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Abstract

Practical problems usually require robust or fair solutions. However, optimal solutions
for classical optimization problems tend to structurally neglect these two criteria. This is
due to the promotion of extreme decisions that exhaust the planning constraints and most
profitable options as far as possible. Robustness, though, is usually achieved by spreading
risks, and fairness by distributing benefits and burdens, which requires diverse solutions
rather than extreme ones. Accordingly, both criteria often have to be explicitly integrated
into optimization problems. This poses a challenge both from a modeling and an algorithmic
point of view. In this thesis, we want to contribute to overcoming this challenge by studying
the following problems.

In the first part of this thesis, we consider robust optimization with budgeted uncertainty,
which is one of the most popular approaches for addressing uncertainty in optimization
problems. Positive complexity results as well as the existence of a compact reformulation
for (mixed-integer) linear programs suggest that these problems are easy to solve. However,
the reformulation as well as the algorithms that provide these complexity results do not
perform well when solving robust combinatorial problems in practice. To address this, we
propose a new class of valid inequalities to strengthen the reformulation. These inequalities
are facet-defining in many cases, and are thus among the theoretically strongest inequalities.
Furthermore, we develop a branch-and-bound algorithm based on new formulations and
structural results. We show in two extensive computational studies that both approaches
facilitate the computation of optimal robust solutions. Especially the branch and bound
algorithm outperforms all previous approaches by far.

In the second part, we consider the problem of planning the out-of-hours service for phar-
macies, which ensures a continuous supply of pharmaceuticals. The problem consists in
assigning 24-hour shifts to a subset of pharmacies on each day such that an appropriate
supply is guaranteed while the burden on pharmacists is minimized. We present a model for
the planning, developed in collaboration with the Chamber of Pharmacists North Rhine, and
show that computing a feasible plan is A'P-hard. We develop algorithms that nevertheless
compute almost optimal plans for the North Rhine area in short time. The computed plans
assign fewer shifts in total compared to the real plan of the Chamber of Pharmacists North
Rhine, but they exhibit an unfair concentration of shifts. Consequently, we discuss strategies
to integrate fairness into the planning. We show theoretical results on fairness in optimization
problems, on the basis of which we compute out-of-hours plans that are almost maximally
fair.






Zusammenfassung

Praktische Probleme erfordern meist robuste oder faire Losungen. Optimale Losungen fiir
klassische Optimierungsprobleme neigen allerdings dazu diese beiden Kriterien strukturell zu
vernachléssigen. Ursdchlich hierfiir ist die Begilinstigung extremer Entscheidungen, welche
die Planungsbedingungen und rentabelsten Optionen weitestmoglich ausschopfen. Robustheit
wird in der Regel jedoch durch eine Streuung von Risiken sowie Fairness durch eine Verteilung
von Nutzen und Lasten erreicht, was eher diverse Losung anstelle extremer erfordert. Beide
Kriterien miissen entsprechend oftmals explizit in Optimierungsprobleme integriert werden.
Dies stellt sowohl aus Sicht der Modellierung als auch der Algorithmik eine Herausforderung
dar. In dieser Arbeit wollen wir mit dem Studium der folgenden Probleme einen Teil zur
Bewdiltigung dieser Herausforderung beitragen.

Im ersten Teil dieser Arbeit betrachten wir robuste Optimierung mit budgetierter Unsicherheit,
einen der populdrsten Ansétze zur Beriicksichtigung von Unsicherheiten in Optimierungspro-
blemen. Positive Komplexitétsresultate sowie die Existenz einer kompakten Reformulierung
fiir (gemischt ganzzahlige) lineare Programme suggerieren, dass diese Probleme leicht
zu losen sind. Allerdings zeigen die Reformulierung und die Algorithmen, welche diese
Komplexititsergebnisse liefern, in der Praxis keine gute Performanz beim Losen robuster
kombinatorischer Probleme. Um dem entgegenzuwirken, prasentieren wir eine neue Klasse
giiltiger Ungleichungen zur Starkung der Reformulierung. Diese Ungleichungen definieren in
vielen Fallen Facetten und gehoren somit zu den theoretisch stérksten Ungleichungen. Zudem
entwickeln wir einen Branch-and-Bound Algorithmus auf Basis neuer Formulierungen und
struktureller Ergebnisse. In zwei umfassenden Rechenstudien zeigen wir, dass beide Ansétze
die Berechnung optimaler robuster Losungen erleichtern. Insbesondere der Branch-and-Bound
Algorithmus tibertrifft alle bisherigen Ansétze deutlich.

Im zweiten Teil betrachten wir das Problem der Planung des Apothekennotdienstes, welcher
eine durchgéngige Versorgung mit Arzneimitteln sicherstellt. Das Problem besteht darin,
tiglich einer Teilmenge der Apotheken 24-Stunden Dienste zuzuweisen, sodass eine angemes-
sene Versorgung gewdahrleistet und gleichzeitig die Belastung der Apotheken minimiert wird.
Wir stellen ein Planungsmodell vor, das in Zusammenarbeit mit der Apothekerkammer Nord-
rhein entwickelt wurde und zeigen, dass die Berechnung eines zuléssigen Plans N'P-schwer
ist. Wir entwickeln Algorithmen, die dennoch in kurzer Zeit nahezu optimale Pléne fiir das
Gebiet Nordrhein berechnen. Die berechneten Plane verteilen insgesamt weniger Dienste als
der reale Plan der Apothekerkammer Nordrhein, weisen jedoch eine unfaire Konzentration
von Diensten auf. Daher diskutieren wir Strategien zur Integration von Fairness in die Pla-
nung. Wir zeigen theoretische Resultate zu Fairness in Optimierungsproblemen, auf deren
Grundlage wir Notdienstpldne berechnen, die nahezu maximal fair sind.
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Introduction

Mathematical optimization deals with the question of how to make decisions in the best
possible way. For this purpose, decision-making processes are abstracted and mathematically
modeled in an optimization problem using variables, constraints, and objective functions.
Afterwards, algorithms are developed for computing solutions that are optimal for this model.
When carried out successfully, the solutions for the abstracted model can be translated back
into the real world, where they provide practical benefits. Optimal solutions can represent an
increase in quality compared to solutions that are constructed by hand. For example, parcels
can be delivered faster, at lower cost, and with lower emissions by optimizing the routing. In
addition to increased quality, the automation of decision-making processes provides a major
advantage by saving planning effort. For example, an algorithmic scheduling of workers saves
the staff a significant amount of time spent on self-scheduling, allowing them to concentrate
on their core tasks.

Despite the great potential of mathematical optimization, academic solutions to real-world
problems are, admittedly, often not applicable in practice. This is the case when the ab-
stracted mathematical model lacks aspects that are important in reality. In manual planning,
expert decision-makers often intuitively consider soft constraints that are sometimes hard to
formalize. Neglecting such constraints in the mathematical model can result in structural
deficiencies of solutions. This is especially true if a neglected constraint is in conflict with the
objective function. In this case, an optimal solution might accidentally maximize the violation
of the constraint to an extent that manual planning would never consider.

A potentially neglected constraint, or rather goal, is the diversity of solutions, which is often
hard to grasp. Optimal solutions to classical optimization problems tend to be extreme:
The limits imposed by planning constraints and the most profitable options are exhausted
as much as possible in order to achieve the best value for the model’s objective function.
For example, when planning a long-term purchasing strategy, we might focus on a single
supplier that offers the cheapest price. However, single-source supply chains are vulnerable
to natural and political disasters. Thus, the purchasing strategy may fail if the price of the
supposedly cheapest supplier turns out to be higher than expected in the future. Another
example involves the assignment of workload: If some employees work more efficiently and
to a higher quality, then we may be inclined to assign as many tasks as possible to these
employees. However, an uneven assignment of workload might cause dissatisfaction among
employees. In both examples, the development of the purchasing strategy and the assignment
of workload, it is advisable to strive for solutions that are more robust against uncertain
developments and more fair towards stakeholders.
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This poses two major challenges for practical mathematical optimization. First, formalizing
requirements such as robustness and fairness is not a trivial task. Second, even when
formalized, these additional requirements often result in optimization problems that are
much more difficult to solve. Hence, there is a need for models that incorporate robustness
and fairness in a tractable way as well as efficient algorithms that yield (almost) optimal
solutions to these models in reasonable computation time. In this thesis, we face both of these
challenges: We develop efficient algorithms for solving a class of generic robust optimization
problems, and propose approaches for the practical problem of planning the out-of-hours
service for pharmacies with a particular emphasis on fairness. We briefly introduce these two
topics in the following.

Robust Optimization with Budgeted Uncertainty

Robust optimization is a popular approach for integrating protection against uncertainty
into optimization models. While classical optimization assumes that the input parameters
of a model are fixed, robust optimization considers a range of (potentially infinitely many)
scenarios, each with different input parameters. A robust solution remains feasible for all
considered scenarios. Furthermore, an optimal robust solution has the best objective value
with respect to its worst-case scenario. As optimal robust solutions guarantee a certain quality
among a range of different scenarios, they favor decisions that are structurally less prone
to uncertainties. For example, a supply chain considering a diverse set of suppliers is likely
chosen over a single-source supply chain. Therefore, optimal robust solutions tend also to be
protected against scenarios that are not explicitly considered in the model, and are thus still
viable even when reality does not turn out in our favor.

Different approaches for the construction of the set of scenarios have been proposed in the
past, but the concept of robust optimization with budgeted uncertainty by Bertsimas and Sim
has received particular attention. This is illustrated by the fact that their seminal paper
is the most cited document in the literature databases Scopus and Web of Science containing
“robust optimization” in its title, keywords or abstract. This popularity is not least due to
the scenarios being constructed in an intuitive way, where an uncertainty budget is used
to control the extent to which we want to hedge against uncertainties. Bertsimas and Sim
show theoretically and experimentally that the “price of robustness” is rather small, as the
uncertainty budget can be chosen such that a high level of protection against not explicitly
considered scenarios is achieved, while the loss in the objective value compared to non-robust
solutions is rather small [23]]. In addition, the possibility to formulate robust optimization
problems with budgeted uncertainty in a compact mathematical model, and the existence
of positive results on their theoretical complexity suggest that such problems are easily
solvable.

However, despite the amount of research devoted to solving robust optimization problems
with budgeted uncertainty, instances of practical size often still pose a considerable challenge,
even if the corresponding non-robust problem is relatively easy to solve [[67]]. We will see
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later that this is an inherent challenge in robust optimization, as the trend towards diverse
solutions is hindering for the performance of one of the most powerful techniques used
in optimization, namely (mixed) integer linear programming. Therefore, while Bertsimas
and Sim show that the price of robustness on the objective function is relatively low, the
computational price can be so high that the approach becomes intractable for many real-world
problems. In this thesis, we aim to address this issue by developing algorithms that facilitate
the computation of optimal robust solutions.

Planning the Out-of-Hours Service for Pharmacies

The out-of-hours service of pharmacies is an integral part of the German healthcare system,
as it ensures continuous supply with pharmaceuticals at any time of the day. For this, every
day a subset of pharmacies is assigned an out-of-hours shift, which obliges them to be open for
24 hours. In order to maximize supply, each pharmacy could be assigned an out-of-hours shift
on each day. However, these shifts are economically unattractive and place a high workload
on the pharmacists. Therefore, it is crucial to strike a balance between an appropriate supply
of pharmaceuticals and an acceptable number of shifts per pharmacy when planning the
out-of-hours service. This balance may become increasingly difficult to achieve in the future,
as the number of pharmacies has been in constant decline in recent years [[I]], which results
in more shifts per pharmacy or a worse supply. This development is especially problematic in
rural areas, where we already observe a low density of pharmacies. We thus require sound
methods that guarantee an efficient planning of the out-of-hours service.

Until today, it is common practice in Germany to divide the planning area into districts,
typically based on administrative borders, in which the out-of-hours service is organized
locally as a rotation of the resident pharmacies. This approach has different downsides. First,
a lack of synchronization between districts can lead to neighboring pharmacies in different
districts having an out-of-hours shift on the same day. This creates an oversupply for the
corresponding area and unnecessary shifts. Second, we can also have an undersupply in
case that the out-of-hours pharmacies of neighboring districts are located far apart from
another. Third, the districting itself can negatively impact the burden of individual pharmacies,
since being part of a district with few pharmacies results in many shifts. This is especially
unsatisfactory if neighboring pharmacies are in different districts that differ significantly
in terms of the implied burden. Justifying such differences on the basis of administrative
borders alone is difficult and can lead to frustration among pharmacists who may feel treated
unfairly due to their allocation to an unfavorable district. We address these issues with a
centralized approach that considers all pharmacies together to obtain an efficient and fair
out-of-hours plan.
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Contribution and Outline

Before we turn to the main topics of this thesis, we introduce some notation and discuss
selected concepts of mathematical optimization in Chapter [2]

In Part[l, we consider robustness with budgeted uncertainty for generic combinatorial op-
timization problems. We focus on uncertainty in the objective function, but most of our
results carry over to uncertainty in the constraints. In Chapter [3] we give a formal introduc-
tion into the problem and discuss why it is hard to solve in practice. In the following two
chapters, we develop approaches that contribute to making the problem more tractable. In
Chapter [4] we propose a new class of valid inequalities, namely recycled inequalities. Valid
inequalities are an integral part of modern (mixed) integer linear programming solvers and
can help lowering computation times significantly. We will show that recycled inequalities
are often facet-defining, that is, they are among the theoretically best valid inequalities
for our problem. Furthermore, they are easy to compute, and thus can yield a significant
performance improvement. To demonstrate their practical use, we conduct a computational
study on carefully generated robust versions of classical combinatorial problems and real-
world instances from MIPLIB 2017 [49]l. In Chapter[5} we prove several structural properties
and introduce different formulations for robust combinatorial optimization problems with
budgeted uncertainty. We combine these results in a specialized branch and bound algorithm
and perform an extensive computational study, which reveals that our algorithm outperforms
the current state-of-the-art approaches by far. Moreover, we show that our structural results
can be used to improve most of these approaches substantially, thus highlighting the relevance
of our findings for future research. All implemented algorithms [[46]] and generated test
instances [48]] are freely available online for future benchmarking in robust combinatorial
optimization with budgeted uncertainty.

In Part [, we study the planning of the out-of-hours service for pharmacies. After giving
an introduction in Chapter [6] we propose a planning problem in Chapter [7} which has
arisen from a collaboration with the Chamber of Pharmacists North Rhine. The problem
consists in minimizing the total number of shifts while guaranteeing a certain quality of
coverage for residents. We show that it is hard to compute a feasible out-of-hours plan in
theory. However, we also propose algorithms that are capable of computing almost optimal
solutions in reasonable time for a real-world instance. The computed out-of-hours plans are
more efficient than the real plans, with a reduction of roughly 10% in the total number of
shifts, while simultaneously maintaining a higher compliance with planning regulations. The
drawback, however, is that the distribution of shifts among pharmacies is not fair. Similar
to the assignment of workload discussed above, striving for as few shifts as possible leads
to a concentration of shifts on pharmacies in favorable locations that enable an efficient
coverage of our planning area. We therefore focus on the computation of fair plans in
Chapter|[8] For this, we first consider the concept of min-max fairness, which can be seen as
the strictest fairness concept, for an idealized planning problem. We generalize and prove
several statements from the literature on min-max fairness, which we then use to compute
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min-max fair solutions to the idealized problem within seconds. Afterwards, we use these
solutions as an orientation for computing fair out-of-hours plans. We show for our real-world
instance that we can compute efficient plans that almost match the idealized solution, and are
thus almost maximally fair. We furthermore show that the idealized solutions are invaluable
within a decision support environment for analyzing and customizing the planning model.
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Preliminaries

In this chapter, we clarify some basic notation and cover fundamental topics of mathematical
optimization. Note that we do not present a self-contained introduction but aim to reflect
our take on selected topics that will be important over the course of this thesis. For a
broader overview, we refer to the books by Nemhauser and Wolsey as well as Korte and

Vygen [[64].

2.1 Basic Notation and Graphs

For a set of numbers S C R, we denote with S>y = {s € S|s > 0} the subset of non-
negative numbers and with S-g = {s € S|s > 0} the subset of positive numbers. We define
[n] = {1,...,n} for a positive integer n € Z-, and for convenience also [0] = ). For a
non-negative integer n € Zxo, we denote [n], = {0,...,n}. The set of all subsets of a set S
is written as 2% = {S’ C S}. Furthermore, we write (°) = {S’ € 25‘\S’| = n} for the set of
subsets of cardinality n € Z>¢. Lastly, we define 2 = max {x,0} to be the positive part of a
number x € R.

2)
connecting the nodes. If two nodes v,w € V are connected via an edge {v,w} € E, then

A graph is a tuple G = (V, E) consisting of a set of nodes V' and a set of edges £ C (

we say that v and w are neighbors. The neighborhood of a node v € V is denoted with
N (v) = {w € V|{v,w} € E} and the closed neighborhood with N [v] = N (v) U {v}. The set
of incident edges is denoted with § (v) = {{v,w} € E'}. We say that a set of nodes S C V' is a
clique if all pairs of nodes in S are neighbors. Conversely, S C V' is an independent set if there
exists no edge connecting any two nodes in S.

2.2 Mathematical Optimization

Optimization is about finding the best possible solution to a problem. A solution is usually
modeled as a vector of finitely many decision variables x € R", which reflect our choice as a
collection of elementary decisions. For example, when going into a supermarket, we might
decide to buy x; apples, x5 packs of flour, z3 packs of sugar, and x4 packs of margarine for
baking a delicious apple pie. Surely, not all x+ € R™ represent a feasible solution for our
problem. If we bought a negative amount of apples z; < 0, that is we actually sell —z, the
supermarket would probably refuse to cooperate unless we happen to be owners of an apple
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orchard. And although it would be lovely to buy exactly 7 kilograms of ingredients for our
pie, we are most likely forced to purchase whole apples and packages. Thus, we are restricted
to a subset of feasible solutions X C R".

To compare solutions, a strict partial order < is defined on the set X'. That is, if we consider a
minimization problem and have z, 2’ € X with z < 2/, then we prefer x over z’. A solution
x is called optimal if there exists no 2’ € X with 2/ < z. In many cases, the order is with
respect to an objective value v (z) € R, such as the cost of our purchase. Then we have
x < ' if v (x) < v (2') holds. However, not all optimization problems are of this form. This is
especially when the needs of multiple stakeholders must be considered, like in Part[[] of this
thesis. In this case, we have multiple objectives (v; (), ..., v (z)) € R*¥ which need to be
minimized simultaneously. Then we might have x < 2’ if v; (x) < v; (2’) holds for all i € [£]
and v; (z) < v; (') for at least one i € [k].

The set of solutions and the objective should ideally be formulated in a concise way that
allows for an exploration of the solution space without performing a pairwise comparison
between all elements. In the following, we cover some concepts of mathematical optimization
that enable us to model problems concisely.

2.3 Linear Programming

Linear programming is one of the fundamental concepts in mathematical optimization, as
it provides us with powerful tools for modeling and solving problems. We give a brief
introduction into the topic but refer to the books of Korte and Vygen [[64]l, Schrijver [[88]], as
well as Nemhauser and Wolsey for more details.

A linear program (LP) consists of decision variables z € R" to which we assign objective
coefficients ¢ € R™ whose sum ¢ 'z = Zie[m c;x; is to be minimized. Furthermore, the set of
feasible solutions is restricted by linear constraints Ax > b, given by a matrix A € R™*" and
a right-hand side b € R™. An LP is written as

min ¢'

s.t. Ax > b
r e R".

Note that this form also allows for modeling maximization problems by simply using —c
instead of ¢. Likewise, we can model linear constraints o' z < B via —alx > —p. Equality
constraints o' = 3 can be modeled by using both 'z > S and —a "z > —3.

For each LP, there are three possibilities regarding its solvability. An LP is infeasible if there
exists no x € R™ with Az > b. It is unbounded if there exists a sequence of solutions (xk) .
>0

with limy_,o ¢ 2 = —co. If an LP is neither infeasible nor unbounded, then there exists a
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finite optimal solution Chapter 3]. Let v be the optimal objective value of an LP, then
we write v = oo for infeasible LPs and v = —oo for unbounded LPs. However, for the sake of
simplicity, we will now only consider LPs that have an optimal solution.

2.3.1 The Simplex Method

LPs are not only powerful for modeling problems but can also be solved in polynomial time.
The oldest known polynomial approach is the ellipsoid algorithm of Khachiyan [[62]], followed
by Karmarkar’s much more efficient interior point method [[58]l. For this thesis, however,
we are particularly interested in the simplex method, which was proposed by Dantzig [[39]]
as the first method for solving LPs. Simplex algorithms are in practice often faster than
interior point methods, although there is currently no version known with a polynomial
worst-case complexity. Borgwardt theoretically supports the strength of the simplex
method by showing that a version of it is polynomial on average for random instances in
some probabilistic model.

To understand the idea of the simplex method, we consider the set of feasible solutions to our
LP geometrically. A set P C R" that is constrained by a finite number of linear inequalities,
like our set of solutions, is called a polyhedron. We are interested in the extreme points of
polyhedra, the so-called vertices. A vector x € P is a vertex if it cannot be expressed as
a convex combination of other vectors {xl, ey xk} C P\ {x}. Vertices have the special
property that if there exists an optimal solution to an LP, then there exists a vertex which is
also optimal. Hence, for finding an optimal solution to an LP, it is sufficient to only consider
the vertices of P. Indeed, the idea of the simplex method is to start at some vertex and travel
across the boundary of P, iteratively visiting further vertices until an optimal solution is
reached.

We now consider vertices algebraically in order to see how they are visited in the simplex
method. For this, note that each LP can be transformed into the so-called standard form

min ¢' z
s.t. Ar =10
r € RY,.

This can be done by replacing all variables » € R™ with their positive part z* € R%, and
negative part z~ € RZ, that is, x = z* — 2~. Furthermore, we can add so-called slack
variables s € RY to the constraints, that is, Az > b is equivalent to Az —s = b for s € RY;,. In
the following, we assume that our LP is given in this form and that rank (4) = m holds. This
is without loss of generality, as otherwise some rows are linearly dependent, implying that
the constraints are redundant or conflicting. Under these assumptions, we define a subset
B e ([:1]) of size m to be a basis if the columns {4;|: € B} of A are linearly independent.
Given a set of indices I C [n], we denote with A the submatrix of A consisting of the columns

2.3 Linear Programming
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with index in I. Likewise, we denote with x; the corresponding subvector of x. The variables
rp are called basic variables and x,)\ p non-basic variables. Since Ap is non-singular, we
know that its inverse Agl exists. Then the solution x € R™ with 25 = Aglb and zp,\p =0
is feasible if and only if we have x5 > 0. Solutions of this form are called feasible basic
solutions and are of particular interest, as they are exactly the vertices of a polyhedron [[64}
Section 3.1].

In order to solve an LP, one could enumerate all possible sets B € ([77:3): check whether they
correspond to a feasible basic solution, and then return the one with the best objective value.
Luckily, the simplex method is more efficient and does not consider all possible bases but
only a sequence of neighboring feasible basic solutions with improving objective coefficients.
Two feasible basic solutions are called neighbors if their bases B; and B, can be transformed
into another by swapping one index, that is | B; \ Bz| = 1. A feasible basic solution is optimal
if there exists no neighboring solution with a better objective value. This is the case if the
so-called reduced costs ¢' = c[Tn]\ B cEAglA[n]\ 5 are non-negative (we will see later why).
Otherwise, if there exists an index i € [n] \ B with ¢; < 0, then one of these indices may enter
the basis B while a different index j € B is removed, yielding a new basis B’ that corresponds
to a solution with a better objective value (neglecting degeneracy, cf. Section 1.2.3]).
Hence, we can iteratively improve our solution by swapping basic variables with non-basic
variables, improve the objective value in each iteration, and end at an optimal solution. For
a detailed description on how to perform these swaps, we refer to one of the books cited
above.

Note that we require an initial feasible basis to start our walk along the boundary of the
polyhedron. This can be done by solving an auxiliary LP for which there exists an obvious
feasible basis. The search for an initial basis is known as phase I of the simplex method,
while the search for an optimal basis is known as phase II. When a sequence of similar LPs is
solved, each emerging from the previous via small manipulations, it is often possible to use
the previous basis and directly start in phase II. We will revisit this idea in Section [2.4.2] as it
will be relevant for our branch and bound algorithm in Chapter [5}

2.3.2 Duality

In mathematical optimization, one often considers a problem from two sides, namely the
primal and the dual problem. Given a primal minimization problem, the corresponding dual
problem asks for lower bounds on the optimal objective of the primal problem. For an LP
in standard form min {ch’Ax =bx € Rgo}, we can compute lower bounds on the optimal
objective value by combining the constraints Az = b linearly with coefficients y € R™. If this
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linear combination y" Az = y"bis such that y " A < ¢' holds, then y b is a lower bound on
c¢'z, due to z being non-negative. Therefore, the dual problem of the above LP reads

max y ' b
sty A<cl
y € R™.

Due to the reasoning above, the objective value of a solution to the dual LP is always smaller
than the objective value of a solution to the primal LP. This property is called weak duality.
Duality for LPs is particularly interesting, because if one of the LPs has an optimal solution,
then the other one also has an optimal solution with the same value Section 3.4]. This
equality of optimal primal and dual objective values is called strong duality.

2.3.3 The Dual Simplex Method

Solving either the primal or dual LP does not only yield the optimal objective value for the
other problem, but we can even compute optimal primal and dual solutions simultaneously.
Let B C [n] be a basis for the primal problem min {ch‘Ax =bux € Rgo}. We call B primal
feasible if Aglb > 0 holds, that is, if the corresponding basic solution with zp = Aglb and
z,)\ B = 0 is feasible for the primal problem. Furthermore, we define the corresponding dual
solution as y' = c¢LAz'. This solution is feasible for the dual problem if y" A < ¢" holds,
where
yTA <cl & C;ABIA <cl & CEA;AW\B < CF;L]\B.

Therefore, we call B dual feasible if we have C[L]\ 5 — A Ay s > 0. Moreover, since we
have

c'x=chrp=chAz'b=1y'b,
it follows together with weak duality that 2 and y are optimal solutions if B is primal and dual
feasible. Note that B is dual feasible if and only if the reduced costs defined in Section[2.3.1

are non-negative, which yields the optimality criterion of the primal simplex method.

The fact that a basis B yields both a primal and a dual optimal solution raises the possibility
to solve an LP from two different sides. The primal simplex method computes a sequence
of primal feasible bases until one is found that is also dual feasible. Conversely, the dual
simplex method computes a sequence of dual feasible bases and aims for one that is also
primal feasible. While the dual simplex is similar to the primal simplex, it is particularly
useful in case we already have a basis that is not primal feasible but dual feasible. In this
case, the dual simplex can directly start in phase II, and is thus usually faster.

2.3 Linear Programming
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2.4 Mixed-Integer Linear Programming

As already noted in Section fractional decisions = ¢ Z™ are not always feasible for
real-world applications. If integrality of some variables is required, we rely on the concepts of
(mixed) integer linear programming. Again, we only give a brief introduction into the topic
and refer to the books of Conforti et al. as well as Nemhauser and Wolsey [[9€]].

Mixed-integer linear programs (MILP) generalize LPs by allowing for integrality restrictions of
variables, that is x € Z™ x R™ instead of z € R™ with n; + ny = n. An MILP is written as

min ¢'

s.t. Az > b

€ Z™ x R".

Unlike LPs, MILPs are in theory hard to solve and there exists no polynomial-time algorithm
for general instances unless P = AN/P. In practice, however, modern MILP solvers are often
quite successful in solving even large problems with a million variables. The driving force
behind this success is the branch and bound paradigm, which was first proposed by Land and

Doig [|69]1.

2.4.1 Branch and Bound

The general idea of branch and bound for solving optimization problems of the form
min {v (z)|z € X'} is to partition (branch) the set of feasible solutions X' = ;¢ X; and
then solve the corresponding subproblems min {v (z)|x € X;} recursively. When consid-
ering the subproblems min {v (z)|x € X} as nodes in a graph that are connected to their
parent problem min {v (z)|z € X'} with X C X', from which they emerged directly via
branching, then we obtain a rooted branch and bound tree. We call the original problem
min {v (z)|z € X'} the root node problem. In order to avoid a complete enumeration, an easy
to obtain dual bound v (X) < min {v (z)|z € X} is computed for every considered X C X
and compared with a primal bound v, which is the value of the so far best known feasible
solution. If v (X) > v holds, then we can prune the branch of the tree considering X, as
we will not be able to find a better solution there. To compute the dual bound v (X)), one
usually considers a relaxed problem min {y (m)‘x € X} of min {v (z)|z € X} with X C X and
v(z) <w(x)forall x € X. Naturally, this relaxed problem should be much easier to solve, so
that we can efficiently compute the dual bound v (X).

A common relaxation for problems with integrality restrictions is the continuous relaxation,
for which we drop the integrality constraints. For an MILP min {ch‘Aa: >b,xeZ™ xR™ },

we start with solving the LP min {ch‘Ax > b, € Rmtm } If the computed optimal solution
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r* € R™M*"2 is integer-feasible, that is z* € Z™ x R"2, then x* is also a solution to the
MILP. Otherwise, there exists an index i € [n;] with 2] ¢ Z. In this case, we branch on the
variable z; by considering two new LPs, one with the additional constraint z; < |z} | and
one with z; > [z}]. The fractional solution z* is now no longer feasible for any of the two
subproblems, but all integer-feasible solutions remain feasible for one of them. Recursive
branching and pruning until no subproblem is left for consideration thus yields and proves

an optimal solution.

2.4.2 Warm Starting in Branch and Bound

Branch and bound is in general “only” an intelligent enumeration approach and the number of
nodes in the tree cannot be polynomially bounded unless P = N'P. Therefore, we potentially
need to solve many LPs in order to solve one MILP. However, most of the LPs can be solved
very efficiently in practice: After the root node, we can warm start the simplex method for
all subsequent nodes in phase II. To see this, let min {ch)Ax =b,x € Rgo} be an LP in
standard form that we consider during the branch and bound. Furthermore, let B C [n]
be the computed optimal, and thus dual feasible, basis. Branching corresponds to adding
a new constraint o' « + x, .1 = 8 with slack variable z,,,,. The problem of the child node

A b
< . ?)xz(ﬁ),xeRQ’gl}. For B = BU {n+ 1}, the
o >

matrix AT 0 = Af 0 has rank m + 1 if and only if Ap has rank m and the
a' 1 B ag 1

corresponding reduced costs

then reads min { (cT, O) x

-1

A A
e~ 0, (5 0) (50
n a1 m \Q 1 It 1\BY
AL 0 A
_.T T B [n]\B
o ) () (e )

=clunp — CBAB A\ B

are exactly the reduced costs of B for the parent problem. Hence, B’ is a dual feasible basis
for the new LP if and only if B is a dual feasible basis for the original LP. Therefore, B’ can
be used to warm start the dual simplex method in phase II.

Moreover, the above equivalency implies that if o' 2 + 2,1 = 3 is a constraint with basic
slack variable z,,; 1, then removing n + 1 from the basis yields a dual feasible basis for the
LP in which the constraint is removed. We may also increase the objective coefficient ¢; of
non-basic variables z;: For ¢/ > ¢ with ¢, = ¢; for i € B, we have

unp = 5 A Apns = g — B4 Apns 2 g — cs A5 A > 0

2.4 Mixed-Integer Linear Programming
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All these observations will be important later in Section [5.6.6]and are therefore summarized
in the following remark.

Remark 1. Given a dual feasible basis of an LP, the following manipulations result in a dual
feasible basis for the new LP

¢ adding a new constraint o'« + s = 3 and setting the slack variable s to basic,
* removing a constraint o' z + s = 3 together with its slack variable s if s is basic,

* increasing the objective coefficient ¢; of a non-basic variable ;.

If we also increase the objective coefficients of basic variables, then the dual feasibility of our
basis is in general not preserved. However, if we only want to manipulate the objective coeffi-
cients of an LP and leave the constraints unchanged, then we can use the primal instead of the
dual simplex method. Note that the non-negativity of x5 = Al}lb, and thus the primal feasibil-
ity of basis B, is independent of the objective coefficients. Therefore, we can use B to warm
start the primal simplex method in phase II. Moreover, we can also remove constraints with
basic slack variables from the LP and preserve primal feasibility. That is, if B C [n + 1] with

A0 b
(J 1>x:<6>’$€R%1}’

then B = B\ {n+ 1} is a primal feasible basis for min {ch’Am =bx € ]Rgo}, since we
have

n + 1 € B is a primal feasible basis for min { (CT, O) x

-1 -1 -1
0<ap— A 0 b _ Ag 0 b _ Agb ’
al 1 153 x 1 I} *
B
and thus A;/b > 0. Again, we summarize both observations in the following remark.

Remark 2. Given a primal feasible basis of an LP, the following manipulations result in a
primal feasible basis for the new LP

* arbitrarily changing objective coefficients c,

* removing a constraint o' « + s = 3 together with its slack variable s if s is basic.

In Section [5.6.6], we will use our observations about primal and dual feasible bases to speed
up the LP solving process by warm starting the appropriate simplex method.

2.4.3 Strong Formulations

The number of nodes one needs to consider in a branch and bound tree largely depends
on the difference between the original problem and the chosen relaxations. If an optimal
solution x to the relaxation of the root node min {y (x) ’:c €exX } is also feasible for the original
problem min {v (z)|z € X'} and we have v (z) = v (z), then x is also optimal for the original
problem. In contrast, if x is far from being feasible for X or if v (x) < v (z) holds, then
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we potentially require many branching steps until we obtain and prove an optimal solution
to the original problem. This implies the need to classify “strong” and “weak” relaxations.
Throughout this thesis, we are mostly concerned with linear objective functions, which we
also use for the relaxed problem. Therefore, we are particularly interested in the relaxation
X of the set of feasible solutions X

In the context of mixed-integer optimization, we call a set 7 C R" with n = nj + no
a formulation for a problem min {v (z)|x € X'} with a set of solutions X C Z™ x R" if
F N (Z™ x R") = X holds. Using such a formulation, we can solve the original problem by
solving min {v (z)|x € F} and branching on the integer variables. If the original problem is
an MILP, then one often only considers polyhedral formulations, the most prominent being
the continuous relaxation F = {z € R"|Az > b} for X = {x € Z™ x R™|Az > b}. However,
we will also consider more general sets F, and thus don’t restrict ourselves to polyhedra.
Intuitively, a formulation is strong if it is close to the set of feasible solutions X. Therefore,
if /1 and F» are two formulations for the same problem, then we say that F; is at least as
strong as JF» if 71 C F> holds.

With polyhedral formulations, which are convex, the closest we can possibly get to X is its
convex hull conv (X'), which is the smallest possible convex set containing all points in X. If
X is the solution space of an MILP min {CTl“AIL‘ >bxreZm™ x R”Q} with rational constraint
matrix A € Q™*" and right-hand side b € Q™, then conv (X)) itself is a polyhedron, and thus
the best polyhedral formulation [[75]]. Since the vertices of conv (X') are all contained in X,
an optimal vertex solution of the LP min {ch‘x € conv (X )} is also an optimal solution to
the MILP. Hence, we can solve any MILP by solving the corresponding LP over conv (X'). This
motivates calling conv (X') a perfect formulation. However, this observation also suggests that
conv (X) is in general not easy to describe, since otherwise we had P = N'P. In fact, the
convex hull is for most problems described by an exponential number of inequalities. Only
in some special cases, the continuous relaxation {x € R"|Ax > b} already equals conv (X).
An important special case is when the right-hand side b is integer and the matrix A is totally
unimodular, that is, the determinant of every square submatrix of A is in {—1,0,1}
Section III.1.2].

In practice, we usually rely on formulations that are as strong as possible while also being
compact, that is, the size of the constraint matrix is polynomial in the size of the problem
instance. To achieve this, it is sometimes beneficial to include additional variables in the
formulation. Using these auxiliary variables, we might be able to describe a compact formula-
tion, whereas we would otherwise require an exponential number of constraints if we limited
ourselves to the original variable space. A set F/ C R"t" is called an extended formulation for
a problem if its projection proj (F') C R™ into the original solution space is a formulation for
that problem. Then, instead of solving min {v (z)|z € F}, we solve min {v (z)|(z,y) € F'}
and project the computed solution (z,y) € R" to 2 € R". We say that an extended
formulation 7 is at least as strong as an extended formulation F for the same problem if
proj (F7) C proj (F3) holds.

2.4 Mixed-Integer Linear Programming
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Note that the objective function for the above problem using the extended formulation
is defined only on the original variables. To generalize the concept, we call a problem
v = min {v ()2’ € X'} defined by some F' C R™*" with F' N (Z”’l X ]Ri”é) =X"a
reformulation in a different variable space of v = min {v (z)|x € X'}, if both have the same
optimum objective value, i.e., v = ¢/, and there exists a polynomial-time computable,
objective-preserving mapping ¢ : 7' — R"™ with ¢ (X’) C X. Then, instead of solving the
original problem, we can solve the problem over X’ and map an optimal solution 2’ € X’
to an optimal solution ¢ (z') € X. To generalize the concept of strong formulations, we say

that 77 is at least as strong as F3 if ¢; (F]) C ¢4 (F5) holds for the corresponding mappings

¢17¢2-

We cannot rank all formulations with the above definitions, as there exists no total order on the
set of formulations. A practical possibility to quantify the strengths of different formulations
is to consider the so-called integrality gap, which measures the relative difference between the
optimal objective values of the original problem and the continuous relaxation. Let v be the
optimal objective value for a problem and v® be the optimal objective value of the continuous
relaxation with respect to the considered formulation. Then we define the integrality gap as

R_
[ =] for v # 0. For v = 0, we define it to be zero if v} = 0 holds and co otherwise. A small

[v]
integrality gap indicates that an optimal solution to the relaxation might not be far from an

optimal solution to the original problem, and should thus imply less computational effort
during the branch and bound.

2.4.4 Valid Inequalities and Branch and Cut

Although we usually don’t know how to describe the convex hull of feasible solutions for
an MILP, we can often improve a formulation by adding valid inequalities. If X is the set of
feasible solutions, then we call an inequality 7'z < 7 valid if it is satisfied by all = € X.
Naturally, not all inequalities are useful for improving a formulation. For example, 0 < 1 is
always valid but does not help us describing conv (X'). Instead, we are interested in so-called
cutting planes, which are valid for X but not for the current formulation F. That is, we cut
off a part of F but retain all solutions in X when adding a cutting plane to a formulation.

Cutting planes are an integral part of MILP solvers, which use an extension of branch and
bound, the so-called branch and cut approach. The idea of branch and cut is to add cutting
planes to strengthen a formulation so that fewer nodes need to be considered in the branching
tree. For this, one does not add all (potentially exponentially many) known cutting planes to
the formulation but only ones that cut off interesting parts of F. Given an optimal solution
x € F \ X of the continuous relaxation that is not feasible for the original problem, we call
a cutting plane 7'z < m a separating cutting plane for z if 7'z > my holds. Then adding
7'z < m to our formulation and reoptimizing over the resulting relaxation yields a new
solution z’ that is hopefully closer to the set of feasible solutions X'.
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Note that the reoptimization can be done efficiently in practice by using the dual simplex
method. Finding a separating cutting plane for a solution x € F \ X is itself an optimization
problem and known as the separation problem. In theory, it is possible to solve an MILP by
iteratively optimizing over the current formulation and adding separating cutting planes until
a feasible solution is found. However, since this in general amounts to describing conv (X)),
one usually only adds few cutting planes to the formulation and then continues branching.

2.4.5 Strong Valid Inequalities and Facets

Just as with formulations, inequalities can also be (partially) ranked. We say that a valid
inequality 7"z < my dominates another inequality u'z < pq if there exists a coefficient
A € R> such that A7 >y and Amg < pp holds. In this case, we have {x € RgO‘WTx < wo} C
{1: € Rgol pla < ,uo}. Furthermore, we say that 7'z < 7 strictly dominates 'z < pq if
we have A\r # p or Amg # po for a coefficient A > 0 as above. Since inequalities are not
applied isolated, we also define dominance for multiple inequalities. We say that a set
of inequalities 7/Tx < = with j € [k] dominates an inequality 'z < g if there exist
coefficients Aq,...,A\; € R>o such that the combination (Zje[k] Ajﬂ'j)Tl' < Yiel AT
dominates pu "z < po. Strict domination for multiple inequalities is defined analogously.

Consider a polyhedral formulation F = {1: € RZOIAQS < b} and an inequality "z < po.
While it is clear that ;' = < y is no cutting plane if it is dominated by the constraints Az < b,
it is not trivial to see whether the other direction also holds. The following proposition shows
that non-cutting planes are indeed dominated.

Proposition 3 (Nemhauser and Wolsey Section I1.1.1]). If P = {x € Rgo‘Aaz < b} is
a non-empty polyhedron, then all valid inequalities for P are dominated by the constraints
Ax <b.

