜) can be set to 0.5,
representing that a pixel has the same chance of being the object or anything
else. If a learning-based method outputs a binary image, one should replace the
ones and zeros with values 𝑝(𝑐𝑜) ∈ (0, 1). Otherwise, either 𝑝(𝑐𝑜) or 𝑝(𝑐𝑜) is zero,
and the likelihood cannot update the prior as terms get removed from Eq. (4.36).
For example, 𝑝(𝑐𝑜) = 0.7 is a reasonable choice to express that the pixel probably
contains the object.

Two corner cases have to be considered: The first corner case occurs if the
rendered object does not occupy a pixel. In this case, no information is available
to update the prior. The second corner case occurs if the prior is 𝑝(𝑐𝑜) = 0 or
𝑝(𝑐𝑜) = 1 which leads to 𝑝(𝑐𝑜) = 0. In this case, one term of the denominator
from Eq. (4.36) disappears. Thus, the observation does not update the prior in
the best case, or a division by zero occurs in the worst case. Both corner cases
are solved by directly returning the prior instead of calculating the fraction.

4.3.6 Image Likelihood and Regularization

Assuming the pixels of an image to be independent allows using relatively simple
models for the individual pixels and factorizing the joint probability in Eq. (4.4). This
assumption might not hold since the measurements are often strongly correlated
in a local region [12]. For example, the depth value only changes slightly from
one pixel to the next if they are on the same smooth surface of an object. This
correlation leads to an overconfident likelihood, since a single image might not
provide as much information as the independent pixels might suggest. In practice,

46

4.3 Depth Image Models

the strongly peaked likelihood functions lead to a degeneration of the estimated
posterior, and sampling algorithms frequently get stuck in local minima.

Regularization is a common strategy to prevent overconfidence in such ill-posed
problems. It aims to modify the target function for a better generalization, typically
by shifting the objective from the likelihood to the prior. A common practice to
regularize the likelihood of laser scanners, which suffer from the same problems
as depth cameras, is to incorporate only a subset of the beams [12]. Subsampling
reduces local correlations and overconfidence due to too many highly accurate
and correlated measurements. Subsampling can also be interpreted as a form of
likelihood tempering [78]. When estimating the pose of small objects like surgical
instruments, this approach might lead to missing the pixels showing the object
altogether. Moreover, subsampling does not lend itself to GPU accelerations
since GPUs work best on dense arrays.

Another relatively simple regularization strategy that works for the dense image
representation is multiplying a factor smaller than one by the likelihood. It can
be interpreted as reducing the information value of the measurements [12]. This
work extends this regularization strategy by introducing 𝑁 to normalize the im-
age likelihood. Defining 𝑁 is more straightforward in the logarithmic domain,
which (Section 5.2.3) introduces as a best practice for sampling. For readabil-
ity, the following equation repeats the result of the derived image log-likelihood
Eq. (5.24):

ln 𝑝(z | 𝝁𝑖𝑚𝑔) =
𝑁𝑝𝑥∑︁
𝑖

ln 𝑝(𝑧𝑖 | 𝜇𝑖)

The number of elements in the sum grows linearly with the number of pixels 𝑁𝑝𝑥
in the image. While the individual pixel log-likelihoods are still non-linear in 𝑧

and 𝜇, the image log-likelihood should still grow relatively linearly with 𝑁𝑝𝑥 when
resizing the image. Therefore, the first version of the regularization uses 𝑁𝑝𝑥 to
make the image likelihood independent of the resolution. It is deemed 𝐿𝑝𝑥 pixel
count regularization:

𝐿𝑝𝑥 ln 𝑝(z | 𝝁𝑖𝑚𝑔) =
𝑐𝑟𝑒𝑔

𝑁𝑝𝑥

𝑁𝑝𝑥∑︁
𝑖

ln 𝑝(𝑧𝑖 | 𝜇𝑖) (4.37)

Due to the division by 𝑁𝑝𝑥, the regularization constant 𝑐𝑟𝑒𝑔 might be larger than
one in contrast to the original proposal in [12]. In analogy to the subsampling
regularization, 𝑐𝑟𝑒𝑔 can be interpreted as the number of pixels considered in the
likelihood. The constant 𝑐𝑟𝑒𝑔 is a tunable parameter that weighs the prior against
the likelihood and changes with the standard deviations of the pose prior and the
camera’s sensor noise.

47

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

Besides differing image resolutions, the object’s geometry can lead to different
values of the image likelihood. For example, the number of object pixels in an
image is smaller for slim surgical instruments than for large box-shaped objects.
Moreover, the number of object pixels changes with different views of the same
object. Modeling pixels that do not display the object as outliers with a uniform
distribution as described in Section 4.3.4 expresses that they do not provide
any information for the inference. Therefore, a more advanced regularization
should consider the number of visible object pixels. Using the estimates of the
object classification-probability 𝑜 from Section 4.3.5, the normalization constant
is defined as:

𝑁0 =

𝑁𝑝𝑥∑︁
𝑖

𝑜𝑖 (4.38)

Summing the pixel-object classification probabilities can be interpreted as a soft
version of summing the number of object pixels. Using a threshold like 𝑜𝑖 > 0.5 to
determine whether a pixel shows the object results in discretization errors. These
errors might cause unnecessary particle deprivation, resampling, and higher
discretization errors of the pose estimates.

Using this condition is similar to the 𝐿0 class regularization in machine learning,
where the number of non-zero parameters, the 𝑙0 norm, is used as a cost to
encourage sparseness. The inverse is used here, and the normalization factor
emulates sparse measurements. Combining the normalization with the log-
likelihood from Eq. (5.24) leads to the 𝐿0 class regularization:

𝐿0 ln 𝑝(z | 𝝁𝑖𝑚𝑔) =
𝑐𝑟𝑒𝑔

𝑁𝑜

𝑁𝑝𝑥∑︁
𝑖

ln 𝑝(𝑧𝑖 | 𝜇𝑖) (4.39)

Other approaches for defining the normalization constant 𝑁 have been tried but
failed and are briefly described in Appendix A.2.

4.4 Performant Evaluation using Julia and the
Graphics Processing Unit

Efficient parallelization of the graphical model on the GPU is achieved through
its implementation4 in Julia [79]. Using a naive implementation of the models on
a CPU resulted in inference times of 5 min per pose, which is prohibitively slow.

4BayesianPoseEstimation.jl: https://github.com/rwth-irt/BayesianPoseEstimation.jl

48

https://github.com/rwth-irt/BayesianPoseEstimation.jl

4.4 Performant Evaluation using Julia and the Graphics Processing Unit

With the optimizations proposed in this section, the inference time can be reduced
to ≈0.5 s, which enables experiments on a larger scale; compare for Section 6.3.
This section discusses implementation details, which are essential for efficient
parallelization. A unique feature of Julia as a programming language is its ability
to run identical code on both the CPU and GPU. This functionality is supported
by CUDA.jl packages’ compatibility with Julia’s broadcasting syntax, which allows
operations on arrays and scalars of different dimensions.

Two major requirements exist to parallelize array operations on the GPU using
CUDA.jl :

1. Scalar indexing is disallowed: the same operation should be repeated on all
elements of an array and not on specific indices. It is possible to operate on
so-called views of an array or sub-arrays.

2. Functions must be type-stable; in other words, the types of all variables can
be inferred, so the function can be compiled statically.

Existing packages for probability distributions do not satisfy these requirements, so
a slimmed-down version of Distributions.jl has been implemented, which supports
existing interfaces for generating random values and evaluating the log-density5.
Additional distribution types have been implemented to support uniform sampling
of random rotations, a uniform distribution for the long tail, and a smooth truncated
exponential distribution, used throughout Chapter 4. At the core of evaluating the
likelihood of multiple rendered images 𝝁𝑖𝑚𝑔 in parallel is a new implementation
of a product distribution, deemed BroadcastedDistribution. It resembles an
array of probability distributions of the same type with possibly different parame-
ters. Compared to other implementations, the BroadcastedDistribution allows
supplying the dimensions that are used to accumulate the probability densities.
Specifically, this allows additional dimensions to encode different particles in a
sampling algorithm and spawn only a single GPU kernel, as spawning a kernel
always comes with some communication overhead.

One of the most important performance considerations is avoiding memory trans-
fers from the CPU to the GPU and vice versa. CUDAs’ graphics-interoperability
allows mapping graphics memory to arrays without copying. After rendering depth
images using the OpenGL pipeline described in Section 4.3.1 to a 3D texture,
the same data is directly accessible in CUDA. The 3D texture is beneficial in
conjunction with the BroadcastedDistribution mentioned above, as the third
dimension allows rendering multiple poses into one texture and evaluating the

5KernelDistributions.jl: https://github.com/rwth-irt/KernelDistributions.jl

49

https://github.com/rwth-irt/KernelDistributions.jl

4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation

likelihood separately for each pose. Details on how to correctly map OpenGL to
CUDA can be found in the source code6.

The last part is a Bayesian network package which automatically keeps track of
the dimensions for each variable and uses the broadcasted distribution internally7.
Sequentialization is the process of converting a directed acyclic graph into a
sequential list. The ordering of this list guarantees that all predecessor nodes
have been evaluated before evaluating a node that depends on them. This
process is called topological sorting and needs to be executed only once instead
of running the depth-first search on every graph evaluation. Another benefit of
using sequentialization in the Julia implementation is that looping over the list of
nodes results in type-stable code, while the recursions do not. Thus, the latter
requires an interpreted execution while the former compiles into efficient machine
code.

4.5 Summary

This chapter’s models lay the foundation for using the Bayesian inference algo-
rithms described in the upcoming chapter. One part of the model is the description
of the pose. Two alternatives can be used as sources for the prior information
of the position component. Image mask priors from machine learning models
enable broad applicability, since only images from the depth camera are required.
Conversely, point priors from additional sensors can enable specific applications
like the pose estimation of surgical instruments. In the context of this thesis, no
prior information is available for the object’s orientation. Thus, the prior of the
orientations is formulated as a uniform distribution for rotations based on quater-
nions. Global proposals are sampled from the prior, while normal distributions
are used for local moves of the position and orientation. Applying the concepts of
a normal distribution to rotations requires special care.

Formulating the likelihood of the measured depth images consists of two steps:
First, the generative process of depth images is described as 3D rendering. Sec-
ond, the noise is added to the depth images using a per-pixel mixture model,
which models measuring the object of interest, occlusions, and outliers. A smooth
truncated exponential distribution has been formulated to avoid discontinuities
while modeling occlusions more accurately than an unmodified exponential distri-
bution. Explicitly modeling the pixel-to-object classification probabilities has been

6SciGL.jl: https://github.com/rwth-irt/SciGL.jl
7BayesNet.jl: https://github.com/rwth-irt/BayesNet.jl

50

https://github.com/rwth-irt/SciGL.jl
https://github.com/rwth-irt/BayesNet.jl

4.5 Summary

proposed to let the algorithms focus on the relevant pixels. A closed-form solution
enables the use of these probabilities during inference, as introducing hundreds
of pixel-wise probabilities would lead to an intractable high dimensionality of the
problem. Finally, the pixel-wise models lead to overconfident likelihoods. Thus,
regularization strategies have been proposed based on the number of pixels in
an image or the pixel classifications. Crucial performance considerations have
been explained in this context to evaluate the models on a GPU.

51

5 Approximate Bayesian Inference
Algorithms

Analytical solutions of the posterior are not possible if no closed-form solution
exists for the evidence integral in Eq. (2.15). Approximate inference algorithms
can broadly be categorized into sampling-based and optimization-based methods.
Most inference algorithms are generic and can be used to estimate a posterior
distribution with the models described in the previous chapter. However, some
algorithms have special requirements, such as requiring a differentiable model
for gradients as in HMC. This chapter gives an overview of different inference
algorithms and selects appropriate algorithms and their modifications.

5.1 Overview of Approximate Inference Algorithms

This section presents an overview of Monte Carlo sampling and importance sam-
pling methods. Moreover, it presents variational inference as a versatile instance
of optimization-based techniques. Finally, this section highlights some practical
considerations and requirements for choosing sampling-based algorithms for 6D
pose estimation.

Monte Carlo methods approximate the posterior by drawing discrete values from
it instead of specifying a continuous function. Two major approaches exist to
approximate a distribution via discretization: Monte Carlo sampling and impor-
tance sampling. Drawing a sample from a distribution includes realizing all state
variables x. Since sampling directly from the target 𝑝(x | z) is not possible in most
cases, the samples are drawn sequentially from another proposal distribution 𝑞(x)
and evaluated up to a constant on the probabilistic model 𝑝(x, z). After collecting
𝑁 samples, integrating over all states can be approximated by summing over the
samples. For example, the expected value of a function 𝑔(x) can be calculated
via:

E𝑝(x,z) (𝑔(x)) =
∫

𝑝(x, z) 𝑔(x) 𝑑x ≈ 1
𝑁

𝑁∑︁
𝑖=1

𝑔(x𝑖) (5.1)

53

5 Approximate Bayesian Inference Algorithms

An interpretation of this approximation is that regions with many samples have
a higher probability density than regions with fewer samples. Choosing 𝑔(x) = x
results in the expected value of the state. To eliminate the discrepancy between
the proposal and target distribution, Monte Carlo methods reject samples that do
not represent the target distribution. Many Monte Carlo samplers draw samples
sequentially, and Section 5.1.1 introduces the Metropolis-Hastings acceptance-
ratio, which compares the previous and the current sample to decide which one
to keep.

Importance sampling uses a cloud of samples, called particles, to approximate
a target distribution [11]. It makes use of the following approximation:

E𝑝(x,z) (𝑔(x)) =
∫

𝑝(x, z) 𝑔(x) 𝑑x ≈
𝑁∑︁
𝑖=1

𝑝(x𝑖, z)
𝑞(x𝑖)

𝑔(x𝑖) =
𝑁∑︁
𝑖=1

𝑤 (𝑖)𝑔(x𝑖) (5.2)

Again, as it usually is not easy to sample from 𝑝(x, z), the samples are drawn
from another easy-to-sample proposal distribution 𝑞(x). Instead of accepting or
rejecting samples, the discrepancy between 𝑝 and 𝑞 is resolved by introducing
the ratios 𝑤 (𝑖) = 𝑝(x𝑖 ,z)/𝑞(x𝑖), which are called the importance weights. A tech-
nique called resampling connects importance sampling to Monte Carlo sampling.
Resampling draws 𝑁 particles with replacement and a probability according to
their weights. These samples closely but not fully match the approximation from
Eq. (5.1).

Variational inference (VI) turns the inference problem into an optimization prob-
lem to minimize the Kullback-Leibler-divergency KL(𝑝∥𝑞), which is "a measure
of dissimilarity of two distributions 𝑝(x) and 𝑞𝜽 (x)" [11]. Specifically, the goal is
to find a good approximation 𝑞𝜽 (x) for the posterior distribution 𝑝(x | z) given
a specific set of observations 𝑧. Compared to the posterior, this approximation
should be easy to sample from and evaluate. These constraints on the choice of
𝑞𝜽 (x) lead to the approximate nature of VI. It can be shown that this optimization
goal is equivalent to maximizing the lower bound of the model evidence 𝑝(z),
commonly called evidence lower bound.

ln 𝑝(z) ≥ ELBO(𝜽) = E𝑞𝜽 (x) [ln 𝑝(x, z) − ln 𝑞𝜽 (x)] (5.3)

In this equation, ln 𝑝(x, z) is the expectation of the generative probabilistic model,
and ln 𝑞𝜽 (x) is the entropy of the approximating distribution. Historically, varia-
tional inference required hand-deriving approximate distributions and the optimiza-
tion scheme. Automatic differentiation variational inference simplifies this process
by providing gradients ∇𝜽ELBO for efficient optimization algorithms [80]. Still,
calculating the model’s expectation Eq. (5.3) typically lacks a closed-form solution.
Therefore, automatic differentiation variational inference approximates the integral

54

5.1 Overview of Approximate Inference Algorithms

via Monte Carlo sampling and requires only a single sample in practice. Hence,
𝑝(x, z) and 𝑞𝜽 (x) must be differentiable and easy to sample from. Black box VI is
an alternative that does not require analytical gradients of the probabilistic model.
Instead, it uses stochastic optimization with gradients estimated by falling back to
Monte Carlo sampling [81].

Variational inference is classically used for problems where much data is available
since it is usually faster than Monte Carlo methods. However, it has the disad-
vantage of generally underestimating the variance of the posterior. Monte Carlo
methods are often preferred for smaller and more expensive to collect datasets
[82]. The variance is unimportant if only a single pose is used for benchmarking,
as described in Section 6.1.4. Still, a single image can be considered a tiny
dataset, and the results of deriving wrong decisions from it can be costly in robotic
applications; see Section 7.3.

Multimodal posteriors are likely to occur in pose estimation problems and pose
a challenge for MCMC methods and VI algorithms as they tend to get stuck
in a single mode [83, 84]. In practice, the algorithms can run multiple times
with different initializations to increase the chances of covering multiple modes.
Importance sampling-based algorithms handle multiple modes well, but run into
problems with high-dimensional problems [11].

Another perspective is the practicality of implementing the inference algorithms.
A major bottleneck is that classical rendering using rasterization is not differen-
tiable. Differentiable rendering is ongoing research. In preliminary experiments,
differentiable rendering has been slow and unable to produce usable gradients;
see Appendix A.2.3. The rendering step currently prevents using modern tools
such as automatic differentiation VI and HMC, which use gradients for improved
performance. Vanilla versions of sampling-based inference algorithms do not
require gradients, are relatively easy to implement, and work with almost any
model. The applicability of the algorithms is the primary reason this work focuses
on sample- and particle-based algorithms.

5.1.1 Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm generates a Markov chain of samples
to approximate the target distribution via Eq. (5.1). The Markov property of a
chain is that every new sample x𝑡+1 only depends on the previous sample x𝑡 via a
proposal model 𝑞(x𝑡+1 | x𝑡), as shown in Fig. 5.1. At its core is the acceptance
ratio for two consecutive samples, which is the basis of many advanced sampling

55

5 Approximate Bayesian Inference Algorithms

x1 x2 x∗3 x∗∗3 x3

x2 x2

reject

Figure 5.1: Drawing samples as a Markov chain using an accept/reject step. The gray
samples are rejected, and x2 is reused in the chain.

algorithms and is defined as:

𝛼(x𝑡 , x𝑡+1) = min
[
1, 𝑝(x𝑡+1, z)𝑞(x𝑡 | x𝑡+1)

𝑝(x𝑡 , z)𝑞(x𝑡+1 | x𝑡)

]
(5.4)

For symmetric proposals, i.e., normal distributions centered at the sample, this
equation simplifies to:

𝛼(x𝑡 , x𝑡+1) = min
[
1, 𝑝(x𝑡+1, z)

𝑝(x𝑡 , z)

]
(5.5)

The acceptance ratio represents the probability of accepting the proposed sample.
If the new sample is not accepted, the previous sample is reused, i.e., x2 is reused
in Fig. 5.1. In the symmetric case of Eq. (5.5), if the proposed sample has a higher
probability according to the probabilistic model 𝑝(x, z) than the previous one, it
is always accepted with a probability of one. Otherwise, a less likely proposed
sample yields a proportionally smaller probability of acceptance. If the proposal
distribution is not symmetric as in Eq. (5.4), the probability 𝑞 of proposing the
sample is also considered. As the probability of transitioning to the new state
is in the denominator, it favors states that are less likely to transition to. From a
theoretical background, the acceptance ratio has been designed to draw samples
from the stationary target distribution [85].

5.1.2 Multiple-Try Metropolis

Evaluating multiple poses in parallel can improve the performance of the GPU-
based parallelization by reducing the number of computation kernels, as written in
Section 4.4. The previously described MH algorithm evaluates only one pose per
step. Multiple-try Metropolis (MTM) computes a chain of samples to approximate
the target distribution, similar to MCMC. However, MTM allows evaluating multiple
hypotheses in a single step by borrowing from the idea of importance sampling
[86, 87].

56

5.1 Overview of Approximate Inference Algorithms

x𝑡

x(2)𝑝x(1)𝑝
. . . x(𝑗)𝑝

. . . x(𝑁)𝑝

x(1)𝑎 x(2)𝑎
. . . x(𝑗)𝑎 = x𝑡

. . . x(𝑁)𝑎

proposals

auxiliary

Figure 5.2: A general multiple-try Metropolis (MTM) step with proposal and auxiliary
variables. The proposal x(𝑗)𝑝 is the candidate to accept. If the candidate is
rejected, the previous sample x𝑡 is kept.

The general case of the MTM sampler is depicted in Fig. 5.2. First, MTM generates
𝑁 proposal samples and calculates the importance weights via:

𝑤(x(𝑖)𝑝 | x𝑡) =
𝑝(x(𝑖)𝑝 , z)
𝑞(x(𝑖)𝑝 | x𝑡)

(5.6)

Afterward, the algorithm selects one of the proposals x(𝑗)𝑝 according to the impor-
tance weights as the candidate for 𝑥𝑡+1:

𝑗 ∼ Cat
(
𝑤(x(1)𝑝 | x𝑡), 𝑤(x(2)𝑝 | x𝑡), . . . , 𝑤(x(𝑁)𝑝 | x𝑡)

)
(5.7)

In the general case, the next step is to propose 𝑁 − 1 auxiliary samples x𝑎 and
insert the previous sample x𝑡 at position 𝑗 . The acceptance ratio for x(𝑗)𝑝 is defined
as:

𝛼(x𝑡 , x(𝑗)𝑝) = min
[
1,

∑𝑁
𝑖=1 𝑤(x

(𝑖)
𝑝 | x𝑡)∑𝑁

𝑖=1 𝑤(x
(𝑖)
𝑎 | x(𝑗)𝑝)

]
(5.8)

The weights of the auxiliary variables in the denominator can be calculated
according to Eq. (5.6). A significant drawback of the general MTM sampler is
that it requires the evaluation of 2𝑁 − 1 samples per step due to the auxiliary
variables. If the proposal distribution is independent, 𝑞(x𝑡+1 | x𝑡) = 𝑞(x𝑡+1), no
auxiliary variables are required, and the acceptance ratio is defined as [87]:

𝛼(x𝑡 , x(𝑗)𝑝) = min
[
1,

∑𝑁
𝑖=1 𝑤(x

(𝑖)
𝑝 | x𝑡)

𝑤(x𝑡 | x𝑡) +
∑𝑁
𝑖=1,𝑖≠ 𝑗 𝑤(x

(𝑖)
𝑝 | x𝑡)

]
(5.9)

57

5 Approximate Bayesian Inference Algorithms

The denominator uses the same sum as the nominator, except for replacing x(𝑗)𝑝
with x𝑡 .

Even though MTM uses multiple samples within a step, the resulting chain con-
sists of single sequential samples. Consequently, the sampler discards many
hypotheses and the algorithm might struggle with multiple modes and local min-
ima similar to MH. In unfortunate probability landscapes, MTM might get stuck
longer than MH. To eliminate this behavior, Martino et al. propose to select a
random number 𝑁𝑟 ∈ {1, . . . , 𝑁} of proposals and auxiliaries [88].

5.1.3 Sequential Monte Carlo Samplers

Compared to MCMC methods, sequential Monte Carlo (SMC) is a particle-based
method which evolves a cloud of 𝑁 samples and corresponding importance
weights {𝑤 (𝑖)𝑡 , x

(𝑖)
𝑡 } with 𝑖 = {1, . . . , 𝑁}, called particles. SMC approximates the

posterior distribution 𝑝𝑡 (x | z) at each step 𝑡 using the importance weights from
Eq. (5.2).

Historically, particle filters (PFs), also called sequential Monte Carlo method, have
been used as an alternative to Kalman filters in multimodal, nonlinear state-space
problems. PFs work on sequential observations z𝑡 and are used to estimate the
posterior distribution of the state 𝑝(x𝑡 | z𝑡) at each timestep 𝑡. Chopin modified
PFs to estimate posterior distributions 𝑝(x | z) that does not change over time,
e.g., by iteratively estimating posteriors for subsets of the data 𝑝𝑡 (x | 𝑧1, . . . , 𝑧𝑡)
with 𝑡 ≤ dim(z) [89]. Note that the evaluated densities 𝑝𝑡 change with the steps 𝑡
as different subsets of the data are considered. Afterward, Moral et al. generalized
the PF further, which enables a parallel usage of MCMC kernels [78]. They term
these algorithms sequential Monte Carlo samplers. To avoid confusion, SMC will
be used to denote sequential Monte Carlo samplers and PF to denote particle
filters from here on.

As shown in Fig. 5.3, each SMC step starts by generating a proposal for each
of the 𝑁 particles. Instead of directly using a proposal distribution 𝑞(x𝑡+1 | x𝑡),
SMC uses a forward kernel 𝐾𝑡 (x𝑡+1 | x𝑡). In this context, a kernel has a density
associated with it but might include additional steps, such as an acceptance step.
After proposing the new states, SMC calculates incremental weights using:

𝑤̃
(𝑖)
𝑡+1 =

𝑝𝑡+1(x𝑡+1, z)𝐿𝑡 (x𝑡 | x𝑡+1)
𝑝𝑡 (x𝑡 , z)𝐾𝑡+1(x𝑡+1 | x𝑡)

(5.10)

The incremental weights update each particle weight via:

𝑤
(𝑖)
𝑡+1 = 𝑤

(𝑖)
𝑡 𝑤̃

(𝑖)
𝑡+1 (5.11)

58

5.1 Overview of Approximate Inference Algorithms

x(1)𝑡

x(2)𝑡

x(3)𝑡

...

x(𝑁)𝑡

particles

x(1)
𝑡+1

x(2)
𝑡+1

x(3)
𝑡+1

...

x(𝑁)
𝑡+1

propose

𝑤̃
(1)
𝑡+1

𝑤̃
(2)
𝑡+1

𝑤̃
(3)
𝑡+1

...

𝑤̃
(𝑁)
𝑡+1

incr. weights

x(1)
𝑡+1

x(2)
𝑡+1

x(3)
𝑡+1

...

x(𝑁)
𝑡+1

resample

Figure 5.3: A SMC step for 𝑁 particles with an optional resampling step [90].

