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Abstract
Themain challenge of quantum computing on its way to scalability is the erroneous behaviour of
current devices. Understanding and predicting their impact on computations is essential to counteract
these errors withmethods such as quantum errormitigation. Thus, it is necessary to construct and
evaluate accurate noisemodels. However, the evaluation of noisemodels does not yet follow a
systematic approach,making it nearly impossible to estimate the accuracy of amodel for a given
application. Therefore, we developed and present a systematic approach to benchmarking noise
models for quantum computing applications. It compares the results of hardware experiments to
predictions of noisemodels for a representative set of quantum circuits.We also construct a noise
model containing five types of quantumnoise and optimize its parameters using a series of training
circuits.We compare its accuracy to other noisemodels by volumetric benchmarks involving typical
variational quantum circuits. Themodel can easily be expanded by adding newquantum channels.

1. Introduction

Quantumcomputing is expected to offer novel applications in numerous fields of science. Themost significant
challenge to achieving scalable quantum computing is the level of errors in current noisy intermediate-scale
quantum (NISQ) devices [1]. Counteracting these errors is essential to enable reliable computations.While
potential prospect solutions such as quantum error correction remain impracticable [2] due to small qubit
numbers, quantum errormitigationmethods can improve results significantly without causing an overhead of
necessary qubit resources. Variousmethods aim to tackle different types of errors for several applications.
Especially for algorithms like Variational QuantumEigensolver (VQE) [3], we already find a large number of
protocols trying tomitigate, e.g., readout error, gate error, or cross-talk [4–12]. Almost all errormitigation
methods have in common that they require additional quantum computing time [13], which is limited.
A prioritization of the dominant types of error is therefore necessary. Understanding and predicting the noisy
behaviour of a quantum computermakes accurate noisemodels are indispensable for efficient and reliable
quantum computing calculations.

However, there is no systematic approach for evaluating the quality of a noisemodel. Its accuracy is often
estimated using a small number of arbitrary test circuits and comparing themodels prediction to the results
obtainedwith quantumhardware. These test circuits are usually not similar enough to realistic application
circuits to allow for a generalization of the results. The size of the quantum circuits is usually too small,making it
difficult to assess the accuracy of a noisemodel in a realistic application context.

Therefore, we propose a volumetric benchmarking approach that systematically evaluates noisemodels, and
present a technique to optimize parameters of a noisemodel we construct in this work. The benchmarks are
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based on the framework presented in [14], whichmeasures the performance of quantum computers. They
compare the predictions of a noisemodel to results fromquantumhardware for a choice of representative
quantum circuits. This procedure is carried out for different pairs (w,d) ofwidthw and depth d of the circuits,
where thewidth corresponds to the number of qubits, and the depth can be related to the number of consecutive
gates or layers thereof. This allows evaluating the quality of a noisemodel as a function of the problem
complexity, hence the name volumetric benchmark. The applications of our benchmarks are versatile.With a
noisemodel assessed as being accurate, one can use simulations employing thismodel for test purposes or if
quantum resources are limited. The knowledge gained through themodel can also help prioritize quantum error
mitigationmethods.

The noisemodel constructed in section 4 depends on a set of trainable parameters for the specific kind of
noise included in themodel and aims to represent the noise impact onVQEor similar algorithms. The
parameters correspond to probabilities that certain errors occur and are optimized using the SPSA [15]
algorithm. The noisemodel is easily expandable by additional noise channels and the parameter optimization
can be used for all types of quantum circuits and included types of noise.We then conduct volumetric
benchmarks of the resulting noisemodel. The hardware experiments are run on IBMquantumhardware.

1.1. Contribution
This paper contains twomain contributions:

1. A benchmarking protocol for measuring the accuracy of quantum computing noise models, including a
discussion regarding quality attributes from the systems benchmarking literature.

2. The construction of a noisemodel, training of its parameters, and an evaluation with volumetric benchmarks
using typical VQE quantum circuits on IBMquantumhardware. Themodel is compared to the
ibmq_manila device noisemodel provided in qiskit [16].

1.2. Relatedwork
This section summarizes relevant research related to this paper. It discusses the literature on benchmarking for
quantumhardware, the construction of noisemodels, and their calibration.

A variety of tomography approaches exists for characterizing and benchmarking quantum computers [17].
QuantumState Tomography (QST) [18] is a procedure that characterizes an unknown state ρ. This state could
then be compared to the expected, ideal state of a quantum computation to obtain an estimate of the fidelity of
the hardware. QuantumProcess Tomography (QPT) [19–24]measures the processmatrix of quantumgates.
BothQST andQPT consider state preparation andmeasurements towork correctly. This is presently not always
the case,making the estimates of quantum states and gates erroneous. In contrast, our noisemodel includes state
preparation andmeasurement (SPAM) errors, and our training approach ensures they are represented
appropriately. Gate Set Tomography (GST) [25–27] also takes into account erroneous state preparation and
measurements.WhileQPT characterizes a single gate, GST can reconstruct a set of operations in a self-
consistent way.Many quantum experiments are needed to achieve this characterization, and scalability is
problematic for benchmarking large systems. QPT andGST attempt to describe the noisy processes of a
quantumdevice, but the processmatrices do not give conceptual insights into the errors.Whilefirst approaches
have been presented to interpret these processmatrices [28], this paper comprehensively constructs a noise
model derived from the underlying physical processes.

Randomized benchmarking (RB) [29–31]measures the average gate error rates of a quantum computer.
Many variations of RB exist, including cycle benchmarking [32]. Thesemethods evaluate the performance of
quantumhardware and do not attempt to describe the noise in detail.Moreover, they do not provide prospects
on the impact of the noise.