Knowing that an inequality can be omitted if it is dominated by other inequalities in our
constraint matrix, we might ask ourselves which inequalities are actually needed to describe
a polyhedron. This is especially interesting when the polyhedron itself is not known, as in
the case of the convex hull. Intuitively, it is clear that inequalities 7' 2 < m that cannot
be omitted define a hyperplane {:c € R"’ﬂTx = 770} which intersects with the boundary
of the polyhedron P. The intersection of the hyperplane with the polyhedron F (7)) =
{:z: € P‘wa = 71'0} is called the face of P defined by 7"z < 7. The proper faces ) C F C P
are at the boundary of a polyhedron, with the smallest proper faces being the vertices.
The largest proper faces, the so-called facets, are the most interesting ones and can be
characterized via their dimension. Each face is again a polyhedron and the dimension of a
polyhedron P’ is defined as the maximum number of affinely independent points within P’
minus one. The following proposition characterizes facets.

2.4 Mixed-Integer Linear Programming
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Proposition 4 (Conforti et al. Section 3.9]). A face F of a polyhedron P C R™ is a facet if
and only if dim (F') = dim (P) — 1 holds.

We say that an inequality is facet-defining if its face is a facet. Facet-defining inequalities are
in fact exactly the inequalities needed to describe a polyhedron P in the sense that a minimal

representation

with as few constraints as possible, consists of n — dim (P) equations A=z = b~ and otherwise
only proper inequalities A<z < b<, all of which are facet-defining Section 3.9]. From
this, we deduce the following statement, which is an important tool for determining the
dimension of a polyhedron.

Proposition 5. For a polyhedron P C R", the number n—dim (P) equals the maximum number
of linearly independent equations that are met by all elements in P.

In theory, we would like to know all facet-defining inequalities of the convex hull of integer-
feasible solutions in order to strengthen our formulation. In practice, computing these
inequalities is in general NP-hard and also not always useful: Some inequalities cut off
uninteresting regions of our formulation, and thus have little impact on the performance of a
branch and cut approach. Conversely, we might be able to efficiently compute cutting planes
for our current formulation that are strictly dominated by the facets of the convex hull but
have a positive impact on the branch and cut. Therefore, valid inequalities should not only
be evaluated based on whether they define a facet but also based on empirical studies. For
this, we cannot only measure the impact of adding cuts on the computation time but also the
impact on the integrality gap of our formulation.
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Introduction

Decision-makers are frequently confronted with problems that are inherently affected by
uncertainties in the parameters. Such uncertain parameters may result, for example, from
forecasts, estimates, or inaccurate measurements. They should be treated with caution, as
variations in the parameters can render a seemingly optimal decision impractical. This is
especially in mathematical optimization, where optimal solutions often exhaust as much
as possible the limits imposed by the planning constraints. Accordingly, already small
fluctuations can cause these constraints to be heavily violated [14]]. But even if all parameters
in the constraints are certain, a profitable solution may suddenly become costly if parameters
in the objective turn out to be different than expected.

A popular approach for integrating protection against uncertainty into optimization problems
is robust optimization. Here, one considers an uncertainty set that consists of (potentially
infinitely many) scenarios reflecting the uncertain parameters. The goal of robust optimization
is to optimize against the worst-case scenario. That is, a robust solution remains feasible for all
considered scenarios and an optimal robust solution should still have a reasonable objective
value in the worst-case. Robust optimization was proposed first by Soyster in the early
1970s. Kouvelis and Yu considered it for combinatorial optimization problems and
discrete uncertainty sets in the 1990s. The concept was then further analyzed by Ben-Tal and
Nemirovski [15]], and Bertsimas and Sim at the beginning of this century. An
overview on the topic is given in (44

The approach by Bertsimas and Sim of modeling uncertainty with budgeted uncertainty sets
has proven to be the most popular, with their introductory paper being the most cited
document on robust optimization in the literature databases Scopus and Web of Science
(search for “robust optimization” in title, keywords, and abstract). This popularity can be
attributed to several reasons. One reason is that the modeling of the uncertainty set is quite
intuitive, with an uncertainty budget controlling the extent to which one wants to protect
against uncertainties. Bertsimas and Sim prove that, under certain assumptions, already a
low uncertainty budget offers high probabilistic guarantees that a robust solution remains
feasible for scenarios that are not contained in the uncertainty set. Simultaneously, they show
experimentally that a low uncertainty budget only leads to a small loss in the objective value,
thus demonstrating that the “price of robustness” is relatively low [23]].

Another reason for the popularity of budgeted uncertainty is the special structure of the
emerging robust problems. Most notably, (mixed-integer) linear problems remain (mixed-
integer) linear, which constitutes an advantage in terms of tractability compared to earlier
uncertainty sets, for example ellipsoidal sets [[15]]. Moreover, there exists a reformulation for
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mathematical programming problems which is polynomial in the size of the formulation of the
non-robust problem. The structure of the uncertainty set also allows for the development of
combinatorial algorithms: Bertsimas and Sim show that robust combinatorial problems
with uncertainty in the objective function are theoretically not more complex than their non-
robust versions. In particular, the robust counterpart of polynomially solvable combinatorial
optimization problems remains polynomially solvable.

Despite these promising algorithmic results, instances from practice can still pose a consid-
erable challenge for modern MILP solvers, even if the non-robust problem is relatively easy
to solve, as observed, for example, by Kuhnke et al. [[67]. In this thesis, we will show that
this disillusioning performance is due to the weakness of the reformulation. We propose new
formulations and approaches to address this issue. In this process, we restrict ourselves to
combinatorial problems with uncertain objective functions. However, most of our results

carry over to uncertain constraints.

3.1 Problem Statement

We start with a standard, so-called nominal, combinatorial optimization problem without

uncertainties
min Z CiT;
i€[n]
(NOM) s.t. Ax < b
x € {0,1}",

with binary decision variables = € {0,1}", an objective vector ¢ € R", and a constraint matrix
A € R™*™ with a right-hand side b € R™. Instead of assuming the objective coefficients
¢; to be certain, we consider uncertain coefficients ¢, that lie in an interval ¢, € [¢;, ¢; + &
and can deviate from their nominal value c; by up to the deviation ¢;. The set of scenarios
then consists of all vectors of possible objective coefficients {¢’ € R"|c} € [¢;, ¢; + &] Vi € [n]}.
Note that for any = € {0,1}", the objective value is worst if all coefficients ¢, are equal to
their maximum value ¢; + ¢;. In practice, however, this extreme scenario is usually unlikely,
and thus it may be overly conservative to assume that it actually occurs.

To adjust the level of conservatism, Bertsimas and Sim [[23]] propose a robust counterpart
to NOM in which they restrict the set of considered scenarios by defining an uncertainty
budget I" € [0,n). Given such a budget, we only consider those scenarios in which at most |I'|
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Figure 3.1. The optimal choice of z and p for a given nominal solution zx.

coefficients ¢, deviate to ¢; + ¢ and one coefficient deviates to ¢; + (I' — [I']) &. This robust
counterpart of NOM can be stated as the non-linear robust problem

min Z Cix; + SU?;?&([”]: <(F — LFJ) étxt + z; éZﬂL’l)
i€ln] IS|<|T ) t¢S €
s.t. Az <b

xe{0,1}".

(NLR)

Bertsimas and Sim [|23]] show that the non-linearity can be resolved by writing the inner
maximization problem as a linear program and dualizing it afterwards. This results in the
robust problem

min 'z + Z CiT; + p;
(ROB) i€[n]
st. (z,p,2) € F*P 2 € {0,1}"

with
Ax <b

JFROB _ (x,p,2)|p; + 2 > &x; Vi € [n]

ze€[0,1]",p € RY;, 2z € Ry

Figure gives a visual idea of why ROB is an equivalent reformulation of NLR. In the
graphic, we are given a nominal solution x € {0,1}" and depict the right-hand side of the
robustness constraints p; + z > ¢&x; as non-increasingly ordered bars of height ¢;x;. For
I' = 3.5, we choose z equal to the [I'] = 4 highest value ¢;z; and p; as small as possible while
fulfilling the robustness constraints, i.e., p; = (¢z; — z)+. Then the orange area above the
bar at height z corresponds to the term 3, p; and the blue area below corresponds to I'z,
which together constitute the robust part of the objective in ROB. Furthermore, the colored
area matches exactly the |I'| largest bars and a (I" — |I'|)-fraction of the next largest bar. As
these bars correspond to the set S U {t} C [n] that maximizes the inner problem of NLR, we
indeed have

3.1 Problem Statement 23
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Iz + Z pi = Su?tl}ag[n]: <(F — |I]) &y + Zg@%)
€l gi<(r)ees e

for our choice of z and p. We will see later in Section [5.5]that choosing 2 and p as above is
always optimal.

Although ROB only has n additional constraints and n + 1 continuous variables, solving ROB
directly as an MILP can require much more time than solving the nominal problem NOM. For
example, we observe in our computational study that Gurobi already struggles to solve
robust bipartite matching instances for graphs with 100 nodes within a time limit of an hour,
although we have a compact perfect formulation for the nominal problem (cf. Section 4.6.5).
This degradation in performance is due to the weakness of the formulation FROB. In fact, the
following example shows that the integrality gap of FROB can be arbitrarily large, even if we
have a perfect formulation for the nominal problem.

Example 6. Consider the trivial problem of selecting the cheapest of n € Z~ elements

min E C; Xy

i€[n]

S.t. Z Tz, =1
i€[n]
z e {0,1}".

The above formulation is perfect, since we have a totally unimodular constraint matrix and
an integer right-hand side (cf. Section [2.4.3)). Therefore, every optimal integer solution is
also an optimal continuous solution, yielding a perfect integrality gap of zero. However, if we
consider an instance of the uncertain counterpart ROB with ¢ = —1, é = "T_l, andT"'=1

minz+2pi—aji

i€[n]
S.t. Z x; =1
i€[n]
n—1 .
pitz2> x Vi € [n]

T € {0, 1}n ,D € Rgo,z c RZO?

n’ '

then (z,p, z) = (1 .., 10,...,0, %) is the unique optimal continuous solution of value

-1+ ”7:21, while the objective value of every integer solution is —%. Hence, the integrality
: . . N e
gap as defined in Section |2.4.3|is “”12’”’ =n—-2+ %, and thus grows towards infinity

asn — oo.
The example indicates that optimal continuous solutions for ROB tend to be highly fractional.

Figure 3.2 shows the choice of z for the integer and continuous solution and visualizes that
we can cover the right-hand sides ¢;x; of the robustness constraints with a fairly small value
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(a) Optimal choice of z for an integer solution. (b) Optimal choice of z for the continuous solution.

Figure 3.2. Difference between optimal integer and continuous solutions of Example @

of z when choosing fractional z;. Instead of paying the highest deviation ¢; of an element z;
that is part of the solution, we only pay the deviation of a fractional element. On the one
hand, this structure of optimal continuous solutions intuitively proves the concept of robust
optimization: Instead of choosing extreme solutions, the model favors diverse ones, which
are less sensitive to uncertainty. On the other hand, this trend towards highly fractional
solutions is problematic for the performance of MILP solvers (cf. Section [2.4.3)). This points
to an inherent challenge in solving robust optimization problems.

3.2 Related Work

In the literature, several approaches for solving [ROB| have been developed and evaluated.
Bertsimas et al. as well as Fischetti and Monaci test the practical performance of
the compact reformulation @l compared to a separation approach using an alternative
formulation with exponentially many inequalities, each one corresponding to the objective
coefficients ¢’ of a scenario from the budgeted uncertainty set (cf. Section [5.7.2)). Unfortu-
nately, the alternative formulation is, despite its size, theoretically as weak as FR°B, Joung
and Park propose cuts that dominate the classic scenario inequalities. These cuts can
be separated by considering the value of the inner maximization problem in[NLR]as a sub-
modular function in 2 and greedily solving a maximization problem over the corresponding
polymatroid (cf. Section[5.7.2). Atamtiirk [[9]] addresses the issue of the weak formulation by
proposing four different problem-independent strong but considerably larger formulations
(cf. Section|5.7.2). The strongest of these formulations is theoretically as strong as possible,
as it preserves the integrality gap of the nominal problem. In particular, this implies that it
describes the convex hull of robust solutions

CROB — conv ({(m,p, z) € ]—"RoB‘x € {0, 1}”})

3.2 Related Work
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if the corresponding nominal formulation
FNOM — (2 € [0,1]"| Az < b}

itself equals the convex hull of nominal solutions
CNM — cony ({x € ]:NOM’:U € {0, 1}"}) .

A famous approach to completely avoid issues arising from the weak formulation FROB is
to solve ROB via resorting to its nominal counterpart. We already noted above that for
a fixed x € {0,1}", it is optimal to choose z equal to the [T'] largest value ¢;z;. Hence,

there always exists an optimal solution (z, p, z) to ROB such that z € {¢, ¢4, ...,¢é,}, with
¢o = 0. Bertsimas and Sim [[22]] use this observation together with the fact that the optimal
value p; = (¢z; — 2) " equals (¢ — )" x; for binary z;. When fixing z € {&y,é1,...,é,}, the

term (& — z)+ x; becomes linear, and thus ROB can be written as an instance of its nominal
counterpart

min 'z + Z (Ci + (él — Z)+) X;
s.t.x € FNOM 2 e {0,1}".

Hence, solving ROB reduces to solving up to [{é, é1,...,é,} < n + 1 nominal subproblems
NOS (z), implying that the robust counterpart of a polynomially solvable nominal problem is
again polynomially solvable. However, if the number of distinct deviations [{¢, ..., &, }| is
large, then solving all nominal subproblems may require too much time. Hence, it is beneficial
to discard as many non-optimal choices for = as possible. For I' € Z, Alvarez-Miranda et al. [@]
as well as Park and Lee showed that there exists a subset Z C {¢y, ..., ¢é,} containing an
optimal choice for z with |Z] < n+2—T, or |Z| < n+1—T respectively. This result was later
improved by Lee and Kw, who prove that Z can be chosen such that | Z| < {%W +1
holds. Hansknecht et al. [[53]] propose a divide and conquer approach for the robust shortest
path problem that also aims to reduce the number of nominal subproblems to be solved.
Their algorithm, which can as well be used to solve general problems ROB, successively
divides the set of deviations {¢y, ..., ¢, } into intervals and chooses in each iteration a value z
from the most promising interval for solving the nominal subproblem NOS (z). Furthermore,
non-optimal choices of z are identified and discarded by using a relation between the optimal
objective values of NOS (z) for different = (cf. Section|5.6.1.1)).

3.3 Contribution and Outline

Roughly summarized, there are two general directions for solving ROB|in the literature:
strong formulations on the one hand and fixing z on the other hand. Our first approach
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for solving ROB, presented in Chapter [4] follows the first direction by proposing the new
class of recycled inequalities for ROB. These inequalities are based on valid inequalities for
the nominal problem and thus enable us to use model constraints as well as cuts
for well studied nominal problems a second time. Our proposed inequalities are easy to
compute and often define facets ofm that is, they are among the best inequalities to
describe the feasible solutions of ROB. After a theoretical analysis of recycled inequalities,
we conduct an extensive computational study on carefully generated robust versions of
classical combinatorial problems and real-world instances from MIPLIB 2017 [[49]l. Our study
verifies that recycled inequalities can substantially strengthen the formulation@l, which is
expressed by drastic reductions of the integrality gap. Together with the efficient separation
of recycled inequalities, this leads to a significant improvement of solving times.

Our second approach for solving ROB, presented in Chapter [5] combines the two general
directions from the literature, that is, implying restrictions on the variable z and using strong
formulations. However, instead of tentatively fixing z € {é,...,é&,} to single values and
solving many nominal subproblem[NOS (z)] we only restrict z to a subset Z C {é,...,¢&,}. We
show that such restrictions can be used to obtain a stronger formulation for ROB. Moreover,
we demonstrate that the variable z and restrictions on it have a large impact on the structure of
optimal solutions to ROB. We use these insights in a branch and bound approach in which we
branch on the variable z. We again perform an extensive computational study, which reveals
that our branch and bound algorithm outperforms the current state-of-the-art approaches by
far. To the best of our knowledge, this is the first computational study that compares many
sophisticated approaches from the literature on a broad set of instances. Moreover, we show
that our structural results can be used to improve most of these approaches substantially,
highlighting the relevance of our findings also for future research.

The results from Chapter[4have been partially published in the proceedings of IPCO 2023 [29].
An extended paper is currently in revision at Mathematical Programming [[30]]. Most results
from Chapter [ have been published at Mathematical Programming Computation [[31]]. This
thesis extends the published work with results on Lagrangean relaxations from Sections
and the warm starting described in Section [5.6.6] and an updated computational
study in Section[5.7} All described results have been produced by myself together with my
supervisors Christina Biising and Arie M.C.A. Koster.

All algorithms proposed in this part are implemented together along with many approaches
from the literature and are freely available online [[46]]. Furthermore, all generated test
instances are published and can be used for future benchmarking of algorithms for robust
optimization with budgeted uncertainty [[4§]l.

3.3 Contribution and Outline
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Recycling Valid Inequalities

We have seen that the standard reformulation FROB is weak, which can lead to a poor
performance of MILP solvers. In this chapter, we propose the new class of recycled inequalities
to compensate for this weakness. For this, we first introduce a strong bilinear formulation,
which will be an invaluable foundation for the results in this first part of the thesis. Afterwards,
we analyze recycled inequalities both theoretically and experimentally.

4.1 A Strong Bilinear Formulation

Before we propose our approaches for solving let us first recall why formulation@l
is weak. In Example[f] we have seen that choosing fractional values for z; is favorable for the
continuous relaxation, even if [FNOV]is a perfect formulation, as we are then able to meet
the inequalities p; + z > &x; with a small value of z and p; = 0. This structural advantage
of the continuous relaxation does not carry over to the nominal subproblems for
fixed z. Here, optimal integer solutions are also optimal for the continuous relaxation if
FN_UM] is perfect. This implies that the formulation is strengthened during the transformation
from ROB to NOS (z). Indeed, the inequality p; > (¢ — z)" 2;, which is the basis for the
substitution p; = (& — z)+ x;, is not implied by the robustness constraint p; + z > &ux; for
x; ¢ {0, 1}. Instead, it is equivalent to p; + zz; > ¢éx; for z; € [0, 1], given that p; > 0.

The bilinear inequality p; + zx; > ¢;x; is valid for all integer solutions of ROB, since it becomes

p; > 0 for x; = 0 and is equivalent to the original constraint for x; = 1. The multiplication of

z with z; has the benefit that choosing a lower value for z; also reduces the left-hand side.

Thus, it is no longer possible to cover all inequalities p; + zx; > ¢x; with a small value of

z and p; = 0. When applying the bilinear inequalities to Example [6, we would now choose
R

z="1forz = <1 . %), leading to the same objective value as the integer solution. In
fact, we will see in the following that when applying the bilinear problem

min 'z + Z (C,‘l’i —i—pi)
(BIL) i€[n]
s.t. (z,p,2) € PP 2 € {0,1}"

over the bilinear formulation

PP = { (2,p,2)
zeFNM p R

p; + zx; > Cwi Vi € [n]
go, z e Rzo
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together with a perfect nominal formulation 7N°M, then the optimal integer objective value
always equals the optimal continuous objective value. Note that we could also multiply the
variable p; with z; in order to obtain an even stronger formulation with p;z; + za; > éx;.
However, as we would never use this strengthening in this thesis, we only consider FPI for
the sake of simplicity.

In order to show the strength of the bilinear formulation 72", we compare it to the strong
formulations of Atamtiirk [[9]]. Atamtiirk proposes four problems RP1 - RP4 that are equivalent
to ROB, using different (extended) formulations FRF!, ... FRP4 The theoretical strength
(cf. Section of the four formulations exceeds that of FROB by far. More precisely, when
neglecting trivial cases, we have proj (.FRP“) C proj (]—"Rpl) = FRP2 — proj (FRP3) C JFROB,
The problem

min 'z + Z Ci i + Di
(RP4) i€[n]
s.t. (z,p,2,w,\) € FRP* € {0, 1}”X(”+1)

over the strongest formulation

> =1

keln],

A < Apb vk € [n],

wF <\ Vi e [n], k€ [n],

ken

‘FRP4: (x7pvzaw’)‘) e[ ]O 9

z > Z Cr Ak
keln],

Di = Z (& — ék)—i_wf Vi € [n]
keln],

T € [0, 1]71 ,D € RTZLO,Z (S RZO,

is especially interesting. Remember that we defined ¢y = 0. Then for every vertex (z, p, z,w, \)
of the polyhedron FRP4, we have ;- = 1 for an index k* € [n], and A\, = 0 for k # k*.
Choosing A in such a way reduces RP4 to solving the nominal subproblem NOS (& ). Thus,
RP4 essentially combines the nominal subproblems NOS (z) that are solved in the Bertsimas
and Sim approach for all possible values z € {¢, ..., é,} into one problem. As a result, RP4
preserves the integrality gap of the nominal problem. That is, if there exists an « > 0 such
that the integrality gap of is bounded by « for all objective coefficients ¢ € R", then
the integrality gap of RP4 is also bounded by « for all ¢,é € R and T' > 0 [9]]. Accordingly,
formulation 7R is the strongest possible polyhedral formulation, as we cannot improve the
integrality gap beyond that of NOM without changing the nominal formulation FNOM,
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The disadvantage of all formulations FRP!, ... FRP4 is that they become too large for practical
purposes, as we will see in our computational study in Section[5.7] In contrast, formulation

f‘ROB

FPBIL is non-linear but has the same size as the original formulation and is at least as

strong as FRP4, as stated in the following theorem.
Theorem 7. We have FBIL C proj (]:RP 4).

Proof. Let (z,p, z) € FP and assume without loss of generality that 0 = ¢g < é&; < ... < &,
holds. First, consider the case in which we have z < ¢,,. Then there exists an index j € [n — 1],
and a value € € [0,1] with z = &¢; + (1 — ¢) ¢j41. We define A\, = 0for k ¢ {j,j + 1} and
\j = e aswell as \j11 = 1 — e. Furthermore, we set wf = Mz, for all i € [n], k € [n], and
show that (z,p, z,w, \) € FRP4, The first five constraints of formulation FRP4 are trivially
satisfied by the definition of ¢, A\, and w. For the last constraint, we have

Yo@—ttul =@ - Temi+ (G —e)T (1—e)m

for all i € [n], where equality (*) holds since (¢; — ¢;) and (& — ¢;4+1) are either both non-
positive if we have i < j or both non-negative if we have i > j + 1.

For the case z > ¢&,, we define \;, = 0 for k € [n — 1], and A, = 1 as well as w} = Mz,
for all i € [n] and k € [n],. Again, (z,p,z,w,\) satisfies the first five constraints trivially.
Furthermore, we have

Yoot wf = (6 — )t Wl =0<p;
keln],

and thus (z, p, z,w, \) € FR%* which completes the proof. O

It directly follows that the bilinear formulation also preserves the integrality gap of the
nominal formulation.

Corollary 8. If there exists an o > 0 such that the integrality gap of NOM is bounded by «
for all objective coefficients ¢ € R", then the integrality gap of BIL is also bounded by « for all
c,teR"and T > 0.

Although formulation 7B is strong and compact, its bilinearity is rather hindering when
solving instances in practice. Nevertheless, this formulation will be the theoretical foundation
for the approaches that we develop in this as well as the following chapter.

4.1 A Strong Bilinear Formulation 31
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4.2 Recycled Inequalities

In this section, we show that structural properties encoded in valid inequalities for the
nominal problem can be used to carry over the strength of the bilinear formulation [FP to a
linear formulation.

Multiplying linear inequalities with variables as an intermediate step in order to achieve
a stronger linear formulation is not a new approach. For the Reformulation-Linearization-
Technique by Sherali and Adams [[89]], one multiplies constraints with variables and linearizes
the resulting products afterwards via substitution with auxiliary variables. When taken to the
extreme, where all constraints are multiplied with all possible combinations of variables, one
obtains a formulation with exponentially many variables and constraints, whose projection
on the original variables equals the convex hull of integer-feasible solutions. Our approach
is different in the sense that we don’t directly linearize the bilinear inequalities, and thus
don’t create auxiliary variables. Instead, we combine several of the bilinear inequalities in
order to estimate the non-linear terms against a linear term, using a valid inequality for the
corresponding nominal problem.

Theorem 9. Let 3¢, miz; < 7o be a valid inequality for with € Rggl. Then the
inequality
oz + Z TiDi = Z TiCiT; (4.1)
i€[n] i€[n]

is valid for|CFP]
Proof. Summing the bilinear constraints p; + x;z > &x;, each with a weight of 7;, we obtain

domipi+ Y mwiz > Y miix,

i€[n] i€[n] i€[n]

which is a valid inequality for CRO® due to 7 > 0. Now, since z > 0 holds, we have
Zie[n} miriz < myz, and thus the validity of li O

As we reuse the valid inequality 3., miz; < 7o to strengthen the formulation @ we
call inequality (4.1) the recycled inequality of =,cp, miz; < m. In accordance with the
requirements of Theorem EI, we call 3,1, mizi < mo recyclable if it is valid for CNOM and
T > 0.

In the following, we will only consider nominal inequalities 3=;c, miz; < mo consisting
exclusively of variables with uncertain objective coefficients, i.e., m; = 0 for all i € [n]
with ¢; = 0. We call inequalities and their corresponding coefficients = with this property
uncertainty-exclusive. Note that uncertainty-exclusive inequalities are the only interesting
ones for recycling, since we can always recycle > ;i\ ;3 Tizi < mo when ¢; = 0 holds. While
this inequality is weaker than }_,c(, miz; < m for the nominal problem, the corresponding
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recycled inequality is stronger. This is because we remove 7;p; from the left-hand side while
the right-hand side does not change due to m;¢;x; = 0. By focusing on uncertainty-exclusive
inequalities, we obtain the following statement.

Proposition 10. Let 7 € R"*! be uncertainty-exclusive. If oz + Zie[n] TP > Zz‘e[n} w6 1S
valid for CROP, then ", c(,,) mixi < 7o is a recyclable inequality.

Proof. First, note that the validity of 7oz + Zie[n} TiP; > Zie[n} m;¢;x; already implies © > 0,
since p and z are unbounded while the right-hand side Zie[n} m;C;z; 18 not. Second, note that
¢iz; = 0 implies m;z; = 0 for all 7 € [n] due to the uncertainty-exclusiveness. Assume that
Sien Titi < T is invalid, i.e., there exists a vector 7 € CNOM with Y ic[n Tidi > mo. Then
there exists an index i € [n| with &%; > 0, as otherwise my < > icn) it = 0. We define
(z,p, %) € CROB
Then we have z > 0 and m;p; = m; (é; — Z) &; for all i € [n], which implies

with Z = min {&i € [n],&3; > 0} as well as p; = (& — 2)1 &, for all i € [n].

i€[n] i€[n] i€[n] i€[n]

T2 + Z miD; = 2 (710 — Z ma:,> + Z TG T < Z T CiLs,
and thus proves that 7z + Zie[n] ™iPi > Eie[n] m;¢;x; cannot be valid. O

The above shows that we can actually obtain all non-dominated valid inequalities of the form
T0Z + D ic[n) Tili = Y ic[n) TiCii Dy recycling a valid nominal inequality. We also get a first
understanding of the strength of the recycling approach. If there exists an inequality of the
same form as the recycled inequality that is stronger than the recycled one, then this
does not mean that the recycling procedure is weak but that there exists a better nominal
inequality to recycle.

In order to see in which cases recycled inequalities are useful, let us consider how they
compare to the bilinear inequalities over the course of their construction. First, note that the
sum of the bilinear inequalities is weaker than the bilinear inequalities themselves. Hence,
when separating a recycled inequality to cut off a fractional solution (z, p, 2) our
inequality to be recycled should only support indices i € [n] with 7; > 0 for which the bilinear
inequality p; + Z;Z > ¢;4; is violated or tight. A second potential weakening occurs when
applying the estimation ;) mxiz < moz. This implies that recycling >, miz; < 7o is
especially interesting if it is binding for (Z, p, Z).

Reconsider Example |§|, for which we can recycle the valid inequality > ic[n) i < 1 implied by

> icin) i = 1. The recycled inequality z + >Z;cp i = Yicp) ™5 n=ly vields z + Yicm Pi = —1,

and thus the optimal objective value of the continuous relaxat1on is now equal to the optimal
integer objective value. This intuitively highlights the strength of the recycled inequalities
in the case where both properties, a binding recyclable valid inequality and the violation
of corresponding bilinear inequalities, coincide. In the next section, we will investigate the
strength of recycled inequalities from a polyhedral point of view.

4.2 Recycled Inequalities
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4.3 Facet-Defining Recycled Inequalities

In this section, we show that recycled inequalities often define facets of the convex hull of
the robust problem @ Recall that facet-defining inequalities are the best inequalities
to describe a polyhedron P C R"™ and are characterized via the dimension of their face
F(r) = {ae P‘Zie[n] mix = m}. That is, dim (F (r)) = dim (P) — 1 holds for a facet-
defining inequality Y ic[n) i < mo (cf. Section. Consequently, in order to prove that
recycled inequalities can be facet-defining, we first determine the dimension of CROB. For the
sake of simplicity, we assume for the rest of this chapter that the solution sets M and CROB
are non-empty.

Lemma 11. We have dim (cROB) — dim (CNOM) T4l

Proof. According to Proposition 5} the number n — dim (P) equals the maximum number of
linearly independent equations that are met by all elements in a polyhedron P C R”. Let
Yicn) (Wii + wnyipi) + want1z = wo be satisfied by all (x, p, z) € CROB_ Since p and z can be
raised arbitrarily and CROB £ (), we have w,, 11 = - - = wa,41 = 0, and thus > iein] WiTi = Wo-
Hence, the equations that are met by all (z, p, z) € CROP are exactly the equations that are

CNOM

met by all z € , which implies

dim (CROB) =2n+1- (n — dim (CNOM)) = dim (CNOM) +n+ 1. O
Knowing the dimension of CROB, we are now able to study facet-defining recycled inequalities.
Remember that we only consider uncertainty-exclusive valid inequalities, as these are the only
inequalities yielding non-dominated recycled inequalities. The following theorem states the
dimension of a recycled inequality’s face based on the projection of the nominal inequality’s

face on the supported variables. Together with Lemma([11] this yields a characterization of
facet-defining recycled inequalities.

Theorem 12. Let }>;c(,) mx; < mo be a recyclable, uncertainty-exclusive inequality and let
S = {i € [n]|m; > 0}. Then the face of the recycled inequality has dimension
dim (proj (¥ (r))) + dim (C¥OM) + 145 — |5,

where F (7) is the face with respect to CN°M and proj is the projection on the supported variables
{z;|i € S}. Hence, the recycled inequality is facet-defining for CROB if and only if

dim (projs (F (r))) = |S| — 1

holds.
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Proof. There always exist dim (CNOM) +1+n—|9| affinely independent vectors (z, p, z) € CROB
satisfying with equality. To see this, let {xo, ... ,xdim(CNOM)} C CNOM be affinely
independent. For each j € {dim (CNOM)}O, we choose (z7,¢® 27,0), where é® 27 refers
to the component-wise multiplication, i.e., (¢ ® z7), = &ua]. By definition, (27,¢® 27,0) is

within CROB and we have

mo0 + Z e (é@ :cj)i = Z Wlézl‘z
i€[n] i€[n]

Additionally, we choose (z°,é® 2% + ¢7,0) for each j € [n] \ S, with ¢/ € R" being the j-th

unit vector. Again, this vector is within CR® and due to 7; = 0 it follows

w00 + Z T (é@:co +ej)i =7 + Z ﬂ'iéix? = Z méix?.
i€[n] i€[n] i€[n]

We extend the dim (CNOM) + 1 4+ n — |S| vectors above with a set of additional vectors
{(#7,p7,#7)|j € [k]} C CROB for some k € Z>;. We say that such an extension is valid
if the additional vectors satisfy the recycled inequality with equality and are affinely
independent together with the vectors above. Let &’ € Z>( be the maximum number of vectors
in a valid extension. In order to prove the theorem, we show that &’ = dim (projg (F' (7))) +1
holds. For this, we can restrict ourselves without loss of generality to extensions with binary
#. If # is not binary, then (7,7, 27) is a convex combination of integer-feasible solutions
within CROB, Convex combinations are a special case of affine combinations, and thus one
of these integer-feasible solutions must be affinely independent and can replace (%7, p/, 7).
Otherwise, (%7, 7, 27) itself would not be affinely independent.

To show &’ = dim (projg (F (7))) + 1, we claim that an extension { (7, 5/, 27)|j € [k]} is valid
if and only if the following four properties hold:

1. pl = (& — 3) & forall j e [k],i € S,

2. # > 0forall j € [k],

3. {projg (i7)|j € [k]} are affinely independent,
4. {3#|j € [k]} C F (m).

Assume that the claim is true. Then properties[3]and [ imply &’ < dim (projg (F (7))) + 1.
In order to prove k' > dim (projg (F (7))) + 1, let {#/|j € [dim (projg (F ()))],} C F (r) be
affinely independent in the components {z;|i € S}. These vectors fulfill properties [3]and [4}
and thus it suffices to construct 5/, 2/ for each j € [dim (projg (F (m)))], such that (7,57, 57)
satisfies properties |1|and [2 We choose 2/ = min {¢|i € [n],¢& > 0} and ﬁg = (& —2)" 5:f
for all i € [n]. Then (37,7, /) is by definition within CR® and satisfies 2/ > 0. Since 7 is
uncertainty-exclusive, we have 7; = 0 for all ¢ < 7/, and thus 5] = (& — /) &/ for all i € S.
Therefore, all (i, 7, 57) satisfy properties|1|to[2} and thus constitute a valid extension.
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It remains to show the equivalency between the validity of extensions and the properties
to[d] For this, let {(#7,7,27)|j € [k]} be a valid extension of arbitrary size k € Zx. Since we
can assume i/ € {0,1}" for all j € [k], we have ]5{ > (¢ — 37) 5:f foralli € [n]. If property
did not hold, then there would exist indices j € [k] and i € S with 7/ > (¢; — 27) #, and thus
m;ﬁf > 7 (6 — #7) i‘f , since m; > 0 holds for ¢ € S. This is a contradiction due to

w03 + Z mp] > mosl + Z T (cZ - z]) atj

= [n] i€ TL]

> Zﬂ'zszJer(clfzJ) 7

i€[n]
= Z ﬂ'icii‘i
1€[n]
The affine independency of the extension is equivalent to the linear independency of the
dim (CNOM> +n — | S| + k vectors obtained when subtracting (2, ¢ ® 29, 0) of all others. We
write these into the following matrix, using property [I]and with indices ordered such that

S={1,...,180}
m{—x? R L $]1_$(1)
xd — 20 7 — 20

(61— #9) :1:] — &Y

C1 (a:l - x?)

0 ... 0 (c|5|—z3> x| S| c‘s‘m‘s‘
1 0 p\]5|+1 - C|S|+1$|S|+1
A j 0 5j A 0
En (2, — ) Pl — énx,,
0 0 %

For each i € [n], we subtract row i from row n + ¢ with factor ¢; and obtain

Chapter 4

i —29 ...]0 0 i — a9

), — 7 &), —

_3imzd

0 2Ty

0 0 —3
[S]
j A ~j
1 0 P41 ~ GS1+17) 8141
f% — énff%,
0 ZJ
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We use the middle columns containing the unit vectors to eliminate the corresponding rows.

Furthermore, since &/ — 2V is linearly dependent of {xl g0 gdim(CNM) Q;O} due to the
dimension of CNOM  we can eliminate the first n rows in the last k& columns and obtain
m{—a:? B O L 0
vl —20 .10 ... 0]... 0
0 lo 0. —3F
0 0 ~H g
1 0 0
- 0
0 R I | U | I I Z

These columns are linearly independent if and only if 2/ # 0 holds for all j € [k] and
{projg (i7)|j € [k]} are affinely independent. Thus, if property [1| holds, then the affine
independency of the extension is equivalent to properties [2l and |[3] Since we have already
shown above that property [I]is implied, we know that the validity of the extension implies
properties[I]to[3} Conversely, properties[I]to[3]imply the affine independency of the extension.
Furthermore, given properties|1|and [2, we have

7T0§j + Z 7[',]55 = Z 7['161533 = TF()Zj = Z Wigj.f'z & Mo = Z ﬂ'ifg,
i€[n] i€[n] i€[n] i€[n]
and thus {i/|j € [k]} C F (r). Hence, property [l holds if and only if { (7,7, 27)|j € [k]}
fulfill the recycled inequality (4.1)) with equality. In summary, this shows that the validity of
the extension is equivalent to properties[l]to O

A powerful implication of Theorem[12]is that recycling an uncertainty-exclusive inequality
yields always a facet-defining inequality if dim (F' (7)) = n — 1 holds. This is because there
exist n affinely independent vectors satisfying >, [, 7z = mo, of which |S| must be affinely
independent when projected on the variables {z;|i € S}. Note that dim (F (7)) = n — 1
holds if F* () is either a facet of a full-dimensional polyhedron CNO™ or if 3¢, mix < 7o is
actually an equation with F' (1) = CN°M and dim (CNOM> = n — 1. This is summarized in the
following corollary.

Corollary 13. Let }~;c(, miz; < mo be a recyclable, uncertainty-exclusive inequality. The recycled
inequality is facet-defining for CROB if one of the following holds:

o CNOM s full-dimensional and F () is a facet of CNOM,

* dim (CNOM) =n—1and F (r) = CNOM,
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Contrary to first intuition, it is also possible to obtain facet-defining inequalities by recycling
weaker inequalities that are neither facet-defining nor equations. This is because the dimen-
sion of the face F' () can shrink by less than n — |S| when projected on {z;|i € S}. Thus,
inequalities defining low-dimensional faces can also yield facet-defining recycled inequalities
if m; = 0 holds for many ¢ € [n]. For example, consider an independent set problem on a
graph with nodes V' = [n]. For some independent set ] C V and an index i € V, let z; = 1 if
and only if i € I. If @ C V is a clique, then the clique inequality »,. »; < 1 is valid for all
independent sets. Furthermore, the inequality strictly dominates all inequalities >,/ z; < 1
with Q' € @ and it is facet-defining if and only if ) is a maximal clique with respect to
inclusion Section 3.9]. However, if ¢ > 0 holds for all i € @, then the recycled inequality
2+ Dieq Pi 2 Yieqr Citi defines a facet of the corresponding CRO® for all cliques Q' C Q.
This is because the projection proje (F (7)), that is S = @', contains {¢’|j € Q'} and thus
has dimension |Q'| — 1.

Note that the recycling of clique inequalities not only yields facet-defining inequalities for
the independent set problem but for arbitrary problems [ROB|as long as x; = 0 is not valid
for CNM for some i € Q. Other examples of interesting classical inequalities include odd
hole inequalities for the independent set problem and minimal cover inequalities for
the knapsack problem Section 7.1]. These are in general not facet-defining for their
respective nominal problems but yield facet-defining recycled inequalities for the robust
counterpart.

One now might raise the question whether the recycling of dominated inequalities is actually
of practical interest. After all, the resulting inequalities might not matter due to the special
structure of the objective function, with all p; having an objective coefficient of 1. The
following example demonstrates that it can be beneficial to weaken an inequality before it is
recycled.

Example 14. Consider the robust problem

min 2z + Z —x; + p;
1€[5]
s.t. 3z5 + Z x; <3
1€[4]
z4pi > Vi € [5]
z€{0,1}°,p € Ry, z € Rxo.
Choosing x = (%, cee %, 0), p=0,and z = % yields an optimal solution for the continuous
relaxation with objective value —%. The constraint 3z + 3 ¢y 2 < 3 can be recycled to
32+ 3ps + 2 i Pi = 3T5+ 3_cpq) Ti- After adding the inequality, an optimal solution is given
by z = (%, cee %, 0),p=1(0,...,0, i), and z = %, with an objective value of —%. Note that
we now choose p5; > 0 even though x5 = 0 holds. Since the bilinear inequality p5 + x5z > é5x5
now has a slack of 1, our observation from the last section suggests that it may be beneficial
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to drop x5 from the valid inequality for recycling. In fact, when recycling the dominated
inequality >,y 2; < 3 instead of the model constraint, we obtain 3z + 3 ;e Pi = Y ic[a) Ti
and an optimal solution is now given by z = (1,1,1,0,0), p = 0, and z = 1, which yields
an objective value of —1. Hence, by only recycling the dominated inequality, we are able to
strengthen the formulation such that an optimal integer solution is also an optimal continuous

solution.

After discussing the strong implications of Theorem [12] let us now consider its limitations.
The next example shows that it is indeed necessary that the inequality to be recycled is
uncertainty-exclusive.

Example 15. Consider the full-dimensional polyhedron

T1+ 22 + 23 <2
CROB — conv ({(l’,p, z) € {0,1}? x Réo }) ,

z+p; > cx; Vi€ [3]

with é; = é = 1 and é3 = 0. The constraint x; + z2 + x3 < 2 is facet-defining for the

CNOM "and thus meets all requirements of Corollarywith the exception that

corresponding
it is not uncertainty-exclusive. Indeed, the recycled inequality 2z + p; +p2+p3 > x1 + x5 is not
facet-defining, as it is dominated by the sum of the constraints z + p; > 7 and z + ps > xs.
Note that this does not change when recycling the corresponding uncertainty-exclusive

inequality z1 + z2 < 2 instead.

