h1

h2

h3

h4

h5
h6


001     985681
005     20250904165502.0
024 7 _ |2 ISSN
|a 0927-7757
024 7 _ |2 ISSN
|a 1873-4359
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-85192217500
024 7 _ |2 WOS
|a WOS:001239195400001
024 7 _ |2 doi
|a 10.1016/j.colsurfa.2024.134133
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2024-04735
037 _ _ |a RWTH-2024-04735
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-82)1003366
|a Brozos, Christoforos
|b 0
|u rwth
245 _ _ |a Graph neural networks for surfactant multi-property prediction
|h online, print
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2024
300 _ _ |a [2]-10
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
536 _ _ |0 G:(DE-Juel1)HDS-LEE-20190612
|a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|c HDS-LEE-20190612
|x 1
536 _ _ |0 G:(GEPRIS)466417970
|a DFG project 466417970 - Graph-Basiertes Generatives Maschinelles Learnen für optimale Moleküle (466417970)
|c 466417970
|x 3
536 _ _ |0 G:(DE-HGF)PHD-PROGRAM-20170404
|a Doktorandenprogramm (PHD-PROGRAM-20170404)
|c PHD-PROGRAM-20170404
|x 2
536 _ _ |0 G:(GEPRIS)441958259
|a DFG project 441958259 - SPP 2331: Maschinelles Lernen in der Verfahrenstechnik. Wissen trifft auf Daten: Interpretierbarkeit, Extrapolation, Verlässlichkeit, Vertrauen (441958259)
|c 441958259
|x 4
536 _ _ |0 G:(DE-82)021000-OAPKF
|a OAPKF - Open-Access-Publikation mit Unterstützung der RWTH Aachen University (021000-OAPKF)
|c 021000-OAPKF
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: publications.rwth-aachen.de
591 _ _ |a Germany
700 1 _ |0 P:(DE-82)IDM04034
|a Rittig, Jan Gerald
|b 1
|u rwth
700 1 _ |a Bhattacharya, Sandip
|b 2
700 1 _ |a Akanny, Elie
|b 3
700 1 _ |a Kohlmann, Christina
|b 4
700 1 _ |0 P:(DE-82)IDM00369
|a Mitsos, Alexander
|b 5
|e Corresponding author
|u rwth
773 _ _ |0 PERI:(DE-600)1500517-3
|a 10.1016/j.colsurfa.2024.134133
|p 134133
|t Colloids and surfaces / A
|v 594
|x 1873-4359
|y 2024
856 4 _ |u https://publications.rwth-aachen.de/record/985681/files/985681.pdf
|y OpenAccess
876 7 _ |8 E-2024-00952-e
|9 2024-10-15
|c 100.00
|d 2024-06-24
|e Other
|j DEAL
|l Elsevier
|v 7.00
|x 021000-416710
|z Servicepauschale
876 7 _ |8 E-2024-01982-c
|9 2025-07-23
|c 2270.80
|d 2024-06-24
|e Hybrid-OA
|j DEAL
|l Elsevier
|v 158.96
|x 021000-416710
909 C O |o oai:publications.rwth-aachen.de:985681
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)1003366
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM04034
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM00369
|a RWTH Aachen
|b 5
|k RWTH
914 1 _ |y 2024
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-10-21
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b COLLOID SURFACE A : 2022
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b COLLOID SURFACE A : 2022
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-10-21
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 p c |0 PC:(DE-HGF)0001
|2 APC
|a Local Funding
915 p c |0 PC:(DE-HGF)0002
|2 APC
|a DFG OA Publikationskosten
915 p c |0 PC:(DE-HGF)0125
|2 APC
|a DEAL: Elsevier 09/01/2023
920 1 _ |0 I:(DE-82)416710_20140620
|k 416710
|l Lehrstuhl für Systemverfahrenstechnik
|x 0
920 1 _ |0 I:(DE-82)080031_20200305
|k 080031
|l JARA-CSD (Center for Simulation and Data Science)
|x 1
980 1 _ |a FullTexts
980 _ _ |a APC
980 _ _ |a I:(DE-82)080031_20200305
980 _ _ |a I:(DE-82)416710_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21