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ARTICLE INFO ABSTRACT
Dataset link: https://github.com/brozosc/GNN Surfactants are of high importance in different industrial sectors such as cosmetics, detergents, oil recovery and
s-for-surfactant-multi-property-prediction drug delivery systems. Therefore, many quantitative structure—property relationship (QSPR) models have been
developed for surfactants. Each predictive model typically focuses on one surfactant class, mostly nonionics.
Keywords: s C s L. P
Surfactants Graph Neural Networks (GNNs) have exhibited a great predictive performance for property prediction of ionic
Critical micelle concentration liquids, polymers and drugs in general. Specifically for surfactants, GNNs can successfully predict critical
Surface excess concentration micelle concentration (CMC), a key surfactant property associated with micellization. A key factor in the
Graph neural network predictive ability of QSPR and GNN models is the data available for training. Based on extensive literature
Multi-task learning search, we create the largest available CMC database with 429 molecules and the first large data collection for

surface excess concentration (7},), another surfactant property associated with foaming, with 164 molecules.
Then, we develop GNN models to predict the CMC and I’,, and we explore different learning approaches, i.e.,
single- and multi-task learning, as well as different training strategies, namely ensemble and transfer learning.
We find that a multi-task GNN with ensemble learning trained on all I',, and CMC data performs best. Thus, our
results show that the simultaneous use of data from highly correlated properties can improve the predictability
of surfactant properties for which only a small amount of experimental data is available. Finally, we test the
ability of our CMC model to generalize on industrial grade pure component surfactants. The GNN yields highly
accurate predictions for CMC, showing great potential for future industrial applications.
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C. Brogzos et al.
1. Introduction

Surfactants are highly relevant molecules used in a wide range of
everyday products, such as food, cosmetics, detergents and drugs [1—
6]. Surface-active agents (surfactants) are amphiphilic molecules with
a hydrophobic chain and a polar hydrophilic head. The surfactant
molecule orients itself at the interface between two phases with the hy-
drophobic portion oriented towards the hydrophobic phase
(e.g., air/oil) and the hydrophilic portion oriented towards the hy-
drophilic phase. Due to their structure, surfactants are surface/interface
active and they are able to lower the surface/interfacial tension [2,7].
Owing to their properties, surfactants are widely used in a variety of
applications such as detergents, dispersion stabilizers, foaming agents,
lubricants and as pharmaceuticals among many others [2,8-10]. Sur-
factants are classified based on their hydrophilic head group, into
ionics and nonionics, with the former further classified into anionics,
cationics and zwitterionics. Important surfactant properties to various
applications are the critical micelle concentration (CMC), the surface
tension (y), the surface excess concentration (I,), the Cloud Point (CP)
and the Krafft Temperature (KT) [11,12]. These properties are used to
identify new surfactants with desired performance.

Amphiphilic molecules such as surfactants form micelles, i.e., ag-
gregates. Micelles ultimately dictate the surface/interface activity and
strongly impacts the solubilization and detergency, or cleaning ability
of a surfactant solution [13]. The minimum surfactant concentration at
which such micelles are formed in a solution is called critical micelle
concentration (CMC) [14,15]. The CMC is an important value in a
wide range of applications such as shampoos [16], bio-materials design
for drug delivery systems [17], polymeric micelles [18,19] and oil
recovery [20]. In addition, some studies have reported correlation
between CMC and surfactant toxicity [21] and between CMC and
foam stability [22]. The CMC is influenced by multiple factors, like
temperature, solvent, pH, chemical structure, pressure conditions and
size of the tail and head groups [14,23,24]. Determination of CMC is
time-consuming and expensive, and several methods can be used like
tensiometry [25], refractive index [15], calorimetry [26], viscosity and
conductivity measurements [27]. In most methods, a break-point in the
measured property (e.g., surface tension or conductivity) vs. surfactant
concentration curve is observed, and the CMC is defined to be at that
point [15,28,29].