The observation in the example above is quite intuitive. While we can always transform
an arbitrary recyclable inequality into an uncertainty-exclusive one by dropping all z; with
¢ = 0, we loose information during this process and cannot expect to obtain a facet of CROB,
Less obvious is the importance of the dimension of the nominal polyhedron CN°M, which is a
prerequisite for Corollary[13] In the following, we study lower-dimensional problems, for
which we first consider another example.

Example 16. Consider the four-dimensional polyhedron with five variables

x1t+xo=1
stpi>a Viel2])

The inequality 221 + x5 < 2 defines a facet for the corresponding CNOM. However, the recycled

CROB — conv ({(x,p, z) € {0,1}* x ]R‘gzo

inequality 22+ 2py +ps > 221 + x5 is not facet-defining for CROB, as it is the sum of z+p; > z;
and z + p1 + p2 > x1 + x2, Where the latter is recycled from x1 + 25 = 1.

The example shows that in the lower dimensional case, inequalities recycled from facet-
defining inequalities are not necessarily facet-defining. Note that the mapping from the set
of recyclable inequalities to the corresponding recycled inequalities is a homomorphism in
the sense that the recycled inequality of >, (7} + 7?) x; < m§ + 72 equals the sum of the
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recycled inequalities of 3, (,, 7}z < mj and 3¢, mii < 3. As recycled inequalities are
proper inequalities, their sum is weaker than the separate inequalities and it is better to
recycle each inequality individually. This applies to the example, where 221 + x5 < 2 is the
sum of the recyclable inequality z; < 1 and the recyclable equation z; + z9 = 1. Although
both inequalities have the same face, recycling x; < 1 yields a facet-defining inequality,
while recycling 2z, + o < 2 does not. Hence, for lower dimensional CN°M, one cannot
decide whether recycling yields a facet-defining inequality by solely relying on the recyclable
inequality’s face.

However, we can eliminate equations from an inequality and recycle the resulting one,

which is equivalent for CNOM

. We call two inequalities 3¢, miai < 7y and 3, mirs < mo
equivalent for a polyhedron P if there exist equations > icn] whx; = wh, satisfied by all = € P,

such that {77’ cwh o wh } are linearly independent and Aoz’ + 3 (g Mw® = 7 holds for

some )\g > 0 and )\, € R with k € [/] Section 1.4.3].

Algorithmus 1 : Procedure for eliminating equations from .

Input : A recyclable, uncertainty-exclusive inequality 3¢, mjx; < 7 and equations
Siep whwi = wf for k € [(], satisfied by all = € CNOM, such that {«’,w!, ... &’}
are linearly independent

Output : An equivalent recyclable, uncertainty-exclusive inequality 3, mz; < mo with
{i € [n]lmi = 0} = ¢

1 Setm =7’

for k € [¢] do
Choose i* € argmin {

ie[n],wf;ﬁo,}

Uy
wk
%

Tk

Update 7w <+ 7 —
for i’ e {k+1,...,4} do

k/
’ / W
L Update w¥ «+ wF — Sk

return } ¢, T < mo

We use Algorithm to transform a recyclable inequality > ien] miz; < m, into an equivalent
inequality 3¢, mizs < mo that satisfies the conditions of Theorem For given equations
> ic] wlx; = wh, the algorithm performs a special Gaussian elimination on Dicn] i < -
We already noted above that having many zero coefficients is beneficial for obtaining facet-
defining recycled inequalities. Therefore, for each equation given by w*, Algorithmsubtracts

Ty

in line 4 a multiple 5~ of wk from 7 such that the coefficient ;- becomes or stays zero.

The index i* is chosen with respect to a bottleneck condition in line 3, which ensures that

;%

i 1s the multiple with the smallest absolute value for all i € [n] with wk # 0. This has

two desirable implications. First, if ; was positive before, then it will be non-negative after

subtracting Z:f wF. Second, if 7; was already zero before, then it will still be zero afterwards.

Hence, if 3¢, m: < m is recyclable and uncertainty-exclusive, then this also holds for the
resulting Zie[n} mix; < mo. After eliminating m;«, we make sure in line 6 that wi"i = 0 holds
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for all remaining equations such that :* will be different in every iteration. By doing so, we
guarantee that we have at least ¢ indices ¢ € [n] with 7; = 0 at the end of Algorithm [T}

The following proposition uses Algorithm [1]to generalize Corollary [13|for lower-dimensional
problems.

Proposition 17. Let ;¢ mix; < 7 be a recyclable, uncertainty-exclusive inequality such that
F (r) is either a facet of CNOM or F (1) = CNOM. Let furthermore { be the maximum number
of equations 3, wiwi = wg for k € [£, satisfied by all = € CNOM, such that {w’, wh, . wt
are linearly independent. Then Algorithm [I| computes an equivalent recyclable inequality
Yicn) Tii < mo whose recycled inequality is facet-defining for CROB.

Proof. Since the returned inequality > ¢, mizi < mo from Algorithm [1| is recyclable and
uncertainty-exclusive, it only remains to show that dim (projg (¥ (7))) = |S| — 1 holds for
S = {i € [n]|m; > 0} according to Theorem[12] Due to the choice of ¢, we have

, {n — dim (cNOM) —1, if F(r)=CcNoM

n — dim (CNOM) , otherwise.

Hence, there exists a set {xl, ot } C F (m) of affinely independent vectors. Let fur-
thermore 7" C [n] \ S consist of the ¢ indices * that were chosen in Algorithm [1] We
show that the vectors {proj m\T (zb),...,proj [m\T (x”_z)} are affinely independent, i.e.,
dim (proji,r (F (7)) > n—|T|~1. Since § C [n]\T holds, this implies dim (projs (F (r))) >
|S| — 1. Furthermore, since the equation induced by 7 is only on the variables {z;|i € S}, we
have dim (projg (¥ (7))) < |S|, which then proves the proposition.

Assume that the projections projy,;\r (z7) are not affinely independent. Then there exist
coefficients A € R"* with \ # 0, Yjem—gAj =0, and 3 e,y )\jxg =0forallie [n]\T.
Consider a fixed but arbitrary index i* € T Since i* was chosen in Algorithm[I] there exists
an equation ¢, wiw; = wf with wfi # 0. Without loss of generality, we can assume wf. = 1
and obtain
A

i€[n]\{i*}
for all j € [n — ¢], and thus

Z /\jzvg*: Z Aj (wlg— Z wfxf)
i€ }

JEm—] JEMm— n]\{i*
= wlg Z Aj— Z wf Z /\j:vg =0.
NS i€[n\{i*}  j€[n—{
=0 =0
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However, as this applies for all i* € T', we have 3.,y )\j:p{ = 0 for all 7 € [n]. This implies
that the vectors {xl, . ,x"“} are affinely dependent, which contradicts their choice and
completes the proof. O

Note that we do not always know the dimension of CNOM in practice, let alone all equations
>ic] whr; = wh. We tested Algorithmusing the already present equations in the constraint
matrix Az < b of the robust instances generated from the MIPLIB 2017, which we use in our
computational study in Section[4.6.7} Interestingly, we observed no improvement in the dual
bound provided by the continuous relaxation compared to the setting in which we didn’t use
Algorithm [I} Thus, Algorithm [T]is more of a theoretical tool for Proposition

Now that we have established a good theoretical understanding of the strength of recycled
inequalities, we discuss in the next section how to use them in practice.

4.4 Separating Recycled Inequalities

In the previous section, we have seen that recycling can yield a vast number of facet-defining
inequalities. For example, in the case of the independent set problem, every clique inequality
can be recycled to a facet-defining inequality. Therefore, potentially exponentially many
facet-defining recycled inequalities exist, which raises the need for an efficient separation.

4.4.1 Separation of Recycled Constraints

A straightforward separation approach is to recycle the constraints Az < b of the nominal
problem. Given a row ;¢ ajiz; < b; of the constraint matrix, we first remove all negative
entries on the left-hand side. Since the variables z; are binary,

Z aj;x; < by — Z aj;

i€[n]:a;;>0 i€[n]:a;;<0

is a recyclable inequality for We may either add the corresponding recycled inequalities
directly to the formulation [FRO%| or precalculate and store them for later separation during
branch and cut. In both cases, we restrict ourselves to inequalities with

Z aj; > bj — Z Qji,

i€[n]:a;;>0 i€[n]:a; <0

as the corresponding recycled inequality is otherwise dominated by the robustness constraints
p; + z > ¢x;. When using the precalculated recyclable inequalities to cut off a fractional
solution (%, p, 2) € FROB, we also make sure to only include variables z; with &i; — p; > 0.
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This maximizes the violation 3, mi (¢;Z; — pi) — moZ of the recycled inequality. Accordingly,
we iterate over every row in the constraint matrix Az < b and recycle

> wwisbhi— >, 4
i€[n):a;;>0, i€[n]:a;; <0
& —p; >0
if the resulting recycled inequality is violated. We will see in our computational study that
this simple approach already improves the solver’s performance drastically in many cases.

4.4.2 Separation of Recycled Cuts

Another approach is to benefit from the research on the nominal problem and recycle well
studied cutting planes, i.e., inequalities that are valid for the convex hull M but not
for the continuous relaxation Let IT C R’ggl be such that Zie[n] mx; < mo is a
recyclable inequality for all 7 € II. When separating inequalities to cut off a fractional
solution to the nominal problem # € FNOM  we usually search for a = € II with positive
violation }~;cp,) m@; — mo > 0. When separating recycled inequalities for a given solution
(#,p, %) € FROB we require Sien i (€ii — Pi) — moZ > 0 instead. Note that the coefficients
¢;¥; — p; and 2 are fixed in this case. Therefore, the same algorithms for finding a violated
nominal inequality can be applied for separating violated recycled inequalities, provided these
do not rely on some special structure of the objective function of the separation problem. In
our computational study, we will test a heuristic separation of recycled clique inequalities
for the robust independent set problem. We will show that these facet-defining recycled
inequalities improve the formulation significantly.

4.4.3 Exact Separation via Recycling Combined Constraints

An exact separation of violated recycled inequalities is A/P-hard in general. For example, in
the case of recycled clique inequalities, an exact separation requires solving the A/P-hard
maximum weighted clique problem [59]]. However, we show below how we can separate
recycled inequalities from valid inequalities for 7N°M in polynomial time in the size of the
constraint matrix Ax < b via solving an LP. In particular, if we already know the convex hull
of the nominal problem, i.e., CNOM = FNOM 'then an exact separation of recycled inequalities
can be done in polynomial time. To see this, recall that an inequality ;) miz; < mo is valid
for FNOM if and only if it can be expressed as a conic combination of the rows in Az < b
as well as the box constraints z; < 1 and —z; < 0 (cf. Section [2.4.5). That is, we have
Vi — Wi + 2 jem) @iAj = miand 3Zicp, Vi + X jem) biA = mo for some A € RY,, u, v € RY,,.
Hence, there exists a recyclable inequality for 7N°M whose recycled inequality is violated
by (&, p, %) € FROB if and only if the following separation LP has a solution with positive
objective value
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max Z i (&% — Pi) — moZ

i€[n]
S.t.v; — Wy + Z aji\j = T Vi € [n]
(SLP) j€[m]
Z Vi + Z bj\j = mo
i€[n] Jjelm]

e R’Z”gl, A€ RZy, pu,v e RL,.

As the optimal objective value of SLP is either zero or unbounded due to arbitrary scaling,
we normalize the recyclable inequality >, miz; < mo by fixing mo = 1. This imposes no
restriction on finding violated recycled inequalities, as we always have 7y > 0 for all relevant
recyclable inequalities and can thus achieve 7wy = 1 via scaling. This is because the left-hand
side >ic[n) Ti%; IS non-negative, and thus 7y = 0 implies z; = 0 for all 2 € FNOM and i € [n]
with m; > 0. In this case, the right-hand side of the recycled inequality ;¢ mi¢;Z; would
always be zero, which renders the inequality void.

Remember that recycling is a homomorphism on the set of recyclable inequalities. Hence,
recycling a conic combination of inequalities, as given by a solution to SLP, is only reasonable
if some of the combined inequalities are not recyclable themselves. Accordingly, if we have
7 = n! + w2, with 7!, 72 linearly independent and both define recyclable inequalities, then it
is better to recycle each of these inequalities separately. In practice, this is achieved by fixing
7o = 1, as a combination of 7' and 7? is never a vertex of SLP and can only be an optimal
solution if the violation of their respective recycled inequalities is equal.

We observe two issues when using SLP for separation in practice. First, solving SLP is
relatively time consuming if the number of inequalities is large. Second, we obtain only one
optimal solution when solving SLP, and can thus only separate one recycled inequality at a
time. However, MILP solvers usually perform better when several cuts are added at once.
The following proposition helps in this regard, showing that we can partition the constraints
into sets that can be considered independently for combination. Doing so, we can solve
one smaller LP for each set of the partition, yielding multiple (possibly violated) recycled
inequalities within the same separation round.

Proposition 18. Let A = (a;;) jelml icln] be the left-hand side of the constraints Ax < b (not
including 0 < x < 1) and let G = (V,E) be the graph with nodes V' = [m| as well as
edges £ = {{j,j’} € (‘2/)’3@ €n]:a; <0< aj/i}. Let {C1,...,Cx} C 2V be the connected
components in G. Then every inequality that is recycled from a valid inequality for FNOM is
dominated by inequalities recycled from recyclable inequalities of the form

2 (”f RS Wﬂ') zi < Y v+ D bk (4.2)

i€[n] j€Ce i€[n) JEC,

with ( € [k], X € RZ, and pf,v* € RL,,.
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Proof. We write Zie[n] mx; < o as

> (w—uﬂr > aij) 7 < Yo vit ) b,

i€[n] j€[m) i€[n] J€[m]

which is a conic combination of Az < b and —x < 0 as well as ¢ < 1 with coefficients
A € RYy, p,v € RE,. We show that if > ic[n) Ti%i < T is recyclable, then it is also a conic
combination of the recyclable inequalities from the statement.

Note that we can assume v; = 0 or u; = 0 for all ¢ € [n], since we can otherwise decrease
both and then recycle Zie[n] mix; < T — Zie[n] min {v;, u; } instead. We also assume v;; =
+
(— Zje[m] aji/)\]) for all i’ € [n], as otherwise Zie[n] mix; < o is a combination of x; <1
+
and the recyclable inequality obtained by decreasing v;/ to (— > ieim] aji’)‘j) . It follows that
py = 0holds for all i/ € [n] with 3

in this case. If > jefm] jirAj = 0 holds, then we can assume pu; € {O, >

ajiAj < 0, because we have vy = — 37 cr, ajirAj > 0
jelm) aﬂ/)\j}. This
is because both values result in recyclable inequalities and all values in between imply that

JE€m]

> ic[n] TiTi < mo is @ convex combination of the two inequalities obtained by choosing p;; = 0
OF i = Y jcqm) @jirAj- We conclude that we only choose p;x > 0 or vy > 0 if we want to

+
obtain w; = 0. This implies uy = 0 for 7 > 0 and p; = (Zje[m] aﬁ-u\j) for m;y = 0.

. + .
Together with v, = (— > jem] i )\j) from above, we can rewrite Zie[n] mix; < mo as

> ((— > “J’i)‘ﬂ') t g[:]“ﬂ’\j) DY (Z aij) i

i€n] jeim) i€[n]:m;=0 \j€[m]
JF
< Z (— Z aﬂ)\j) + Z )\jbj.
i€[n) j€lm] J€[m]

Note that 3¢, aid; and 3-,c¢, aji\; have the same sign for all i € [n] and ¢ € [k].

Otherwise, there existed i € [n] and ¢, ¢ € [k] with 37, aji\; < 0and 3;cc, azid; > 0.

Then there exists j € C; and j/ € Cp such that aj; < 0 < a;; holds. However, this

implies that constraints j and j' are adjacent in the graph G, and thus ¢ = ¢'. It follows
+ + )

(j: > jcim] aji)\j) = Dtelk <j: > jec, aji/\j) , and thus we can rewrite » ;¢ Tiz; < 7o

again as

> (Z (Vf—ﬂf+ > aj,Aj) fﬁz) <> (Z ity bﬂj>,

telk] \i€[n) J€Cy elk] \i€[n] 7€Ce

+ +
with pf = (Zje()g a]‘i)\j) for m; = 0 and pf = 0 for m; > 0 as well as v} = (— Y jec, a]‘i)\j) .

Thus, the above inequality decomposes into the k inequalities (4.2)), all of which are recyclable
since vf — pif + "¢, ajiA; > 0 holds by the definition of v*, zi’. O
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In the special case where all constraints are recyclable, the graph G from the proposition
above contains no edges. Thus, we don’t have to consider any combinations of constraints
but can solely rely on recycling constraints as in Section 4.4.1

Corollary 19. Let all constraints in Az < b be recyclable. Then every inequality that is recycled
from a valid inequality for FNM is dominated by the recycled inequalities from Y. ajiz; < b;
for j € [m]and I C [n].

In the case where we have FNOM — CNOM and all constraints are recyclable, the above
corollary shows together with Proposition [10|that we can separate inequalities of the form
Tz + Zie[n] P > Zie[n} m;¢;x; exactly in linear time. Given such favorable conditions, one
might ask whether we even obtain the convex hull CR® by separating recycled inequalities.
This seems especially plausible since FNOM = ¢NOM implies that ROB can be solved in
polynomial time according to the famous result of Bertsimas and Sim [22]]. However, the
following example shows that we do not obtain CRO® for a robust bipartite matching problem,
although all constraints are recyclable in this case and we have FNOM = CNOM for the bipartite
matching polytope Section 11.1].

Example 20. Consider a complete bipartite graph G = (V, E) with V' = {1,2} U{3,4} as well
as E ={e1,...,ea} = {{1,3},{1,4},{2,3},{2,4}}. The convex hull of the robust weighted
matching problem with variables z; € {0,1} and deviations ¢; = i for every ¢; € E is

z1+x2 <1
1 +x3 <1
CROB = conv (:L‘,p, Z) S {0, 1}4 X R;o ro+x4 <1

r3+x4 <1

pi+2z>¢x; Vie [4]

We use PORTA to compute a representation of CROB for this problem and see that the
inequality ps + p3 + 2z > 25 + w3 is facet-defining for CROB, The validity is easily verified,
because the inequality is implied by ps + 2 > 225 for 3 = 0 and by p3 + 2 > 3z3 for 3 = 1
due to 2x9 + x5 < 3 = 3x3. To see that it is also facet-defining, one verifies that the following
dim (CROB) = 9 vectors are affinely independent and satisfy the inequality with equality

1 0 1 1 0 0 0 0 0 0
T2 0 0 0 1 0 0 1 0 1
T3 0 0 0 0 1 0 0 1 1
T4 0 0 0 0 0 1 0 0 0
P | € oy, 111521, 07],{0¢};]07],f01¢|,]07],[0
D2 0 0 0 2 0 0 0 0 0
D3 0 0 0 0 3 0 0 0 1
D4 0 0 0 0 0 4 0 0 0

z 0 0 0 0 0 0 2 3 2
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Note that po + p3 + 2z > 2x9 + x3 is not a recycled inequality, since the quotient of the
coefficients of x3 and p3 is not é3 = 3.

In our computational study, we show that recycled inequalities nevertheless almost completely
close the gap between optimal integer and continuous solutions for some robust bipartite
matching problems. This highlights the large potential of recycled inequalities when all
constraints are recyclable and FNOM = CNOM ho]ds.

Even if not all constraints are recyclable, an optimal solution to SLP often corresponds to an
already recyclable constraint in Az < b in practice. Hence, we observe that it is beneficial
to first check whether we can separate violated recycled inequalities from constraints, as
described in Section[4.4.1] Only if none of these are violated, we solve SLP to check whether
there exists a violated recycled inequality from a combined inequality. We will see in our tests
on robust instances generated from the MIPLIB 2017 that solving SLP sometimes yields very
strong recycled inequalities, even if recycling the constraints in Az < b has no effect at all (cf.

Section[4.6.7).

4.5 Partially Recycling of Non-Recyclable Inequalities

Let Zie[n} mix; < 7o be a non-recyclable valid inequality. In the previous section, we trans-
formed such inequalities into 3 ;c(j.x, 50 Ti%i < 70— X ic[n)ir, <0 Ti fOT recycling, by estimating
mix; > m; for m; < 0. Intuitively, the resulting recycled inequality seems to be unnecessar-
ily weak if the estimated terms =;%; are actually (near to) zero for a continuous solution
(Z,p, %) to be cut off. To resolve this, we propose another procedure, using the
recyclable part of generally non-recyclable inequalities.

Note that 3, c(,).-,>0 Ti%i < mo is a recyclable inequality for the restricted nominal solution

space {:c qCNMg, =0Vic[n]:m < 0}, and can thus be recycled to a valid inequality for

{(m, p,2) CROBlz; =0Vie[n]:m< O}. In order to obtain a valid inequality for CROB, we
can lift the fixed variables into the recycled inequality. For this, we compute lifting coefficients
a; € R for i € [n] with m; < 0 such that

mo2 + Z TiPi = Z w6 + Z ;T

i€[n]im; >0 i€[n]:m; >0 i€[n]:m; <0

is a valid inequality.

In general, one wants to choose maximal lifting coefficients «, such that the lifted inequality
is as strong as possible. Whether one obtains a facet-defining inequality is not trivial to
say, as this not only depends on the inequality to be lifted and the maximality of the lifting
coefficients but also on the considered polyhedron. However, roughly speaking, lifting is
more likely to yield a facet-defining inequality if the original inequality is facet-defining for
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the restricted solution space, where the variables to be lifted are fixed to zero [og]l.
Using Theorem [12] we can state in which case this applies for our recycled inequalities.

Corollary 21. Let 3¢, mizi < mo be valid for CNOM with mg > 0. Let ST = {i € [n]|m; > 0}

as well as S~ = {i € [n]|m; < 0}. The recycled inequality

Toz 4 Y, mpi > Y wilix

€St ieSt

is facet-defining for the restricted solution space {(x, p, z) € CROB

xi:OVieS*} ifé, >0
holds for all i € S, i.e., it is uncertainty-exclusive on {z;|i € S*}, and

dim (projg+ ({z € F(m)|z; =0Vie S7})) = ’SW -1

Hence, the approach of fixing, recycling, and lifting is promising if the original inequality is
strong on the variables {x;|i € ST} and if we are able to compute high lifting coefficients c.
Computing maximal lifting coefficients involves solving multiple optimization problems that
are often N'P-hard. This is because we need to optimize over a set of solutions that almost
equals that of the original problem. For example, when only lifting the variable x, into the
recycled inequality moz + > ;e g+ mipi > D ;e g+ TiCix;, then we need to solve

min myz + g Tipi — g TG

€S+ €St

s.t. (x,p,z) € CROB z) = 1.

That is, we minimize the slack of the inequality to be lifted while fixing x, = 1. This (in our
case non-positive) slack is then the maximal lifting coefficient of ;. The theoretical complexity
of lifting implies the need for an efficient heuristic approach. The following proposition
shows how to compute lifting coefficients by solving a sequence of easy continuous knapsack
problems.

Proposition 22. Let 3., mixi < mo be valid for CNOM with mo > 0. Let ST = {i € [n]|m; > 0}
as well as S~ = {i € [n]|m; < 0}. Consider the continuous knapsack problem

€St €St

fB)= max{ > midi

Z mir; < B, € [07 1]71}

for a capacity 5 € R>¢ and let a; = f (mo) — f (mo — m;) for i € S—. Then

Toz 4 Y mpi > Y, mlii+ Y i

ieSt ieSt €S

is a valid inequality for CROB,
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Proof. We sequentially lift the variables {z;,,...,z; } = {z;|i € S~}. After lifting z;,, this

Tippy =" =Ty, :O}.

Assume that we already lifted variables x;,,...,z;,_, with coefficients aq,..., a1 and

yields a valid inequality for the restricted solutions {(x, p,z) € CROB

consider the problem of lifting variable z;,

min 7oz + Y mpi— » méiwi— Y oy,
]

€St €St jefe—1

ROB
S.t. (m,p,z) ceC O , Ti, = 1, Tigyy =10 = Ty, =0.

We can assume that the bilinear constraints p; + x;2 > & x; are met, since it is sufficient
to only consider integer-feasible solutions for the lifting problem. We relax the lifting
problem by only considering the bilinear constraints as well as the reduced constraint
Yicst TiTi < Mo — i, — Zje[l—l] ;;x;; obtained from the original constraint Zie[n] mx; < o

and z;,,, = --- = w;, = 0. Furthermore, we allow all variables but z;,,...,z;, to be
fractional. By assuming that S C [¢ — 1] defines an optimal choice for the already lifted
variables z;,, ..., x;,_,, with z;, = 1iff j € S, we obtain the following relaxed lifting problem

min mgz + Z TP — Z TG — Z o

€St ieSt JeSs

S.t. mix; <

(RLP) Z-GXS;
pi +Tiz > 6w Vie St

z€[0,1]° ,p e Ry, 2 € Ry

with 8 = 7o — m;, — > ;e mi;- We will first show that the optimal solution value of RLP
equals f (mo) — f (B) — Xjes aj for all 8 > mo. Afterwards, we show that S = () is an optimal
choice, which proves that f (my) — f (7o — m;,) = « is a feasible lifting coefficient.

Since f (3) is a continuous knapsack problem with capacity /3, values m;¢;, and weights m;,
we can compute an optimal solution by sorting the variables with respect to 7;—‘3 = ¢; and
greedily fill the knapsack until the capacity is reached Section 2.3]. Let z* be such an
optimal greedy solution to f (). We show that x*, together with appropriate p*, z*, is also an
optimal solution to RLP. For this, let (x, p, z) be an optimal solution to RLP. We can assume
pi = (& — z)Jr x;, and thus obtain

moZ + Z TiPs — Z TGl — Z Qj = Toz — Z mmin {é;, 2} x; — Zaj.
€St €St jeSs ieSt jeSs
Hence, when fixing z, RLP reduces to a continuous knapsack problem with values 7; min {¢;, z}
and weights 7;. The above greedy solution z* is optimal for this continuous knapsack problem,

m; min{é;,
=y

since sorting with respect to ¢; also yields a sorting with respect to 2} — min {¢;,z}.

Now, we choose

2" =minq z € {0,¢1,...,6,} E mixy < M
1€St.éi>z

4.5 Partially Recycling of Non-Recyclable Inequalities

49



50

together with p! = (& — 2*)" 7.

*. We first show that the value of this solution equals

[ (m0) — f(B) — 3 es @j and show afterwards that it is optimal.

If > e+ mi < mo holds, then we have 2* = 0, and thus

moz" + Z TP — Z TG, — Zaj

€St €St jes
= Z Wi(éi —O)—FIL‘;k — Z TFléZ:E: — ZOZ]' = —Zaj.
ieSt €S+ jeSs JjES

As the capacity 7 is non-restrictive for the knapsack problem, an increase up to S > m( has
no effect on the objective value. Hence, we also have f (7o) — f (8) — X jes @ = — X es @j-

If > ,cq+ m > mp holds, then we assume 0 = ¢y < & < --- < &, and let j* € [n], be the
smallest index such that }>;c g+ j» m < mo. It follows 2* = ¢;« by the definition of »* and
we can assume z; = 1 for all i € ST with i > j* by the definition of our greedy solution. This
implies that (z*, p*, 2*) is a solution to RLP of value

moz" + Z TiD; — Z TG, — Zozj

€St €S+ jeSs
=moj- + . mi(Ei—¢&)—f(B) =D
i€Stii>j* jeSs
= | 7 — Z ™ éj*—{— Z Wiéi_f(ﬁ)_zaj
1€Sti>g* i€Stii>j* j€S
=f (m0) = f(B) = > _ .
JjeS

Here, the last equation holds since z¥ = 1 for all i € S with i > j* and

™= >, T

. i€S+i>j*

T

is an optimal solution to f (7).

To see that the choice of p*, z* is optimal, first consider 2z’ > z* and p’ with p} > (& — 2) «}.
By definition of z*, we have >, ¢+ .5, .« ] < 7o, and thus

mozt 4+ Y mpf =mozt 4+ Y. m(F -2 +é— 7))

€St 1€ST:¢;>2*
<m+m (2 =2+ > m(&—2)a}
ieSt:g;>z*
/ A /
< w2 + Z mi (& — 2') xf
1€ST:E; >z
/ /
< w2 + Z mip;-
€St
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Second, consider 2’ < z* with an appropriate p’. Due to the minimality of 2*, we have
ZiGSJf:éiZz* Wiwf > g, and thus

To2™ + Z mip; =7 (2 + 25— 2) + Z i (& — 2%) x}

ieSt 1€ST 8 >2*
< mo2 + Z mi (=2 48— 2% )
ieSt:g;>z*
! A !
< mez + Z m (& — 2') af
1€EST:E; >
/ /
S U + Z iP5
€St

which shows the optimality of z* and p*.

We have shown that f (mp) — f (770 — iy — 2jes mj) — > jes @ is the optimal value of RLP
for some S C [¢ — 1]. Thus, it only remains to show that S = () is optimal. To see this, note
that f is submodular due to the diminishing utility of additional capacity. That is, we have
fB +e)—=f(B)>f(B+e)— f(B)for g’ < fand e > 0. Since all 7;, are negative, this
implies

> (f (7T0 - Fij) - f(WO)) > f (770 - Z%) — f(mo),

j€S j€S

and thus we have

f(mo) = f (Wo—%—zmj) - q

jES jes

w1 (o m S 5 (1 0= ) - o)

jes jES

>f (770 - zﬂij) —f (Wo — Ty — ij)
j€S j€S
> f (mo) — f (mo — m3,),

which proves the statement. O

In practice, when cutting off a fractional solution (Z,p,2) € FROB with a lifted recycled
inequality, we again drop all variables z; from the inequality with w; > 0 and é;%; < p;, as
these negatively impact the violation of the recycled inequality. We do this before lifting
the variables z; with 7; < 0, as doing so restricts the lifting problem RLP, and thus yields
potentially better lifting coefficients.

Note that we require my > 0 in the above proposition, as a negative coefficient of the
unbounded variable z would imply infinite lifting coefficients « for obtaining a valid inequality.
Hence, if the original inequality has 7y < 0, we first have to estimate some m;z; > m; with
m; < 0 to obtain a non-negative right-hand side. This raises the question of which variables
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should be estimated and which should be lifted. Moreover, even if my > 0 holds, it is
reasonable to check whether lifting or estimating a variable yields a higher violation. For
example, when cutting off a fractional solution (Z,p, Z) with Z = 0, we obtain a higher
violation by estimating x;m; > m; and recycling >, g+ miz; < mo — > ;cg- ™, as the higher

coefficient of z in the recycled inequality is irrelevant in this case. Contrary to that, if Z > 0
and Z; = 0 hold, then it is preferable to lift x;.

Since we add «;%; to the violation when lifting and 7;Z when estimating, we want to lift those
variables with o;z; > m;Z. However, if we decide to estimate m;z; > m; for: € S C S, then
we obtain a new inequality with a greater right-hand side 7o — >_, ¢ 7;, which influences the
lifting coefficients «; (S) = f (mo — >_;c5 ™) — f (M0 — >_;cg ™ — ;) of the other variables z,
and thus our lifting decision. Let {i,...,4it} = S~ such that #;, > --- > Z;, . Since variables
with higher solution values #; are less preferable for lifting, it is reasonable to assume that
a good decision for S consists of variables x;,, ..., x;; for some j € [k]. Therefore, we first
set S = () and assume that all variables will be lifted. Afterwards, we greedily decide for
i € {i1,...,ix} whether z; should better not be lifted and instead added to S. For this, we
check whether

miE + > aj(SU{iha; > Y (9
Jje{in, i\ (SU{i}) Jjef{it i \S
holds, i.e., whether the change of the violation is positive when not lifting x;. Note that the
values o (S U {i}) can be updated efficiently from «; (S) by greedily extending the solutions
of the corresponding continuous knapsack problems.

We use this approach in the following computational study, which shows the practical
relevance of recycling in general and also indicates the potential of partially recycling.

4.6 Computational Study

In this section, we assess the performance of recycled inequalities computationally. We
first discuss numerical pitfalls that can occur in practice when using recycled inequalities
and present a remedy for these in Section[4.6.1} Afterwards, we lay out our methodology
for measuring an algorithm’s performance in Section [4.6.2] Furthermore, we evaluate in
Section[4.6.3|how the parameters ¢ and I" should be chosen for converting a nominal problem
into a hard robust problem ROB| Using these insights, we construct robust instances
for different classes of combinatorial optimization problems in order to test different aspects
of recycling inequalities.

We study the robust independent set problem in Section [4.6.4] to examine the contribution of
recycling problem-specific cuts. For this, we heuristically separate recycled clique inequalities,
which are always facet-defining for the robust problem (cf. Section[4.3). In Section 4.6.5] we
test the recycling of model constraints for the robust bipartite matching problem. Since the
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standard formulation of the nominal version consists exclusively of recyclable inequalities
and also describes the convex hull[CNOM] Section 11.1], every non-dominated recycled
inequality corresponds to a model constraint (cf. Corollary[I9). This allows us to test the
influence of recycled inequalities to their limits. In Section [4.6.6], we consider the robust
bipartite matching problem with penalties, in which we allow the violation of matching
constraints at the cost of a penalty. Using the adapted model constraints, which are no longer
recyclable, we test the partially recycling of non-recyclable inequalities.

After considering the combinatorial problems above, we evaluate the practical relevance of
recycling on a broad set of robustified real world instances from the MIPLIB 2017 in
Section [4.6.7] For these instances, we also test the generic approach of separating recycled
inequalities via solving

All experiments are implemented in Java 11 and performed on a single core of a Linux
machine with an Intel® Core™ i7-5930K CPU @ 3.50GHz with 2 GB RAM reserved for each
calculation. We use Gurobi version 9.5.0 in single thread mode and all other settings at
default to solve LPs and MILPs. Furthermore, we use a time limit of 3,600 seconds for each
algorithm and instance.

All implemented algorithms and generated test instances are freely available
online.

4.6.1 Dealing with Numerical Issues

MILP solvers that rely on numerical arithmetic constantly face the threat of numerical
instability, leading to inconsistent results. One source of numerical instability is a constraint
matrix Az < b with a high range in the order of magnitude of coefficients a;;, e.g., with
a;1 = 107* and a;o = 10'°. In fact, the Gurobi documentation recommends that the range
of coefficients in the constraint matrix should be within six orders of magnitude [[51]]. In
the case of recycled inequalities mpz + Ziew P > Zie[n] ;¢ x;, the coefficients m;¢; on the
right-hand side might violate this desirable property if ¢; and 7; are both very large or both
very small. As a consequence, we observed for three instances in our computational study on
the MIPLIB that sub-optimal solutions were reported as optimal.

To tackle this problem, we scale the deviations ¢; as well as the variables p, z in an attempt
to reduce the range of coefficients in the recycled inequalities. Let éy,ax = max {é1,...,6,}
and émin = min {&li € [n], & > 0} be the maximum and minimum (proper) deviations. If
Cmax 18 very large and é,,;, simultaneously very small, then our problem is predisposed to
be numerically unstable anyway. However, if both are either very large or very small, then
we can scale the deviations such that ¢,,,x and é;, are closer to one. For this, we divide
all deviations &; by A = /émaxCmin. This implies Cﬂ%cmf =1, i.e., the scaled maximum and
minimum deviation have the same distance to one in orders of magnitudes. To compensate
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this change, we multiply =z and p in the objective function with . Thus, our new problem,
which is equivalent to ROB, reads

min A\I'z + Z (CiZCi + )\pi)
i€[n]

s.t. Ax <b

N

pﬁZZ%xi Vi € [n]

CCE{O,l}n,pERgO,ZERZO

and the recycled inequalities are

Toz + Z TiP; = Z 771%1’1

1€[n] 1€[n]

This small change resolves the observed issues for the MIPLIB instances. For comparability,
we will always use the scaled problem when solving ROB. However, for the sake of simplicity,
we will only write down the non-scaled problem in the following sections.

4.6.2 Performance Indicators

Rating the performance of generic algorithms is not trivial, as different use cases imply
different requirements for an algorithm. While we aim to find an optimal solution as fast as
possible for some practical problems, it is important to find any good solution within seconds
for other problems. Therefore, we need performance indicators that appropriately reflect the
spectrum of use cases.

The standard performance indicator for optimization algorithms is the computation time
it takes to solve an instance. This indicator reflects the aim of solving problems as fast as
possible to optimality. However, a major drawback is that we might not know how long it
takes to solve very hard instances, as we often need to terminate algorithms prematurely
after a predefined time limit. A common workaround is to set the computation time to the
time limit and pretend that all instances are solved at this time at the latest. This obviously
leads to unfair comparisons in favor of algorithms reaching the time limit more frequently
and also completely ignores the optimality gap at termination. Moreover, the computation
time provides no information on how an algorithm performed up to the point at which
it is terminated. That is, one algorithm can prove optimality later than other algorithms
but provides better solutions in the first few seconds, which makes it more practicable in
operational planning.

To take this into account, we additionally measure the primal-dual integral, which was
proposed by Berthold with the aim that this metric “reflects the development of the
solution quality over the complete optimization process”. The primal-dual integral is defined
to be the integral of the gap between the current primal and dual bound for each point in
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time. Since the optimality gap, as reported by Gurobi, is in general not bounded and at the
start even infinite, the primal-dual integral is defined over an adapted gap. Let ¥ (¢) be the
primal bound and v (¢) be the dual bound at time ¢, with T (¢) = oo or v (t) = —oc respectively
if no bound is known. We define the step function

1, ifv(t) =occoruv(t)=—occoruv(t) v(t) <0,
g(t) =10, ifo(t)=v(),
v(t)—v(t) else,

max{[o(®)],Ju()[}’

with respect to the piecewise constant bounds v () , v (¢), for which we can easily compute
the primal-dual integral

G(T):/tT g (t)dt.

=0
Here, T is the time at which the algorithm is terminated or finishes. The primal-dual integral
reflects improvements of the gap over the whole computation process, and is thus a reasonable
additional performance indicator alongside the computation time.

We aggregate performance indicators using the shifted geometric mean [2]], which is defined
as (Hie[k] (v; + s)l/k) — s for values vy, ..., v, € R>¢ and a shifting parameter s € R>(. The
advantage of the shifted geometric mean over the geometric or arithmetic mean is that it
is not overly sensitive to very small or very large values. The geometric mean considers
the difference between 0.1 and 0.2 equally significant as the difference between 1,000
and 2,000. Conversely, differences in small values are barely noticeable in the arithmetic
mean when larger values are present. In the following, we always use the shifted geometric
mean with shifting parameters of s = 1 second for computation times and s = 100% for
primal-dual integrals. The latter corresponds to the integral of one second at maximum gap.
Besides computation times and primal-dual integrals, we will also report integrality gaps to
compare the strength of the continuous relaxation with and without recycled inequalities.
For aggregating these, we use the shifted geometric mean with s = 1%.

4.6.3 Generating Hard Robust Instances

In the following, we empirically evaluate the random generation of robust problems ROB
based on given nominal problems NOM. In order to avoid a bias towards certain combinatorial
problems, we do this for nominal problems of the diverse MIPLIB 2017 [49]]. However, our
findings will also be valuable for generating robust instances for specific problem classes.

To transform a given nominal problem into a robust problem, we have to decide which
objective coefficients ¢; are uncertain, that is ¢; > 0, how large the corresponding deviations
¢; are, and what our uncertainty budget I' is. In real-world applications, a coefficient is
uncertain if, for example, it is the result of a forecast or a measurement. In R3], a
coefficient is expected to be a result of such procedures, and thus uncertain, if it is an “ugly”
number. In particular, integer values are considered “non-ugly” and are assumed to be certain.

4.6 Computational Study
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However, since many MIPLIB instances only contain integer values, treating all integer
objective coefficients as certain would leave us with few instances for our study. Therefore,
we take a middle course by considering ¢; to be certain only if we have ¢; € {—1,0, 1} in the
nominal instance. We consider it unlikely that ¢; is the result of a forecast or measurement
in this case. This is because coefficients ¢; € {—1,1} usually do not represent a numerical
objective value for x; but are for counting the number of chosen variables. Moreover, ¢; = 0
suggests that the choice of x; has no direct effect on the objective at all.

The value of the deviations is often chosen to be a fixed percentage of the absolute nominal
coefficients. That is, ¢; = £ |¢;| for uncertain objective coefficients, where ¢ ranges from
from 0.01% to 2% across different studies [43]l. Furthermore, the uncertainty
budget I is chosen from a predefined set of arbitrarily fixed values [43]l. However,
these studies not only consider uncertain objective coefficients but also uncertainties in the
constraints. Bearing this in mind, the above choices may be appropriate in the respective
settings for illustrating the effect of uncertainty and the creation of sufficiently hard
instances [43]]. Nevertheless, we advocate for a different choice of ¢ and T in order to
construct instances with which we can test our algorithms to their limits. In the following,
we study the impact of ¢ and I" on the integrality gap of ROB to evaluate how they should be
chosen to obtain hard instances.

Just like in the literature, we define our deviations ¢; = &; |¢;| with respect to the nominal
coefficients. However, the factor ¢; is chosen independently for each uncertain coefficient
from an interval [§ ) E} In order to investigate whether a strong correlation between ¢; and ¢;

raises the integrality gap, we test different ranges [g , E} with a fixed middle value (§ + E) /2.
We also test much higher values ¢;, compared to the values chosen in [43]1, since
large deviations result in more difficult problems and deviations of even more than 100% are
relevant in practice, as observed by Koster and Kutschka [[65].