In addition to the forward kernel 𝐾𝑡 and the target densities 𝑝𝑡 and 𝑝𝑡+1, Eq. (5.10)
makes use of an artificial backward kernel 𝐿𝑡 (x𝑡 | x𝑡+1). The choice of 𝐿 is arbitrary,
but Del Moral et al. propose some (sub)optimal choices for 𝐿 based on the choice
of 𝐾 [78]. One generic choice is to use an MCMC forward kernel, which uses
the MH acceptance ratio from Eq. (5.4) in this work. The backward kernel for an
MCMC forward kernel is [78]:

𝐿𝑡 (x𝑡 | x𝑡+1) =
𝑝𝑡+1(x𝑡 , z)𝐾𝑡+1(x𝑡+1 | x𝑡)

𝑝𝑡+1(x𝑡+1, z)
, (5.12)

and the resulting weight increment:

𝑤̃
(𝑖)
𝑡+1 =

𝑝𝑡+1(x𝑡 , z)
𝑝𝑡 (x𝑡 , z)

. (5.13)

Note that the nominator and denominator evaluate the previous state x𝑡 , and the
incremental weight is equal to one if the previous 𝑝𝑡 and the new target distribution
𝑝𝑡+1 are the same. If the weights do not change, the algorithm runs 𝑁 independent
Markov chains which do not interact. Otherwise, if the weights change, resampling
can be used as a natural mechanism to let the chains interact and avoid particle
deprivation. Resampling is triggered after the weight updates and if the effective
sample size (ESS) is below a threshold 𝑁𝑒 𝑓 𝑓 with more details in Section 5.2.3.
Evolving the target 𝑝𝑡 (x | 𝑧1, . . . , 𝑧𝑡) using Chopin’s method of including one

59

5 Approximate Bayesian Inference Algorithms

measurement at a time is unsuitable for the depth image model from Chapter 4
[89]. Many pixels do not show the object of interest, and the corresponding
computational cycles would be wasted. Instead, this work evolves the densities
using a tempered likelihood, which is explained in detail in Section 5.2.1 and has
been proposed in [89, 91].

As a particle-based method, SMC should generally be favorable for multimodal
posteriors like the ones expected for ambiguous object poses. Moreover, drawing
and evaluating samples is "trivially" parallelizable, as these steps repeat the
same operation for all particles. Parallelizing the resampling step is not trivial
but requires much fewer operations than evaluating the likelihood. A sequential
resampling step is preferred, since the pose states reside on the CPU. Another
benefit of SMC algorithms is that they allow estimating the model evidence using
the unnormalized weights, which can be used in model comparison [78, 91].

5.1.4 Particle Filtering as Special Case of Sequential Monte
Carlo Samplers

This section shows that the SMC algorithm is a generalization of the particle
filter (PF) similar to the derivations in [90]. A bootstrap particle filter uses the
transition probability as the forward kernel, which is described by the noisy system
dynamics:

𝐾𝑡+1(x𝑡+1 | x𝑡) = 𝑝(x𝑡+1 | x𝑡) (5.14)

Choosing a backward kernel in the form of

𝐿𝑡 (x𝑡 | x𝑡+1) =
𝑝𝑡 (x𝑡 , z)𝐾𝑡+1(x𝑡+1 | x𝑡)

𝑝(x𝑡+1)
, (5.15)

results in the bootstrap PF. In this case, the weight increment is the likelihood
function:

𝑤̃
(𝑖)
𝑡+1 = 𝑝(z | x(𝑖)

𝑡+1) (5.16)

The bootstrap PF kernel has the drawback that only local proposal moves can
be used. An independent global move would replace all particles and discard
the progress of the sampling iterations. Still, the kernel involves simpler com-
putations compared to the MCMC kernel and might profit from running more
SMC iterations using the same compute budget. More importantly, it allows the
same implementation to be reused for particle filtering applications on sequential
data.

60

5.2 Best Practices and Sampler Modifications

5.2 Best Practices and Sampler Modifications

Using the vanilla version of a sampling algorithm often does not result in satis-
factory results if the target distribution is too complex [92]. This section presents
likelihood tempering and adaptive proposals to improve the exploration and ex-
ploitation behavior of the algorithms. Moreover, this section introduces logarithmic
sampling to avoid numerical issues and unconstrained sampling to enable a
flexible combination of prior and proposal models.

5.2.1 Likelihood Tempering

Likelihood tempering reduces the influence of the likelihood function in the early
sampling phase to avoid focusing on a single high-likelihood region too early.
Instead, the modified probabilistic model favors the exploration of the prior. It is a
generally applicable concept, so this work also uses it in the MCMC algorithms.
Mathematically, the tempering schedule 𝜙𝑡 modifies the likelihood [78, 91, 92]:

𝑝𝑡 (x, z) = 𝑝(z | x)𝜙𝑡 𝑝(x) (5.17)

In this work, the tempering parameter increases linearly from zero to one with the
number of steps 𝑇 :

𝜙𝑡 =
𝑡

𝑇
, 𝑡 ∈ {1, . . . , 𝑇}, (5.18)

As the number of inference steps 𝑇 must be known before running the sampler,
tempering does not apply to particle filters. Plugging Eq. (5.17) into Eq. (5.13)
results in the following incremental weights for an MCMC forward SMC kernel:

𝑤̃
(𝑖)
𝑡+1 = 𝑝(z | x(𝑖)𝑡)𝜙𝑡+1−𝜙𝑡 (5.19)

5.2.2 Adaptive Proposals for Sequential Monte Carlo Samplers

A good proposal model must offer a tradeoff between exploration and exploitation.
The algorithm gets stuck in local optima if the step sizes are too small. If the step
sizes are too large, the algorithm might not converge. Therefore, the proposals
introduce tunable parameters, which can be avoided using an adaptive scheme
to parametrize the proposals [93].

In particle-based sampling algorithms such as SMC, the current particle distribu-
tion {𝑤 (𝑖)𝑡 , x

(𝑖)
𝑡 } can be used to derive an adaptive proposal. The adaptive proposal

61

5 Approximate Bayesian Inference Algorithms

distribution is a multivariate normal distribution with a covariance according to the
particle cloud [91]:

x(𝑖)
𝑡+1 ∼ N

(
x(𝑖)𝑡 ,Σ𝑡

)
, (5.20)

with the covariance matrix:

Σ𝑡 =

𝑁∑︁
𝑖

𝑤
(𝑖)
𝑡

(
x(𝑖)𝑡 − 𝜇𝑡

) (
x(𝑖)𝑡 − 𝜇𝑡

)T
, (5.21)

and the mean used to calculate the covariance matrix:

𝜇𝑡 =

𝑁∑︁
𝑖

𝑤
(𝑖)
𝑡 x(𝑖)𝑡 . (5.22)

The idea is that the previous target density 𝑝𝑡 (x, z) should, by design, be similar
to the next target density 𝑝𝑡+1(x, z). In this case, the covariance at time 𝑡 is a good
scaling at 𝑡 + 1. Intuitively, if the variance of the current particle cloud is high, the
algorithm has not converged and should explore the space using larger proposal
steps. If the variance is low, the algorithm has converged to the target distribution
and should sample from it.

Calculating the covariance of the particle cloud implies that it must be distributed
approximately according to a multivariate normal distribution. However, only the
position but not the orientation is expected to be distributed sufficiently normally.
Thus, adaptive proposals are only applied to the position but not the orientation
components.

5.2.3 Logarithmic Sampling

Since densities can differ in the order of many magnitudes, a best practice in
statistics is to evaluate log densities to avoid numerical issues. In particular, the
image likelihood from Eq. (4.4) involves multiplying the individual likelihoods of
hundreds of pixels. Multiplying a large number of values can result in numerical
over- or underflows:

𝑝(z | 𝝁𝑖𝑚𝑔) = lim
𝑁→∞

𝑁∏
𝑖=1

𝑝(𝑧𝑖 | 𝝁𝑖𝑚𝑔) =
{

0 ,E
[
𝑝(𝑧𝑖 | 𝝁𝑖𝑚𝑔)

]
< 1

∞ ,E
[
𝑝(𝑧𝑖 | 𝝁𝑖𝑚𝑔)

]
> 1

(5.23)

In the logarithmic domain, the image likelihood becomes numerically more stable.
The image likelihood turns into a sum with 𝑖 iterating over all 𝑁𝑝𝑥 pixels in the
images:

ln 𝑝(z | 𝝁𝑖𝑚𝑔) = ln
(𝑁𝑝𝑥∏
𝑖

𝑝(𝑧𝑖 | 𝜇𝑖)
)
=

𝑁𝑝𝑥∑︁
𝑖

ln 𝑝(𝑧𝑖 | 𝜇𝑖) (5.24)

62

5.2 Best Practices and Sampler Modifications

Reformulating a product of densities as the sum of the respective log densities is
a concept that is also applicable in other places, like evaluating the acceptance
ratio from Eq. (5.4).

Sometimes, evaluating the sum of logarithmic elements in the non-log domain
is necessary. For example, updating the weights in the SMC sampler involves
simpler calculations and is numerically more stable in the log domain. However,
normalizing the weights involves summing over the non-log weights:

ln 𝑤̂ (𝑖)𝑡 = ln
(

𝑤
(𝑖)
𝑡∑𝑁

𝑖=1 𝑤
(𝑖)
𝑡

)
= ln𝑤 (𝑖)𝑡 − ln

𝑁∑︁
𝑖=1

exp
(
ln𝑤 (𝑖)𝑡

)
(5.25)

Exponentiating the logarithmic weights might lead to over- or underflows, which
can be avoided using the log-sum-exp trick:

LSE (ln 𝑥1, . . . , ln 𝑥𝑁) = ln
𝑁∑︁
𝑖=1

exp (ln 𝑥𝑖) = 𝑐 + ln
𝑁∑︁
𝑖=1

exp (ln 𝑥𝑖 − 𝑐) , (5.26)

where 𝑐 = 𝑚𝑎𝑥{ln 𝑥1, . . . , ln 𝑥𝑁 }. This function can also be used to calculate the
ESS, which determines whether to resample the particles:

ln 𝑁𝑒 𝑓 𝑓 = ln
©­­«

1∑𝑁
𝑖=1

(
𝑤
(𝑖)
𝑡

)2
ª®®¬ = −

(
𝑁∑︁
𝑖=1

𝑒2 ln𝑤 (𝑖)𝑡

)
(5.27)

= −LSE
(
2 ln𝑤 (1)𝑡 , . . . , 2 ln𝑤 (𝑁)𝑡

)
(5.28)

Another example of summing weights in this thesis is calculating the MTM accep-
tance ratio in Eq. (5.8).

Similarly, systematic resampling requires iteratively adding logarithmic weights.
A specific version of the LSE trick for two variables is referred to as logaddexp.
Algorithm 1 expresses the systematic resampling in the log domain used in this
work. The systematic resampling algorithm has a lower computational cost, and
results in a lower sampling variance than randomly drawing all samples from a
categorical distribution [12].

Selecting a single value from a categorical distribution is required in the MTM
sampler for choosing the acceptance candidate; see Eq. (5.7). To avoid summing
and iterating over the weights as in Algorithm 1, the Gumbel-max trick can be
used to draw according to unnormalized logarithmic weights [1]. The idea is to
draw 𝑁 values 𝐺 (𝑖) independently from a Gumbel distribution and add them to
each of the log weights:

𝐼 = argmax
𝑖∈(1,...,𝑁)

(ln𝑤 (𝑖) + 𝐺 (𝑖)), 𝐺 (𝑖) ∼ Gumbel (5.29)

63

5 Approximate Bayesian Inference Algorithms

Algorithm 1: Systematic resampling in log-domain.
Input: 𝑁 particle states x and logarithmic weights w
Result: resampled particle states x̂ and logarithmic weights ŵ

1 𝑐 ← w[0] // cumulative log-weight
2 𝑟 ← random(0, 1/𝑁) // random starting point
3 𝑖 ← 1 // current sample
4 for 𝑛← 0 to 𝑁 do

/* systematic steps */
5 𝑈 ← ln (𝑟 + 𝑛/𝑁)
6 while 𝑈 > 𝑐 do
7 𝑖 ← 𝑖 + 1
8 𝑐 ← logaddexp(𝑐,w[i])
9 end

10 x̂[n]← x[i]
11 ŵ[n]← − ln(𝑁)
12 end

After the addition, the index 𝐼 with the largest corresponding sum is chosen as
the random sample. Repeating this process for many draws from the Gumbel
distribution results in indices distributed according to the categorical distribution
for the respective weights.

Another benefit is that the densities of the frequently used exponential family of
probability distributions can be calculated more efficiently in the log domain. For
example, the pdf of the normal distribution becomes:

ln(𝑝N (𝑥 | 𝜇, 𝜎)) = − ln(
√

2𝜋) − ln(𝜎) − 1
2𝜎2 (𝑥 − 𝜇)

2 (5.30)

Every term in this equation except (𝑥 − 𝜇)2 can be precalculated at compile time
if 𝜎 does not change, improving the online performance.

5.2.4 Sampling in Constrained Domains

Many sampling algorithms require that the variables are defined in the uncon-
strained domain R. However, commonly used prior distributions like the uniform
distribution are limited to an interval 𝑥 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]. One possibility to satisfy the
constraints is to repeat the random draws until all variables are in their respective
valid bounds. However, this approach results in an undetermined long runtime. A
change of variables can be used to transform the samples from the constrained

64

5.2 Best Practices and Sampler Modifications

-2 0 2 4

de
ns

ity
 /

-

0.0

0.1

0.2

0.3

0.4
y ~ 𝓝 (1,1)

0 20 40 60 80
0.00
0.05
0.10
0.15
0.20

x=b⁻¹(y)=exp(y)

Figure 5.4: Distortion as a result of transforming a random variable.

model domain D ⊂ R𝑛 to R𝑛 which avoids drawing samples for an undefined time.
By convention, this mapping is defined as 𝑏(𝑥) ↦→ 𝑦, 𝑏 : D ↦→ R𝑛 and is referred
to as bijector. A bijector must be differentiable and invertible [94].

For example, if a variable 𝑥 has an exponential prior 𝑝𝑥 (𝑥) : 𝑥 ∼ Exp(𝛽 = 1),
the corresponding bijector for mapping 𝑥 ∈ R+ ↦→ 𝑦 ∈ R is 𝑏(𝑥) = ln 𝑥 and the
inverse mapping 𝑏−1(𝑦) = 𝑒𝑦. Let the proposal distribution in the unconstrained
domain be a normal distribution centered at the previous sample 𝑞(𝑦) : 𝑦𝑡+1 ∼
N(𝜇 = 𝑦𝑡 =, 𝜎 = 1). As visible in Fig. 5.4, the proposed samples for 𝑦𝑡 = 1 are not
distributed according to the proposal after transforming them back to the prior
distribution’s domain. Instead, they are distorted according to the transformed
distributions 𝑏−1 (

𝑝𝑦 (𝑦)
)
↦→ 𝑝𝑥 (𝑥). Therefore, when evaluating the prior 𝑝𝑦 (𝑦) for

the transformed variable, an adjustment of the density using a Jacobian factor is
required [11]:

𝑝y(y) = 𝑝x
(
𝑏−1(y)

)
|det 𝐽𝑏−1 (y) | = 𝑝x

(
𝑏−1(y)

)
|det 𝐽𝑏 (x) |−1 (5.31)

In the example above, Eq. (5.31) results in the corrected density

𝑝𝑦 (𝑦) = 𝑝𝑥 (𝑒𝑦)
���� 𝑑𝑑𝑦 𝑒𝑦���� = 𝑝𝑥 (𝑒𝑦) 𝑒𝑦 = 𝑝𝑥 (𝑒𝑦) (1

𝑥

)−1
.

5.2.5 Metropolis Hastings in Unconstrained Domains

As stated in Section 5.2.4, a correction by the Jacobian factor is required when
evaluating a transformed probability variable. Applying Eq. (5.31) to the MH
acceptance ratio from Eq. (5.4) results in the following term for acceptance
ratio:

𝛼 =
𝑝y(y𝑡+1) 𝑞y(y𝑡 | y𝑡+1)
𝑝y(y𝑡) 𝑞y(y𝑡+1 | y𝑡)

(5.32)

=
𝑝x(𝑏−1(y𝑡+1)) |det 𝐽𝑏−1 (y𝑡+1) | 𝑞y(y𝑡 | y𝑡+1)
𝑝x(𝑏−1(y𝑡)) |det 𝐽𝑏−1 (y𝑡) | 𝑞y(y𝑡+1 | y𝑡)

(5.33)

65

5 Approximate Bayesian Inference Algorithms

Algorithm 2: Sampling in the unconstrained domain
Data: 𝑁 inference steps, prior 𝑝𝑥 (𝑥), proposal 𝑝𝑦 (𝑦𝑡+1 | 𝑦𝑡), model 𝑝𝑥 (𝑥, 𝑧)
Result: 𝑁 samples x ∼ 𝑝(𝑥 | 𝑧)

1 y[1] ∼ 𝑏(𝑝𝑥 (𝑥)) // store unconstrained
2 for 𝑖 ← 1 to 𝑁 − 1 do
3 𝑦𝑡 = y[𝑖]; // current sample
4 𝑦𝑡+1 ∼ 𝑞𝑦 (𝑦𝑡+1 | 𝑦𝑡) // propose unconstrained

/* probabilistic model in constrained domain */

5 𝛼← 𝑝x (𝑏−1 (𝑦𝑡+1),𝑧) |det 𝐽
𝑏−1 (𝑦𝑡+1) |𝑞𝑦 (𝑦𝑡 |𝑦𝑡+1)

𝑝x (𝑏−1 (𝑦𝑡)) |det 𝐽
𝑏−1 (𝑦𝑡) |𝑞𝑦 (𝑦𝑡+1 |𝑦𝑡)

/* 𝑢 > 𝛼⇔ ¬(𝑢 < 𝑚𝑖𝑛(𝛼, 1)) */
6 u = rand(U(0, 1)) if u > 𝛼 then
7 y[𝑖 + 1] ← 𝑦𝑡
8 else
9 y[𝑖 + 1] ← 𝑦𝑡+1

10 end
11 end
12 x = 𝑏−1(y)// return in model domain

In case of a symmetric proposal 𝑞(y𝑡+1 | y𝑡) = 𝑞(y𝑡 | y𝑡+1) the equation can be
simplified further, which is similar to the Metropolis step without the extension by
Hastings:

𝛼 =
𝑝x(𝑏−1(y𝑡+1)) |det 𝐽𝑏−1 (y𝑡+1) |
𝑝x(𝑏−1(y𝑡)) |det 𝐽𝑏−1 (y𝑡) |

(5.34)

Thus, the scheme from Algorithm 2 improves the chance of accepting new sam-
ples and is a more robust implementation. If the samples are stored in the model
domain, they need to be transformed once for the proposal and again for storing
them. These frequent forward and backward transformations can lead to numer-
ical inaccuracies. Consequently, the samples are stored in the unconstrained
domain immediately after sampling the initial sample from the prior in line 1 of the
algorithm. The probabilistic model is formulated in the constrained domain, so the
samples must be transformed back in line 5 to calculate the acceptance rate. For
efficiency, the result of evaluating the previous sample 𝑝x(𝑏−1(𝑦𝑡)) |det 𝐽𝑏−1 (𝑦𝑡) |
can be stored and reused in the next inference step. Finally, the samples are
transformed back to the model domain in line 12.

66

5.3 Summary

5.2.6 Sampling Blocks of Variables

If a set of variables is highly correlated, sampling them in blocks can speed up the
convergence [95]. Instead of proposing the whole state vector x at each inference
step, blocked sampling groups variables x = {x(1) , . . . , x(𝑖) , . . . , x(𝑁)} to propose
and evaluate only a block (𝑖) at each step.

𝑞 (𝑖) (x𝑡+1 | x𝑡) = 𝑞(x(1)𝑡 , . . . , x(𝑖)
𝑡+1, . . . , x

(𝑁)
𝑡 | x𝑡) (5.35)

All variable blocks except (𝑖) keep the value from the previous time step in this
proposal. In practice, this allows using different samplers for different blocks of
variables, as in Turing.jl [9].

Choosing which variables to group into one block is not always obvious, especially
for complex models. Approaches for automatic blocking have been developed, but
the physical intuition behind the 6D pose model lends itself to a rigorous choice
[96]. This choice consists of grouping the translational components t = [𝑡𝑥 , 𝑡𝑦, 𝑡𝑧]
and the rotational components R = [𝑞𝑤, 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧] of the pose. Specifically,
the rotational components are expected to be highly correlated, as they can
significantly change the object’s appearance. Moreover, rotations are represented
as quaternions, and sampling the whole rotation allows using the proposal model
from Section 4.2.4.

5.3 Summary

Closed-form solutions usually do not exist for inferring the posterior distribution
𝑝(x | z) of a problem. Therefore, approximate inference algorithms use the
probabilistic model 𝑝(x, z), which can be evaluated pointwise, to evaluate the
posterior up to a constant.

Variational inference restricts the family of distributions and fits these to the data
using optimization algorithms. A significant drawback when applying variational
inference to the problem of depth camera-based pose estimation is that efficient
optimizers require gradients of the model. The rasterization used when rendering
images is not differentiable and would require other approximations, for example,
via sampling the environment of the current state.

Sampling-based algorithms approximate the posterior using discrete samples
drawn using auxiliary proposal distributions. Due to the mismatch of the proposal
and the target distribution, the samples have to be adjusted. Either the samples
are accepted or rejected in a Markov chain Monte Carlo (MCMC) algorithm, or a

67

5 Approximate Bayesian Inference Algorithms

cloud of particles is adjusted using importance weights in sequential Monte Carlo
(SMC). Unlike variational inference, sampling-based algorithms are typically used
in scenarios with little data. Moreover, these algorithms do not rely on gradients
and are, therefore, used for the pose estimation in this thesis.

The pose estimation problem is multimodal due to symmetries and occlusions.
Baseline versions of the sampling algorithms struggle with exploring multiple
modes. Tempering the likelihood is a crucial adaption that allows exploring multi-
modal distributions in the early sampling phase [92]. Moreover, this work relies
on adaptive proposals in the context of SMC, eliminating additional tunable pa-
rameters and automatically switching from exploration to exploitation. Logarithmic
sampling improves the numerical stability, and unconstrained sampling enables a
flexible combination of prior and proposal models.

Many other adaptions for improving sampling algorithms, such as adaptive cooling
strategies, exist. However, as Chapter 6 will show, the adaptions above are
sufficient. While the GPU optimizations lead to a low execution time, reusing older
samples could be a worthwhile adaption to avoid the expensive model evaluations
and further improve the inference time [91].

68

6 Experimental Comparison of
Models and Samplers for 6D Pose
Estimation

This chapter evaluates several model-sampler configurations introduced in Chap-
ters 4 and 5 on challenging industry-relevant datasets. Table 6.1 gives an overview
of these model-sampler configurations. The experiments evaluate the following
representatives of sampler families: MH algorithm as a sequential MCMC sam-
pler, MTM as a parallelizable MCMC sampler, and SMC with an MH kernel as a
parallelizable particle-based sampler. First, the experiments ablate the sampler
configurations to enable successful inferences with a target time of 0.5 s per pose
in Section 6.3. Second, to maximize the recall of pose estimates, the experiments
ablate the

• choice of priors for position and classification in Section 6.5.1.

• modeling of occlusions: exponential distributions, pixel classification, and
image regularization in Section 6.5.2.

• parameter tuning of probabilistic models for different datasets in Section 6.6.

The following sections first present the datasets, pose error metrics, and perfor-
mance scores used to evaluate the pose estimates quantitatively. Then, baseline
model-sampler configurations are introduced to evaluate each component from
Table 6.1. Due to the long evaluation times, non-competitive configurations are

Table 6.1: Overview of experiments to compare different model-sampler configurations.
* The resolution is only evaluated for the SMC sampler.

sampling resolution* / pixel class & image reg. parameter

algorithm runtime 𝑝(𝑧𝑖 | 𝜇𝑖) 𝑝(z | x, z) tuning

MH X X

MTM X

SMC X* X X X

69

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

not part of the ablation. Still, one sampling-based (MH) and one particle-based
algorithm (SMC) participate in the automatic parameter tuning in Section 6.6 for a
fair comparison. Finally, the best-performing configuration is tested on real data
from the BOP challenge and compared to the state-of-the-art in Section 6.7.

6.1 Experiment Design

Each model-sampler configurations’ accuracy is evaluated based on the Bench-
mark for 6D Object Pose Estimation (BOP) challenge, making 6D pose estimation
methods comparable [19]. First, this section presents the unified BOP datasets
for scenarios such as household items, industrial items, or shiny objects. Second,
this section introduces metrics for pose errors that handle ambiguous views for
symmetric or occluded objects.

6.1.1 Datasets

The performance of the model-sampler configurations is evaluated on a selec-
tion of datasets from the BOP challenge, referred to as BOP [19]. One of the
earliest datasets is Linemod (LM), named after the template-matching-based
pose estimation method for which the dataset was generated [28]. Because of
its widespread use, the LM dataset is also used in this thesis to improve the
comparability of results. Brachmann et al. added annotations to one LM scene to
include more challenging occlusions, resulting in the Linemod-Occluded (LM-O)
dataset [37]. Two of the BOP datasets, texture-less rigid objects (T-LESS) and
MVTec industrial 3D object detection dataset (ITODD), focus on industrial settings
where CAD models are available, objects tend to be symmetric, texture-less or
shiny, and similar objects are visible in each scene [97, 98]. Moreover, the ITODD
dataset captures shiny metallic parts with a high-quality depth sensor, similar to
the surgical instruments in Section 7.1.

In the later iterations of BOP, reducing the sim-to-real gap is a particular focus
[32]. The methods presented in this thesis specifically target problems where
only CAD models are available beforehand. Similar to BOP, synthetic datasets
have been generated using BlenderProc1, preventing tuning the algorithms on
the test sets [4]. The synthetic LM, T-LESS, and ITODD datasets use similar
scene configurations as the original BOP datasets. Each dataset contains scenes

1BlenderProc Pipeline: https://github.com/rwth-irt/BlenderProc.DissTimRedick

70

https://github.com/rwth-irt/BlenderProc.DissTimRedick

6.1 Experiment Design

(a) LM (b) T-LESS

(c) ITODD (d) STERI

Figure 6.1: Example scenes from the synthetic datasets.

rendered from five different views, as shown in Fig. 6.1, resulting in 25 images
per dataset.

• LM: 5 scenes, 15 objects textureless household items, nine distractors

• T-LESS: 5 scenes, 20 objects sampled from 30 textureless industrial relevant
objects, six distractors

• ITODD: 5 scenes, 25 objects sampled from 28 textureless industrial relevant
objects, five distractors

• STERI: 10 scenes, 20 objects sampled from 40 surgical instruments, 2-4
distractors

The synthetic surgical instruments (STERI) dataset contains more scenes, since
no real annotated datasets are available for surgical instruments. Therefore, a
more diverse dataset is required to test the application in Section 7.1. Each scene
of the STERI dataset consists of a pile of instruments generated by dropping CAD
models from an orthopedic standard sieve using a physics simulation. According
to the BOP convention, the origin of all mesh models is centered in the object.