Since surfactants prefer to exist and adsorb at the interfaces, we can
define their adsorption effectiveness as the surface excess concentration
(r,,) [14]. I,, is an important surfactant property, as it is a measure
of surfactant concentration at air/water and oil/water interfaces. Ad-
ditionally, surface excess concentration has been shown to influence
foaming, emulsification and the kinetics of surfactant-induced pore
wetting [14,30]. Like CMC, I, is influenced by surfactant structure
and temperature [14,31]. The implicit calculation of the surface ex-
cess concentration is possible, as is the CMC, from a surface tension
measurement plot using the Gibbs adsorption equation [14,32].

Due to the tedious and expensive nature of experiments, the pre-
diction of surfactant properties without experiments has been a focus
of research for many years, mainly, through the use of quantitative
structure-property relationship (QSPR) models. An overview of QSPR
models in surfactants was given by Hu et al. [33], with most of
the QSPR studies aiming to correlate molecular descriptors with the
CMC [23,34-37]. The developed models showed good predictive per-
formance [23,34-37]. Nevertheless, all of them share a common limi-
tation: they are applicable only on a single surfactant class (nonionics,
cations etc.). Besides the CMC, similar modeling techniques have been
applied to other important surfactant properties like the cloud point
of nonionic surfactants, the hydrophile-lipophile balance (HLB) or the
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minimum surface tension at CMC [33,38-40]. Very recently, the first
QSPR model for predicting I',, was developed [41]. The QSPR model
was trained on data generated from the Szyszkowski equation using ex-
perimentally measured SFT-log(c) profiles and not on the experimental
data directly [41]. However, the authors stress that their QSPR model
has limitations in the surfactant categories included, e.g., the model is
not applicable to fluorinated surfactants [41].

In the recent years, graph neural networks (GNNs) have been in-
tensively researched in the field of molecular property prediction,
with numerous GNN models existing in the literature, even regarding
the same target property [42,43]. In more detail, GNNs have been
applied to a variety of chemical applications such as ferromagnetic
materials [44], the biodegradability of molecules [45] and the activity
coefficients [46—-49]. GNNs are a deep learning technique, where each
molecule is represented as a graph, with atoms corresponding to nodes
and bonds to edges. In contrast to classical QSPR methods, where
molecular descriptors are typically selected manually and therefore
require domain knowledge, GNNs can extract, in an automated way,
all the necessary structural-related information which are later used
in the regression task for property prediction. For surfactants, Qin
et al. [50] used GNNs to predict the CMC of multiple surfactant classes.
They showed that GNNs can be efficiently used as an alternative to
classical descriptor-based QSPR in surfactants, with very promising
results, using a database of 200 molecules, which is relatively small
for training a machine learning model.

Herein, we create the largest CMC and I',, data sets available and we
use them to develop GNN models for their prediction. First, we extend
the publicly available CMC data set of Qin et al. [50] to 429 molecules
through an extensive literature search. Then, we construct a second
data set of 99 molecules with duplicate values with the aim of inves-
tigating possible benefits of transfer learning in CMC prediction. For
the I',,, no publicly available database was found during our research.
Therefore, we construct one with 164 surfactant molecules varying
from multiple surfactant class types. Compared to the work of Seddon
et al. [41], we include a wider range of surfactant categories, e.g., flu-
orinated components, and we consider the impact of counterions on
I,, [14]. Compared to successfully developed QSPR CMC prediction
models [23,34-37], we here include CMC data for all surfactant classes.
Note that the collected data sets include only measurements that can
be found in various sources of publicly available literature. Please
further note that the data set was collected with resources from BASF
and therefore remains the company’s property. We provide the part
of the data set that we use for model evaluation, i.e., the test set,
publicly available at https://github.com/brozosc/GNNs-for-surfactant-
multi-property-prediction. This allows future work to use this test set
for model evaluation and comparison. The other part of the data set
used for model training could be made available upon request.

Furthermore, we establish a GNN model for the prediction of surface
excess concentration (7,) and a GNN model for the prediction of CMC,
both trained on the above mentioned new databases. In contrast to
previous work, the GNN models developed here explicitly capture edge
features and a broader surfactant domain. Additionally, we investigate
multi-task learning to overcome data limitations and ensemble learn-
ing to enhance the predictive performance. Then, we experimentally
measure 3 industrial grade surfactants, previously unseen by the GNN
model. Finally, we predict their CMC with our GNN model, which
was trained exclusively on literature data with mainly purified surfac-
tants, and demonstrate the model’s ability to generalize to unpurified
industrial surfactants.