In addition to all these tomographymethods, there are other prominent benchmarking approaches for
quantumhardware. Quantumvolume [33] is a single-numbermetric that indicates themaximal size of
quantum circuits that can be executed successfully on a device. In [14], the authors propose a volumetric
benchmarking approach that generalizes the quantum volumemetric. Volumetric benchmarks usingmirror
circuits are conducted in [34] and applied to quantum errormitigation in [35]. Ourwork transfers volumetric
benchmarks to a different setting.While they originallymeasure the capabilities of quantumhardware for
different problem sizes, we evaluate the accuracy of noisemodels in a volumetricmanner and aim to provide
prospects on the potential impact of that noise.

In [36], the authors present awildcard error that accounts for inconsistencies between noisemodel
predictions and hardware data. The amount of wildcard error needed can be interpreted as an estimate of the
accuracy of the noisemodel.Machine learningmethods are also used to describe quantumnoise. In [37], the
authors propose a learning procedure to obtain the error rates of a quantum computer. In [38], a noisemodel
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construction and its evaluationwith test quantum circuits are presented.Our noisemodel adds crosstalk and a
more advanced representation of readout error. Furthermore, we introduce amore systematic approach for
benchmarking the noisemodels and present a different training approach for themodel parameters.

2. Background

This section introduces the different types of noise that can occur on a quantum computer, our notation, and
quality criteria for benchmarks.

2.1.Quantumnoise andnoisemodels
Quantumnoise refers to all interactions of a quantum systemwith its environment. In quantum computing,
these interactions lead to erroneous computations. Not only do qubits interact with their environment, but also
with each other. Therefore, quantum circuits are not executed as intended. For instance,measurements can be
faulty (readout error), or gates are applied imperfectly (gate error).

Noisemodels offermeans of describing and predicting the noisy effects in a quantumdevice. They contain
information about the error types and the point in a quantum circuit where they occur.More precisely, a noise
modelmaps quantum circuits to outcome probability distributions [36]. Onewould obtain these distributions
by running the circuitsmany times on a noisy quantum computer that behaves theway themodel describes.

Quantumoperations [39] on densitymatrices (or density operators) are the prevalentmathematical
formalism tomodel quantumnoise. This section does not give detailedmathematical definitions of quantum
operations but focuses on specific examples of noise channels.We refer to appendices A andB instead formore
mathematical details. A comprehensive discussion of the subject can also be found in [39].

In the following, let ρ be a densitymatrix describing the state of a set of qubits and denote the Paulimatrices
as

= = - =
-( )( ) ( )0 1

1 0
, 0 i

i 0
, 1 0

0 1
.X Y Z

2.1.1. Readout error
Themeasurement of qubits on current quantum computers is often erroneous, with error rates of up to 30%
[40], although this has improved on the newestmachines. This behaviour is calledmeasurement error or
readout error and can bemodelled as a classical bit-flip as follows [5]: For each qubit q, ameasurement outcome
‘0’ ismistakenly recorded as ‘1’with probability p0→1(q) and vice versawith p1→0(q) (as shown infigure 1). Note
that the probabilities can be asymmetric. In this work, we use the terms readout error andmeasurement error
interchangeably.

Several papers have been published on readout errors andmethods tomitigate them, particularly for
measuring expectation values of observables on a quantum computer. Obtaining these expectation values is an
essential step inVQE algorithms [3].

2.1.2. State preparation error
At the beginning of a quantum circuit, the qubits of a quantum computer are prepared in an initial state.
Typically, the state ρ0= |0L 0〉〈0L 0| is chosen, where |0L 0〉= |0〉⊗N andN denotes the number of qubits.

Figure 1.Graphical representation of readout error on a single qubit with different bit-flip probabilities p0→1 and p1→0.
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This procedure can be imperfect, resulting in an incorrect initial state and, thereby, unreliable computationwith
lowfidelity.

When the initial state is given as above, the state preparation error can bemodelled as applying anX gate on
qubit qwith probability psp(q) [41]. For a single qubit, this yields the following noise channel:

r r r- + ( ( )) ( ) · ( )p q p q1 . 10 sp 0 sp 0X X

2.1.3. Depolarizing error
Besides state preparation andmeasurement, gate operations are imperfect. On current devices, both one and
two-qubit gates are affected, where the error rates of two-qubit gates are usually higher [42].

Depolarizing error is an important typeof gate error.Aqubit is depolarized if its state is completelymixed andall
information is lost. In termsof densitymatrices, the stateρ is replacedby thenormalized identitymatrix I/Dwith
probabilityλ,whereD is the dimensionof the quantumsystem, i.e.,D= 2N for depolarizationofNqubits. The
depolarizing channel canbewritten as

r l r
l

= - +( ) ( ) · ( )
D

1 . 2I

Following [39], one can rewrite the equation above for a single qubit as

⎛
⎝
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If depolarization affects a gate g on a single qubit q (or a pair of qubits q1, q2), we denote the probability by
λg(q) (orλg(q1, q2)).

2.1.4. Thermal relaxation and dephasing
As aqubit interactswith its environment, it is subject to two central dynamics: thermal relaxation towards its ground
state anddephasing [38, 43]. Assuming that the qubit is realizedwith |0〉 as its energetic ground state, thermal
relaxation refers to thedecay towards |0〉over time.Themean lifetimeof that decay is commonly labelledT1.

Moreover, a qubit experiences a decay towards classical behaviour called dephasing. Similarly to thermal
relaxation, this decay is determined by the timeT2. The timesT1 andT2 are related byT2� 2 · T1.

For simplicity, wefirst assumeT2< T1. In that case, thermal relaxation can bemodelled as a reset operator
|0〉〈0| that acts on the densitymatrix ρwith probability preset [38]. During quantum computation, the
probability depends on the timeTg it takes to apply a gate operation g to the qubits. It is given
by = - -( )p T T1 exp .greset 1

Dephasing can bemodelled as the PauliZ operator actingwith probability pZ. This probability is computed
from the timesT1,T2, andTg by [38]

=
- - - +( )( ( ))

p
p T T T T1 1 exp

2
.

g greset 2 1
Z

Thus, the noise channel representing thermal relaxation and dephasing can bewritten as

r r r r= + + ñá ñá( ) · · ∣ ∣ ∣ ∣ ( )p p p 0 0 0 0 , 3resetZ ZI Z

where pI= 1− pZ− preset. IfT2> T1, one cannotwrite thermal relaxation and dephasing as above butmust
switch to a representation by aChoimatrix [44] instead. A detailed discussion can be found in [38].

