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Abstract
Within this contribution, we propose a fully thermo-mechanical coupled
isotropic damagemodel for polymeric adhesives under finite strains. This model
is based on the multiplicative decomposition of the deformation gradient into
mechanical and thermal parts. We consider rate-dependent damage behaviour
(e.g. creep damage) of the material by applying a Perzyna-type ansatz for the
damage evolution equations. To overcome the pronounced mesh dependencies
which would result from the usage of a local damage model, we make use of a
gradient-extended damage formulation. Besides the main aspects of model, we
show the thermodynamically consistent derivation of constitutive quantities as
well as the numerical treatment of the governing equations. Finally, we show
selected numerical examples to demonstrate the capabilities of the model.

1 INTRODUCTION

Adhesive joints play a crucial role in many industrial applications. Their inherent advantages come with the drawback of
a variety of inelastic, rate- and temperature-dependent material properties. The thermomechanical behaviour of polymer
materials is nowadays considered to be very well studied (see e.g. [1] among others). From the numerical modelling side,
the approaches developed can be roughly divided into two classes. One of these classes goes back to the work of the litera-
ture [2] in which the deformation is decomposed into a mechanical and a thermal part. The Helmholtz free energy is then
divided additively according to these parts (see e.g. [1, 3]). On the other hand, there are approaches which do this without
an explicit decomposition of the deformation gradient. Instead, they derive a corresponding energy equation by integrating
the fundamental relationship between heat capacity and free energy (see e.g. [4]). This type of approach has the advantage
that it is more general and can be reduced to the decomposition approach mentioned above under certain assumptions.
In contrast to the decomposition approach, however, in the case of damage modelling it is not possible to ensure a priori
that the damage growth criterion [5] is always fulfilled (see [6]). In this work, we therefore refer to the approach of multi-
plicative decomposition of the deformation gradient. Rate-dependent material behaviour is another important aspect that
must be considered in the modelling of polymer materials. In addition to viscoelasticity, which has already been studied
and modelled many times, rate-dependent damage effects also play a major role. The latter cannot usually be adequately
represented by classical viscoelastic damage formulations within the framework of continuum damage theory. Various
approaches to modelling the rate-dependent damage behaviour are known in the literature. A comprehensive overview
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would go beyond the scope of this paper. The interested reader is therefore referred to the overview for example in the
literature [7, 8]. The approach of [8] uses a simple Perzyna approach [9] and forms the basis of the model presented here.
Furthermore, it should be mentioned at this point that in the context of this work, modelling of the viscoelastic behaviour
was dispensed with in order to study the influence of the rate-dependent damage on the thermomechanical material
behaviour in more detail.

2 CONTINUUMMECHANICALMODELLING

We start by following the argumentation of the literature [2] to split the deformation gradient 𝐅 into mechanical and
thermal parts, such that 𝐅 = 𝐅𝜃𝐅𝑀 . For the thermal part, we assume that the material behaves isotropic under thermal
expansion. This motivates the definition 𝐅𝜃 = 𝜗(Θ)𝐈 using the heat expansion function 𝜗(Θ) = exp(𝛼Θ(Θ − Θ0)), which
is fully characterized in terms of the heat expansion coefficient 𝛼Θ, the current temperatureΘ and a reference temperature
Θ0. With defining the right Cauchy Green tensor 𝐂 = 𝐅𝑇𝐅, we postulate the Helmholtz free energy of the given material
as

𝜓 = 𝑓𝑑(𝐷)
Θ

Θ0
𝜓𝑒(𝐂) + 𝜓𝑑(𝜉𝑑) + 𝜓𝑑(𝐷, 𝐷̄, Grad 𝐷̄) + 𝜓𝜃(Θ). (1)

Here, the damage local damage variable 𝐷 ∈ [0, 1] as well as its non-local counterpart 𝐷̄ are introduced together with the
damage hardening variable 𝜉𝑑. The damage degradation function is given as 𝑓𝑑(𝐷) = (1 − 𝐷)2. Whilst 𝜓𝑒 describes the
elastic energy contribution, 𝜓𝑑 defines the energy contribution of damage hardening. Furthermore, 𝜓𝑑 and 𝜓𝜃 denote the
contribution with respect to the non-local damage formulation and the caloric energy, respectively. For the temperature
dependence of the given energy, we use a linear relation as described for example in the literature [1].