71

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

6.1.2 Computer Hardware

The experiments ran on a workstation equipped with an AMD Ryzen Threadripper
PRO 5975WX 32-Cores CPU, 256 GB RAM, and an NVIDIA GeForce RTX 4090
GPU with 24 GB VRAM. CPU parallelization was not used, only GPU paralleliza-
tion. A Laptop equipped with an Intel(R) Core(TM) i7-7700HQ CPU, 16 GB RAM,
and an NVIDIA GeForce 940MX mobile GPU with 3 GB VRAM is also capable
of running the inference with longer runtimes. The algorithms can also run on a
CPU only with integrated graphics and OpenGL support, but ≈60 x slower.

6.1.3 Pose Error Metrics

An overview and rationale behind 6D pose error metrics can be found in the
evaluation methodology of BOP 2020 [32]. The goal is to select metrics commonly
used in the literature to enable comparability while focusing on the relevance of
robotic manipulation tasks. In particular, metrics designed for other applications
like augmented reality are not considered here. This thesis’ application setting
is similar to the industrial robotics setting presented by Gorschlüter et al. in the
following ways [1]:

• CAD models are available for surgical instruments from the manufacturer.
The systems are indoors, and lighting can be controlled to some extent.
However, end users may alter the lighting depending on their needs.

• High-end depth cameras are necessary to capture thin and shiny surgical
instruments, as no usable images could be captured with low-cost solutions.

• In contrast to industrial settings, cost is an important factor in clinics. Still,
research shows promising results in enabling lower-cost stereo-vision for
reflective materials [99].

Together with the LM dataset, the Linemod paper introduced two of the earliest
pose error metrics named average distance of model points (ADD) and average
distance of model points with indistinguishable views (ADD-S), also known
as ADI [28]. Because of their early introduction, they are the most widely used
metrics and thus lend themselves to enable comparability. ADD can be used for
non-symmetric objects:

𝑒𝐴𝐷𝐷 (P̂,P, 𝑉𝑀) = avg
v∈𝑉𝑀
∥P̂v − Pv∥2 (6.1)

Each of the 3D model’s vertices v ∈ 𝑉𝑀 is transformed using the estimated pose
P̂ and the ground truth pose P in Eq. (6.1). Then, the Euclidean distance between

72

6.1 Experiment Design

the transformed vertices is calculated. Finally, all distances are averaged, which
results in a single value for the ADD metric.

Pose estimates of symmetric objects are ambiguous. Consequently, the distance
between the same vertex can be large for two poses even though the models
are well aligned. Thus, Hinterstoisser et al. also proposed the ADD-S metric.
It is similar to ADD from Eq. (6.1), but avoids matching the vertices by indices
and searches the closest vertices via the min operator instead. Afterward, the
distances of the closest correspondences are averaged.

𝑒𝐴𝐷𝐷𝑆 (P̂,P, 𝑉𝑀) = avg
v1∈𝑉𝑀

min
v2∈𝑉𝑀

∥P̂v1 − Pv2∥2 (6.2)

As pointed out in [32], the average point distance metrics have three significant
shortcomings: First, these metrics heavily depend on the object geometry and the
vertex density. Averaging the distances results in parts of the model with a high
vertex density dominating the metric. Second, matching the nearest neighbor
vertices can result in unintuitively low pose errors of ADD-S because of the many-
to-one matching [19]. Finally, despite its original name, ADD-S is not invariant to
ambiguities caused by self-occlusions since all model points are included in the
calculation [3]. It is only invariant to object symmetries, so the namings "distance
of model points for symmetric objects" and ADD-S are more fitting for the metric.
Although this metric is not ideal, it is still considered in this thesis because it is one
of the most widely used metrics and enables comparability to other research.

To mitigate the issues of ADD-S, the maximum symmetry-aware surface dis-
tance (MSSD) has been introduced in a later iteration of BOP:

𝑒𝑀𝑆𝑆𝐷 (P̂,P, 𝑆𝑚, 𝑉𝑀) = min
S∈𝑆𝑚

max
v∈𝑉𝑀
∥P̂v − PSv∥2 (6.3)

Compared to ADD, MSSD calculates the maximum vertex distance for each
symmetry instead of averaging all vertex distances in Eq. (6.1). Moreover, each
transformation S from the set of global symmetries 𝑆𝑚 is applied to the ground
truth pose S, and the one with the lowest maximum distance is the MSSD error.
The MSSD metric is less dependent on the geometry and sampling density of
the model since it utilizes the maximum instead of the average used by the ADD-
S metric [32]. Moreover, the authors of BOP argue that the maximum vertex
distance is a strong indicator for a successful grasp of a robot.

One issue of the MSSD metric is that the symmetries require manual annotations
or an algorithmic search. Annotating the symmetries is tedious and heavily
depends on the choice of coordinate frames, making manual labeling prohibitive
for large datasets. The annotation effort is intractable, especially for the many
surgical instruments considered in this thesis. Algorithmic solutions must cover

73

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

a vast search space and might miss obvious symmetries due to computational
constraints. The set of symmetries 𝑆𝑚 requires a discretization of continuous
symmetries, introducing discretization errors in Eq. (6.3).

A possible solution that has not been introduced in the literature yet combines the
benefits of ADD-S and MSSD. The idea is to replace the average with the maxi-
mum operation in Eq. (6.2), resulting in the maximum distance of model points
for symmetric objects (MDD-S). This modification eliminates the geometry and
sampling density issues of ADD-S, as well as the time-consuming labeling that
MSSD requires.

𝑒𝑀𝐷𝐷𝑆 (P̂,P, 𝑉𝑀) = max
v1∈𝑉𝑀

min
v2∈𝑉𝑀

∥P̂v1 − Pv2∥2 (6.4)

Even so, the many-to-one matching of ADD-S as well as the self-occlusion
ambiguities of ADD-S and MSSD remain. Furthermore, many error metrics have
already been proposed and used throughout the literature, thereby hindering the
comparability of yet another metric. Thus, this thesis does not use the MDD-S
metric.

Instead of calculating point distances, the Visible Surface Discrepancy (VSD)
compares 3D rendered distance maps 𝐷̂ and 𝐷 of the visible object surface for
the estimated pose P̂ and ground truth pose P. Initially presented by Hodan et
al. in [3], VSD has been used and modified over the years in the BOP challenge
resulting in the following definition [19, 32]:

𝑒𝑉𝑆𝐷 (𝐷̂, 𝐷,𝑉,𝑉, 𝜏) = avg
𝑧𝑖∈𝑉∪𝑉

{
0 , 𝑧𝑖 ∈ 𝑉 ∩𝑉 ∧

��𝐷̂ (𝑧𝑖) − 𝐷 (𝑧𝑖)�� < 𝜏
1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.5)

The visibility masks 𝑉 and 𝑉 express whether the rendered distance maps 𝐷̂ and
𝐷 are in front of the measured distance map or occluded. Refer to [3] and [32]
for the details of generating the visibility masks. If parts of the object surface that
should not be visible are visible 𝑧𝑖 ∈ (𝑉 ∩𝑉), the pixel 𝑧𝑖 is penalized. Additionally,
if the absolute difference of the visible surfaces

��𝐷̂ (𝑧𝑖) − 𝐷 (𝑧𝑖)�� exceeds the toler-
ance 𝜏, the corresponding pixel is also penalized. Averaging the pixels over the
union of visible pixels 𝑉 ∪𝑉 results in a kind of Complement over Union.

3D cameras typically record depth images containing the distance from the cam-
era plane to the object points. In contrast, distance maps contain the Euclidean
distance from the camera center point to the object points. To convert a depth
image to a distance map, the pinhole camera model from Eq. (2.23) is inverted to

74

6.1 Experiment Design

reproject the depth pixels to 3D.

𝐷 (𝑧𝑖) =

©­­­«
𝑥

𝑦

𝑧

ª®®®¬

2

=

©­­­«
(𝑢 − 𝑐𝑥) 𝑧 ÷ 𝑓𝑥(
𝑣 − 𝑐𝑦

)
𝑧 ÷ 𝑓𝑦

𝑧

ª®®®¬

2

(6.6)

𝐷 (𝑧𝑖) is the resulting distance of pixel 𝑖, (𝑢, 𝑣)T are the image coordinates, (𝑥, 𝑦, 𝑧)T
the coordinates of the 3D point, and 𝑓𝑥 , 𝑓𝑦, 𝑐𝑥 , 𝑐𝑦 the pinhole camera parameters
from Eq. (2.23).

VSD is the only metric that only considers the visible parts of the object. A
grasp can only be successful if the robot reaches for a visible part of the object.
Therefore, metrics like MSSD, which consider the whole object surface, might
not correctly represent a grasp success in scenarios featuring occlusions. By
considering only the visible parts of the object, the VSD metric inherently handles
ambiguities caused by (self) occlusions or symmetries.

The conclusion is similar to Hodan et al. [3]: Even if the metrics are similar,
subtle differences in the definition can result in substantially different error values.
Different pose error metrics should be used according to the use case’s goal, for
example, the success probability of grasping in robotics or visual consistency in
augmented reality applications. Similar to the review of Gorschlüter et al. the
ADD-S and VSD error metrics are used in this work as they lend themselves to
industrial robotic applications which are similar to the setting in the sterile supply
[1]: They can be used with symmetric objects (eliminates ADD), do not require
labeling of symmetries (eliminates MSSD), and are comparable to the literature
(eliminates MDD-S).

6.1.4 Performance Score for Pose Estimation

A performance score summarizes the quality of a method on a whole dataset
of images that might contain multiple object poses. This score builds on the
previously introduced error metrics specific to a single object pose. A simplistic
approach would be to use the individual pose errors and average them directly.
However, an image-based pose estimation consists of two tasks: object detection
and object localization, which is the regression of the pose. An unsuccessful
detection leads to significant pose errors, distorting the overall performance score.
Thus, pose estimation performance scores are typically formulated as a binary
classification problem [3, 19, 28]. The machine learning nomenclature yields the
following definitions: A correctly estimated pose is considered a true positive (TP),
and a wrongly estimated one is a false positive (FP). If no pose is estimated for

75

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

a ground truth pose, it is a false negative (FN). Since no annotations exist for
locations without any object, the true negative (TN) class does not exist in this
context.

Early research on 6D pose estimation using the Linemod dataset uses the ac-
curacy as the overall score, defined as the division of the number of TP by the
number of predictions [28]. The localization problem involves detecting a known
number of object instances; see Section 1.1. If the pose of the same object
instance is estimated repeatedly, it could lead to an undesired high accuracy
score while all other instances have been ignored. Furthermore, Hodan et al. and
the BOP challenge use the recall as a performance score, which is the number of
correct poses divided by the number of annotated poses:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (6.7)

The difference in the evaluation is that matching the estimated and ground truth
poses is required. At most, one estimate must be matched to each ground truth
[3, 19]. Therefore, if the matchings are known, the number of predictions is the
same as the number of ground truth annotations. The number of annotated poses
is the denominator of the recall, and both scores are consequently the same for
known matchings.

As stated in [1], 𝐹𝑁 ≤ 𝐹𝑃 in the localization task since the number of predictions
is limited to the number of annotated instances, and each FP results in a FN.
Therefore, using a precision- or F1-based score only makes sense if the goal is
to evaluate the detection quality and reduce the number of FP.

The considered use case is similar to the industrial one presented in [1], so
identical average-recall-based scores are used. For each score, a different
criterion of correctness is used:

• ADD-S: A pose is considered correct if the ADD-S error is below a threshold
of 𝑒𝐴𝐷𝐷𝑆 < 0.1∅(𝑉𝑀) which is less than 10 % of the object’s diameter [28].

• VSD: A pose is considered correct for a VSD tolerance of 𝜏 = 20 mm and
thresholding the error score by 𝑒𝑉𝑆𝐷 < 0.3 as defined in BOP 2018 [19].
The authors deem this parametrization suitable for robotic applications.
Conversely, Hodan et al. stated that a threshold scaled by the object’s
diameter is less suitable for robotic manipulation tasks, as a successful
grasp depends on the absolute positioning error [3].

• VSDBOP: BOP 2019 and later evaluate a range of the object’s diameter for
the tolerance 𝜏 ∈ [0.05, 0.1, . . . , 0.5] ∅(𝑉𝑀). Moreover, the method evaluates
a range of thresholds 𝑒𝑉𝑆𝐷 (𝜏) < [0.05, 0.1, . . . , 0.5] for each 𝜏 resulting in

76

6.1 Experiment Design

100 evaluations per estimated pose and a factor of 100 for the number of
annotated poses [32]. The ten evaluations for different 𝜏 are expensive
since they involve operations on all image pixels. While the evaluation is
more expensive, averaging recalls for different thresholds summarizes the
recall/threshold curve similarly to the average precision in the PASCAL VOC
challenge [100]. Moreover, BOP 2019 and later target a broader range of
applications and do not focus on robotic tasks as much as BOP 2018.

For all criteria, only objects with >10 % of the projected surface visible are con-
sidered similar to the BOP challenge [19]. Similar to BOP, the average recall
combines the ADD-S, BOP, and VSDBOP recalls by averaging the three.

6.1.5 Evaluation of Pose Distributions

Probabilistic algorithms estimate a distribution of possible poses, but the BOP
has been designed for frequentist methods and expects a single pose to evaluate
the performance score. Among others, these are possible choices to select a
single sample from the distribution:

• Maximum posterior sample: The sample which has the highest unnormal-
ized posterior 𝑝(𝑥 | 𝑧) ∝ 𝑝(𝑧 | 𝑥)𝑝(𝑥) is selected. This choice is beneficial if
good prior information is available but not much data.

• Maximum likelihood sample: The sample which has the highest likelihood
𝑝(𝑧 | 𝑥) is chosen. This choice is beneficial if the prior is unreliable. Here,
tolerances of attached measurement devices or the unreliability of object
detectors such as CNNs might cause problems.

• Maximum of the distribution: Since the samples approximate the poste-
rior distribution, most samples should be located around the maximum of
the true posterior distribution. A histogram could be generated to find the
maximum, leading to discretization errors. Another possibility is to approxi-
mate the posterior via a kernel density. In this case, the maximum must be
interpolated, which is not trivial for quaternions. Both approximations have
a computational overhead, while the previous values are calculated during
inference. The maximum posterior sample is likely close to the maximum of
the sample distribution.

Using the maximum posterior or likelihood sample implies that commonly used
MCMC techniques, such as burn-in and thinning, would be disadvantageous.
Both techniques aim to better represent the posterior distribution by discarding
samples to reduce correlation, which might include discarding the best-performing
sample. If the distribution’s maximum is used, these techniques could be helpful,

77

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

Table 6.2: Baseline configuration consisting of parametrized prior and posterior distribu-
tions.

model 𝑝(t) 𝑝(o) 𝑝(z | x, o)

distribution N Bern Mix(N ,Exp,U) 𝐿𝑝𝑥

parameter 𝜎𝑡 𝑝(𝑐𝑜) 𝜎𝑧 𝛽𝑧 𝑧𝑚𝑖𝑛 – 𝑧𝑚𝑎𝑥 𝑐𝑟𝑒𝑔

value 30 mm 0.5 10 mm 1 m 0.5 − 1.5 m 50

as the histogram might be biased towards highly correlated samples. This work
uses the maximum likelihood sample because the algorithms presented mainly
rely on unreliable prior information for the initialization.

6.2 Baseline Model-Sampler Configurations

Baseline configurations should be as simple as possible to achieve usable re-
sults. Here, simplicity regards the complexity of the equations and the ease of
implementation. All parameter choices in this section have been hand-tuned in
preliminary experiments to enable convergence for the qualitative analysis of
the samplers in Section 6.2.3. Only after determining a sufficient image crop
resolution and a reasonable particle count in Section 6.3 the baseline scores can
be determined. Therefore, the quantitative evaluation follows in Section 6.4.

6.2.1 Probabilistic Model

Table 6.2 gives an overview of the probability distribution choices for the prior
and likelihood. Block-wise sampling is used for the position t and the orientation
R components; see Section 5.2.6. The position prior is modeled as a normal
distribution, which uses the center of the object’s bounding box as the mean.
Choosing a parametrization for the standard deviation 𝜎𝑡 of the position prior
represents the expected uncertainty of extracting a position from segmentation
masks or RFID tags. In the simplest case, no prior information is available for
the object masks, and only a position prior is known. Thus, an uninformed prior
of 𝑝(𝑐𝑜) = 𝑝(𝑐𝑜) is assigned to the object classification, where all pixels have a
50:50 chance of being classified as the object or background. No prior knowledge
exists about the object’s orientation. Hence, the orientation prior is modeled by a
uniform distribution for SO(3) rotations.

78

6.2 Baseline Model-Sampler Configurations

Table 6.3: Baseline configurations of the sampler parameters.

sampler 𝑁𝑠𝑡𝑒𝑝𝑠 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
𝑁𝑒 𝑓 𝑓

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
𝑝(t𝑘+1 | t𝑘) 𝑝(R𝑘+1 | R𝑘)

MH 1250 n.a. n.a. N(t𝑘 , 1 cm) N (R𝑘 , 0.1 rad),Uq

MTM 500 10 n.a. N(t𝑘 , 1 cm) N (R𝑘 , 0.1 rad),Uq

SMC 200 100 0.5 n.a. N(R𝑘 , 0.1 rad),Uq

The standard advice for probabilistic perception is to overestimate the noise of
range sensors, which avoids overconfidence in the measurements and increases
robustness [12]. However, this work needs to balance precision for robotic
manipulation and robustness. Therefore, a standard deviation of 𝜎𝑧 = 10 mm
overestimates a typical depth sensor noise2. Wüthrich et al. explain that the
model is not sensitive to the parametrization of the occlusion model, and the
exponential distribution is parametrized by the scale 𝛽𝑧 = 1 m [59]. The model
uses the 𝐿𝑝𝑥 pixel count regularization from Eq. (4.37). Preliminary tests suggest
that 𝑐𝑟𝑒𝑔 ∈ [50, 100] is a reasonable choice, which likely depends on the choice of
the prior parametrization.

6.2.2 Samplers and their Proposals

Table 6.3 shows the parameters of the baseline sampler, including their propos-
als. An appropriate number of particles 𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 is determined systematically
in Section 6.3. Resampling applies only to the SMC sampler, and the resam-
pling threshold is set to half of the particle count. Because the position priors
are expected to be sufficiently good, the position proposals are local moves
parametrized by a relatively small 𝜎𝑡+1 to focus more on pose refinement than
exploration. Adaptive sampling is implemented as best practice for the SMC
samplers, so no tunable parameter exists for the position proposal of this sam-
pler. For the orientation, all samplers use local moves from a normal distribution
parametrized by 𝜎𝑟+1 and global moves from a uniform distribution. Global moves
should increase the chance of samplers escaping from local optima.

As outlined in Section 5.2, the vanilla versions of the sampling algorithms typically
fail to yield satisfactory outcomes. Thus, all samplers use the previously described
best practices throughout the experiments. All algorithms use a GPU parallelized
version of the image likelihood. Moreover, all inherently parallelizable sampling

2Intel Realsense D400 series specifies an accuracy of ≈ 2.5 − 5 mm, Zvid One+ Medium an
accuracy of 0.11 mm at 1 m distance.

79

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

x-pixels / px
0 250 500

y-
pi

xe
ls

 /
px

0

200

400

Figure 6.2: Full scene from T-LESS dataset, with the object of interest highlighted.

algorithms also parallelize the evaluation of the particles on the GPU, namely
MTM and SMC. Furthermore, all samplers target an inference time of ≈0.5 s
and use a resolution of 30 px × 30 px if not stated otherwise; these values are
determined systematically in Section 6.3.2.

6.2.3 Qualitative Analysis of Samplers

This section aims to give an intuition of the sampler’s behaviors for estimating
6D poses. Representatively, the MH and SMC samplers have been executed
on a challenging example scene containing a symmetric object in clutter, shown
in Fig. 6.2. A smooth truncated exponential distribution and pixel classifications
have been used to qualitatively evaluate the classification probabilities. More-
over, this section employs a higher resolution of 100 px × 100 px for improved
visualizations.

Results

Figure 6.3 shows the chain and the resulting density of the MH sampler. The
sampler is stuck in one optimum in the first third. Afterward, the orientation jumps
to another optimum. Thus, the corresponding position density plot shows sharp
modes for the position components with small modes nearby. In contrast, the
orientation’s x- and y-components show some mixing behavior after escaping the
optimum. The orientation density consists of two modes for all components.

80

6.2 Baseline Model-Sampler Configurations

iteration ÷ 5
0 20 40

po
si

tio
n

/ m

0.0
0.2
0.4
0.6
0.8

position / m
0.0 0.2 0.4 0.6 0.8

de
ns

ity
 /

-

0

100

200

iteration ÷ 5
0 20 40

or
ie

n.
 /

ra
d

-2
-1
0
1
2

orientation / rad
-2.5 0.0 2.5

de
ns

ity
 /

-

0

1

2

3

x
y
z

Figure 6.3: Qualitative result of the MH sampler: chain and densities for the scene in
Fig. 6.2.

position / m
0.0 0.2 0.4 0.6 0.8

de
ns

ity
 /

-

0

50

100

150

orientation / rad
-3 0 3

de
ns

ity
 /

-

0.0

2.5

5.0x
y
z

Figure 6.4: Qualitative result of the SMC sampler: densities of the particle cloud for the
scene in Fig. 6.2.

x-pixels / px
0 20 40

y-
pi

xe
ls

 /
px

0

20

40

(a) SMC max. likelihood estimate

x-pixels / px
10 20 30 40 50

y-
pi

xe
ls

 /
px

10

20

30

40

50

cl
as

s
pr

ob
ab

ili
ty

0.0

0.5

1.0

(b) Weighted mean of class probability

Figure 6.5: Best pose of the SMC inference in Fig. 6.4, resolution of 100 px × 100 px for
the scene in Fig. 6.2.

81

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

SMC samplers evolve a particle cloud instead of a chain. Therefore, Fig. 6.4
only shows the density of the final particle cloud instead of a chain. The position
density is sharply peaked compared to the orientation density, which exhibits two
pronounced modes for the x- and y-components and is flat for the z-component.
Moreover, Fig. 6.5a shows a rendering of the maximum likelihood estimate from
the SMC sampler overlaid on the color image. It is only slightly different from
the ground truth pose from Fig. 6.2. Moreover, Fig. 6.5b shows the estimated
pixel classification probabilities as the weighted mean image of the per-particle
classifications. The occluding objects in the front are clearly separated and
not classified as the object of interest. Around the edges, the classification
probabilities are less confident. No poses cover the other regions, which retain
the prior probability of 0.5.

Discussion

Generally, the behavior of the samplers is as expected: The MH sampler tends to
get stuck in local minima and requires a long burn-in phase until it samples from
the posterior. Consequently, the distribution displayed in the density plots does not
represent the posterior distribution. As the burn-in period varies, advanced chain
diagnostics would be required to discard samples from this period. Meanwhile,
the SMC algorithm converges to a distribution that contains a maximum likelihood
pose that can be visually confirmed as the actual pose. These observations
are a first indicator that chain-based algorithms perform worse than the SMC
algorithm.

The narrow distribution of the position compared to the flat multimodal landscape
of the orientation posterior indicates that the orientation is more challenging to
estimate. This hypothesis aligns with the experience from the literature, which of-
ten focuses on estimating viewpoints [66]. However, interpreting the density plots
requires some care since Gaussian kernels approximate the curves from discrete
samples. As a result, the density might look more normally distributed and smooth
than it is. Even more, care is required when interpreting the orientation xyz-Euler
angles. The nonlinear transformations distort the distribution as described in
Section 4.2.3. Thus, the flat peak of the orientation’s z-component from Fig. 6.4
indicates the expected multimodality caused by object’s symmetries.

82

6.3 Image Resolution, Number of Particles, and Runtime

x-pixels / px
0 5 10 15

y-
pi

xe
ls

 /
px

0

5

10

15

x-pixels / px
0 10 20 30

y-
pi

xe
ls

 /
px

0

10

20

30

x-pixels / px
0 10 20 30 40 50 60

y-
pi

xe
ls

 /
px

0

10

20

30

40

50

60

Figure 6.6: Image crops with resolutions ranging 15-60 px of a cat from the LM dataset.

6.3 Image Resolution, Number of Particles, and
Runtime

Existing vision-based 3D bin-picking solutions promise cycle times of approxi-
mately 10-30 s for a pick and place task and Gorschlüter et al. deem an inference
time of 9 s as not acceptable [1, 101, 102, 103]. Moreover, for planning, it is
beneficial to estimate the pose of multiple objects in a scene to determine the best
candidate; see Section 7.3. Besides, faster inference allows rapid iterating on the
models during research. With this consideration, the goal is to limit inference time
to 0.5 s. The main factor influencing the runtime is the number of calculations
per inference. Preliminary experiments have indicated that the complexity of the
models only marginally influences the runtime. This section hypothesizes that
an optimal configuration can be found for the image resolution and number of
particles given a constrained time budget.

6.3.1 Influence of Image Resolution

The quality of pose estimates should be expected to improve with higher res-
olutions, since more object details can be captured. Figure 6.6 shows what is
recognizable for different resolutions. However, the number of calculations grows
quadratically with the edge lengths of an image. Subsequently, fewer inference
steps can be performed given a constrained time budget. Moreover, launching
compute kernels on the GPU has an overhead that might dominate the inference
time for low resolutions. Thus, the task of this section is to determine a resolu-
tion that offers enough details without degrading the performance with too few
iterations.

83

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

resolution / px
2 5 10 15 20 25 30 40 50 75 100

re
ca

ll
/ s

0.0

0.2

0.4

0.6

0.8

1.0

st
ep

s
pe

r
in

fe
re

nc
e

/ -

0

100

200

300

400

ADDS
VSD
VSDBOPavg. inference steps

Figure 6.7: Recall and mean number of inference steps of the SMC algorithm for different
quadratic image sizes a time budget of 0.5 s.

The SMC has been executed using the baseline configuration from Sections 6.2.1
and 6.2.2 with different quadratic image resolutions of 2-100 px for 0.5 s per pose
inference. One scene from each synthetic dataset has been used to calculate the
recalls.

Results

Figure 6.7 shows the recall over the side length of the quadratic image crop. While
the ADD-S recall starts and stays at a high value, the VSD-based recalls start
with a low recall of <0.2. These recalls saturate for the range of 15-75 px and then
drop slowly.

Moreover, Fig. 6.7 displays the mean number of inference steps for the 0.5 s
inference budget. After starting with 441 iterations for a resolution of 2 px × 2 px,
the number quickly drops to 333 iterations for 20 px × 20 px and steadily drops
afterward to 303 iterations for a resolution of 100 px × 100 px.