We construct the rest of this work as following: Firstly, we analyze
our databases, data sampling procedure and the industrial surfactants

* Corresponding author at: RWTH Aachen University, Process Systems Engineering (AVT.SVT), Aachen 52074, Germany.

E-mail address: amitsos@alum.mit.edu (A. Mitsos).
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Table 1

CMC values of dodecylpyridinium bromide reported in literature at 25 °C.
Method Value (mM) Source
Tensiometry 11.5 [51]
Conductometry 11.3 [51]
Conductometry 10 [52]
Light scattering 11.6 [53]

used (Section 2). Thereafter, we give an overview of how GNN models
work, the methods we applied and a brief overview of the hyperpa-
rameter selection (Section 3). We then present our results, compare
them with previous works and discuss limitations and possible solutions
(Section 4). Lastly, we summarize our work and suggest possible future
improvements (Section 5).

2. Data sets

We now analyze the existing databases and describe our methodol-
ogy for data collection (Section 2.1). Following, we discuss the estima-
tion of CMC and how we handled duplicated values for transfer learning
(Section 2.2). Finally, we analyze the collected data sets (Section 2.3)
and we present three industrial grade surfactants for model testing
(Section 2.4).

2.1. Existing database analysis and data collection

We started our work by building on the publicly available database
of 202 substances from Qin et al. [50] for CMC prediction. For the
surface excess concentration I,,, we had to exclusively rely on tables in
books and publications, such as [14,25], because no constructed data
set was found in the literature. At first, literature data (CMC and T},)
was extracted from multiple sources [14,15,34] for all the molecules at
temperatures between 20-28 °C. Note that since temperature massively
impacts both properties, we only focus on the temperature range de-
fined above. We also traced back to the individual articles referenced in
the sources mentioned above [14,15,34] and extracted additional CMC
and I,, data. This procedure resulted in an extended data set of 429
distinct substances for CMC. In addition, we simultaneously collected
164 different I, values from multiple sources.

2.2. CMC data collection procedure and duplicate values

During data collection, we often found multiple CMC values for the
same surfactant, differing from source to source, due to factors such as
purity levels, measuring method of choice and mathematical evaluation
of experimental data [28,29]. An example is given in Table 1, where
for the same surfactant 4 different values have been reported. The
CMC variations are discussed in previous works and remain an issue
in surfactant science [15,28,29].

To handle duplicate values, we decided for a ranking according
to the measurement method. Here, we prefer CMC values obtained
via tensiometry because one of our targets is to evaluate our model
on industrial grade surfactants using CMC values measured through
tensiometry. If tensiometry data was not available, we favored data
from refractometry measurements since it was found to be reliable
by Mukerjee and Mysels [15]. If data only from other methods was
available, i.e., neither tensiometry nor refractometry, we also included
it into our main data set. All remaining values for a surfactant, i.e., du-
plicates, are not included in the main data set but rather collected in a
separate data set, which we utilize for a transfer learning approach (cf.
Section 3.5). We note that for most surfactants where duplicate values
exist, the values tend to be very similar to each other and in some cases
even equal.
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Table 2
Number of surfactants per class for each database collected in this work. DV = Duplicate
Values.

CMC T, DV-CMC
Nonionics 220 86 19
Anionics 130 44 44
Cationics 55 13 27
Zwitterionics 24 21 9
Total substances 429 164 99

2.3. Data sets analysis

The described sampling process in Section 2.2 led us to construct
the three data sets shown in Table 2, together with a detailed sur-
factant class distribution. We observe that in the two main databases,
nonionic surfactants is the dominant class followed by anionics. This
class distribution matches with consumption data of surfactants in
2000 [14,31], where anionic and nonionic surfactants are the most used
in industrialized areas. In other words, the research focus is matching
the industrial output. Afterwards, a statistical overview of the target
properties, i.e. CMC and I, is presented in Fig. 1. We note that I,
shows a natural normal distribution without applying the logarithm.
Both data sets have similar mean, median, 5th and 95th percentile
values although no comparison between them should be made, as CMC
values are scaled. The smallest and biggest values in both data sets are
similar too. Finally, a correlation plot between log CMC and I, is given
in Fig. 2, containing surfactants for which both CMC and I’,, values are
collected.