The choice of I" must be made with particular care. For a problem ROB and an arbitrary op-
timal solution (l‘ROB, pROB, zROB), let u (mROB) = Hz € [n][2ROB = 1,¢; > OH be the number

of uncertain variables contributing to the solution. If ' = 0or " > u (J:ROB> holds, then

either none or all coefficients of the chosen uncertain variables deviate to their maximum.
This not only leads the idea of budgeted robust optimization to absurdity but also results in a
relatively small integrality gap. Hence, I" should be somewhere between 0 and (mROB> to
obtain a difficult instance. Choosing I" from a fixed set of values for all instances is therefore
not appropriate for our purpose. While I" = 100 may be suitable for large instances, it is too
high for the smaller ones. Obviously, we cannot choose I" with respect to u (xROB) , as we do
not know the exact value in advance. Furthermore, in contrast to a practitioner solving a real
problem, we have no insight into the structure of the diverse problems from the MIPLIB 2017.
Hence, our best bet is to solve the nominal problem first, count the number u (mNOM) of

NOM "and choose I relative

uncertain variables appearing in the obtained optimal solution z
to u (mNOM>. We will see in the following that for the choice I' = yu (xNOM), there is a

correlation between v > 0 and the integrality gap of ROB.
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Figure 4.1. Shifted geometric mean of integrality gaps with shifting parameter s = 1% for different
choices of y and [¢,¢].

Before determining the integrality gap of ROB for different choices of ¢ and I', we have
to select the nominal instances to be transformed into robust problems. Naturally, not all
instances from the MIPLIB 2017 are suitable for this transformation. There are 1,065 instances
available, of which we consider the ones that are labeled to be feasible, have an objective
function, and consist only of binary variables. Furthermore, we only consider instances that
have the “easy” label, as we cannot expect to solve the robust counterpart of hard instances.
After this first selection, we try to solve the remaining 123 nominal instances within one
hour using Gurobi. Of the instances that were solved to optimality, we select those whose
computed optimal solution contains at least ten uncertain variables, i.e., u (wNOM> > 10. This
ensures that variables with uncertain coefficients have an impact on the optimal solution.
From the remaining instances, we also had to exclude pb-fit2d and supportcasel1 due to
numerical issues. After this final selection, we are left with 67 nominal instances for our
computational study:.

We construct robust problems from all these 67 instances by choosing I' = hu (xNOMﬂ , with
v € {0%,10%,...,200%} , and ¢ = &; |c;|, where &; is an independent and uniformly dis-
tributed random integer percentage in [g, E} € {[10%, 90%)] , [30%, 70%] , [45%, 55%)] , {50%} }.
We then solve the continuous relaxation, try to compute an optimal integer solution, and
determine the integrality gap for each resulting robust problem. We use the branch and
bound algorithm from Chapter[5]to compute the integer solutions, as it is our best performing
algorithm, solving the highest number of instances. For a fair comparison of the integrality
gap with respect to different choices of v and [é , E}, we only consider the 44 underlying
nominal instances for which we were able to compute an optimal solution for all combinations

of v and [g,z}

Figureshows for all combinations of v and [é , E] the shifted geometric mean of integrality
gaps over all considered instances. The integrality gap first increases monotonically in -,
peaks at latest at v = 90% and decreases afterwards for all choices of [§ , E} . This suggests that

the maximum integrality gap is usually achieved for some I" € {0, U (xNOM)}. We cover this
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spectrum by choosing v € {10%, 40%, 70%, 100%} in our computational study on robustified
MIPLIB instances in Section Note that the higher values of I" are most likely way
too conservative for a practical problem. However, we are not interested in constructing
meaningful practical instances but instances where uncertainty contributes to the difficulty of
the problem.

Figure shows higher integrality gaps for narrow intervals [§ ) E} , which suggests that a
strong correlation between ¢; and ¢; results in hard robust instances. Although choosing
£ = ¢ seems to be beneficial in this regard, we chose ¢ # £ for our computational study,
since fixing & may result in structural properties that lead to a biased performance of the
tested algorithms. For example, Monaci and Pferschy [[76]] showed that an adaptation
of the classical greedy heuristic for the binary knapsack problem has a better worst-case
performance for the robust knapsack if max {&;/;]i,j € [n]} is small. Moreover, choosing
¢ = £ usually provides fewer different deviations {é;,...,¢,}, and thus fewer possible
optimal values for z (cf. Section [5.5). This benefits algorithms exploring these possible
choices for z, just like our branch and bound algorithm from Chapter[5} Therefore, we choose
[§ , Z} = [45%, 55%]. In addition, we take smaller and larger deviations into account by also

considering [g, E} € {[6%, 15%] [95%, 105%]} in Section [4.6.7

4.6.4 Robust Independent Set

Before we evaluate the performance of our recycling approaches on the robustified MIPLIB
instances, we study their potential on robust versions of classical combinatorial optimization
problems. We first show the effect of recycling a class of well-known valid inequalities in
a separation procedure. For this, we consider the robust maximum weighted independent
set problem on a graph G = (V, E). The robust counterpart of the standard formulation
with decision variables z,, € {0, 1} for each node v € V and edge constraints x, + x,, < 1 for
{v,w} € E reads

max Z CoTy — (I’z + Z Z%)

veV veV
Sty + 2y <1 V{v,w} e £
pv+226vxv YVoeV

z€{0,1}",p e RYy, 2 € Rxo.

As seen in Section recycling a clique inequality -, 7, < 1 yields a facet-defining
inequality for all cliques @ C V. We compare the separation of recycled clique inequalities
in the root node of the branching tree against the robust default formulation which
solely uses the constraints p; + z > &;x;. For this, we use Gurobi’s callback to add the recycled
inequalities as user cuts [52]]. Every time Gurobi invokes the callback in the root node and
reports a current optimal fractional solution (Z, p, 2) € FROB, we heuristically separate cliques

Chapter 4 Recycling Valid Inequalities



Table 4.1. Computational results for 230 instances of the robust maximum weighted independent set
problem. We use different nominal formulations and test with Gurobi’s own cuts enabled

or disabled.
DEF RECsepClq
formulation GCuts timeout time P-D integral int Gap timeout time P-D integral int Gap
Cde Gl 4 stas  aen MO Do S0on yg, 120691%
awe g O len Gk wem 8 g 7% e

Q C V for which the recycled inequality 2 + >-,copv > >, Coy is violated. We do so
as in Section [4.4.2] that is, we heuristically solve maximum weighted clique problems on
G with weights ¢,%, — p,. To separate many recycled inequalities at once, we extend each
node v € V with é,%, — p, > 0 greedily to a clique @, C V with v € @Q,. For this, we
start with @, = {v} and then iteratively extend the clique with nodes w € (,¢¢, N (u) such
that é,,Z,, — P, is maximal and non-negative. Finally, we return the corresponding recycled
inequality to Gurobi if its violation is positive.

We use the graphs of the second DIMACS implementation challenge on the clique prob-
lem as a basis for our test instances. We select those 46 out of the 66 DIMACS graphs
that have at most 500 nodes, as otherwise the nominal problem is already very hard. We
generate independent and uniformly distributed weights ¢, € {900,...,1000} for each v € V.
The deviations ¢, and the uncertainty budget I" are chosen in accordance with our ob-
servations from the previous section. We choose &, = [{,¢,], where &, € [0.45,0.55] are
independent and uniformly distributed random variables. Since I" should be somewhere

between 0 and u (CL‘ROB> , that is the number of variables in an optimal solution with 288 = 1,

we greedily compute an inclusion-wise maximal independent set S C V and define I = {@ .
We randomly generate five robust independent set problems for each of the 46 DIMACS

graphs, leaving us with 230 robust instances.

Detailed computational results can be found in [[47]]. We show aggregated results for the
default formulation (DEF) and the separation of recycled clique inequalities (RECsepClq)
in Table The table shows the number of instances that could not be solved within the
time limit (timeout), the shifted geometric mean of the computation times (time), the shifted
geometric mean of the primal-dual integrals (P-D integral) and the shifted geometric mean of
the integrality gaps (int gap).

We see that the shifted geometric mean of the integrality gaps is reduced absolutely by
roughly 220 percentage points from 1427.09% to 1206.91% when using recycled clique
inequalities. For computing these gaps, we use the best computed primal bound as well as the
dual bound obtained by heuristically separating recycled clique inequalities for subsequent
continuous relaxations until no violated inequalities are found. While the absolute reduction
of the integrality gap is quite impressive, the relative reduction does not adequately reflect
the strength of the recycled inequalities. This is due to the large integrality gap of the nominal
problem, which constitutes a major part of the total gap.

4.6 Computational Study

59



60

=DEF =RECsepClq

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

100% 80%  60%  40%  20% 0%

Relative Integrality Gap Reduction

Prop. of Instances

Figure 4.2. Cumulative distribution of integrality gap reductions using the clique formulation.

To reduce the integrality gap of the nominal problem, we test an additional formulation
for the independent set problem. Here, we replace every constraint z, + z,, < 1 for an
edge {v,w} € E with a constraint ).z, < 1 for a clique Q C V with {v,w} C Q. This
clique formulation is valid and much stronger than the previous edge formulation, since all
edge constraints are dominated by their corresponding clique constraint. Thus, the clique
formulation reduces the contribution of the nominal problem to the integrality gap. Indeed,
Table [4.1] shows that separating recycled clique inequalities yields a relative reduction of
the integrality gaps by 58.3% when using the clique formulation. Figure [4.2]|gives a more
detailed view on the improvement by showing for how many instances the integrality gap is
reduced by at least a specific percentage when comparing RECsepClq with DEF. Here, we see
that recycling cliques reduces the integrality gap by at least 30% for more than 50% of all
instances. Moreover, we have a reduction of 90% for almost 20% of the instances.

The clique formulation is not of practical interest apart from the analysis of the integrality
gap, as Gurobi seems to be better trained on the edge formulation. Table shows for
the edge formulation that we solve one more instance when recycling clique inequalities
but have an increase in the computation time and the primal-dual integral. This seems
to be due to some interference with Gurobi’s own cutting planes. When Gurobi’s cutting
planes are disabled, then recycling is much better than using the default formulation, as it
approximately halves the computation time and the primal-dual integral. In fact, disabling
Gurobi’s cuts and using recycled clique inequalities (RECsepClg-noGCuts) is the overall best
performing approach, solving the most instances in the least amount of computation time.
This is supported by Figure which shows for each approach the proportion of instances
whose computation time or primal-dual integral are below a specific value. While DEF,
RECsepClg, and RECsepClg-noGCuts solve roughly the same number of instances within
the first 280 seconds and up to a primal-dual integral of 160, RECsepClg-noGCuts clearly
performs better afterwards on the harder instances.
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Figure 4.3. Cumulative distribution of computation times and primal-dual integrals when using the
edge formulation.

4.6.5 Robust Bipartite Matching

To study the recycling of model constraints, we now consider the robust maximum weighted
matching problem on a bipartite graph with nodes V' and edges E. Using decision variables
ze € {0,1} for each edge e € E, the robust problem reads

max Z CeTe — (Fz + Z Pe)

eeE ecl

s.t. ergl YveV
e€é(v)
Pe + 2 2 Coe Vee E

z €{0,1}",p e RE}, 2 € Rxo.

As mentioned above, the bipartite matching problem has the interesting property that the
constraints Eeeg(v) 2. < 1forv eV and z, > 0 for e € E already define the convex hull of
the nominal problem Section 11.1]. Moreover, since all constraints are recyclable, the
properties from Corollary[19]are fulfilled, which allows for an exact separation of recycled
inequalities in linear time, and thus enables us to test their strength to the limit.

We randomly generate instances by first dividing a set of nodes V' = [n] into two partitions
U=][[%]] and W = {[5] +1,...,n}. Afterwards, we sample for each node v € U a random
number ¢,, € [0, 1] that models the probability with which an edge incident to u exists. Then
for every w € W, we add the edge {u, w} with probability ¢,. Given the constructed graph,
we generate weights ¢, and deviations ¢, analogously to the independent set problem. Every
weight is a random number ¢, € {900, ...,1000} and the correlated deviations are é. = [&.c|
with & € [0.45,0.55]. Finally, as the number of edges in a solution will most likely be near
to 5, we set I' = | %|. We use this procedure to generate ten instances each for different

1
numbers of nodes n € {50, 100, 150}.
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Table 4.2. Computational results for the robust maximum weighted bipartite matching problem. We
generate ten instances per number of nodes and test with Gurobi’s own cuts enabled or

disabled.
DEF RECcons RECconsSepCons
nodes GCuts timeout time P-Dintegral int Gap timeout time P-Dintegral int Gap timeout time P-Dintegral int Gap
0 Guble 10 30000 1004 19532% 0 03 ooy 03 0 03 ooy 0%
0 Jobe 10 20000 ssoe 22620% R 0 162 oz 0310
50 Sble 10 0000 caser 2060% o 1srse 2 0207 8 196065 265 026

Detailed computational results can be found in [47]]. Table shows aggregated results
for the robust default formulation (DEF) and two different approaches for using recycled
inequalities. The first approach directly recycles all constraints Do) e <1 forv eV
(RECcons). The second approach additionally separates violated inequalities ) . p . < 1
with E' C ¢ (v) for v € V in the root node of the branch and bound tree (RECconsSepCons).

It is evident that recycling inequalities is significantly better than solely using the default
formulation. We observe a considerable strengthening of the formulation, leading to a
reduction of the integrality gaps by 98.9% for n = 150 nodes. This strength also translates
to a higher number of instances solved and much lower computation times. For n = 150
with Gurobi’s cuts enabled, RECcons has 93.2% lower computation times than DEF. Still, the
primal-dual integral is quite low for DEF, suggesting that the solver is very close to optimality
from the beginning. This changes once we disable Gurobi’s cuts. In this case, DEF is not even
able to solve any instance. Furthermore, the primal-dual integrals are 253-times as large as
those of RECcons for n = 150.

The recycling of dominated inequalities ) . . < 1 compared to the sole recycling of con-
straints ».cs(,) e < 1yields an improvement of the integrality gap. However, as the recycled
constraints already perform well for these instances, the improvement in the continuous
relaxation is very small. In fact, the minor strengthening of the continuous relaxation cannot
compensate for the computational load imposed by the additional inequalities, which leads to
higher computation times. Later, our study on the MIPLIB instances will reveal that recycling
dominated inequalities can have a much greater effect on the integrality gap, and thus lead
to lower computation times.

4.6.6 Robust Bipartite Matching with Penalties

Until now, we only considered problems for which all valid inequalities are recyclable. In
order to test our approach of partially recycling from Section 4.5 we alter the bipartite
matching problem from above so that none of the constraints are recyclable. To this end,
we allow a solution to match each node v € V' up to two times. However, when matching v
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Table 4.3. Computational results for the robust maximum weighted bipartite matching with penalties
problem. We generate ten instances per number of nodes and test with Gurobi’s own cuts

enabled or disabled.
DEF RECsepEst RECsepPart
nodes GCuts timeout time P-Dintegral int Gap timeout time P-Dintegral int Gap timeout time P-D integral int Gap
0 Gube 10 3000 a0 B g sl g 090 0o ga e
100 JGhe 10 ce000  saees S 10 3once  amay U0 Sade  saer 202
150 Gl 10 3000 5o P8% 0 Sinos  aerss OS1% 10 saoen  asas 0%

more than once, we have to pay a penalty ¢, > 0. We introduce decision variables y, € {0,1}
indicating whether node v € V' is matched twice and obtain the following robust problem

max Z Cele — Z Colp — (Fz + ZPe)

eceE veV ecE

s.t. er—yvgl YveV
e€d(v)
Pe + 2 > Coe Vee E

z€{0,1}7,y €{0,1}",p e RE, 2z € Rxo.

We use the same graphs and parameters as in the previous section with random penalties
¢y € {450,...,500}. This is on average half the value ¢, € {900, ...,1000} of the edges e € F,
and thus the benefit of matching two already matched nodes is on average equal to the
received penalty. Note that we do not consider uncertainties on the penalty coefficients.

Detailed computational results can be found in [47]]. Table shows aggregated results for
the robust default formulation (DEF) as well as the separation of recycled inequalities via
estimating 2665(0) x. < 2 (RECsepEst), as in Section and the separation of partially
recycled inequalities (RECsepPart), as in Section[4.5] Again, we only separate within the root
node of the branch and bound tree.

RECsepEst still significantly improves the formulation, reducing the integrality gap by 52.8%
for n = 150. However, the effect is clearly weaker compared to the improvement for the
original matching problem. RECsepPart is considerably stronger, reducing the integrality
gap by 90.2%. We have a closer look at the computed solutions in order to assess whether
this observed reduction is meaningful. Note that partially recycled inequalities are especially
strong when the variables to be lifted are zero. Hence, if we had y, = 0 for all v € V, then
the reduction might only be due to a favorable problem generation. However, we observe
that we have y, = 1 for approximately three-fourths of all nodes v € V in the computed
solutions, showing that the instance generation is not in our favor.

Even with the partially recycling procedure, the matching with penalties is apparently much

harder to solve. We cannot compare computation times, since all approaches always hit the
time limit for n € {100, 150}. However, we still see that the partially recycling results in
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significantly smaller primal-dual integrals compared to the other approaches, especially when
Gurobi’s cuts are disabled.

4.6.7 Robustified MIPLIB Instances

We have seen so far that, given the right setting, recycling inequalities can have a significant
impact on the strength of formulations, and thus on the computational performance. To
evaluate the use of recycled inequalities for practical instances, we also perform tests on the
broad set of 804 robust MIPLIB instances that we generated in Section [4.6.3

We consider four different approaches for integrating recycled inequalities in the optimization
process. Note that we do not have any insight into the structure of the nominal problems
of our test instances, and thus only recycle inequalities in a generic fashion based on the
constraints Az < b. Our first two approaches are as described in Section[4.4.1} We test the
direct addition of recycled constraints to the default formulation (RECcons) and the separation
of violated recycled constraints in the root node of the branch and bound tree (RECsepCons).
For the third approach, we first separate recycled constraints as for RECsepCons. Once we do
not find any violated recycled constraints, we solve SLP from Section [4.4.3] for a more refined
separation (RECsepLP). The fourth approach is as RECsepCons, but we also consider partially
recyclable constraints as in Section (RECsepPart).

The relaxation value used for computing the integrality gap is again computed by separating
inequalities until no violated inequality is found. We use a time limit of 3,600 seconds, which
leads to a termination of the separation for some instances although we are still able to find
violated inequalities. As a result, we may compute a worse relaxation value for RECsepCons
than for RECcons. As the relaxation value provided by RECsepCons is in theory stronger than
that of RECcons, we report the maximum computed value of both for RECsepCons. The same
holds for RECsepLP and RECsepPart, which are in theory stronger than RECsepCons. For
these, we report the maximum relaxation value of RECcons, RECsepCons, and the respective
algorithm.

Detailed computational results can be found in [[47]]. Table [4.4] shows aggregated results for
the four recycling approaches and the default formulation. As for the combinatorial problems
in the last sections, recycling inequalities is very effective when Gurobi’s cuts are disabled.
In this setting, the recycling approaches require between 39.5% and 45.1% less time in the
shifted geometric mean over all instances. When only considering the affected instances,
that are the instances for which at least one of the recycling approaches provides a better
integrality gap compared to the default formulation, the speed-up is even higher. Out of
the 804 instances in our test set, 608 were affected by recycling. For these, the recycling
approaches require between 49.5% and 55.2% less time, which clearly highlights the practical
potential of recycling inequalities.
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Table 4.4. Computational results for robustified MIPLIB instances. We test with Gurobi’s own cuts
enabled or disabled and show results aggregated for all 804 instances as well as only the
608 on which at least one recycling approach had an effect.

DEF RECcons RECsepCons
instances GCuts timeout time P-D integral int Gap timeout time P-Dintegral int Gap timeout time P-D integral int Gap
W E aoew  mr b e @ 2n e
feced GUNe s mpe0  a7an 2% o s s % G fere  aiss 9%
RECsepLP RECsepPart

instances GCuts timeout time P-Dintegral int Gap timeout time P-D integral int Gap
enable 308 199.96 33.16 316 195.51 32.33

0, 0,

al gicable 403 405.30 5297 ©:60% 408 400.15 5253 /86%
enable 234 251.87 42.65 ) 242 247.77 41.99 )

affected 4 able 305 425.28 62.88 2% 310 423.32 63.24 920

This performance boost is due to the substantially strengthened continuous relaxations.
RECcons already cuts the integrality gap nearly in half, from 15.90% to 8.61%. RECsepCons
yields an even better integrality gap, since we also recycle dominated inequalities in this
approach. Note that the relative reduction of the integrality gap using RECsepCons instead of
RECcons (8.6% relative reduction) is much larger compared to our observations for the robust
bipartite matching problem (1.5% relative reduction for n = 150 nodes). This indicates that
recycling dominated inequalities is more important when the coefficients in the constraints
are not all the same. This is in line with our observation in Example [14] from Section 4.3]

RECsepPart yields nearly no improvement of the integrality gap compared to RECsepCons.
While we were able to prove the great potential of this approach for the matching with
penalties, the considered instances of the MIPLIB apparently do not contain many constraints
of the necessary structure with both positive and negative coefficients on the left-hand side.
In contrast, RECsepLP yields another substantial improvement of the integrality gap down to
6.60%. This is a relative reduction of 58.5% compared to the integrality gap of the default
formulation. When only considering the affected instances, we even see an improvement
from 24.64% to 7.92%, which is a relative reduction of 67.9%.

To get a better understanding of the improvement on the affected instances, we show
in Figure for how many of these the integrality gap is reduced by at least a specific
percentage. Note that RECsepCons and RECsepPart have nearly identical lines, as they
mostly compute the same cuts for these instances. Of the 608 affected instances, RECcons,
RECsepCons, and RECsepPart close the integrality gap completely for 19 and RECsepLP even
for 22 instances. Interestingly, this includes not only instances with a low default integrality
gap but 12 instances with a default gap of more than 10%, of which one is even 74,417%.
Moreover, these 12 instances are based on 7 different nominal instances from the MIPLIB
2017. That is, for more than every tenth nominal instance, there is at least one corresponding
robust instance for which we close the integrality gap from over 10% down to zero.

In addition to these extreme cases, we see that RECsepLP is able to halve the integrality gap
for 51% of the instances. Furthermore, RECsepLP achieves a reduction for some problems
on which RECcons, RECsepCons, and RECsepPart have no effect. This gives hope that
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Figure 4.4. Cumulative distribution of integrality gap reductions for affected instances.

practitioners with a good understanding of their problem might be able to benefit from
problem specific fast separations of recycled inequalities that do not correspond directly to
the constraints Az < b.

The strong continuous relaxations also translate to an improved performance when Gurobi’s
cuts are enabled, with all recycling approaches solving more instances in shorter time.
Table shows that RECsepCons has the lowest shifted geometric mean for the computation
time and primal-dual integral. Compared to the default formulation, the computation times
are 14.5% lower for all instances and 18.7% for the affected ones. Moreover, the lower primal-
dual integral implies that separating recycled constraints improves the performance across
the whole optimization process. RECsepLP solves one instance more but is on average slightly
slower than RECsepCons. This is because the overhead of handling and solving SLP only pays
off for specific instances. RECsepPart performs worse than RECsepCons, as both compute
almost the same cuts, with RECsepPart requiring more time doing so. RECcons is overall
slower compared to the other recycling approaches because many of the added recycled
constraints are actually uninteresting for strengthening the continuous relaxation, and thus
impose unnecessary computational load due to the bigger constraint matrix. Nevertheless,
we will see in the following that RECcons can actually be very useful in practice.

Just like for the integrality gap, Figure [4.5 shows the cumulative distribution of performance
indicators for each approach on the set of affected instances. We see that each recycling
approach solves at any point in time more instances than DEF. The same holds for the
primal-dual integral with the exception of RECcons, which has a high primal-dual integral
for more instances than DEF. While the differences in the primal-dual integrals appear to be
small, a paired Wilcoxon signed-rank test reveals that for all algorithms but RECcons
the improvement in the computation time and the primal-dual integral is significant with a
confidence level of at least 98%.

Figure displays the performance indicators of our recycling approaches relative to the
default formulation. In the left graphic, we see that all recycling approaches are 8-times as
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Figure 4.5. Cumulative distribution of computation times and primal-dual integrals for the set of
affected instances.

=DEF =RECcons =RECsepCons =RECsepLP RECsepPart

100%- , 100% -
90%: /4 90%:
O 80% O 80%
2 70% £ 70%
= 70% = (
@ 60% @ 60%
= 50%- = 50%-
Y “—
O 40% © 40%
. . ,
8 30% / g 30% ]
& 20%: - & 20%: /
0% - 10% >
0% 0% — —
/8 1/4 172 1 2 4 8 /8 1/4 172 1 2 4 8
Relative Computation Time Relative Primal-Dual Integral

Figure 4.6. Cumulative distribution of computation times and primal-dual integrals relative to the
default formulation for the set of affected instances.

fast for roughly 5%, while requiring 8-times as much time for only 0.5% of the instances.
The most balanced of all approaches is RECsepCons, which is 2-times as fast for 9.5% and
halve as fast for 3.3% of the instances. Similar observations can be made for the primal-dual
integral in the right graphic. However, the most interesting observation about Figure is
that RECcons’ and RECsepLP’s performance is quite extreme. Both approaches perform badly
for more instances than RECsepCons, but the number of instances on which they perform

very well is also higher.

The extreme performance is no surprise for RECsepLP, as we already observed above that
the higher effort invested in the separation pays off for some specific instances. For RECcons,
we see that, given the proper problem structure, recycling constraints directly is not only
the most easy approach but also very efficient. This is good news for the practical use of
recycled inequalities, as practitioners will often know whether their optimization problem
contains promising recyclable constraints. This may, for example, include clique constraints
or (almost) binding capacity restrictions. Recycling precisely these constraints, and not all
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as we do here for RECcons, might result in a good speed-up for the respective problem. In
comparison to RECsepCons, this yields the advantage that the added recycled inequalities are
present from the beginning of the optimization process, which is beneficial because the solver
can use the additional information for preprocessing. Future engineering might enable us to
combine the stable performance of RECsepCons with the performance peaks of RECcons.

4.7 Conclusion

After identifying in the previous chapter that the standard formulation for robust combina-
torial optimization problems with budgeted uncertainty is weak, we introduced a compact
bilinear formulation, which is as strong as the strongest possible polyhedral formulation. To
benefit from this in practice, we combined the bilinear formulation’s strength with structural
properties provided by valid inequalities for the nominal problem to obtain the new class of
recycled inequalities.

Given a valid knapsack inequality for the nominal problem, the corresponding recycled
inequality can be derived in linear time. This yields the possibility to reuse model-constraints
and well known classes of valid inequalities in order to strengthen the continuous relaxation
of the robust problem. We highlighted the theoretical strength of such recycled inequalities
by proving that they often define facets of the convex hull of the robust problem, even when
the underlying valid inequality is dominated.

To make recycled inequalities usable in practice, we discussed different separation procedures
that either depend on separation algorithms for classical cutting planes or simply work on
the constraint matrix in a generic fashion. One of these separation procedures even implies
that recycled inequalities can be separated exactly in polynomial time if the convex hull of
the nominal problem is known. Furthermore, we showed that inequalities that are not of the
knapsack type can be partially recycled on a restricted solution space and lifted afterwards to
obtain a valid inequality for the robust problem.

To test the strength of recycled inequalities and the practicability of their separation, we
conducted an extensive computational study on robust versions of three classes of combina-
torial problems and a carefully generated set of hard robust instances based on real-world
problems from the MIPLIB 2017. Our experiments show that recycled inequalities are not
only interesting from a theoretical point of view but can also yield a significant speed-up in
the optimization process.

For future research, it would be interesting to further analyze the recycling of non-knapsack
inequalities and evaluate whether one can obtain facet-defining robust inequalities from
specific classes of nominal inequalities. Furthermore, the effect of recycling should be tested
for robust problems with uncertain constraints.

Chapter 4 Recycling Valid Inequalities



A Branch and Bound Algorithm

In the last chapter, we proposed a new class of valid inequalities, which can be used easily
in the standard approach of solving ROB directly as an MILP. In this chapter, we follow a
slightly more combinatorial approach, which can be seen as a more sophisticated version of
solving ROB via the nominal subproblems NOS (z) for z € {¢, ..., é,}. For this, we do not
fix z to one value, but split its domain in a specialized branch and bound algorithm. We will
show several structural results while introducing our algorithm and later demonstrate its
performance in a computational study.

5.1 Strong Linear Formulations for Bounded =

We already noted in the previous chapter that the bilinear formulationwill also be the
foundation for the algorithms proposed in this chapter. To understand how we can make
further use of it, remember from Section that 7B is closely related to the nominal
subproblems When fixing z, the bilinear formulation becomes not only linear, but it
also holds p; = (¢; — 2)" ; for all i € [n] in an optimal solution (z,p, z). Hence, the problem
of optimizing over F2I: N (R*" x {z}) is equivalent to

min I'z + Z (CZ' + (¢ — z)+) ;i

i€[n]
s.t. Az <b
z € [0,1]",

which is the continuous relaxation of the nominal subproblem NOS (z). The strength of
the linearization for fixed z suggests that we may also derive strong linearizations of F5I
for general restrictions on z, that is z € Z C Rx¢. In this section, we introduce such a
linearization, which will be a key component of our branch and bound algorithm.

Remember that {¢,...,é&,}, with é = 0, always contains an optimal value for z and let
Z C{ép,...,¢n}. With some abuse of notation, we will write z = min (Z) and Z = max (Z) as
well as 2/ = min (Z’) as well as z/ = max (Z’) for some Z' C {¢y,...,¢é,} for the remainder of

this chapter. Assuming that there exists an optimal solution (z, p, z) to[ROB|with z € Z, we can
restrict ourselves to searching for solutions in the domain R*" x [z, z]. We use this restriction
to obtain a linear relaxation of the restricted bilinear formulation 72 N (R?" x [z, z]).
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Lemma 23. The linear inequalities
pitz>(éi—2) r+z (5.1)

and
pi> (& —-2)" (5.2)

are valid for all (x,p, z) € FBL N (R*™ x [2,7]).

Proof. Since p; + zx; > ¢x; and p; > 0 hold for (z,p, 2) € FPL, the bound z < z yields

pi+ 2z > Gxy & pit+ (2 —z+2)x; > Ey
= pi+2z— 2423 > Cx;

& pitz>(E—2)" 2+
Furthermore, due to z < z, we obtain

pi+ oz > Gy < pi > (6 —2) Ty

= Di > (él —§)+$i.

O]

Note that the inequalities and are stronger than the original robustness constraints
pi + 2 > éx; and p; > 0 of FROB in the case of z > 0 and ¢&; > % respectively. Both inequalities
address the problem of the original formulation, which is that one can decrease z; in a
fractional solution down to z; < Ci in order to choose p; = 0, even if we have ¢ > z.
Given a lower bound z > 2, inequality reduces the benefit of decreasing x;, as the
right-hand side only decreases with the factor (¢; — z)" instead of ¢;. For an upper bound
z < z, inequality guarantees that p; is not zero for ¢; > z and x; > 0 by using the fact

that the value of p; is at least ¢; — z if we have ¢, > z and z; = 1.

Using these strengthened inequalities, we obtain the robust subproblem

min 'z + Z Cxi + Pi
st (,p,2) € F(2),2 € {0,1}"

over the linear formulation

Az <b

pitz>(Gi—z2) vtz Vi € [n]
F2) =@ 7 ,

pi > (& —2)" Vi € [n]

z€0,1]",peR", z € [2,7]
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As shown in Lemma([23] formulation F (Z) is a relaxation of the restricted bilinear formulation
FBIL M (R x [2,%]). Note that F (Z) becomes stronger, the narrower the bounds of Z are,
ie., for Z, 7" with [z,z] C [¢/,Z], we have F (Z) C F(Z') N (R*" x [z,z]) for non-trivial
cases. The following statement shows that F (Z) is even as strong as - in the case where
z equals one of the bounds 2, z.

Proposition 24. It holds F (Z) N (R*" x {z,z}) = FPL N (R* x {2,z}).

Proof. Consider a solution (x,p, z) € F (Z) N (R*" x {z,z}). For z = z, we have
pitari=pitz—ztari> (@l —2) vitz—z+aw > (& —2) @i +z— 2+ 23 =&
and for z = z, it holds
pi+ 2w > (6 —2) i + 2w > (6 — 2) 3 + Zxy = Gy

This implies (z,p,2) € FPL, and thus F (Z) N (R*™ x {z,7z}) C FBL N (R?" x {2,Z}). The
other direction follows from Lemma 23] ]

The improved formulation F (Z) comes with the cost of a larger constraint matrix compared
to FROB as we have p; > (& — §)+ x; instead of p; > 0. This is a disadvantage in practice, as
more constraints result in larger simplex bases, more calculations in each simplex iteration,
and thus a higher computational effort. However, we can overcome this issue by substituting
pi = P+ (¢ — §)+ x; and z = 2’ + z. We then obtain the equivalent substituted robust
subproblem

min Tz + T2 + Z (Ci + (¢ — 5)+) T; +p;
(ROBS (Z)) i€[n]
s.t. (z,p/, 7)) € FS(2),x e {0,1}"

over the substituted formulation

Ax <b
F3(Z) =S (z,p,2)|p) + 2/ > (min {&,z} — 2) T 2 Vi € [n]
zel0,1]",p eRY,, 2 €[0,7—2]

Our computational experiments confirm that the substituted robust subproblem ROBS (Z)
is indeed computationally preferable to the non-substituted robust subproblem ROB (7).
Furthermore, ROB® (Z) is also interesting from a theoretical point of view: Since 2’ <z — z
holds for all optimal solutions, ROB® (Z) is equivalent to ROB for an instance with objective
coefficients ¢; + (¢; — )™, deviations (min {¢;,Z} — z)*, and an added constant I'z. This will
be useful in subsequent sections, as properties that we prove for ROB carry over directly to
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ROB?® (Z) and ROB (Z). We will often consider ROB (Z) and ROB® (Z) as interchangeable,
depending on the use case. In the next section, we show how to use the robust subproblems
in a branch and bound algorithm for solving ROB.

5.2 The Basic Branch and Bound Framework

The general idea of our branch and bound approach, sketched in Algorithm [2] is to solve
by branching the set of possible values {¢y, ..., é,} for z into subsets Z C {é,...,¢é,},
for which we then consider the robust subproblems For each considered subset
Z, we store a dual bound v (Z) on the optimal solution value of ROB (Z). This dual bound
will primarily be based on a dual bound on the optimal objective value v (ROB (Z")) for the
parent superset Z' O Z. This is obtained, e.g., by computing the optimal objective value
of the continuous relaxation v® (ROB (Z')) using the strong formulation from the previous
section (lines 9 and 10). If the dual bound v (Z) is greater than or equal to the current primal
bound v, then we can prune Z (line 5). If Z cannot be pruned, we first asses the strength
of formulation (line 6), which converges towards the strength of @lﬂ (]Rzn X [z,7])
and achieves equality at latest for |Z| = 1 according to Proposition [24] If F (Z) is almost as
strong as FPI N (R?" x [z,%]), then we directly solve the robust subproblem ROB (Z) (line 7).
This has the advantage that we solve multiple problems that are much easier than ROB but
do not have to consider the nominal subproblems forall z € {¢g,...,¢n}. f F(2)
is too weak for solving ROB (Z), we continue computing dual bounds and branching into
subsets Z = Z; U Z5 (lines 9 to 11).

Algorithmus 2 : The Basic Branch and Bound Framework

Input : An instance of ROB
Output : An optimal solution (x*, p*, z*) of value v

Initialize N = {{¢o,...,é,}}
Set dual bound v ({éo, . ..,&,}) = —oo and primal bound v = oo
while ' # () do

Choose Z € N and remove N < N\ {Z}

if v(Z) < v then

if 7 (Z) is “strong enough” then

L Solve ROB (Z) and update (z*, p*, 2z*) and v if a new best solution is found

else
Compute new dual bound v (Z) on the optimal solution value v (ROB (Z))
Divide Z = Z1 U Zy and set v (Z;) <+ v (ROB (Z)) fori = 1,2
Insert N + N U{Z;, Z>}

return (z*, p*, z*¥)

Note that the framework given in Algorithm [2| only serves for getting a basic intuition,
as many components are described vaguely. For example, we leave open for now how
to evaluate whether we can stop branching Z due to F (Z) being “strong enough”. We
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will describe all components of our algorithm in detail in Section There, we will not
only discuss whether and how we should branch Z (cf. Section[5.6.5) and how to choose
the next Z € N (cf. Section but also improve on the computation of dual bounds
(cf. Section[5.6.1) and primal bounds (cf. Section[5.6.2)) as well as discuss an efficient pruning
strategy (cf. Section[5.6.3). Before doing so, we first establish some theoretical background
in the following sections that will be crucial for the design of our algorithm.

5.3 A Reformulation using Cliques in Conflict Graphs

In this section, we propose a reformulation in a different variable space (cf. Section [2.4.3) of
which is not only stronger than [FROP| but also contains fewer variables and constraints.
The reformulation is indifferent of bounds z,Zz on z and can be easily combined with the
formulations[F (Z)]and [F° (Z)| from Section[5.1} We start with the theoretical introduction
of the reformulation and then give technical details on how we construct it in practice.

5.3.1 The Clique Reformulation

Assume that z; + x; < 1 is a valid inequality for M that is, 2; and z; cannot both be
equal to one and are therefore said to be in conflict. Such conflicts can be modeled within a
so-called conflict graph, consisting of a node for every binary variable x; and edges {z;,z;}
between two nodes if there exists no solution with 2; = x; = 1 [[I0]]. Since every solution
to the original problem corresponds to an independent set within the conflict graph, all
valid inequalities for the independent set problem on the conflict graph are also valid for the
original problem. We have already seen in Section that clique inequalities ;.o 7 < 1,
implied by a clique {z;|i € @} in the conflict graph, are especially interesting. This is because
their recycled inequalities } ;e pi + 2 > -, Ciwi are always facet defining, provided that
x; = 0 is not valid for CN°M for some i € Q. The idea of our reformulation is to replace
the robustness constraints p; + z > ¢x; with recycled clique inequalities and afterwards
aggregate all variables p; within one recycled clique inequality. Note that in general, we
cannot omit the original robustness constraints when adding recycled clique inequalities, as
{z;} is a clique itself, and thus p; + z > ¢;z; is facet-defining as long as z; = 0 is not valid for
CNOM_ However, we will see that we obtain a valid reformulation for ROB if the underlying
cliques of the recycled inequalities form a partition of the variables. To ease notation, we call
a subset @ C [n] a clique if the variables {x;|i € Q} form a clique in the conflict graph.

Proposition 25. Let Q be a partition of [n] into cliques. Then the problem

min 'z + Z CiT; + Z p’Q
(ROB (Q)) icln) Qee

s.t. (z,p/,2) € FROB(Q),z € {0,1}"

5.3 A Reformulation using Cliques in Conflict Graphs
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over the clique formulation

Az <b
]_—ROB(Q): (.7, 2) pb—i—zZZéixi vQ € Q
i€Q
ze[0,1]",p e RE),z € Ryg

is a reformulation in a different variable space that is at least as strong as ROB.

Proof. First, note that for any solution (z, p, z) to ROB, the corresponding solution (z, p’, z)
with p’Q = ieqpiforall @ € Q is a solution to ROB (Q), since

po+tz= pi+z>)Y &
i€eQ 1€Q
is the recycled inequality of 3~ x; < 1. Moreover, both solutions (z, p, z) and (z, 7', z) have
the same objective value.

Hence, it only remains to show that every solution (2,7, z) € FROB (Q) N (Z“ X R'Q‘“) has
a corresponding solution ¢ (z,p/, z) € FROB N (Z" x R™*1) of the same objective value. We
define the image of (z,7/, z) € FROB (Q) as ¢ (x,p’, z) = (z, p, z) and consider two different
cases for the definition of p € R™. For cliques Q € Q with >>,.,¢jz; > 0, we define

Ay
Di = P9 foralli € Q. Then p; + z > ¢;x; holds, since we have
Z]’GQ CjTj

A / A, / A A
g T Ci; (pQ + Z) S GTi2geQ bt _
3 - A~ - A~ - A~ - 1.
2jeq GiTj 2jeq GiTj 2jeq GiTj

For cliques @ € Q with 3~ ¢x; = 0, we choose p; arbitrarily such that py, = 3= ;¢ pj, as
pi + 2 > 0 = ¢x; holds for all p; > 0. This shows not only ¢ (]:ROB Q)N (Z” o R‘Q|+1)) c
FROBA (Zn x R™*1), but also proves the strength of ROB (Q), as we did not use the integrality
of z, and thus have ¢ (}“ROB (Q)) C FROB, °

We consider again Example [] from Section [3.1]to see that reformulation ROB (Q) is not only
equal but actually stronger. In the example, [n] is a clique, and we thus have

SROB(Q) =2 tppy ~ Y wi> Y e Y=Y =

i€[n] i€[n] n i€[n] i€[n]

compared to v}® (ROB) = —1 + "n—;l In fact, v® (ROB (Q)) equals the optimal integer solution
value.