Discussion

The results suggest that a wide range of resolutions is possible without any
noticeable impact on the overall performance. Compared to color images, depth
images also have a resolution for the third dimension, which is not reduced when
cropping. Therefore, surprisingly low resolutions of 15 px × 15 px result in a good
performance, even though the cat from Fig. 6.6 becomes unrecognizable for a

84

6.3 Image Resolution, Number of Particles, and Runtime

human. As a rule of thumb, if a human can recognize the object pose in an image,
an algorithm should also be able to do so. Depending on the object size in the
image, cropping might upscale the image if the target resolution is too high. In the
best case, unnecessary computations are the consequence; in the worst case,
the extrapolation might introduce additional errors.

6.3.2 Optimal Number of Particles and Inference Time

Samplers might benefit from more particles in multimodal problems to avoid local
minima. Moreover, sampling algorithms generally profit from more inference steps.
This section aims to find the optimal number of particles which maximizes the
recall. Based on this choice, a tradeoff can be determined between the inference
time and average recall of the pose estimates.

Consequently, the samplers have been executed by combining different numbers
of particles and inference time budgets. Again, only a single scene from the
LM, T-LESS, and ITODD datasets has been used to keep the experiment time
tractable.

Results

pose inference time / s
0 1 2 3

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSD

pose inference time / s
0 1 2 3

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

ADDS

pose inference time / s
0 1 2 3

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSDBOP MTM 5 particles
MTM 10 particles
MTM 20 particles
MTM 40 particles
MH

Figure 6.8: Recalls of chain-based samplers on synthetic data for varying particle num-
bers and inference steps. MTM uses particles, MH uses only a single sample
per inference step.

85

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

pose inference time / s
0.0 0.5 1.0

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSD

pose inference time / s
0.0 0.5 1.0

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

ADDS

pose inference time / s
0.0 0.5 1.0

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSDBOP
10 particles
50 particles
100 particles
250 particles

Figure 6.9: Recalls of the SMC sampler for varying particle numbers and inference steps.

Figure 6.8 presents the results for the chain-based MH and MTM algorithms. A
vertical dashed line at 0.5 s highlights the target inference time. Once more, all
curves show a saturating behavior except the ADD-S curve, which is almost a
step function. No significant difference is observable for a varying number of
particles in the MTM sampler. Besides, the recall curve rises slightly faster for
the MH algorithm than the MTM variants. The VSD-based recalls do not saturate
even if the algorithms run for 3 s.

Figure 6.9 shows the results for the SMC algorithm. The curves represent the
combined recalls for all three datasets plotted over the measured inference time.
All curves show a saturating behavior; only the ADD-S recalls almost represent
a step function. The VSD recalls saturate after ≈1 s. Notably, all particle counts
lead to a similar performance except a low particle count of ten.

Discussion

Most noticeably, the SMC algorithm outperforms the chain-based algorithms
for lower inference times. Even when running the MCMC and MTM algorithms
for more than five times longer, the recalls are still lower than the SMC. The
MH and MTM recalls have not saturated yet, indicating that the chain-based
algorithms eventually sample from the posterior. However, it takes very long for
these samplers to escape local minima by generating a good sample from the
prior.

86

6.4 Quantitative Evaluation of Baseline Samplers on Synthetic Data

The performance of the MTM sampler shows no significant difference for different
particle numbers. It also performs similarly to the MH sampler, even though it
should have a higher acceptance rate [87]. Much of the literature on approximate
Bayesian inference focuses on the acceptance rate to evaluate the algorithm per-
formance, dismissing that more evaluations result in longer iterations. Additionally,
the general MTM algorithm has the drawback of requiring two model evaluations
per proposal. In summary, no improvements are expected in practical applications
with limited runtime. Finally, the MTM algorithm is more complicated than the MH
algorithm, so the latter is the preferred one.

A difference is only noticeable between the SMC samplers for the low number of
ten particles. All other particle numbers lead to the same performance, which
enables the targeted time of 0.5 s per pose inference. Using at least 50 particles
might help to spread the initial particle wide enough, so some particles are close
enough to the true pose and avoid local optima. For weaker hardware, the
runtime might jump suddenly if the memory requirements become too high due
to the number of particles and image pixels. These jumps are likely due to the
large memory allocations required on the GPU. Using 100 particles for the SMC
sampler is a sensible choice.

6.4 Quantitative Evaluation of Baseline Samplers on
Synthetic Data

This section quantitatively evaluates the baseline configurations of the MH and
SMC samplers, as described in Sections 6.2.1 and 6.2.2. The baseline config-
uration has been executed on the full synthetic LINEMOD, T-LESS, and ITODD
datasets to calculate the recalls and error densities.

Results

Figure 6.10 shows the recall curves for the three baseline samplers over the error
thresholds. Because the errors are normalized, all error thresholds range from
zero to one. The highlighted areas with the vertical lines represent the thresholds
from the BOP challenge to consider a pose estimate correct. ADD-S and VSD
use a single threshold, while VSDBOP uses a range of thresholds to average
the recalls. One observation is that the ADD-S recall curves are similar for all
three samplers. Besides, the ADD-S curves have a much steeper slope than the
other two error metrics. Characteristically, the VSD and VSDBOP curves feature

87

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

error threshold / -
0.0 0.5 1.0

re
ca

ll
/ -

0.0

0.5

1.0
VSD

error threshold / -
0.0 0.5 1.0

re
ca

ll
/ -

0.0

0.5

1.0
ADDS

error threshold / -
0.0 0.5 1.0

re
ca

ll
/ -

0.0

0.5

1.0
VSDBOP

MH
MTM
SMC

Figure 6.10: Recalls of the baseline configuration on synthetic data.

Table 6.4: Recalls of the baseline samplers on synthetic data.

sampler ADD-S VSD VSDBOP average

MH 0.806 0.526 0.477 0.603

MTM 0.759 0.455 0.428 0.547

SMC 0.853 0.735 0.675 0.754

the same characteristics, with the only difference that VSD raises slightly faster
than VSDBOP. Moreover, the chain-based algorithms’ curves are almost linear
for these metrics, while the particle-based SMC features a bump and outperforms
the other two samplers. The MTM sampler performs slightly better than the MH
sampler.

Figure 6.11 provides insights into the distribution of the pose errors. These density
plots are directly related to the recall curves, as the recall is the sum of the errors
distributed below a threshold. Most errors are located at the extremes: The errors
are either very low or very high. While hte VSD-based metrics have some errors
distributed between the limits, the errors of ADD-S are located almost exclusively
at the limits.

Finally, Table 6.4 shows the recalls based on the remarks from Section 6.1.4. By
a large margin, the SMC algorithm has the highest score for all metrics. MH and
MTM perform similarly.

88

6.4 Quantitative Evaluation of Baseline Samplers on Synthetic Data

normalized error / -
0.0 0.5 1.0

de
ns

ity
 /

-

0
1
2
3
4

VSD

normalized error / -
0.0 0.5 1.0

de
ns

ity
 /

-

0

10

20

ADDS

normalized error / -
0.0 0.5 1.0

de
ns

ity
 /

-

0

2

4

VSDBOP

MH
MTM
SMC

Figure 6.11: Density of the pose errors for the baseline configuration on synthetic data.

Discussion

One reason for the sub-par performance of the chain-based samplers could be
that these samplers require a different parametrization to perform well. However,
a more likely explanation is that the chains get stuck in local optima, and random
global moves rarely escape from these optima, as clarified in the qualitative
analysis of Section 6.2.3. This section validates what has been outlined in Sec-
tion 6.3.2: The performance characteristics of the MH and MTM algorithms are
comparable, with the latter performing slightly worse. Even though MTM might
theoretically have a higher acceptance rate, approximately the same number
of pose hypotheses can be evaluated given a constrained time budget. There-
fore, the suggestion is to prefer the MH over the MTM algorithm for its more
straightforward implementation.

Looking at the distribution of errors in Fig. 6.11 signals that the SMC sampler
either converges to the true pose or diverges to a wrong estimate. The errors of
the chain-based samplers are spread out over the whole interval. As the initial
sample is drawn from the global prior, these spread values could be local optima
close to this global initialization. These density plots also highlight the similarity
of the average recall scores for the VSDBOP and VSD error metrics. Most of
the VSDBOP thresholds contain the same error distribution as the single VSD
threshold. One threshold for the VSD-recall is cheaper to evaluate than multiple
thresholds for the VSDBOP recall. Hence, the VSD recall should be used if many
evaluations are required, e.g., for automatic parameter tuning. On the contrary,

89

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

the VSDBOP is a good benchmark choice since it provides a better summary of
the recall-threshold curve and saturates later.

6.5 Ablating the Probabilistic Model

Until now, the focus has been on ablating the inference algorithms. The SMC
sampler outperformed the other samplers in the previous experiments. Thus, it is
the only algorithm used during the ablation of the models.

For the prior model, three choices are available: using a segmentation mask from
a learned model, a point prior from a localization sensor, or both. Additionally,
the likelihood can use different probability distributions to model occlusions, pixel
classification can be modeled, and different regularization strategies can be used.
The following sections will evaluate the average recalls for these combinations on
the full synthetic LM, T-LESS, and ITODD datasets.

6.5.1 Choice of Priors for Position and Classification

Section 4.2.1 proposed using segmentation masks from a machine learning model
or additional sensors for localizing the position of a point, e.g. from RFID tags.
Until now, all experiments only used a point prior. This section examines using
masks to calculate the point prior and as a prior for the pixel-object classifications;
see Section 4.3.5. Since recent deep learning-based segmentation models
perform well on a wide variety of tasks, the probabilities for the mask represent
a high confidence of 𝑝(𝑐𝑜) = 0.7 and 𝑝(𝑐𝑜) = 0.3. Using only the point prior,
e.g., from an RFID sensor, involves a flat prior 𝑝(𝑐𝑜) = 𝑝(𝑐𝑜) = 0.5 for the pixel
classification. When both prior sources are used, the point prior is used for the
position, and the mask prior is used only for the observation model.

Results

Figure 6.12 displays the recalls for each prior and each synthetic dataset sepa-
rately. In almost all cases, the prior models achieve the best results on the LM
dataset, followed by the T-LESS and ITODD datasets. Moreover, using both prior
sources results in the highest recalls. Using only the point prior achieves better
results on the LM dataset, while the mask prior achieves better results on T-LESS
and ITODD.

90

6.5 Ablating the Probabilistic Model

ITODD LM T-LESS

re
ca

ll
/ -

0.5

0.6

0.7

0.8

0.9

1.0
ADDS

ITODD LM T-LESS
0.5

0.6

0.7

0.8

0.9

1.0
VSDBOP

ITODD LM T-LESS
0.5

0.6

0.7

0.8

0.9

1.0
VSD

mask
point
both

Figure 6.12: Recalls on synthetic data for different prior choices.

prior ADD-S VSD VSDBOP average

point 0.849 0.746 0.676 0.757

mask 0.860 0.766 0.700 0.775

both 0.876 0.783 0.717 0.792

Table 6.5: Recalls on synthetic data for different prior choices. The best results are bold.

Discussion

The point prior model is the same as the one from the baseline in Section 6.4 and
achieves similar sores. Compared to this baseline, the mask prior scores ≈1.5 %
points better, and the combination of mask and point prior scores ≈3 % percent
points better. The improvement from the point to the mask prior is likely due to an
improvement in the likelihood, which can focus more on the visible object parts.
The reason for the improvement from the mask prior compared to using both is
most likely due to the bias of the calculation of the position prior; see Section 4.2.1.
In conclusion, more prior information should be used if it is available. However,
the similar scores underline that the SMC sampler and probabilistic models are
generalizable enough to perform similarly well regardless of the prior source.

To classify the difference in percent points: A difference of one to three percent
points between the mask and the point prior can be enough to score about
five places better on the BOP 2023 leaderboard. The BOP leaderboard also
shows that methods typically achieve much lower ITODD scores than on the other
datasets. A possible explanation is that ITODD features smaller objects, such as
screws, which provide less information on the pose.

Most large-scale scenarios like logistics do not offer point priors since attaching
RFID tags to all objects is a significant cost factor. Therefore, using a trained
object detector and segmentation masks is often cheaper and easier to implement.

91

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

On the other hand, regulations in medical applications like the sterile supply
require precise instrument tracking. Thus, RFID tags might already be available.
Moreover, surgeons can point to the object, so point priors are more likely to be
available.

To classify the present capabilities of mask priors: Based on the most recent
BOP leaderboards3, zero-shot segmentation models perform much worse than
models trained on known objects. On the other hand, this thesis assumes that
CAD models are available for generating synthetic training data. If the number
of classes is not too large, models trained on synthetic training data perform
similarly4 to models using real data.

6.5.2 Modeling Occlusions: Exponential Distribution,
Classification, Regularization

Occlusions reduce the information on the object pose, cause more ambiguities,
and are thus challenging to model. Ergo, different exponential distributions for
modeling the measurement of occlusions and pixel-object classification have been
presented as possible solutions in Sections 4.3.3 and 4.3.5. The experiments in
this section compare the recalls for different combinations of the:

• exponential distribution: Using no exponential to determine whether model-
ing occlusions is required or if the uniform distribution for modeling outliers
suffices. Using an unmodified exponential or a smooth truncated exponen-
tial to test if more precise modeling improves the estimates.

• classification: How does modeling the pixel-object classification or not (yes
or no) change the performance?

• regularization: If the pixel-object classification is modeled, these estimates
can be used for the 𝐿0 class regularization. This regularization is compared
to the 𝐿𝑝𝑥 pixel count regularization.

Because the choice of the classification prior directly influences the mixture model
of the likelihood function, it is expected to lead to different results. Thereby, the
same prior choices from the previous Section 6.5.1 are compared: a flat prior of
𝑝(𝑐𝑜) = 𝑝(𝑐𝑜) = 0.5, and a mask prior with 𝑝(𝑐𝑜) = 0.7 and 𝑝(𝑐𝑜) = 0.3.

3October 2023 average precision: 0.412 (zero-shot), 0.619 (known objects)
4Average precision: 0.579 (synthetic only), 0.619 (synthetic and real)

92

6.5 Ablating the Probabilistic Model

occlusion model
no exp smooth

cl
as

s.
 &

 r
eg

ul
.

no, Lₚₓ

yes, Lₚₓ

yes, L₀

Flat prior

0.664

0.639

0.636

0.662

0.638

0.636

0.660

0.629

0.634

occlusion model
no exp smooth

cl
as

s.
 &

 r
eg

ul
.

no, Lₚₓ

yes, Lₚₓ

yes, L₀

Mask prior

0.699

0.665

0.663

0.698

0.658

0.665

0.699

0.663

0.654

re
ca

ll
/ -

0.64

0.66

0.68

Figure 6.13: VSDBOP recalls for combinations of different exponential distributions with
classifications and regularizations.

Results

Figure 6.13 presents the average VSDBOP recalls in two matrices. The left matrix
presents the recalls for the flat prior, which is indifferent and does not include the
masks. In contrast, the masks were used to assign a classification prior to pixels
in the right matrix. All scores increase from the flat to the mask prior by 3 − 4 %
points.

The rows contain the results for using or not using pixel classifications and the
different regularization types. Using object classifications results in similar scores
for the upper two rows, regardless of the regularization strategy. For both prior
choices, the results of not using the pixel classifications score 3 − 4 % points
higher. Combining mask priors with pixel classifications results in scores almost
as good as the flat prior without classifications.

Different choices for the occlusion models are displayed in the columns. There is
no significant difference for different occlusion models.

Discussion

Intuitively, more complex models should be able to represent complex relation-
ships more accurately. Still, similar to other optimization domains like model
predictive control, a simple occlusion model produces results similar to more
complex ones. This result suggests that occlusions can be interpreted as outliers,
so modeling them using a uniform distribution is sufficient.

93

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

Table 6.6: Bounds of the tunable parameters. * is only required in MH sampler.

parameter 𝑝(𝑐𝑜) 𝜎𝑧 𝜎𝑟+1 𝜎𝑡+1∗

value 0.5-1 0.1-100 mm 0.01 − 𝜋 rad 1-100 mm

Similar to Section 6.5.1, using the mask prior improves the result of the model
without pixel-object classifications. One has to remember that the synthetic
dataset contains perfect mask annotations, so results on real data with imprecise
mask estimates might result in worse results.

Like complex occlusion models, pixel classification has been developed to improve
the model’s performance under heavy occlusions by focusing on the relevant parts.
Nevertheless, the result is the opposite and generally degrades the performance.
One possible explanation is that the classification model utilizes the same models
used for the likelihood of the depth measurements. In contrast, machine learning
models for segmentation can use additional information from the training data.
Therefore, this model can infer no additional information, and it lends itself more
to produce an additional refined mask output for downstream tasks.

6.6 Automatic Parameter Tuning

Tuning the probabilistic model and sampler aims to find a good tradeoff between
exploration and exploitation. An automatic tuning algorithm can determine this
tradeoff systematically and improve the performance of the samplers. Moreover,
a fair comparison is only possible for properly tuned algorithms. Specifically,
this section re-evaluates the tuned MH and SMC algorithms using optimized
parameters.

Since the parameters are optimized for the BOP benchmark, segmentation mask
priors are available, but no point priors from additional sensors. Following the best
performance from the previous section, a model without pixel-object classifications
is tuned. The choice of the occlusion models and regularization strategy is
arbitrary and uses the unmodified exponential due to its simplicity.

Table 6.6 gives an overview of the tunable parameters and their ranges. These
parameters are only a subset, since tuning all parameters is intractable due to the
high dimensionality and evaluation times. The ranges exceed reasonable values
by one magnitude to allow exploration of unintuitive values. Only one parameter
is tuned for highly correlated parameters to avoid singularities in the optimization

94

6.6 Automatic Parameter Tuning

landscape. Moreover, multivariate variables are simplified by parametrizing them
using only a single standard deviation for all components.

The weight of the prior and likelihood is primarily determined by the standard
deviation 𝜎𝑡 of the position prior, the regularization constant 𝑐𝑟𝑒𝑔, and the stan-
dard deviation 𝜎𝑧 of the depth sensor noise. A reasonable parametrization for
the position prior based is possible based on typical object sizes, which are in
the scale of centimeters. The parametrization of the depth sensor noise also
influences the weight of measuring the object versus measuring occlusions or
outliers. Thus, 𝜎𝑧 is tuned to balance multiple objectives, and 𝑐𝑟𝑒𝑔 stays fixed.

Tuning the proposal models calibrates the tradeoff between exploration and ex-
ploitation. The MH sampler requires tuning the position and orientation proposals
via their standard deviations 𝜎𝑡+1 and 𝜎𝑟+1 respectively. Because of the adaptive
proposal for the position, only the orientation proposal has to be tuned for the
SMC algorithm.

A readily available bilevel centers algorithm for parameter tuning5 is used. Grid-
and random-sampling-based approaches did not result in good scores after a
reasonable number of iterations. Since different datasets contain different types of
objects and scene configurations, the optimal parameters might vary per dataset.
Therefore, each model-dataset combination is optimized separately. The optimizer
is executed for 200 iterations, resulting in ≈2 h of tuning per combination.

Results

Table 6.7 shows the optimized parameter values and the corresponding VSD re-
calls using the SMC sampler. All pixel classification probabilities 𝑝(𝑐𝑜) increased
from 0.7 to values of 0.86-0.9. The standard deviation 𝜎𝑧 of depth sensor noise
decreased from 10 mm to 2.6-8.7 mm. While the optimum of the previous param-
eters is similar to the hand-tuned ones, the standard deviation of the rotation
proposals is magnitudes larger and increased from 0.1 rad to 2.64 − 𝜋 rad. More-
over, the recall increased significantly to 0.9 for the best per-dataset parameter
sets from 0.74 for the baseline parameters.

The trends and magnitudes of the optimized model parameters for the MH are
similar to the ones of the SMC sampler: First, the values for the pixel classification
prior 𝑝(𝑐𝑜) are even higher at 0.9-0.99. Second, the standard deviation 𝜎𝑧 of
the depth sensor noise is again similar to the hand-tuned one, albeit higher at
7.22-16.8 mm. Finally, the standard deviation 𝜎𝑡+1 of the position proposals is

5HyperTuning.jl: https://github.com/jmejia8/HyperTuning.jl

95

https://github.com/jmejia8/HyperTuning.jl

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

Table 6.7: Best parameter set and corresponding VSD recall using the SMC sampler.

dataset 𝑝(𝑐𝑜) 𝜎𝑧 𝜎𝑟+1 VSD recall

ITODD 0.863 2.679 mm 2.641 rad 0.878

LM 0.865 8.705 mm 𝜋 rad 0.938

T-LESS 0.901 4.887 mm 𝜋 rad 0.883

Table 6.8: Best parameter set and corresponding VSD recall using the MH sampler.

dataset 𝑝(𝑐𝑜) 𝜎𝑧 𝜎𝑟+1 𝜎𝑡+1 VSD recall

ITODD 0.987 7.219 mm 2.476 rad 3.414 mm 0.634

LM 0.907 16.823 mm 𝜋 rad 10.524 mm 0.672

T-LESS 0.984 13.702 mm 2.973 rad 4.567 mm 0.706

Table 6.9: Selection from optimized parameters similar to SMC for ITODD. * is only
required in MH sampler.

parameter 𝑝(𝑐𝑜) 𝜎𝑧 𝜎𝑟+1 𝜎𝑡+1∗

value 0.9 5 mm 𝜋 rad 10 mm

Table 6.10: Recalls of the tuned samplers on the synthetic validation data.

sampler ADD-S VSD VSDBOP average

MH selection 0.812 0.529 0.477 0.606

MH individual 0.783 0.513 0.452 0.583

SMC selection 0.877 0.776 0.724 0.792

SMC individual 0.875 0.785 0.735 0.798

similar to the hand-tuned one with a range of 3.4-10.5 mm compared to 10 mm.
The proposal distribution for the orientation is again parametrized by very high
values of 𝜎𝑟+1 close to 𝜋.

Table 6.10 contains the recall values with optimized parameters on the synthetic
validation scenes, which have not been used during the optimization. Since the
optimized parameters show a similar trend, the recalls were evaluated on a selec-
tion of the parameters. Table 6.9 contains this selection, which is based on the
optimization results for the SMC algorithm on the ITODD dataset from Table 6.7.
Additionally, the individual best per-dataset parameters were evaluated.

For the SMC sampler, the individual parametrization outperforms the selection
on the VSD recalls by ≈1 % point, but the ADD-S recall is almost the same. In

96

6.6 Automatic Parameter Tuning

contrast, the selection outperforms individual parameters for the MH sampler.
Compared to the baseline configuration with mask priors from Sections 6.5.1
and 6.5.2, the improvements for the VSD errors range between 0 − 3 % points.
Overall, it is essential to note that the recalls on the holdout data are much lower
than the ones of the best runs per dataset.

Discussion

In most cases, the optimized parameters are in the same order of magnitude as
the hand-tuned baseline parameters, indicating that the hand-tuned values were
reasonable choices. Only the standard deviation of the local rotation proposals
𝜎𝑟 is many magnitudes larger than the baseline. A possible conclusion could be
that exploration is more important than exploitation, since no prior information
exists on the orientation. If the accuracy of the estimates was the optimization
goal instead of the recalls, the results would likely be different because the recalls
tolerate some error by using a threshold to discriminate between correct and
wrong estimates.

The similar recall scores of the baseline, selected, and individual parameters
demonstrate that the algorithm is insensitive to the parametrization. As long as
the parameters are in the same order of magnitude as the presented ones, they
should work similarly well. At least for the three BOP datasets used during the
optimization, an individual parameter optimization shows no significant benefit.
However, most objects’ sizes and shapes are relatively similar in these three
datasets. For example, only a few long, thin, and tiny objects are present.

Finally, some skepticism is necessary towards the parameter tuning results, since
the VSD recalls during the optimization are much higher than those for the holdout
data. This behavior typically indicates an overfitting, which might be the case
here, since a single scene does not contain many annotated poses. However,
rerunning the sampler using these parameters on the same scenes resulted in
scores similar to the ones on the holdout data. Consequently, the high scores of
the best runs are most likely due to a lucky random seed leading to an excellent
initial particle distribution. One possibility to reduce the effect of the randomness
is to increase the amount of data used during the parameter optimization, which
quickly leads to multiple hours or days of runtime.

In conclusion, the performance of the inference is insensitive to the selected
parameters, and the evaluation results during the optimization steps are very
noisy. Therefore, the parameter optimization from this section can only improve
performance to a limited extent.

97

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

Table 6.11: Recalls of the best sampler on synthetic and validation data.

dataset ADD-S VSD VSDBOP average

synthetic 0.875 0.785 0.735 0.798

validation 0.899 0.790 0.654 0.781

6.7 Benchmark for 6D Object Pose Estimation:
Results on Real Data

The BOP validation datasets for ITODD, occluded LM, and T-LESS are used to
evaluate the synth-to-real transferability of the results from the previous sections.
This section only evaluates the best-performing model-sampler configuration: an
SMC sampler using an unmodified exponential for occlusions, which does not
model the pixel-object classifications and uses the tuned selection of parameters
from Section 6.6. The ground truth masks are used instead of detections from a
machine learning model to improve comparability with the previous sections.

Later, the SMC-based pose estimation is executed on the much larger BOP test
sets to compare it to the state of the art. For the test sets, no ground truth masks
are available, but the BOP challenge 2023 provides default segmentation masks6

from a machine learning model [40]. Moreover, the ground truth poses are unavail-
able to the participants. Instead, the challenge provides an official submission
form7, guaranteeing that all submissions are comparable. Compared to the pre-
vious sections, the BOP system averages the VSDBOP, MSSD, and maximum
symmetry-aware projection distance (MSPD) recalls, to include augmented reality
applications.

Results

Table 6.11 compares the results on the real validation data to the results on the
synthetic data from section Section 6.6. Moreover, Fig. 6.14 the corresponding
densities of the pose error metrics. The recalls for the ADD-S and VSD metrics
are almost identical for the synthetic and real validation data. Only the VSDBOP
recalls dropped significantly by ≈8 % points. Compared to the error densities
from the baseline evaluation in Fig. 6.11, the peak of the error values is shifted to
higher values and compressed.

6GDR-Net masks for task 1: https://bop.felk.cvut.cz/challenges/bop-challenge-2023/
7http://bop.felk.cvut.cz/sub_upload

98

https://bop.felk.cvut.cz/challenges/bop-challenge-2023/
http://bop.felk.cvut.cz/sub_upload

6.7 Benchmark for 6D Object Pose Estimation: Results on Real Data

normalized error / -
0.0 0.5 1.0

de
ns

ity
 /

-

0
1
2
3
4
5
6

VSD

normalized error / -
0.0 0.5 1.0

de
ns

ity
 /

-

0
10
20
30
40

ADDS

normalized error / -
0.0 0.5 1.0

de
ns

ity
 /

-

0
2
4
6
8

VSDBOP

synthetic
validation

Figure 6.14: Density of the pose errors for the tuned models on the synthetic and the
validation datasets.