In our situation, wewriteT1,2(q) for theT1,2 time corresponding to qubit q. For a two-qubit operation on
qubits q1 and q2, thermal relaxation and dephasing are considered to be two instances of single-qubit thermal
relaxation and dephasingwith the respective parametersT1,2(q1) andT1,2(q2).

2.1.5. Crosstalk error
The error types discussed above consider the interactions of a qubit with its environment to be local and
independent of other qubits. In reality,many processes violate locality or independence. These processes are
called crosstalk and lead to crosstalk errors. In this paper, we only consider a basicmodel of crosstalk error. An
extensive discussion can be found in [45].

We represent crosstalk error as follows. Each time an erroneous single-qubit gate Î { }g ,X X is applied to
qubit q, it causes a rotation

⎜ ⎟
⎛
⎝

⎞
⎠

f
f

= -( )
( )

( )i
q

exp
2

4x
g

R X

on its neighbour qubits, wherefg(q) is the rotation parameter.
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2.2. Benchmarking quality criteria
Comprehensive literature exists on benchmarking classical computing systems or components. In the following,
we review themost important aspects relevant to this paper. In [46], a benchmark is defined as a tool for
evaluating or comparing systems according to specific characteristics. These characteristics can be assigned to
one of these categories of quality criteria:

• Relevance: A benchmark is relevant if itmeasures the behaviour of a systemwell, and its results can be
generalized to real-world scenarios. In our situation, a benchmark should allow an estimation of the accuracy
of a given noisemodel for applications of interest.

• Reproducibility: The results of a reproducible benchmark are consistent overmultiple runswith the same
configuration.

• Fairness: A benchmark is fair if it does not impose artificial constraints on the systemunder test. Hence, a
benchmark for noisemodels should not favour onemodel over another a priori.

• Verifiability: The verifiability of a benchmark ensures it is performed correctly and instructions are respected.
Onemeasure of improving verifiability is self-validation.

• Usability: A benchmark is usable if it is easy to run by a user. The necessary hardware and software
configuration for the benchmark should be straightforward to obtain.

3. Volumetric benchmarks for noisemodels

In this section, we present our volumetric benchmarking approach for evaluating the accuracy of noisemodels.
First, we explain this process in detail and discuss the differences to the framework explained in [14]. Afterwards,
we describe how improvements in the quality of such benchmarks in terms of the quality attributes from
section 2.2 can be achieved.

3.1. The Framework
Avolumetric benchmark in our approach is always related to a noisemodel and a quantumdevice. For a
collection of test circuits, it compares themodel predictions to the results of the quantumdevice. A volumetric
benchmark consists of the following steps:

1. Test circuits: For pairs of widthw and depth d, define a setC(w, d) of quantum circuits. These circuits are used
to compare the results predicted by the noisemodel to hardware results from the device. The depth could
correspond to the number of gates or the number of layers thereof, while thewidthw is the number of qubits.

2. Compilation rules: Set up rules for compiling the quantum circuits from step 1 to the native gates of the
device, enabling it to run the circuits later. There are differentmethods to compile quantum circuits.
Sometimes, it ismore feasible to optimize the circuits during compilation. In other cases, onemight bemore
interested in rules restricting this optimization.

3. Model predictions: Specify a way to obtain the noise models predictions for the compiled quantum circuits.
Among other things, such predictions could bemade fromnoisy simulations of the circuits or exact
computations using densitymatrices.Wewant to emphasize that the noisemodelmust predict the results for
the compiled circuits to allow for ameaningful comparison to hardware results. Further details are discussed
later.

4. Hardware results: Run the compiled quantum circuits on the quantum computer. The exact specifications of
this run, e.g., order of execution or number of shots, need to be described in detail for better reproducibility.

5. Single circuit evaluation: Define a metric that measures the difference between model prediction and
hardware results for a single quantum circuit. For example, thismetric could directly compare the outcome
distributions of the circuit, or it could be based on higher-level attributes like expectation values of quantum
mechanical observables.

6. Overall evaluation: If the set C(w, d) contains more than a single quantum circuit, specify how to derive an
overall evaluation. For example, when a single circuit is assessed using the difference in observable
expectations, this overall evaluation could be chosen as the average difference.
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While the approach presented in [14] compares hardware results to the ideal outcomes of quantum circuits,
our approach uses hardware results and noisemodel predictions. Therefore, the third step is a novel extension of
the original volumetric benchmarks.Moreover, our goal here is entirely different aswe do not evaluate the
behaviour of quantumdevices but the accuracy of noisemodels.

Various attributes exist that can be used to classify quantum circuits. Two prominent attributes are their
expressive power and the degree of entanglement. They are particularly important for VQE because the ground
state cannot be found if the ansatz circuits are not sufficiently expressive. Both properties can be derived directly
from the volume (w,d) in case of theEfficientSU2 circuits that are used later in this work, see [47].

3.2. Ensuring quality
In section 2.2, we discuss benchmarking quality criteria such as relevance or reproducibility. The quality of our
volumetric benchmarking framework for noisemodels in terms of these criteria depends on user choices during
the different steps of a benchmark. This section discusses possibilities to increase the quality by examining the
criteria individually.Wefirst highlight potential obstacles for each attribute and explain how to avoid or
minimize these.

3.2.1. Relevance
Often, relevance is the essential quality attribute of a benchmark. Even if it perfectlymeets all other attributes
perfectly, it can be useless because its results are not transferrable to any real-life application of interest. For
example, a noisemodelmight performwell in a benchmark but be inaccurate at predicting the noisy hardware
behaviourwhen used for an application such asVQE.