As mentioned in Section the improvement of ROB can directly be applied to[ROB> (Z
due to the equivalency of both problems. Given a clique partition Q of [n]|, we obtain the
restricted reformulation
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min 'z + T2 + Z (ci + (& —E)Jr) xT; + Z p’Q
(ROB* (Z, Q) i€[n) Qeo
sit. (z,p,2) € F5(Z,Q),x € {0,1}"

with

Az <b

T — +
71,0~ eyl 2 Sl {e )~ Q@
1€

rel0,1]",p € R%O,z' €10,z —2]
Note that we have to choose between using formulation 7 (Z, Q) and the recycling of general
inequalities, as the aggregation of variables p; is not compatible with the recycling approach
from Chapter [4 For our branch and bound algorithm, we choose to use the formulation
FS(Z, Q) over the recycling, as this reduces the number of variables and constraints instead
of adding additional inequalities. In our computational study in Section we observe
that the reduction of the formulation’s size is quite important, since solving the continuous
relaxations is often surprisingly time consuming.

Although we use substitution in practice, we will often refer to the non-substituted version

min 'z + Z cx; + Z p’Q
(ROB (Z,Q)) i€[n) QcQ

s.t. (z,p/,2) € F(Z,Q9),x €{0,1}"

with
Az <b
pQ+z>Z(éi—z)+mz—|—z VQ € Q
1€Q
F(Zv Q): (J:ap/az)

po =) (e —2)" vQ € Q
1€Q

xel0,1]",p e Rgo,z € [z,7]

or even ROB (Z) in the remainder of this chapter. This greatly simplifies the notation in
the following sections. However, before proceeding to the next theoretical results, we first
describe how we compute F (Z, Q) in practice.

5.3.2 Implementation of Conflict Graphs and Clique Partitions

In order to obtain formulation F (Z, Q), we first have to compute a conflict graph and a clique
partition Q of [n]. Since finding conflicts and cliques is an integral part of preprocessing
routines in modern MILP solvers [24]1, we could directly use the solver’s conflict graph
and clique table if our algorithm was natively implemented. Unfortunately, we cannot access
these in Gurobi [[52]], the solver of our choice, and therefore compute them ourselves.

5.3 A Reformulation using Cliques in Conflict Graphs
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Ideally, the partition Q contains few cliques that are as large as possible. However, finding
a partition of minimum cardinality is equivalent to computing a minimum clique cover,
which is A"P-hard in general [59]l. Moreover, building the whole conflict graph itself is
also N'P-hard [27]]. Consequently, we have to restrict ourselves to a subgraph of the whole
conflict graph. Instead of answering the difficult question whether there exists a solution
r € CNOM with x;, = x;, = 1, we resort to a simpler problem, for which we only consider
single constraints of the nominal problem.

Let Zie[n} ajiz; < b; be a row of the constraint matrix Az < b. If

mln{ E Aji L5

i€[n]

x € {0, 1}n,$i1 =T = 1} > bj (5.3)

holds, then z;, and x;, cannot both be equal to one and we can add an edge {x;,,z;,} to the
conflict graph. In order to evaluate inequality (5.3) efficiently for all pairs i;,i2 € [n], we first
compute

b; = bj — min { Z ajixi

i€[n]

x € {0,1}”},

that is the maximum possible slack of the constraint, by setting «; = 0 if a;; > 0 and x; = 1 if
aj; < 0. We have

min { Z aj;T;|T € {0, 1}” ,Tiy = Tjy = 1}

1€[n]

=min { Z ajizi|z € {0, 1}"} + max {a;;,, 0} + max {a;;,, 0}

i€[n]

=bj — b + max {aji,, 0} + max {aj,,0},
and thus it is sufficient to evaluate whether
b < max {aji,,0} + max {aji,,0}

holds. In order to find conflicting variables z;,, z;, having this property, we use Algorithm
which is similar to one presented by Brito and Santos [27]. Instead of performing a pairwise
evaluation, Algorithm |3| directly searches for subsets Q C [n] corresponding to cliques in
the conflict graph. This is not only faster than a pairwise evaluation but also beneficial for
storing the conflict graph. Assume that a row of the constraint matrix implies conflicts of
a large clique Q. Atamtiirk et al. || mention that storing the (@) implied conflicts as a
set of edges or using adjacency lists consumes too much memory. Instead, one should use a
separate structure to store these conflicts. Here, we store conflicts implied by cliques @ with
|Q| = 2 in adjacency lists, while cliques with |Q| > 2 are stored directly as a list of variables.
To guarantee fast access to the cliques, we maintain for each variable a list of references to
cliques in which it is contained. Thus, the memory requirement of adding a clique @ is only
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O (|Q)) instead of O <|Q|2) In the following, we think of the conflict graph as a hypergraph
G = (V,H),withV = {x1,...,2,} being the nodes and H C 2" being a set of hyperedges
representing cliques in the conflict graph.

Algorithm (3| constructs this hypergraph by iterating over all constraints 3., ajiz; < b;.
For each constraint, we first compute b;. (line 3) and the highest coefficient ¢* occurring

in the constraint (line 4). If we have max {a*,0} < %9, then the constraint will imply no
conflicts, which allows for a fast skipping of uninteresting constraints (line 5). Otherwise, we
construct a list of candidates x;, for which we have max {a*,0} + max {a;;,0} > b/, that is,
the variable z;, either defines a* or is in conflict with the variable defining a* (line 6). If the
list (z;,,...,x;,) consists of more than one variable, then we have found a conflict (line 7).
We sort the list of candidates (line 8) and find the lowest index [* such that z;,, and z;,. ., are
in conflict (line 9). Due to the ordering, all variables {z;,.,...,z;, } are in conflict with each
other and can thus be added as a hyperedge to the conflict graph (line 10). For all variables
z;, that do not belong to the hyperedge, we search for the lowest index I’ such that x;, and
r;, are in conflict (line 12). Such an index exists, since x;, is in conflict with x;, . Again, due
to the ordering of the list, the variables {xip, Ty ,xik} are in conflict and can be added to
our graph (line 13).

Algorithmus 3 : Algorithm for computing hyperedges for the conflict graph.
Input : Constraints Az < b with A € R™*" and uncertain variables V'
Output : A hypergraph G = (V, H) with hyperedges H C 2V

Initialize hyperedges H = ()

for j € [m] do

Compute bg- = b; — min {Zie[n] QjiTs

z e {0,1}”}

Let a* = max {aj;|i € [n]}

. b
if max {a*,0} > < then

Let L = (z;,,...,x;, ) be alist of uncertain variables with
max {a*, 0} + max {ag;,0} > b for | € [K]
if £ > 1 then

Sort L non-decreasingly w.r.t. max {aj;,0}
Let [* = argmin {l € [k — 1]|max {aj;,,0} + max {aj;,,,,0} > b;}
Add H « HU {{zi.,... 2, }}
forpe [I*—1] do
Let [’ = argmin {l € [k:]’max {aji,, 0} + max {aj;,,0} > b;}
Add H « HU {{:Up:z:l - a:k}}

return G = (V, H)

The hyperedge added in line 13 consists of a subset of the first hyperedge added to the con-
straint, starting at index [/, and an additional variable x;,. Brito and Santos [[27]] point out that
this can be used to store the graph more efficiently. Instead of storing the whole hyperedge
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{xip, Ty Tiy }, we only store the variable x;,, a reference to the hyperedge {@ipe, vz}

and the index !’, from which we can construct the hyperedge {:cip, Ty ooy T, }

After constructing the conflict graph, we use Algorithm 4] to compute a partition of V into
cliques. Algorithm[4]is a greedy heuristic building on the idea that a minimum clique cover
consists without loss of generality only of cliques that are maximal with respect to inclusion.
We first initialize a set of cliques Q = () and remaining nodes V/ = V' (line 1). While there
are nodes left for partition (line 2), we iteratively select an arbitrary remaining node v" € V'
(line 3) and construct a maximal clique @ C V' containing v'. We initialize ) as the largest
hyperedge on the remaining nodes 4 N V' containing v’ (line 4 and 5). This speeds up the
construction of (), since we do not have to check whether the variables in & are in conflict. We
then expand () by iteratively adding remaining nodes that are contained in the neighborhood
of all current clique members (lines 6 to 10). Afterwards, we add this clique to our partition
(line 11), remove the contained nodes from the remaining nodes (line 12), and proceed until
no nodes are left.

Algorithmus 4 : Greedy heuristic for clique partitioning in a conflict graph.
Input : A conflict graph G = (V, H) consisting of nodes and hyperedges
Output : A partition Q of V' into cliques

Initialize the partition into cliques Q = () and set of remaining nodes V' = V.
while V' # ) do
Choose v' € V’
Choose h € argmax {|hNV'||h € (HU {v'}),v" € h}
Initialize new clique Q@ = h NV’
Compute candidates N =V’ | N (v)
vEQR
while N # () do
Choose any v € N
Add candidate @ <+ Q U {v}
Update candidates N <~ NN N (v)
Add clique Q < QU {Q}
| Remove from remaining nodes V' <~ V'\Q
return Q

Remember from Theorem that the bilinear formulation@l is stronger than any polyhedral
formulation for a given nominal formulation FN°M, However, our computed clique partition
Q may contain cliques @ for which the corresponding clique inequality ;. z; < 1 is not
directly contained in the constraint matrix Az < b describing FN°M, Thus, when using such
cliques, we incorporate information into the clique reformulation ROB (Z, Q) that is not
available for the bilinear formulation 5. This can result in F (Z, Q) being stronger than
FBIL which is undesirable for our branch and bound algorithm, since we approximate FEI
and can therefore end up with a weaker formulation after branching. Therefore, we always
add the corresponding clique inequalities of our clique partition to the constraint matrix
Az < b if they are not already contained.
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5.4 Lagrangean Relaxations

We already noted in the previous section that solving the continuous relaxation of
can be relatively time consuming due to the additional robustness constraints and variables.
Although the substituted clique reformulation already contains fewer variables
and constraints, we still observe for some instances that solving the continuous relaxation
can require much more time than solving an integer nominal subproblem [NOS (z)] This coun-
teracts the idea of the branch and bound algorithm, which is to solve the theoretically easy
relaxations in order to discard non-optimal values for z and focus on interesting subproblems
ROB (7). The computational effort needed to solve the continuous relaxations is especially
high for the first nodes of our branch and bound tree, when Z still contains a wide range of
possible values for z. After some branching steps, yielding tighter bounds z, z, the relaxations
become easier to solve. This effect is not surprising for increasing lower bounds z, since
many variables p(, and constraints pj, + 2’ > 37,c (min {¢;, 7} — 2)" z; become redundant
for z > max {¢|i € Q}. Even for decreasing upper bounds z, we observe a reduction of the
computation time, which might be due to the diminishing impact of the robustness constraints
on the problem structure.

On the basis of these observations, it appears reasonable to consider a relaxed problem of
ROBS (Z, Q) that omits the robustness constraints as long as the bounds z, z are wide. After
some branching steps are performed, we can then revert to solving the continuous relaxation
of ROB® (Z, Q). To this end, we consider a Lagrangean relaxation of ROB® (Z, Q). The idea
of Lagrangean relaxations is to remove complicating constraints from the constraint matrix
so that they do not have to be fulfilled, but their violation is penalized in the objective func-
tion. For an arbitrary problem min {v (z)|A’z < ¥,z € X} with X C R" and a complicating
constraint matrix A’ € R™*™ with right-hand side ¥’ € R™, the Lagrangean relaxation with
Lagrange multipliers A € RY, is defined as min {v (x) + AT (Az = V) ’:c eX } Note that this
is indeed a relaxation, since AT (4’x — ') < 0 holds for all feasible solutions of the original

problem.

The value of the Lagrangean relaxation depends on the multipliers A. Choosing a large value
A;j rewards solutions with a positive slack in the j-th constraint, while A; = 0 allows for an
unpenalized violation. The problem of finding optimal multipliers, yielding a Lagrangean
relaxation with the highest objective value, is known as the Lagrangean dual problem. Optimal
multipliers are in general difficult to obtain, but if they are achieved and the original problem
is a linear program, then the value of the optimal Lagrangean relaxation is exactly the value of
the original problem Section 5.6]. Hence, if we were able to compute optimal Lagrange
multipliers, then we could compute the value of the continuous relaxation v® (ROBS (Z, Q))
by solving the Lagrangean relaxation of the continuous relaxation of ROB® (Z, Q).
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Since we want to relax the robustness constraints pg, + 2’ > 37, (min {¢;, 7} — 2)" z; of the
continuous relaxation of ROB® (Z, Q), we need to choose Lagrange multipliers Ao > 0 for all
cliques Q € Q. Given such multipliers, we obtain

min I'z + T2 + Z (Ci + (& — E)+) T+ Z p/Q
i€[n] QeQ

+ Z Ao (Z (min {&;, 2} — 2) T a; — Po — z/)
QEQ 1€Q
FNOM.

s.t.x €
Since p’ and 2’ are unbounded, their objective coefficients need to be non-negative, which is
equivalent to A € [0, 1]Q and }"5co Aq < T'. Moreover, as p’ and 2’ are no longer contained
in the constraint matrix, they will always be zero in an optimal solution. Therefore, we have
the following Lagrangean relaxed continuous robust subproblem

min I'z + Z (ci + (¢ — §)+) x; + Z AQ Z (min {¢;,z} — §)+ ;i
(LRR(Z,Q,\)) i€n] QEQ  ieQ
s.t. z € FNOM,

Note that if each index ¢ € [n] is its own clique, i.e., @ = {{1},...,{n}}, then the objective
coefficients obtained by choosing A € [0, 1]9 with 3°ncoAg < T correspond to a convex
combination of the possible objective coefficients ¢’ in our uncertainty set (cf. Section (3.1J).
Consequently, the Lagrangean relaxation is stronger than solely using some scenario if we are
able to merge indices into actual cliques Q.

In our branch and bound algorithm, we solve LRR (Z, Q, )\) instead of the continuous re-
laxation of ROB® (Z, Q) for large sets Z. As we want to reduce the computational time
spent for solving the relaxations, we do not compute optimal Lagrange multipliers A but
choose some heuristically. In general, one needs to be careful when doing so, as high values
of A may overcompensate a positive slack of the relaxed constraints, resulting in a weak
dual bound. Fortunately, we do not face this problem here, as choosing A € [0, 1]Q with
> geoAq < T is always at least as good as simply removing all robustness constraints. Let
Q' ={Q € Qmax {¢li € Q} > z} be the subset of cliques for which the corresponding ro-
bustness constraints are not redundant. In our implementation, we choose Ay = min {1, ‘é—q}
for @ € Q" and \g = 0 otherwise. This yields a balanced objective function, which considers
every Lagrangean relaxed robustness constraint equally, and thus yields no obvious loophole
that may be exploited by an optimal solution.

The approach leaves room for further engineering, such as choosing other Lagrangean
multipliers or additionally considering recycled inequalities for relaxation. However, our
simple choice of \ already proves the concept of using Lagrangean relaxations, as they yield
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a speed-up of our branch and bound algorithm. Therefore, we leave more sophisticated
approaches for future research.

5.5 Characterization of Optimal Values for p and z

The central idea of our branch and bound algorithm for solving [ROB]is to restrict the value of
z to strengthen our formulation and then trying to find an optimal corresponding nominal
solution x In this section, however, we want to consider the opposite direction.
Given a nominal solution x € FNOM_ what are the optimal values for p and 2? We already
took a glimpse at this question in the discussion of Figure from Chapter (3} We will
now have a closer look, as the answer to it will deepen our understanding of the structural
properties of ROB and is of practical use in many ways. First, we will generalize the result
of Lee and Kwon , who showed for I € Z that there exists a subset Z C {éj,..., ¢},
with |Z] < [%W + 1, containing an optimal choice for z. This reduction is relevant for our
branch and bound algorithm, as we only have to consider subsets Z C Z. Second, given
a choice of z, we will be able to restrict our search for a corresponding nominal solution
x € FNOM ¢4 those for which the chosen = is optimal. We will extensively use this idea within
our branch and bound algorithm, especially in Section [5.6.1} where we describe further dual
bounding strategies. Third, as we prove the characterization of optimal z for (potentially
fractional) solutions within [F?1] we can compute for any = € FNM the corresponding
objective value for the optimization problem over FB. This provides an upper bound on
the optimal objective value over F2I', which we compare to the optimal objective value
vR (ROB (Z, Q)) of the continuous relaxation of in order to obtain an indicator of
the strength of We use this indicator in our branch and bound algorithm to decide
whether ROB (Z, Q) should be solved directly as an MILP or whether Z needs to be shrunk
further, as explained in Section[5.6.5| The following theorem states the characterization of
optimal values for p and z.

Theorem 26. Let € FNOM be a (fractional) solution to[NOM| We define

z(x)—min{ze{éo,...,én}

Z :cigl“}

i€[n]:é;>z

1€[n]:é;>2

The values z € [z (z),Z (x)] are together with p; = (¢&; — 2)* x; for i € [n] exactly the optimal
values satisfying (z,p, z) € FP* and minimizing Tz + Y, Di-

and

Z (r) = max ({O} U {z € {¢o,...,Cn,00}

For integer solutions z € FNOM the lower bound z () indicates that z should be large
enough such that there are at most I indices ¢ € [n] with z; = 1 and ¢ > z. Otherwise,

5.5 Characterization of Optimal Values for p and =

81



82

we may increase z while simultaneously decreasing p; for more than I' indices, leading to
an improvement of the objective value. Conversely, the upper bound z (x) implies that z
should be small enough such that there exist at least I" indices i € [n] with x; = 1 and & > z.
Otherwise, we may decrease z and would have to increase p; for fewer than I' indices, also
yielding an improvement of the objective value. Obviously, if I" is so large that 3=,cp, 2 < T'
holds, then we should choose z as small as possible, i.e., z = 0. To prove that the bounds
z(z),Z (z) from Theorem [26] are exact, we first characterize them in an additional way.

Lemma 27. For x € R"™, we have

z(x) = max ({O}U{ze{éo,...,én} Z xi>F}> 5.4

1€[n]:¢; >z

and

z(:c):min({oo}u{ze{éo,...,én} > xi<r}). (5.5)

1€[n]:é; >z

Proof. We first prove equation (5.4). If we have z (z) = 0, then the definition of z (z) in
Theorem [26] implies for all z > 0 that

Z x; < Z z; <T

i€[n]:é;>z i€[n]:¢;>0

holds, and thus we have

max ({O} U {z € {éo,...,¢n}

Z xT; > F}) =0.
1€[n]:é; >z

In the case of z (x) > 0, there exists an index j € [n| with ¢; = 2 (z) and ¢;_1 < z (). It holds
Yicin]:éi>z(x) T > T, as otherwise we would have

Z x; = Z x; < T,

i€[n]:é;>¢1 i€[n]:é;>z(x)

which contradicts the minimality of z (). Now, assume that there exists a value z > z (z)
with 37cp).6,>- ¥ > I'. Then we would have

Z x; > Z $i>r,

i€[n]:é;>z(x) i€n]:é;>z
contradicting the definition of z ().

We continue with proving equation (5.5). If Z (x) = oo holds, then the definition of z (z) in
Theorem [26]yields
r< Y ;=0

i€[n]:é;>00
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and thus

min ({oo} U {Z € {éo,...,¢n}

Z T; < F}) = 0.
i€[n]:é;>z2

For simplicity, we denote ¢,.1 = oco. Then in the case of Z () < oo, there exists an index
j € [n]o with ¢; = Z(z) and ¢j11 > Z(z). Itholds 3 ,ci).e,53(0) @i < I, as otherwise we

Z T = Z xz; > T,

1€[n]:8;>¢41 1€[n]:¢;>%(x)

would have

which contradicts the maximality of Z (z). Now, assume that there exists a value z < z ()
with 3=cn).6,>2 2 < I'. Then we would have

Z x; < Z $i<r,

i€[n]:¢;>Z(x) i€[n]:é;>z

contradicting the definition of Z (). O

Using the above lemma, we are able to prove Theorem [26]

Proof of Theorem 26] The interval [z (z),z (z)] is well-defined. This is because Dicin]iai>z Ti S
x; < I', and we thus have z (z) < Z (x) by defini-
tion of z (x) and equation (5.5). Furthermore, choosing p; = (¢ — z)" z; is optimal for given

I is a weaker requirement than ;cr,,1.c,>

z and z, as we minimize and have p; > (¢ — z) x; and p; > 0 for all (z, p, z) € FPL.

Now, let 2 > z (x) and consider another value 2’ > 2 together with an appropriate p’ such
that (x,p/, 2’) € FPL. By definition of z (z), we have

> o

i€[n]:é;>z i€[n]:é;>z(x)

IN
(]
3
IN
=

and thus

Fz—i—Z(éi—z)eri:FZ—i— Z (2 —2) @i + Z (6 — 2") @i

i€[n] i€[n):é; >z i€[n]:éi>z

(%)
<Tz+ (2 —2)T+ Z (& —2")

i€[n]:é;>z
=TI + Z (6 —2")xi + Z (& —2") z;
i€[n]:é;>2" i€[n]:2’>¢;>2
SFZ, + Z (él — Z/) x;
1€[n]:é;>2"
<TZ + Z .
i€[n]
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Hence, the objective value is non-decreasing for z > z (z). Moreover, if 2’ > Z (x) holds, then
we have Z (z) < oo, and thus };c(,).6,53(2) ©i < I' by equation (5.4). Then for z = z (z), it
follows that (*) is a proper inequality and all choices 2z’ > z (x) are non-optimal.

Now, let z < z (x) and consider 2’ < z. This implies z (z) > 0 and together with the definition

i€n]:¢;>z 1€[n]:¢;>%(x)

of z (x), we obtain

and thus

I‘z+z i —2) T =T+ (2 -2)T+ Z (¢; — 2) m;

i€[n] 1€[n]:é; >z

(%)

<TZ + Z (z = 2w+ Z (¢ — 2) x;
i€[n]:é;>z i€[n]:é; >z

=17 + Z (éz — Z/) x;
i€[n):é; >z

=T+ Z (éz — Z’,) T; — Z (él — Z/) xT;
i€[n]:é;>2' i€[n]:z>¢;>2'

< r2 + Z (él — Z/) Z;
1€[n]:¢;>2'

<TZ+ Z i
i€[n]

Hence, the objective value is non-increasing for z < z(z), which shows that all values
z € [z(z),Z (z)] are optimal. Furthermore, if 2’ < z (x) holds, then we have 0 < z (z), and
thus >~ n):¢,>2(2) ¥ > I’ by equation . Then for z = z (z), it follows that (xx) is again a
proper inequality and all choices 2’ < z () are non-optimal. O

As already mentioned, Lee and Kwon showed for I' € Z that the number of different
values for z to be considered can be decreased fromn+1 to [ W +1. To see this, it is helpful
to sort the deviations ¢;. Therefore, for the remainder of this chapter, we assume without
loss of generality that ¢y < ... < &, holds. The first observation leading to the reduction of
Lee and Kwon is that the values z € {¢,+1-r, ..., ¢, } are no better than the value z = ¢,_r,
i.e., ¢,_r > z(x) for all solutions 2 € FNOM, The second observation is that if the value
z = ¢; is optimal, then z € {¢;_1,¢;4+1} also contains an optimal choice. To put it in terms of
Theorem 26} if we have ¢; € [z (z),Z ()], then it also holds {¢_1,¢4+1} N[z (z),Z (z)] # 0.
This implies that Z = {¢éy, é2, ¢4, ..., ¢, } contains an optimal choice for z. The following
statement generalizes the first observation to I' € R>(. Furthermore, both observations are
strengthened by using conflicts and a clique partition, which we already compute to obtain
the strengthened formulations from Section [5.3.1] to reduce the set Z.
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Proposition 28. Let Q be a partition of [n| into cliques and q : [n] — Q be the mapping that
assigns each index j € [n] its corresponding clique ) € Q with j € Q. For

" = min ({n} U {i € [n— o] Hg (i +1).....q(m)}| <T}),

we have ¢max > z (z) for all solutions x € FNOM 1 {0,1}" and there exists an optimal solution
(x,p, z) to ROB with z € {¢o, ..., ¢max}.

Furthermore, let G = ([n], E) be a conflict graph for ROB and T" € Z. Let Z C {¢y, . .., Cjmax }
such that émax € Z and for every i € [i™** — 1] it holds

e ¢, € Zor

* there exists an index k < i with ¢, € Z and for all j € {k+1,...,i — 1} there exists an
edge {j,i} € E in the conflict graph G.

Then there exists an optimal solution (x,p, z) to ROB with z € Z.

Proof. The first part of the statement is easy to see when considering Theorem [26] as we have

1€ [n] :¢;>C¢;max

for all z € FNOM N {0,1}", and thus ¢;max > z (z). Since the objective value is non-decreasing
for z > z (z), we do not have to consider z € {¢maxy1,...,¢é,}.

For the second part, let z € FNOM 1 {0, 1}" be an arbitrary solution to NOM and Z be a set
fulfilling the above properties. It suffices to show Z N [z (z),Z (z)] # (. Note that 0 = ¢y € Z
holds, as there exists no index k£ < 0. Hence, we can assume that z (z) > 0 holds, as there is
nothing left to show otherwise. Assume that Z (x) > ¢émax holds. As we have ¢max > z (),
it follows émax € [z (2),Z ()], and thus Z N [z (z),Z (x)] # . We are therefore left with
0 < Z(x) < émax. Since

Z (r) =min {z € {é1,...,Cmax_1}

Z mi<F}

1€[n]:é;>z

> xizr}

—=max\{ z € {61, e éimaxfl}
1€[n]:é;>z

is well-defined, there exists an index i* € [{"™* — 1] with > . x; =T'and > ;. ;2 =T —1.

It holds ¢+ = Z (x), as we have

1€[n]:é;>¢;% i=1*41
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which implies é;+ > Z (z), and

1€[n]:¢;>¢;% i=7*

implying ¢+ < Z(x). If we have ¢+ € Z, then there is nothing left to show. Otherwise,
there exists an index k < i* with ¢, € Z and an edge {j,i*} € E in the conflict graph for all
je{k+1,...,i* —1}. Since x;~ = 1 holds, we have Zﬁ*:;frl x; = 0, and thus

n i*—1 n n
Z x; < Z%ZZ%%-Z%:Z%‘:F,
i€n]:éi>é i=k+1 i=k+1 i=i* i=i*
which implies é; > z (). Together with ¢, < ¢+ < Z (z), we obtain & € [z (z),Z (x)]. O

Proposition [28] determines the structure of Algorithm 5] which we use to compute a inclusion-
wise minimal set Z satisfying the requested properties. We first compute the index :™** (lines
1 to 5). Afterwards, we add the mandatory deviation &, (line 6) and check whether I" € Z
holds (line 7). If so, we evaluate for all 7 € {1,...,:™** — 1} if deviation ¢; has to be added
according to Proposition 28] (lines 8 to 12). Lastly, we add deviation ¢;max, which always
needs to be considered (line 13). Note that the second part of Proposition [28] only holds
for ' € Z, as we have z () = Z (z) otherwise, which makes it impossible to skip deviations.
Hence, in the case of I' ¢ Z, we only use the first part of Proposition 28] (line 15).

Algorithmus 5 : Procedure for filtering possible optimal values of z.

Input : An uncertainty budget I, sorted deviations {¢, . .., ¢, }, a conflict graph
G = ([n], E), a clique partition Q C 2" and a corresponding mapping
q:[n]—Q

Output : A subset Z C {¢é,...,¢,} containing an optimal value of z

Initialize i™®* =n+1and Q' =0

while i™®* > 0 and |Q'| <T' do

reduce ¢™Ma¥ ¢ gmax _ 1
if 12X > ( then
L Add Q' + Q' U{q (™)}

Initialize Z = {&}
if I € Z then
fori=1,...,9"** —1do
if & géZthen
Let k = max {j € {0,...,i —1}|¢; € Z}
if{k+1,...,i—1} C N (i) then
LAddZeZU{éi}

| Add Z < Z U {Cimax}

else
L Add Z < Z U {él, “ e 7éimax}

return Z
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5.6 The Branch and Bound Algorithm

After paving the way with the theoretical results of the previous sections, we now introduce
the components of our branch and bound algorithm in detail. That is, we describe our
approach for computing dual and primal bounds, our pruning rules as well as our node
selection, branching, and warm starting strategies. A summary of the components, merged
into one algorithm, is given in Section[5.6.7} An overview on different strategies regarding
the components of branch and bound algorithms is provided by Morrison et al. [77]].

For the remainder of this chapter, Z C {¢é,...,¢é,} will be a set of possible values for z, as
constructed by Algorithm [5] To ease notation, we will refer to the considered subsets Z C Z
as nodes in a rooted branching tree, where Z is the root node and Z' is a child node of Z if it
emerges directly via branching. Furthermore, we denote with V' C 2% the set of active nodes,
that are the not yet pruned leaves of our branching tree, which are still to be considered.

5.6.1 Dual Bounding

The focus of this work is primarily on the computation of strong dual bounds v (Z). We
introduced the strong clique reformulation[ROB (Z, Q)|and the smaller Lagrangean relaxation
yielding dual bounds v (Z) = vR (ROB(Z, Q)) and v (Z) = v (LRR (Z, Q,\))
respectively. In the following, we show that we can obtain even better bounds by restricting
ourselves to solutions fulfilling the optimality criterion in Theorem

5.6.1.1. Deriving Dual Bounds from ROB (7)

Imagine that we just solved a mixed-integer robust subproblem and observed that
the optimal objective value v (ROB (7)) is significantly higher than the current primal bound
v. Furthermore, imagine that there exists a yet to be considered value 2’ in an active node
7' € N that is very close to one of the just considered values z € Z. Note that the nominal
subproblem arising from fixing z, differs only slightly in its objective function
Pz 4+ > iem] (cz- + (& — z)+) x; from the nominal subproblem NOS (z’). This suggests that
the objective value v (NOS (z’)) is probably not too far from v (NOS (z)). Since v (ROB (Z))
is higher than v and also a dual bound on v (NOS (z)), we might be able to prune 2’ without
considering ROB (Z’) if we are able to carry over some information from NOS (z) to NOS (2/).
In fact, Hansknecht et al. showed that there exists a relation between the optimal
solution values v (NOS (z)) for different values z.

Lemma 29 (Hansknecht et al. [53]]). For 2’ < z, we have

v (NOS (2)) > v(NOS (2)) = T' (2 — 2') .
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Proof. The objective function I'z + ;¢ (cl- + (& — z)+> x; of NOS (z) is non-increasing in z
when omitting the constant term I'z. It follows v (NOS (z/)) — 'z’ > v (NOS (z)) — I'z, which
proves the statement. O

Accordingly, in addition to the dual bound v (Z’) for a node Z’ € N, we can also maintain
individual dual bounds v (2’) on v (NOS (z)) with v (2') = v (ROB(Z)) —T' (2 — 2’) for 2’ < z
after solving ROB (Z). The dual bound for a node Z’ is then the maximum of the relax-
ation value v® (ROB (7', Q)) or v (LRR (Z’, @, \)) and the minimum of all individual bounds
min {v (2')|z" € Z'}.

While this already strengthens the dual bounds in our branch and bound algorithm, we can
improve the results of Hansknecht et al. even more by using the optimality criterion from
Theorem [26] and the clique partition Q from Section [5.3.1] Since we are solely interested
in optimal solutions to ROB, it is sufficient to only consider solutions to NOS (z’) that fulfill
the optimality criterion, i.e., solutions 2’ with 2’ € [z (2/),z (2)]. If an optimal solution to
NOS (2') does not fulfill this property, then 2’ is no optimal choice in the first place and can
therefore be pruned. Accordingly, we establish an improved bound that is not a dual bound
on v (NOS (z')) but a dual bound on the objective value of all solutions to NOS (2’) fulfilling
the optimality criterion.

Let 2/ be such a solution to NOS (z’) with objective value v’. Note that 2’ is also a feasible
solution to NOS (z) and let v > v (NOS(z)) be the corresponding objective value. For
2/ < z, the value ' is decreased by 9 = I'(z — 2’) compared to v but increased by
5 = 3] ((éi — )T — (& — z)+) x%. This yields the estimation

v = v — 59 4 6 > 4 (NOS (z)) — 69 + §in (5.6)

of the objective value v'. The decrease by §9¢ is taken into account in the estimation of
Lemmabut the increase ¢'™ is not. Obviously, 6™ can be zero if we have x} = 0 for all
i € [n] with ¢; > 2/. However, if 2’ fulfills the optimality criterion and 2z’ > 0 holds, then we
know from Theoremthat there exist at least I' indices with ¢; > 2’ and z} = 1. Assuming
that there do not exist I indices with ¢; = 2/, there must exist at least one i € [n] with & > 2/
and z} = 1, yielding a positive lower bound on §"°. Taking conflicts between variables z; into
account, we might even deduce that there must exist some indices with z; = 1 and very high
¢;, which improves the bound on §,

For 2/ > 2, Lemma [29| provides no bound on NOS (2/), although we can apply similar
arguments to this case. Observe that inequality still holds, with 6" < 0 and §9¢¢ < 0.
Unfortunately, if we have z = 1 for all i € [n] with & > z, then §" < 0 might have a large
absolute value, leading to a weak estimation. However, if 2’ fulfills the optimality criterion,
then we know from Theorem [26| that there exist at most I" indices with ¢ > 2’ and 2 = 1.
From this, we can again deduce a lower bound on 4™, which can also be improved by taking
conflicts between variables z; into account.
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Theorem 30. Let Q be a partition of [n] into cliques, z, 2z’ € R>q, and 2’ be an arbitrary solution
to NOS (2') of value ' satisfying 2’ € [z (x),Z (x)]. It holds v' > v (NOS (z)) — 6, ('), where
the estimator 4, (z’) is defined as

C—|T)(z=2")+ > max {& —z[i € Q,z2 < & < 2'} forz >z,
QEQ:
JieQ:2<8; <2’

5z(2/)— (T —=T]) (2 —2')+ max > max{zéi|i€Q,éi22'}} for0 <2 <z,

Iz for 2/ =0.

Proof. For 2’ = 0, the statement follows from Lemma [29] Otherwise, we obtain an estimation

v > v (NOS(2)) — (F (z—2) + Z ((éZ — )t — (& - z')Jr) x;) ,
i€[n]
as in inequality ([5.6)), by considering the difference in the objective functions of NOS (z’) and

NOS (z). Consider the case 2z’ > z. Since 2z’ > z (z’) holds, it follows from the definition of
z (2') in Theorem [26] that we have

Z z; < z; < |TJ.

1€[n]:é;>2" i€[n]:é;>z(x")

We obtain

L(z—2)+ > ((éz —2)" - (& - z’)+) ;
i€[n]
=L(z-2)+ >  (@—-22+ > (F-2)a}
1€[n]:2<é; <z’ i€[n]:é;>2"
<T(z-2)+ Z (& —2)m; + (2 — 2) [T

i€[n]:z<é; <z’

=C-MhE-2)+ > (@-2g

i€[n]iz<é; <z’

<T-=|I])(z=2") +max{ > (-2 EfNOMﬂ{O,l}"}

i€[n]iz<é; <z’

Yal <1 VQeQ
<= |I])(z—2) + max S (G- z)ay)ieQ

i€[n]:z<é; <z’ z" >

0
=T-INE=-2)+ >  max{&-zlicQ,z2<é<2},
QEeQ:
FieQ:z<e; <2’

where the last equality holds since Q is a partition of [n].
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Now, let 0 < 2’ < 2. Since 2’ < z (') holds, it follows from Theorem [26] that we have

oo Y x> [T,

i€[n]:é;>2' i€[n]:¢;>Z(z’)

It holds

i€[n]
=I'(z—2")+ Z (2 — &)z + Z (2 — 2) 2]
i€[n]:2'<é;<z 1€[n]:¢;>2
=L (z—2)+ > (¢ —min{z&})]
i€[n]:é;>2'
PO I
<I'(z — 2') + max > (¥ —min{z,&})af| i€hlazy
i€[n]:¢;>2" = ]_-NOM N {0’ 1}n
S =
1€[n]:¢;>2"
<T'(z — 2') + max > (¢ —min{z &}) 2} Y al<1vQeQ
1€[n]:é;>2" 1€Q
x// Z 0
Y, =T
i€[n]:¢;>2!
=([' = [T) (2 — 2’) + max > (z—min{z&})af dal<1vQeQ
i€[n]:¢;>2" 1€Q
x// 2 O
=T —-[T)(z—2)+ max { > max {z —min{z,é&}i € Q,¢ > z’}}
Q=T L@
=T =MD (z=2)+ max ¢ Y max{z-¢&li€Q,é>2"} 7,
Q'CO: Qeor
|Q'|<[T]
which concludes the proof. O

The above statement enables us not only to compute bounds for 2’ > z but also stronger
bounds for 0 < 2’ < 2. Note that for 2z’ = 0, we have to use the dual bound from Lemma [29]
since Theorem [26] provides no statement on the required structure of 2’ in this case.

In our branch and bound algorithm, we use the estimators §, (2’) for all 2’ < z and 4z (2’) for
z' > 7 after solving ROB (7). Accordingly, we define for Z C Z the estimators

(5 ( /) 5& (Z/) for Z/ < 2,
z\®) =
6z (7') forz >z,
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The improved bounds v (ROB (Z)) — d (2’) come at the cost of a higher computational effort
compared to the bounds from Lemma However, the additional overhead is marginal, as we
can solve the involved maximization problems in linear time and compute all estimators ¢, (z’),
or 0z (2') respectively, simultaneously. Algorithm|§| describes our approach for computing the
estimators for a set Z’ C Z of remaining values z’.

Algorithmus 6 : Procedure for computing estimators J, (z’).

Input : Aset Z/' = {zi, . zj’o} C Zwith z; <... < z, values 2,z € Rxo, an uncertainty
budget I, sorted deviations {¢o, ..., ¢,}, a clique partition Q C 2l and a

corresponding mapping q : [n| — Q
Output : Estimators ¢, (2') for 2’ < z and 63 (2/) for 2’ > =
1 Let £ =min {i € [p]|z] >z} and k = min {i € [n]y|& > z}
2 Initialize estimator § = 0, set of considered cliques Q' = (), and mapping to the
corresponding index ¢! : Q" — [n]
sforj=/¢...,pdo
4 while ¢, < z§ do
5 if ¢ (k) € Q' then
6 t Update § 06— (éqfl(q(k)) — E)
Add Q' «+ Q' U{q(k)} andset ¢! (q(k)) =k
Update § < 0 + (¢ — z) and increase k + k + 1
o | Setdz(z)) =(—[P))(z=)+0

10 Let ¢ = max {i € [p]|2] < z} and k = max {i € [n],|é; < z}
11 Set 6 =0, Q' = (), and initialize empty list L
12 forj=/,...,1do

13 | if 2; = 0 then

14 Set d, (23) =Tz

15 else

16 while ¢, > z§. do

17 if g (k) € Q' then

18 t Update § < § — (g - éq—l(q(k))) and remove ¢! (¢ (k)) from L
19 Add Q' + Q' U{q(k)},set ¢! (q(k)) = k, and append k to L
20 | Update § <— § + (z — &) and decrease k < k — 1

21 while |L| > [T'] do

22 Update § + § — (g — éL[O])

23 | Remove Q' - 9"\ {¢(L[0])} and delete L [0] from L

24 Setd (2)) = (0 = [IT) (2= %) +6

25 return J, and &z

We first compute 6z (2') for 2’ € {2’ € 2’|z’ >z} (lines 1 to 9). For computing 0z (z}), we
consider all deviations ¢, with z < ¢, < z§ (line 4) and add the corresponding value é, — z
(line 8). Furthermore, we mark the clique ¢ (k) containing % as considered by adding it
to the set Q' and we associate the clique ¢ (k) with the index k& by maintaining a mapping
q ' : Q — [n] (line 7). However, if ¢ (k) was already contained within Q’, then we considered
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an index k' = ¢! (¢ (k)) with q (k) = ¢ (k") before k and counted the value &, — Z towards
0z (7'). Hence, either ¢, — z or ¢ — z has to be subtracted, as we only count the highest
value per clique. Since we iterate over the deviations in a non-decreasing order, it holds
ér — Z > ¢ — Z, which is why we subtract ¢, — Z (line 6). Note that we do not have to
consider all values {ék‘f < ¢ < z;} for computing &z (zﬁ) if we already considered the values

{64? < ¢ < 2371} for 6= (z;;l). Instead, we construct dz (z:;) on the basis of 6z (Z;'fl) and

only iterate over {ék‘z;;l < ¢ < z;}

The computation of d, (2’) for 2’ € {2’ € 2’|z’ < z} is almost analogous (lines 10 to 24). The
difference here is that we only consider up to [I'] values z — ¢;. Hence, we not only maintain
the set Q' and the mapping ¢~! but also a list containing the indices of currently added
values z — é. The list is updated every time we subtract (line 18) or add (line 20) a value
z — ¢,. Furthermore, since we iterate reversely over {ék% <ép < g}, the list is ordered

non-decreasing with respect to z — ¢,. Hence, before assigning 9, (zé) , we check whether L
contains more than [T'] elements and, if necessary, remove the first [T'| — | L| indices together
with their value z — ¢ and their clique ¢ (k) (lines 21 to 23).