Table 6.12 shows the results on the test data using the official BOP leaderboard8.
Selected methods from the leaderboard November 2023 are included and sorted
with the best average recalls on top. GPose2023 is the best-performing method
for seen objects and gives an impression of possible scores. Compared to the
localization of seen objects, localizing unseen objects does not allow training
on the objects from the dataset. This work has been evaluated on the later
task with default detections. GenFlow is the current leader in localizing unseen
objects using default detections. SAM6D is the only method that outperforms
the SMC sampler while requiring significantly less than 10 s per image for the
unseen object localization required for robotic manipulation tasks (November
2023). Most methods require more than 30 s per image on this task. The SMC
sampler from this work has been executed with different compute budgets and is
called SMC-<time>s-CNOS. All methods except the SMC sampler use a neural
network with a fixed compute budget. In contrast to this work, which uses only
depth images, all other methods also use the corresponding color images.

Compared to the overall best method, the average recalls are much lower, with
a difference of almost 40 % points. This difference shrinks to ≈20 % points if the
methods use the default detections and do not see the objects during training.
This difference shrinks even further to ≈14 % points compared to SAM6D, the
only method with a comparable runtime for localizing unseen objects. Notably,

8https://bop.felk.cvut.cz/leaderboards/pose-estimation-unseen-bop23

99

https://bop.felk.cvut.cz/leaderboards/pose-estimation-unseen-bop23

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

Table 6.12: Average recalls from BOP submission for the task: 6D localization of unseen
objects. GPOSE2023 is grayed out since it was submitted to the 6D localiza-
tion of seen objects task.

method LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V avg. 𝑠𝑒𝑐𝑜𝑛𝑑𝑠/𝑖𝑚𝑎𝑔𝑒
GPose2023 0.794 0.914 0.964 0.737 0.704 0.950 0.928 0.856 2.670

GenFlow-MultiHypo16 0.635 0.521 0.862 0.534 0.554 0.779 0.833 0.674 34.578

SAM6D-CNOSmask 0.648 0.483 0.794 0.504 0.351 0.727 0.804 0.616 3.872

SMC-1.0 s-CNOS 0.558 0.423 0.599 0.316 0.389 0.585 0.454 0.475 6.051

SMC-0.5 s-CNOS 0.512 0.415 0.511 0.290 0.358 0.538 0.403 0.433 2.992

the most considerable differences occur on datasets with texture-rich objects,
such as TUD-L and YCB-V. The difference shrinks for datasets focusing on
industrial objects, such as T-LESS and ITODD. On ITODD, the SMC sampler
even outperforms SAM6D. Finally, the scores of the SMC inference improve
significantly by increasing the per-object inference time from 0.5 s to 1 s.

Discussion

If ground truth masks are known, the Bayesian pose estimator performs similarly
on synthetic and real data. While the distribution of the VSD and VSDBOP errors
both shifted to higher values, only the VSDBOP recall declined. The VSD thresh-
old from the BOP 2018 challenge for considering a pose correct is high enough
that the recall does not get affected. In contrast, averaging several thresholds in
VSDBOP successfully discriminates this density shift. Still, the VSD recall is more
suitable for the targeted robotic applications than VSDBOP as it does not include
scaling; see Section 6.1.4. Therefore, the sim-to-real performance is considered
good. This performance also implies that synthetic datasets can evaluate the
algorithms quantitatively in applications without annotated data.

Compared to the state-of-the-art methods in the BOP leaderboard, the Bayesian
inference pose estimator has much improvement potential. However, the quality
of the default segmentations provided by BOP is also much lower than the best
ones for seen objects, with an average precision of only 0.4129 compared to
0.61910. The Bayesian pose estimation results exhibit a reasonable performance
compared to other methods using only default detections. GenFlow indicates that
higher scores are possible, but they use much more computation time with a more
capable NVIDIA A100 GPU and additionally color images. SAM6D also uses

9CNOS (FastSAM) https://bop.felk.cvut.cz/leaderboards/segmentation-unseen-bop23
10ZebraPoseSAT-EffnetB4 https://bop.felk.cvut.cz/leaderboards/segmentation-bop22

100

https://bop.felk.cvut.cz/leaderboards/segmentation-unseen-bop23
https://bop.felk.cvut.cz/leaderboards/segmentation-bop22

6.8 Summary

depth and color images and performs better than the SMC sampler. Using color
images might be the differentiating advantage, as the most considerable differ-
ences occur on texture-rich datasets. This conclusion is similar to the ablation of
the prior information in Section 6.5.1: Using more information generally improves
performance; in this case, more information is available to the observation model
instead of the prior model.

A major advantage of the sampling-based methods from this work over the neural
networks is that the computing budget can be limited as required. A reasonable
performance can be expected even for a per-object time budget as low as 0.5 s.
However, the performance difference from 0.5 s to 1 s compute time suggests
that more runtime optimizations are required to allow more inference steps per
pose estimate. Moreover, the scores on the validation dataset indicate that the
Bayesian pose inference can produce results similar to the state-of-the-art given
good segmentation masks.

6.8 Summary

This section establishes the evaluation methodology, including datasets and
relevant pose error metrics11. The ADD-S is one of the oldest metrics, invariant
to object symmetries, and enables comparability to the literature. However, the
experiments demonstrate that this metric fails to differentiate the performance,
as ADD-S saturates very early. In contrast, the selected VSD and VSDBOP
metrics successfully differentiate the performance while being invariant to object
symmetries and occlusions.

Starting by constituting a hand-tuned baseline configuration, the presented mod-
els and samplers have been ablated on synthetic datasets similar to real datasets
from the BOP challenge. Even the first qualitative results demonstrate that the
chain-based MH and MTM samplers perform much worse than the particle-based
SMC sampler. Using multiple parallel hypotheses seems to help to explore the
multimodal posterior distribution. The chain-based samplers might be able to
achieve similar results but require much longer inference times. Benchmarking
the samplers for different image resolutions and particle counts shows that the
performance is almost constant for both parameters if they are not excessively low.
Resolutions as low as 30 p × 30 pixels can be sufficient to distinguish poses. Even
the baseline model configuration with the SMC sampler can achieve an average

11Implementations: https://github.com/rwth-irt/PoseErrors.jl

101

https://github.com/rwth-irt/PoseErrors.jl

6 Experimental Comparison of Models and Samplers for 6D Pose Estimation

VSD recall of 0.735, which should enable a successful robotic manipulation of
most objects.

Different prior sources have been compared in this chapter for the quantitative
ablation. Naturally, more sources of prior information and more precise priors
help to achieve better results. Using precise point priors, which could be provided
by RFID tags attached to objects and segmentation masks, helps to increase the
average VSD recall to 0.783. Using more complex models for occlusions proves
unnecessary, since even simple models that interpret occlusions as outliers
perform similarly. Moreover, explicitly estimating the pixel-object classification
probabilities decreases the performance and should only be used as an additional
output, not as part of the probabilistic model. Finally, the automatic parameter
tuning does not significantly improve the performance of the models, with an
average VSD recall of 0.785. A much larger tuning dataset would be required to
overcome overfitting the random noise, resulting in hours or even days required
for tuning. It can be suggested that simple models suffice, and the algorithms are
insensitive to the exact parameter choices, so a simple tuning might suffice.

Finally, the best-performing model sampler configuration12 has been evaluated
on BOP validation, and test sets. During the validation, ground truth masks have
been available. The validation results show, that the performance of the Bayesian
pose estimation on real datasets is comparable to that of synthetic datasets.
State-of-the-art methods perform much better than the SMC sampler on the test
set of the BOP challenge. One reason for the performance difference is that the
BOP default segmentation masks used to evaluate the SMC sampler are much
worse than the masks produced by the state-of-the-art methods. Still, methods
that use the same default segmentations outperform the SMC sampler but with a
lower difference. This difference might be explained by the other methods using
color images as an additional input modality. These methods, in particular, score
better on datasets with textured objects. Comparing state-of-the-art methods to
the performance of the SMC sampler using ground truth masks on the validation
data indicates that the SMC sampler could be competitive if better segmentation
masks were available.

12Occlusion model: unmodified exponential, no pixel-object classifications, and an SMC sampler
using a MH kernel.

102

7 Applications in Medical Robotics

Previously, the focus was on ablating and evaluating the methods and algorithms
presented in Chapters 4 and 5 on standardized datasets and metrics. This
chapter aims to determine how flexible these methods are by applying them to
two medical applications.

The first application is the pose estimation of surgical instruments in the context of
robotic bin-picking applications in Section 7.1. Compared to the previous datasets,
surgical instruments are long, thin, and shiny, making them particularly challenging
for camera-based pose estimation. The second application targets pose tracking
of bones in the context of facial reconstruction surgeries in Section 7.2. For this
application, the SMC algorithm from the previous chapters is reformulated as
particle filter (PF) to track the 6D pose based on a stream of images. Moreover,
Section 7.3 provides insight into the practical steps required to use the pose
estimates in robotic manipulation tasks.

7.1 Pose Estimation of Surgical Instruments

Compared to most objects from the previous datasets, surgical instruments are
typically long and thin. Sieves returned from the operating room expose much
clutter of stacked instruments and might contain additional garbage. Additionally,
many instrument classes look similar, for example, clamps and scissors. Further-
more, many models in slightly different sizes exist for each class. This variety
makes it impossible to train a model that can reliably detect the exact model
identification number. Due to regulations, instrument manufacturers attach RFID
tags or print small QR codes on the instruments to document their flow efficiently.
Therefore, additional sensors for point priors are considered to be available for
the pose estimation.

As no sufficiently large dataset of real instrument poses exists, the algorithm
is evaluated on the synthetic STERI dataset generated with BlenderProc. The
sim-to-real gap has proven to be sufficiently small for the Bayesian inference pose
estimation to generate interpretable results; see Section 6.7. Each scene of the

103

7 Applications in Medical Robotics

Table 7.1: Results for the STERI specific model parameter tuning using the SMC sampler.

dataset 𝑝(𝑐𝑜) 𝜎𝑧 𝜎𝑟+1 VSD recall

STERI 0.995 6.587 mm 0.105 rad 0.662

dataset consists of 20 objects sampled from 40 standard surgical instruments
for orthopedic surgeries and two to four distractors. The instruments have been
dropped onto a flat surface using a physics simulation to generate ten scenes
and five views per scene. Moreover, the Zivid camera used to capture the
instruments for robotic manipulation has very low noise and can filter specular
artifacts. Therefore, the simulated and real data results are expected to be
comparable.

This section only evaluates the SMC sampler and automatically tunes the model
parameters as presented in Section 6.6. The sampler is executed on the remain-
ing nine scenes to evaluate the performance with different time budgets, similar
to Section 6.3.2. Since many surgical instruments are thin, the crop resolution
is increased to 60 px × 60 px. Otherwise, only one or even zero pixels cover the
thinnest parts. Running the SMC sampler using only a point prior without a mask
fails in most cases; see Appendix A.4. Thus, the model uses the ground truth
segmentation masks to generate interpretable results.

7.1.1 Results for Simulated Instruments

Except for the measurement noise 𝜎𝑧, the tuned parameters from Table 7.1 are
different from the ones of the BOP datasets in Section 6.6. The prior probability
𝑝(𝑐𝑜) for the classification prior is much higher and almost one. In contrast,
the local orientation proposal’s standard deviation 𝜎𝑟+1 is much smaller and
close to the hand-tuned baseline configuration. Finally, even the best-performing
parameter tuning run scored a VSD recall of only 0.662, which is the worst SMC
performance in all experiments.

Visualizing the recalls in Fig. 7.1 is similar to particle-runtime-recall plots in
Section 6.3.2. At the target runtime of 0.5 s, highlighted by the vertical dashed
line, the VSDBOP and VSD have a value of ≈0.5. After ≈3 s, the VSD-based
recalls start to saturate, which takes six times longer compared to the BOP
datasets. However, the limits of these recalls are similar to the ones on the BOP
datasets at scores of 0.75 − 0.8.

104

7.1 Pose Estimation of Surgical Instruments

pose inference time / s
0 2 4

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSD

pose inference time / s
0 2 4

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

ADDS

pose inference time / s
0 2 4

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSDBOP

100 particles

Figure 7.1: Recall over inference time for the STERI dataset.

7.1.2 Discussion on Pose Estimation of Surgical Instruments

The results suggest that estimating the pose of long and thin instruments is much
harder for presented pose estimation algorithms than estimating the pose of
objects from the BOP datasets. A first indicator of why it is so hard can be found
in the tuned value of the classification prior 𝑝(𝑐𝑜) parameters. This value is almost
one, meaning the algorithm requires confident masks to estimate a pose. On the
flip side, this implies that if no masks are available, regions around the instrument
have a high likelihood.

Furthermore, the inference time required to achieve similar recalls on the STERI
dataset as on the BOP datasets is much larger. Longer times until convergence
indicate that the probability of randomly generating a good pose estimate is much
lower for these thin instruments. This lower chance points out a limitation of the
pixel-wise comparison for calculating the image likelihood. Figure 7.2 shows that
almost no rendered pixels overlap with the instrument pixels in the measured
image if the orientation of the instruments deviates from the true orientation. In the
case of only a few overlapping pixels, the pixel-wise likelihood fails to distinguish
poses. Methods that extract and match features would be able to overcome this
issue, e.g., by calculating a 3D distance instead.

Moreover, the frequent failures without masks can also be explained by the thin
nature of the instruments. One explanation is that the likelihood of an instrument
located just below the surface is similar to the likelihood of matching the instrument.
Figure 7.3 validates this behavior, as the distribution of the x and z orientation

105

7 Applications in Medical Robotics

x-pixels / px
0 50 100

y-
pi

xe
ls

 /
px

0

50

100

(a) Ground truth pose.

x-pixels / px
0 50 100

y-
pi

xe
ls

 /
px

0

50

100

(b) Pose diverged into surface.

Figure 7.2: Overlay render of a surgical instrument for the described poses.

position / m
0.0 0.5 1.0 1.5

de
ns

ity
 /

-

0

10

20

30

40

orientation / rad
-5 0 5

de
ns

ity
 /

-

0.0

0.5

1.0
x
y
z

Figure 7.3: Density plots for the estimated poses in Fig. 7.2b

components is almost uniform. The constrained orientation matches exactly the
surface as shown in Fig. 7.2b, and the instrument is free to rotate in the axis
normal to the surface. Even simple segmentation algorithms for flat surfaces
could counter this behavior. A more advanced approach would be to train a
classifier that only has to know two classes: instrument or background. Learning
two classes should simplify the training instead of learning to classify thousands
of different instrument variants.

To summarize, Bayesian inference can be used for pose estimation of surgical
instruments, but is significantly more challenging than previous datasets. Segmen-
tation masks are a mandatory requirement to prevent the algorithm from diverging
into flat surfaces, and the inference time budget should be at least 3 s instead of
0.5 s. One possible improvement could be a likelihood function, which contains
semantic information such as object coordinates to compare non-overlapping
parts; see Section 8.1.

106

7.2 Particle Filtering for 6D Pose Tracking of Iliac Crest Bones

7.2 Particle Filtering for 6D Pose Tracking of Iliac
Crest Bones

In facial reconstruction surgeries, bone grafts, such as the iliac crest, can replace
defective jaw bones [104]. A long-term goal is to control a robot to cut bones
precisely so defective bones can be replaced seamlessly. In contrast to bin-
picking applications, the scene is not static, as the surgeons or the robot might
move the bone. One of our previous publications has shown that a particle filter
can be used to track the 6D pose of an iliac crest bone in the context of facial
reconstruction [74]. This section shows that the general SMC framework for the
pose estimation on static images can also be applied to the state estimation
of dynamic systems. In addition to the previous work, explicitly modeling pixel
classification probabilities (Section 4.3.5), the choice of exponential distribution
for modeling occlusions, and block-wise sampling (Section 5.2.6) of the position
and orientation components are evaluated.

7.2.1 Motivation, Boundary Conditions, and Goal

Currently, 3D-printed templates are the gold standard for facial reconstruction
[104]. Using computed tomography scans, surgeons digitally plan the templates,
so a replacement bone fragment can exactly replace a defective bone. This
approach is precise but unflexible, with long manufacturing and delivery times. The
aim is to use robotic surgery for similarly precise but more flexible interventions
[74].

Fully automated robotic surgeries will not be feasible soon, and surgeons will
still handle most of the work collaboratively with the robot. In control theory, the
surgeons’ actions must be considered disturbances or a source of uncertainty
for the filter algorithm. They might move a bone to a different position for better
accessibility, so the system has to handle uncertain dynamics. Moreover, the
surgeons might cause heavy occlusions when handling the bone. Even during
the cutting procedure, mild to medium occlusions must be taken into account
since at least the tools are in view.

Robust tracking with high precision and low noise is required to control a robot
even under disturbances. A reasonable tradeoff is to allow larger deviations
during occlusions and movements as long as the tracking does not diverge. While
cutting, the surgeons keep the bone still, which requires less robustness but high
precision with low noise.

107

7 Applications in Medical Robotics

Table 7.2: Particle filter parameters. The standard deviations of the motion model are
time-normalized and without time units.

motion model observation model

¥𝝈𝑡 ¥𝝈𝑟 𝜆𝑣 resolution 𝜎𝑧 𝛽𝑧 𝑧𝑚𝑖𝑛 – 𝑧𝑚𝑎𝑥 𝑝(𝑐𝑜)
1 mm 0.001 rad 0.9 80 px × 60 px 1 mm 1 m 0.15-10 m 0.5

7.2.2 Motion and Observation Models

The motion model for the system dynamics is described using the same constant
decaying velocity model as in [74].

x𝑡+1 = x𝑡 ⊕ (¤x𝑡 + 0.5 a𝑡) (7.1)
¤x𝑡+1 = 𝜆𝑣 ¤x𝑡 + a𝑡 (7.2)

For simplicity, the discrete Euler integration uses a normalized Δ𝑇 = 1, so the
tracking rate is directly encoded in the noise vector a𝑡 ∼ N(0, [¥𝝈𝑡 , ¥𝝈𝑟]T) resembling
a random acceleration. In Eq. (7.1), the ⊕ operator highlights that the state’s
orientation is a quaternion perturbed by the integrated angular velocity; see
Eq. (4.13). The ⊕ operator becomes a regular addition for the position vector.
Energy dissipation motivates the decaying velocity factor 𝜆𝑣 < 1 in Eq. (7.2) and
prevents the filter from diverging due to integrating positive velocities over a long
time.

The observation model is the same as the one used to infer poses in static
scenes, but with the following changes Section 4.3. Cropping images introduces
additional discretization errors, leads to jitter during tracking, and is not used: see
Appendix A.2.6. Instead, the resolution of the images is increased to 80 px × 60 px.
The experiments evaluate the robustness against occlusions and compare

• a simple model, similar to the previously published one. It uses an unmodi-
fied exponential to model occlusions and does not model pixel classifica-
tions.

• a complex model. This model uses the smooth truncated exponential to
model occlusions, calculates the pixel class probabilities, and uses the 𝐿0
class regularization.

Table 7.2 contains parameter values for the particle filters’ model. These values
are deliberately similar to the ones from the previous publication to aid compara-
bility. Due to the high frame rate of 90 Hz of the depth camera, the motion model
is characterized by low noises ¥𝝈𝑡 and ¥𝝈𝑟 . A high decay factor 𝜆𝑣 allows higher
velocities and enables tracking dynamic motions. Compared to the previous

108

7.2 Particle Filtering for 6D Pose Tracking of Iliac Crest Bones

sections’ models, the depth camera’s measurement noise is characterized by a
very low standard deviation 𝜎𝑧 = 1 mm. Moreover, 𝜎𝑧 is constant instead of a
function of the previous publication’s depth 𝜎𝑧 = 𝑓 (𝑧).

Moreover, the previous publication’s baseline filter implementation used a trun-
cated exponential distribution to model occlusions. No pixel classifications have
been modeled, nor has a regularization been used in the image likelihood. The
baseline filter used only 500 particles to achieve 90 Hz on weaker hardware.

7.2.3 Filter Design

This work compares jointly proposing and evaluating a new position and orienta-
tion to a block-wise sampling as described in Section 5.2.6. When sampling block-
wise, the sampler proposes one component, evaluates the likelihood, reweights
the particles, and resamples them if required. The particle filter runs these steps
twice per image to incorporate all observations into the position and orientation.
Consequently, the block-wise sampler only uses 600 particles compared to the
1250 particles of the joint sampler to achieve the camera’s frame rate of 90 Hz.

A similar strategy has been proposed in [105], deemed coordinate particle filter,
but they sample each subcomponent, instead of blocks of variables. For example,
they would sample the x component of the position instead of the 3D vector.
Sampling two blocks is a compromise, reducing the number of particles by about
two instead of seven times.

Instead of using the maximum likelihood or maximum-a-posterior estimate, the
particle filter outputs the weighted mean of the particles. Compared to the other
two alternatives, the mean can smooth the discretization error of discrete particles.
Using the mean is only reasonable for unimodal distributions, which should be
the case, as the motion model leads to very local proposals.

7.2.4 Evaluation

For the evaluation, the smc pf particle filter configurations are evaluated on the
dataset from our previous publication [74]. A static bone phantom has been
recorded at 90 Hz using a moving robot-mounted camera, which enabled annotat-
ing the camera’s ground truth pose using the precise robot position measurements.
The dataset features varying degrees of occlusion (see Fig. 7.4): the robot starts
at a view with low occlusions, moves to a view with heavier occlusions, and finally
back to the start position. All filter configurations performed similarly well for low

109

7 Applications in Medical Robotics

(a) mild occlusions (b) medium occlusions (c) heavy occlusions

Figure 7.4: Images from the dataset with different levels of occlusions [74].

to medium occlusions (≈20 − 50 %), so this work focuses on medium to heavy
occlusions (≈50 − 95 %) to differentiate the configurations.

Two issues are present in this dataset: First, the timestamps of the robot and
camera are not precisely synchronized. Second, the dataset is missing cam-
era frames for ≈300 ms at 5 s and 10 s due to bottlenecks while recording the
dataset.

Moreover, the particle filters from the previous publication are used as a baseline:
The at robot particle filter had access to the robot kinematics and did not miss
frames as opposed to the offline dataset. When not using the robot kinematics, the
bone appears to move in the image and mimics a dynamic scenario without using
additional markers to annotate the pose. This scenario was also tested previously
by the at only tracker, which only used the camera images for tracking.

7.2.5 Results

For clarity, the results of the simple model with block-wise sampling and the
complex model with joint sampling are located in Appendix A.7. For all trackers,
the error increases towards the middle of the period and decreases towards
the end. The baseline at only particle filter, which does not use the forward
kinematics of the robot, is the one with the highest noise and jitter. Using the
forward kinematics in at robot results in lower errors and noise. In all cases, the
smc pf shows lower jitter than the at particle filters. As shown in Appendix A.7,
using the maximum likelihood instead of the mean pose results in high-frequency
noise.

Figure 7.5 shows the position and orientation errors of the filter using the simple
model and joint sampling of the position and orientation. Besides, the figure
depicts the relative ESS. This filter diverges after ≈5 s, where frames are missing
and the movement direction changes. In contrast, the block-wise sampler using

110

7.2 Particle Filtering for 6D Pose Tracking of Iliac Crest Bones

time / s
0 5 10

er
ro

r
/ °

0

5

10

15

20

iteration / -
0 500 1000

re
la

tiv
e

E
S

S
 /

-

0.0

0.5

1.0
0 5 10

er
ro

r
/ m

m

0

50

100

50-95% occlusion, joint, simple, 84Hz

smc pf

at robot
at only
smc pf

Figure 7.5: Particle filter results using joint sampling and an unmodified truncated expo-
nential without pixel classifications.

the same model remains stable, albeit with significant position and orientation
errors; see Appendix A.7. After diverging, the ESS drops below the resampling
threshold of 0.5 for most iterations. Moreover, the ESS of the block-wise sampler
in Appendix A.7 is generally higher than the ESS of the joint sampler.

Figure 7.6 shows one of the best-performing models for heavy occlusions featuring
the complex model, which calculates the pixel-object classifications. Block-wise
and joint sampling perform similarly with this model. The magnitude of the position
error is similar to the baseline, which had access to the robot kinematics. For
the phase of heavy occlusions in the period of 5-8 s, the error is lower than the
baseline most of the time. The jitter is also less pronounced during this period than
the baseline’s. Moreover, using the complex model for both sampling strategies,
the ESS is characterized by a lower noise level. Again, the ESS is higher for the
block-wise than the joint sampling strategy.

7.2.6 Discussion

Before running the experiments, the expectation was that the baseline particle
filter with access to forward kinematics would perform best, since this filter only
has to track a static object. With a constant velocity near zero, the noise should
stay low. Block-wise sampling was expected to target the course of dimensionality

111

7 Applications in Medical Robotics

time / s
0 5 10

er
ro

r
/ °

0

5

10

iteration / -
0 500 1000

re
la

tiv
e

E
S

S
 /

-

0.0

0.5

1.0
0 5 10

er
ro

r
/ m

m

0

10

20

30

40
50-95% occlusion, block-wise, complex, 93Hz

smc pf

at robot
at only
smc pf

Figure 7.6: Particle filter results using block-wise sampling and a smooth truncated
exponential with pixel classifications.

and reduce particle deprivation. Moreover, the expectation was that the smooth
truncated exponential and the pixel classification model occlusions would be more
accurate and improve the accuracy during heavy occlusions.

Remarkably, the smc pf using the complex model outperforms the baseline
filter at robot with access to the robot kinematics. Since the at robot filter used
significantly fewer particles, discretization errors most likely cause the jitter. Using
a higher particle count due to the improved hardware increases the granularity
of sampling the pose space and reduces the jitter. Another possible reason is
that the mean of the particle cloud is used as the output instead of the maximum
likelihood particle. However, using the mean only filters high-frequency noise
and is most likely not the reason for the reduced jitter. Still, the baseline filter
uses a model comparable to this work’s simple model but does not suffer from
high errors during heavy occlusions. Thus, having additional information for the
motion model makes the filter more robust but does not improve the accuracy.
The camera sensor, amount of occlusion, and number of particles are likely the
main factors influencing the achievable accuracy.

As expected, sampling the position and orientation block-wise improves the
stability of the filter. One indicator that supports this behavior is the increased
ESS compared to jointly sampling the whole pose. A higher ESS indicates a more
diverse particle cloud, which keeps track of more hypotheses. More hypotheses
also improve the chance of tracking the object if the motion changes directions.

112

7.3 Practical Use of Pose Estimation in Robotic Manipulation Tasks

Moreover, a lower ESS results in more frequent resampling. Each resampling
step introduces sampling errors, which can also degrade performance.