The relevance of our volumetric benchmarks strongly depends on the quantum circuits and evaluation
criteria used. Typical quantum circuits should be chosen if one is interested in noisemodels for a particular field
of application.Moreover, themore quantum circuits are used and themore they differ from each other, the
more transferrable the benchmark results are. For parametrizable quantum circuits, thismeans that several sets
of parameters should be used to avoid a dependency on a particular choice. The scalability can be increased by
testingmany configurations (w,d) ofwidth and depth.

3.2.2. Reproducibility
Quantumcomputations and, thus, also volumetric benchmarks are naturally subject tofluctuations due tofinite
shot numbers. The consequence is that reproducibility can suffer because running the same test circuits can yield
different results. Since quantumhardware also often exhibits a time drift, its performance depends onwhen it is
used.Hardware calibrations can have a significant impact on the noise of a device.

All benchmark experiments should be run in as small a timewindow as possible tomitigate these effects.
Randomizing the circuit order could also reduce the impact of drift.Moreover, the circuits should be run as
often as possible to decrease the variance of their outcome. If themodel predictions are obtained by simulations,
they should also be performedwith large shot numbers. Alternatively, one could use exact predictions based on
densitymatrix computations tominimize fluctuations further.

3.2.3. Fairness
Since our approach aims to benchmark noisemodels, artificial constraints on their performance are unlikely. If
two noisemodels are supposed to predict the hardware behaviour for entirely different application contexts,
they should not be compared in the first place. Fairness ismainly threatenedwhenmodels are benchmarked at
different times, and the hardware shows different levels of noise such that converging predictions can bemore
challenging. Again, this can bemitigated by performing benchmarks in a short timewindow andmore often.

3.2.4. Verifiability
The verifiability of a benchmarkmeasures towhat extent it runs as expected (see [46]). Optimally, a verifiable
benchmark includes some self-validation. For quantum circuits run on noisy hardware, such self-validation is
challenging to achieve.

One could run simple circuits of which the ideal results are known and ensure that the hardware results are
within a reasonable deviation range.Mirror circuits provide amore complex alternative because they have a
richer structurewhile retaining easily predictable results [34]. Themodel predictions could be validated by
comparing exact computations to noisy simulations.

3.2.5. Usability
Themain threat to usability is restricted access to quantumhardware, so not everyone can easily perform a
volumetric benchmark. Publicly providing quantum experiments data can help researchers run benchmarks
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with that data to test their noisemodels.More generally, the benchmarking software should be easy to use. This
is not specific to benchmarks for quantum computing noisemodels but holds for all benchmarks. The circuit
transpilation also impacts the usability of a benchmark because the usermust be in full control over this process
to ensure the reproducibility and other attributes.

4.Methods

This section describes the construction, training, and evaluation of a noisemodel for quantum computing. The
noisemodel incorporates erroneous state preparation andmeasurement, depolarization, thermal relaxation,
and crosstalk error. It is inspired by themodel provided in [38] and depends on a set of parameters determined
by training themodel in amachine learning-like fashion. A detailed introduction of the noisemodel and the
parameter optimization is given later.

This section is structured as follows. Firstly, we construct the noisemodel without specifying its parameters.
It is defined on the native gate set of the IBMQuantumFalcon processors. Secondly, we explain the training
procedure, including the definition of training and test sets, as well as the choice of an optimization algorithm.
Finally, we benchmark the resulting and other noisemodels, particularly the device noisemodel provided in
qiskit.

4.1. Constructing the noisemodel
The noisemodel that we use later for training and benchmarking describes quantum computers similar to IBM’s
ibmq_manila device using a Falcon processor. It can be easily generalized to any other gate-based quantum
device with fewminor adaptions. Theibmq_manilamachine hasN= 5 qubits in a linear layout (see figure 2).
It implements three single-qubit gates (X, X ,Rz) and one two-qubit gate (CNOT) as native gates.We denote
the native gate set by = { }, , , .zX X R CNOT

Our noisemodel can describe any device withN qubits in a linear layout. For other layouts, adaptionsmust
bemade to the possiblemulti-qubit interactions. Themodel combines all types of noise defined in section 2.1. At
the beginning of each computation, the initial state is prepared as ρ0= |0L 0〉〈0L 0|. It is followed by state
preparation error  with corresponding probabilities psp(q), yieldingNmodel parameters.

Afterwards, gates are applied to the resulting (possibly erroneous) state. Each gate g is followed by

• crosstalk error  (for Î { }g ,X X )with parameterfg(q), applied to the neighbour qubits,

• depolarizing error  with parametersλg(q) for single-qubit gates andλg(q1, q2) for theCNOT gate, applied to
the gate qubit(s),

• and thermal relaxation and dephasing  with parametersT1,2(q), applied to the gate qubit(s).

After all gates and their errors have been applied,measurement error affects all qubits with parameters
p0,1→1,0(q). Finally, the qubits aremeasured in the computational basis. A basic example of our noisemodel on a
quantum circuit containing only oneX gate and oneCNOT gate can be found infigure 3.

The total number of parameters of our noisemodel for a systemofN is 11N− 1, as shown in table 1.Note
thatwe assume theCNOT gates to only be applied in one direction per qubit pair. Since there are three types on
one-qubit gates and one two-qubit gate, there are 4N− 1model parameters corresponding to depolarization
error.

4.2. Simulating the noisemodel
All noisy simulations using the abovemodel are carried out by exactly computing the densitymatrix of the
system and its change due to errors. As section 2.1 explains, all errors included in themodel can be represented
by quantumoperations, which are linearmaps of the densitymatrix. These linearmaps depend on the respective
parameters of the errors, e.g., bit-flip probabilities in the case of readout error. Pennylane [48] offers the
possibility to implement the errors and simulate quantum circuits with our noisemodel.

