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A B S T R A C T

With the advent of e-commerce and its fast-delivery expectations, efficiently routing pickers in warehouses
and distribution centers has received renewed interest. The processes and the resulting routing problems in
this environment are diverse. For instance, not only human pickers have to be routed but also autonomous
picking robots or mobile robots that accompany human pickers. Traditional picker routing, in which a single
picker has to visit a given set of picking positions in a picker-to-parts process, can be modeled as the classical
Traveling Salesman Problem (TSP). The more involved processes of e-commerce fulfillment, however, require
solving more complex TSP variants, such as the clustered, generalized, or prize-collecting TSP. In this context,
our paper provides two main contributions: We systematically survey the large number of TSP variants that are
known in the routing literature and check whether meaningful applications in warehouses exist that correspond
to the respective TSP variant. If they do, we survey the existing research and investigate the computational
complexity of the TSP variant in the warehousing context. Previous research has shown that the classical TSP
is efficiently solvable in the parallel-aisle structure of warehouses. Consequently, some TSP variants also turn
out to be efficiently solvable in the warehousing context, whereas others remain -hard. We survey existing
complexity results, provide new ones, and identify future research needs.
1. Introduction

One of the most often cited statistics in warehousing research is
certainly that 55% of the total warehouse operating expenses are
typically attributed to order picking (Frazelle, 2001). Moreover, the
order picking process itself typically consists of 50% of travel, in which
pickers move unproductively through the aisles of a warehouse to reach
their picking positions (Tompkins et al., 2010). Given these figures, it is
anything but surprising that seeking efficient picker tours has attracted
plenty of scientific research and has become one of the classics of
warehousing research.

In the most basic picker-to-parts setup, picker routing can be mod-
eled as the Traveling Salesman Problem (TSP): Given a set of cities
(picking positions) and distances between each pair of cities, we seek
the shortest tour of the salesperson (order picker) that visits each city
exactly once and finally returns to the start city (depot). Different from
general graphs, for which the TSP is well-known to be strongly -
hard, the seminal paper of Ratliff and Rosenthal (1983) shows that this
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is not true in a warehousing environment. If we have parallel picking
aisles with cross aisles at the front and back, which is referred to as
single-block structure, the specially structured distance matrix allows
solving the TSP in polynomial time using a dynamic program. Given
that this elementary result is already four decades old, a survey paper
on the TSP and its variants in a warehousing environment should
provide convincing answers to the following three concerns:

Concern 1: Warehouses have greatly evolved in the past decades, and
the progress in automation has diminished the importance of picker routing.

Answer: Especially the advent of e-commerce has transformed many
of today’s warehouses into technology-enriched, mission-critical ful-
fillment factories (Boysen et al., 2019). To handle the large number
of time-critical orders of a typical e-commerce warehouse with the
aging workforces of most industrialized countries, automated and robo-
tized solutions for all elementary warehousing functions have been
developed (see Azadeh et al., 2019; Fragapane et al., 2021): Rack-
climbing (Chen et al., 2022) and autostore robots (AutoStore, 2023) for
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storage, shelf-lifting mobile robots (Amazon Robotics, 2023; Weidinger
et al., 2018) for transportation, autonomous mobile robots (AMRs)
such as those offered by Magazino (2023) for picking, and robots
equipped with a tiltable tray (Zou et al., 2021) for order consolidation.
While the general trend towards warehouse automation is evident,
autonomous robots also profit from efficient tours and thus require al-
gorithmic routing support (Azadeh et al., 2019). Moreover, automated
warehousing systems have the disadvantage that they cannot undergo
rapid modifications to adjust for demand peaks, whereas human-centric
warehouses can flexibly adjust, e.g., by hiring non-permanent stand-by
staff during peak periods such as Singles’ Day or Black Friday (Boysen
et al., 2019). Thus, it can be projected that large e-commerce retailers
will stick to some highly flexible human-centric warehouses on top of
their largely automated fulfillment factories for the base load (Schiffer
et al., 2022). To keep the costs for the flexibility gains of human-centric
warehouses at a manageable level, efficient picker routing, both for
humans and robots, remains a vital issue to gain a competitive edge.

Concern 2: Four decades of warehousing research do not leave many
open questions regarding the routing of pickers.

Answer: Picker routing has indeed attracted plenty of research; the
latest survey paper of Masae et al. (2020a), for instance, has identified
149 papers on this topic. Important contributions are certainly the ex-
tension of the dynamic program of Ratliff and Rosenthal (1983) to two-
block warehouses with an additional middle cross aisle by Roodbergen
and de Koster (2001b) and to multi-block warehouses by Pansart et al.
(2018) (based on the results of Cambazard & Catusse, 2018). Further-
more, many routing heuristics have been investigated (e.g., Roodbergen
& de Koster, 2001a), mixed-integer programs exploiting the special
warehouse structure have been introduced (e.g., Goeke & Schneider,
2021) and many extensions of the basic picker routing problem have
been considered (see, e.g., Masae et al., 2020a). Our paper partly sur-
veys and structures these previous research efforts. More importantly,
the above-mentioned diversification of warehousing processes, driven
by automation and the pressure of discerning online customers, has led
to numerous new routing tasks that have not been exhaustively covered
by warehousing research, as our further elaborations will show. Thus,
we see good arguments for another survey paper on order picking,
especially with our special perspective on existing TSP research, that
has not been taken before.

Concern 3: Technological and methodological progress has made the dif-
ferentiation between efficiently solvable and (binary or strongly) -hard
problems rather unimportant from a practical viewpoint.

Answer: The aforementioned fulfillment factories of large
e-commerce retailers are vast properties that store millions of products,
i.e., not stock-keeping units (SKUs) but pieces (see Schiffer et al., 2022).
The manual picking carts applied by many B2C online retailers have a
capacity for multiple bins, each with a capacity for dozens of products,
so that the instance sizes of the resulting routing tasks are challenging
even for today’s (impressively improved) off-the-shelf solvers and state-
of-the-art TSP (variant) solvers. Therefore, an exact algorithm with
polynomial runtime is still an important contribution (both from a
theoretical and practical perspective) to compute optimal solutions
quickly. Furthermore, there is a strong trend toward integrated problem
settings that involve multiple decision tasks (see van Gils et al., 2018).
Picker routing is, for instance, often jointly solved with batching, in
which numerous smaller customer orders are to be partitioned into
multiple pick lists, each served by a single picker tour. A natural
solution approach for such an integrated problem is decomposition,
where a routing algorithm is applied to evaluate each batch. In such
a setting, an efficient routing algorithm can be the workhorse of a
decomposition approach to exhaustively explore the vast batching
solution space. In contrast, an -hardness proof is a clear sign that
another type of algorithm, e.g., a heuristic, is required to solve the
respective problem in real-life warehouses. Thus, the complexity status
of an optimization problem, which we survey for TSP variants in the
2

warehousing context in this paper, is still an important theoretical
result with practical implications.

Given these motivations, our paper makes the following contribu-
tions:

• After a thorough review of dozens of TSP variants in the abundant
routing literature, we identify ten TSP variants that are especially
relevant in the warehousing context. We discuss their warehous-
ing use cases (some of them are highlighted for the first time),
identify relevant extensions of the basic problem, survey previous
(warehousing) research, and identify future research needs.

• From a theoretical perspective, we survey the complexity status of
the TSP and its variants in a block-structured warehousing envi-
ronment. Furthermore, we provide three new complexity results
and identify four open cases, which should be addressed by future
research.

The remainder of the paper is structured as follows. Section 2 defines
the scope of this survey. Here, we explain the typical block structure
of warehouses, describe related research not treated by our survey, and
discuss the differences to previous surveys. Section 3 introduces the TSP
in a warehousing context, sketches the dynamic program of Ratliff and
Rosenthal (1993), and reviews further research in this area. The fol-
lowing ten sections each treat one variant of the TSP, ranging from the
TSP with precedence constraints in Section 4 to the Covering Salesman
Problem in Section 13. All these sections follow the same structure:
We start with the definition of the TSP variant. Then, we describe the
respective warehousing use cases, investigate the complexity status in a
warehousing environment, survey existing warehousing research, and
identify future research needs. Finally, Section 14 concludes the paper.

2. Scope of the survey

This section defines the scope of our survey, characterizes our policy
to identify relevant TSP variants, and elaborates on the differences to
previous survey papers. First, we offer the following (positive) defini-
tion of our paper’s scope: We survey single picker routing problems, in
which storage positions in a warehousing environment must be visited.

The defining feature of a warehousing environment is the parallel-
aisle structure depicted in Fig. 1. Specifically, there are 𝑣 parallel
picking aisles containing storage positions of products to be visited
by the picker. Furthermore, there are ℎ cross aisles to move from
one picking aisle to another. For ℎ = 2, there is one cross aisle at
the front and the back, which results in a single-block warehouse as
depicted in Fig. 1(a). An additional middle cross aisle results in the
two-block layout of Fig. 1(b). Naturally, additional cross aisles can also
produce three-block and four-block warehouses, and so on. To refer to
the general case with ℎ > 3 cross aisles, we use the term multi-block
warehouse.

The main implication of the block layout is a specially structured
distance matrix based on rectilinear distances between picking posi-
tions and the depot, where picking tours start and end. Due to this
special structure, we cannot simply refer to the TSP and its variants
when investigating the computational complexity of a specific picker
routing problem in a warehouse: The proofs of -hardness for the
TSP and its variants are based on general graphs with arbitrary dis-
tances. Because computational complexity is one of the main issues
addressed in this paper, it is important to clearly differentiate between
a general TSP (or a variant) and a special TSP with a specific block
structure. To denominate the former, we use the well-established abbre-
viations such as TSP. When referring to the TSP in a single-block layout,
instead, we denominate this case as ‘1B-TSP’. Analogously, ‘2B-TSP’
(MB-TSP) refers to the TSP in a two-block (multi-block) environment
with ℎ = 3 (ℎ > 3) cross aisles. When addressing the routing problem
in any of the three above block structures, we use the abbreviation
‘W-TSP’.
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Fig. 1. Parallel-aisle structure of a warehouse environment.
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In addition to the aforementioned (positive) definition of our pa-
er’s scope, we also provide a (negative) demarcation of the TSP
ariants in a warehousing environment that are not treated in our
aper:

(i) Warehousing research also investigates alternative layouts that
iolate the block structure defined above. The most prominent exam-
les are the flying-V (from a bird’s-eye view, the middle cross aisle
uts a ‘V’ through the parallel picking aisles with the lowest point of
he ‘V’ being the depot, see Gue & Meller, 2009), the fishbone (the
icking aisles below a ‘V’-shape of the cross aisle are shifted by 90◦,
ee Çelk & Süral, 2014), and the discrete cross aisle design (the middle
ross aisle does not cut through the parallel picking aisles on a line
ut intersects at various positions, see Öztürkoğlu et al., 2012). These
lternative layouts, however, are rather an academic playground, and
he vast majority of real-world warehouses follows the block structure.
herefore, these alternatives are not treated in our paper.