Higher errors occur for the position during heavy occlusions when using the
simple model in Fig. A.7. However, the orientation errors are usually similar to
the baseline. A similar dodging behavior could be observed during the practical
evaluation of the baseline samplers during surgeries. If the model is not tuned
well, the estimated position shifts away from the occluded object towards the
free space. In contrast, the complex model with pixel classifications maintains
low errors. Note that this contrasts the results on pose estimation from a single
image in Section 6.5.2 where the results got worse when using the classifications.
Therefore, modeling classifications might help under heavy occlusions but require
a good initialization for the orientation. Using the pixel classifications might allow
the algorithm to focus on the relevant visible parts and increase the robustness.

In conclusion, all sensors that can improve the proposals should be used to pre-
vent the degeneration of the particle cloud and increase robustness. If the camera
is not attached to a robot, many modern 3D cameras have an integrated inertial
measurement unit, which can be used in the motion model. Block-wise sampling
improves accuracy and increases the ESS, which leads to less resampling. Using
a more complex and arguably more accurate model with pixel classifications and a
smooth truncated exponential drastically improves the performance. However, the
parameters of the motion and observation model require some tuning. Automatic
tuning for specific applications to eliminate this special care is advisable, but only
possible if sufficiently diverse annotated data is available [106].

7.3 Practical Use of Pose Estimation in Robotic
Manipulation Tasks

This section aims to give a practical overview of using the pose estimates to
control a robot in manipulation tasks. Controlling a robot based on probabilistic
perception is often referred to as decision-making, and an outlook can be found in
Section 8.1. This section focuses on the practical steps to use 6D pose estimates
to control a robot in manipulation tasks, such as bin picking or bone cutting.
Practical experiences were collected for bin-picking surgical instruments. The
required steps include calibrating the robot camera setup, calculating a goal pose,
planning and executing a collision-free trajectory, and compliant control of the
robot when making contact with the object and environment. For practicality, this
section introduces tools from the Robot Operating System (ROS) if available and
focuses less on the theoretical foundations. An open and up-to-date resource

113

7 Applications in Medical Robotics

Figure 7.7: Grasp planning on a surgical clamp. Left: sampling and ray tracing candidate
points, middle: friction cones, right: grasp quality via convex hull.

that provides theoretical foundations is the MIT course on robotic manipulation1

[107].

7.3.1 Local Plan: Model-Based Grasp Candidates

Experts could annotate grasp poses similar to surgery planning, where surgeons
manually specify the cutting edges. However, thousands of different objects make
this approach impractical, so grasp poses should be planned automatically. While
magnetic and suction grippers simplify grasp planning by requiring only a single
contact point, the former might grab multiple instruments, and the latter struggles
with thin objects. This section focuses on parallel grippers, which have been used
to grasp surgical instruments successfully.

For a parallel gripper, a grasp candidate consists of two points on the object’s sur-
face, indicating where the gripper should make contact. The first step consists of
randomly sampling a point on the object’s surface, calculating the corresponding
surface normal vector, and tracing a ray along this vector. If the ray crosses multi-
ple surfaces, the point with the largest ray distance avoids grasping candidates
between two surfaces. For example, Fig. 7.7 shows the sampled point in blue,
two points on the ray between surfaces, and the selected second grasp point.
The candidate can be discarded if the distance exceeds the gripper’s width.

Classically, the quality of a grasp candidate is determined by calculating the
friction cones, which are normal to the surface. The grasp quality is the distance
of the closest facet of the convex hull of the wrenches, highlighted as the blue
line in the right image of Fig. 7.7 [108]. If the origin is outside the convex hull, the
force-closure condition is not met, and the grasp will fail.

1Robotic Manipulation; Perception, Planning, and Control: https://manipulation.csail.mit.
edu/index.html

114

https://manipulation.csail.mit.edu/index.html
https://manipulation.csail.mit.edu/index.html

7.3 Practical Use of Pose Estimation in Robotic Manipulation Tasks

Figure 7.8: Transform the plan from the object frame to the robot base frame for the
eye-in-hand scenario.

After determining a grasp candidate, the two contact points must be lifted to a 6D
pose, allowing the end effector to be positioned. The grasp center point is located
in the middle of the two points. Moreover, the connection line between the two
points defines the axis of the end effector frame, which points from one finger
to the other. However, the end effector can rotate around this axis, resulting in
infinite solutions. In practice, this is solved by considering grasps only from the
top and checking for reachability using the robot kinematics. If a model of the
world exists, grasps that would cause collisions can be rejected using a simulation
as described in Section 7.3.3. More recent approaches use deep learning to
generate the grasp candidates by training in simulations [109]. These learning-
based methods operate directly on the measured point cloud and can learn to
avoid collisions in most cases.

7.3.2 Transforming Local Plans using Camera-Based Pose
Estimates

Plans are typically defined in the local object coordinate system. However, the
goal poses of the end effector and trajectories are typically defined in the robot
base coordinate frame. Calculating the planned goal pose in the robot base frame
BPP requires chaining transformations as depicted in Fig. 7.8:

BPP = BPE EPC CPO OPP (7.3)

where OPP is the Planned end effector pose in the Object frame, CPO the pose of
the object in the Camera frame, EPC the pose of the camera in the End effector
frame, and BPE the pose of the end effector in the robot Base frame. By definition,

115

7 Applications in Medical Robotics

the planned pose OPP of the end effector is known in the object frame. The
object’s pose in the camera frame CPO results from the pose estimation and
tracking algorithms presented in this thesis.

Assuming that the robot is calibrated and the tool can be attached precisely, only
the camera mounting needs to be calibrated. Figure 7.8 displays the eye-in-hand
scenario, where the camera is rigidly attached to the end effector. Because of the
rigid attachment, the camera’s pose in the end effector frame EPC is constant and
needs to be calibrated only once. For the calibration procedure, a known object
is placed statically in the camera’s view, so the object’s pose in the robot’s base
frame BPO is constant, too. Then, the robot moves the end effector to different
poses BPE

𝑖
so the camera can capture corresponding object poses CPO

𝑖
. These

measurements result in the following equation system:

BPO
𝑖 = BPE EPC CPO

𝑖 (7.4)

This equation system can be solved using optimization algorithms, typically by
rewriting it in the form AX = YB [110]. Theoretically, this calibration could be
executed online using the algorithms from this work to estimate the poses CPO

𝑖
of a

known object. If a color or gray-scale camera is part of the 3D camera, calibration
packages, such as MoveIt Calibration2, use printable calibration patterns for which
the pose can be estimated robustly and precisely. Alternatively, the camera can
be mounted rigidly to the robot base as in Fig. 7.9, in which case the calibration
pattern is attached rigidly to the end-effector instead of the camera. In this case,
the robot hand moves a rigidly attached calibration target instead of the camera.

7.3.3 Collsion Free Motion and Task Planning

Motion planning calculates a trajectory from the current robot pose to the goal
pose. It can be interpreted as an optimization problem to minimize the execution
time of the trajectory to maximize the throughput. The problem’s constraints are
the robot’s axis limits and (self) collisions.

MoveIt3 is a tool that combines the required components for motion planning
[111]: It keeps track of a planning scene, which includes a predefined workspace
setup, an occupancy map, and custom objects as visualized in Fig. 7.9. The
predefined workspace includes a model of the robot station and fixed objects such
as tables or walls. In addition, MoveIt can use the 3D camera to map occupied

2https://github.com/ros-planning/moveit_calibration
3https://moveit.ros.org/

116

https://github.com/ros-planning/moveit_calibration
https://moveit.ros.org/

7.3 Practical Use of Pose Estimation in Robotic Manipulation Tasks

Figure 7.9: MoveIt digital twin with workspace model and occupancy mapping visualized
in RViz.

spaces with cubes that have not been predefined, e.g., boxes or humans. Custom
objects can be used with this thesis’ pose estimation to enable higher fidelity
planning. If, for example, the robot needs to grasp an object, the cube-based
occupancy map would be too coarse and always trigger collisions. MoveIt includes
several planning libraries and algorithms, for example, stochastic samplers or
gradient-based approaches. Since motion planning occurs in joint coordinates,
but manipulation goals are defined in Cartesian coordinates, inverse kinematics
libraries are also included. The IKFast library generates source code with fast
analytical solutions for inverse kinematics to speed up motion planning.

Task planning takes this approach one step further and allows the definition of
subgoals and the joint optimization of multiple trajectories between them. During
task planning, it is also possible to introduce varying degrees of freedom, e.g.,
by proposing several grasp poses. Jointly optimizing all subgoals avoids cases
where an optimal trajectory for one goal results in much longer execution times
for subsequent goals. In the worst case, grasping an object in the wrong position
might lead to infeasible trajectories in one of the next steps. The MoveIt Task
Constructor integrates with MoveIt, allowing it to access collision avoidance and
motion planning capabilities [112]. Therefore, it can also handle grasp poses,
which would lead to collisions and reject them early.

Historically, trajectory planning and execution were separated and stopped if
the planning scene changed. With MoveIt2, hybrid motion planning allows the
robot to react to a changing environment and avoid dynamic obstacles. This
is especially useful in collaborative scenarios where humans might enter and
exit the planning scene at any time. It is theoretically possible to model human
limbs as cylinders and track their pose with this work’s PF. However, human pose

117

7 Applications in Medical Robotics

estimation and tracking is an extensive research field with specific advanced
methods. For example, OpenPose4 and ROS4HRI5 can easily be integrated into
ROS and MoveIt [113].

7.3.4 Compliant Control for Contacts

Most surgical instruments are thin and tend to lay flat in the sieve or on top of
other instruments. Therefore, the margin between reaching the instrument and
colliding with an object below is tiny. If a position-controlled cobot collides with an
object, it throws an error that an operator must acknowledge. If the robot does
not reach far enough, it misses the instrument. Instead of avoiding collisions,
embracing them with compliant behavior can help overcome the abovementioned
issues.

The concept is as follows: First, the robot moves to a pre-grasp pose above
the object with a position controller. Then, the controller switches to a cartesian
impedance control mode and approaches the object. Instead of targeting the
grasp point, the goal is set slightly below the object to ensure that the robot
reaches far enough. With the impedance control still on, the gripper can be
closed to avoid damaging it. After moving up again, the robot can continue the
planned task trajectory using a position controller. This approach benefits from a
proper impedance behavior, where the robot acts as a spring, which is possible
with a KUKA LBR iiwa. If a force-torque sensor is attached to the robot flange,
the robot is usually controlled via admittance control, which requires a compliant
environment. In this case, the force suddenly increases when hitting a stiff surface,
and the robot bounces.

7.3.5 Using the Pose Estimator in Practice

Pick and place tasks can be fully automated, and operators should only need to
interact with the robot in case of exceptions. For example, if the robot repeatedly
fails to pick an instrument, an operator could help to sort this instrument. The
main effort for using the pose estimation algorithms from this work is in curating
the CAD models. First, older parts might not even have CAD models available but
only technical drawings, requiring modeling them from the ground up. Second,
CAD models might contain annotation artifacts and must be exported to mesh

4https://github.com/ravijo/ros_openpose
5http://wiki.ros.org/hri

118

https://github.com/ravijo/ros_openpose
http://wiki.ros.org/hri

7.4 Summary

models for rendering. An automated pipeline using FreeCAD6 and Open3D7

has been developed for this thesis to process surgical instruments. However,
there is not a single parametrization that fits all instruments, as the size of details
varies. If the mesh model contains too many details, the runtime of the inference
algorithms increases. A low degree of detail might lead to missing parts, e.g., the
tip of a clamp. Therefore, every model must be checked for defects and corrected
if required.

In contrast, one-off applications like surgeries already include processing CT
scans to mesh models. Only downsampling might be required to reduce rendering
times in the CAD-based workflow. Moreover, the surgeons could provide a point
prior to the algorithms during surgeries via a pointing device. During previous
cadaver studies, one person used a computer and provided the prior by aligning
the mesh model to the point cloud in 3D.

7.4 Summary

In a sense, medical applications are similar to industrial applications: CAD models
of instruments of pre-operative or CT scans enable the application of this thesis’
pose estimation algorithms. Still, collaboratively working with surgeons and the
large variety of geometries presents specific challenges.

The first section has shown that the CAD-based pose estimation of surgical
instruments is possible via Bayesian inference. However, the results highlight
the importance of evaluating a method in diverse applications. Compared to
the BOP datasets, segmentation masks are necessary to estimate the pose
of long and thin instruments. Otherwise, the pose diverges, so the rendered
instruments align with the flat surface they lie on. This observation points out
a significant limitation of the presented pose inference method: If the pixels of
the rendered and measured object do not overlap, the likelihood function fails to
discriminate good from bad estimates. Moreover, the inference time required to
achieve reasonable recalls is six times higher than the time required for the BOP
datasets. Semantic information could enable a likelihood function that overcomes
this limitation. The outlook presents one possibility using object coordinates in
Section 8.1.

Most sections of this thesis focused on static scenarios, but Section 7.2 shows
that reformulating the SMC sampler into a bootstrap particle filter allows reusing

6www.freecad.org
7www.open3d.org

119

www.freecad.org
www.open3d.org

7 Applications in Medical Robotics

the framework for dynamic object tracking. The application consists of tracking
the pose of an iliac crest bone in the context of facial reconstruction surgeries.
This thesis’ models and filter formulation were compared to a baseline particle
filter tracker from a previous publication. A block-wise sampling strategy and new
observation models from Section 4.3 have been evaluated. Block-wise sampling
improves robustness and errors by increasing the effective sample size. Pixel-
object classifications improve tracking performance during heavy occlusions, in
contrast to the decreased performance during static pose inference. Using the
more complex smooth truncation can improve the accuracy.

Finally, Section 7.3 introduced the practical steps required to use the pose estima-
tors from this thesis in a robotic manipulation task. Usually, planning is executed
in local frames, for example, by calculating grasp points in the object frame. The
calibration steps required to transform local plans into the robot base coordinate
system for control were explained. Moreover, the section introduces the MoveIt
ecosystem to plan and execute collision-free trajectories. Compliant control has
been introduced to overcome imprecise calibrations and successfully grasp even
thin objects like surgical instruments. Finally, the steps for preparing and using
CAD models by a practitioner for the pose estimation were described.

120

8 Conclusion

Bayesian inference is a relatively unexplored research direction in computer
vision, with almost no prior published research in 6D pose estimation. Bayesian
methods enable an intuitive way to formulate the pose estimation problem as a top-
down generative process, in contrast to bottom-up feature engineering. However,
the practical use of these methods has been limited because of long inference
times. In particular, robotic manipulation tasks require both high accuracy and a
computation time lower than their cycle time, typically <10 s. Similar to the tooling
that kick-started the success of deep learning by efficiently utilizing the GPU,
this thesis aims to present models and inference algorithms for Bayesian depth
image-based pose inference on the GPU.

This thesis introduces probabilistic models for image-based pose estimation. The
model consists of a prior, encoding an estimate of the object’s position and an
observation model describing the generative process of the camera measurement.
For the considered cases, a rough prior position estimate is available based on
additional sensors, machine learning models, or humans working collaboratively
with the robot. Modeling this position estimate is straightforward by using a normal
distribution. In contrast, no information on the object’s orientation is available,
and formulating probability distributions for rotations requires special care due
to the nonlinearities. Quaternions allow a formal and efficient description of the
probabilistic orientation model.

3D rendering is the generative process that transforms a scene description into
depth images measured by the camera using a GPU. This work enables the
use of the GPU for calculating the likelihood of the measured image given these
renderings by formulating the measurement noise independently for each pixel.
One critical insight is that the independence assumption for the pixels results in an
overconfident likelihood, which can be countered using regularization strategies.
Occlusions present a particular challenge, and this thesis addresses it using
different probability distributions and formulating a per-pixel classification problem.
However, these formulations introduce additional complexity.

Rendering is a non-differentiable operation that prohibits the use of advanced
gradient-based inference algorithms. With this consideration, this work employs

121

8 Conclusion

chain-based and particle-based sampling algorithms which do not require gra-
dients. Chain-based samplers sequentially evolve a single hypothesis, while
the particle-based SMC sampler promises to explore the expected multimodal
distributions more effectively. Several best-practice modifications improve the
chances of a successful pose inference, e.g., likelihood tempering and logarithmic
sampling in unconstrained domains.

The experiments permit the conclusion of the effectiveness of the samplers and
model components. Chain-based samplers fail to explore the multimodal poste-
rior distribution efficiently, even with a time budget of more than three seconds.
However, the particle-based SMC sampler performs much better and achieves
acceptable results with a time budget of 0.5 s. Runtime is the only parameter that
effectively influences the performance of the samplers. The number of particles
or the image size does not significantly influence the performance. Moreover, the
model performance increases if more and higher quality priors are available for the
position and pixel-object classification. However, using more complex distributions
to model occlusions makes no difference. Inferring the pixel-object classifications
as part of the model decreases average recalls for inference on static images
but increases the performance of a particle filter-based pose tracker under heavy
occlusions. Automatic parameter tuning did not improve the results significantly
because the algorithms can be considered insensitive to the parameters. In
conclusion, more prior information should always be used, but the probabilistic
model can be as simple as possible. Simpler model formulations might even allow
for more inference steps given a fixed compute budget, which could improve the
pose estimates.

With an average recall of 0.475 on the BOP core datasets, the SMC sampling-
based approach offers room for improvements compared to the state-of-the-art
methods. The average recall of the best-performing method in the same category
of the BOP challenge is 0.674. However, most methods in the same category
require much longer inference times, exceeding 30 s for the same task. Most
notably, the scores of other methods are significantly higher on datasets with
texture-rich objects. One possible implication is that using more sensor modalities
can improve performance. Including color images in the observation model could
be a promising future research direction for Bayesian pose estimation. Another
observation from the experiments is that the evaluation of the synthetic images
and the real BOP validation images yields similar results, indicating that the
synth-to-real gap is small for depth images. Therefore, synthetic images are a
cost-effective alternative to evaluate depth image-based pose estimators.

Moreover, applying the Bayesian pose estimation to different applications in the
context of medical robotic manipulation demonstrates the adaptability of the
approach. With only minor modifications, the SMC sampler could be reformulated

122

8.1 Outlook

as a particle filter to enable tracking a bone pose at the camera frame rate of 90 Hz.
Nevertheless, applying the pose estimator to surgical instruments also revealed
a limitation of the approach: Renderings of thin and long objects barely overlap,
so the pixel-wise likelihood cannot differentiate between poses. Thus, it takes
much longer to sample a pose close enough to the true pose for the algorithm to
converge. Moreover, the algorithm fails to estimate instrument poses without good
segmentation masks. This failure indicates that the likelihood landscape contains
global optima, which do not correspond to the true pose. All these observations
lead to the conclusion that semantic information is required in addition to the
purely geometric information from the depth images to avoid the current failure
cases.

The Bayesian method’s main advantage lies in its intuitiveness and flexibility in
applying it to new applications with different information sources and sensors. With
the performance considerations from this work, the runtime is another advantage
over competing methods. Moreover, only a CAD model, a depth image, and a
coarse position estimate are required, which also aids broad applicability. While
this work is not a leader on the BOP benchmark, it shows that alternative research
directions exist besides classical feature engineering and neural network-based
computer vision. This work is the first to successfully use Bayesian inference
for the BOP challenge. Future work can build on this foundation, improve it, and
adapt it to the specific needs.

8.1 Outlook

This outlook focuses on possibilities for improving this work’s methods and com-
bining Bayesian inference with control for active perception. The most potential
for improving the pose estimates lies in employing learning-based methods to
include more semantic information in the observation model. In addition, active
perception could jointly improve the outcomes of the subordinate manipulation
task and the pose estimation.

8.1.1 Future Directions for Bayesian Pose Estimation

One prominent advantage of the method from this thesis is that no annotation
of application-specific training data is required. Nevertheless, the semantic
capabilities of neural networks could significantly improve the algorithms, as
shown by the results of using segmentation masks as prior information.

123

8 Conclusion

depthdistanceimage
plane

Figure 8.1: Dense correspondences and difference between depth and distance mea-
surements.

A weakness of the current approach is that the pixel-wise likelihood requires that
the rendered and measured object pixels overlap to discriminate between poses.
One possibility to overcome this limitation could be to match the rendered object
surface pixels to the corresponding object surface pixels in the measured images.
For example, one could train a model to predict the object coordinates proposed
by Brachmann et al. in the rendered images and the measured image; see Fig. 8.1
[37]. Using these correspondences to calculate matrices of matching indices
would allow using the pixel-wise likelihood from this work on the GPU. However,
the pixels of depth images measure a value normal to the sensor plane, which
would result in a likelihood invariant to translations and rotations in the image
plane; see Fig. 8.1. One possible solution could be measuring and rendering
distance images instead of depth images, reducing the ambiguities to rotations
around the central image axis; compare for Fig. 8.1. Another solution could be an
additional term that includes the distances images between the correspondences
in the image coordinates.

Most methods from the literature that use algorithms similar to Bayesian inference
algorithms employ machine learning to generate better proposals [60]. This
approach is straightforward, as it does not require modifying the likelihood function
or the GPU code. Any probabilistic generator could be used as an independent
proposal distribution in the MH or SMC algorithms. For example, the dense
correspondences from Fig. 8.1 could also be used to formulate a PnP problem,
allowing for the direct regression of a transformation between the rendered and
measured images. Another approach to guide the algorithms to better poses
could be differentiable rendering to enable advanced gradient-based inference
algorithms such as HMC or variational approximations. Differentiable rendering
has been tried in the early phase of this research but dismissed because of slow
rendering times of multiple seconds; see Appendix A.2.3. If the performance of
differentiable renderers improves, they might be worth revisiting.

Besides algorithmic improvements, more insights can be gained by evaluating the
Bayesian pose estimation on new applications. For example, by trying to estimate
the pose of surgical instruments, the limitation of the pixel-wise likelihood became
apparent. An application not considered in this thesis is the pose estimation and
tracking of articulated objects. Simple objects like clamps only introduce one

124

8.1 Outlook

additional degree of freedom to the state of the inference problem. However, the
curse of dimensionality causes the required inference time to grow exponentially
with each additional degree of freedom. Future work could evaluate whether
intelligent formulations of the constraints can be used to propose more likely
samples and avoid this increase in required computations. Soft materials that
cover objects introduce an infinite number of additional degrees of freedom. For
example, a bone transplant is typically covered in soft tissue, and most of the
bone is not visible. Modeling the deformable tissue might be a way to enable the
pose estimation even in this challenging scenario.

8.1.2 Active Perception: Combining Vision and Control

Benchmarks only evaluate a single pose, meaning that most hypotheses must be
discarded in the context of Bayesian inference. However, planning and control
of a robot could benefit from a probability distribution instead of a point estimate.
Robotic decision-making under uncertainty aims to balance exploration to reduce
this uncertainty and exploitation to fulfill the task at hand [114].

For example, tracking the uncertainty could be used to supervise a manipulation
task in critical environments. A robot must be very sure about the pose if it cuts
a bone. Otherwise, it might cause serious injuries. The robot must continuously
decide whether it is safe to continue. In practice, a particle filter could track
the pose of the bone, and a change of the particle cloud can indicate tracking
failures [115]. In this case, the robot would stop operating until the particle filter is
reinitialized.

Conversely, a robot could help to improve the pose estimation results by moving
the camera to different viewpoints. Depending on the scene, multiple viewpoints
could resolve ambiguities caused by (self) occlusions of the object. Inspired
by the work of Patten et al., this viewpoint selection can be automated using
a Bayesian approach [116]. The goal is to visit as few viewpoints as possible
until the robot is certain enough to start a manipulation task. Patten et al.’s
method consists of two key elements: an offline computation to determine the
expected quality of different viewpoints and an online mapping of occlusions.
They quantify the expected quality of a viewpoint by calculating the information
entropy of a probability distribution of object classes. The object must be rendered
from different viewpoints to adapt the entropy to pose estimation. A Bayesian
pose inference algorithm from this thesis can approximate the posterior pose
distribution for each viewpoint, and the entropy can be calculated using these
distributions. Moreover, the pixel-object classification model from this thesis can
be used to calculate an occlusion probability during the online step. A utility

125

8 Conclusion

function can be formulated and then evaluated for each viewpoint candidate using
the offline entropy and the online occlusion map. The viewpoint with the highest
utility is the next set point of the controller.

126

A Appendix

A.1 Source Code

My source code is publicly available:

• Main repository, with scripts to reproduce results:
https://github.com/rwth-irt/BayesianPoseEstimation.jl

• OpenGL rendering and CUDA interop:
https://github.com/rwth-irt/SciGL.jl

• Bayesian network and graph compilation:
https://github.com/rwth-irt/BayesNet.jl

• CUDA compatible probability distributions:
https://github.com/rwth-irt/KernelDistributions.jl

• Pose error metrics and scores:
https://github.com/rwth-irt/PoseErrors.jl

• Generating synthetic datasets:
https://github.com/rwth-irt/BlenderProc.DissTimRedick

Datasets, raw results, and processed results are stored on the Coscine research
data management platform.

http://hdl.handle.net/21.11102/bc759cab-cade-4ab3-8f70-86dbee80b330

A.2 Failed Approaches

I believe that research should report more on the failures and not only the suc-
cesses. These failure cases can provide valuable lessons or, at the very least,
save someone’s time.

Nothing really matters . . .

127

https://github.com/rwth-irt/BayesianPoseEstimation.jl
https://github.com/rwth-irt/SciGL.jl
https://github.com/rwth-irt/BayesNet.jl
https://github.com/rwth-irt/KernelDistributions.jl
https://github.com/rwth-irt/PoseErrors.jl
https://github.com/rwth-irt/BlenderProc.DissTimRedick
http://hdl.handle.net/21.11102/bc759cab-cade-4ab3-8f70-86dbee80b330

A Appendix

A.2.1 Image Regularization

Using the number of non-zero rendered pixels in 𝝁𝑖𝑚𝑔 for Eq. (4.37).

𝑁𝐿 =
∑︁
S

1, S = {𝑖 : 𝜇𝑖 > 0} (A.1)

The idea is that only rendered pixels make a difference in the likelihood function.
Dividing by the number of pixels should make the likelihood less view-dependent
if the views have varying silhouettes. However, it encourages poses with fewer
visible pixels, especially if no distinct features are available. For example, when
estimating the pose of a box-shaped object, the side with the smallest area is
usually in front. Moreover, the algorithm tends to diverge to regions where only a
handful of pixels are rendered, e.g., the edges of the image. These have a high
likelihood by fitting the surface precisely and dividing by a small number of valid
pixels.

If masks are available, taking the union over the mask prior and the non-zero
pixels was considered a possible solution to the abovementioned phenomenon.

𝑁𝐿 =
∑︁
S

1, S = {𝑖 : 𝑝(𝑐𝑜,𝑖) = 1 ∨ 𝜇𝑖 > 0} (A.2)

The union enforces the regularization to consider a certain number of pixels,
which should avoid the edges of the image. An unintended side effect is that
the inference algorithm now tries to fit most of the object surface into the mask’s
silhouette. This side effect is especially troublesome under heavy occlusions, as
the mask’s silhouette does not match the object for any view.