5.6.1.2. Optimality-Cuts

Consider a node Z C Z of our branching tree and assume that (z, p, z) is a solution to ROB (Z)
with [z (z),Z (z)] N Z = . We know from Theorem [26] that it is needless to consider z for
the subset Z, as there exists a different set Z' C Z with [z (z),Zz ()] N Z' # 0 if = is part of a
globally optimal solution. Nevertheless, it is possible that (z, p, z) is an optimal solution to
ROB (Z), resulting in an unnecessarily weak dual bound v (7). Using the following theorem,
we are able to strengthen our formulations so that we only consider solutions (z, p, z) with
[z (z),Zz (z)]N Z # 0, and thus raise the dual bound v (7).

Theorem 31. Let z € FNOM 1 {0,1}" be a solution to NOM and ¢ < © be some bounds on z.
Then [z (z),Zz (z)] N [c,T]# O holds if and only if x satisfies

> a4 < | (5.7)
1€[n]:é;>¢
and in the case of ¢ > 0 also
> ai >[I, (5.8)
i€[nl:¢;>c

Proof. We have [z (z),Zz (z)] N [c,¢]# 0 if and only if z () < ¢ and ¢ < Z (x) holds. We first
show that z (z) < ¢ holds if and only if x fulfills inequality (5.7). We know from Theorem [26]
that 3¢, () @ < I holds. Then z (z) < ¢ implies

Z x; < Z xz; < T,

1€[n]:é;>¢ i€[n]:é;>z(x)
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and thus inequality (5.7) due to = being binary. Conversely, « cannot fulfill inequality (5.7) if
we have € < z (), as this contradicts the minimality in the definition of z (z).

It is clear to see that ¢ < z (z) applies if we have ¢ = 0. Hence, it remains to show that for
0 < ¢, it holds ¢ < z () if and only if z fulfills inequality (5.8). We know from Theorem 2]
that 3¢ (n).6,>(2) ¥ = I holds. Then ¢ < 7 (z) implies

i€[n]:&;>c 1€[n]:¢;>%(x)

and thus inequality (5.7). Conversely, = cannot fulfill inequality (5.8) if we have z (z) < ¢, as
this contradicts the maximality in the definition of z (z). O

From now on, we add ¢, © to the arguments of our problems and formulations when using
the above inequalities (5.7) and for bounds ¢ < z and Z < ¢, e.g.,, ROB(Z,c,¢) and
F (Z,c,c). When solving relaxations in our branch and bound algorithm, we use ¢ = z and
¢ = %, and thus solve the continuous relaxations of ROB (Z, @, z,Z) and the Lagrangean
relaxations LRR (Z, Q, \, z,Z). However, optimality-cuts can cause several problems when
added to integer robust subproblems ROB (Z), especially with respect to the dual bounds
of the previous section. Note that in the proof of Theorem [30} we require 2/, the solution
to NOS ('), to be feasible for NOS (z) in order to show that v (NOS (z)) — 4, (2) is a dual
bound. Analogously, we require 2’ to be a feasible solution to ROB (Z, ¢, ¢) in order to derive
a dual bound from v (ROB (Z, ¢, ¢)). That is, if 2’ does not meet the optimality-cuts, then we
cannot derive any dual bounds from v (ROB (Z, ¢,¢)). Howevery, if [z (2/) ,Z (2/)] N [c, €] # 0
holds, then 2’ is according to Theorem [31]a feasible solution to ROB (Z, ¢,©). This leads to
the following generalization of Theorem [30}

Corollary 32. Let Z C R>q and ¢ < € with Z C |[c,c|. Furthermore, let 2z’ € [c,¢| and
x’ be an arbitrary solution to NOS (') of value ' that satisfies 2’ € [z (2'),Zz (2)]. Then
v > v (ROB(Z,¢,c)) — 6z (2') holds.

Accordingly, there is a trade-off in the choice of ¢,¢. On the one hand, the optimal objective
value v (ROB (Z,¢,©)), and thus the derived dual bounds for other 2’ € [c,¢], increases if
the bounds ¢, ¢ are narrow. On the other hand, we want to derive dual bounds for as many
2" as possible. Furthermore, the optimality-cuts can be hindering for finding good primal
bounds. We resolve this trade-off by adding loose optimality-cuts, corresponding to wide
bounds ¢, ¢, in the beginning and gradually strengthening them as we consider more robust
subproblems. Let Z* C Z be the union of all nodes Z* C Z for which we already solved a
robust subproblem ROB (Z*, ¢*,¢*) and let Z’ = (J,c s Z be the union of all active nodes. For
anode Z € NV, we choose ¢,¢ € Z’ in our branch and bound algorithm as wide as possible
around Z such that there exists no z* € Z* in between, i.e.,

c=min{z € Z’|§Qz* €EZ¥: <2<z}

and
6:max{z/€Z/|§9z* €Z¥iz< <Y
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In order to see that it is not reasonable to expand the interval [c,¢|, consider a value
z' € 2\ [c,¢]. By definition, we already considered a robust subproblem ROB (Z*,c*,c*¥)
with 2/ € [c*,¢*] for some node Z* that contains a value z* with either 2’ < 2* < z or
Z < z* < Z/. Since z* is closer to 2/, we have iz« (2/) < 4.+ (2') < 0z (%) , and thus
already derived a dual bound v (2) = v (ROB (Z*,c*,¢*)) — 02+ (2’) that is probably better
than a potential dual bound derived from ROB (Z, ¢,c). Thus, expanding [c,c| tends to be
meaningless for obtaining new dual bounds. Now, assume that there exists a nominal solution
x with [z (2),Z (z)] N [¢, ] = 0 such that (z, p, z) is feasible for ROB (Z) and also defines an
improving primal bound w. In this case, it would be beneficial to expand [c, ¢ such that =
fulfills the optimality-cuts and we obtain a new incumbent. However, we have seen in the
proof of Theorem [26] that the objective value of (z,p, z) is non-increasing for z < z () and
non-decreasing for z > z (z) with the appropriate p = (¢; — )™ ;. Using the arguments from
above, we should have already found a solution (z, p*, z*) that is at least as good as (z, p, z)
for a previous subproblem ROB (Z*, ¢*,¢*). Accordingly, expanding [c, ] is also uninteresting
for obtaining new primal bounds.

In the next Section, we show what else we can do except for choosing appropriate bounds on
z in order to guide the branch and bound algorithm in the search for primal bounds.

5.6.2 Primal Bounding

The trend towards highly fractional optimal solutions for the continuous relaxation of ROB is
not only hindering for obtaining strong dual bounds but also for computing feasible solutions.
This is because nearly integer-feasible solutions can often be used to find a nearby feasible
solution, e.g., by using the feasibility pump [[42]]. Hence, we have to provide guidance for
the solver in order to consistently obtain strong primal bounds. As the focus of this work is
on the robustness structures of ROB, and not the corresponding nominal problem NOM, we
implement no heuristics that explicitly compute feasible solutions x to NOM. Nevertheless,
our branch and bound algorithm naturally aids in the search for optimal solutions by quickly
identifying non-promising values of z. This allows us early on to focus on nodes Z C Z
containing (nearly) optimal choices for z, for which solving ROB (Z, ¢, ©) is much easier and
yields (nearly) optimal solutions to ROB.

Furthermore, even when considering ROB (Z, ¢, ) for a node Z C Z that contains no optimal
choice for z, we can potentially derive good primal bounds or even optimal solutions to ROB.
In many cases, an optimal solution (z,p, z) to ROB(Z,¢c,¢) does not meet the optimality
criterion z € [z (z),Z (z)], which leaves potential for improving the primal bound provided
by v (ROB (Z,c,c)). Since z () is easily computable, we can obtain a better primal bound
7 (z) provided by the solution value of (z,p,Z (x)), with p, = (¢ — % (2))" 2;. Moreover,
we cannot only compute v (z) for an optimal solution = to ROB (Z, ¢,¢) but any feasible
solution the solver reports while solving ROB (Z, ¢, ©). This increases the chance of finding
good primal bounds, as an improved sub-optimal solution may provide an even better bound
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than an optimal solution to ROB (Z, ¢,¢). We will see in our computational study that our
branch and bound algorithm quickly finds optimal solutions to ROB, often while considering
the very first robust subproblem. Additionally, the possibility to derive strong primal bounds
from sub-optimal solutions, which may be found early on while solving ROB (Z, ¢, ©), will be
relevant for our pruning strategy in the next section.

5.6.3 Pruning

In theory, a problem is solved to optimality if the primal bound v is equal to a proven dual
bound v. In practice, however, it is neither always necessary to prove v = v, nor is it always
possible due to numerical issues. Instead, one considers a problem to be solved if v is

sufficiently close to v, that is, it either holds 7 — v < 1abs op % < 'l where 2" > ( is the
absolute tolerance and ¢! > 0 is the relative tolerance. The concept of “sufficiently solved”
problems is also applied to the pruning of nodes Z C Z within our branching tree. More
specifically, we prune Z not only if v (Z) > ¥ holds but as soon as we have 7 — v (Z) < tabs op
E_‘ET(‘Z) < ¢l In our computational study, we choose 25 = 1019 and *¢! = 10~4, which are
the default tolerances used by Gurobi [52]]. Note that for v = 0 and v > v, the relative gap
% is defined to be co. If v > ¥ = 0 holds, then the relative gap does not matter, since we
have 7 — v < 35, To simplify notation, we define tol (v,v) = 1 if the dual and primal bounds

v, are within tolerance, and thus strong enough for pruning, and tol (v, 7) = 0 otherwise.

Recall that the dual bound v (Z) for Z C Z is the maximum of the continuous relaxation
value vR (ROB (Z, Q,2,%)) or v (LRR(Z, Q, )\, 2,%)) and the worst individual dual bound
min {v (z)|z € Z} from Section[5.6.1.1} Even if v (Z) is too weak for pruning the whole node
Z, ie., tol(v(Z),v) = 0, we might have tol (v (z),7) = 1 for a value z € Z. Therefore,
we apply a further pruning step in addition to the pruning of Z. Every time we consider
a node Z, we check for each z € Z whether it can be pruned according to its individual
dual bound v (z). This is beneficial, as we obtain a stronger formulation for the resulting
subset of Z. Furthermore, before solving a robust subproblem ROB (Z, ¢, ¢), we check for all
remaining 2’ € (J,c\r Z whether tol (v (2'),7) = 1 holds, so that the bounds c, ¢, as chosen in
Section[5.6.1.2] are as narrow as possible.

Once we consider a mixed-integer robust subproblem ROB (Z, ¢,¢), we can monitor the
best known dual bound v (ROB (Z, ¢,¢)) and terminate the subproblem as soon as we have
tol (v (ROB (Z,c,©)),v) = 1. This is especially important for robust subproblems ROB (Z, c, ¢)
corresponding to nodes Z containing values that are far from being optimal. In this case, we
are usually aware of a primal bound v that is substantially smaller than the optimal solution
value v (ROB (Z, ¢, ©)), allowing for a fast termination. Such a primal bound can either come
from a previously considered robust subproblem or from a solution to ROB (Z, ¢, ) that we
improved, as described in the previous section.

Unfortunately, terminating ROB (Z, ¢, ©) prematurely is problematic regarding the dual bounds
v (ROB (Z,¢c,¢)) — dz (2') computed in Section|5.6.1.1] Note that in practice, we do not nec-
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essarily know the optimal solution value v (ROB (Z, c,€)), and thus use the best known dual
bound v (ROB (Z,¢c,¢)) instead. Hence, there is a trade-off in saving time by terminating
ROB (Z, ¢, ) early and generating strong dual bounds v (ROB (Z, ¢,c)) — dz (2’). We resolve
this trade-off by computing the estimators 4 (z’) before solving ROB (Z, ¢,¢) and constantly
evaluating whether improving v (ROB (Z, ¢,¢)) can potentially lead to the pruning of addi-
tional values z’. Let Z’' N [c,c| be the remaining values of z for which we computed the
estimators 0y (z'). Furthermore, let 7 (ROB (Z, ¢, <)) be the currently best known primal
bound for ROB (Z, ¢, ). For evaluating whether 2z’ € Z’' N [c,¢] can potentially be pruned, we
consider three different cases.

Case 1. If tol (max {v (2’),v (ROB(Z,¢c,c)) — 0z (2')},v) = 1 holds, then 2’ can already be
pruned.

Case 2. Otherwise, if tol (v (ROB (Z,¢c,¢)) — 0z (') ,v) = 1 holds, then 2’ can be pruned if
we manage to increase v (ROB (Z,¢c,¢)) up to 7 (ROB (Z,¢,T)).

Case 3. Otherwise, 2’ can only be pruned if we find a better global primal bound w.

If Case 1 applies, then 2’ is irrelevant to the question whether we should terminate ROB (Z, ¢, ©)
early, as it will be pruned anyway. In contrast, it is unlikely that 2z’ will be pruned if Case 3
applies. We already stated in the previous section that our branch and bound algorithm
usually finds (nearly) optimal solutions to ROB while solving the first robust subproblem.
Hence, most of the time, the primal bound v will not be improved, leaving little chance for 2’
to be pruned. Accordingly, in our implementation, we continue solving ROB (Z, ¢,¢) as long
as there exists a value 2z’ € Z’' N |[c, ¢ for which Case 2 applies. However, since closing the gap
between v (ROB (Z, ¢,¢)) and 7 (ROB (Z, ¢, ¢)) can potentially require much time, we use an
additional termination criterion. In our implementation, we also terminate ROB (Z, c,€) if no
z' € Z' N [c,¢] switched to Case 1 within the last 10 seconds. That is, raising the dual bound
did not lead to a pruning of an additional 2’ within this time. Of course, this criterion is highly
arbitrary, but it leads to an improvement of our algorithm’s performance in our computational
study. As parameter tuning is beyond the scope of this work, we leave a detailed analysis of
this component and its potential for future research.

5.6.4 Node Selection

The node selection strategy determines the order in which we explore nodes within our
branching tree, and thus directly impacts the number of nodes we consider before finding an
optimal solution. Hence, a good node selection strategy is critical to the performance of any
branch and bound algorithm, as finding an optimal (or at least good) solution quickly enables
us to prune more efficiently. A review of different strategies in the context of mixed-integer
programming is given by Linderoth and Savelsbergh [[72]]. A survey on machine learning for
node selection is given by Lodi and Zarpellon [[73].
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Two meta strategies, from which many other strategies emerge as a combination, are depth-
first and best-first search. Depth-first search is based on the last-in-first-out principle, and
thus follows a path down the branching tree until a prunable node is reached. In contrast,
best-first search ranks the nodes of the branching tree by assigning a value to each node
and always picks a node with the best value. Here, we consider the case where the ranking
value is equal to the node’s dual bound. In this case, best-first search is also called best-bound
search.

Naturally, both strategies, depth-first and best-bound search, have advantages and disadvan-
tages, as discussed by Linderoth and Savelsbergh [[72]]. An advantage of depth-first search
is that it requires less memory, as the number of active nodes |\ in the branching tree is
relatively small. Furthermore, depth-first search usually finds feasible solutions quickly, as
integer-feasible solutions tend to be located deep in the branching tree, where many variables
are fixed due to branching. An obvious drawback, however, is that depth-first search may
explore many unnecessary nodes and can get stuck in unpromising subtrees if the current
primal bound is far from the optimal solution value. In contrast, best-bound search tends to
minimize the number of nodes in the branching tree. This is because best-bound search will
never select a node whose dual bound is worse than the optimal solution value. However,
the drawback of best-bound search is that it may require more memory, as the number of
active nodes in the branching tree grows large if there exist many nodes with similar bounds.
This can also prevent the algorithm from finding feasible solutions early, since deeper levels
of the branching tree are explored late.

The strategy for our branch and bound algorithm can be seen as a hybrid of depth-first and
best-bound search. Note that our algorithm switches back and forth between two phases.
In phase one, we branch the set Z into subsets Z and obtain dual bounds from solving
linear subproblems. In phase two, we stick to a node Z C Z and solve the mixed-integer
robust subproblem ROB (Z, ¢,¢). Phase two can be seen as a leaning towards depth-first
search, since we focus on the chosen values in Z until the problem ROB (Z, c,¢) is either
solved to optimality or terminated, as described in the previous section. Since ROB (Z, ¢, )
is potentially a hard problem, it would be beneficial to only solve it for promising nodes
7, presumably leading to good solutions. We use the dual bound v (Z) of a node Z C Z
as an indicator for the node’s potential to contain good solutions (z, p, z) with z € Z, and
thus perform a best-bound search in phase one. That is, for the set of active tree nodes
N, we always process a node Z € N for which the current dual bound v (Z) is minimum
among all nodes, i.e., Z € argmin {v (Z)|Z € N'}. Fortunately, the drawbacks of best-bound
search described above are not critical in our case. Since the number of active nodes that we
generate is at most |NV| < |Z] < {%W + 1, neither memory consumption nor the exploration
of too many nodes before finding a feasible solution should be a problem.
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5.6.5 Branching and Choice of Relaxations

Much research has been devoted to the question of how to branch efficiently in integer linear
programming, see, for example, Achterberg et al. [[4]] or Linderoth and Savelsbergh [[72]].
However, the main question that is addressed there is on which integer-infeasible variable to
branch. Obviously, this question is uninteresting in our case, since we solely branch on the
variable z and hand the robust subproblems to the chosen MILP solver, which manages the
branching within the subproblem on its own. Instead, we have to address the question of
how to divide a node Z C Z so that the branching is efficient. After this decision is taken,
we have to choose between solving the continuous relaxation of ROB (Z’, Q, 2/, Z’) or the
Lagrangean relaxation LRR (Z’, Q, A, 2/, Z’) for the child nodes Z’ C Z. Furthermore, we need
to decide whether a node Z should be branched in the first place or whether we solve the
corresponding robust subproblem ROB (Z, Q, ¢, ¢) directly as an MILP.

To decide the latter, let (z,p,2) € F(Z,Q,z,%) be an optimal solution to the continuous
relaxation of ROB (Z, Q, z,%Z). Note that we consider ROB (Z, Q, z,%Z) instead of the equiv-
alent ROB® (Z, Q, 2, %) for the sake of simplicity. Since = meets the optimality-cuts from
Section[5.6.1.2)with ¢ = z and ¢ = Z, there exists a value 2’ € [z,Z] N [z (z),Z (z)]. The bilin-
ear solution (z, 7/, 2/) € FPU with p} = (& — 2)" x; provides an upper bound on the optimal
objective value over all solutions in F2I fulfilling the optimality-cuts. This upper bound
is easily computable, as we have v ((z,p’,2')) = v ((z,p", z (2))), with p/ = (& — z (z)) " x4,
and z () can be determined in linear time. Now, imagine that the objective values v ((x, p, z))
and v ((z,p', 2)) are nearly identical. Since FBI is the strongest possible formulation for
ROB, there is not much potential for improving the integrality gap of ROB (Z, Q, z, %) via
branching. Although this does not necessarily imply for [c,¢] 2 [z, Z] that the integrality gap
of ROB (Z, Q, ¢, ) is also small enough, we use the relation between the objective values
v ((z,p,2)) and v ((z,p’, 2')) as an indicator and stop branching Z once they are sufficiently
close to each other. In our implementation, we consider the two values to be sufficiently close
if their gap is in the relative or absolute tolerance, that is tol (v ((z,p, 2)) ,v ((z,p/,2'))) = 1,
as defined in Section[5.6.3]

If we decide to stop branching Z, then we do not solve ROB (Z, Q, ¢, €) right away but first
reinsert the node Z into the set of active nodes A. This is because Z was not selected with
respect to the just computed dual bound but a dual bound based on the relaxation value
of its parent node. Once 7 is chosen again with respect to its new (potentially significantly
improved) dual bound, we solve the robust subproblem ROB (Z, Q, ¢, ¢) directly as an MILP.

If we decide to branch, then our decision process for whether to consider the continuous
relaxation of ROB (7', Q, 2/,Zz’) or the Lagrangean relaxation LRR (Z’, Q, \,2/,Z’) for the
child nodes Z’' C Z is similar as above. We aim for using the easier to solve Lagrangean
relaxations in the beginning, starting at the root node Z, and only revert to the continuous
relaxation of ROB (7, Q, 2/, Zz') once we are confident that its formulation is close to the
bilinear one. Since v (LRR (Z,Q, \,2,%)) < v}®(ROB(Z, Q,2,%)) < v}R(ROB (7, Q,7,7))
holds, we take our decision by comparing v (LRR (Z, Q, \, 2,%)) to the value of a bilinear
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solution. Let z € FNM be an optimal solution to the Lagrangean relaxation and (z, p', z (z))
the corresponding bilinear solution with p, = (¢; — z (x))" x;. We choose to revert to the
continuous relaxation of ROB (7', Q, 2/, 7z') if v (LRR (Z, Q, \, 2,%)) and v ((z,p, z (x))) are
close enough within tolerance, as defined in Sectionbut with 1072 instead of 10~ as
the relative tolerance. Note that, if the values are even within relative tolerance 10~4, then
we can directly stop branching as above, since we know that the formulation F (Z, Q, z,%) is

sufficiently close to the bilinear formulation.

Assume that we have decided to not stop branching but to split the node Z C Z further into
child nodes Z;, Z. The child nodes Z;, Z should form intervals, i.e., [21,Z1] N [z9,Z2] = 0,
as otherwise the bounds on z would be unnecessarily wide, leading to weaker formulations.
Therefore, we search for a branching point 6 € [z,z) defining Z; = {7’ € Z|z' <0} and
Zy = {7 € Z|z' > 0}. This branching point should be chosen so that the branching is effective.
That is, if we solved the continuous relaxation of ROB (Z, Q, z, Z), then the computed optimal
solution (x,p,z) € F(Z,Q,z,%) should neither be contained in F (7, Q, z;,%1), nor in
F (Z2,Q, z9,%2). Whereas, if we solved the Lagrangean relaxation LRR (Z, Q, A, z,%), then
the objective value of the computed optimal solution z € FNOM should increase for both
LRR (Z1,Q, A\, z1,71) and LRR (Z, Q, A, 25, Z2). The following proposition shows that there
exists an effective branching point if the objective value of our computed solution is lower
than the objective value of the corresponding bilinear solution. This is always the case, since
we otherwise would have stopped branching. For showing the effectiveness, we only use the
formulation F (Z, Q) and the problem LRR (Z, Q, \), that is, the result even holds when not
taking the strengthening of the optimality-cuts into account.

Proposition 33. Let (z,p,z2) € F (Z, Q) such that v ((x,p, z)) < v ((z,p,z(z))) holds with
p,=(&—z (x))+ x;. Then 6 = z is an effective branching point.

Furthermore, let x € F¥OM be an optimal solution to LRR (Z, Q, \). Then a branching point
0 € [z,7%) is effective if the following inequalities hold

Z (1 — )\Q) Z xT; > 0, (59)

Qe 1€Q:¢;>0

Y xg Y. m<T. (5.10)
QeQ 1€Q:¢; >0

Ifwe have v (LRR (Z, Q,\)) < v ((z,p, z (x))), with p’ as above, then such an effective branching
point exists.

Proof. To prove the first statement, remember that F (Z) N (R?" x {z}) = FBL N (R?" x {z})
holds by Proposition [24] Thus, if we had z = z, then v ((z, p, z)) < v ((z,p', 2 (z))) could not
hold. Hence, § = z < z is a feasible branching point with 7, Zs # 0. If z ¢ Z holds, then
we have z; < z, and thus (x,p, z) ¢ F (Z1, Q). In the case of z € Z, we have z = Z;, and
thus (z,p, z) € F (Z1, Q) would again contradict Proposition[24] Moreover, we always have
z < z9, and thus (z,p, z) ¢ F (Z2, Q), which shows the first statement.
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For the second statement, note that for |Z| = 1, the Lagrangean relaxation LRR (Z, Q, \) is
equivalent to the continuous relaxation of ROB (Z), and therefore by Proposition [24] also
equivalent to the problem over 72! N (R?" x Z). Hence, the down-branching is effective if
Z1 = {z} and the up-branching is effective if Z5 = {Z}. For the general case, we first show
that a branching point 0 € [z, z) is effective if it fulfills inequalities and (5.10). We
also show that the branching points leading to Z; = {z} and Z, = {Z} each meet one of the
inequalities. Afterwards, we will prove that there exists a common effective branching point.

Remember that the objective function of LRR (Z, Q, \) is

Pzt Y (it (@—2") i+ Y Ag Y. (min{é,z} - 2)" s

i€nl QeQ  i€Q

Let z; < 6 < z be the new upper bound for Z; and consider the increase in the objective

S (@-z)"—@-2)+ Y Ae Y ((min{e,z1} - 2)7 — (min (6,2} - 2)7) o

i€[n] QeQ  ieQ

= Z (min {él,f} — 51) xr; + Z )\Q Z (El — min {61,2}) T
i€[n]: QeQ i€Q:
¢i>Z1 & >Z1

= Z (1 — )\Q) Z (min {éi,Z} — 51) x;
QeQ 1€Q:
Ei>Z1
All summands are non-negative, since we have Ay < 1forall Q € Q. Asmin {¢;,Z} —Z1 >0
holds for all ¢; > z;, the increase is positive if and only if

Z (1-2Xg) Z x; >0

QeQ 1€Q:6>71
holds. As the latter is implied by inequality (5.9) and z; < 6, it follows that the increase is
positive, and thus the down-branching is effective. Conversely, we know that the increase is
positive for Z; = {z}, i.e., z; = z. Hence, 6 = 2 fulfills inequality (5.9).

Let zy > 0 > z be the new lower bound for Z> and consider the increase in the objective

[(zp—2)+ Y Ao Y ((min e, 2} — 20)* — (min {4, 2} — 2)")

QEQ 1€Q

=Tz —2)— > Ao D> (min{é,z} -2z

QeQ 1€Q:¢ >z

:<F_Z)‘Q Z a:,) (52—1)4'2/\62 Z (29 — &) ;.

QeQ 1€Q:¢;>2 QeQ 1€Q129>Ci>2

All summands are non-negative, since we have > ,.oz; < 1 for all cliques @ € Q and
> gcoAq < I' holds due to the choice of A, implying }"nco MA@ > icq.e;>, Ti < I'. Assume
that }>pco AQ 2ic@e;>. i < I holds. Then the increase is positive, and thus the up-
branching effective for all branching points 6 € [z,%). Hence, all branching points 6 fulfilling
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inequality (5.9) are effective. Moreover, § = 2 fulfills inequalities ((5.9) and (5.10), showing
the existential statement from the proposition.

Accordingly, we can assume for the rest of the proof that } 5o Aq > icg.¢,>, i = I holds.
In this case, the increase resulting from the up-branching is positive if and only if we have

x>, x>0

QEQ  i€Qizy>ti>z

This is equivalent to

Z)\Q Z x; < T,

QEeQ iEQ:éizég
which is implied by inequality (5.10) and z, > 6. This shows that the down-branching is
effective. Conversely, we know that the increase is positive for Zy = {z}, i.e., zo = z. Hence,

0 = max {¢;|i € [n], ¢ < z} fulfills inequality (5.10).

It remains to show that there exists a branching point fulfilling both inequalities
and (5.10). It is sufficient to consider points § € {&y,...,¢&,}, since 0 = max {&|¢; < 6}
yields the same branching as 6. Let 8,0 € {¢,...,&,} N[z, %) be such that  is the maximum
branching point fulfilling inequality and 0 is the minimum branching point fulfilling

inequality (5.10). Then every 6 € {Q, @] is effective. We have already shown that 6, § exist,

and thus it only remains to show @ < @. For this, we establish three properties. Remember
that we can assume that > oc0 AQ > e, >, ¥i = I holds (property 1). Then there exist no
Q' € Qand j € Q' with z < ¢ < @ and z;\g > 0 (property 2). Otherwise, we would have

Z )\Q Z x; < —xj/\Q/ + Z )\Q Z z; <T,

QeQ iEQ:éi>éj QeQ 1€Q:¢; >z

which contradicts the minimality of 6. If we have 6 < 6, Then inequality (5.9) is not fulfilled
for 0 = 0 due to the maximality of §. Hence, (1 — \g) z; = 0, and thus \gz; = x; (property 3),
holds for all Q € Q and i € @ with ¢; > 6. Using the three properties, we obtain

v(LRR (Z,9Q, ) =Tz + Z (ci + (& — E)Jr) x; + Z AQ Z (min {¢;,%z} — 2)"
i€n] Qe i€Q

i + Z AQ Z (min{¢;,z} — z) x;

QeQ 1€Q:¢>2

x; + Z AQ Z (min {¢;,z} — 0) x;

Qe 1€Q:¢;>2

( )
( )
SV (c+@=-2")m+ X A X (min{e,z} - 0)a
( )
( )

QEQ zeQé,ZQ

x; + Z (min {¢;,z} — 0) x;
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However, then v (LRR (Z, Q, \)) equals v ((z, p", §)) with p/ = (¢; — 8)* x;. This contradicts
our assumption v (LRR (Z, Q,\)) < v ((x,p’, z (2))), since v (z,p”,8) > v (z,p’, z (x)) holds.
It follows 6 < 0, and thus the existence of an effective branching point. O

While 0 = z yields a theoretically effective branching after solving the continuous relaxation
of ROB (Z, Q, z,%Z), it is usually not a good choice in practice. We observe that the computed
value z is often near to one of the bounds z,Z. This leads to an unbalanced branching,
where the optimal continuous relaxation value v® (ROB (Z’, Q, 2/, 7)) for one child node rises
significantly, while the other remains nearly unchanged. This problem is also observed in
the context of spatial branch and bound, which is a common approach for solving non-linear
optimization problems. In spatial branch and bound, a convex relaxation of a non-linear
formulation is considered to obtain lower bounds on the optimal objective value. This
relaxation is then strengthened via branching on (continuous) variables occurring in non-
linear terms, which is similar to the branching we perform on z to obtain stronger relaxations
F (Z) of the bilinear formulation 7B,

A common choice for the branching point in spatial branch and bound is a convex combi-
nation of the variable’s value in the current solution and the middle point of the variable’s
domain [91]]. In our case, this translates to choosing az + (1 — @) (z + ) /2 with « € [0, 1].
This value is then often projected into a subinterval to ensure that 6 is not at the boundaries
of its domain, ie., 0 € [z+ [ (Z—2),Z — B (Z— z)] with 5 € [0,0.5]. However, this does
not necessarily lead to an effective branching point in our case. To ensure efficiency, we
compute the lowest and highest effective branching points §, 6 € Z. Then, instead of using
the bounds z, Z to determine our branching point, we use the effective bounds #, §. That is,
we first set the branching point to az + (1 — «) (Q + ?) /2 and then project it into the interval

[Q +p (5 — Q) 0—p (5 — Q)} , which ensures efficiency. In summary, we obtain

szax{Q—i-ﬂ(?—Q),min{?—ﬂ(?—ﬁ),az—i—(l—a) (Q—i—@) /2}}

The choice of parameters « and 3 leaves room for engineering and differ between solvers. For
example, SCIP and COUENNE choose 6§ with default values o = 0.25 and 8 = 0.2,
while ANTIGONE (« = 0.75, 5 = 0.1) and BARON («a = 0.7, § = 0.01) choose a significantly
higher value for «, according to [91]]. Again, we don’t dive too deep into the engineering and
simply take a middle course by choosing v = 0.5 and § = 0.1.

Note that, in case we solved the Lagrangean relaxation LRR (Z, Q, \, z, Z), we did not compute
a value z that we could use to determine 6. Therefore, given the computed optimal solution
r € FNOM we use 2 () instead of z and then compute 6 as above.
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5.6.6 Warm Starts

We already noted that solving the continuous relaxations of ROB (Z) constitutes the main
computational load for some instances. Therefore, we introduced the smaller clique reformu-
lation ROB (Z, Q) and the Lagrangean relaxation LRR (Z, Q, \) to reduce this computational
burden. Another important component for accelerating the solving of relaxations is warm
starting. Remember from Section [2.4.2] that we can use the simplex basis computed for a
node in the branch and bound tree as a starting point for a simplex method when solving the
problems of the child nodes.

If we considered the Lagrangean relaxation LRR (Z, Q, \) for the parent node and now
want to solve LRR (7', Q, \) with Z' C Z, then both problems only differ in the objective
coefficients. We know from Remark [2] that we can use the basis of the parent problem to
warm start the primal simplex method in phase II. Unfortunately, we cannot always start
in phase II when using optimality-cuts, since we simultaneously manipulate the objective
coefficients and add constraints in this case. When adding the optimality-cuts with respect
to 2’ and 7’ to the formulation, we also add their slack variables to the basis of the parent
problem, which yields a basis for the new problem. If the solution to the parent problem
already meets the new cuts, then the basis remains primal feasible and we can start the primal
simplex method in phase II. Otherwise, we start in phase I with a basis that is hopefully close
to primal feasibility. Note that, in order to preserve the basis of the parent problem, we need
to keep the old optimality-cuts if their slack variables are non-basic. This has no affect on the
correctness of the formulation since the new optimality-cuts dominate the old ones. If the
slack variables of the old optimality-cuts are basic, then we can remove them according to
Remark 2lin order to reduce the size of the formulation.

Assume that we considered the continuous relaxation of ROB (Z, Q, z,%Z) and now solve
the relaxation of ROB (7', Q,2/,7') for Z’ C Z. If we use formulations F (Z, Q, z,z) and
F(Z',Q,2 7, then the constraints of the latter formulation dominate the ones of the former.
In order to obtain a dual feasible basis for the new problem, we keep the constraints with
non-basic slack variables from the old problem and add the new constraints with slack
variables set to basic. Doing so, we can warm start the dual simplex in phase II. However,
formulation F (Z, Q, z,Z) contains two robustness constraints pg +z > > (& — 2 x4z
and pg > >0 (G — Z)" z; for each Q € Q, and is thus less favored compared to the
substituted clique formulation F5 (Z, Q, z,%). In the latter, we get rid of the second constraint
PQ = Dieq (G — z)* 2; by substituting pg = Po + Lieq (& — z)" z;. By doing so, we move
(¢; — Z)T z; to the objective function for all i € [n], which leads to an increase of the objective
coefficients. We know from Remark [1] that this does preserve dual feasibility as long as
x; is non-basic. However, changing the objective coefficients of basic variables does not
preserve dual feasibility in general. Moreover, the substitution also implies a change in the
other robustness constraints, which are transformed from pg + z > >ico (& — §)+ z; + 2z to
Po+ 2> Yieg (min {&,z} — 2)" z; + z. While this poses no problem for the newly added
robustness constraints using bounds z’,z’, the ones inherited from the parent problem need
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to remain unchanged to preserve dual feasibility. Thus, we can only apply the substitution
for non-basic variables z; that are not contained in a robustness constraint that is inherited
from the parent problem. We obtain the new formulation and the dual feasible basis by
consecutively performing the following steps, all of which are admissible according to
Remark [T}

1. Remove old robustness constraints with basic slack variables.

2. Apply substitution pg = ply+Ycqnn (& — %) z; forall Q € Q, where N' C [n] contains
the indices of variables z; that are non-basic and do not appear in any remaining
robustness constraint.

3. Add new robustness constraints respecting the partially substituted variables p(,.

Note that, when considering a sequence of subproblems with Z > Z' © Z”, then we also
perform a sequence of substitutions. Thus, if x; is substituted when moving from Z to
Z' but not from Z’ to Z”, then we still have z; substituted for p with respect to z’ when
considering Z”. Furthermore, note that we do not apply the substitution z = 2’ + z performed
in Section[5.1] as this almost always implies a change in an inherited robustness constraint.

Finally, assume that we considered the Lagrangean relaxation LRR (Z, Q, \, z, Z) for the parent
node and now solve the relaxation of ROB (7', Q, 2/,Z’) for Z' C Z. In this case, we add new
constraints and have a change in the objective function due to the removal of the Lagrangean
terms Y neo A X (min {&;, 7} — z)" ;. Hence, we cannot guarantee to preserve primal
or dual feasibility of the simplex basis. However, we can still build a reasonable basis to warm
start in phase I. Since we alter the objective coefficients in any case, we apply substitution to
all variables pg, and thus have at most one robustness constraint for each Q € Q. If there
exists any ¢ € @ with min {¢;,Z'} — 2/ > 0, that is, the corresponding robustness constraint
is not void, then we add the constraint and set pg to basic. Since pg appears only in its
corresponding robustness constraint, this already yields a basis for the new problem. Hence,
we set z to non-basic.

Altogether, this yields a warm starting strategy that enables us to often start our simplex
methods in phase II despite the extensive changes we apply after each branching step. This
warm starting strategy is the last component of our branch and bound algorithm, which we
summarize in the following section.

5.6.7 Summary and Implementation

In this section, we summarize the components of our branch and bound approach and merge
them into one algorithm, as described in Algorithm[7} We also discuss some details regarding
the implementation of the algorithm, which is written in Java and uses Gurobi as an
MILP and LP solver. We refer to the problems ROB (Z, Q, z,%) and LRR (Z, Q, \, z, %) in order
to simplifying notation in the description of the algorithm. In practice, we actually solve

Chapter 5 A Branch and Bound Algorithm



ROB® (Z, Q, z, %) as mixed-integer subproblems. When considering relaxations, we use the
problems described in the last section for warm starting.

Algorithm [7] starts with the preparation for the branch and bound by computing a conflict
graph and clique partition (line 1), which are then used to compute the set of possible optimal
values Z (line 2). Afterwards, the set of active nodes N is initialized with the root node
Z. We mark it with typ (£) = L, indicating that we start with the Lagrangean relaxation
corresponding to Z (line 3). Afterwards, we initialize the primal and dual bounds (line 4),
as well as the set Z* of already considered values z € Z for mixed-integer subproblems
ROB (Z, Q,c,¢) with z € Z (line 5). Note that we manage the whole branching tree outside
of Gurobi, as it does not provide all callbacks to perform the necessary branching and
node-selection [[52]].

After the initialization, our algorithm starts processing the nodes Z within the set of active
nodes N until no node remains, and thus the problem is solved to optimality (line 6). In
accordance with Section [5.6.4, we choose a node among those having the lowest dual bound
v (Z) (line 7). Afterwards, we check whether typ (Z) = I holds, that is ROB (Z, Q, ¢, ) is
marked to be solved as a mixed-integer problem (line 8). If so, we try to prune all remaining
values 2’ in active nodes (lines 9 and 10) in order to reduce Z as much as possible and
allow for a choice of tighter bounds ¢, ¢ for the optimality-cuts (line 11). We then compute
the estimators 0 (2’) for the remaining values in [c,c] (line 12), which we need for our
termination strategy of ROB (Z, Q, ¢, ©) and also for updating the dual bounds v (z"). We then
construct the problem ROB (Z, Q, ¢, ©) and pass it to the solver (line 13).

When constructing the robust subproblem in practice, we have to avoid some pitfalls regarding
numerical issues. Since the deviations ¢;, and thus the values z € Z, can be arbitrarily close
to each other, it is possible that our subproblem contains robustness constraints pg + z >
Yieq (& — 2t 2 + 2z and pg > dicq (6 — z)" z; for which the coefficients on the right-
hand side are very small. Such constraints may not only be troublesome for the solver’s
performance but are also irrelevant in practice: Gurobi considers per default all constraints
that are violated by less than the feasibility tolerance 1075 as satisfied . Hence, we only
add the constraints if at least one coefficient on the right-hand side is grater than 1076,

Once the subproblem is passed to the solver, we monitor the solution process via callbacks.
Using these, the solver allows us to access the current best solution of the subproblem and
improve it every time a new incumbent is found, as described in Section (line 14).
Furthermore, we can query the current primal and dual bound of the subproblem in order to
decide whether it can be terminated (line 15). After the subproblem is solved or terminated,
we remove Z from the set of active nodes, add the values in Z to the set of already considered
values Z* (line 16), and update dual bounds using the estimators ¢ (2’) (lines 17 and 18).