(ii) We only consider single picker problems. We neglect inter-
ctions among multiple pickers, e.g., when competing for specific
roducts (e.g., Ardjmand et al., 2018) or blocking each other in nar-
ow aisles (e.g., Schrotenboer et al., 2017). In practical warehousing,
oordination issues are typically addressed on an upstream planning
evel (e.g., during batching, when it is decided which customer orders
nd up on the same pick lists, see Boysen et al., 2019) or handled by
he involved workers on-site.

(iii) We only consider static and deterministic variants of the TSP
ith a single objective. Foremost, this is a pragmatic choice to reduce

he content to a manageable level and to focus on those problem types
irectly accessible to an analysis of computational complexity.

Next, we briefly specify our policy to identify the TSP variants that
re relevant in a warehousing environment. We started the process with
thorough literature and database search on TSP variants. This search

esulted in 54 different TSP variants that have been considered in at
east one English-written paper published in a peer-reviewed scientific
ournal (see Appendix A). As a first step, we filtered out the articles
iolating our scope defined above. In a brainstorming meeting with
even researchers and a warehousing consultant, each remaining TSP
ariant was assessed with regard to potential warehousing applications.
he results were documented and sent out to five warehousing re-
earchers who had not been previously involved. Only if the majority of
hem voted that the warehousing application is plausible, the respective
SP variant is treated in this paper. However, despite our attempts to
bjectify this process, we have to openly admit that the selection is
ertainly biased by the authors’ subjective assessment.

Finally, several survey papers on related issues have already been
ritten. There are, for instance, the survey papers on warehousing in
eneral by de Koster et al. (2007), van Gils et al. (2018), and Boysen
t al. (2019). Because picker routing is one of the classics of ware-
ousing research, each of these surveys treats picker routing as one
3

mportant topic. Furthermore, there are focused surveys specifically on
icker routing by Masae et al. (2020a) as well as Vanheusden et al.
2023). However, none of these surveys takes our special TSP per-
pective or focuses on computational complexity. Vice versa, surveys
rom the routing domain that focus on the TSP and its variants (e.g.,
pplegate et al., 2007; Gutin & Punnen, 2007) usually do not consider

he special impact of the block structure of warehouses and potential
pplications in this area. We, instead, combine both perspectives, which
as not done before.

In the next sections, we turn to the TSP and its variants in a
arehousing context. Specifically, we start with the classical TSP in
ection 3 and then elaborate on ten TSP variants in Sections 4 to 13.
s mentioned above, each section follows the same structure: We start
ith a problem definition and refer to important research contributions
s well as survey papers on the general problem outside the warehous-
ng domain. To give a rough indication of problem instances that can
e solved, we add performance information for the most representative
esults in recent work on the TSP variants. It is clear that an in-depth
nalysis of instance characteristics and computing environments would
e required to reliable compare different methods and variants. We still
elieve that this information is useful to provide a rough idea of what
s computationally achievable. Then, we describe the warehousing use
ases of the respective problem, explore the status of computational
omplexity if a block structure is present, and finally, highlight future
esearch needs.

. The classical TSP and its application to warehousing

efinition. We introduce a mathematical programming formulation
or the classical TSP and adapt it to unambiguously define the re-
pective TSP variants in the following sections. Introducing these for-
ulations aims to simplify the differentiation between the problem
efinitions. They are, however, not the basis for state-of-the-art solution
ethods. Let 𝐺 = (𝑉 ,𝐴) be a digraph with nodes 𝑉 = {1,… , 𝑛} and arcs
= {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗}. Each arc (𝑖, 𝑗) ∈ 𝐴 is assigned a fixed cost

𝑖𝑗 . The goal of the asymmetric TSP (ATSP) is to find a Hamiltonian
ircuit 𝑇 in 𝐺 such that the sum of the arc costs in 𝑇 is minimum.
inary variables 𝑥𝑖𝑗 indicate if an arc (𝑖, 𝑗) is part of 𝑇 (𝑥𝑖𝑗 = 1) or not
𝑥𝑖𝑗 = 0). Continuous variables 𝑢𝑖 assign a unique index to each node
, indicating the sequence position in the tour. The ATSP can thus be
ormulated as the following integer linear program proposed by Miller
t al. (1960):

in
∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥𝑖𝑗 (1)

s.t.
∑

𝑥𝑖𝑗 = 1 𝑗 ∈ 𝑉 (2)

𝑖∈𝑉 ,𝑖≠𝑗
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∑

𝑗∈𝑉 ,𝑗≠𝑖
𝑥𝑖𝑗 = 1 𝑖 ∈ 𝑉 (3)

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1 (𝑖, 𝑗) ∈ 𝐴; 𝑗 ≠ 1 (4)

𝑥𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈ 𝐴 (5)

𝑢𝑖 ≥ 0 𝑖 ∈ 𝑉 (6)

The objective function (1) minimizes the total cost of all arcs contained
in the tour. Constraints (2) and (3) ensure that each node is visited
exactly once. Constraints (4) are the famous subtour elimination con-
straints of Miller et al. (1960). The decision variables are defined in (5)
and (6).

We briefly summarize the state-of-the-art exact and heuristic meth-
ods for the symmetric TSP (STSP) and the ATSP. For the STSP, the
solver Concorde implements the currently best exact approach using
the branch-cut-and-price procedure of Applegate et al. (2007). A com-
parison of the best exact approaches can be found in Laporte (2010).
Concorde can consistently solve STSP instances with 500 randomly
distributed nodes in less than a minute. For the ATSP, the branch-and-
cut of Fischetti et al. (2003) is among the best exact methods, and
a comparison is available in Roberti and Toth (2012). Fischetti et al.
(2003) solve almost all instances with up to 1000 nodes in a couple
of seconds or minutes while only a few instances run up to 29 min
or are not solved to optimality within the time limit of 2.78 h. The
best heuristics to address both the ATSP and the STSP are enhance-
ments of the Lin-Kernighan algorithm (Helsgaun, 2017), stem-and-cycle
methods (Rego et al., 2011), and the matheuristic POPMUSIC (Taillard
& Helsgaun, 2019). For benchmark instances with 1000 nodes, they
consistently achieve runtimes of a few seconds.

Warehouse use case: The single picker routing problem in ware-
houses corresponds to the W-TSP. A good example for the direct
applicability of the W-TSP is the following most basic order fulfillment
process: In many warehouses, high-rise racks are partitioned into a
ground-level pick face and an upper reserve area. In the upper reserve
area, unit loads are stored to resupply the ground-level pick face, typi-
cally by forklifts. The pick face is stocked with unit loads (e.g., pallets
with identical pieces of the same SKU), which are accessed by pickers
who either walk while pushing manual picking carts or drive motorized
picking carts between storage positions defined on their pick lists. Once
pick lists are assigned to pickers, optimizing each tour individually
corresponds to solving a W-TSP. Pickers start and end their tours at
a single depot, where orders are prepared for shipping. In the most
basic setup, order consolidation at the depot (i.e., sorting by customer
orders) is not required because either each pick list only contains
a single customer order (order-by-order picking) or the picking cart
carries multiple bins, each associated with a specific customer order for
a pick-while-sort process (de Koster et al., 2007). The default case in the
majority of warehouses is certainly an STSP. One reason for an ATSP
setup, however, could be one-way picking aisles, which are applied for
safety reasons in some warehouses with plenty of motorized picking
cart traffic (Boysen et al., 2019). Nonetheless, if not explicitly stated
otherwise, we assume symmetric distances for all TSP variants in the
warehousing context in the remainder of the paper.

Alternatively, the single picker routing problem can also be modeled
as a Steiner TSP (Rodríguez-Pereira et al., 2019). The Steiner TSP
extends the TSP by two aspects: The underlying graph does not have to
be complete, and some nodes can be visited but are not obligatory. The
former property can be used to condense the distance matrix, so that
only nodes representing adjacent picking positions in the same picking
aisle are directly connected. The first (last) node within each picking
aisle can then be connected with a node representing the crossing point
between picking and cross aisle, which is optional to visit. This problem
representation is, for instance, used by Letchford et al. (2013) to derive
compact mathematical programming formulations for the W-TSP.

Complexity status: (a) The 1B-TSP is solvable in polynomial time
(see Ratliff & Rosenthal, 1983). Note that Heßler and Irnich (2022)
4

have recently shown that this algorithm is actually linear in the sum
of the number of aisles and number of picking positions if the cost
coefficients of the transitions of the dynamic program are computed
from an unsorted list of picking positions. (b) The 2B-TSP is solvable in
polynomial time (see Roodbergen & de Koster, 2001b). (c) The MB-TSP
is solvable in polynomial time if the number of cross aisles ℎ is bounded
by a constant (see Cambazard & Catusse, 2018; Pansart et al., 2018).
More details on these and all following complexity results are provided
in Appendix B.

Future research: Regarding the complexity status, the classical
TSP in a warehousing environment is fully explored. Hence, we see
future research needs rather in relation to the TSP variants that are
addressed in the following sections. As a substitute, we comment on
the application of heuristics for the W-TSP instead, which, we believe,
have lost their prior importance. Because optimal solutions can effi-
ciently be obtained, from a methodological perspective, there is no
need to accept the suboptimal solutions of heuristics. At the same
time, routing heuristics have a long-lasting tradition in warehousing
research. The most prominent examples are the S-shape (meander
through the aisles in an S-shaped tour), return (never use the back
cross aisle), mid-point (always return before crossing the middle of a
picking aisle), and largest-gap (in each picking aisle, do not traverse
the two storage positions having the largest distance between them)
heuristics (for detailed descriptions and performance tests, see Petersen,
1997; Roodbergen & de Koster, 2001a). Gademann and Velde (2005),
for instance, argue that the tours of these heuristics are more intuitive
for human pickers, whereas optimal tours ‘‘seem illogical or suboptimal
to the order pickers who then, as a result, deviate from the specified
routes’’. Empirical support for the existence of such a maverick picking is
surveyed by Glock et al. (2017). It would be interesting to see whether
the empirical results listed there are still valid today with most order
pickers being digital natives, who are used to algorithmic advice. To
avoid maverick picking, most modern warehouses apply navigation
tools such as pick-by-voice solutions. Hence, routing heuristics have
certainly lost some of their importance over the years.