2.4. Industrial surfactants

With an estimated market size of around $40 billion in 2020 [54],
surfactants are also heavily researched in the industry. As Myers [31]
points out, the majority of academic interest in surfactants, focuses
generally on highly purified compounds while the industry is either
using complex mixtures to obtain the desired performance or unpurified
compounds due to economical reasons. For surface properties like CMC,
many authors have noticed the effect of impurities on CMC through the
years [15,29,55]. In this study, we examine to what extent GNN models
trained exclusively on literature data can generalize for unpurified
industrial surfactants.

Three industrial-grade pure-component surfactants were used, pro-
vided by BASF, as obtained from production site without further pu-
rification. The main species in these surfactants are (S1) Texapon
842 UP (Sodium Caprylyl Sulfate), (S2) Texapon EHS (Sodium 2-
Ethylhexyl Sulfate) and (S3) Texapon K 12 G (Sodium Dodecyl Sulfate).
We exclude those three molecules from the training set. According
to manufacturing process, we expect the presence of unreacted raw
material, alcohols in this case, and reaction by-products.

3. Methods

In this section, we first present the fundamentals of a GNN model
(Section 3.1), the general training settings of current works (Sec-
tion 3.2) and the hyperparameter selection (Section 3.3). Afterwards,
we refer to the learning techniques applied on this paper (Sections
3.4-3.6). The CMC of the three industrial surfactants was determined
by plotting the surface tension as a function of the logarithm of the
surfactant concentration. From this plot, two linear regions were deter-
mined, which correspond to the linear concentration-dependent and the
linear concentration-independent region, respectively. The CMC value
is then obtained from the intersection of the straight lines. Finally, for
the surface tension measurement a Force Tensiometer — K100 (Kriiss,
Germany), at 23 °C was used.
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Fig. 2. Correlation plot between log CMC and I, for all surfactant classes. In the plot,
141 surfactants are presented, for which both CMC and I, data was collected from
the literature.

3.1. Graph neural networks

In GNN models, every molecule is treated as an undirected graph,
where atoms correspond to nodes and bonds to edges. A feature vector,
containing chemical information, is assigned to each atom and each
edge. Our node and edge features of choice are shown in Tables 3 and
4 respectively, motivated from our previous works [47,56] and past
literature [42]. Please note that hydrogen atoms are not considered
as individual nodes but are implicitly represented in the node feature
vector. A surfactant example is given in Fig. 3. The molecular graph
then passes through graph convolutions, where neighbor information,
i.e., neighboring node and edge features, is aggregated for each node in
the graph accordingly. The network depth L, i.e., the number of graph
convolutional layers, defines the neighborhood pool from which struc-
tural information will be aggregated. We herein use edge-conditioned
graph convolutional layers [57] and a gated recurrent unit (GRU) [58],
similar to the message passing framework by Gilmer et al. [59] and
our previous works [45,47,56]. In contrast to Qin et al. [50] who
used graph convolutional layers only considering node features, we
thus explicitly include bond type information in learning the molecular
structure which potentially facilitates distinguishing molecules with
similar heavy atoms but different bonds, e.g., alkanes versus alkenes.
After the last graph convolutional layer, the final updated atom feature
vectors are pooled into a final molecular fingerprint vector hyp [59]
through a permutation invariant function, i.e., summation of all node
vectors. The hyp contains all the necessary structure-related informa-
tion of a specific molecule required for molecular property prediction,

e CEECEEKE

({4 -~ [F[e[<[=[4] 4_‘
M%hh4444441+J
o

EE

cccECEEEEED

Fig. 3. A surfactant molecule represented as undericted graph. In every node (atom) a
feature vector (black-white color) of size 30 and in every edge (bond) a feature vector
(green-white) of size 12 is assigned. The feature vectors encode chemical information
about each individual atom and edge respectively. As can be seen in the atom features
vector, different atoms have different entries, which distinguishes them from the other
atoms. Similarly, bonds are distinguished through their feature vector too.

thereby replacing the selected descriptors in classical QSPR techniques
mentioned in Section 1.