A.2.2 Handling Invalid Pixels

Note that the development of the regularization started when trying to exclude
non-zero rendered pixels from the likelihood by setting it to one. A value of one
does not change the factorized joint probability distribution of the image. However,
as it turns out, it should change the value of the joint probability. The regularization
is still used, as including the classification probability has a similar effect.

A.2.3 Gradient Based Samplers with Differentiable Renderers

It might be worth trying again, as we experimented with the differentiable renderer
from Pytorch3D back in 2020. Research has made progress on the performance

128

A.2 Failed Approaches

pose inference time / s
0.0 0.5 1.0

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSD

pose inference time / s
0.0 0.5 1.0

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

ADDS

pose inference time / s
0.0 0.5 1.0

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSDBOP
10 particles
50 particles
100 particles
250 particles

Figure A.1: Recalls of a SMC bootstrap sampler on synthetic data for various inference
steps and particles.

and the quality of the estimated gradients in differentiable rendering, and using
the latest advancements might yield significantly better results [117].

The discontinuity at the expected depth for the truncated distribution in Fig. 4.4
𝜇 prevents the application of gradient-based methods. Another hurdle for using
gradient-based methods for inference on images is the rasterization process of
rendering, which is non-differentiable. Differentiable renderers such as Pytorch3D
are much slower than rasterization-based renderers. Preliminary experiments
have indicated that the gradients are not good enough, and the inference time
using a Hamiltonian Monte Carlo sampler is prohibitively slow.

A.2.4 Bootstrap SMC Kernel for Static problems

While the bootstrap kernel is the de facto standard for particle filtering, it is typically
not used for inference on static data. Chopin et al. published an early work that
modified the particle filter for static problems, which did not use the bootstrap
kernel from Section 5.1.4. This kernel is not used for a good reason: it performs
poorly, as shown in Fig. A.1. The recalls are saturated after a short runtime,
indicating that the particle cloud collapses early. Even worse, the bootstrap kernel
only allows local moves and is stuck in the local optimum. Therefore, the chance of
succeeding depends on an initial particle close to the true pose. This hypothesis

129

A Appendix

is supported by the fact that the recall in Fig. A.1 is almost only influenced by the
number of particles.

A.2.5 Forward Proposal Kernel for SMC

An alternative to using an MCMC kernel is to use the forward kernel as the
backward kernel, which is coined the forward proposal kernel [118]:

𝐿𝑡 (x𝑡 | x𝑡+1) = 𝐾𝑡+1(x𝑡 | x𝑡+1) (A.3)

The resulting weight increment is similar to the MH acceptance ratio in Eq. (5.4)
[118]:

𝑤̃
(𝑖)
𝑡+1 =

𝑝𝑡+1(x𝑡+1, z)𝐾𝑡+1(x𝑡 | x𝑡+1)
𝑝𝑡 (x𝑡 , z)𝐾𝑡+1(x𝑡+1 | x𝑡)

(A.4)

This kernel has shown similar results to the bootstrap particle filter kernel in
Appendix A.2.4. Most likely, the limiting factor is that only local proposals can be
used, so the algorithm is more likely to get stuck in a local optimum.

A.2.6 Cropping in Particle Filters

The motivation behind cropping in Monte Carlo sampling is that less information
is lost due to the down scaling of the images. However, cropping also introduces
an additional sampling bias for each iteration of the particle filter. Thus, cropping
leads to very jittery tracking and is therefore not recommended. This behavior
might be improved if a different interpolation method is used for resizing depth
images. Currently, a nearest neighbor interpolation method is used as it does
not result in wrong values at the edges of objects. A linear interpolation could
produce smoother results if the views offer large visible surfaces.

A.3 Gaussian Modified Truncated Exponential
Distribution (Smooth Truncated Exponential)

We seek a solution for the following convolution from Eq. (4.31):

𝑝𝑠 (𝑧 | 𝜇) =
∫

𝑝N (𝑧 | 𝑎, 𝜇)𝑝Exp(𝑎 | 𝛽, 𝑎 ≤ 𝜇)) 𝑑𝑎 (A.5)

130

A.3 Gaussian Modified Truncated Exponential Distribution (Smooth Truncated Exponential)

This equation uses the probability densities from Eq. (4.30); a normal distribution
and a truncated exponential distribution:

𝑝N (𝑧 | 𝑎, 𝜇) =
1√︁

2𝜋𝜎2
𝑧

𝑒
− (𝑧−𝑎)

2

2𝜎2
𝑧 (A.6a)

𝑝Exp(𝑎 | 𝛽, 𝑎 ≤ 𝜇) = 1[𝑙𝑏 ,𝑢𝑏] (𝑎)
1
𝛽
𝑒
− 𝑎

𝛽

(1 − 𝑒−
𝑢𝑏
𝛽) − (1 − 𝑒−

𝑙𝑏
𝛽)

(A.6b)

= 1[𝑙𝑏 ,𝑢𝑏] (𝑎)
1
𝛽
𝑒
− 𝑎

𝛽

𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽

(A.6c)

where 1[𝑙𝑏 ,𝑢𝑏] denotes the indicator function which represents the truncation and
is 1 in the interval [𝑙𝑏, 𝑢𝑏] and 0 otherwise. Moreover, the exponential distribution
has to be normalized using the cumulative density function to account for the
truncation. Using a generic lower 𝑙𝑏 and upper bound 𝑢𝑝 allows us to derive a
general formulation instead of only considering the upper bound used in Eq. (4.32).
Inserting the respective distributions into the convolution yields:

𝑝𝑠 (𝑧 | 𝜇) =
∫ (

𝑤𝑢

𝑧𝑚𝑎𝑥︸︷︷︸
U

+𝑤𝑛
1√︁

2𝜋𝜎2
𝑧

𝑒
− (𝑧−𝑎)

2

2𝜎2
𝑧︸ ︷︷ ︸

N

)
1[𝑙𝑏 ,𝑢𝑏] (𝑎)

1
𝛽
𝑒
− 𝑎

𝛽

𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽︸ ︷︷ ︸

truncated Exp

𝑑𝑎 (A.7)

Splitting the sum of the U and N terms allows us to solve two separate integrals:

∫
𝑤𝑢

𝑧𝑚𝑎𝑥
1[𝑙𝑏 ,𝑢𝑏] (𝑎)

1
𝛽
𝑒
− 𝑎

𝛽

𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽

𝑑𝑎 + (A.8a)∫
𝑤𝑛

1√︁
2𝜋𝜎2

𝑧

𝑒
− (𝑧−𝑎)

2

2𝜎2
𝑧 1[𝑙𝑏 ,𝑢𝑏] (𝑎)

1
𝛽
𝑒
− 𝑎

𝛽

𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽

𝑑𝑎 (A.8b)

Solving the first integral from Eq. (A.8a) is straightforward as the indicator function
determines the boundaries of the integral:

𝑤𝑢

𝑧𝑚𝑎𝑥

1
𝛽

𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽

∫ 𝑢𝑏

𝑙𝑏

𝑒
− 𝑎

𝛽 𝑑𝑎 =
𝑤𝑢

𝑧𝑚𝑎𝑥

1
𝛽

𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽

[
𝛽𝑒
− 𝑙𝑏

𝛽 − 𝛽𝑒−
𝑢𝑏
𝛽

]
=
𝑤𝑢

𝑧𝑚𝑎𝑥
(A.9)

Which is again the uniform distribution U. The second integral Eq. (A.8b) is more
involved, as it contains the product of a normal and an exponential distribution.

131

A Appendix

Pulling out the constants and adjusting the boundaries of the integral according
to the indicator function yields:

𝑤𝑛

1
𝛽

𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽

1√︁
2𝜋𝜎2

𝑧

∫ 𝑢𝑏

𝑙𝑏

𝑒
−
(
(𝑧−𝑎)2

2𝜎2
𝑧
+ 𝑎
𝛽

)
𝑑𝑎 (A.10)

This integral is similar to the definition of the exponentially modified Gaussian
distribution, which is the convolution of a normal and an exponential distribution.
Therefore, a similar approach to solving the integral can be used by completing
the square [119].

𝑤𝑛

1
𝛽

𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽

𝑒
− 𝑧

𝛽
+ 1

2

(
𝜎𝑧
𝛽

)2 1√︁
2𝜋𝜎2

𝑧

∫ 𝑢𝑏

𝑙𝑏

𝑒
−

(
𝑎+

𝜎2
𝑧
𝛽
−𝑧

)2

2𝜎2
𝑧 𝑑𝑎 (A.11)

However, in [119], a term cancels out because the upper integration bound
is chosen as 𝑧 while it is 𝜇 in Eq. (A.11). Thus, a change of variables with
𝑏 = (𝑎 + 𝜎2

𝑧

𝛽
− 𝑧)2 yields an expression that resembles the definition of the error

function erf for the integral in Eq. (A.11):

1√︁
2𝜎2

𝑧𝜋

∫ 𝑢𝑏+
𝜎2
𝑧
𝛽
−𝑧

𝑙𝑏+
𝜎2
𝑧
𝛽
−𝑧

𝑒
− 𝑏2

2𝜎2
𝑧 𝑑𝑡 =

1
2

erf ©­«
𝑢𝑏 +

𝜎2
𝑧

𝛽
− 𝑧√︁

2𝜎2
𝑧

ª®¬ − erf ©­«
𝑙𝑏 +

𝜎2
𝑧

𝛽
− 𝑧√︁

2𝜎2
𝑧

ª®¬
 (A.12)

The two terms in equation Eq. (A.12) resemble the complementary cumulative
density of normal distributions parametrized by N(𝑧 | 𝑢𝑏 +

𝜎2
𝑧

𝛽
, 𝜎𝑧) and N(𝑧 |

𝑙𝑏 +
𝜎2
𝑧

𝛽
, 𝜎𝑧) respectively. Substituting the results of Eq. (A.12) two integrals back

into Eq. (A.7) results in the final formulation of a smooth density function for the
occlusion:

𝑝𝑠 (𝑧 | 𝜇) = 𝑤𝑢
1
𝑧𝑚𝑎𝑥
+

𝑤𝑛

1
𝛽

𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽

𝑒
− 𝑧

𝛽
+ 1

2

(
𝜎𝑧
𝛽

)2 1
2

erf ©­«
𝑢𝑏 +

𝜎2
𝑧

𝛽
− 𝑧√︁

2𝜎2
𝑧

ª®¬ − erf ©­«
𝑙𝑏 +

𝜎2
𝑧

𝛽
− 𝑧√︁

2𝜎2
𝑧

ª®¬


(A.13)

If we only consider the Gaussian noise and omit the uniform term, we can define
a Gaussian-modified truncated exponential distribution similar to the exponentially
modified Gaussian:

𝑝Exp∗ (𝑥 | 𝛽, 𝜎, 𝑙𝑏, 𝑢𝑏) =

𝑒
− 𝑥

𝛽
+ 1

2

(
𝜎
𝛽

)2

2𝛽
(
𝑒
− 𝑙𝑏

𝛽 − 𝑒−
𝑢𝑏
𝛽

) erf ©­«
𝑢𝑏 + 𝜎2

𝛽
− 𝑥

√
2𝜎2

ª®¬ − erf ©­«
𝑙𝑏 + 𝜎2

𝛽
− 𝑥

√
2𝜎2

ª®¬
 (A.14)

132

A.4 Pose Estimation of Surgical Instruments

A.4 Pose Estimation of Surgical Instruments

pose inference time / s
0 2 4

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSD

pose inference time / s
0 2 4

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

ADDS

pose inference time / s
0 2 4

re
ca

ll
/ -

0.00
0.25
0.50
0.75
1.00

VSDBOP

100 particles

Figure A.2: Recall over inference time for the STERI dataset without using masks.

A.5 Incorporating Masks: Pixel-Object
Classification

depth / m
0.0 0.5 1.0 1.5

de
ns

ity
 /

-

0

1

2

3
o = 0.2
o = 0.4
o = 0.6
o = 0.8

Figure A.3: Probability density of the likelihood model in Eq. (4.34) for an unmodified
exponential distribution and varying object classification probabilities o. Pa-
rameters: 𝜇 = 1 m, 𝜎𝑧 = 0.1 m, 𝛽 = 1, 𝑧𝑚𝑖𝑛 = 0.5 m, 𝑧𝑚𝑎𝑥 = 1.5 m.

133

A Appendix

depth / m
0.0 0.5 1.0 1.5

de
ns

ity
 /

-

0

1

2

3
o = 0.2
o = 0.4
o = 0.6
o = 0.8

Figure A.4: Probability density of the likelihood model in Eq. (4.34) for a truncated
exponential distribution and varying object classification probabilities o. Pa-
rameters: 𝜇 = 1 m, 𝜎𝑧 = 0.1 m, 𝛽 = 1, 𝑧𝑚𝑖𝑛 = 0.5 m, 𝑧𝑚𝑎𝑥 = 1.5 m.

A.6 Runtime: Number of Particles and Inference
Steps

number of particles / -
0 200 400

av
er

ag
e

st
ep

 ti
m

e
/ s

0.001

0.002

0.003

0.004

0 10 20 30
0.000

0.001

0.002

MH
MTM
SMC

Figure A.5: Benchmarking the time per inference step for a different number of particles
and samplers. MCMC-MH uses only one particle resulting in the constant
time.

134

A.7 Particle Filtering for 6D Pose Tracking of Iliac Crest Bones

number of particles / -
0 200 400

av
er

ag
e

st
ep

 ti
m

e
/ s

0.001

0.002

0.003

0.004

0.005

0 10 20 30
0.000

0.001

0.002

MH
MTM
SMC

Figure A.6: Benchmarking the time per inference step for a different number of particles
and samplers. The size of the image crops is 100 px × 100 px. MCMC-MH
uses only one particle resulting in the constant time.

A.7 Particle Filtering for 6D Pose Tracking of Iliac
Crest Bones

time / s
0 5 10

er
ro

r
/ °

0

5

10

iteration / -
0 500 1000

re
la

tiv
e

E
S

S
 /

-

0.0

0.5

1.0
0 5 10

er
ro

r
/ m

m

0
10
20
30
40
50
60

50-95% occlusion, block-wise, simple, 95Hz

smc pf

at robot
at only
smc pf

Figure A.7: Particle filter results using block-wise sampling and an unmodified truncated
exponential without pixel classifications.

135

A Appendix

time / s
0 5 10

er
ro

r
/ °

0

5

10

iteration / -
0 500 1000

re
la

tiv
e

E
S

S
 /

-

0.0

0.5

1.0
0 5 10

er
ro

r
/ m

m

0

10

20

30

40
50-95% occlusion, joint, complex, 83Hz

smc pf

at robot
at only
smc pf

Figure A.8: Particle filter results using joint sampling and a smooth truncated exponential
with pixel classifications.

time / s
0 5 10

er
ro

r
/ °

0

5

10

iteration / -
0 500 1000

re
la

tiv
e

E
S

S
 /

-

0.0

0.5

1.0
0 5 10

er
ro

r
/ m

m

0
10
20
30
40
50
60

50-95% occlusion, block-wise, simple, 95Hz

smc pf

at robot
at only
smc pf

Figure A.9: Maximum likelihood particle filter results using block-wise sampling and an
unmodified truncated exponential without pixel classifications.

136

A.7 Particle Filtering for 6D Pose Tracking of Iliac Crest Bones

time / s
0 5 10

er
ro

r
/ °

0

5

10

iteration / -
0 500 1000

re
la

tiv
e

E
S

S
 /

-

0.0

0.5

1.0
0 5 10

er
ro

r
/ m

m

0

10

20

30

40
50-95% occlusion, joint, complex, 83Hz

smc pf

at robot
at only
smc pf

Figure A.10: Maximum likelihood particle filter results using joint sampling and a
smooth truncated exponential with pixel classifications.

137

Bibliography

[1] Felix Gorschlüter, Pavel Rojtberg, and Thomas Pöllabauer. A Survey
of 6D Object Detection Based on 3D Models for Industrial Applications.
Journal of Imaging, 8(3):53, March 2022. ISSN 2313-433X. doi: 10.3390/
jimaging8030053.

[2] Martin Sundermeyer, Tomas Hodan, Yann Labbe, Gu Wang, Eric Brach-
mann, Bertram Drost, Carsten Rother, and Jiri Matas. BOP Challenge 2022
on Detection, Segmentation and Pose Estimation of Specific Rigid Objects,
2023.

[3] Tomáš Hodaň, Jiří Matas, and Štěpán Obdržálek. On Evaluation of 6D
Object Pose Estimation. In Gang Hua and Hervé Jégou, editors, Computer
Vision – ECCV 2016 Workshops, volume 9915, pages 606–619. Springer
International Publishing, Cham, 2016. ISBN 978-3-319-49408-1 978-3-319-
49409-8. doi: 10.1007/978-3-319-49409-8_52.

[4] Maximilian Denninger, Dominik Winkelbauer, Martin Sundermeyer, Wout
Boerdijk, Markus Knauer, Klaus H. Strobl, Matthias Humt, and Rudolph
Triebel. BlenderProc2: A Procedural Pipeline for PhotorealisticRendering.
Journal of Open Source Software, 8(82):4901, February 2023. ISSN 2475-
9066. doi: 10.21105/joss.04901.

[5] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and
Ishan Misra. Detecting Twenty-Thousand Classes Using Image-Level
Supervision. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Gio-
vanni Maria Farinella, and Tal Hassner, editors, Computer Vision –
ECCV 2022, volume 13669, pages 350–368. Springer Nature Switzer-
land, Cham, 2022. ISBN 978-3-031-20076-2 978-3-031-20077-9. doi:
10.1007/978-3-031-20077-9_21.

[6] Vikash K Mansinghka, Tejas D Kulkarni, Yura N Perov, and Josh Tenen-
baum. Approximate Bayesian image interpretation using generative proba-
bilistic graphics programs. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems, volume 26. Curran Associates, Inc., 2013.

139

Bibliography

[7] Victor A. Prisacariu and Ian D. Reid. PWP3D: Real-Time Segmentation
and Tracking of 3D Objects. International Journal of Computer Vision,
98(3):335–354, July 2012. ISSN 0920-5691, 1573-1405. doi: 10.1007/
s11263-011-0514-3.

[8] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and
Vikash K. Mansinghka. Gen: A General-purpose Probabilistic Programming
System with Programmable Inference. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2019, pages 221–236, New York, NY, USA, 2019. ACM. ISBN
978-1-4503-6712-7. doi: 10.1145/3314221.3314642.

[9] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: A language for flexible
probabilistic inference. In International Conference on Artificial Intelligence
and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote,
Canary Islands, Spain, pages 1682–1690, 2018.

[10] Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash
Mansinghka. Picture: A probabilistic programming language for scene
perception. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4390–4399, Boston, MA, USA, June 2015.
IEEE. ISBN 978-1-4673-6964-0. doi: 10.1109/CVPR.2015.7299068.

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning. Infor-
mation Science and Statistics. Springer, New York, 2006. ISBN 978-0-387-
31073-2.

[12] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge, Mass,
2005. ISBN 978-0-262-20162-9.

[13] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood.
An Introduction to Probabilistic Programming, October 2021.

[14] Arunkumar Byravan and Dieter Fox. SE3-Nets: Learning Rigid Body Motion
using Deep Neural Networks. arXiv:1606.02378 [cs], June 2016.

[15] Joan Sola. Quaternion kinematics for the error-state KF. Laboratoire
dAnalyse et dArchitecture des Systemes-Centre national de la recherche
scientifique (LAAS-CNRS), Toulouse, France, Tech. Rep, 2012.

[16] Gary Bradski. The OpenCV library. Dr Dobb’s J. Software Tools, 25:
120–125, 2000.

[17] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334,
November 2000. ISSN 1939-3539. doi: 10.1109/34.888718.

140

Bibliography

[18] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob C. Wheeler, and Andrew Y. Ng. ROS: An open-source
robot operating system. In ICRA 2009, number 3.2. Kobe, Japan, 2009.

[19] Tomáš Hodaň, Frank Michel, Eric Brachmann, Wadim Kehl, Anders Glent
Buch, Dirk Kraft, Bertram Drost, Joel Vidal, Stephan Ihrke, Xenophon
Zabulis, Caner Sahin, Fabian Manhardt, Federico Tombari, Tae-Kyun Kim,
Jiří Matas, and Carsten Rother. BOP: Benchmark for 6D Object Pose
Estimation. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss, editors, Computer Vision – ECCV 2018, volume 11214, pages
19–35. Springer International Publishing, Cham, 2018. ISBN 978-3-030-
01248-9 978-3-030-01249-6. doi: 10.1007/978-3-030-01249-6_2.

[20] James J Gibson. The perception of the visual world. Houghton Mifflin,
1950.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. doi: 10.1109/5.726791.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classifi-
cation with deep convolutional neural networks. In F. Pereira, C.J. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc., 2012.

[23] Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams,
John Winn, and Andrew Zisserman. The Pascal Visual Object Classes Chal-
lenge: A Retrospective. International Journal of Computer Vision, 111(1):
98–136, January 2015. ISSN 1573-1405. doi: 10.1007/s11263-014-0733-5.

[24] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-
CNN. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2961–2969, 2017.

[25] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. YOLACT++
Better Real-Time Instance Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(2):1108–1121, February 2022. ISSN
1939-3539. doi: 10.1109/TPAMI.2020.3014297.

[26] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou
Zhu, Xiaowei Hu, Tong Lu, Lewei Lu, Hongsheng Li, Xiaogang Wang, and
Yu Qiao. InternImage: Exploring large-scale vision foundation models with
deformable convolutions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 14408–14419,
June 2023.

141

Bibliography

[27] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB:
An efficient alternative to SIFT or SURF. In 2011 International Conference
on Computer Vision, pages 2564–2571, 2011. doi: 10.1109/ICCV.2011.
6126544.

[28] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary
Bradski, Kurt Konolige, and Nassir Navab. Model Based Training, Detec-
tion and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered
Scenes. In Kyoung Mu Lee, Yasuyuki Matsushita, James M. Rehg, and
Zhanyi Hu, editors, Computer Vision – ACCV 2012, Lecture Notes in Com-
puter Science, pages 548–562. Springer Berlin Heidelberg, 2013. ISBN
978-3-642-37331-2.

[29] Tomas Hodan, Xenophon Zabulis, Manolis Lourakis, Stepan Obdrzalek,
and Jiri Matas. Detection and fine 3D pose estimation of texture-less
objects in RGB-D images. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4421–4428, Hamburg,
Germany, September 2015. IEEE. ISBN 978-1-4799-9994-1. doi: 10.1109/
IROS.2015.7354005.

[30] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic. Model
globally, match locally: Efficient and robust 3D object recognition. In
2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 998–1005, San Francisco, CA, USA, June 2010. IEEE.
ISBN 978-1-4244-6984-0. doi: 10.1109/CVPR.2010.5540108.

[31] Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, and Kurt Kono-
lige. Going Further with Point Pair Features. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV
2016, volume 9907, pages 834–848. Springer International Publish-
ing, Cham, 2016. ISBN 978-3-319-46486-2 978-3-319-46487-9. doi:
10.1007/978-3-319-46487-9_51.

[32] Tomas Hodan, Martin Sundermeyer, Bertram Drost, Yann Labbe, Eric
Brachmann, Frank Michel, Carsten Rother, and Jiri Matas. BOP Challenge
2020 on 6D Object Localization, October 2020.

[33] Tomas Hodan. Pose Estimation of Specific Rigid Objects. arXiv:2112.15075
[cs], December 2021.

[34] Richard O. Duda and Peter E. Hart. Use of the hough transformation to
detect lines and curves in pictures. Communications of The Acm, 15(1):
11–15, January 1972. ISSN 0001-0782. doi: 10.1145/361237.361242.

142

Bibliography

[35] Alykhan Tejani, Danhang Tang, Rigas Kouskouridas, and Tae-Kyun Kim.
Latent-Class Hough Forests for 3D Object Detection and Pose Estimation.
In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, Lecture Notes in Computer Science, pages
462–477, Cham, 2014. Springer International Publishing. ISBN 978-3-319-
10599-4. doi: 10.1007/978-3-319-10599-4_30.

[36] Wadim Kehl, Fausto Milletari, Federico Tombari, Slobodan Ilic, and Nassir
Navab. Deep Learning of Local RGB-D Patches for 3D Object Detection
and 6D Pose Estimation. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Computer Vision – ECCV 2016, pages 205–220, Cham,
2016. Springer International Publishing. ISBN 978-3-319-46487-9.

[37] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie
Shotton, and Carsten Rother. Learning 6D Object Pose Estimation Using
3D Object Coordinates. In David Fleet, Tomas Pajdla, Bernt Schiele, and
Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, volume 8690,
pages 536–551. Springer International Publishing, Cham, 2014. ISBN 978-
3-319-10604-5 978-3-319-10605-2. doi: 10.1007/978-3-319-10605-2_35.

[38] Alexander Krull, Eric Brachmann, Frank Michel, Michael Ying Yang, Stefan
Gumhold, and Carsten Rother. Learning Analysis-by-Synthesis for 6D Pose
Estimation in RGB-D Images. In 2015 IEEE International Conference on
Computer Vision (ICCV), pages 954–962, Santiago, Chile, December 2015.
IEEE. ISBN 978-1-4673-8391-2. doi: 10.1109/ICCV.2015.115.

[39] Kiru Park, Timothy Patten, and Markus Vincze. Pix2Pose: Pixel-Wise
Coordinate Regression of Objects for 6D Pose Estimation. page 17, 2019.

[40] Gu Wang, Fabian Manhardt, Federico Tombari, and Xiangyang Ji. GDR-
Net: Geometry-Guided Direct Regression Network for Monocular 6D Object
Pose Estimation. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 16606–16616, Nashville, TN, USA,
June 2021. IEEE. ISBN 978-1-66544-509-2. doi: 10.1109/CVPR46437.2021.
01634.

[41] Tomas Hodan, Daniel Barath, and Jiri Matas. EPOS: Estimating 6D Pose
of Objects With Symmetries. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 11700–11709, Seattle, WA,
USA, June 2020. IEEE. ISBN 978-1-72817-168-5. doi: 10.1109/CVPR42600.
2020.01172.

[42] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song,
and Leonidas J. Guibas. Normalized Object Coordinate Space for Category-
Level 6D Object Pose and Size Estimation. In 2019 IEEE/CVF Conference

143

Bibliography

on Computer Vision and Pattern Recognition (CVPR), pages 2637–2646,
Long Beach, CA, USA, June 2019. IEEE. ISBN 978-1-72813-293-8. doi:
10.1109/CVPR.2019.00275.