4. TSP with precedence constraints

Definition. The TSP with precedence constraints (TSPPC) is a gener-
alization of the ATSP which introduces additional constraints on the
sequence of visits (first introduced by Balas et al., 1995). For any pair
of nodes 𝑖, 𝑗 ∈ 𝑉 , a precedence rule 𝑖 ≺ 𝑗 can be added, stating that
𝑖 must be visited prior to 𝑗 in the solution but not necessarily directly
before 𝑗. Without loss of generality, let the start and end node of the
tour be the node excluded in Constraints (4), such that the tour is closed
and precedence constraints are well-defined. In the following, node 1
is considered the start and end node. Based on the TSP formulation
(1)–(6), the TSPPC can be modeled by adding constraints

𝑢𝑖 ≤ 𝑢𝑗 − 1 (𝑖, 𝑗) ∈ 𝐴 ∶ 𝑖 ≺ 𝑗; 𝑖, 𝑗 ≠ 1. (7)

The path version of the TSPPC, i.e., finding a Hamiltonian path with
precedence constraints from a start to an end node in 𝐺, is also
known as sequential ordering problem (Escudero, 1988). The currently
best exact methods are branch-and-cut (Gouveia & Ruthmair, 2015),
branch-and-bound using beam search (Libralesso et al., 2020), and
dynamic programming (Salii & Sheka, 2020). Salii and Sheka (2020)
solve TSPPC instances with 7–16 nodes in less than 80 ms using
multiple CPUs, while larger instances with up to 253 nodes run in the
range of a minute up to an hour. The best heuristic is the hybrid of
ant colony optimization and local search of Skinderowicz (2017). They
solve instances with up to 700 nodes with a runtime limit of 600 s.

Warehouse use case: Precedence constraints among storage posi-
tions can be utilized to influence the arrangement of products on roll
containers and pallets for the customers. This is especially important
in distribution centers supplying brick-and-mortar stores, where most
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orders are large because the stores bundle the demand of multiple
customer households (Boysen et al., 2021). In such a setting, prece-
dence constraints can support adherence to weight (heavy products
at the bottom of the roll containers), fragility (light products on top),
stackability, and stability restrictions (big boxes at the bottom), as well
as preferred unloading sequences that mirror the store layout (Matusiak
et al., 2014).

Complexity status: The complexity statuses of the 1B-TSPPC, the
B-TSPPC, and the MB-TSPPC are still open.
Future research: First and foremost, future research should re-

olve the open complexity statuses. Beyond that, precedence constraints
o not directly translate into a specific packing pattern of the roll
ontainers and pallets for customers. For instance, a fragile product
oes not need to be placed on top of a heavy product. They may
lso be placeable next to each other on the same level of a packing
attern, and, to realize this, the fragile product may still be retrieved
efore the heavy product. Thus, future research should also consider
ore holistic routing problems that include the packing pattern and its

uccessive realization on a tour in detail. Such an approach can then be
tilized to explore the performance loss caused by the modeling error
f precedence constraints.

Beyond the traditional picking process, precedence constraints can
lso be used to model pickup and delivery processes in warehouses. If
roduct demands change over time, rearranging the storage assignment
ay become necessary to relocate new fast-moving products closer to

he depot. To model such a process, precedence constraints between
he storage locations of each pickup (i.e., old position of the SKU) and
he corresponding delivery (i.e., its new position) can be introduced.
aturally, the W-TSPPC neglects vehicle capacity. Hence, if a forklift is
pplied in the rearrangement process, which only has capacity for a sin-
le pallet, a multi-commodity one-to-one pickup-and-delivery traveling
alesman problem with limited vehicle capacity (Hernández-Pérez &
alazar-González, 2009) must be solved. Future research should explore
hether the block structure of warehouses can be exploited to solve this
roblem more efficiently.

. Clustered TSP

efinition. In the clustered TSP (CTSP), sets of nodes (clusters) are
ntroduced, in which the contained nodes must be visited contigu-
usly (first introduced by Chisman, 1975). Thus, the visiting order of
lusters and the order of nodes within the same cluster is optimized
imultaneously. While this setting is referred to as the CTSP with open
luster sequence (CTSP-OCS), the sequence of clusters is predefined
n the CTSP with given cluster sequence (CTSP-GCS). To formally
ntroduce the CTSP-OCS, let 𝑉𝑘, 𝑘 ∈ 𝐾 = {1,… , 𝑙}, be 𝑙 disjoint clusters
ith 𝑉 =

⋃

𝑘∈𝐾 𝑉𝑘, 𝑉𝑘 ∩ 𝑉𝑘′ = ∅; 𝑘, 𝑘′ ∈ 𝐾, 𝑘 ≠ 𝑘′. We extend the TSP
formulation (1)–(6) by adding
∑

𝑖∈𝑉𝑘

∑

𝑗∈𝑉𝑘

𝑥𝑖𝑗 = |𝑉𝑘| − 1 𝑘 ∈ 𝐾 (8)

to ensure that all nodes belonging to the same cluster are visited
consecutively. To model the CTSP-GCS, instead of (8), we extend the
TSP by
𝑘−1
∑

𝑘′=1
|𝑉𝑘′ | + 1 ≤ 𝑢𝑖 ≤

𝑘
∑

𝑘′=1
|𝑉𝑘′ | 𝑘 ∈ 𝐾; 𝑖 ∈ 𝑉𝑘, 𝑖 ≠ 1 (9)

assuming ordered sets 𝑉𝑘, i.e., for 𝑘 < 𝑘′ (𝑘, 𝑘′ ∈ 𝐾) it holds: 𝑖 ≺ 𝑗, 𝑖 ∈
𝑉𝑘, 𝑗 ∈ 𝑉𝑘′ . Note that ∑𝑘−1

𝑘′=1 |𝑉𝑘′ | = 0 for 𝑘 = 1. Research on solution
methods for the CTSP is sparse. Exact methods for the CTSP-OCS are
the branch-and-bound procedure of Lokin (1979) and the Lagrangian
relaxation of Jongens and Volgenant (1985). Among the best heuristics
for the CTSP-OCS are the memetic algorithm of Alsheddy (2017) and
the hybrid algorithm of greedy randomized adaptive search procedure,
iterated local search, and variable neighborhood descent of Mestria
(2018). Alsheddy (2017) solve instances with up to 105 nodes and 50
5

clusters to optimality in less than 0.5 s; Mestria (2018) solve instances
with up to 500 nodes and 6 clusters within a runtime limit of 15 s
obtaining a gap of around 5%. The latter compare to Concorde that
solves these instances in around 40 s. Only few publications focus on
the CTSP-GCS (e.g., see Anily et al., 1999; Potvin & Guertin, 1998).

Warehouse use case: There are two potential use cases for the
W-CTSP: (1) AMR-assisted picking and (2) picking multiple orders
(clusters) with multiple depots. We elaborate on both use cases in the
following.

(1) AMR-assisted picking: To reduce the unproductive picker travel
from and to the depot in each picking tour, recent technological ad-
vances enable cooperation between human pickers who pair up with
AMRs. Especially, the gripping process itself still is a challenge for
automation and restricted in the product range it can be applied to (see,
e.g., Correll et al., 2016). The Toru robot of Magazino (2023), for
instance, can only process rectangular products (e.g., shoe boxes) with
a lower performance than human pickers. As a bridging technology,
AMR-assisted picking, thus, still relies on human pickers, who place
picked products into bins carried by the respective AMR that accompa-
nies them. Once a picker and an AMR have paired up to collect a new
pick list, they jointly proceed through the warehouse until all storage
positions defined on the pick list have been visited. Then, the AMR
returns to the depot with the picked products, while the human picker
travels to the first storage position of the next pick list to meet another
AMR for the next pick list (and so on). This work protocol, which Löffler
et al. (2023a) call the fixed assignment policy, directly corresponds to
the W-CTSP if the AMR fleet is not a bottleneck resource so that the
picker never has to wait for an AMR at the meeting points. In this
case, the clusters of the W-CTSP correspond to pick lists, which must
be processed sequentially by a picker and its paired-up AMR before
the former switches to the next pick list and pairs up with the next
AMR. If the sequence in which pick lists are processed by the picker is
unrestricted, we obtain the W-CTSP-OCS. However, varying urgency of
orders can also imply a given processing sequence, so that the W-CTSP-
GCS must be solved. Both problem settings are investigated by Löffler
et al. (2021).

(2) Picking with multiple depots: Some warehouses do not only use a
single central depot as the unique start and end point of each tour.
Instead, they provide multiple access points to a central conveyor
system, which transports the bins to a consolidation area. In such a
multi-depot setting, each access point is a potential starting point for
the next tour, where the bins full of picked products of the previous
tour are handed over and new empty bins are obtained. For a given set
of pick lists, the optimal tour of a picker who processes multiple pick
lists (clusters) sequentially can also be modeled as a W-CTSP. To do
so, the distances between storage positions of the same pick list can
directly be derived from the real-world warehouse layout. Distances
between storage positions of different pick lists, instead, must include
the minimum detour via one of the depots to feasibly switch to a
new pick list. Again, there are potential warehousing use cases for
both versions, namely W-CTSP-GCS and W-CTSP-OCS, if the processing
sequence of pick lists is either given or part of the decision, respectively.

Complexity status: (a) The 1B-CTSP-OCS (and, thus, also the 2B-
CTSP-OCS and the MB-CTSP-OCS) is strongly -hard (see Löffler
et al., 2021). (b) The MB-CTSP-GCS (and, thus, also the 1B-CTSP-GCS
and the 2B-CTSP-GCS) is solvable in polynomial time (see Appendix B
and Löffler et al., 2021).