Our model is implemented in the Pytorch Geometric (PyG) frame-
work [60]. For the attributed molecular graph generation, we use the
SMILES string [61] of each molecule and RDKit (version 2022.3.5), an
open-source toolkit for cheminformatics.

3.2. General training settings

We use the high-quality data set CMC to define the hyperparameters
of our GNN models. For the target property CMC, the log CMC is calcu-
lated and then standardized to a zero mean and a standard deviation of
one. The train and test sets are separated randomly in a 85%-15% ratio
respectively. The training set contains 191 nonionic, 106 anionic, 46
cationic and 21 zwiterrionic surfactant molecules. Thus, each surfactant
class is represented in the training set. For the hyperparameter selection
an internal validation set is used, which is a subset of the training
set with 20 substances each. The loss function is the mean squared
error (MSE) and the optimizer is Adam [62]. In general, we use the
same general training settings as in our previous works [47,56] and
the interested reader can refer to them for more information. For every
modeling approach, which will be introduced in Sections 3.4-3.6, as
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Table 3
Atom features used in the molecular graph representation. All features are implemented
as one-hot-encoding.

Feature Description Dimension
Atom type Atom type (C, N, O, S, F, Cl, Br, Na, 1, B, K, H, Li) 13

is aromatic If the atom is part of an aromatic system 1
hybridization  sp, sp?, sp’, sp°d, or sp’d* 5

# bonds Number of bonds the atom is involved in 6

# Hs Number of bonded hydrogen atoms 5

Total 30

Table 4

Edge features used in the molecular graph representation. All features are implemented
as one-hot-encoding.

Feature Description Dimension
Bond type single, double, triple, or aromatic 4

is in a ring whether the bond is part of a ring 1
conjugated whether the bond is conjugated 1

stereo none, any, E/Z, or cis/trans 6

Total 12

well as in industrial surfactants application, 40 models were trained on
40 individual training subsets and the results are averaged and reported
in Section 4.

3.3. Hyperparameter selection

With the hyperparameter selection procedure, the aim is to find the
suitable hyperparameters of our GNN model. For a robust hyperparam-
eter selection, we test each model in 40 different internal validation
sets. We perform a grid search for the following hyperparameters of
the GNN model, varying them within the respective ranges: Graph
convolutional type € { N NConv, GI N EConv}, number of graph convo-
lutional layers € {1,2,3}, usage of GRU € {True, False}, the batch size
€ {4,8,16}, the initial learning rate € {0.005,0.01,0.05}, dimensions
of molecular fingerprint and of MLP € {64,128,256}. In other words,
the hidden layers of the graph convolution part and the hidden layers
of the MLP are always the same size. The optimum combination is
a GNN architecture with an initial learning rate of 0.005, a hidden
state size of 64, a batch size of 16, total graph convolutional layers
of 1, the NNConv graph convolutional type and the usage of GRU for
the message passing scheme. Our edge feature network, similar to our
previous work [56], consists three layers with the following number
of neurons: #1 12, #2: 64, and #3: 4096. The architecture exhibits
306,561 learnable parameters in total.

3.4. Single- and multitask learning

A surfactant molecule usually has multiple target properties, as we
discussed above in Section 1. The classical learning approach, single-task
learning, is to train individual models for every property of inter-
est. In single-task learning, model parameters are directly optimized
based exclusively on a single target property only, and not trans-
ferred to another property prediction task. In that sense, all available
QSPR methods for surfactants (discussed in Section 1) are single-task
learning. On the other hand, in multi-task learning multiple target
properties are simultaneously predicted [63,64]. The simultaneous pre-
diction has been shown to improve the modeling accuracy of GNNs
in molecular property prediction [44,56,65]. Normally during multi-
task learning, the graph convolutional layers are shared and individual
MLPs are constructed for each target property. The benefits of this
approach, are mainly models’ ability to generalize, learn faster, reduce
overfitting [66,67] and data efficiency [67].

In the present work, we investigate the prediction of CMC and of
I, with both single- and multi-task learning. Specifically, we develop a
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single-task learning model for each property individually and multi-task
learning models for simultaneous prediction of the properties. Since
both of the properties come from the same measurement procedure and
therefore are correlated, we expect an improved model accuracy during
multi-task learning. Note that if only a CMC or I, experimental value
was available for a surfactant molecule during multi-task learning, the
loss function for that surfactant molecule was calculated only for the
property for which a measurement was available. In the multi-task
learning loss function, the individual prediction errors of the CMC and
T, are weighted equally, i.e., no weighting factor is applied.