Figure 2.Qubit layout for IBM’sibmq_manila device.
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After initializing the densitymatrix, all gates and errors are applied, and the final densitymatrix is computed.
From thisfinal densitymatrix, we obtain one of the following two quantities: in training, we compute the
outcome distribution of basis states, while for the benchmarks, we use the expectation value of theZ⊗w operator.

If we take the situation from figure 3 as an example, the initial densitymatrix is ρ0= |00〉〈00|. Afterwards, (1)
is used to apply state preparation error with probability psp(0) to thefirst andwith probability psp(1) to the
second qubit. Next, theX gate acts on thefirst qubit, followed by crosstalk, depolarizing, and thermal relaxation
error. These errors are computed using the corresponding equations from section 2.1with parametersfX(0),
λX(0), andT1,2(0), respectively. The rest of the computation is done similarly.

4.3. Training the noisemodel
This section explains how the parameters of our noisemodel from section 4.1 can be optimized. The approach is
inspired bymachine learning in the sense thatmodel predictions are repeatedly evaluated on a training data set,
and parameters are adapted accordingly.

For the training, quantum circuits arefirst compiled to the native gate set  . The compiled circuits are then
both run on a quantum computer and simulatedwith the noisemodel. Afterwards, a loss function is defined that
measures the deviation ofmodel predictions fromhardware outcomes of the quantum circuits. Details on the
implementation can be found in appendix C.

Training set
The training set contains 100 quantum circuits for which the noisemodel predicts noisy outcomes. Sincewe are
mainly interested inVQEquantum computing applications, these training circuits consist of alternating layers
of single-qubit rotations and entanglement. They follow theEfficientSU2 structure that is part of the qiskit
library. The number of layers is denoted as d. Increasing the number of quantum circuits contained in the
training set did not further improve the parameter optmization.

Each rotational layer applies anRy gate followed by anRz gate to each qubit. Their rotation angles are
randomized. The entanglement layers consist ofCNOT gates that linearly connect all qubits. For example, the
resulting quantum circuit for d= 3 layers andw= 2 qubits is shown infigure 4.

Figure 3.Example of a quantum circuit subject to our noisemodel.  ,  , ,  , and denote state preparation, crosstalk, thermal
relaxation, depolarization, andmeasurement error, respectively. Note that the crosstalk error is depicted on both qubits to emphasize
their interaction. The dashed boxes indicate what circuit operations are affected bywhich errors.

Table 1.Number of parameters corresponding to each type of error in the
noisemodel, assuming a systemofN qubits. The parameters are later
optimized duringmodel training. Seefigure 1 and (1)-(4) formore details.

symbol error parameters

number of

parameters

 state preparation psp(q) N

 depolarization λg(q) 4N − 1

 crosstalk fg(q) 2N

 thermal relaxation T1,2(q) 2N

 measurement p0→1(q),
p1→0(q)

2N

total 11N − 1
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4.3.1. Loss function
The loss function compares themodel predictions to the outcomes of the quantum circuits run on the device.
The latter ones aremeasurement counts of computational basis states. Exact densitymatrix simulations allow to
compute the probability distribution of thesemeasurements based on the noisemodel. If one interprets the
hardware counts as relative frequencies, the task is to compare two probability distributions.

Variousmetricsmeasure the distance between two distributions, e.g., Kullback-Leibler (KL)divergence [49].
Here, we use theHellinger distance [50] between the probability distributions from the simulation and hardware
run to define the loss on a single quantum circuit. If = Î( )P pi i and = Î( )Q qi i are two discrete probability
distributions, then theirHellinger distanceH(P,Q) is defined as

å= -
Î

( ) ( ) ( )H P Q p q,
1

2
. 5

i
i i

2

For a set ofmultiple circuits, as in training, we define the loss function as the arithmeticmean ofHellinger
distances. Training the noisemodel withKullbackLeibler divergence leads to similar results.

4.3.2. Optimization algorithm
For optimizing the parameters of our noisemodel, we use the simultaneous perturbation stochastic
approximation (SPSA) algorithm [15]. Since each evaluation of the loss function involves simulating 100
quantum circuits, the optimizermust should only a few evaluations to be cost-effective. The SPSA algorithm
approximates gradients with only two evaluations of the loss function per iteration. Therefore, it is well suited
for this task.

4.4.Other noisemodels
Besides the trained noisemodel from above, we benchmark two others. Thefirst one only includes readout
error, where the bit-flip probabilites are obtained from the device calibration by IBM. It serves as a basic example
to explain our approach here and can be simulated exactly using densitymatrices.

The second other noisemodel is theibmq_manila device noisemodel provided in qiskit. Since its
calibration changes with time, we always use the corresponding snapshots of themodel when comparing it to
hardware data.Moreover, simulationswith the device noisemodel are always done shot-wise,meaning that we
cannot compute predictions exactly.Wemitigate possible variance effects by using large shot numbers.

Table 2 summarizes all noisemodels described above. It also contains information about themodel
presented in [38], which is similar to ourmodel. Themain difference is that it only considers symmetric readout
error and does not contain crosstalk.

Figure 4.EfficientSU2 circuit with three layers on two qubits. Each rotational layer consists of anRy gate followed by anRz gate
on each qubit. Entanglement layers implementCNOT gates acting linearly on all qubit pairs.

Table 2.Comparison of noise channels included in differentmodels.
The brackets indicate readout error with only symmetric
probabilities.

readout qiskit [38] trained

state preparation X X ✓ ✓

depolarisation X ✓ ✓ ✓

crosstalk X X X ✓

thermal relaxation X ✓ ✓ ✓

measurement ✓ ✓ (✓) ✓
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4.5. Volumetric benchmarks
This section describes how the volumetric benchmarks of different noisemodels were conducted. It follows the
procedure from section 3.1. For the benchmarks, theibmq_manila device was used. Therefore, the native gate
set is = { }, , ,zX X R CNOT , and themaximal number of qubits for the benchmark isw= 5. Further
implementation details can be found in appendix C.