Future research: The application of the W-CTSP to AMR-assisted
picking (1) is subject to two basic prerequisites: the application of
the fixed-assignment policy and the exclusion of waiting times for
AMRs. Instead of a fixed assignment of picker to AMR for each pick
list, the AMR fleet can also act under the free-floating policy. This
means that AMRs move autonomously between the storage positions of
their current pick lists, where they are supported by arbitrary pickers
without fixed assignment. This policy, which is considered by Löffler
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et al. (2023a), promises more flexibility and, thus, a higher picking
performance. However, this policy requires synchronization among
all pickers and AMRs, which complicates the planning process and
makes the system vulnerable to spillover effects of delays. Thus, more
flexible work protocols and the inclusion of stochastic influences such
as unexpected delays make AMR-assisted picking a challenging field for
future research.

More involved routing tasks should also be investigated in the
context of multiple depots (2). Quite a few warehouses, especially in
-commerce, use picking carts with a capacity for multiple bins that
re processed in parallel. In this case, it can occur that some of a cart’s
ins are already completed, whereas others still lack products. Then,
ompleted bins can already be handed over at a depot that is passed
y during picking, while the uncompleted bins remain on the cart. This
esults in a dynamic batching process (for first approaches, see Schiffer
t al., 2022; Weidinger et al., 2019), which offers manifold research
pportunities.

. Generalized TSP

efinition. The generalized TSP (GTSP, see, e.g., Laporte & Nobert,
1983) also considers clusters of nodes. However, instead of visiting
each node exactly once, at least one node per cluster must be visited.
Thus, an additional decision must be made, i.e., selecting the nodes
to be visited. Let 𝑦𝑖, 𝑖 ∈ 𝑉 , be a binary variable which is set to 1 if
node 𝑖 is visited, and 0 otherwise. We exchange (2) and (3) in the TSP
formulation (1)–(6) with (10) and (11), and add variable definitions
(12):
∑

𝑖∈𝑉
𝑥𝑖𝑗 = 𝑦𝑗 𝑗 ∈ 𝑉 (10)

∑

𝑗∈𝑉
𝑥𝑖𝑗 = 𝑦𝑖 𝑖 ∈ 𝑉 (11)

𝑦𝑖 ∈ {0, 1} 𝑖 ∈ 𝑉 . (12)

Further, let 𝑉𝑘, 𝑘 ∈ 𝐾, be 𝑙 clusters with 𝑉 =
⋃

𝑘∈𝐾 𝑉𝑘. Note, that in
contrast to the CTSP, the clusters are not necessarily disjoint. Then, we
impose the selection of at least one node per cluster by extending the
model with
∑

𝑖∈𝑉𝑘

𝑦𝑖 ≥ 1 𝑘 ∈ 𝐾. (13)

he GTSP is also known as set TSP, group TSP, or international TSP.
stricter variant is known as equality GTSP, in which exactly one

ode per cluster must be visited. Consequently, equality must hold in
onstraints (13). Note that if the triangle inequality holds for a GTSP
nstance, which is given for the block structure of warehouses, in an
ptimal solution exactly one node per cluster is chosen (Laporte &
obert, 1983). Hence, no differentiation between the GTSP and the
quality GTSP is necessary in the warehousing context. Among the
est exact approaches for the GTSP are the branch-and-cut algorithm
f Fischetti et al. (1997) and the Lagrangian-based branch-and-bound
lgorithm of Noon and Bean (1991). Fischetti et al. (1997) optimally
olve instances with up to 442 nodes and 89 clusters in 16.3 h.
he state-of-the-art heuristic methods are the Lin-Kernighan-Helsgaun
euristic (Helsgaun, 2015) and the recently introduced iterated local
earch of Schmidt and Irnich (2022). Both solve instances with up to
084 nodes and 217 clusters within a runtime limit of 335 s. Note,
owever, that the GTSP can also be transformed into an ATSP (see Noon
Bean, 1993) and an ATSP into an STSP (e.g., Ben-Arieh et al., 2003),

o that solvers for these problems can also be used to solve GTSPs. Pop
t al. (2024) extensively survey the GTSP.

Warehouse use case: Many warehouses, especially large facilities
f e-commerce retailers, apply scattered storage (see Boysen et al.,
019). Instead of putting unit loads, commonly pallets of identical
6

roducts into storage, these warehouses break up the unit loads and
tore individual pieces in many different positions of the warehouse.
he main promise of scattered storage is that whatever products end up

ointly on hardly predictable pick lists, there is an increased probability
hat somewhere in the huge warehouses these products are stored
lose together and can be picked without excessive picker travel. This
dvantage on the picking side comes at the price of a more laborious
towing process. Instead of merely putting a unit load into a shelf
e.g., with a single forklift move), an additional stowing workforce has
o travel through the warehouse to stow individual products into open
helf positions.

Thus, the picking process in a scattered storage warehouse must
andle alternative storage positions from where a specific SKU on a
ick list can be obtained. Including this additional selection problem,
an directly be modeled as a W-GTSP. Clusters are formed by the set
f storage positions of a specific SKU, and at least one storage position
rom each cluster must be visited to fulfill the product demand of a pick
ist. Daniels et al. (1998) were the first to consider product availability
t multiple positions. A decomposition heuristic, which selects the
torage positions per cluster first and solves the resulting W-TSP second,
s presented by Weidinger (2018).
Complexity status: The 1B-GTSP (and, thus, also the 2B-GTSP and

he MB-GTSP) is strongly -hard (see Weidinger, 2018).
Future research: The W-GTSP can represent picking in scattered

torage warehouses without modeling error only if merely a single
iece of any SKU is requested on a pick list. For higher demands per
KU, the family TSP becomes relevant. Here, the number of nodes
er cluster that must be visited to fulfill the demand for more than a
ingle piece is also part of the input. This problem has been introduced
y Morán-Mirabal et al. (2014) for general graphs and recently got
xtended by Bernardino and Paias (2022) to include incompatibility
onstraints. Note that the W-family TSP is a generalization of the W-
TSP and, thus, also strongly -hard. The family TSP, however, is

till not general enough to cover all real-world situations. It may very
ell occur that storage positions do not just contain a single piece of
SKU but multiple ones. This can be modeled within the realm of the

amily TSP by introducing multiple virtual storage positions with zero
istances between each other. However, this approach produces a lot of
xtra storage positions if many pieces of an SKU are stored at the same
torage position. To avoid extra storage positions, an even more general
roblem setting that includes bookkeeping of the number of pieces per
isited storage position and SKU is required. Despite the high practical
elevance of scattered storage, this problem has not been investigated
et.

. TSP with backhauls

efinition. The TSP with backhauls (TSPB) is the special case of
he CTSP-GCS defined in Section 5 with exactly two clusters (first
ntroduced by Gendreau et al., 1996). The first cluster is referred
o as linehaul nodes 𝑉𝐿 and the second one as backhaul nodes 𝑉𝐵 .
inehaul nodes must be visited prior to backhaul nodes, i.e., 𝑉 =
𝐿 ∪ 𝑉𝐵 ; 𝑖 ≺ 𝑗, 𝑖 ∈ 𝑉𝐿, 𝑗 ∈ 𝑉𝐵 . Research on the TSPB remains

limited: multiple heuristics are proposed in Gendreau et al. (1996)
and improved in Mladenović and Hansen (1997). Further, Gendreau
et al. (1997) introduce a 3∕2-approximation algorithm. Mladenović and
Hansen (1997) solve instances with 500 linehaul and 500 backhaul
nodes in around 30 min.

Warehouse use case: Scattered storage warehouses (see Section 6)
can apply separate workforces for stowing and picking. It is, however,
also possible to combine both processes. In this case, a worker receives
a bin containing products to be stowed at a depot. The worker then
travels through the warehouse to first stow all these products and, once
the bin is empty, switches to picking. This saves the intermediate return
to the depot and promises performance gains. If the storage positions,
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where products are to be stowed and from where products must be
picked, have been preselected in an upstream planning process, the
resulting routing problem can directly be modeled as a W-TSPB. The
linehaul and backhaul nodes are the storage positions where products
must be stowed and picked, respectively. Note that the 1B-TSPB is
treated by Žulj et al. (2018). They, however, apply the problem to an-
other warehouse use case. They differentiate heavy (linehaul) products
that must be picked first to end up on the bottom of the pallets for
the customers. Only then a switch to the picking of light and fragile
(backhaul) products is allowed.

Complexity status: The MB-TSPB (and, thus, also the 1B-TSPB and
he 2B-TSPB) is solvable in polynomial time (see Appendix B and Žulj
t al., 2018).
Future research: The W-TSPB can only cover the most basic ver-

sion of a combined stowing and picking process in scattered storage
warehouses. For instance, the selection among alternative stowing and
picking positions, multiple depots, as well as multiple bins on a cart,
which induces switches between stowing and picking for individual
bins at different times, can be relevant. These more general combined
stowing and picking processes have not been treated in the literature
yet.

8. Prize-collecting TSP

Definition. The prize-collecting TSP (PCTSP) is a generalization of
the TSP, in which profits 𝑤𝑖, 𝑖 ∈ 𝑉 , are assigned to each node (first
ntroduced by Balas, 1989). A penalty 𝑝𝑖 is due if a node is not part of

the tour. The objective is to minimize the tour costs while collecting a
minimum total profit 𝑊 . With 𝑦𝑖, 𝑖 ∈ 𝑉 , defined like in the GTSP (see
Section 6), the PCTSP objective function is

min
∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥𝑖𝑗 +

∑

𝑖∈𝑉
𝑝𝑖(1 − 𝑦𝑖). (14)

Besides constraints (4)–(6) and (10)–(12), we add
∑

𝑖∈𝑉
𝑤𝑖𝑦𝑖 ≥ 𝑊 (15)

to induce the lower bound on the collected profits. Note that the penal-
ties are set to 0 in many applications; i.e., the objective function (14)
reduces to the classical TSP objective function (1) (e.g., see Feillet et al.,
2005). Clímaco et al. (2021) propose a branch-and-cut algorithm and
two MIP-based heuristics for the symmetric case. Their branch-and-cut
algorithm solves instances with 500 nodes in around 120 s. The same
instances are solved using their heuristics in 9 to 110 s obtaining the
same solutions. Pantuza and de Souza (2022) introduce a Lagrangian
relaxation approach for the asymmetric case.