2.1 Thermodynamic considerations

In order to develop a thermodynamically consistentmaterialmodel, we need to considering both, the balance of energy for
a gradient-extended damage model as well as the corresponding Clausius-Duhem inequality. The former can be written
in terms of the internal energy 𝑒, the second Piola-Kirchhoff stress tensor 𝐒, the external heat sources 𝑟𝑒𝑥𝑡 as well as the
generalized, micromorphic stresses 𝑎0𝑖 and 𝐛0𝑖 , that is

𝑒̇ = 𝐒 ∶
1

2
𝐂̇ − Div 𝐪0 + 𝑎0𝑖

̇̄𝐷 + 𝐛0𝑖 ⋅ Grad ̇̄𝐷 + 𝑟𝑒𝑥𝑡. (2)

For the spatial heat flux𝐪0, we need to consider that the virgin conductivity 𝑘0must be reduced during the damage process,
which motivates the choice of 𝐪0 = −𝑓𝑑(𝐷)𝐽𝑘0𝐂

−1 GradΘ [6]. Furthermore, the Clausius-Duhem inequality is expressed
in terms of the bodies entropy 𝜂 as

−𝜓̇ + 𝐒 ∶
1

2
𝐂̇ + 𝑎0𝑖

̇̄𝐷 + 𝐛0𝑖 ⋅ Grad ̇̄𝐷 − 𝜂Θ̇ −
1

Θ
𝐪0 ⋅ GradΘ ≥ 0. (3)

Considering a Legendre-Transformation 𝑒 = 𝜓 + Θ𝜂 and combining the temporal derivative of Equation (1) with Equa-
tions (2) and (3), we can find the thermodynamically consistent definition of the second Piola-Kirchhoff stress tensor, the
entropy as well as the generalized micromorphic stresses as

𝐒 = 2
𝜕𝜓

𝜕𝐂
, 𝜂 = −

𝜕𝜓

𝜕Θ
, 𝐛0𝑖 =

𝜕𝜓

𝜕 Grad 𝐷̄
, 𝑎0𝑖 =

𝜕𝜓

𝜕𝐷̄
. (4)

With this, the reduced Clausius-Duhem inequality is given as a function of the damage driving force 𝑌 and the hardening
driving force 𝑞𝑑, that is

𝑌 = −

(
𝜕𝑓𝑑

𝜕𝐷

Θ

Θ0
𝜓𝑒 +

𝜕𝜓𝑑

𝜕𝐷

)
, 𝑞𝑑 =

𝜕𝜓𝑑

𝜕𝜉𝑑
(5)
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and can be written as 𝑌𝐷̇ − 𝑞𝑑𝜉̇𝑑 ≥ 0. In order to ensure thermodynamic consistency, the corresponding evolution equa-
tions for 𝐷̇ and 𝜉̇𝑑 must be chosen such that this inequality is always fullfilled. Additionally, the balance of energy can be
reformulated such that it is described in terms of the internal heat generation 𝑟𝑖𝑛𝑡 due to dissipation effects, that is

𝑐Θ̇ = 𝑟𝑖𝑛𝑡 + 𝑟𝑒𝑥𝑡 − Div 𝐪0. (6)

These internal heat sources can be associated with elastic and damage related dissipation and therefore be written as
𝑟𝑖𝑛𝑡 = 𝑟𝑒 + 𝑟𝑑, where the individual heat production terms are given as

𝑟𝑒 ∶=
1

2

𝜕𝐒

𝜕Θ
Θ ∶ 𝐂̇,

𝑟𝑑 ∶=

(
𝑌 −

𝜕𝑌

𝜕Θ
Θ

)
𝐷̇ −

(
𝑞𝑑 −

𝜕𝑞𝑑
𝜕Θ

Θ

)
𝜉̇𝑑 +

𝜕𝑎0𝑖

𝜕Θ
Θ ̇̄𝐷 +

𝜕𝐛0𝑖

𝜕Θ
Θ ⋅ Grad ̇̄𝐷.