[43] Xiaolong Li, He Wang, Li Yi, Leonidas Guibas, A. Lynn Abbott, and
Shuran Song. Category-Level Articulated Object Pose Estimation.
arXiv:1912.11913 [cs], April 2020.

[44] Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter Fox. LatentFu-
sion: End-to-End Differentiable Reconstruction and Rendering for Unseen
Object Pose Estimation. arXiv:1912.00416 [cs], June 2020.

[45] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hujun Bao. PVNet:
Pixel-Wise Voting Network for 6DoF Pose Estimation. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
4556–4565, Long Beach, CA, USA, June 2019. IEEE. ISBN 978-1-72813-
293-8. doi: 10.1109/CVPR.2019.00469.

[46] Georgios Pavlakos, Xiaowei Zhou, Aaron Chan, Konstantinos G. Derpanis,
and Kostas Daniilidis. 6-DoF object pose from semantic keypoints. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages
2011–2018, Singapore, Singapore, May 2017. IEEE. ISBN 978-1-5090-
4633-1. doi: 10.1109/ICRA.2017.7989233.

[47] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation
in Cluttered Scenes. arXiv:1711.00199 [cs], November 2017.

[48] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martin-Martin, Cewu Lu, Li Fei-
Fei, and Silvio Savarese. DenseFusion: 6D object pose estimation by
iterative dense fusion. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[49] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Point-
Net: Deep Learning on Point Sets for 3D Classification and Segmentation.
arXiv:1612.00593 [cs], December 2016.

[50] Yangzheng Wu, Alireza Javaheri, Mohsen Zand, and Michael Greenspan.
Keypoint Cascade Voting for Point Cloud Based 6DoF Pose Estimation.
In 2022 International Conference on 3D Vision (3DV), pages 176–186,
September 2022. doi: 10.1109/3DV57658.2022.00030.

[51] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir
Navab. SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation
Great Again. In 2017 IEEE International Conference on Computer Vision

144

Bibliography

(ICCV), pages 1530–1538, Venice, October 2017. IEEE. ISBN 978-1-5386-
1032-9. doi: 10.1109/ICCV.2017.169.

[52] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, and
Rudolph Triebel. Augmented Autoencoders: Implicit 3D Orientation
Learning for 6D Object Detection. International Journal of Computer
Vision, 128(3):714–729, March 2020. ISSN 1573-1405. doi: 10.1007/
s11263-019-01243-8.

[53] P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256,
February 1992. ISSN 1939-3539. doi: 10.1109/34.121791.

[54] M. Greenspan and M. Yurick. Approximate k-d tree search for efficient ICP.
In Fourth International Conference on 3-D Digital Imaging and Modeling,
2003. 3DIM 2003. Proceedings., pages 442–448, October 2003. doi:
10.1109/IM.2003.1240280.

[55] Pol Moreno, Christopher K. I. Williams, Charlie Nash, and Pushmeet Kohli.
Overcoming Occlusion with Inverse Graphics. In Gang Hua and Hervé
Jégou, editors, Computer Vision – ECCV 2016 Workshops, volume 9915,
pages 170–185. Springer International Publishing, Cham, 2016. ISBN 978-
3-319-49408-1 978-3-319-49409-8. doi: 10.1007/978-3-319-49409-8_16.

[56] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. DeepIM:
Deep Iterative Matching for 6D Pose Estimation. International Journal
of Computer Vision, 128(3):657–678, March 2020. ISSN 1573-1405. doi:
10.1007/s11263-019-01250-9.

[57] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization
for mobile robots. In Proceedings 1999 IEEE International Conference
on Robotics and Automation (Cat. No.99CH36288C), volume 2, pages
1322–1328, Detroit, MI, USA, 1999. IEEE. ISBN 978-0-7803-5180-6. doi:
10.1109/ROBOT.1999.772544.

[58] Changhyun Choi and Henrik I. Christensen. RGB-D object tracking: A
particle filter approach on GPU. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1084–1091, Tokyo, November
2013. IEEE. ISBN 978-1-4673-6358-7 978-1-4673-6357-0. doi: 10.1109/
IROS.2013.6696485.

[59] Manuel Wuthrich, Peter Pastor, Mrinal Kalakrishnan, Jeannette Bohg, and
Stefan Schaal. Probabilistic object tracking using a range camera. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3195–3202, Tokyo, November 2013. IEEE. ISBN 978-1-4673-6358-
7 978-1-4673-6357-0. doi: 10.1109/IROS.2013.6696810.

145

Bibliography

[60] Alexander Krull, Frank Michel, Eric Brachmann, Stefan Gumhold, Stephan
Ihrke, and Carsten Rother. 6-DOF Model Based Tracking via Object Coor-
dinate Regression. In Daniel Cremers, Ian Reid, Hideo Saito, and Ming-
Hsuan Yang, editors, Computer Vision – ACCV 2014, volume 9006, pages
384–399. Springer International Publishing, Cham, 2015. ISBN 978-3-319-
16816-6 978-3-319-16817-3. doi: 10.1007/978-3-319-16817-3_25.

[61] Henning Tjaden, Ulrich Schwanecke, Elmar Schomer, and Daniel Cremers.
A Region-Based Gauss-Newton Approach to Real-Time Monocular Multiple
Object Tracking. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(8):1797–1812, August 2019. ISSN 0162-8828, 2160-9292,
1939-3539. doi: 10.1109/TPAMI.2018.2884990.

[62] Wadim Kehl, Federico Tombari, Slobodan Ilic, and Nassir Navab. Real-Time
3D Model Tracking in Color and Depth on a Single CPU Core. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 465–473, Honolulu, HI, July 2017. IEEE. ISBN 978-1-5386-0457-1.
doi: 10.1109/CVPR.2017.57.

[63] Manuel Stoiber, Martin Sundermeyer, and Rudolph Triebel. Iterative Cor-
responding Geometry: Fusing Region and Depth for Highly Efficient 3D
Tracking of Textureless Objects. In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 6845–6855, New
Orleans, LA, USA, June 2022. IEEE. ISBN 978-1-66546-946-3. doi:
10.1109/CVPR52688.2022.00673.

[64] David Joseph Tan and Slobodan Ilic. Multi-forest Tracker: A Chameleon
in Tracking. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1202–1209, Columbus, OH, USA, June 2014. IEEE.
ISBN 978-1-4799-5118-5. doi: 10.1109/CVPR.2014.157.

[65] Mathieu Garon and Jean-François Lalonde. Deep 6-DOF Tracking. IEEE
Transactions on Visualization and Computer Graphics, 23(11):2410–2418,
November 2017. ISSN 1077-2626. doi: 10.1109/TVCG.2017.2734599.

[66] Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Timothy Bretl, and
Dieter Fox. PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object
Pose Tracking. arXiv:1905.09304 [cs], May 2019.

[67] Xiaotong Chen, Rui Chen, Zhiqiang Sui, Zhefan Ye, Yanqi Liu, R. Iris Bahar,
and Odest Chadwicke Jenkins. GRIP: Generative Robust Inference and
Perception for Semantic Robot Manipulation in Adversarial Environments.
In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3988–3995, Macau, China, November 2019. IEEE.
ISBN 978-1-72814-004-9. doi: 10.1109/IROS40897.2019.8967983.

146

Bibliography

[68] Zhuowen Tu and Song-Chun Zhu. Image Segmentation by Data-Driven
Markov Chain Monte Carlo. IEEE TRANSACTIONS ON PATTERN ANALY-
SIS AND MACHINE INTELLIGENCE, 24(5), 2002.

[69] Matthew M. Loper and Michael J. Black. OpenDR: An Approximate Differ-
entiable Renderer. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Computer Vision – ECCV 2014, volume 8695, pages
154–169. Springer International Publishing, Cham, 2014. ISBN 978-3-319-
10583-3 978-3-319-10584-0. doi: 10.1007/978-3-319-10584-0_11.

[70] Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V. Gehler.
The informed sampler: A discriminative approach to Bayesian inference in
generative computer vision models. Computer Vision and Image Under-
standing, 136:32–44, July 2015. ISSN 10773142. doi: 10.1016/j.cviu.2015.
03.002.

[71] Yanqi Liu, Giuseppe Calderoni, and Ruth Iris Bahar. Hardware Acceleration
of Monte-Carlo Sampling for Energy Efficient Robust Robot Manipulation.
In 2020 30th International Conference on Field-Programmable Logic and
Applications (FPL), pages 284–290, August 2020. doi: 10.1109/FPL50879.
2020.00054.

[72] Nishad Gothoskar, Marco Cusumano-Towner, Ben Zinberg, Matin
Ghavamizadeh, Falk Pollok, Austin Garrett, Josh Tenenbaum, Dan Gutfre-
und, and Vikash Mansinghka. 3DP3: 3D scene perception via probabilistic
programming. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, volume 34, pages 9600–9612. Curran Associates, Inc., 2021.

[73] Jana Pavlasek, Stanley Lewis, Karthik Desingh, and Odest Chadwicke
Jenkins. Parts-Based Articulated Object Localization in Clutter Using Belief
Propagation. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 10595–10602, Las Vegas, NV, USA,
October 2020. IEEE. ISBN 978-1-72816-212-6. doi: 10.1109/IROS45743.
2020.9340908.

[74] Tim Übelhör, Jonas Gesenhues, Nassim Ayoub, Ali Modabber, and Dirk
Abel. 3D camera-based markerless navigation system for robotic os-
teotomies. at - Automatisierungstechnik, 68(10):863–879, October 2020.
ISSN 2196-677X, 0178-2312. doi: 10.1515/auto-2020-0032.

[75] Ken Shoemake. UNIFORM RANDOM ROTATIONS. In Graphics Gems III,
pages 124–132. Elsevier, 1992. ISBN 978-0-12-409673-8. doi: 10.1016/
B978-0-08-050755-2.50036-1.

147

Bibliography

[76] Avishek Chatterjee and Venu Madhav Govindu. Noise in Structured-Light
Stereo Depth Cameras: Modeling and its Applications. arXiv:1505.01936
[cs], May 2015.

[77] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibra-
tion of modern neural networks. In International Conference on Machine
Learning, pages 1321–1330. PMLR, 2017. ISBN 2640-3498.

[78] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo
samplers. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(3):411–436, June 2006. ISSN 1369-7412, 1467-9868.
doi: 10.1111/j.1467-9868.2006.00553.x.

[79] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia:
A Fresh Approach to Numerical Computing. SIAM Review, 59(1):65–98,
January 2017. ISSN 0036-1445. doi: 10.1137/141000671.

[80] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and
David M Blei. Automatic differentiation variational inference. Journal of
machine learning research, 2017. ISSN 1532-4435.

[81] Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational
Inference. In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, pages 814–822. PMLR, April 2014.

[82] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference:
A Review for Statisticians. Journal of the American Statistical Association,
112(518):859–877, April 2017. ISSN 0162-1459, 1537-274X. doi: 10.1080/
01621459.2017.1285773.

[83] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle
Markov chain Monte Carlo methods: Particle Markov Chain Monte Carlo
Methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 72(3):269–342, June 2010. ISSN 13697412, 14679868. doi:
10.1111/j.1467-9868.2009.00736.x.

[84] Warren Morningstar, Sharad Vikram, Cusuh Ham, Andrew Gallagher, and
Joshua Dillon. Automatic differentiation variational inference with mixtures.
In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of the 24th
International Conference on Artificial Intelligence and Statistics, volume 130
of Proceedings of Machine Learning Research, pages 3250–3258. PMLR,
2021-04-13/2021-04-15.

[85] W. K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, April 1970. ISSN 0006-3444.
doi: 10.1093/biomet/57.1.97.

148

Bibliography

[86] Jun S. Liu, Faming Liang, and Wing Hung Wong. The Multiple-Try Method
and Local Optimization in Metropolis Sampling. Journal of the American
Statistical Association, 95(449):121–134, March 2000. ISSN 0162-1459,
1537-274X. doi: 10.1080/01621459.2000.10473908.

[87] Luca Martino. A Review of Multiple Try MCMC algorithms for Signal Process-
ing. Digital Signal Processing, 75:134–152, April 2018. ISSN 10512004.
doi: 10.1016/j.dsp.2018.01.004.

[88] L. Martino and F. Louzada. Issues in the Multiple Try Metropolis mixing.
Computational Statistics, 32(1):239–252, March 2017. ISSN 0943-4062,
1613-9658. doi: 10.1007/s00180-016-0643-9.

[89] N. Chopin. A sequential particle filter method for static models. Biometrika,
89(3):539–552, August 2002. ISSN 0006-3444, 1464-3510. doi: 10.1093/
biomet/89.3.539.

[90] Chenguang Dai, Jeremy Heng, Pierre E. Jacob, and Nick Whiteley. An
invitation to sequential Monte Carlo samplers, June 2022.

[91] Thi Le Thu Nguyen, François Septier, Gareth W. Peters, and Yves Delignon.
Efficient Sequential Monte-Carlo Samplers for Bayesian Inference. IEEE
Transactions on Signal Processing, 64(5):1305–1319, March 2016. ISSN
1941-0476. doi: 10.1109/TSP.2015.2504342.

[92] Radford M. Neal. Annealed importance sampling. Statistics and Computing,
11(2):125–139, April 2001. ISSN 1573-1375. doi: 10.1023/A:1008923215028.

[93] Ajay Jasra, David A. Stephens, Arnaud Doucet, and Theodoros Tsagaris.
Inference for Lévy-Driven Stochastic Volatility Models via Adaptive Se-
quential Monte Carlo: Lévy-driven stochastic volatility. Scandinavian
Journal of Statistics, 38(1):1–22, March 2011. ISSN 03036898. doi:
10.1111/j.1467-9469.2010.00723.x.

[94] Tor Erlend Fjelde, Kai Xu, Mohamed Tarek, Sharan Yalburgi, and Hong
Ge. Bijectors.jl: Flexible transformations for probability distributions. In
Cheng Zhang, Francisco Ruiz, Thang Bui, Adji Bousso Dieng, and Dawen
Liang, editors, Proceedings of the 2nd Symposium on Advances in Approx-
imate Bayesian Inference, volume 118 of Proceedings of Machine Learning
Research, pages 1–17. PMLR, December 2020.

[95] G. O. Roberts and S. K. Sahu. Updating Schemes, Correlation Structure,
Blocking and Parameterization for the Gibbs Sampler. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 59(2):291–317, July
1997. ISSN 1369-7412, 1467-9868. doi: 10.1111/1467-9868.00070.

149

Bibliography

[96] Daniel Turek, Perry de Valpine, Christopher J. Paciorek, and Clifford
Anderson-Bergman. Automated Parameter Blocking for Efficient Markov
Chain Monte Carlo Sampling. Bayesian Analysis, 12(2):465–490, June
2017. ISSN 1936-0975, 1931-6690. doi: 10.1214/16-BA1008.

[97] Tomas Hodan, Pavel Haluza, Stepan Obdrzalek, Jiri Matas, Manolis
Lourakis, and Xenophon Zabulis. T-LESS: An RGB-D Dataset for 6D
Pose Estimation of Texture-Less Objects. In 2017 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages 880–888,
Santa Rosa, CA, USA, March 2017. IEEE. ISBN 978-1-5090-4822-9.
doi: 10.1109/WACV.2017.103.

[98] Bertram Drost, Markus Ulrich, Paul Bergmann, Philipp Hartinger, and
Carsten Steger. Introducing MVTec ITODD — A Dataset for 3D Object
Recognition in Industry. In 2017 IEEE International Conference on Com-
puter Vision Workshops (ICCVW), pages 2200–2208, Venice, Italy, October
2017. IEEE. ISBN 978-1-5386-1034-3. doi: 10.1109/ICCVW.2017.257.

[99] Krishna Shankar, Mark Tjersland, Jeremy Ma, Kevin Stone, and Max Ba-
jracharya. A Learned Stereo Depth System for Robotic Manipulation in
Homes. IEEE Robotics and Automation Letters, 7(2):2305–2312, April
2022. ISSN 2377-3766. doi: 10.1109/LRA.2022.3143895.

[100] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and
Andrew Zisserman. The Pascal Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision, 88(2):303–338, June 2010. ISSN
0920-5691, 1573-1405. doi: 10.1007/s11263-009-0275-4.

[101] M. Fujita, Y. Domae, A. Noda, G. A. Garcia Ricardez, T. Nagatani, A. Zeng,
S. Song, A. Rodriguez, A. Causo, I. M. Chen, and T. Ogasawara. What are
the important technologies for bin picking? Technology analysis of robots in
competitions based on a set of performance metrics. Advanced Robotics,
34(7-8):560–574, April 2020. ISSN 0169-1864. doi: 10.1080/01691864.2019.
1698463.

[102] Le Duc Hanh and Khuong Thanh Gia Hieu. 3D matching by combining
CAD model and computer vision for autonomous bin picking. International
Journal on Interactive Design and Manufacturing (IJIDeM), 15(2):239–247,
September 2021. ISSN 1955-2505. doi: 10.1007/s12008-021-00762-4.

[103] Carlos Martinez, Remus Boca, Biao Zhang, Heping Chen, and Srinivas
Nidamarthi. Automated bin picking system for randomly located industrial
parts. In 2015 IEEE International Conference on Technologies for Practical
Robot Applications (TePRA), pages 1–6, May 2015. doi: 10.1109/TePRA.
2015.7219656.

150

Bibliography

[104] Ali Modabber, Nassim Ayoub, Tim Redick, Jonas Gesenhues, Kristian
Kniha, Stephan Christian Möhlhenrich, Stefan Raith, Dirk Abel, Frank
Hölzle, and Philipp Winnand. Comparison of augmented reality and cutting
guide technology in assisted harvesting of iliac crest grafts – A cadaver
study. Annals of Anatomy - Anatomischer Anzeiger, 239:151834, January
2022. ISSN 0940-9602. doi: 10.1016/j.aanat.2021.151834.

[105] Manuel Wüthrich, Jeannette Bohg, Daniel Kappler, Claudia Pfreundt, and
Stefan Schaal. The Coordinate Particle Filter - a novel Particle Filter
for high dimensional systems. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 2454–2461, May 2015. doi:
10.1109/ICRA.2015.7139527.

[106] David Stenger, Maximilian Nitsch, and Dirk Abel. Joint Constrained
Bayesian Optimization of Planning, Guidance, Control, and State Esti-
mation of an Autonomous Underwater Vehicle. In 2022 European Control
Conference (ECC), pages 1982–1987, July 2022. doi: 10.23919/ECC55457.
2022.9838053.

[107] Russ Tedrake. Robotic Manipulation. Perception, Planning, and Control.
2023.

[108] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings 1992 IEEE
International Conference on Robotics and Automation, pages 2290–2295
vol.3, May 1992. doi: 10.1109/ROBOT.1992.219918.

[109] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-DOF GraspNet:
Variational Grasp Generation for Object Manipulation. arXiv:1905.10520
[cs], May 2019.

[110] F.C. Park and B.J. Martin. Robot sensor calibration: Solving AX=XB on the
Euclidean group. IEEE Transactions on Robotics and Automation, 10(5):
717–721, 1994. doi: 10.1109/70.326576.

[111] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. Reducing
the Barrier to Entry of Complex Robotic Software: A MoveIt! Case Study,
April 2014.

[112] Michael Görner, Robert Haschke, Helge Ritter, and Jianwei Zhang. MoveIt!
Task constructor for task-level motion planning. In 2019 International Con-
ference on Robotics and Automation (ICRA), pages 190–196, 2019. doi:
10.1109/ICRA.2019.8793898.

151

Bibliography

[113] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime Multi-
person 2D Pose Estimation Using Part Affinity Fields. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 1302–
1310, Honolulu, HI, July 2017. IEEE. ISBN 978-1-5386-0457-1. doi:
10.1109/CVPR.2017.143.

[114] Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray. Algorithms for
Decision Making. The MIT Press, Cambridge, Massachusetts, 2022. ISBN
978-0-262-04701-2.

[115] Johannes Kummert, Alexander Schulz, Tim Redick, Nassim Ayoub, Ali
Modabber, Dirk Abel, and Barbara Hammer. Efficient Reject Options for
Particle Filter Object Tracking in Medical Applications. Sensors, 21(6):2114,
January 2021. doi: 10.3390/s21062114.

[116] Timothy Patten, Michael Zillich, Robert Fitch, Markus Vincze, and Salah
Sukkarieh. Viewpoint Evaluation for Online 3-D Active Object Classification.
IEEE Robotics and Automation Letters, 1(1):73–81, January 2016. ISSN
2377-3766. doi: 10.1109/LRA.2015.2506901.

[117] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehti-
nen, and Timo Aila. Modular primitives for high-performance differentiable
rendering. ACM Transactions on Graphics, 39(6):1–14, December 2020.
ISSN 0730-0301, 1557-7368. doi: 10.1145/3414685.3417861.

[118] P. L. Green, L. J. Devlin, R. E. Moore, R. J. Jackson, J. Li, and S. Maskell.
Increasing the efficiency of Sequential Monte Carlo samplers through the
use of approximately optimal L-kernels. Mechanical Systems and Signal
Processing, 162:108028, January 2022. ISSN 0888-3270. doi: 10.1016/j.
ymssp.2021.108028.

[119] Douglas. Hanggi and Peter W. Carr. Errors in exponentially modified Gaus-
sian equations in the literature. Analytical Chemistry, 57(12):2394–2395,
October 1985. ISSN 0003-2700, 1520-6882. doi: 10.1021/ac00289a051.

152

	Abstract
	Kurzfassung
	Contents
	List of my Publications
	List of Symbols
	Acronyms and Abbreviations
	1 Introduction
	1.1 Scope
	1.2 Relevance
	1.3 Research Hypothesis and Structure

	2 Theoretical Foundations and Notations
	2.1 Foundations of Bayesian Statistics
	2.2 Probability Distributions Used in This Thesis
	2.3 Probabilistic Models
	2.4 Graphical Model for Inference
	2.5 6D Pose and Transformations
	2.6 3D Rotation Representations
	2.7 Pinhole Camera Model
	2.8 Summary

	3 Related Work on Camera-Based 6D Pose Estimation
	3.1 Short History of Computer Vision
	3.2 Object Detection and Segmentation
	3.3 Classical Pose Estimation
	3.4 Learning-Based Pose Estimation
	3.5 Pose Refinement And Tracking
	3.6 Bayesian Inference on Images
	3.7 Summary

	4 Probabilistic Models for 3D Camera-Based 6D Pose Estimation
	4.1 Probabilistic Model Overview
	4.2 Position and Orientation Models
	4.2.1 Position Priors
	4.2.2 Position Proposals
	4.2.3 Orientation Priors
	4.2.4 Orientation Proposals - Quaternion Perturbations

	4.3 Depth Image Models
	4.3.1 Generating Depth Images via Rendering
	4.3.2 Resizing and Cropping the Pinhole Camera Model
	4.3.3 Pixel Likelihood
	4.3.4 Handling Invalid Pixels
	4.3.5 Incorporating Masks: Pixel-Object Classification
	4.3.6 Image Likelihood and Regularization

	4.4 Performant Evaluation using Julia and the Graphics Processing Unit
	4.5 Summary

	5 Approximate Bayesian Inference Algorithms
	5.1 Overview of Approximate Inference Algorithms
	5.1.1 Metropolis-Hastings
	5.1.2 Multiple-Try Metropolis
	5.1.3 Sequential Monte Carlo Samplers
	5.1.4 Particle Filtering as Special Case of Sequential Monte Carlo Samplers

	5.2 Best Practices and Sampler Modifications
	5.2.1 Likelihood Tempering
	5.2.2 Adaptive Proposals for Sequential Monte Carlo Samplers
	5.2.3 Logarithmic Sampling
	5.2.4 Sampling in Constrained Domains
	5.2.5 Metropolis Hastings in Unconstrained Domains
	5.2.6 Sampling Blocks of Variables

	5.3 Summary

	6 Experimental Comparison of Models and Samplers for 6D Pose Estimation
	6.1 Experiment Design
	6.1.1 Datasets
	6.1.2 Computer Hardware
	6.1.3 Pose Error Metrics
	6.1.4 Performance Score for Pose Estimation
	6.1.5 Evaluation of Pose Distributions

	6.2 Baseline Model-Sampler Configurations
	6.2.1 Probabilistic Model
	6.2.2 Samplers and their Proposals
	6.2.3 Qualitative Analysis of Samplers

	6.3 Image Resolution, Number of Particles, and Runtime
	6.3.1 Influence of Image Resolution
	6.3.2 Optimal Number of Particles and Inference Time

	6.4 Quantitative Evaluation of Baseline Samplers on Synthetic Data
	6.5 Ablating the Probabilistic Model
	6.5.1 Choice of Priors for Position and Classification
	6.5.2 Modeling Occlusions: Exponential Distribution, Classification, Regularization

	6.6 Automatic Parameter Tuning
	6.7 Benchmark for 6D Object Pose Estimation: Results on Real Data
	6.8 Summary

	7 Applications in Medical Robotics
	7.1 Pose Estimation of Surgical Instruments
	7.1.1 Results for Simulated Instruments
	7.1.2 Discussion on Pose Estimation of Surgical Instruments

	7.2 Particle Filtering for 6D Pose Tracking of Iliac Crest Bones
	7.2.1 Motivation, Boundary Conditions, and Goal
	7.2.2 Motion and Observation Models
	7.2.3 Filter Design
	7.2.4 Evaluation
	7.2.5 Results
	7.2.6 Discussion

	7.3 Practical Use of Pose Estimation in Robotic Manipulation Tasks
	7.3.1 Local Plan: Model-Based Grasp Candidates
	7.3.2 Transforming Local Plans using Camera-Based Pose Estimates
	7.3.3 Collsion Free Motion and Task Planning
	7.3.4 Compliant Control for Contacts
	7.3.5 Using the Pose Estimator in Practice

	7.4 Summary

	8 Conclusion
	8.1 Outlook
	8.1.1 Future Directions for Bayesian Pose Estimation
	8.1.2 Active Perception: Combining Vision and Control

	A Appendix
	A.1 Source Code
	A.2 Failed Approaches
	A.2.1 Image Regularization
	A.2.2 Handling Invalid Pixels
	A.2.3 Gradient Based Samplers with Differentiable Renderers
	A.2.4 Bootstrap SMC Kernel for Static problems
	A.2.5 Forward Proposal Kernel for SMC
	A.2.6 Cropping in Particle Filters

	A.3 Gaussian Modified Truncated Exponential Distribution (Smooth Truncated Exponential)
	A.4 Pose Estimation of Surgical Instruments
	A.5 Incorporating Masks: Pixel-Object Classification
	A.6 Runtime: Number of Particles and Inference Steps
	A.7 Particle Filtering for 6D Pose Tracking of Iliac Crest Bones

	Bibliography