Warehouse use case: If stowing and picking are not combined in
scattered storage warehouse (see Section 7), the W-PCTSP can be

sed to direct the process of a single stower, whose (exclusive) task
s to store all products on the cart in open storage positions as fast
s possible. Thus, the nodes are open storage positions, and the profit
ssociated with each of these positions is defined by the number of
roducts that can be stored there. Penalties for unvisited open storage
ositions do not exist. In total, storage positions must be selected such
hat all products on the cart (modeled as the minimum profit of the
CTSP) can be stowed, while the tour cost to visit all selected positions
n a tour starting and ending at the depot is minimized.
Complexity status: The study of Bock and Boysen (2023) shows

hat the 1B-PCTSP is binary -hard, even if penalties for non-visited
odes are excluded. This complexity result also applies to the non-
estricted problems 1B-PCTSP, 2B-PCTSP and MB-PCTSP. Furthermore,
ppendix B sketches an exact branch-and-bound approach for the MB-
CTSP that attains a pseudo-polynomial asymptotic runtime if the
umber of cross aisles is bounded by ℎ ∈ (log 𝑛). This resolves the
7

omplexity status of the W-PCTSP. b
Future research: Again, the W-PCTSP only captures the basic stow-
ng process in scattered storage warehouses. Beyond that, products to
e stowed can be of different sizes or shapes, so that an additional
in packing problem to fit products into storage positions may become
elevant. Multiple stowers operating in parallel can compete for open
torage space, so that the team version of the W-PCTSP must be solved.
ince warehouse data typically only hold the number of pieces per SKU
hat are stored in a specific shelf but not their detailed stowing pattern
ithin the shelf, the exact number of pieces per SKU that can actually
e stored in an open storage positions often is non-deterministic. Thus,
stochastic problem version arises in which the number of stowable

roducts per position is uncertain and only revealed after the arrival at
storage position. These extended problem versions of the W-PCTSP

onstitute challenging tasks for future research.

. Orienteering problem

efinition. In the Orienteering Problem (OP), again, each node 𝑖 ∈
has a nonnegative weight 𝑤𝑖. The objective is to maximize the

ollected weights of visited nodes without exceeding a given maximum
our cost (first introduced by Golden et al., 1987). Thus, the objective
unction is

ax
∑

𝑖∈𝑉
𝑤𝑖𝑦𝑖 (16)

ubject to constraints (4)–(6) and (10)–(12), plus
∑

𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥𝑖𝑗 ≤ 𝐶 (17)

o induce the upper bound 𝐶 on the tour cost. The OP is also known
s selective TSP (Laporte & Martello, 1990) and closely related to the
CTSP; both problems belong to the class of TSPs with profits (see
eillet et al., 2005). Gunawan et al. (2016) survey the OP and multiple
ariants. The best exact approach is the branch-and-cut algorithm
f Fischetti et al. (1998). A recent high-quality heuristic approach is
he adaptive large neighborhood search of Santini (2019). Using a time
imit of 5 min, their heuristic solves instances with up to 400 nodes
ith an average gap of 0.001% to the best-known solution found by

he branch-and-cut algorithm of Fischetti et al. (1998). The latter finds
ptimal solution for all mentioned instances within a time limit of 5 h.

Warehouse use case: Especially e-commerce warehouses face tight
ue dates to meet the next-day, same-day, or even within-the-hour
elivery promises made to their customers (Boysen et al., 2019). When
he fixed departure time of a delivery vehicle (also denoted as cutoff
ime) approaches, the maximum tour cost that is acceptable to still
each this departure time can be precomputed. Given this maximum
our cost and a profit per storage position (e.g., capturing the number,
alue, or urgency of the products stored there), the W-OP can maximize
he profit associated with those products still reaching the vehicle
eparture.
Complexity status: The 1B-OP (and, thus, also the 2B-OP and the

B-OP) is binary -hard, which we prove in Appendix B. Further-
ore, we provide an exact solution approach that solves the OP in
seudo-polynomial time if the number of cross aisles is bounded by
∈ (log 𝑛). This resolves the complexity status of the W-OP.
Future research: Varying, storage position-specific picking times

nd individual due dates for different products extend the W-OP and
hould be considered by future research. The latter leads to the deadline
SP (see Bansal et al., 2004) in the warehouse, where each storage
osition is associated with a different deadline. This problem as well
s the team orienteering problem (e.g., Gunawan et al., 2016) have not

een considered in the warehousing context yet.
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10. Traveling Repairman Problem

Definition. The goal of the Traveling Repairman Problem (TRP) is to
find a Hamiltonian cycle 𝐻 in 𝐺 that minimizes the sum of arrival
times at each node in 𝐻 (first introduced by Afrati et al., 1986). Let
𝑡𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴, be the given travel time between two nodes. Further, let
𝑡𝑖, 𝑖 ∈ 𝑉 be the arrival time at node 𝑖 (𝑡1 = 0). Thus, the objective
function of the TRP can be formulated as

min
∑

𝑖∈𝑉
𝑡𝑖. (18)

To state the TRP model, besides the TSP constraints (2)–(6), we add

𝑡𝑖 + 𝑡𝑖𝑗 ≤ 𝑡𝑗 +𝑀𝑥𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴; 𝑗 ≠ 1 (19)

𝑡𝑖 ≥ 0 𝑖 ∈ 𝑉 (20)

with a large number 𝑀 , e.g., 𝑀 =
∑

(𝑖,𝑗)∈𝐴 𝑡𝑖𝑗 , to set the arrival
times. The TRP is also known as the minimum latency problem, the
delivery man problem, or the cumulative TSP. The currently best
performing exact method is the branch-and-price algorithm of Bulhões
et al. (2018). They solve instances with around 50 nodes in less than
11 s. Some instances with around 150 nodes could not be solved to
optimality within the time limit of 2 days. Among the best heuristics is
the metaheuristic of Silva et al. (2012). Their heuristic solves instances
with around 100 nodes in less than 10 s providing optimal solutions
and yields new best-known solutions for instances with 200, 500, and
1000 nodes in around 70 s, 25 min, and 8 h.

Warehouse use case: In warehouses dealing with temperature-
sensitive products, maintaining the cold chain is essential to not jeop-
ardize the products like flowers, pharmaceuticals, or groceries handled
there. In such a setting, reducing the uncooled travel times, i.e., after
a picked product has been removed from its refrigerated shelf by a
picker until it reaches the depot (where it is put, e.g., into a cooled
trailer) could be a suitable measure for preserving the cold chain. To
operationalize this, optimizing the picking tours according to the W-
TRP is one valid option. The TRP, however, minimizes the sum of travel
times from the picker’s departure at the depot to the arrivals at the
storage positions. In our context of maintaining the cold chain, the
picker has to follow the optimal tour returned by the solution of the W-
TRP in reverted sequence. Since distances in warehouses are symmetric,
this yields the optimal picker tour that minimizes the sum of uncooled
travel times until a picked product arrives at the depot.

Complexity status: The complexity statuses of the 1B-TRP, the
2B-TRP, and the MB-TRP are still open.

Future research: Foremost, future research should resolve the open
complexity statuses. Beyond that, the basic W-TRP could be extended
by non-negligible (storage position-specific) picking times and products
with diverging cooling requirements. The latter could also be a reason
for another objective function. For instance, each product could be
assigned an individual maximum acceptable uncooled travel time, and
it is the aim to maximize the minimum difference of actual uncooled
travel times from the target times among all products.

11. 𝒌-best TSP

Definition. The goal of the 𝑘-best TSP is to find the set of 𝑘-best TSP
solutions, i.e., a set of 𝑘 tours for which the tour costs of the tour with
the highest cost is smaller or equal to the costs of any other feasible
tour which is not part of the set. van der Poort et al. (1999) introduce
and solve the 𝑘-best TSP, and compare their results to a branch-and-
bound-algorithm. They report the runtimes for solving the 𝑘-best TSP
compared to the 1-best TSP. For example, solving the 8-best TSP for an
instance with 21 nodes doubles the runtime.
8

Warehouse use case: As elaborated in Section 2, this paper focuses
on single-picker problems, which is justified by the basic assumption
that neglecting the coordination aspect among the workforce is often
pardonable (and can, e.g., be resolved on a local level by the workers).
Especially when pickers compete for specific products (Ardjmand et al.,
2018) or block each other in narrow aisles (Schrotenboer et al., 2017),
it can, however, be preferable to include the coordination aspect into
the team version of a routing problem. A straightforward approach to
trade off individual picking performance and coordination aspects has
recently been introduced by Löffler et al. (2023b) to reduce gatherings
of human pickers in an infection-plagued warehouse. They determine
the 𝑘-best W-TSP tours per picker and apply a straightforward MIP to
select one tour per picker to minimize meetings in the aisles. Note that,
strictly speaking, Löffler et al. (2023b) only consider the case of 𝑘 = 2
optimal solutions, because they obtain the second optimal solution by
simply reverting the tour. Analogously, the 𝑘-best TSP can be applied to
other team coordination problems in warehouses without wasting too
much picking performance.

Complexity status: The complexity statuses of the 1B-𝑘-best TSP,
the 2B-𝑘-best TSP, and the MB-𝑘-best TSP are still open.

Future research: Foremost, future research should resolve the open
complexity status. Beyond that, the 𝑘-best versions of all other W-
TSP variants elaborated in this paper are valid fields of research to
coordinate teams for the respective use cases.

12. TSP with time windows

Definition. In the TSP with time windows (TSPTW), starting service
at a node is only allowed during a given time window [𝑒𝑖, 𝑙𝑖], 𝑖 ∈
𝑉 (first introduced by Savelsbergh, 1985). The most studied variant
of the TSPTW, which minimizes the total tour cost, is modeled using
the objective function (1) plus constraints (2)–(6), (19)–(20) and the
additional time window constraints

𝑒𝑖 ≤ 𝑡𝑖 ≤ 𝑙𝑖 𝑖 ∈ 𝑉 . (21)

Among the best exact approaches for the TSPTW with cost mini-
mization are approaches based on dynamic programming or branch-
and-cut (Ascheuer et al., 2001; Baldacci et al., 2012; Boland et al.,
2017). Baldacci et al. (2012), for example, solve 24 out of 25 instances
with 152 or 202 nodes to optimality with an average runtime of 399.8 s.
The best performing heuristics are the general variable neighborhood
searches of da Silva and Urrutia (2010) and Mladenović et al. (2013),
the hybrid of beam search and ant colony optimization of López-Ibáñez
and Blum (2010), and the modified variable neighborhood search
of Karabulut and Tasgetiren (2014). The former consistently provide
solutions to the above-mentioned instances in 26 to 40 s. For the
TSPTW with further objectives, see Ye et al. (2024).