(7)

Equation (6) describes the evolution of temperature over time and throughout the body of interest. Within the solu-
tion schema applied for this work, this equation has to be solved together with the balance of linear momentum in a
coupled fashion.

2.2 Evolution equations

To complete the constitutive relations described above, we further define appropriate evolution equations for the rate-
dependent damage response. For this, we choose a scalar damage function which is defined in terms of the damage
threshold 𝑌0, that is

Φ𝑑 ∶= 𝑌 − (𝑌0 + 𝑞𝑑). (8)

Next, we introduce the damage multiplier 𝜆̇𝑑 and postulate the damage related evolution equations as

𝐷̇ ∶= 𝜆̇𝑑
𝜕Φ𝑑

𝜕𝑌
= 𝜆̇𝑑 and 𝜉̇𝑑 ∶= −𝜆̇𝑑

𝜕Φ𝑑

𝜕𝑞𝑑
= 𝜆̇𝑑. (9)

It is important to note that this particular choice of the associative evolution equations yield the same result for both,
the local damage variable 𝐷 and the damage hardening variable 𝜉𝑑. Such an relatively simple approach is by no means
the only feasible option, but has proven to be very effective. In the case of a classical rate-independent damage model, 𝜆̇𝑑

would serve as a Lagrangian multiplier which has to be solved using the Karush-Kuhn-Tucker conditions. In contrast to
that, we introduce an explicit formulation for

𝜆̇𝑑 ∶=

⎧⎪⎨⎪⎩
𝜂𝑑

(
Φ𝑑

𝑌0+𝑞𝑑

) 1

𝜀𝑑 if Φ𝑑 ≥ 0

0 else
(10)

in order to introduce the temporal dependence into our model (see e.g. [9]). Here, 𝜂𝑑 describes the damage velocity.
Furthermore, 𝜀𝑑 is the so-called damage sensitivity parameter.

2.3 Particular choice of the Helmholtz free energies

For simplicity reasons, we choose a classic Neo-Hookean type model as an elastic ground model for the material at hand,
that is

𝜓𝑒 ∶=
𝜇

2

[
tr

(
𝐽
−

2

3 𝐂

)
− 3

]
+

𝜅

4

(
𝐽2 − 1 − 2 ln 𝐽

)
, (11)
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with 𝐽 =
√

det 𝐂 and 𝜇, 𝜅 referring to the shear and bulk modulus of the material. It seems important to mention, that
any other hyperelastic ground model is also feasible at this place.
For the energy density of the damage hardening contribution, we choose a combination of a Voce-type hardening (see

[10]) and a classical linear hardening law including the material paramters 𝑘, 𝑟 and 𝑠, that is

𝜓𝑑(𝜉𝑑) ∶=
1

2
𝑘 𝜉2

𝑑
⏟⏟⏟

linear hardening

+𝑟

(
𝜉𝑑 +

1

𝑠
[exp(−𝑠𝜉𝑑) − 1]

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

Voce-type hardening

. (12)

Regarding the energy density of the micromorphic damage extension, we follow the choice of for example [11] or [12,
13] and define it such that

𝜓𝑑(𝐷, 𝐷̄, ∇𝐷̄) ∶=
𝐻

2
(𝐷 − 𝐷̄)

2
+

𝐴

2
∇𝐷̄ ⋅ ∇𝐷̄. (13)

Here,𝐻 acts as a penalty parameter to couple the local and non-local damage fields whereas 𝐴 describes the influence of
the non-local damage gradient.
By assuming that the heat capacity 𝑐 is constant, we can neglect a explicit definition of the caloric energy𝜓Θ and assume

that it takes a form for which this assumption is valid.

3 ALGORITHMIC IMPLEMENTATION

The material formulation described above was implemented into the finite element program FEAP using a fully ther-
momechanical coupled, gradient-extended element formulation as described in the literature [6]. For this, the evolution
equation given by (10) must discretized in time and solved appropriately afterwards. For this, we introduce Δ𝑡 = 𝑡 − 𝑡𝑛
and apply an implicit Euler method to Equation (9), that is