1. Test circuits. Similarly to the training, we use EfficientSU2 circuits for benchmarking. They have
alternating layers of rotational and entanglement gates. All odd layers consist of anRy gate followed by anRz

gate, startingwith the first layer. In between, there areCNOT gates that linearly connect all qubits.
For widthw and depth d, the setC(w, d) consists of 200 circuits with d layers acting onw qubits. The

rotation angles are randomized for each circuit. Note that we use different circuits for training and
benchmarking.

2. Compilation rules. Different types of optimization can be applied during the compilation of quantum
circuits.With no optimization, every gate of the circuit is compiled into a representation by native gates.
Otherwise, the number of gates in the resulting circuit isminimized to reduce the impact of quantumnoise.

The qiskit library offers several configurations for this process, which are applied by thetranspile
function and itsoptimization_level argument.We chooseoptimization_level=2 for
compilation.

3. Model predictions. Exact simulations based on density matrices are used here to predict noisy Z⊗w

expectations values of the test circuits, see section 4.2 and appendix C for further information.
If onewants to benchmark the device noisemodel fromqiskit, only shot-wise simulations of the circuits

are supported. Therefore, the outcomes aremeasurement counts of basis states, as in the case of hardware
results.We use 8192 shots for each simulation, which is sufficient to reduce shot noise, i.e., statistical
uncertainty due tofinite shot numbers.

4. Hardware results. The hardware results of the test circuits are obtained with the ibmq_manila device. As
for the simulations above, every circuit is run 8192 times to reduce shot noise.

Since the jobs are placed in a queue, the experiments for different pairs (w,d) cannot be run
simultaneously.We save a snapshot of the device noisemodel before each run to enable its fair evaluation
later. Hence, comparing different noisemodels does not depend on the execution time. The running times
for each experiment can be found in table 3.

5. Single circuit evaluation. To compare the model predictions to the hardware results for a single quantum
circuit cä C(w, d), we evaluate the expectation values of theZ⊗w operator and compute their absolute
difference

= á ñ - á ñÄ Ä( ) ∣ ( ) ( ) ∣ ( )d c c c . 6w w
model hardwareZ Z

6. Overall evaluation.Wecompute the arithmeticmean of all single-circuit results for the overall evaluation:

å=
Î

( )
( )

L
n

d c
1

,
c C w d,

where n is the number of circuits inC(w, d).

Table 3.Execution times of hardware experiments for volumetric benchmark. All experiments were run on theibmq_maniladevice in
September 2022. The times are inUTC+2.

d = 1 d = 2 d = 3 d = 4 d = 5

w = 1 26th, 19:58 26th, 22:23 27th, 01:08 27th, 02:44 27th, 05:36

w = 2 27th, 10:36 27th, 14:47 27th, 17:56 27th, 21:46 28th, 00:17

w = 3 28th, 03:50 28th, 08:31 28th, 10:35 28th, 16:52 28th, 20:28

w = 4 29th, 12:29 29th, 15:16 29th, 17:39 29th, 20:38 29th, 23:52

w = 5 30th, 02:33 30th, 04:45 30th, 07:56 30th, 10:33 30th, 12:44
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4.6. Confidence intervals
To estimate the statistical significance of our results, we performbootstrapping and compute confidence
intervals based on the resulting bootstrap distributions. The bootstrapping procedure is as follows. Sincemodel
predictions are based on exact densitymatrix calculations, the only uncertainty for our benchmarks stems from
the hardware results á ñÄw

hardwareZ . The results of the experiments consist offinite samples of 8192 shots.We
resample 8192 shots for every circuit by drawingwith replacement from the original data, i.e., every point in the
new sample can be one of the 8192 outcomes from the hardware.We repeat this procedure b= 105 times to
generate the bootstrap distribution. The uncertainty uc for a single quantum circuit c is estimated as the double
standard deviation uc= 2σc of this bootstrap distribution. The overall error is computed using propagation of
uncertainty:

å= ( )u u
1

200
. 7

c
c
2

5. Results

This section presents the results of volumetric benchmarks for the noisemodels from above. Details on the
benchmark process and noisemodels are given in section 4. Recall that the volumetric benchmark compares
Z⊗w expectation values of noisy simulation and hardware experiment for different widthsw and depths d. These
expectation values are bounded by the interval [−1, 1], restricting the absolute difference between two such
values to amaximumof 2. The result of each configuration (w,d) is represented by a different square in the
figure. The overall style of presentation is inspired by [14].

The colour of a square indicates the average absolute deviation between noisemodel prediction and
hardware data. Darker squares indicate a larger deviation, while white squares indicate good agreement. On the
right side of the plot, one can find a legend explaining how the colours translate to numeric values. This legend is
valid for all three plots, so the benchmark results for all noisemodels can be directly compared.

Consider the readoutmodel and its benchmark results infigure 5 as an instructive example. Thefigure
shows that the noisemodel predicts the hardware behaviourwell forw= 1, i.e., for a single qubit. For larger
qubit numbers, the deviations betweenmodel predictions and hardware data increase. For example, one finds
an average absolute error ofZ⊗w of almost 0.1 forw= w, d= 2.

Figure 6 shows the volumetric benchmark results for the devicemodel and our trainedmodel, where the
former can be found in figure 6(a) and the latter infigure 6(b).

Figure 7 shows the confidence intervals of each benchmark based on the procedure from section 4.6. The
blue, striped bars represent our trained noisemodel, while the red bars show the results of theibmq_manila
device noisemodel.