Warehouse use case: Even in the largest facilities, picking tours
rarely exceed an hour. Hence, it seldom occurs that out-of-stock sit-
uations restrict access to storage locations to specific time windows.
Products are either available during the whole planning horizon or
not at all, so that time windows for storage positions do not occur
naturally in most warehouses. However, they can still be used to model
two aspects mentioned in previous sections: (a) Given cooled products
obtained from refrigerated shelves (see Section 10), the end (start) of a
time window for a specific storage location can be set to the maximum
acceptable uncooled travel time of the product stored there (to the
travel time to reach the depot from there). Solving the resulting W-
TSPTW instance and following the resulting tour in reverted sequence
provides a minimum-cost picking tour without risking the safety of
products until they reach their refrigerated environment at the de-
pot. (b) Time windows can also be applied to coordinate a team of
pickers via a straightforward two-stage decomposition approach (see
Section 11): In a first stage, each picker is assigned non-overlapping

time windows for shelf (or aisle) access, so that blockings or gatherings
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are excluded. Solving the resulting W-TSPTW instances per picker on
the second stage, then ensures that team coordination does not cost too
much picking performance.

Complexity status: The 1B-TSPTW (and, thus, also the 2B-TSPTW
nd the MB-TSPTW) is strongly -hard, which we prove in Ap-
endix B by a reduction from the Line-TSPTW that is shown to be
trongly -hard by Tsitsiklis (1992).
Future research: First, the basic W-TSPTW requires extension if

icking times are non-negligible (compared to the typically much
onger travel times) and depend on the number and types of prod-
cts picked at each storage position. Second, the performance loss of
he simple team coordination approaches sketched above (see ware-
ouse use case b) and in Section 11 should be benchmarked against
ore sophisticated multi-picker routing problems directly including the

oordination aspect.

3. Covering Salesman Problem

efinition. The Covering Salesman Problem (CSP) is a generalization
f the TSP in which not every node needs to be visited but must be
n the coverage of a node that is part of the tour (first introduced by
urrent & Schilling, 1989). The coverage of a node is defined by a given
adius 𝑅. Thus, 𝑉 𝑐𝑜𝑣

𝑖 = {𝑗 ∶ 𝑐𝑗𝑖 ≤ 𝑅} is the set of nodes that cover node
∈ 𝑉 . Using the TSP objective (1) with GTSP constraints (4)–(6) and

10)–(13), the CSP can be formulated by adapting constraints (13) as
ollows:
∑

∈𝑉 𝑐𝑜𝑣
𝑖

𝑦𝑘 ≥ 1 𝑖 ∈ 𝑉 . (22)

mong the best heuristic approaches for the CSP are the local search
lgorithms of Golden et al. (2012), the hybrid of tabu search, large
eighborhood search and Lin–Kernighan heuristic of Lu et al. (2021),
nd the parallel variable neighborhood search of Zang et al. (2022).
he latter solve instances with up to 783 nodes in less than 40 s with
n average gap to the best-known solution of around 1%.

Warehouse use case: Autonomous mobile robots are also applied
or automated stock-taking in warehouses (Fragapane et al., 2021). If
roducts on the shelves are tagged with RFID chips, a mobile robot
quipped with an RFID reader can conveniently register physical inven-
ory even if deep-lane storage is applied (Morenza-Cinos et al., 2019).
ecause RFID readers have a certain range corresponding to radius
of the CSP, finding the shortest tour such that all relevant storage

ositions are covered for automated stock-taking can be modeled by
-CSP. The same problem can be applied for alternative systems

ased on automated product recognition, in which a mobile robot is
quipped with a camera system (see Santra & Mukherjee, 2019). When
omputing the covering node sets 𝑉 𝑐𝑜𝑣

𝑖 , however, it must be considered
hat the camera’s line of sight can be blocked by shelves.
Complexity status: The complexity statuses of the 1B-CSP, the
9

B-CSP, and the MB-CSP are still open. w
Future research: Foremost, future research should resolve the
pen complexity status. Beyond that, the team version of the W-CSP
ertainly demands consideration because especially large e-commerce
arehouses may use multiple stock-taking robots in parallel.

4. Conclusions

This paper surveys the application of the TSP and its variants in
arehousing. Specifically, we describe (known and novel) warehousing
se cases for different TSP variants and investigate their complexity
tatus in the block structure of warehouses. As a substitute for a more
etailed verbal summary, Table 1 lists our findings.

From a general perspective, beyond the specific warehousing use
ases treated in the previous section, we see future research needs in
he following areas:

Decomposition methods: Nowadays, warehouses are predominantly
assive facilities where multiple pickers interact concurrently. In such

nvironments, pickers vie for products, stowers seek available storage
pace, and all workers may impede each other in narrow aisles. The
ocus of this paper is on individual worker problems, overlooking these
nteractions and merely outlining potential decomposition methods
refer to Sections 11 and 12). A viable avenue for future research
nvolves conducting a systematic evaluation of these concepts and
enchmarking them against novel decomposition methods that lever-
ge the extensive repertoire of efficient single-worker W-TSP variants
s subproblems.

Dynamic and stochastic problems: Undoubtedly, warehouses offer a
omparatively controlled environment that is less susceptible to dy-
amic influences and stochastic variations compared to most other
tages of the supply chain. However, it is important to acknowledge
he presence of dynamic impacts (e.g., returned products affecting
ngoing picking processes, as discussed in Section 7) and stochastic
nfluences (e.g., stowers needing to determine the number of prod-
cts that can be stowed at a specific storage position based on the
acking pattern of mixed shelves, as discussed in Section 8). Ne-
lecting these factors would be imprudent. Therefore, future research
hould focus on investigating how the existing solution methods for
he static and deterministic W-TSP variants discussed in this paper
an be effectively integrated into comprehensive solution frameworks
e.g., multi-scenario approaches) to address the challenges posed by
ynamic and stochastic elements.

Computational complexity: Instead of having to independently estab-
ish the complexity status of each variant of the W-TSP, it would be
dvantageous to develop overarching criteria (such as those based on a
tructured problem hierarchy) that determine the circumstances under
hich even the parallel-aisle structure of warehouses does not permit
n efficient solution.

We conclude with the following final remark: It is amazing to see
hat such an old-established field like routing in warehouses still offers
o many unexplored use cases and unresolved methodological research
hallenges. Hence, it seems safe to project that routing in warehouses

ill remain a vividly researched field in the foreseeable future.
Table 1
Summary of results.
Variant Use case Complexity Reference

1B-TSP Basic picker routing Polynomial Ratliff and Rosenthal (1983)
2B-TSP Basic picker routing Polynomial Roodbergen and de Koster (2001b)
MB-TSP Basic picker routing Polynomial Pansart et al. (2018)
1B-, 2B-, MB-TSPPC Picker routing with precedence constraints Open –
1B-, 2B-, MB-CTSP-OCS AMR-assisted picking, multiple depots Strongly -hard Löffler et al. (2021)
1B-, 2B-, MB-CTSP-GCS AMR-assisted picking, multiple depots Polynomial Löffler et al. (2021)
1B-, 2B-, MB-GTSP Picking in scattered storage Strongly -hard Weidinger (2018)
1B-, 2B-, MB-TSPB Combined stowing and picking Polynomial Žulj et al. (2018)
1B-, 2B-, MB-PCTSP Stowing in scattered storage Binary -hard This paper
1B-, 2B-, MB-OB Picking with cutoff time Binary -hard This paper
1B-, 2B-, MB-TRP Picking perishable goods Open –
1B-, 2B-, MB-𝑘-best TSP Picker team coordination Open –
1B-, 2B-, MB-TSPTW Picking perishable goods, team coordination Strongly -hard This paper
1B-, 2B-, MB-CSP Stock taking with autonomous robots Open –
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Appendix A. Description of TSP variant identification

Table 2 reports the discussed TSP variants and the result of the
selection process. The variants are labeled as follows:

(0) treated in this work
(1) violates scope definition (e.g., multi-objective, multiple workers,

or stochastic)
(2) no valid warehousing use case found during brainstorming session
(3) identified use case failed to convince the independent experts.

Appendix B. Description of (known and new) complexity results

Because we see no additional value in providing detailed complexity
proofs and algorithm descriptions that are already presented in detail
in the original papers, our appendix explains existing results verbally.
For precise descriptions, we refer to the original sources. New results
of this paper are presented in more detail.

TSP: The 1B-TSP with 𝑣 picking aisles and 𝑛 storage positions to
e visited can be solved in linear time (i.e., in (𝑣 + 𝑛), see Heßler &
rnich, 2022) using the dynamic program (DP) of Ratliff and Rosenthal
1983). In a nutshell, this DP proceeds as follows. It constructs and
xtends partial tour subgraphs (PTSs) by adding arcs and nodes repre-
enting horizontal movements in the cross aisles and vertical traversals
f picking aisles starting with the left-most picking aisle. Each PTS
an be described by one out of seven possible states, describing the
egree of the vertices at the top and bottom of the right-most picking
isle and the number of components of the PTS. Based on its state,
ossible transitions are derived. Applying a transition to the current
TS generates a successor PTS. Two subsequent picking aisles 𝑖 and
+1 can be connected by the following options of horizontal movement:
sing the top cross aisle between 𝑖 and 𝑖 + 1 twice, using the bottom
ross aisle twice, using both cross aisles once, using both cross aisles
wice, or using none of them. Six options for traversing a picking aisle
are possible: traversing a picking aisle completely once or twice, not
ntering a picking aisle at all, entering and leaving a picking aisle from
he top and turning at the bottom-most picking position, entering and
eaving a picking aisle from the bottom and turning at the top-most
icking position, or entering and leaving a picking aisle from both cross
isles creating a gap between the two consecutive picking positions
ith the largest distance. The optimal picking tour is represented by
PTS that includes the right-most picking aisle of the warehouse, with
ne out of four possible states of a feasible tour with the shortest tour
ength, i.e., the smallest tour costs.