3.5. Transfer learning

Another technique for improving machine learning models is trans-
fer learning [68,69]. During transfer learning, a model is usually pre-
trained on a data set, for example a synthetic one, and then the model
parameters are used to initialize the training on a new unseen data set.
This technique is very useful when only small data sets are available. In
the field of GNNs, researchers investigated the benefits and limitations
of transfer learning [70-72].

As we described in Section 2.2, we collect duplicate values to
apply transfer learning to single-task CMC prediction, with the scope
of utilizing bigger portions of experimental data from the literature.
We use the data set DV-CMC (Table 2) to pre-train the model, i.e., learn
the graph convolutions and MLP parameters, and afterwards we initiate
our single-task CMC model with them. All the initialized parameters are
optimized based on the CMC data set (Table 2).

3.6. Ensemble learning

Training and using single models can lead to under- or/and over-
predictions. A well-known technique to mitigate this phenomenon in
machine learning is ensemble learning [73,74]. In ensemble learning,
multiple models are trained on different subsets of training data set
and their final predictions are averaged, resulting in more robust and
generalized predictions [73-75].

We use ensemble learning both for our single- and multi-task models
mentioned in Section 3.4, by training 40 different models in 40 differ-
ent subsets of our training data set, in each case. Afterwards, we use
the 40 different models to perform predictions in our test set, which
are averaged to obtain the final scores.

4. Results & discussion

In this section, we firstly summarize the predictive performance of
our models (Section 4.1). Afterwards we compare our findings with
previous similar work (Section 4.2) and finally we conclude with in-
vestigation of model applicability on the selected industrial surfactants
(Section 4.3). An overview of the performance of the developed models
is reported in Table 5. For every task we report the root mean squared
error (RMSE), the mean absolute error (MAE) and the variances on the
validation and test sets.

4.1. Predictive performance

The single-task GNN model for CMC exhibits an average RMSE of
0.27 on validation set and 0.33 on test set, while the variance is bigger
in the test set than in the validation set. For I, the average RMSE in
test set is lower than the one in the validation set, with the former
equal to 0.85 and the later equal to 1.02. Using the logarithm of I',, did
not improve the performance. Our model exhibits great performance in
predicting the log CMC, but fails to exhibit similar performance in I,
prediction. The reason for the model’s under-performance may be the
small size of the data set used (140 molecules) for the training and the
ambiguous measuring procedures.
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(a) CMC test set: Predicted versus experimen-
tal value of log(CMC) in puM.

Fig. 4. Multi-task GNN ensemble models for (a) CMC and (b) I, for all surfactant classes.

20% error.

Table 5

Summary of model accuracy for different predictive tasks over 40 different runs. In
each case the standard deviation is also given, except ensemble learning. In the above
table we use the following abbreviations: STL = single-task learning, MTL = multi-task
learning, TL = transfer learning, EL = ensemble learning, MAE = mean absolute error,
RMSE = root mean squared error.

CMC I,
RMSE MAE RMSE MAE

STL (val) 0.27 £ 0.027 0.2 0.026  1.02 + 0.169 0.85 = 0.15

STL (test) 0.33 £ 0.033 0.25 = 0.026 0.8 = 0.143  0.57 = 0.146

STL & TL (val) ~ 0.27 + 0.034 0.2 + 0.033

STL & TL (test) ~ 0.33 + 0.042 0.26 + 0.034

MTL (val) 0.26 = 0.075 0.2 +0.053 0.3 = 0121 0.26 =0.116

MTL (test) 0.36 + 0.041 0.27 = 0.031 0.59 = 0.051 0.43 = 0.044

STL & EL (test)  0.28 0.21 0.76 0.53

MTL & EL (test) 0.31 0.23 0.56 0.4

In multi-task learning, the GNN model for CMC prediction exhibits
an average RMSE of 0.26 on validation set and 0.36 on test set.
For I, prediction, the average RMSE in test set is again lower than
the one in the validation set, with the former equal to 0.59 and the
later equal to 0.43. In the CMC task, the model perform identical
with the one in single-task learning, both for validation and test sets,
while in the I, task the multi-task model exhibits significantly better
performance on the validation set, with the RMSE reducing by 60%,
and improved performance on the test set, with the RMSE reducing
by 20%. Therefore, we conclude that the data limitations of the I,
database as single target property can be overcomed by applying multi-
task learning. On the other hand, the CMC model did not benefit from
the additional data and showed identical results with a slightly higher
variance but an overall similar accuracy compared to the single-task
learning.