Figure 5.Volumetric benchmark results for readout noisemodel with calibrated bit-flip probabilities from section 4.4. The colours
represent the average absolute deviation of the predictedZ⊗w expectation value from the hardware data. Darker squares indicate
larger deviations andworsemodel accuracy.
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5.1.Discussion
The three noisemodels perform very differently in the volumetric benchmark. Their results improvewithmodel
complexity,meaning that our trainedmodel achieves the best results, followed by the qiskit device noisemodel.
In the following, we discuss the volumetric benchmarks inmore detail.

Figure 6(a) shows the benchmark results for qiskits device noisemodel. Except for some negative outliers,
such as forw= 2 and dä {2, 4}, the accuracy ofmodel predictions remains stable for different configurations
(w,d). The results are similar to the readout noisemodel from figure 5, showing that the readout error is the
dominant source of noise in the qiskit devicemodel. The accuracy of thesemodels strongly depends on the
calibration procedure. If parameters are calibrated incorrectly, the deviation between noisy simulation and
hardware experiments increases. This is one possible reason for the outliersmentioned above. The device noise
model can provide an easily accessible way to simulate quantum circuits with a certain confidence.However, its
accuracy is not optimal for realistic simulations. This could change in later versions of qiskit withmore error
types included.

As shown infigure 6(b), our noisemodel with optimized parameters achieves good overall benchmark
results. Its worst performance is an average deviation inZ⊗w expectation value of 0.043 (compared to 0.067 of
the previousmodel). Themodel works particularly well for shallower quantum circuits with up to three layers.
For deeper circuits, we observe a slight decrease in its accuracy, closing the gap between the twomodels. Since
the qiskit noisemodel contains a subset of the noise channels from the trainedmodel, the latter should achieve
equal or better results everytime, given optimalmodel parameters. The primary obstacle for its performance is
the training procedure, which becomes increasinglymore difficult for larger parameter numbers.

The good performance of ourmodel is also supported by figure 7. For all shallow quantum circuits with
d� 2, as well as for small qubit numbers withw� 2, it shows a significant improvement compared to the device
noisemodel. For all other configurations, ourmodel either performs better or equally well within the statistical
confidence.

5.2. Limitations and threats to validity
In the following, we discuss limitations and threats to validity concerning both contributions from section 1.1.

The framework
There are twomain limitations of our benchmarking framework for noisemodels. Firstly, noisy simulations of
quantum circuits become computationally intractable for large qubit numbers. The densitymatrix ofN qubits
has dimension 2N× 2N, making exact computations exponentially expensive.While the statevector of the same
systemhas only 2N entries, enabling stochasticmethods such as in [51] onmore qubits than full densitymatrix
computations, the scaling remains exponential. This limitation is not specific to our approach but ubiquitous in
thefield of quantum computing. Since our aim is to provide noisemodel benchmarks for theNISQ era, small

Figure 6.Volumetric benchmark results for theibmq_manila device noisemodel and the trained noisemodel.
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systems are the primary focus of our approach.Moreover, simulations could be simplified under certain locality
assumptions on the noise andwith restricted qubit connectivity.

Secondly, the volumetric framework does not automatically ensure quality in terms of the criteria from
section 2.2. This quality depends on user choices for test circuits, evaluationmetrics, and other specifications.
However, we explained in detail in section 3.2 how these choices can bemade to improve the benchmark quality
for each individual criterion.

Figure 7.Confidence intervals for average absolute error ofZ⊗w expectation value. The blue, striped bars represent the results for our
trained noisemodel, while the orange bars show the results for the qiskit device noisemodel. The x-axes of the plots indicate the depth
d of the quantum circuits.
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The benchmarks
There are three threats to validity that we identify for our benchmarks. These threats potentially affect the quality
criteria relevance, reproducibility, and fairness.

Firstly, hardware results and predictions from the device noisemodel are obtained using afinite number of
shots. Thus, the benchmark results are subject to statistical noise and repeating the benchmarks can yield
different outcomes.Wemitigate this threat with a large number of shots and quantum circuits.

Secondly, the hardware experiments were conducted at different times. Since the noise level in a quantum
computer is not constant, the ideal noisemodel is not always the same. Therefore, comparing the benchmark
results of a noisemodel for one configuration (w,d) to another is not necessarilymeaningful. Instead, one should
compare the results of different noisemodels forfixed (w,d).

Thirdly, the quantum circuits used for the benchmarks are specific to variational algorithms. Our results are
not necessarily generalizable to other applications of quantum computing that use different types of circuits, for
example for factorization or search algorithms.

6. Conclusion

6.1. Summary
This paper presents a novel approach to evaluate the accuracy of quantum computing noisemodels. The
approach is based on volumetric benchmarks that comparemodel predictions to the behaviour of a quantum
device for sets of quantum circuits of different sizes. If a noisemodel performswell in these volumetric
benchmarks, it can be used for noisy simulations, reducing the need for quantumhardware. Possibilities to
improve the benchmark quality in terms of established quality criteria are also discussed.

We conducted volumetric benchmarks for three noisemodels using theibmq_manila quantum
computer. Thefirst noisemodel only considers readout errorwith calibrated probabilities. The second is the
device noisemodel for theibmq_manila hardware from the qiskit library.We construct a thirdmodel with
trainable parameters that we optimize using a set of training circuits. It contains SPAMerror, depolarizing error,
thermal relaxation and dephasing, and a simple formof crosstalk error.More types of noise can easily be added
to themodel.

While the readout noisemodel performed poorly formore than a single qubit, the device and the trained
noisemodel achieved better results for larger system sizes. The predictions of the former still showed larger
deviations fromhardware data for several configurations of widthw and depth d. In particular, the accuracy for
the configurationsw= 2,3 is decreased. The trained noisemodel performs significantly better for small qubit
numbers (w� 2). Except for the configurations (3, 4), (3, 5), (4, 3), (4, 5), and forw= 5, d� 3, where no
statistically significant statement can bemade, it shows improved results compared to the device noisemodel.
Overall, its accuracy is stable formost configurations. Only for deep quantum circuits dowefind a slight
decrease. The reason could be amore demanding training environment. Overall, our noisemodel and approach
to training its parameters showpromising results in these first volumetric benchmarks.