Roodbergen and de Koster (2001b) extend the DP of Ratliff and
osenthal (1983) to the 2B-TSP, in which there is an additional middle
ross aisle (see Fig. 1(b)). Parts of picking aisles that are separated
10

y the middle cross aisles are referred to as subaisles. The extended n
ase is still solvable in polynomial time with 25 possible states of PTSs.
ransitions between states are first applied to include a bottom subaisle,
hen the top subaisle, before adding possible transitions to the next
isle. The six options for vertical traversal as introduced in Ratliff and
osenthal (1983) are now applied to subaisles. For horizontal move-
ent, 14 possible configurations are considered due to the additional
iddle cross aisle.

Based on the results of Cambazard and Catusse (2018), Pansart et al.
2018) introduce a DP for the even more general case of MB-TSP with
n arbitrary number of blocks. The runtime complexity is in (ℎ𝑣7ℎ),
hich is still polynomial if the number of cross aisles ℎ is bounded
y a constant. In real-world warehouses, the number of cross aisles
arely exceeds five cross aisles because their positive effect of providing
dditional shortcuts to the neighboring aisles comes at the price of
asted space that is not available for product storage. Similarly to the
bove-introduced DPs, the algorithm of Cambazard and Catusse (2018)
uilds PTSs by applying vertical and horizontal transitions to states,
rocessing the cross aisles from bottom to top and the picking aisles
rom left to right.
CTSP: Löffler et al. (2021) prove that the 1B-CTSP-OCS is strongly
-hard. This result also transfers to the more general cases of 2B-

TSP-OCS and MB-CTSP-OCS. Their transformation is from the Hamil-
onian path problem (i.e., find a path through a graph that visits all
odes exactly once), in which nodes and edges represent pick lists and
isles that must be accessed by both adjacent pick lists, respectively. If
switch from one pick list to the next proceeds in an aisle which both

elated pick lists must access (i.e., utilizing an edge in the Hamiltonian
ath problem), then an aisle visit is saved. Hence, finding a Hamilto-
ian path in a graph is equivalent to a picking tour saving the maximum
umber of aisle visits.

Löffler et al. (2021) also show that the MB-CTSP-GCS is solvable in
olynomial time. This result is also applicable to the more specific cases
f the 1B-CTSP-OCS and the 2B-CTSP-OCS. They do so by introducing
nested DP. The outer DP considers all storage positions of the pick

ists (in their given order) as potential locations where the switch from
ne pick list to the next is executed. Each transition of this outer
P thus faces a fixed starting point (i.e., the state of the previous

tage that represents the end point of the previous pick list) and end
oint (i.e., the state of the current stage that represents a potential
nd point of the current pick list) of a picking path. To determine
he cost of such a transition, the inner DP can be used, which is a
traightforward extension of the DPs for the 1B-TSP, 2B-TSP, or MB-TSP
laborated in Section 3. The details of these extensions are explicitly
laborated by Löffler et al. (2021) and Masae et al. (2020b) for the
ath versions of the 1B-TSP and the 2B-TSP, respectively. However,
hese extensions also directly transfer to the path version of the MB-
SP. Because both DPs, i.e., the inner and the outer, run in polynomial
ime, the MB-CTSP-GCS, too, can be solved in polynomial time.
GTSP: Weidinger (2018) proves that the 1B-GTSP is strongly -

ard. Obviously, this result also transfers to the more general cases of
he 2B-GTSP and the MB-GTSP. The transformation is from the hitting
et problem (i.e., given a collection of sets with elements from 𝑇 , find
subset of 𝑇 of cardinality ℎ such that at least one element of each set

s contained). Each set of hitting set is represented by a specific SKU,
hich is stored in the middle of the picking aisle that is introduced

or each element if the set contains this element. In a scattered storage
etting, the storage information of each SKU are represented by a set
f the hitting set problem. The storage information just contains the
icking aisle that contains the concrete storage positions. In this setup,
inding a minimum tour for the 1B-GTSP with just ℎ aisle visits is
quivalent to finding a YES-instance of the hitting set problem (and
ice versa).
TSPB: Žulj et al. (2018) provide a polynomial time algorithm for

he 1B-TSPB, which simplifies the nested DP procedure of Löffler et al.
2021) for the MB-CTSP-GCS and proceeds as follows. Each linehaul

ode defines a potential storage position, where all linehauls have
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Table 2
Results of the TSP database search and subsequent selection process.

Variant Objective Multiple Visit Multiple Precedence Resource Label
tours all nodes visits constraints constraints

Angle TSP Min turning angles No Yes No No No (1)
Arc replenishment TSP Min tour cost No Yes No No Capacity of salesperson (2)
Black and White TSP Min tour cost No Yes No Yes No (2)
Bottleneck TSP Min max inter-tour cost No Yes No No No (2)
Capacitated prize-collecting TSP Min tour cost No Yes No No Bounds on collected node weights (2)
Chebyshev TSP Min tour cost No Yes No No No (1)
Close-enough TSP Min tour cost No Yes No No No (3)
Clustered TSP Min tour cost No Yes No Yes No (0)
Clustered TSP with given cluster sequence Min tour cost No Yes No Yes No (0)
Clustered TSP with d-relaxed priority rule Min tour cost No Yes No Yes No (2)
Colored balanced TSP Min diff. betw. min and max edge cost Yes Yes No No No (1)
Colored TSP Min tour cost Yes Yes No No No (1)
Constant TSP Min tour cost No Yes No No No (1)
Covering salesman problem Min tour cost No No No No No (0)
Covering Tour Problem Min tour cost No No No No No (3)
Deadline TSP Max number of visited nodes No No No No No (0)
Equality generalized TSP Min tour cost No No No No No (1)
Family TSP Min tour cost No No No No No (0)
Film-copy deliverer problem Min tour cost No Yes 𝑘 No No (2)
Generalized covering salesman problem Min tour cost No No Yes No No (2)
Generalized TSP Min tour cost No No No No No (0)
k-best TSP Min tour cost Yes Yes No No No (0)
k-collect TSP Min tour cost No Yes No Yes Capacity of salesperson (2)
k-delivery TSP Min tour cost No Yes No Yes Capacity of salesperson (3)
k-peripatetic SP Min tour cost Yes Yes No No No (1)
k-sum TSP Min sum of k largest inter-tour cost No Yes No No No (2)
Maximum TSP Max tour cost No Yes No No No (2)
Maximum-scatter TSP Max min inter-tour cost No Yes No No No (2)
Minmax multiple TSP Min max tour cost Yes Yes No No No (1)
Moving-target TSP Min tour cost No Yes No No No (2)
Multiple TSP Min tour cost Yes Yes No No No (1)
Orienteering Problem Max node weights No No No No Upper bound on tour cost (0)
Open-loop TSP Min tour cost No Yes No No No (2)
Period TSP Min tour cost Yes Yes 𝑘 No No (1)
Prize-collecting TSP Min tour cost No Yes No No Lower bound on collected node weights (0)
Probabilistic TSP Min tour cost No No No No No (1)
Remote TSP Max min tour cost No Yes No No No (2)
Resource-constrained TSP Min tour cost No Yes No No Upper bound on resource consumption (2)
Steiner TSP Min tour cost No No No No No (0)
Stochastic TSP Min tour cost No Yes No No No (1)
Time-dependent TSP Min tour cost No Yes No No No (3)
Traveling purchaser problem Min (tour cost + purchasing cost) No No No No No (2)
Traveling repairman problem Min latency No Yes No No No (0)
Traveling salesman location problem Min tour cost Yes Yes No No No (1)
TSP with backhauls Min tour cost No Yes No Yes No (0)
TSP with delivery and backhauls Min tour cost No Yes No Yes Capacity of salesperson (2)
TSP with multiple time windows Min tour cost No Yes No No No (2)
TSP with multiple visits Min tour cost No Yes ≥ 1 No No (2)
TSP with pickup and delivery Min tour cost No Yes No Yes Capacity of salesperson (2)
TSP with precedence constraints Min tour cost No Yes No Yes No (0)
TSP with release dates Min tour cost No Yes No No No (2)
TSP with time slots Min tour cost No Yes No No No (2)
TSP with time windows Min tour cost No Yes No No No (0)
TSP with time windows and rejections Min (tour cost + penalty cost) No No No No No (2)
Tunneling TSP Max tour cost No Yes No No No (1)
been processed and the switch to processing the backhaul nodes can
be executed. For each of these possible switch nodes, the shortest
Hamiltonian path that starts at the depot, visits all linehaul nodes
and ends at the respective switch node can be determined with the
polynomial time algorithm of Löffler et al. (2021) for the path version
of the 1B-TSP. Then, the tour can be completed by applying the same
algorithm to determine a shortest Hamiltonian path that starts at the
respective switch node, visits all backhaul nodes, and ends at the depot.
The minimum among all possible switch nodes returns the best 1B-TSPB
tour. Analogously to the CTSP, to solve the 2B-TSPB, the algorithm
of Löffler et al. (2021) for the path version of the 1B-TSP must be
substituted by that of Masae et al. (2020b) for the path versions of the
2B-TSP. Recall that the idea of the algorithm of Löffler et al. (2021)
directly transfers to the path version of the MB-TSPC, too. Hence, the
MB-TSPB is also solvable in polynomial time.