If we do not solve ROB (Z, Q, c,¢) directly as an MILP, then we remove Z from the set of
active nodes, as it will either be pruned or branched (line 20). In order to obtain a formulation
that is as strong as possible, we try to prune all values z € Z using their individual dual
bounds v (z) (line 21). Afterwards, we check whether typ (Z) = L holds, that is, we solve
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Algorithmus 7 : The Branch and Bound Algorithm

Input : An instance of ROB
Output : An optimal solution (z*, p*, z*) of value v

1 Compute conflict graph and clique partition Q as in Section

2 Compute possible optimal values Z C {éj,...,¢,} asin Algorithm

3 Initialize set of active nodes ' = {Z} with typ (Z) = L

4 Set dual bounds v (Z) = v (z) = —oc for all z € Z, and primal bound 7 = oo
5 Initialize set Z* = () of already considered values for robust subproblems

6 while N £ () do

7 | Choose Z € argmin{v (Z")|Z' € N'}

8 if typ (Z) =1 then

9 Let Z' = Uz Z' be the set of remaining values

10 Prune all 2’ € Z’ with tol (v (2’),7) =1

11 Choose ¢, ¢, as in Section |5.6.1.2

12 Compute estimators 0y (z') for all 2’ € Z/ N [c,¢| as in AlgorithmEl

13 Solve ROB (Z, Q, ¢, ) with the following callbacks

14 Update v and (z*, p*, 2*) for all solutions found as in Sectionm
15 L Terminate ROB (Z, Q, ¢, ) as in Sectionm
16 Remove N <~ N\ {Z} and add Z* + Z2* U Z
17 Update v (2') +— max {v ('), v (ROB(Z, Q,c,c)) — dz (')} for all 2’ € Z' N c,T]
18 Update v (Z') + max {v (Z') ,min{v (2')|z' € Z'}} for all Z' e N

19 else

20 Remove N «+ N\ {Z}

21 Prune all z € Z with tol (v (z),7) =1

22 if typ (Z) = L then

23 Compute optimal solution = to LRR (Z, Q, A, z,%Z) with A as in Section

24 Setv =v(LRR(Z,Q,\, 2,%)) and (z,p, 2) = (x,p’, z (z)) with
pp= (& —z(@) =

25 else

26 Compute optimal solution (z,p, z) € F (Z, Q, 2, %)

27 Setv =v((x,p,z2))

28 if (z, p, z) is integer-feasible then

29 L Potentially update v with v ((z, p, 2)) and (z*, p*, 2*) with (z, p, 2)

30 else if tol (v,v) = 0 then

31 if tol (v, (z,p', z (x))) = 1 with p; = (¢; — z ())" z; then

32 Set v (Z) + max {v,min{v (2)|z € Z}}

33 Set typ (Z) = I and reinsert N < N U {Z}

34 else

35 Branch Z into 7y, Z5 as in Section

36 Set v (Z;) + max {v,min{v (2)|z € Z;}} fori =1,2

37 Insert N + N U{Z;, Z>}

38 Set typ (Z1) = typ (Z2) € {L,R} asin Sectionm

39 | Pruneall Z' € NV with tol (v(Z'),7) =1

40 return (x*,p*, z*)
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the Lagrangean relaxation (line 22). If so, we compute an optimal solution x (line 23), store
its objective value for the Lagrangean relaxation v = v (LRR(Z, Q, A, 2,%)), and compute
the corresponding bilinear solution (z, p, z) = (z,p’, z (x)) (line 24). The latter is important,
since we require the corresponding solution to ROB in case z is integer-feasible. If we do not
solve the Lagrangean relaxation, then we solve the continuous relaxation of ROB (Z, Q, z, %)
and let (z,p, z) be an optimal solution (line 26). As before, we let v = v ((x,p, z)) be the
optimal objective value of the relaxation.

If the computed continuous solution (z, p, z) is integer-feasible (line 28), then we update the
primal bound 7 = v ((z, p, z)) and current best solution (z*, p*, 2*) = (z, p, z) in case we have
v > v ((z,p,2)) (line 29). If the solution is not integer-feasible, then we check whether Z
can be pruned using the new dual bound v (line 30). If this is not the case, then we decide
whether Z should be branched further (line 31). If we decide to solve ROB (Z, Q, ¢, ¢) directly
as an MILP, then we store the new dual bound of Z (line 32), reinsert it into A/, and mark
typ (Z) =1 (line 33). Otherwise, we branch Z into subsets Z;, Z, (line 35), compute dual
bounds for both child nodes (line 36), insert them into the set of active nodes (line 37), and
mark them to be solved as a Lagrangean relaxation LRR (Z;, O, A, z;,%Z;) or the continuous
relaxation of ROB (Z;, Q, z;,Z;) (line 38).

After Z is processed, either by solving the robust subproblem or a relaxation, we check
whether the potentially obtained new primal and dual bounds allow for a pruning of some
active nodes (line 39). If any active nodes remain, we continue with choosing the next node,
otherwise we report the optimal solution (z*, p*, z*).

Obviously, it will not always be possible to solve ROB to optimality within a given time limit.
Hence, in practice, we also keep track of a dual bound v (ROB) in order to evaluate the quality
of the best solution found. We do this by initializing v (ROB) = oo and updating it every time a
node Z is pruned, using the corresponding dual bound, i.e., v (ROB) < min {v (ROB) ,v (Z)}.
After the algorithm is terminated, we again update v (ROB) < min {v (ROB),v (Z)|Z € N'}
for all remaining active nodes. By doing so, we make sure that the dual bound v (ROB) is
equal to the minimum dual bound v (Z) of all leaves Z of our branching tree.

The summary of our branch and bound algorithm closes the theoretical part of this chapter. In
the next section, we perform an extensive computational study to evaluate the performance
of our approach.

5.7 Computational Study

In this section, we use the robustified MIPLIB instances generated in Section to ex-
perimentally evaluate different components of our branch and bound algorithm. We then
compare the branch and bound to other approaches from the literature and investigate how
these can be improved using our theoretical results.
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All experiments are implemented in Java 11 and performed on a single core of a Linux
machine with an Intel® Core™ i7-5930K CPU @ 3.50GHz with 2 GB RAM reserved for each
calculation. We use Gurobi version 9.5.0 in single thread mode and all other settings at
default to solve LPs and MILPs. Furthermore, we use a time limit of 3,600 seconds for each
algorithm and instance.

All implemented algorithms [46]] and generated test instances [[48]] are freely available
online.

5.7.1 Impact of Components of the Branch and Bound Algorithm

We start by evaluating the different components described in the previous sections in order to
get a better understanding for our branch and bound approach. To this end, we individually
adjust or disable components, leading to the following variants of our branch and bound

algorithm.

BnB is our branch and bound approach described in Algorithm

BnB-noLagr never uses Lagrangean relaxations from Section

BnB-alwaysLagr always uses Lagrangean relaxations instead of continuous relax-
ations of ROB (Z, Q, 2, Z).

BnB-noClique does not compute the conflict graph and clique partition from
Section

BnB-noFilter does not filter Z as in Section ie., Z={éy,...,¢tn}.

BnB-noEstimator does not use estimators 0z (z’) from Section [5.6.1.1|

BnB-noCutLP does not use optimality-cuts from Section [5.6.1.2|when solving
continuous relaxations.

BnB-noCutMIP does not use optimality-cuts when solving mixed-integer robust
subproblems.

BnB-noCut does not use optimality-cuts at all.

BnB-noPrimal does not improve primal bounds, as in Section [5.6.2

BnB-noTermination does not terminate mixed-integer robust subproblems prema-
turely, as in Sectionw

BnB-noWarmstart does not use warm starting of continuous relaxations, as in Sec-

tion

We use the above variants to solve the 804 robust instances constructed in Section
within a time limit of 3,600 seconds, including preprocessing, construction of subproblems,
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Figure 5.1. Cumulative distribution of computation times and primal-dual integrals for variants of
BnB differing in the use of Lagrangean relaxations.

etc. In the following, we evaluate the computational results on an aggregate level as described
in Section Detailed results for each instance and algorithm are provided in [47]].

We first compare the different variants of using or not using Lagrangean relaxations. The
left graphic in Figure shows for BnB, BnB-noLagr, and BnB-alwaysLagr the proportion
of instances that were solved within a given number of seconds. The right graphic shows
the proportion of instances for which the primal-dual integral is below a specific value after
3,600 seconds. The curves of all three variants are close together for both the computation
time and the primal-dual integral. Never using Lagrangean relaxations seems to be slightly
better for harder instances, since BnB-noLagr is able to solve 85.8% of all instances within
3,600 seconds, while BnB solves 84.1% and BnB-alwaysLagr solves 83.5%. A detailed look at
single instances reveals that we sometimes struggle to solve the Lagrangean relaxations with
the warm started primal simplex. For example, BnB-noLagr solves 11 out of 12 instances
based on the nominal problem rail01 to optimality, while BnB-alwaysLagr solves none because
it spends all its time trying to solve few relaxations. We observe that computation times for
relaxations are especially high when the basic solution of the parent problem does not fulfill
the optimality-cuts and we thus start at a primal infeasible basis.

Despite these severe issues for some instances, using Lagrangean relaxations overall speeds
up the computation, which translates to lower computation times and primal-dual integrals
in the shifted geometric mean. Table shows that primal-dual integrals of BnB-alwaysLagr
are even 19.2% lower compared to BnB-nolLagr. This is because we close the optimality
gap much faster when considering easier relaxations in the beginning. Given the trade-off
between instances solved and primal-dual integrals, we cannot conclude whether applying
Lagrangean relaxations is beneficial or not. We note this inconclusiveness for now and will

return to this topic later.

Next, we evaluate the impact of cliques and conflict graphs, the filtering of Z, and estimators
0z (7'). Note that disabling some component can also have an effect on others. For example,
disabling cliques not only prevents us from using the clique reformulation ROB (Q) but
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Table 5.2. Computational results for different variants of BnB. Computation times and primal-dual
integrals are shifted geometric means with shifting parameter s = 1.

BnB BnB-noLagr BnB-alwaysLagr BnB-noClique BnB-noFilter =~ BnB-noEstimator

timeout 128 114 133 149 128 168
time 85.94 86.02 85.38 106.79 87.64 123.78
P-D integral 15.82 18.16 14.68 20.36 16.20 23.89
BnB-noCutLP BnB-noCutMIP BnB-noCut BnB-noPrimal BnB-noTermination BnB-noWarmstart

timeout 100 106 83 126 138 122
time 73.62 76.38 67.79 86.51 91.49 91.40
P-D integral 12.40 14.93 12.02 16.07 15.59 20.34
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Figure 5.2. Cumulative distribution of computation times and primal-dual integrals for variants of
BnB without using cliques, filtering or estimators.

also worsens the filtering of Z and the estimators ¢ (z’). Disabling estimators allows us to
terminate robust subproblems ROB (Z, Q, ¢,©) more aggressively, as raising the dual bound
v (ROB (Z, Q, ¢,©)) past the current primal bound v is no longer beneficial.

As before, Figure|5.2{shows the cumulative distribution of computation times and primal-dual
integrals, while Table [5.2] shows shifted geometric mean values. We see that the curves of
BnB and BnB-noFilter in Figure are almost identical, which shows that our approach is
not sensitive to the size of Z. This is quite intuitive, since filtered values 2’ € {éy,...,é,} \ Z
are usually close to another value z € Z and are therefore implicitly considered within the
same subproblem ROB (Z, Q, ¢, ¢) or pruned via estimators d (z’). Moreover, values of z that
are far from being optimal are pruned easily due to their high relaxation-based dual bound.
Therefore, filtering only yields a considerable benefit when we are able to discard values 2z’
that are far from other z € Z and correspond to (nearly) optimal solutions (x, p, z). While this
does not seem to be relevant for our test instances, filtering has at least no structural negative
impact and improves the mean values of computation times and primal-dual integrals slightly,
as shown in Table[5.2

The influence of cliques and estimators on the performance is much greater than that of
filtering. When not using cliques and conflict graphs, we observe 16.4% more timeouts,
an increase of the computation times by 24.3% and of the primal-dual integrals by 28.7%
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Figure 5.3. Cumulative distribution of computation times and primal-dual integrals for variants of
BnB differing in the use of optimality-cuts.

compared to BnB. When disabling estimators, the decline is even more substantial with 31.3%
more timeouts, 44.0% higher computation times and 51.0% higher primal-dual integrals. The
curves in Figure confirm the domination of BnB over BnB-noClique and BnB-noEstimator,
as we see that BnB always solves more instances within the same time and below a specific

primal-dual integral.

Figure shows that disabling optimality-cuts yields a considerable performance improve-
ment, both for relaxed and mixed-integer problems. This might not be surprising for BnB-
noCutLP after our discussion on the use of Lagrangean relaxations. We observe much higher
computation times for solving relaxations when optimality-cuts are added, since we some-
times have to warm start the simplex method in phase I when applying Lagrangean relaxation
with optimality-cuts. As a result, BnB spends 10.30 seconds in the shifted geometric mean for
solving relaxations, while BnB-noCutLP only spends 6.40 seconds. This is despite the fact
that BnB-noCutLP considers 14.2% more relaxations than BnB on average. The speed-up in
solving relaxations translates to BnB-noCutLP having 21.9% fewer timeouts, 14.3% lower
computation times, and 21.6% lower primal-dual integrals, as shown in Table In particu-
lar, BnB-noCutLP is able to solve 9 out of 12 of the already mentioned rail01 instances, of

which BnB could not solve any.

When disabling optimality-cuts for mixed-integer subproblems, we have 17.2% fewer time-
outs, 11.1% lower computation times, and 5.6% lower primal-dual integrals. This improved
performance of BnB-noCutMIP is surprising, as there is no obvious practical interference
with other components of our branch and bound. Although optimality-cuts can in theory
prevent us from finding good primal bounds early and allow using estimators d; (z') only
for 2’ € [c, |, our careful choice of bounds ¢, ¢ for optimality-cuts ensures that these issues
do not matter in practice (cf. Section[5.6.1.2)). In fact, the primal bound computed by BnB
while solving the very first mixed-integer subproblem ROB (Z, Q,c,¢) is for 98.1% of all
instances at most 1% higher than the best primal bound computed by any variant of our
branch and bound algorithm. Moreover, the average number of mixed-integer subproblems
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Figure 5.4. Cumulative distribution of computation times and primal-dual integrals for variants of
BnB without improving primal bounds, terminating subproblems or using warm starts.

considered by BnB-noCutMIP is 17.2% higher than for BnB, indicating that pruning fewer
nodes via estimators is no practical issue. However, despite considering fewer mixed-integer

subproblems, BnB spends 17.6% more computation time on these.

When not using optimality-cuts at all, we obtain an even better performance. BnB-noCut
has 35.2% fewer timeouts, 21.1% lower computation times, and 24.0% lower primal-dual
integrals compared to BnB. The overall negative impact of optimality-cuts indicates that the
interference with our warm starting strategy might not be the only reason why BnB-noCutLP
outperforms BnB. We will cover this topic again after evaluating the impact of warm starting
itself.

Figure [5.4] and Table [5.2] show that improving primal bounds by computing optimal values z
for incumbent solutions x has nearly no effect on the performance of our branch and bound
approach. This confirms that our branching and node selection strategies already guide
us towards subproblems in which we find good solutions early. In fact, the primal bound
computed by BnB-noPrimal while solving the first mixed-integer subproblem is still for 93.4%
of all instances at most 1% higher than the best primal bound computed by any variant of
our branch and bound algorithm.

The premature termination of mixed-integer subproblems has a positive impact on the
computation time and the number of instances solved. BnB-noTermination has 7.8% more
timeouts and 6.5% higher computation times. Note that the primal-dual integral is not
changed significantly, since we tend to terminate subproblems prematurely when the primal-
dual gap is already relatively low.

As already discussed, warm starting leads to notoriously bad results for some instances.
BnB-noWarmstart solves 9 out of 12 rail01 instances, just like BnB-noCutLP. Accordingly, BnB-
noWarmstart has 4.7% fewer timeouts than BnB. However, the computation times increase by
6.4% and the primal-dual integrals even by 28.6%. Thus, the overall effect of warm starting
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Figure 5.5. Cumulative distribution of computation times and primal-dual integrals for variants of
BnB without optimality-cuts differing in the use of Lagrangean relaxations.

is positive, especially at the very beginning of the computation time, where the impact on the
primal-dual integral is large due to the high primal-dual gap.

BnB-noCut is clearly the best performing variant of our branch and bound approach so far.
However, the effect of using Lagrangean relaxations was inconclusive, and we therefore
compare the three variants of using Lagrangean relaxations without optimality-cuts. We also
evaluate how optimality-cuts for relaxed problems perform when warm starting is disabled.
Finally, we test a variant that will give an interesting outlook on the capabilities of our branch
and bound approach for robust optimization with uncertain constraints. To this end, we

consider the following variants.

BnB-noCutNoLagr never uses optimality-cuts or Lagrangean relaxations.
BnB-noCutAlwaysLagr never uses optimality-cuts but always Lagrangean relaxations.

BnB-noCutLPnoWarm does not use optimality-cuts when solving continuous relaxations
and does not use warm start.

BnBCons-noCut does not use estimators, does not improve primal bounds, and
never uses optimality-cuts.

Table [5.4] and Figure [5.5] show that BnB-noCut is still the best variant regarding the number
of instances solved and computation time. Not using Lagrangean relaxations yields 9.6%

more timeouts, 11.4% higher computation times, and 41.9% higher primal-dual integrals.

Always using Lagrangean relaxations still yields a speed-up in the beginning, resulting in
12.1% lower primal-dual integrals. However, BnB-noCutAlwaysLagr also yields 25.3% more
timeouts and 4.4% higher computation times. We therefore stick with BnB-noCut as our

variant of choice for the remainder of this study.

By comparing BnB-noWarmstart with BnB-noCutLPnoWarm in Table [5.4] and Figure we
see that optimality-cuts are also hindering when warm starting is disabled. We conclude that
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Table 5.4. Computational results for different variants of BnB. Computation times and primal-dual
integrals are shifted geometric means with shifting parameter s = 1.

BnB-noCut BnB-noCutNoLagr BnB-noCutAlwaysLagr BnB-noWarmstart BnB-noCutLPnoWarm BnBCons-noCut

timeout 83 91 104 122 103 146
time 67.79 75.55 70.79 91.40 83.31 101.24
P-D integral 12.02 17.06 10.57 20.34 17.99 19.49
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Figure 5.6. Cumulative distribution of computation times and primal-dual integrals for BnB with and
without optimality-cuts when warm starting is disabled as well as a variant only using
components that can be applied for uncertain constraints.

optimality-cuts are overall not beneficial in the current version of our branch and bound
algorithm. However, we will see later that they can enhance other algorithms, which indicates
that there is potential in using optimality-cuts.

The additional variant BnBCons-noCut is interesting, since it only relies on results that are also
generalizable to uncertain constraints with budgeted uncertainty. In this setting, the j-th row
Y icn] @jiTi < bj of the constraint matrix Az < bbecomes 3¢, (ajiwi + pji) +1'j2; < b; with
additional robustness constraints z; + p;; > G;;x; for deviations G;; and a constraint specific
uncertainty budget T'; [23]]. Since the additional constraints have the same structure as for
the uncertain objective function, we can branch on the variables z;, use clique reformulations,
filter possible values for z;, etc. Only estimators and the improvement of primal bounds
cannot be generalized, since these rely on the fact that a feasible solution for a fixed z has
a corresponding feasible solution for a different 2. This does not apply when fixing z; to
different values. When disabling the non-generalizable components together with optimality-
cuts, we obtain a variant that still solves 81.8% of all instances, and thus outperforms all
approaches from literature, as we will see in the next section. The performance of this variant
suggests that our approach and the theoretical results in this thesis are also relevant for

robust optimization with uncertain constraints.
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5.7.2 Comparing Algorithms from the Literature

We now evaluate our branch and bound approach by comparing BnB-noCut with the following
algorithms from the literature.

DEF solves the MILP over the default formulation FROB,

SCE starts with NOM and then separates constraints corresponding
to the objective coefficients ¢’ of scenarios from the budgeted
uncertainty set, as described by Bertsimas et al. [[20]].

BS solves nominal subproblems NOS (z) for all z € {¢,...,é,}, as
proposed by Bertsimas and Sim .

RECsepCons separates violated recycled constraints, as in Section |4.4.1

SUB solves ROB and separates submodular-cuts dominating the above

scenario cuts of SCE, as proposed by Joung and Park [[57].

DnC solves nominal subproblems NOS (z) but uses Lemma [29|to avoid
some z € {¢,...,¢n}, as proposed by Hansknecht et al. .

RP1,...,.RP4 solve the corresponding reformulations of Atamtiirk IEI]

The approaches DEF, SCE, and BS are widely known and studied, and can thus be considered
as the current state-of-the-art approaches. In contrast, SUB has so far been considered for
knapsack problems and DnC for robust shortest path problems [[53]|, but none was
evaluated for general robust optimization problems. To the best of our knowledge, we
also present the first study that evaluates the reformulations RP1,...,RP4 on a broad set of
instances. Before we analyze computational results of the above approaches, we give a
brief description of SUB, DnC, RP2, and RP3, as we have to adapt them for our purposes.
Furthermore, knowledge about SUB and DnC will be relevant for later discussion.

Description of SUB  For the cutting plane approach SUB of Joung and Park [[57]], we consider
the inner maximization problem

p(z) = sop <(F — |I]) &y + chx)
|S|<|T],t¢S '€

of [NLR] as a submodular function. For T' C [n], let f (T) = p(z) with z; = 1 if i € T and
x; = 0 otherwise. Then f is a submodular set-function and defines a so-called polymatroid

Hf:{ﬂ'E]Rn

Zm < f(T) VT C [n]}

€T

We have p(z) > 7' for all z € {0,1}" and 7 € Il by definition of II;. Remember from
Sectionthat p () = Tz + e[, pi holds for optimal p, z with (z,p, z) € FROB. Thus, the
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inequality I'z + >~ pi > 7"z, which we call a submodular-cut, is a valid inequality for
CROB for all 7 € II;. In our implementation of SUB, we start with solving ROB and separate
submodular-cuts with maximum violation in the root node of the branching tree. We do
this by solving max {:ﬁTW’ﬂ ell f} for some fractional & € FNM, Joung and Park show
that this separation can be done efficiently based on a result of Edmonds [[40] stating that
optimization problems over a polymatroid can be solved using a greedy algorithm.

Description of DnC The divide and conquer approach of Hansknecht et al. is similar
to BS by Bertsimas and Sim in the sense that it solves nominal subproblems NOS (z)
for specific values z € {¢é,. .., ¢, }. However, non-optimal values of z are discarded by using
Lemma [29]in order to reduce the number of subproblems to be solved.

Let {z1,..., 2t} = {¢o,-..,¢,} be the set of distinct deviations. We start by solving NOS (z)
and NOS (zx). Afterwards, we try to prune values z € {z9,...,2,_1} by comparing the
primal bound v = min {v (NOS (21)),v (NOS (z))} with the dual bound v (2) = (2 — 2) T +
v (NOS (z1)) obtained from Lemma Of all remaining values Z C {z9,...,2,_1}, We
select the median 2z’ € Z and solve the nominal subproblem NOS (z’). Afterwards, we
potentially update the primal bound with v (NOS (z)) and split Z into Z; = {z € Z|z < 2’}
and Z, = {z € Z|z > 2z'}. We then proceed recursively with Z; and Z, until all z are either
pruned or considered for a nominal subproblem. Note that the dual bounds of Lemma
provide us with a global dual bound on v (ROB), which we can use to compute the primal-dual
integral for DnC.

Given some yet to be considered sets Z1,...,Zy, C {z1,..., 2}, DnC chooses the next set to
be processed such that good solutions are found quickly. For each Z;, there are surrounding
values z* that have already been considered for a nominal subproblem NOS (z*). We use
their corresponding objective values v (NOS (z*)) as an indicator for the objective values
corresponding to Z;. Let z; be the largest considered value that is smaller than min (Z;) and
z; be the smallest considered value that is greater than max (Z;). Then Z; is chosen such
that min {v (NOS (gj)) ) (NOS (Ej))} is minimal.

Description of RP2 and RP3 We slightly enhance RP2 and RP3 in our implementation
compared to Atamtiirk’s description [9]]l. Reformulation RP2 consists of an exponential
number of valid inequalities

Yotz ) (cj - éi_j_l) i (5.11)

JEK] JEK]

for each ordered set {i1,...,ix} C [n| with 0 = ¢, < ¢, < --- < &, . These inequalities are
not directly added to the formulation but can be separated in O (n?) by searching for paths
with negative weight in an acyclic directed graph. Assuming that ¢; < --- < ¢, holds, this
graph consists of nodes V' = [n + 1], and arcs A = {(4, j)|i < j € [n + 1],}. The arc weights
are chosen such that the weight of each path from 0 to n + 1 equals the violation of the
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Table 5.6. Computational results for different approaches from the literature. Computation times
and primal-dual integrals are shifted geometric means with shifting parameter s = 1.

BnB-noCut DEF SCE BS RECsepCons SUB DnC

timeout 83 373 547 480 309 352 302

time 67.79 25199 710.85 901.20 193.71 233.60 414.42

P-D integral 12.02  41.39 131.67 901.20 31.97 3829 94.14
RP1 RP2 RP3 RP4
timeout/memory error 652 382 652 680
time 1758.92 290.66 1716.20 2607.05
P-D integral 1089.27  49.35 1348.13 2253.52
memory error 406 0 492 480

corresponding inequality (5.11), where {i1,...,ix} C [n] are the nodes visited on the path.
Atamtiirk [[9]] shows that the inequalities (5.1T) with &, < &, < --- < &, describe the convex
hull of

{(2,p,2) € {0,1}" x RLH!

pi +z2 2> CixiVi € [n]} R

while inequalities with ¢;, _, = ¢;, for some j € [k] are dominated. Therefore, we modify the
above graph by deleting all arcs (¢, j) with ¢; = ¢;, so that all paths in the modified graph
correspond to non-dominated inequalities.

Reformulation RP3 emerges from RP2 by formulating the problem of finding the shortest
path in the above graph as an LP. If the objective value of this LP is non-negative, then all
inequalities are satisfied. We can incorporate this requirement into ROB by bounding
the LP value with zero. We obtain a linear problem by dualizing the LP and adding the
resulting n+2 additional variables and O (n?) constraints into our model. Our implementation
omits some of these constraints by defining the LP on the reduced graph constructed for the
separation problem of RP2.

Evaluation of Computational Results We now asses the performance of the approaches
above experimentally. Just like in the previous section, we try to solve our 804 robust
instances within a time limit of 3,600 seconds. As before, Table shows for all approaches
the number of timeouts and shifted geometric means of computation times and primal-dual
integrals. Detailed results per instance and algorithm are provided in [47]. We want to
mention that Gurobi sometimes terminates long after 3,600 seconds when it gets stuck in
a subroutine. This is especially the case for the large formulation RP4. For the sake of a
fair comparison, we always take the minimum of 3,600 and the measured computation time
when computing the shifted geometric mean. The same applies for the primal-dual integral,
which we also cap at 3,600.

Note that the implementation of DEF evaluated here is not the same as in the computational
study from the previous chapter for technical reasons. The implementation from the previous
chapter is based on that of the recycling of inequalities. It therefore scales deviations ¢
and objective coefficients of p and z as described in Section [4.6.1} Interestingly, the scaled
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Figure 5.7. Cumulative distribution of computation times and primal-dual integrals for BnB-noCut
compared to DEF, SCE, and BS.

implementation performs better with 6.7% fewer timeouts, 10.1% lower computation times,
and 14.6% lower primal-dual integrals (cf. Table [4.4). This raises the question of whether
scaling also improves other approaches. However, scaling is currently only used for recycling
in the current implementation and we therefore leave this question for future research.

Figure[5.7] shows the performance of DEF, SCE, and BS in comparison with BnB-noCut. We
see that SCE is clearly inferior to DEF in every performance metric. Interestingly, this is
in contrast to the findings of Bertsimas et al. [[20]], who observed no clear winner between
DEF and SCE for robust problems with uncertain constraints. BS is even slower than SCE in
the shifted geometric mean but solves more instances, as can be seen in Table This is
because BS makes “slow but steady” progress and eventually solves all nominal subproblems,
while SCE gets stuck for harder instances. However, BS still solves fewer instances than
DEF within one hour, which supports our claim from Chapter [3| that solving all nominal
subproblems NOS (z) for z € {¢, ..., ¢é,} is not practical. Instead, BS should rather be seen
as a heuristic in which we solve nominal subproblems for specific z € {¢é,...,é,} in order to
quickly compute any solution. Consistent with this heuristic perspective, BS computes no
meaningful dual bound until all nominal subproblems are solved. Therefore, the primal-dual

integral always equals the computation time.

While DEF is best among the state-of-the art approaches, BnB-noCut outperforms it by far.
Table [5.6| shows that BnB-noCut has 77.7% fewer timeouts, 73.1% lower computation times
and 71.0% lower primal-dual integrals. Looking at the trend in the left graphic of Figure
it is natural to assume that the difference between BnB-noCut and DEF would be even larger
if the time limit was higher than 3,600 seconds. DEF solves 416 instances within 1,800
seconds and 431 instances within 3,600 seconds. That is, DEF only solves 15 instances within
the last 1,800 seconds, which equals 3.9% of the 388 instances that were not solved after
1,800 seconds. In contrast, BnB-noCut solves 662 instances within 1,800 seconds and 721
instances within 3,600 seconds. Thus, BnB-noCut solves within the last 1,800 seconds 41.5%
of the 142 instances that were not solved in the first 1,800 seconds. We therefore conclude
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Figure 5.8. Cumulative distribution of computation times and primal-dual integrals for BnB-noCut
compared to RECsepCons, SUB, and DnC.
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Figure 5.9. Cumulative distribution of computation times and primal-dual integrals for BnB-noCut
compared to Atamtiirk’s reformulations.

that our branch and bound approach makes “fast and steady” progress compared to the other
approaches.

Figure shows RECsepCons, SUB, and DnC in comparison with our branch and bound.
Although these are more sophisticated than the three approaches above, none comes close to
BnB-noCut. Our recycling from last chapter proves to be faster than SUB and DnC. Table
shows that it even has the lowest shifted geometric mean in computation time and primal-
dual integral over all approaches except for BnB-noCut. DnC has relatively high computation
times and primal-dual integrals but the fewest timeouts after BnB-noCut. Just like the closely
related BS approach, DnC makes steady progress in solving nominal subproblems, while
other approaches get stuck for harder instances. Note that DnC strictly dominates BS by
design, which results in 37.1% fewer timeouts and 54.0% lower computation times. While
SUB is the inferior cutting plane approach compared to RECsepCons, it at least provides an
improvement over DEF with 5.6% fewer timeouts, 7.3% lower computation times, and 7.5%

lower primal-dual integrals.
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Figure|5.9|shows that the cutting plane approach RP2 is the only practicable of Atamtiirk’s
four reformulations. RP1, RP3, and RP4 are simply too large for most practical problems.
Table 5.6 shows that RP1 exceeds the memory limit for 50.5% of all instances, RP3 for 61.2%,
and RP4 for 59.7%. In these cases, we set the computation time and primal-dual integral to
the maximum of 3,600. Even if the models can be built obeying the memory limit, they are
often still too large for Gurobi to solve them. This results in RP1, RP3, and RP4 having by far
the worst performance metrics across all approaches. RP2 does not cause memory issues, but
it still provides no practical improvement over DEF, with 2.4% more timeouts, 15.3% higher
computation times, and 19.2% higher primal-dual integrals.

5.7.3 Improving Algorithms from the Literature

Our experiments in the last section clearly show that our branch and bound approach
outperforms all state-of-the art approaches from the literature. However, we do not only want
to establish a new state-of-the art approach in this thesis but also show that our theoretical
results can be used to enhance algorithms from the literature.

Note that all approaches tested in the last section can be improved in some way. For BS, we
can reduce the number of nominal subproblems to be solved from |{¢y,...,é,}| to | Z]| for
some filtered set Z C {¢&,...,¢,} of possible optimal values for z. All approaches solving
a reformulation of ROB can instead work on the equivalent but stronger problem ROB (2),
in which the deviations are capped at max (Z) by moving (¢; — max (Z))" directly into the
objective function. However, we will not evaluate these improvements for all approaches.
We do not consider an improved version of BS, as DnC is strictly stronger. Likewise, we will
also not consider SCE, RP2, and RP3, as they were outperformed by DEF. We will, however,
evaluate an improved version of RP1 and RP4, as their size can be reduced easily using
filtering. This leaves us with the following approaches.

DEF+ solves the MILP ROB (Z, Q) using filtering and clique partitions.
SUB+ separates submodular-cuts for ROB (Z, Q).

RECsepCons+ uses recycled inequalities for ROB (Z).

DnC+ uses multiple components of our branch and bound approach, as

described below.

RP1+, RP4+ reduces the size of the formulation based on filtered Z.

The improvements applied to DEF, SUB, and RECsepCons are straightforward, since we
simply use stronger formulations. In the case of DEF and SUB, these formulations are also
smaller, as we aggregate the variables p and robustness constraints p; + z > ¢;x; using cliques.
Remember that we cannot trivially use recycling for the clique reformulation ROB (Z, Q), as
the aggregation of variables p is in conflict with the recycling of valid inequalities.

Chapter 5 A Branch and Bound Algorithm



Table 5.7. Computational results for improved approaches from the literature. Computation times
and primal-dual integrals are shifted geometric means with shifting parameter s = 1.

BnB-noCut DEF DEF+ SUB SUB+ RECsepCons RECsepCons+

timeout 83 373 328 352 332 309 310

time 67.79 25199 191.80 233.60 188.31 193.71 189.74

P-D integral 12.02  41.39 30.95 38.29 29.83 31.97 31.43
DnC DNC+ RP1 RP1+ RP4 RP4+
timeout/memory error 302 118 652 626 680 660
time 414.42 7430 1758.92 1367.54 2607.05 2101.48
P-D integral 94.14 17.11 1089.27  715.77 2253.52 1701.29
memory error - - 406 313 480 439

The basic framework of DnC described in the last section remains unchanged. That is, DnC+
also divides the set of possible values for z into subsets Z, prunes non-optimal choices with
respect to individual dual bounds v (z), and chooses the median 2’ of the remaining values
within Z for solving the nominal subproblem NOS (z’). However, instead of considering all
values z € {&,...,&,}, we restrict ourselves to the filtered set Z. Instead of using Lemma 29
for computing dual bounds v (z), we use the stronger estimators from Theorem [30] DnC+
also uses optimality-cuts from Section with ¢ = min (Z) and ¢ = max (Z) when
considering the subset Z C Z. Note that this is in line with the reasoning for the careful
choice of ¢,c at the end of Section as we already considered the closest values
z*,z* € Z around Z for nominal subproblems. Lastly, we improve primal bounds from
incumbent solutions as in Section and apply the premature termination to nominal
subproblems as in Section |5.6.3

The size of RP1 and RP4 can be reduced significantly. Both introduce a variable w;; € {0,1}
for each nominal variable x; with ¢ € [n| and deviation ¢, with k € [n],. Here, choosing
w;r = 1 corresponds to choosing z; = 1 and z = ¢&,. It is easy to see that it is sufficient
to use w € {0, 1}”X|z‘ instead of w € {0, 1}”X‘{60""’é"}|. Reformulation RP4 can be reduced
even more, since it not only uses |{¢y, ..., ¢, }| copies of z in its original form but also as
many copies of the constraint matrix Az < b. Therefore, we can omit m (|{¢,...,é}| —|Z|)
constraints for RP4.

Figure shows that DEF+ and SUB+ cannot compete with BnB-noCut but perform better
than their original version. DEF+ has 12.1% fewer timeouts, 23.9% lower computation
times, and 25.2% lower primal-dual integrals compared to DEF, as shown in Table The
difference between SUB+ and SUB is slightly smaller, but we still observe 5.7% fewer timeouts,
19.4% lower computation times, and 22.1% lower primal-dual integrals. Interestingly, there
is no big difference between DEF+ and SUB+. This is because the submodular-cuts are less
interesting when using the already strengthened formulation ROB (Z, Q).

5.7 Computational Study
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Figure 5.10. Cumulative distribution of computation times and primal-dual integrals for improved
versions DEF+ and SUB+ compared to their original versions and BnB-noCut.

The question arises whether submodular-cuts can also be strengthened using conflicts between
nominal variables. Remember from the previous section that the submodular-cuts I'z +
Yicin Pi = m '« are defined via the polymatroid

Hf:{weR”Zm'Sf(T) VTQ[”]}a

€T

where f corresponds to the inner maximization problem

= r—|T))e i
plr) = max <( 7)) e + % czfcz>
|SI<[] ¢S '
of This ensures that p (z) > 7'z holds for all x € {0,1}" and 7 € II;. Note that it is
sufficient if ), m; < f (") only holds for subsets 7" C [n| corresponding to feasible solutions.
That is, for T' C [n] whose characteristic vector 27 is in CNM, Thus, we can enlarge the set of

valid submodular-cuts to

Zﬂ'i < f(T) VTQ [n]:a?T ECNOM}.

i€T

}—{WGR’L

If we were able to heuristically optimize over IT/;, e.g., by using conflict graphs and clique
partitions, then we would obtain stronger cuts.

Submodular-cuts are also interesting for our branch and bound approach. Remember from
Section [5.4] that our Lagrangean relaxations of ROB correspond to convex combinations of
scenarios in the budgeted uncertainty set. Instead of combining these scenarios, we might also
apply Lagrangean relaxation to a dominating submodular-cut, and thus obtain better dual
bounds. However, we currently base our Lagrangean relaxation on ROB (Q) and the above
comparison between DEF+ and SUB+ does not give hope that relaxing submodular-cuts
yields better results. Combining submodular-cuts with cliques, however, might yield stronger
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Table 5.8. Computational results for for BnB-noCut and DnC+ with instances classified with respect
to their nominal complexity. Computation times and primal-dual integrals are shifted
geometric means with shifting parameter s = 1.

all nominal easy nominal hard

BnB-noCut DnC+ BnB-noCut DnC+ BnB-noCut DnC+

timeout 83 118 7 7 76 111
time 67.79 74.30 9.23 9.04 436.31 531.22
P-D integral 12.02 17.11 3.21 3.24 3796 73.14
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Figure 5.11. Cumulative distribution of computation times and primal-dual integrals for improved
versions of RECsepCons and DnC compared to their original versions and BnB-noCut.

Lagrangean relaxations, and thus an improvement of our branch and bound. We leave the
investigation of how to optimize over H’f and how to incorporate this into our branch and

bound approach for future research.

Figure shows that DnC+ surpasses DnC by far and is almost as strong as BnB-noCut.
Table[5.7]reveals that the many improvements applied to DnC+ lead to 60.9% fewer timeouts,
82.1% lower computation times, and 81.8% lower primal-dual integrals compared to DnC.
The distribution of computation time in the left of Figure shows that DnC+ even solves
more instances than BnB-noCut in the first 900 seconds, although the aggregated performance
metrics in Table are better for our branch and bound approach.

To get a better understanding of when DnC+ performs better, we split our test set into
two halves. We classify the instances into nominal easy and nominal hard based on the
computation time needed to solve the underlying nominal problem from the MIPLIB. All
instances for which the nominal computation time is below the median are classified as
nominal easy, while the rest is nominal hard. Table shows that the performance of
BnB-noCut and DnC+ is similar for the nominal easy instances, while BnB-noCut clearly
performs better for hard instances with 31.5% fewer timeouts, 17.9% lower computation
times, and 48.1% lower primal-dual integrals. This confirms that our strategy of solving
relaxations to reduce the number of mixed-integer subproblems especially pays off when the

5.7 Computational Study
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Figure 5.12. Cumulative distribution of computation times and primal-dual integrals for improved
versions of RP1 and RP4 compared to their original versions and BnB-noCut.

nominal problem itself is hard to solve. However, DnC+ is a strong alternative when the

nominal problem is easily solvable.

In contrast to the great improvement of DnC+, the performance of our recycling approach
does not change significantly when applying it to ROB (Z). It appears that the strengthening
of the formulation implied by capping the deviations at max (Z) is negligible in this case. In
contrast to DEF+ and SUB+, we are missing the strengthening via cliques and the reduced
size of the formulation that we have for ROB (Q). For future research, it would be interesting
to investigate whether recycling and cliques can be combined in an efficient way.

We see in Figure that the smaller formulations based on the filtering of Z lead to more
instances solved by RP1+ and RP4+. Table shows that RP1+ runs out of memory for
22.9% fewer instances. For RP4+, this is the case for 8.5%. Nevertheless, both approaches
are still not suitable for instances of practical size.

We close this section with an evaluation of the improvements applied to DnC+. We do so by
disabling the components individually, analogously to Section[5.7.1} This yields the following

variants of DnC+.

DnC+noClique does not compute the conflict graph and clique partition from
Section
DnC+noFilter does not filter Z as in Section ie., Z={céy,...,¢}.

DnC+HRSestimator uses the weaker estimators of Lemma from Hansknecht et

al. .

DnC+noCut does not use optimality-cuts from Section|5.6.1.2{

DnC+noPrimal does not improve primal bounds as in Section |5.6.2

DnC+noTermination does not terminate nominal subproblems prematurely as in Sec-

tion
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Table 5.9. Computational results for different variants of DnC+. Computation times and primal-dual
integrals are shifted geometric means with shifting parameter s = 1.

DnC+ DnC+noClique DnC+noFilter DnC+HRSestimator DnC+noCut DnC+noPrimal DnC+noTermination

timeout 118 120 120 155 163 130 154
time 74.30 78.44 80.32 119.42 129.77 86.92 112.08
P-D integral 17.11 18.46 19.08 25.94 24.26 24.30 24.27
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Figure 5.13. Cumulative distribution of computation times and primal-dual integrals for variants of
DnC+ without using cliques, filtering or improved estimators.

Figure and Table show that disabling the filtering of Z and the computation of
cliques lead to a slight degradation in performance. Just like for BnB, filtering is not the most
important component of DnC+, as similar values of z are pruned by using estimators. Still,
disabling filtering is worse for DnC+ (8.1% higher computation times) than it is for BnB
(1.9% higher computation times). This is because BnB also considers similar values within
the same robust subproblem ROB (7). In contrast, disabling cliques is less problematic for
DnC (5.6% higher computation times) than it is for BnB (24.3% higher computation times).
This is because DnC+ only uses cliques for improving the filtering and the estimators of
Theorem [30] but BnB also relies on the strengthened clique reformulation.