𝐷 = 𝐷𝑛 + Δ𝑡 𝜂𝑑

(
Φ𝑑

𝑌0 + 𝑞𝑑

) 1

𝜀𝑑
, (14)

where variables at the last time step are denoted by subscript 𝑛. To solve this discrete non-linear equation, we apply a local
Newton Raphson iteration schema. The Jacobian 𝐽1 = 𝜕𝑟∕𝜕𝐷 used for this are computed using automatic differentiation
techniques instead of analytical derivations. This is achieved by using the automatic differentiation framework AceGen
(see [14, 15]). With these at hand, we can determine the current value of the local damage variable 𝐷 iteratively for the
𝑘 − th iteration step via 𝐷𝑘+1 = 𝐷𝑘 − 𝐽−1

1 𝑟𝑘. Since the local material response is implicitly included within the global
material tangent operators of the finite element simulation, we need to derive these material sensitivities in a consistent
manner. Otherwise quadratic convergence of the global iteration scheme can not be achieved. Due to the second Piola-
Kirchhoff stress tensor 𝐒 being a function of the right Cauchy-Green tensor 𝐂, the non-local damage variable 𝐷̄ as well as
the temperature Θ and the internal variables, the tangent operators can be expressed as

d𝐒
d𝐂

=

(
𝜕𝐒

𝜕𝐂

||||𝐷 +
𝜕𝐒

𝜕𝐷

||||𝐂 ∶
𝜕𝐷

𝜕𝐂

)
,

d𝐒
dΘ

=

(
𝜕𝐒

𝜕Θ

||||𝐷 +
𝜕𝐒

𝜕𝐷

||||Θ 𝜕𝐷

𝜕Θ

)
,

d𝐒
d𝐷̄

=

(
𝜕𝐒

𝜕𝐷̄

||||𝐷 +
𝜕𝐒

𝜕𝐷

||||𝐷̄ 𝜕𝐷

𝜕𝐷̄

)
. (15)

Similarly, the sensitivities of the internal heat sources, that is

d𝑟𝑖𝑛𝑡
d𝐂

=

(
𝜕𝑟𝑖𝑛𝑡
𝜕𝐂

||||𝐷 +
𝜕𝑟𝑖𝑛𝑡
𝜕𝐷

||||𝐂 𝜕𝐷

𝜕𝐂

)
,

d𝑟𝑖𝑛𝑡
dΘ

=

(
𝜕𝑟𝑖𝑛𝑡
𝜕Θ

||||𝐷 +
𝜕𝑟𝑖𝑛𝑡
𝜕𝐷

||||Θ 𝜕𝐷

𝜕Θ

)
,

d𝑟𝑖𝑛𝑡
d𝐷̄

=

(
𝜕𝑟𝑖𝑛𝑡
𝜕𝐷̄

||||𝐷 +
𝜕𝑟𝑖𝑛𝑡
𝜕𝐷

||||𝐷̄ 𝜕𝐷

𝜕𝐷̄

)
(16)

and the referential heat flux are given, that is

d𝐪0

d𝐂
=

(
𝜕𝐪0

𝜕𝐂

||||𝐷 +
𝜕𝐪0

𝜕𝐷

||||𝐂 ⊗
𝜕𝐷

𝜕𝐂

)
,
d𝐪0

dΘ
=

(
𝜕𝐪0

𝜕Θ

||||𝐷 +
𝜕𝐪0

𝜕𝐷

||||Θ 𝜕𝐷

𝜕Θ

)
,
d𝐪0

d𝐷̄
=

(
𝜕𝐪0

𝜕𝐷̄

||||𝐷 +
𝜕𝐪0

𝜕𝐷

||||𝐷̄ 𝜕𝐷

𝜕𝐷̄

)
. (17)
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(A) (B)

F IGURE 1 Results of linear displacement applied uniaxially to a single element. Showing the influence of the damage relaxation
velocity 𝜂𝑑 .

The partial derivatives of 𝐒, 𝑟𝑖𝑛𝑡 and 𝐪0 with respect to the primary variables 𝐂, 𝐷̄ and Θ can be computed easily using
AceGen. For the computation of the partial derivative of 𝐷 with respect to 𝐂, 𝐷̄ and Θ we introduce 𝐲 = [𝐂̂, 𝐷̄, Θ]𝑇 and
make use of the relation

Δ𝐷 =
𝜕𝐷

𝜕𝐲
Δ𝐲 = −𝐽−1

1

𝜕𝑟

𝜕𝐲
Δ𝐲 = 𝐉2Δ𝐲, (18)

where 𝐂̂ describes the right Cauchy Green tensor in Voigt notation. The individual partial derivatives needed are then
given as submatrices of the generalized Jacobian 𝐉2.