PCTSP: The study provided by Bock and Boysen (2023) considers a
special variant of the W-PCTSP that does not allow penalty costs 𝑝𝑖 for
unvisited nodes 𝑖. We dub this variant prize-collecting-no-penalty TSP
(PCNPTSP). Hence, the PCTSP introduced in Section 8 is equivalent
to the PCNPTSP by setting 𝑝𝑖 = 0,∀𝑖 ∈ 𝑉 . By a reduction of the
well-known knapsack problem, Bock and Boysen (2023) prove that
the 1B-PCNPTSP is at least binary -hard. Clearly, this result also
applies to the more general variants 2B-PCNTSP/2B-PCTSP and MB-
PCNPTSP/MB-PCTSP. The reduction maps each element 𝑖 ∈ {1,… , 𝑛}
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of the knapsack problem with weight 𝑤̃𝑖 and price 𝑝̃𝑖 to a node 𝑖 in
the warehouse with profit 𝑤𝑖 = 𝑝̃𝑖 that is located on aisle 𝑖. Hence,
each picking aisle is represented by exactly one node. The chosen
position on this vertical aisle guarantees that node 𝑖 can be visited
in the assumed single-block layout from the bottom cross aisle by a
cyclical tour requiring 2𝑛 ⋅ 𝑤̃𝑖 time units. As the depot is located on
the bottom cross aisle (at the crossing point with vertical aisle 1), the
substantial length of the (vertical) aisles prevents that optimal tour
schedules travel along the top cross aisle. Furthermore, due to short
cross aisles (neighboring picking aisles are separated by one distance
unit), a round trip along the entire bottom cross aisle takes 2(𝑛−1) time
units. Hence, finding a feasible knapsack allocation with a total prize
not less than 𝑃 and with a total weight lower or equal to 𝐶 is equivalent
to the generation of a tour schedule in the mapped warehouse that
requires less than 2𝑛 ⋅ (𝐶 + 1) time units for collecting a total profit of
at least 𝑊 = 𝑃 . After starting from the depot, this schedule performs a
cyclical tour along the bottom cross aisle to collect the corresponding
prize of node 𝑖 if and only if element 𝑖 is allocated to the knapsack.

The complexity status of the variants 1B-PCTSP, 2B-PCTSP, and
MB-PCTSP is resolved by the following derivation of an exact solu-
tion approach that attains an asymptotic pseudo-polynomial runtime.
Specifically, we propose an exact best-first branch-and-bound approach
for the MB-PCTSP that guarantees an asymptotic pseudo-polynomial
runtime if the number of cross aisles is bounded by ℎ ∈ (log(𝑛)) as is
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Fig. 2. The indexing of the block-regions for a two-block layout with eight picking aisles.
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usually the case in real-world warehouses. For this purpose, we extend
the approach by Bock and Boysen (2023) for solving the MB-PCNPTSP
to optimality. As the MB-PCTSP additionally includes predetermined
penalties for the nodes not visited in a tour, the enumeration of partial
tours has to include these penalty costs. Because there is an optimal
tour that collects all visited nodes, we can take up the basic idea of
the approaches of Ratliff and Rosenthal (1983) and Cambazard and
Catusse (2018) to derive an enumeration scheme. Specifically, the
enumeration scheme of our branch-and-bound extends partial solutions
in an iterative manner by fixing the traversal mode of a block-region
(part of a picking aisle between two cross aisles and vice versa), while
block-regions are added in a predetermined sequence from bottom to
top and from left to right. This sequence is transformed into an indexing
of the block-regions that is illustrated by Fig. 2.

As a consequence, each resulting partial solution determines a
connected set of block-regions with fixed traversal modes. Because
there exists an optimal tour that collects all visited nodes, each chosen
traversal mode unambiguously defines the additional travel times and
penalties to be paid by determining the nodes visited. Specifically, a
traversal mode either visits inner nodes of a block-region from both
ends, from one chosen end, or does not visit any inner node. By doing
so for some block-regions in the predetermined sequence illustrated
by Fig. 2, analogously to Cambazard and Catusse (2018) or Bock and
Boysen (2023), the partial tour defines a set of ℎ edge nodes (i.e., cross-
ing points of vertical aisles and cross aisles) that separate the fixed
part from the non-explored block-regions. Due to the predetermined
sequence of block-regions, there is exactly one edge node per cross
aisle, which is why their node degrees and connectivity in the partial
tour unambiguously define its extensibility status. Because there is an
optimal tour schedule that collects all visited nodes, the number of
traversal modes to be considered for a block-region with 𝑛̃ open storage
positions, can be upper bounded by 1

2 𝑛̃
2 + 3

2 𝑛̃ + 3. By additionally
dropping dominated modes, the resulting branching degree can be
further reduced. As two solutions with identical extensibility status are
directly comparable by the number of stored products and the total
costs of needed tour length plus paid penalties, the asymptotic number
of partial solutions to be explored during the enumeration process is
upper bounded by (𝑛ℎ7ℎ𝑇𝑊 ), with ℎ defining the number of cross
aisles, 𝑇 giving an upper bound of the total tour costs (i.e., total tour
length plus penalties of non-visited nodes), and 𝑊 being the minimum
profit to be collected by the tour. Together with a pseudo-polynomial
branching time and a polynomial branching degree, the branch-and-
bound attains a pseudo-polynomial asymptotic runtime if ℎ ∈ (log 𝑛)
applies.

OP: The OP is closely related to the prize-collecting-no-penalty TSP
(PCNPTSP) considered by Bock and Boysen (2023). Specifically, the
PCNPTSP seeks to generate a tour with minimal length that collects
at least a profit of 𝑊 , whereas the OP pursues to find a tour with a
total length not exceeding 𝐶 that maximizes the total weight of visited
odes. Therefore, we conclude that the decision or feasibility variant
f both problems is identical. By considering given threshold values 𝐶

and 𝑊 , this problem asks whether a tour in the warehouse exists that
12
does not exceed the maximum length 𝐶 while collecting a minimum
profit of 𝑊 . Consequently, the complexity results derived by Bock and
Boysen (2023) for the PCNPTSP also apply to the OP. By exchanging
the roles of tour length and profit (or total weight/capacity) of collected
items with each other during the enumeration process, the branch-and-
bound approach proposed by Bock and Boysen (2023) for optimally
solving the PCNPTSP can be adapted to be also applicable to the OP.
The modified branch-and-bound approach maintains a heap of partial
solutions that guarantees that the solution with the maximum collected
profit is accessible first. In each enumeration step, this solution is taken
from the heap to be subsequently extended (branched) to new partial
solutions. These solutions have to keep the prescribed tour length
threshold 𝐶. Consequently, partial solutions that exceed this threshold
re deleted after being generated by a branching step. Because this
odified enumeration does not change the maximum number of enu-
erated non-dominated partial solutions derived by Bock and Boysen

2023), we also obtain an asymptotic runtime of (𝑛ℎ7ℎ𝑇𝑊 ), with
and 𝑊 being upper bounds on the total tour duration and the

otal profit that can be collected, respectively. Thus, likewise to the
CNPTSP/PCTSP, the OP is binary -hard and can be solved to
ptimality in asymptotic pseudo-polynomial time if the number of cross
isles is bounded from above by ℎ ∈ (log 𝑛).
TSPTW: The study of Tsitsiklis (1992) analyzes the complexity

tatus of the Line-TSP (and the Line-TRP) under different time window
estrictions. The Line-TSP assumes that all nodes to be served and the
epot are located along a single line. Therefore, the position of a node
is unambiguously defined by its distance 𝑥𝑖 from the origin of the

ine, whereas travel times between two nodes 𝑖 and 𝑗 are proportional
o the respective differences |𝑥𝑖 − 𝑥𝑗 |. Despite its simple transportation
etwork, depending on the assumed time window configurations and
elivery times, there are several strongly or binary -hard vari-
nts (see the overviews provided by Bock, 2015; Tsitsiklis, 1992).
pecifically, by a reduction from 3-SAT, Tsitsiklis (1992) shows that
he Line-TSP with time windows (Line-TSPTW) is strongly -hard.
s defined in Section 12, the time windows [𝑒𝑖, 𝑙𝑖] require that the start
f service at node 𝑖 is only possible at time 𝑡𝑖 such that 𝑒𝑖 ≤ 𝑡𝑖 ≤ 𝑙𝑖 holds.
ecause the line structure can be mapped to a single picking aisle, the
ransportation network of the Line-TSP is obviously a sub-network of

block-structured warehouse. Hence, complexity results derived for
he Line-TSPTW may be transferable to the 1B-TSPTW. However, the
ine-TSPTW as defined by Tsitsiklis (1992) seeks an open tour; i.e., the
inal node of the tour is not predetermined and a return to the depot
the starting point of the tour) is not included. We prove the strong
-hardness of the 1B-TSPTW by the following reduction from the

ine-TSPTW: We consider an instance of the Line-TSPTW defined by
tuple (𝑥𝑖, 𝑒𝑖, 𝑙𝑖) for each node 𝑖 ∈ {1,… , 𝑛}, a position 𝑥0 of the

epot indexed 0 and a time threshold 𝑇 . The given instance of the
ine-TSPTW is feasible, if and only if there exists an open tour with
total duration not exceeding 𝑇 that feasibly serves all nodes. We
ap the given Line-TSPTW with identical node positions to a single
icking aisle. Moreover, we copy the values 𝑒𝑖 and 𝑙𝑖 for each node
(1 ≤ 𝑖 ≤ 𝑛), while reducing the deadline 𝑙 to 𝑇 whenever 𝑙 > 𝑇
𝑖 𝑖
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applies. If the latter leads to an empty time window; i.e., 𝑒𝑖 > 𝑇 , we
know that the instance is not feasible. We claim that there exists a
cyclic tour in the warehouse for this transformed instance with total
cost not exceeding 𝑇 + max{𝑐𝑗,0 ∣ 1 ≤ 𝑗 ≤ 𝑛}, if and only if the
Line-TSPTW instance is feasible. Clearly, if the given Line-TSPTW is
feasible, there exists an open tour that serves all nodes within their
time windows while terminating at some node 𝑖 not later than 𝑇 . Thus,
by adding a return to the depot, i.e., to node 0, we obtain a cyclic
tour with total cost 𝑇 + 𝑐𝑖,0 ≤ 𝑇 + max{𝑐𝑗,0 ∣ 1 ≤ 𝑗 ≤ 𝑛} that serves
all nodes in their time windows and not later than 𝑇 . Conversely, we
assume that there is a feasible cyclic tour with total cost not greater
than 𝑇 +max{𝑐𝑗,0 ∣ 1 ≤ 𝑗 ≤ 𝑛}. Because the found tour is feasible due to
the modified deadlines, each node 𝑖, 1 ≤ 𝑖 ≤ 𝑛, is served at time 𝑡𝑖 ≤ 𝑇
uch that 𝑒𝑖 ≤ 𝑡𝑖 ≤ 𝑙𝑖 holds. We consider the node 𝑖 with the latest
ervice time, i.e., 𝑖 = arg max{𝑡𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑛}, and erase the travel from
back to the depot. The resulting open tour leads from 0 to 𝑖 and does
ot require more than 𝑇 time units while all nodes are serviced within
heir time window. Therefore, the original instance of the Line-TSPTW
s feasible.
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