The transfer learning approach, i.e., pre-training the model using
the 99 collected duplicate values described in Section 2.2, is applied
only on the single-task CMC model. The RMSE on the validation set
remains the same as in single-task learning, equal to 0.27 and on the
test set equal to 0.33. Interestingly, the standard deviation increases in
both sets. The increase may be due to the broader range of target values
for the same property, which leads the model to deviate more from
the true value. We observed that transfer learning slightly reduced the
final model training time, i.e., the model reached its optimum sooner.
Besides the slight reduction of final model training time, using duplicate
values for transfer learning led to similar performance.

Ensemble learning, i.e., averaging the predictions of the 40 trained
models, slightly reduces the RMSE on test set for single-task learning
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(b) ', test set Predicted versus experimental
value of T'y, in mol/ecm?2.

The light red dashed lines represent the 10% error and the dark red dashed lines the

to 0.28 and for multitask learning to 0.31 in the CMC case. A similar
RMSE reduction is observed on test set for I, accordingly, to 0.76
for single-task learning and to 0.56 for multitask learning. We use
the ensembled results in multitask CMC and I, learning to draw the
parity plots, shown in Fig. 4 on the independent test sets. The parity
plots (measured vs predicted values) for CMC and I, show a high
determination coefficient for the former, R2C we = 0.94, and moderate
one for the latter Rf_ = 0.74. We demonstrate that the GNN approach in
the present work, can predict CMC and T, across all surfactant classes.

In addition, we present the three components with the highest
absolute CMC error in Fig. 5. For molecule one, the combination of
high CMC value and lack of similar molecules, i.e. small alkyl chain
with high number of ethylene oxides in the training set, may be the
reasons why the model fails to perform well. For molecules two and
three, we suspect the measurement may have an impact on the result
since identical molecules can be found in the training set.

Similarly, the four components with the highest absolute I, error
are illustrated in Fig. 6. Molecule four is similar as in the CMC case,
which supports the measurement impacted hypothesis from before.
On the other side molecules one and three have complex structure,
where at a similar chemistry is lacking in the training set. Therefore,
we can assume that the model fails to capture the property—structure
relationship in this case. The same reasoning can be applied to molecule
two, where we also lack similar molecules in the training set.

4.2. Comparison with previous works

We next compare our results to the work of Qin et al. [50] and
their GNN model for CMC prediction, which used a subset of our CMC
training data but is also applicable for a wide choice of surfactant
classes. Qin et al. [50] report a test RMSE of 0.30 which is similar to
ours of 0.28. Note that our test set is almost three times the size of
the one used by Qit et al. [50], so that we cover a higher variance of
molecules. Besides the slight RMSE improvement in test set, our model
reduces also the average RMSE on the validation set from 0.39 to 0.27.
As can be seen in Fig. 7, no major outliers were observed in the 40
models. Finally, most of the models exhibited a test RMSE in the range
of 0.26-0.29 while Qin et al. [50] reported a broader test RMSE range
of 0.28-0.45.

Overall, the comparison shows that the general performance of
our model on the CMC is similarly high with previous ones, although
a direct quantitative comparison is not possible due to the different
data sets used. As there is no model for predicting surface excess
concentration directly from experimental data (cf. Section 1), we are
unable to compare our results for I',, with other works.
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Fig. 5. Outliers in multi-task learning for CMC prediction. Two of them, (a) and (b) belong to nonionic class and the third, (c) to anionic class.
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Fig. 6. Outliers in multi-task learning for I, prediction. Three of them, (a), (c) and (d) belong to nonionic class and the second, (b) to cationic class.
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Fig. 7. Distribution plot of RMSE on internal validation set for all the learning tasks.
The boxplots are the results of 40 runs in different internal validation sets. The red
points represent the outliers.