4 NUMERICAL EXAMPLES

In the following section, we demonstrate the behaviour of the model described above showing some numerical studies
which were conducted at integration point level. For this, an uniaxial, displacement-driven loading state with a constant
loading rate is applied whilst some material parameters are varied. For the the shear modulus we chose 𝜇 = 30.0 MPa
whilst the bulkmodulus is set to 𝜅 = 1000𝜇. Furthermore, we choose a initial and reference temperature ofΘ𝑎 = 273.15K
and Θ0 = 273.15 K, respectively. In all subsequent results, damage hardening is turned off, that is 𝑘 = 𝑟 = 0.0. Since we
are only considering simulations on integration point level here, the gradient-extension parameters 𝐴 and 𝐻 as well as
the heat conductivity 𝑘0 do not have any influence. The heat capacity and the thermal expansion coefficient are chosen
as 𝑐 = 2005 Jkg−1K−1 and 𝛼Θ = 10−3, respectively.
Figure 1 shows the influence of the damage velocity 𝜂𝑑 on the evolution of damage (cf. Figure 1a) and the corresponding

heat generation (cf. Figure 1b), respectively. It is clearly visible that a higher damage velocity results in a faster evolution
of damage under the given boundary conditions. This effect is accompanied by a higher rate and magnitude of heat gen-
eration due to damage. Furthermore, Figure 3a shows that the total amount of heat generated is decaying with rising
values of 𝜂𝑑. This behaviour is intuitively reasonable for the boundary value problem applied here. As the displacement is
increased at a constant rate in this example, the elastic energy stored in the system increases over time. It is precisely this
energy that is released as heat by damage. If the damage process takes place very quickly, there is only a small amount
of energy stored in the system that can be released. In the case of a slow damage process, more displacement energy is
therefore stored in the system over time and successively released through damage.
In Figure 2, we show the influence of the damage threshold 𝑌0 on the damage and heat generation evolution. Figure 2a

shows how a higher threshold yields a later onset of damage with respect to the given loading scenario. The associated
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(A) (B)

F IGURE 2 Results of linear displacement applied uniaxially to a single element. Showing the influence of the damage threshold 𝑌0.

(A) (B)

F IGURE 3 Total heat generation for various values of damage threshold 𝑌0 and damage velocity 𝜂𝑑 .

heat generation depicted in Figure 2b also shows an earlier onset for lower values of 𝑌0. Furthermore, it is visible that
more heat get released the higher the damage threshold is set (cf. Figure 3b). Similar to the argumentation made above,
this behaviour is verywell expected. Sincemore elastic energy is already stored in the system at a later onset of the damage,
correspondingly more energy is dissipated at a later onset of the damage process. This also becomes clear when looking at
Equation (7), since here the heat generated depends directly on the driving force of the damage, which in turn is directly
proportional to the elastic energy of the system.
Of course, the example shown here only illustrates a small part of the rate-dependent effects that the material model

can reproduce. Due to the shortness of this article, other aspects, such as relaxation or creep behaviour, can unfortunately
not be discussed in detail here.
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5 CONCLUSION AND OUTLOOK

In this work, we have presented an approach to modelling the thermomechanical response of rate-dependent isotropic
damagewithin the finite deformation regime.We based ourmodelling approach on thewell knownmultiplicative decom-
position of the deformation gradient into mechanical and thermal parts. In order to describe the temporal evolution equa-
tions of damage, we used a Perzyna-type approach.We demonstrated the reasonability of thematerial response for one sin-
gle use-cases of uniaxial linear deformation. These studies gave qualitatively reasonable results in both damage response
and associated heat generation. Nevertheless, themodel must still be investigated further with regard to other loading sce-
narios such as for example relaxation or creep. Furthermore, a validation using experimental data should be provided in
the future. Since time-dependent damage is usually not observed as an isolated effect in real worldmaterials, an extension
of the given model with respect to other inelastic responses such as viscoelasticity must be performed in the future.
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