6.2. Futurework
The noisemodel constructed in this paper includes a simple formof coherent crosstalk error. As explained in
section 2.1 and inmore detail in [45], crosstalk can be very versatile and is not necessarily coherent. Therefore,
future research should construct noisemodels withmore complex descriptions of crosstalk to further improve
our understanding of quantumnoise. Other types of noise should also be considered.

Furthermore, future research should conductmore extensive volumetric benchmarks. This includes
quantumhardware withmore qubits and quantum circuits from a larger variety of applications.

Moreover, new evaluation criteria for volumetric benchmarks should be investigated to explore other
quantum computing applications.While the expectation value of observables is of interest for VQE, different
variables aremore significant for other algorithms such asGrover [52].

Finally, the trainingmethod presented in this paper can be improved for better parameter optimization of
noisemodels.
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AppendixA.Density operators

Aquantum system can be described by aHilbert space and a bounded, self-adjoint operator r  :
called the density operator (or densitymatrix). It is defined to satisfy the following properties:

• ρ is positive.
• ρ is trace class with r =( ) 1tr .
The evolution of such a systemwith a unitary operatorU can be expressed as amapping

r r †U U .

Measurements are described by a set Î{ }Mi i ofmeasurement operators such that

å =
Î

†M M .
i

i i I

For any observable  A: , its quantummechanical expectation value is given by

rá ñ =r ( )A A .tr

Moreover, if the system is in state ρiwith probability pi, then its density operator is

år r= p .
i

i i

For quantum computing, density operators can be applied as follows. As qubits are two-dimensional
quantum systems, they are described by a two-dimensional Hilbert space  2 with the so-called
computational basis {|0〉, |1〉}, where

ñ = ñ =( ) ( )∣ ∣0 1
0

, 1 0
1

.

Aqubit state can then be expressed in terms of a 2× 2 densitymatrix ρwith r =( ) 1tr . In quantum computing,
qubits are prepared in an initial state,manipulated by unitary gates, andfinallymeasured in the computational
basis. Typically, the initial state is |0〉. The corresponding densitymatrix is

r = ñá = ( )∣ ∣0 0 1 0
0 0

.0

For a composite systemofN qubits, theHilbert space and initial state are = N2 and ρ0= |0L 0〉〈0L |,
respectively.

Appendix B.Quantumoperations

The term quantumnoise labels all processes not part of the intended quantum circuit consisting of state
preparation, gate operations, andmeasurements. Quantumoperations are a powerful tool for expressing these
processes in terms of density operators. Roughly speaking, a quantumoperation  maps the density operator ρ
of a quantum systemwithHilbert space to a density operator r¢ of ¢ : r r¢ = ( ).

Mathematically, a quantumoperation  from aHilbert space to aHilbert space ¢ is a linearmap
between their sets of positive trace class operators such that

• if ρ is a density operator, then r( ( )) 1tr

•  is completely positive.

We do not discuss this definition inmore detail, insteadwe refer to the literature for further reading [39].
Kraus’ theorem [44] gives a helpful characterization of quantumoperations. It states that a linearmap 

between the spacesmentioned above is a quantumoperation if and only if there is a set of linear operators
 ¢ { }O :i such that
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år r=( ) †O O
i

i i

with å †O Oi i i I. An important example of a quantumoperation for quantum computing is the depolarizing
error

r l r
l

= - +( ) ( ) ·
D

1 ,I

where d is the dimension of the system, i.e.D= 2N forN qubits. Denoting the Paulimatrices byX,Y andZ, the
depolarizing error on a single qubits takes the following form in terms of Kraus operators:

⎛
⎝

⎞
⎠

r l r
l

r r r= - + + +( ) ( )1
3

4 4
.X X Y Y Z Z

AppendixC. Implementation details

This section explains the implementation of the training and benchmarking of noisemodels inmore detail. It
contains three parts that discuss simulating quantum circuits, running experiments on quantumhardware, and
optimizing parameters.

C.1.Hardware experiments
For 25 possible configurations of (w,d), 100 training circuits and 200 benchmark circuits were run on the
ibmq_manila quantum computer. The circuits of a pair (w,d)were first compiled into native gates using the
transpilemethodwith the argumentoptimization_level=2 from the qiskit software library (qiskit
version 0.38.0). Afterwards, theywere sent to the device as one job and executed consecutively. The running
times of the experiments can be found in table 3. Snapshots of the qiskit device noisemodel are saved at
every run.

C.2.Noisy simulations
Similar to the hardware experiments, all circuits are compiled into native gates. The compiled circuits are then
simulatedwith different noisemodels.We use two software packages for the Python programming languages for
these simulations.

Simulations of the ibmq_manila device noisemodel are implemented using qiskit and itsAerSimulator
device with the noisemodel saved at the corresponding hardware run.We always use 8192 shots.

Simulations of our noisemodel are implemented using Pennylane using thedefault.mixed device. This
device allows for exact computations of the densitymatrix and, therefore, for exact predictions of outcome
probabilities or expectation values. During the training of the noisemodel, the outcome distribution is
computed usingprobsmeasurements. TheZ⊗w expectation value is calculatedwith theexpval
measurement for the volumetric benchmarks.

C.3. Parameter training
The noisemodel parameters are trained using the SPSA algorithm. At every iteration of the optimization
process, the loss function from section 4.3 is evaluated on 100EfficientSU2 quantum circuits with
randomized parameters. TheHellinger distance is computed by comparing the probability distribution of the
noisy simulation to the counts of the hardware run. The latter are interpreted as distribution via their relative
frequencies.

The optimizer trains for 500 epochswith the hyperparameter c set to c= 0.005. The a hyperparameter varies
between a= 0.005 and a= 0.08, depending onw and d.Moreover, we useα= 0.602 and γ= 0.101, as
recommended in [53].
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