4.3. Industrial surfactants

We then apply our developed GNN model to predict on the three
pure component industrial surfactants described in Section 2.4. Ac-
cording to the above discussed results, the best learning approach for
CMC is the combination of single-task with ensemble learning. We
use the 40 trained models from Section 4.1 to perform ensembled
predictions on the three surfactants. The predicted log CMC values,
as well the experimental measured ones, are given in Table 6 for
comparison. For all of the three, the predicted values are very close
to the measured ones. Overall, the data indicates that the developed
GNN model trained on literature data can accurately predict the CMCs
for all three single-molecule industrial unpurified surfactants.

We note that similar molecules are used in the training set and
none of the three exhibits high structural complexity. Specifically, the
training set contains straight-chain, long alkyl sulfates with a different
number of carbons than S1 and S3, but an overall very similar structure.
The training set also includes short-chain alkyl alcohols (different head
group) and branched-chain, long alkyl sulfates that are structurally
similar to S2 [14,76]. On the other hand, the impurities effects on
CMC are not learnt from the model and their implementation could
potentially be future area of research. Future work could also focus on
testing the applicability of GNN model in research of bio-surfactants,
with many of them naturally exhibit high structural complexity.

Table 6

Comparison of predicted values from our single-task GNN with ensemble versus
experimentally calculated values for three selected industrial grade surfactants. For
the predicted values, the standard deviation over 40 individual runs is also given. The
above values, are the logarithmic ones.

Predicted CMC (uM)

Measured CMC (pM)

S1 4.87 + 0.11 4.88
S2 4.95 + 0.17 4.98
S3 3.91 + 0.08 3.86

5. Conclusions and future work

We apply GNNs to pure component surfactants to predict CMC and
I,,. Based on extensive literature scanning, we generate a database for
CMC with double the size of existing. We also construct a data set for
I,,. As GNNs have been successfully used for CMC prediction [50],
we extend the GNN architecture to simultaneously predict the surface
excess concentration I, in a multi-task learning, thereby utilizing cor-
relations between these two properties. In contrast to previous works,
we herein implement a GNN architecture where edge features are
explicitly captured. Furthermore, to the best our of knowledge, we
develop the first openly available ML model to predict I',, from the
surfactant structure. Furthermore, we collect additional CMC values
from the literature and investigate if transfer learning can increase the
model accuracy.

All GNN models exhibit high-accuracy CMC predictions, on a com-
parable level to a recently developed GNN model by Qin et al. [50]
but for an extended spectrum of surfactants. For I’,, on the other hand,
the single-task GNNs fail to capture the property—structure relation-
ship; here, we find that multi-task GNNs effectively utilizes the CMC
data to substantially enhance prediction accuracy for I,. Therefore,
we find multi-task learning to be an effective learning technique to
overcome data availability problems in the field of surfactant property
prediction. In all cases, ensemble learning increases the prediction
accuracy. For transfer learning, however, we observe no improvements
in the model accuracy. Finally, we test the best GNN model for CMC
on three unpurified industrial surfactants and find highly accurate
predictions matching our laboratory measurements, thereby indicating
strong potential for further industrial applications.

Furthermore, our GNN models are subject to certain limitations. As
is typically the case for ML models, the applicability of our GNN models
is limited to surfactants with similar structure as the ones contained in
the training data set. Stereochemistry is also not taken into account
in this work, for example in the case of n-dodecyl-D-maltoside we
only use the CMC of the « isomer [77]. Another limitation, shortly
mentioned above, is not including information regarding the purity
of each compound. We only considered highly purified compounds



C. Brozos et al.

reported in literature and future research should focus in incorporating
surface active impurities to the GNN model.

Future work could extend the relative small database for surface
excess concentration I, thus yielding higher performance predictive
models. For I, noise is often encountered in reported values due to it is
implicit calculation through various approaches of the Gibbs adsorption
equation [14]. This noise prohibits the GNN model to better capture
the structure—property relationship. Finally, prediction of further sur-
factant properties based on the structure would be highly interesting
for surfactant formulators.
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