It is not surprising to see that the improved estimators from Theorem [30] enhance the divide
and conquer substantially. Reverting to the weaker estimators leads to 31.4% more timeouts,
60.7% higher computation times, and 51.6% higher primal-dual integrals. These differences
are even higher than the differences between the default variant of BnB and the variant where
we don’t use estimators at all. This is because DnC completely relies on using estimators for

pruning possible values for z.

Figure shows that the improvement of primal bounds is important for DnC+, especially
with respect to the primal-dual integral. In contrast to BnB, which is selective in solving
mixed-integer subproblems, DnC solves nominal subproblems NOS (z) for unpromising values
of z in the beginning. Therefore, the improvement of solutions by computing optimal values
for z yields better primal bounds early on, which is important for the primal-dual integral. We
overall observe 10.2% more timeouts, 17.0% higher computation times, and 42.0% higher
primal-dual integrals when comparing DnC+noPrimal with DnC+. For the same reasons,
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Figure 5.14. Cumulative distribution of computation times and primal-dual integrals for variants of
DnC+ without using optimality-cuts, improving primal bounds or terminating subprob-
lems.

terminating nominal subproblems also improves the performance substantially. Nominal
subproblems for non-optimal values z can be terminated especially fast when using the
improved bound. This leads to DnC+noTermination having 30.5% more timeouts, 50.8%
higher computation times, and 41.8% higher primal-dual integrals compared to DnC+.

Surprisingly, disabling optimality-cuts has the largest negative impact on DnC+, although
they were hindering for our branch and bound in the current implementation. Not using
optimality-cuts leads to 38.1% more timeouts, 74.7% higher computation times, and 41.8%
higher primal-dual integrals. This shows that there definitely is potential in using optimality-
cuts and raises hope that they can also be a helpful addition to our branch and bound

approach with further engineering.

5.8 Conclusion

The preceding computational study not only rounds out the chapter on the branch and
bound algorithm but also the whole part of this thesis on robust optimization with budgeted
uncertainty. Contrary to the famous result of Bertsimas and Sim [22]], stating that the
theoretical complexity of is the same as that of we observed that solving ROB
can be a major challenge in practice, even if NOM is easy to solve. We showed that the
algorithm of Bertsimas and Sim leading to their theoretical result is too inefficient for solving
problems of practical size to optimality. In fact, solving ROB directly as an MILP yielded
lower computational times, although the standard formulation@l has proven to be quite
weak. We identified that the variable z within formulation FROB is critical in this regard and
addressed this issue by proposing the strong bilinear formulation@

While the bilinearity is not desirable, the formulation turned out to be an invaluable founda-
tion for our approaches for solving ROB. In Chapter [ we derived and extensively analyzed
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recycled inequalities, which are facet-defining in surprisingly many cases. In this chapter,
we introduced strong linear relaxations of 72! for the case where z is bounded. Building
upon these, we proposed a branch and bound algorithm in which we obtain bounds on z
via branching. We additionally characterized optimal solutions of ROB and proved further
structural results which enabled us to improve our branch and bound approach by computing
stronger primal and dual bounds.

We conducted two comprehensive computational studies to test the practicability of our
approaches. The first study in Section [4.6|revealed that the easily applicable recycled inequal-
ities substantially improve the standard formulation and often lead to a better running time.
While our branch and bound algorithm is much more complex, the second computational
study showed that its performance is unparalleled by any state-of-the-art approach. To the
best of our knowledge, our study is also the first to compare many sophisticated algorithms
from the literature on a broad set of test instanced. Moreover, most of the algorithms from
the literature can be substantially improved by using the structural insights gained in this
chapter. This is especially true for the divide and conquer approach by Hansknecht et al. [[53]],
whose improved version is a strong alternative to the branch and bound when the underlying
nominal problem is easy to solve.

We hope that the provided evidence of the computational price of robustness as well as our
progress towards lowering this price motivate further research on making robust optimization
applicable. The practical contribution of this thesis, namely the provision of many imple-
mented algorithms and generation of benchmark instances [48]], should be helpful in
this regard. The broad applicability of our results for enhancing existing approaches indicates
that our theoretical contribution can also play an important role for future algorithms. For
the branch and bound approach itself, there are countless possibilities to adjust and extend
the different components to achieve further performance improvements. In particular, an
effective use of optimality-cuts, who have proven to be strong for the divide and conquer ap-
proach, would be interesting. Furthermore, the combination of submodular-cuts with cliques
in the conflict graph should be investigated for obtaining stronger Lagrangean relaxations.

Both of our approaches should be extensively tested for instances with uncertain constraints.
While the recycling is directly applicable, the branch and bound algorithm needs to be
adjusted for such problems. However, we already reasoned that most theoretical results can
be generalized to this case and showed that the branch and bound performs well relying only
on these general results.

5.8 Conclusion
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Introduction

Establishing a functional healthcare system is one of the most crucial obligations of the
German welfare state [|94]]. An essential component of such a system is the supply of
pharmaceuticals, which are primarily provided by pharmacies. To ensure the supply at any
time of the day, all pharmacies are obliged by law to be open 24/7 [[7} § 23]. However, the
German state governments mandate the chambers of pharmacists to daily exempt a part of the
pharmacies from this obligation outside the regular opening hours. In doing so, the chambers
of pharmacists must ensure that the supply of pharmaceuticals is guaranteed by the remaining
pharmacies [[7], § 23]. Pharmacies that are not exempted are called out-of-hours pharmacies
and the continuous provision of pharmaceuticals is called the out-of-hours service.

The out-of-hours service is described by the Federal Union of German Associations of Pharma-
cists (ABDA) as “one of the most important obligations to the common good that pharmacies
fulfill” [[I]]. Thus, on the one hand, pharmacists consider the out-of-hours service as an
expression of their professional ethos. On the other hand, the obligatory service poses an
economically unattractive burden. This is because a highly qualified pharmacist must be
present during the whole 24-hour shift while the customer demand is lower outside the
regular opening hours. Therefore, it is crucial to strike a balance between an appropriate
supply of pharmaceuticals and an acceptable burden for pharmacies when planning the
out-of-hours service.

In 2022, the 18,086 pharmacies across Germany worked approximately 430,000 out-of-hours
shifts, equating to an average of nearly 24 shifts per pharmacy [[I]]. This average number is
likely to increase in the future if there is no systematic change in the planning of the out-of-
hours service, since the number of pharmacies in Germany has been in constant decline in
recent years (-15.7% from 2015 to 2022 [[I]]). This development is especially problematic in
rural areas, where an already low density of pharmacies results in a higher number of shifts
for each pharmacy. For example, a pharmacy in the Bavarian village of Weitnau worked 302
shifts in 2022, and thus needed to be open year-round except for nine weeks of exemption.

Such an extreme difference compared to the average number of shifts is sometimes inevitable
due to the local situation of rural pharmacies. However, some planning approaches that
are currently in use also favor large variations in the number of shifts, even among nearby
pharmacies: It is common practice for the German chambers of pharmacists to divide the
planning area into districts, typically based on administrative borders, in which the out-of-
hours service is organized locally as a rotation of the resident pharmacies. The districting
considerably impacts the burden of individual pharmacies, since being part of a district
with few pharmacies results in many shifts. This is especially unsatisfactory if neighboring

131



132

pharmacies are in different districts that differ significantly in terms of the implied burden.
For example, a pharmacy in the Bavarian village of Zell worked 30 shifts in 2022, while a
pharmacy just 3 km away in the city of Wiirzburg worked only 17 shifts. Justifying such
differences on the basis of administrative boundaries alone is difficult for pharmacies with
similar location and can lead to frustration among pharmacists who may feel treated unfairly
due to their allocation to an unfavorable district.

In addition to a lack of fairness, the missing synchronization between districts can lead to
neighboring pharmacies in different districts having an out-of-hours shift on the same day.
This results in an oversupply for the corresponding area and unnecessary shifts. Conversely,
we can also have an undersupply if the out-of-hours pharmacies of neighboring districts
are located far apart from another. These issues clearly show that a centralized approach
considering all pharmacies together would be preferable over the district-based planning.

Three out of 17 chambers of pharmacists in Germany already replaced the district-based
planning with a centralized planning. The Chamber of Pharmacists Westphalia-Lippe started
this transition in 2012, followed by North Rhine in 2014, and Schleswig-Holstein in 2015.
The chambers of Hessen and Rhineland-Palatinate switch to a centralized planning in 2024.
This trend shows that there is a growing political willingness to restructure the planning of
the out-of-hours service, with the driving force being the high burden on the pharmacies [[26}
[54]l. However, the relief for pharmacies should not come at the expense of an avoidable
worsening of the coverage of residents with out-of-hours pharmacies. Stated otherwise, a
deterioration in coverage cannot be justified by a reduction in the burden of pharmacies if
there exists a better plan that is acceptable for all pharmacies and maintains the quality of
coverage. This raises the necessity for an optimization-based planning, which guarantees that
we obtain the best plan possible.

In this thesis, we consider the planning of the out-of-hours service in the area of our practice
partner, the Chamber of Pharmacists North Rhine. Their transition to a centralized planning
in 2014 already resulted in a reduction of the total number of shifts of more than 20% [[8]l.
However, since their planning is not based on mathematical optimization, there is still
potential regarding fairness, efficiency, and compliance with legal constraints. We will explore
this potential in the following chapters by proposing mathematical models and algorithms
for an optimized planning of the out-of-hours service. We place a special focus on the
computation of fair plans that relieve the burden on pharmacies as far as possible and at the
same time achieve a predefined quality of coverage.

6.1 Related Work

To the best of our knowledge, a centralized planning of the out-of-hours service that is
not district-based has not yet been considered in the operations research literature. The
problem of assigning shifts while retaining districts is known as the Pharmacy Duty Scheduling
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Problem (PDS). The PDS has been studied for the planning of shifts in Turkey [8all,
where the setting is similar to Germany in the sense that chambers of pharmacists historically
organize the out-of-hours service decentrally in small local districts. The PDS consists in
assigning exactly one shift to one pharmacy on each day in each district. The objective is to
minimize the sum of the distances between aggregated customer nodes and their nearest
out-of-hours pharmacy. The problem is described as a multi duty variation of the p-median
problem and has been solved using variable neighborhood search [[63]], tabu search [[80],
branch and price [[35]], and swarm intelligence algorithms [|68]].

The PDS differs considerably from the problem proposed in this thesis. Most importantly, the
number of shifts assigned to each pharmacy is almost fixed: All pharmacies within the same
district are assigned an equal number of shifts except for differences of +1 if the number of
days in the time horizon is not divisible by the number of pharmacies within the district. Thus,
fairness in terms of an even distribution of shifts among pharmacies is achieved automatically
within districts and neglected across districts. This is in contrast to our problem, where the
number of shifts assigned to a pharmacy is not predefined and achieving global fairness is a
major concern.

Another difference is that the PDS yields no guarantee regarding the maximum distance
residents have to travel to their nearest out-of-hours pharmacy. Furthermore, there are no
work regulations with respect to periods of rest between two shifts of the same pharmacy.
Both are an integral part of the problem considered in this thesis and are defining for its
complexity, with the computation of any feasible solution being already N P-complete. In
contrast, the PDS is N'P-complete but computing a solution is trivial [[80]]. Solving each
problem therefore represents a structurally different task.

Typical problems requiring the assignment of shifts for providing coverage of demand, while
complying with work regulations, are rostering problems. In the literature, rostering problems
are, for example, extensively studied for hospital staff like nurses or physicians [B4]l. The
planning of the out-of-hours service sets itself apart from other rostering problems due to
the inhomogeneity of pharmacies: A pharmacy’s capability to cover an area depends on its
location, which can differ considerably from pharmacy to pharmacy. In particular, usually only
few pharmacies can cover rural areas, which results in many shifts being assigned to these
pharmacies. This impacts the fairness of the plans: While typical rostering problems require
the workload to be distributed as evenly as possible [[41]], the number of shifts assigned to
pharmacies can vary significantly. Hence, we need to carefully model fairness for the planning
of the out-of-hours service.

Modeling fairness in an optimization problem is generally not trivial. This is especially true
if the most straightforward approach, namely pursuing an equal workload for all, is not
suitable. Since there is no universal approach that fits all applications, many different fairness
concepts have been developed and applied to optimization problems. Karsu and Morton
give an overview on how fairness concerns have been addressed in different optimization
problems. Chen and Hooker [97] provide a guide on how to formulate different fairness
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concepts in optimization models. A recurring subject here is the trade-off between fairness
and efficiency. The loss in efficiency is, for example, analyzed by Bertsimas et al. for
resource allocation problems. In our case, a fair out-of-hours plan might assign many shifts
more than the most efficient plan. We will revisit this topic again in Section 8.1} where we
discuss fairness concepts that ensure a high level of fairness while maintaining efficiency for
the planning of the out-of-hours service.

6.2 Contribution and Outline

In Chapter[7} we introduce a model for the planning of the out-of-hours service for pharmacies,
which arises from a collaboration with the Chamber of Pharmacists North Rhine. We will
show that it is A/P-hard to decide whether there exists a feasible out-of-hours plan, that is, it
is not trivial to compute any feasible plan. We state an MILP formulation for the problem
and propose MILP-based approaches for constructing out-of-hours plans in reasonable time.
First, we introduce a reformulation via aggregation of mathematically equivalent pharmacies.
Aggregation can yield more tractable models but is often an inexact simplification resulting
in the loss of optimality after disaggregation. In our case, however, the aggregation is
exact and preserves optimality. In addition to the aggregation, we propose a rolling horizon
approach that applies a time-based decomposition of the planning problem into smaller
subproblems. The rolling horizon approach is a heuristic that offers no approximation
guarantee, as we fix shifts in subproblems without considering the whole time horizon. We
partially compensate for this with a tailored extension in which we free a subset of the
formerly fixed variables before each iteration. The freed variables are chosen such that the
impact of suboptimal decisions made in earlier subproblems is reduced but the complexity
of subsequent subproblems does not increase. We test our approaches extensively on a
real-world instance with 2291 pharmacies provided by the Chamber of Pharmacists North
Rhine. We will see that the aggregation and rolling horizon approaches enable us to compute
nearly optimal out-of-hours plans in short time. Afterwards, we conclude the chapter with a
discussion of the constructed plans, which assign roughly 10% fewer shifts than the real plan
while simultaneously maintaining a higher compliance with planning regulations.

The approaches developed in Chapter[7] yield efficient out-of-hours plans but they provide no
sufficient control regarding an even distribution of shifts among pharmacies, which results in
unfair out-of-hours plans. We therefore focus in Chapter [§ on the computation of fair plans.
For this, we consider the related concepts of lexicographic and min-max fairness, which can be
seen as the strictest fairness concepts. As computing optimal fair plans directly is not practical,
we first consider min-max fairness for a relaxation of our planning problem. We generalize
and prove several statements from the literature on min-max fairness, which we then use
to compute min-max fair solutions to the relaxed problem within seconds. Afterwards, we
show how the min-max fair relaxed solution can be used as an orientation for computing
fair out-of-hours plans. We show for our real-world instance that we can compute efficient
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plans that almost match the min-max fair solutions, and are thus almost maximally fair. We
furthermore show that the min-max fair solutions are invaluable within a decision support
environment for analyzing and customizing the planning model. To demonstrate this, we
apply small changes to the model, based on observations from the min-max fair solutions,
that considerable improve the quality of the resulting out-of-hours plan.

The results from Chapter [7/have been published in Operations Research for Health Care
and were also partially described in [7I]]. A publication of the results in Chapter [§] is in
preparation. All described results have been produced by myself together with my supervisors
Christina Biising and Arie M.C.A. Koster.

6.2 Contribution and Outline 135






Planning the Out-of-Hours
Service for Pharmacies

In this chapter, we introduce our model for the planning of the out-of-hours service for
pharmacies. We afterwards develop algorithms for computing out-of-hours plans and conduct
a case study in which we study the performance of our algorithms and the practicability of
the computed plans.

7.1 Problem Definition and Notation

For the planning of the out-of-hours service, we consider a set of pharmacies P and a time
horizon [T], consisting of T' € Z~ days to be planned. We identify an out-of-hours plan with a
mapping F' : [T] — 27, where F (t) C P is the set of out-of-hours pharmacies on day ¢ € [T.
Furthermore, we denote for a plan F' with Sr (p) = {t € [T] | p € F (t)} the set of days on
which pharmacy p € P is assigned a shift.

An out-of-hours plan provides an appropriate coverage of residents if it fulfills several
criteria that are defined in the regulations of the responsible chamber of pharmacists. These
regulations are established in dialogue with the state government, and thus provide the
framework for the chamber of pharmacist to exercise their mandate of planning the out-of-
hours service. In consultation with the Chamber of Pharmacists North Rhine, an out-of-hours
plan has to fulfill the following requirements regarding the coverage of residents and also the
satisfaction of pharmacists.

* Covering municipality centers: There is at least one out-of-hours pharmacy in the
vicinity of each municipality center. The maximum permissible distance depends on the
municipality.

* Meeting demand in cities: Multiple out-of-hours pharmacies are needed to meet the
demand of residents in larger cities. The number of pharmacies needed is city-specific.

* Conflict distances: A minimum distance between out-of-hours pharmacies on the same
day ensures that they are geographically dispersed.

* Periods of rest: Periods of rest prevent that pharmacies are assigned shifts on consecutive
days.

* Municipality-balancing: An even distribution of shifts within municipalities increases
acceptance of the plan among pharmacists.

137



138

* Minimum number of shifts: Each pharmacy participates with a minimum number of
shifts.

Under the above requirements, which we define in the next paragraphs in more detail, we
aim to construct a plan that is efficient in the sense that we assign as few shifts as possible.
Accordingly, we search for a plan F : [T] — 27 that minimizes >terr) | (1)]. We call this
problem the Out-of-Hours Planning Problem (OHP).

Covering Municipality Centers In order to guarantee a comprehensive supply of pharmaceu-
ticals, we need to ensure that residents do not have to travel too far to the next out-of-hours
pharmacy. For this, we consider the centers of municipalities in the planning area as reference
points for the location of residents. Based on the regulations of the Chamber of Pharmacists
North Rhine, we require for every day and every municipality that there is an out-of-hours
pharmacy within a given distance of the municipality center [B6]l. Let M be the set of
municipalities to be covered. We define distances § : (P U M)? — R between all pairs of
municipalities and pharmacies, representing the distances between these locations in the
road network. For all municipalities m € M, we denote with 6°°Y (m) € R>( the cover radius,
that is the maximum permissible distance from the municipality to the nearest out-of-hours
pharmacy. We say that p € P can cover m € M if 6 (m,p) < 0°Y(m) holds and define
C(m)={peP|d(m,p) <5 (m)} as the set of pharmacies that can cover m (highlighted
in Figure[7.1). Likewise, we denote with C (p) = {m € M | § (m,p) < 6" (m)} the set of
municipalities that can be covered by p € P. We say that a municipality is covered in a
plan F : [T] — 27 on day t € [T] if at least one pharmacy p € C (m) is assigned a shift on
day t, i.e., C'(m) N F (t) # (. In a feasible out-of-hours plan F, every municipality has to be
covered every day, i.e., C'(m) N F (t) # () for all m € M and t € [T]. Note that a pharmacy
does not necessarily have to be within the boundaries of a municipality in order to cover it.
Furthermore, the cover radius may vary for different municipalities according to the number
of residents and the density of pharmacies in the area.

Meeting Demand in Cities For municipalities representing larger cities, a single out-of-hours
pharmacy cannot guarantee a sufficient supply of pharmaceuticals. Therefore, we require a
minimum number of out-of-hours pharmacies that are located within the boundaries of these
municipalities. In contrast to the covering of municipality centers, the demand of larger cities
cannot be met by pharmacies that are located outside the municipalities. This is because there
are usually sufficiently many pharmacies in cities and residents are less willing to leave the
city according to the Chamber of Pharmacists North Rhine. We denote with M (p) € M the
municipality in which a pharmacy p € P is located. Accordingly, P (m) = {p € P|M (p) = m}
denotes the set of all pharmacies within the boundaries of a municipality m € M (highlighted
in Figure[7.1)). We define for every municipality m € M and day ¢ € [T] a minimum demand
for out-of-hours pharmacies d (m,t) € Z>¢. This minimum demand is always zero for
municipalities with few residents and pharmacies. In cities, it may vary depending on the
considered day, since we tend to need more out-of-hours pharmacies on Sundays and holidays
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Figure 7.1. Different types of coverage. Left: pharmacies covering the center of a municipality. For
simplicity, the cover radius is shown as the crow flies. Right: pharmacies fulfillung the
demand of larger cities (right).

when other pharmacies are regularly closed all day. A feasible out-of-hours plan F : [T] — 27
assigns for all municipalities m € M and all days ¢ € [T'] at least d (m, t) shifts to pharmacies
within the municipality, i.e., |P (m) N F (t)| > d (m,t) for allm € M and ¢ € [T].

Conflict Distances Assigning shifts to geographically close pharmacies on the same day
has limited benefit for residents and is economically unfavorable for pharmacists who must
share customers. We already tend to avoid assigning shifts to neighboring pharmacies by

minimizing the total number of shifts, as close pharmacies often cover the same municipalities.

Nevertheless, it is possible that our coverage model is indifferent between choosing two
neighboring pharmacies or two pharmacies that are farther apart. This is especially in larger
cities, where we assign several shifts in order to meet the demand. To ensure that out-of-hours
pharmacies are spread out, we prohibit shifts on the same day for pharmacies that are too
close to each other (see Figure [7.2). To this end, we introduce for each pharmacy p € P
the conflict distance 6°°" (p) € R>( and say that two pharmacies p # p’ € P are in conflict
if 0 (p,p') < min {6 (p), 0" (p')} holds. We denote the set of conflicting pharmacy pairs
with C = {{p,p’} € (723) | 6 (p,p’) < min {6°°" (p),o%°" (p’)}}. In a feasible out-of-hours plan
F : [T] — 27, we cannot assign a shift to two conflicting pharmacies on the same day, that
is, we require {p,p'} ¢ F (t) for all conflicting pairs {p,p'} € C and days ¢ € [T]. Stated
otherwise, F' (t) is an independent set in the graph (P,C) for all days ¢ € [T]. Note that the
conflict distance is defined with respect to the pharmacies, as we can attain larger distances
between out-of-hours pharmacies in rural areas compared to cities. In practice, we will choose
the conflict distance with respect to the municipality, that is, we have §°* (p) = 6" (p') if
M (p) = M (p) holds.

Periods of Rest A pharmacy should not be assigned shifts on consecutive days or days close
to each other due to the high workload. We therefore introduce for all pharmacies p € P

7.1 Problem Definition and Notation
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Figure 7.2. Restrictions on the assignment of shifts. Left: minimum distance between two out-of-
hours pharmacies on the same day. Right: period of rest between shifts of the same
pharmacy.

the period of rest r (p) € Z>, that is, the minimum number of days between two shifts of
pharmacy p (see Figure . A feasible out-of-hours plan F : [T] — 2% has to guarantee
these periods of rest, i.e., we have p ¢ F (¢t) N F (¢') for all pharmacies p € P and days
t #t' e [T] with |t — /| <r(p). Just like the conflict distance, we will define the period of
rest with respect to the municipalities, as we can have longer periods of rest in cities where
the pharmacy density is higher compared to rural areas.

Municipality-Balancing The general principle of equality obliges us to assign shifts in a fair
manner, as pointed out in the legal commentary on the pharmacy operating regulations [[83]].
The definition of a fair plan strongly depends on the personal viewpoint of each pharmacist
and is in general difficult to measure and not trivial to incorporate into optimization problems.
We will focus on a global fair planning that balances the burden of all pharmacies p € P in
the next chapter. Here, we only consider the balancing of shifts within the same municipality.
According to the chamber of pharmacists of the area North Rhine, pharmacists expect that
other pharmacies within the same municipality are assigned a similar number of shifts. We
therefore introduce the balancing coefficient b € Z>o, which bounds the difference in the
number of shifts that two pharmacies p,p’ € P (m) belonging to the same municipality
m € M can be assigned. We say that an out-of-hours plan F : [T] — 2% is municipality-
balanced if ||SF (p)| — |SF (p')|| < b holds for all pairs p,p’ € P with M (p) = M (p).

Minimum Number of Shifts The authorities designing an out-of-hours plan are legally obliged
to assign out-of hours shifts to all pharmacies [[83]]. Therefore, we have to ensure that all
pharmacies participate appropriately in the service. We will see in the case study in Section
that municipality-balancing is not sufficient to guarantee that all pharmacies are assigned
shifts. In fact, there can be whole municipalities in which no pharmacy is assigned any shift.
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We therefore introduce a minimum number of shifts s € Z> that all pharmacies should be
assigned. A feasible plan F : [T'] — 2% then fulfills |Sr (p)| > s for all p € P.

We incorporate the above criteria in an MILP for the OHP. For this, we use binary decision
variables z,; € {0,1} to indicate whether or not pharmacy p € P is assigned a shift on
day t € [T]. Accordingly, = € {0, 1}PX[T] implies an out-of-hours plan F : [T] — 27 with
F(t)={p € P |zy =1} fort € [T]. To model the municipality-balancing in an efficient way,
we introduce two auxiliary variables y ., ym € R>o for each municipality m € M that bound
the minimum (maximum) number of shifts assigned to any pharmacy p € P (m) within the
municipality. The proposed MILP formulation reads

min Z Z Tpt (OHP.a)
pEP te[T)
st Y ap>1 VYm € M,t € [T] (OHP.b)
peC(m)
> ap >d(m,t) VYm € M, t € [T] (OHP.c)
pEP(m)
Tpt + Ty < 1 V{p,p'} €C,t €[T] (OHP.d)
t+r(p)
Z Ty <1 Vpe P,te [T —r(p)] (OHP.e)
t'=t
Yniy S D Tt < Uup) Vpe P (OHP.f)
te[T]
Ym —Y,, <b vYm € M (OHP.g)
Yy, =S Ym e M (OHP.h)
ze {0,137y 5 e RY. (OHP.{)

The modeling of the objective function (OHP.a), the covering of municipalities (OHP.D), the
demand in cities (OHP.d), and the conflicts between pharmacies (OHP.d) is straightforward.
For the period of rest, we do not use pairwise constraints x,; + =, < 1 for days t,t’ € [T]
with |t — ¢/| < r (p) but constraints which allow at most one shift in an interval of
r (p) + 1 days. The interval constraints dominate the pairwise constraints, and thus yield a
stronger formulation. Moreover, we only have to add 7' — r (p) interval constraints instead of
(T — r (p)) r (p) pairwise constraints for each pharmacy p € P. Constraints (OHP.f) ensure
that the auxiliary variables y , 4, bound the number of shifts of all pharmacies p € P (m)
for m € M. This ensures together with constraints that the plan is municipality-
balanced. Using the 2 | M| auxiliary variables y, 7 enables us to model the municipality-
balancing with 2 |P| + |M| constraints. In comparison, a pairwise modeling with z, —
zy < bforallm e M and p,p’ € P(m) would instead require }_ ., v |P (m)| (|P (m)| — 1)
constraints. Finally, we also use the lower bound variables y in constraints (OHP.h) to ensure
that every pharmacy is assigned at least the minimum number of shifts. In the following, we
will often neglect the auxiliary variables y, 3 for simplicity and say that z € {0, 117 T is a
solution to the MILP above.

7.1 Problem Definition and Notation
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The above formulation for the OHP surely becomes large for real-world instances when
planning the out-of-hours service of a whole year for thousands of pharmacies. We will
see in our case study in Section[7.4] that solving the MILP directly as above is therefore not
practical. However, we will propose approaches in Section that enable us to solve the
OHP in reasonable time. Before doing so, we consider the theoretical complexity of the OHP
in the next section.

7.2 Complexity of the OHP

The is a combination of the classical N"P-hard set cover and independent set problem
together with some balancing constraints. It is therefore not surprising that the OHP itself is
also hard to solve. The proposition below shows that it is hard to compute any solution to
the OHP, even if several constraints are neglected.

Proposition 34. The problem of deciding whether there exists a solution to an OHP instance
is strongly N'P-complete. This holds already for periods of rest r = 1 and without considering
demands in cities, conflicts, municipality-balancing, and minimum numbers of shifts, i.e., d = 0,
0" =0,b=Tand s = 0.

Proof. The OHP is in NP, since we only have to verify a polynomial number of linear
constraints in order to decide whether a solution is feasible. We prove that it is A/P-hard to
decide whether there exists any solution to OHP via a reduction from the k Disjoint Set Covers
Problem (k-DSC). For the k-DSC, we are given a finite basic set Z, a family of subsets 7 C 27
and a positive integer k € Z>,. The problem then asks whether there exists a partition of J
into k disjoint subsets that all cover 7, i.e., J = J1 W - & J with T = (U 7 J for all i € [k].
The k-DSC is strongly N'P-complete for all k € Z>, [33].

Let (Z,J,k) be a k-DSC instance. We construct a corresponding OHP instance as follows.
Since municipalities are covered by pharmacies and elements in 7 are covered by subsets in
J, we identify the municipalities M with the basic elements 7 and the pharmacies P with
the family of subsets 7. Accordingly, we introduce one municipality m; for each element
1 € 7 and one pharmacy p; for each set J € 7. We then define metric distances between
pharmacies and municipalities

d (p,p) =1, forp,p' € P,

§ (m,m’) =1, for m,m’ € P,
8 (pg,ms) =0 (mi,py) =1, forpy € P,m; € M withi € J,
d(py,mi) =98 (mi,py) =2,forp; € P,m; € Mwithi ¢ J

and set the cover radii 6°°Y (m) = 1 for all m € M. This yields C (m;) = {p; € P |i € J} for
all m; € M. Thus, pharmacy p; € P can cover municipality m; € M if the corresponding
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subset J € J contains the element ¢ € Z. Furthermore, we define the time horizon [T] = [k]
and the periods of rest r = k — 1. The remaining parameters are defined so that the
corresponding constraints are not relevant for the constructed OHP instance, i.e., d = 0,
0 =0,b=1T, and s = 0.

Let {71, -, Jx} be a feasible solution to the k-DSC instance. Then we define an out-of-hours
plan by F'(t) = {psj € P | J € J;} for t € [T] = [k]. Every municipality is by construction
covered on every day, since each 7; is a cover for Z. Furthermore, the period of rest constraints
are fulfilled, since each pharmacy is assigned exactly one shift.

Conversely, we construct a solution for the k-DSC instance from a feasible out-of-hours
plan F : [T] — 27 by defining J; = {J € J |psc F(t)} forallt ¢ [k—1] and J;, =
WA\ (Ute{[k_l}} jt) We have J = J1 & - - - W Jy, since each pharmacy is assigned at most one
shift due to the periods of rest. Additionally, we have 7 = (J ., J by construction for all
t € [k], since each municipality is covered on every day.

We conclude that there exists a feasible solution to k-DSC if and only if there exists a feasible
out-of-hours plan for the constructed OHP instance. This shows that the OHP is N'P-hard, as
the construction of the OHP instance is polynomial in the input size of the £-DSC. Moreover,
all parameters of the OHP instance are polynomial in the input size, which shows that the
OHP is N'P-hard in the strong sense Section 4.2]. This especially holds for » = 1, since
the £-DSC is already N P-hard for k = 2. O

The theoretical complexity of the OHP rules out the possibility for designing polynomial
algorithms, unless P = N'P. However, N'P-completeness does not offer much insight into the
tractability of specific instances, especially since the construction of the distances in the proof
is not close to real OHP instances. In the following section, we propose several MILP-based
approaches for solving the OHP, which will provide nearly optimal solutions in our case study
in Section [7.4]

7.3 Solution Approaches for the OHP

Solving the directly as an MILP is not practical when planning the out-of-hours service
of a whole year for many pharmacies. We therefore propose a smaller reformulation and a
heuristic approach in the subsequent sections.

7.3.1 Aggregating Equivalent Pharmacies

Consider a set of neighboring pharmacies that are identical regarding their coverage, their
period of rest, and their conflicts. Our model is indifferent between these pharmacies in the
sense that we can swap all their shifts in an out-of-hours plan without loosing feasibility.

7.3 Solution Approaches for the OHP

143



144

Such symmetries in the set of solutions should be broken, as otherwise they can reduce the
performance of MILP solvers drastically [74]]. This is because symmetries potentially lead to
the exploration of many unnecessary nodes in the branch and bound tree that emerge from
each other through permutation. In our case, however, symmetric structures are actually
helpful, as we can use them in order to reduce the size of our MILP formulation.

Formally, we say that two pharmacies p;,p2 € P are equivalent and write p; ~ py if we
have M (p1) = M (p2), C (p1) = C(p2), 7 (p1) = r(p2), and N [p1] = N [p2], where N [p]
is the closed neighborhood of p € P in the graph of conflicts (P,C). We will aggregate
sets of equivalent pharmacies in order to break symmetries and reduce the size of our
MILP formulation. To this end, we call a subset of pharmacies p* = {p1,...,pr} € P a
superpharmacy if we have p ~ p’ for all pairs p,p’ € p°. Note that a single pharmacy p € P
already defines a superpharmacy {p}. Therefore, we can partition the set of pharmacies P
into a set of superpharmacies P* with P = 4 ;scps p°.

It is irrelevant for the coverage and conflicts to which pharmacy of a superpharmacy we
assign a shift. Moreover, since all pharmacies within a superpharmacy are in conflict with
each other, we can assign them at most one shift per day in total. This allows us to decompose
the planning into two steps. In the first step, we compute a plan in which we consider each
superpharmacy p* € P* as a single artificial pharmacy. This yields a smaller formulation
with fewer variables and breaks all symmetries regarding pharmacies within the same
superpharmacy. In the second step, we then distribute the shifts of each superpharmacy
p* € PS evenly among the aggregated pharmacies p € p*. We will show later that this can be
done without violating period of rest and municipality-balancing constraints.

Before doing so, we update our notation for the superpharmacy-based planning. First, we say
that a superpharmacy p® € PS5 can cover a municipality m € M if the pharmacies aggregated
within p® can cover m, i.e., p° C C (m). Accordingly, we define the set of superpharmacies
that can cover m as C° (m) = {p* € P% | p° C C (m)}. Second, we say that a superpharmacy
p* € P* lies within a municipality m € M if the pharmacies aggregated within p° lie within m,
i.e.,, p° C P (m). We denote the municipality in which p® € P® lies with M (p®) and define the
set of superpharmacies that lie within m as P (m)={p* € P | p° C P (m)}. Third, a pair of
superpharmacies p$, p5 € P* are in conflict if their aggregated pharmacies are in conflict, i.e.,
{p1,p2} € Cforp; € p§ and p2 € p. Accordingly, we define the set of superpharmacy conflicts
CS={{p§,p§} € (7;5) | {p1,p2} € Cforp; € pS,pa € p;}. Finally, we define the period of rest
r (p®) of p* € PS5 to be equal to the period of rest r (p) of the aggregated pharmacies p € p°.
Note that all of the above is well-defined due to the equivalency of pharmacies within a
superpharmacy.
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We reformulate the OHP for a given partition P of P into superpharmacies by using decision
variables z° € {0, 1} *[T] These indicate for every superpharmacy p® € PS and day ¢ € [T]
whether some pharmacy p € p® is assigned a shift on that day. The resulting problem reads

min Z Z 8 ot (SOHP.a)
pSEPS te[T]
st Y ady > 1 Vm € M,t € [T] (SOHP.b)
p*eCs(m)
> @y > d(m,t) Vm € M,t € [T] (SOHP.c)
p*ePs(m)
a:;slt + x;;t <1 V{p5,p5} € C%t € [T] (SOHP.d)
t+r(p®)
> x;,st/ < |p| vp® € Pt e [T — 1 (p)] (SOHP.e)
t'=t
< ’ g Z Tt < P Vp* € PS (SOHP.f)
Pl em
U=y <D Vm € M (SOHP.g)
Y > Vm € M (SOHP.h)
2° € {0, 1}7’SX[T] 57 e 7. (SOHP.1)

The objective function (SOHP.a) and the coverage constraints and arise
from OHP by substituting > ,,c s zt = ¥}, for all p°* € P* and ¢ € [T]. Constraints (SOHP.d)
model conflicts between superpharmacies. Constraints (SOHP.e]) allow the assignment of up
to |p®| shifts to a superpharmacy p* € P*® in an interval of r (p*) + 1 consecutive days, since

each of the |p®| included pharmacies can be assigned at most one shift within this interval.

Constraints (SOHP.f) bound the number of shifts that we assign to pharmacies within a
municipality. Since the shifts of superpharmacy p°® € P* will later be evenly distributed
among the aggregated pharmacies p € p®, each of them will be assigned \inls‘ > telT) x;stJ or
[\pll Dotem @ ;St—‘ shifts. Note that we replace the original continuous variables y,y € R%
with integer variables y*, y° € Z ( to ensure that we have

{Ipl Zwstw < D)

te[T]

The remaining constraints (SOHP.g) and (SOHP.h) are then the same as in the original MILP
but with the new variables y* and ¢°.

The following result shows that SOHP is a valid reformulation and at least as strong as OHP.

Furthermore, the proof gives instructions on how to convert a plan for superpharmacies to a
plan for real pharmacies.

Proposition 35. Let P* be a partition of P into superpharmacies. Then SOHP is a reformulation
in a different variable space that is at least as strong as OHP.

7.3 Solution Approaches for the OHP
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Proof. We first show that for every solution to OHP, there exists a corresponding solution to
SOHP with the same objective value. Let (x, Y, gj) be a solution to OHP. We define (ms Y, gjs)

with a3, = 35 s 2 for all p* € PS, ¢ € [T] as well as y° = min,epn {Zte (7] xpt} and

Upn, = MaAXppe p(m) {Ztem mpt} for all m € M. Since P*® is a partition of P, we have

PIDIL S DIDIDILEDIP L

pSEPS te[T] pSEPS peEPS te[T pEP te[T)

and thus both solutions have the same objective value. To see that (:cs, Y, gs) is feasible for

the SOHP, first note that we have z° € {0, 1}PSX[T}, because at most one of the aggregated
pharmacies can have a shift on a fixed day due to the conflicts within superpharmacies. The

coverage constraints (SOHP.b) and (SOHP.c) are met, as 3_scos(m) Tpst = 2peci(m) Tpt = 1
and > psepsm) Tpst = 2pep(m) Tpt = d(m,t) hold by the definition of superpharmacies

and the feasibility of (a:, Y, gj). The conflict constraints (SOHP.d) are respected, because

x;sl . +l‘;§t > 1 for some {p$, p5} € C* and ¢ € [T] would imply that there exist two pharmacies
p1 € p} and py € p§ with {p1,p2} € C and zp,+ + xp,+ = 2, which is a contradiction to the
constraints (OHP.d). The period of rest constraints (SOHP.€) are fulfilled, since we have
r(p) = r (p®), and thus

t+r(p%) t+r(p
DI ol S Srp
t'=t pEPS t'=t pEPS

for all p° € PSand t € [T — r (p*)]. The bounding constraints (SOHP.f) are met, since we
have

|p ’pep te[T] pEPS te[T) te|T)

1P|
yi\/f(ps) {Z mpt} ¥l > D = ] s’ D Tyt

and analogously gj/[(ps) > |p | >ter) Tps for all p* € P°. By definition and due to the

constraints Il we have y* > y and y* < y. Then constraints (SOHP.g) and (SOHP.h)
follow from constraints (OHP.g) and (OHP.h)).

It remains to show that there exists a polynomial-time computable, objective-preserving
mapping from the set of (continuous) solutions for SOHP to the set of (continuous) solutions
for OHP. We will first consider the mapping for integer solutions and afterwards extend it to
continuous solutions in order to show that SOHP is at least as strong as OHP (cf. .

Let (xs,ys,gs) be an integer solution to SOHP and let {t1,...,t;} = {t € [T] | zps = 1}
with t; < --- < t; be the sorted set of days on which we assign shifts to a superpharmacy
p* ={p1,...,pr} € P5. We distribute the shifts among the aggregated pharmacies in a cyclic

way, that is, we assign the days {¢1, 541, tok+1, ...} € {t1,...,t¢} to pharmacy p;, the days
{ta, tk+2, tokr2, ...} € {t1,...,ts} to pharmacy po, and so on. For pharmacy p; € p*, we then
have z,,, = 1 for t € {t;, tp1i, tog+i, ...} < {t1,...,t} and z,+ = 0 otherwise. Each shift is

thus assigned to exactly one included pharmacy and we obtain zjs; = >°,cs zpt. Just like

PED
above, the satisfaction of constraints (OHP.b) and (OHP.c) is equivalent to the satisfaction of
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constraints (SOHP.b)) and (SOHP.c)). The conflict constraints (OHP.d]) are met for pharmacies

within the same superpharmacy, because we assign at most one shift per day. For pharmacies
within different superpharmacies, constraints dominate constraints (OHP.d)) when
replacing x3s, with >° . s 2. For the period of rest, assume that some constraint (OHP.e)
is violated. Then there exists a pharmacy p € p* € P® and two days t; < t; € [T] with
tj —ti < r(p) and zp;, = zp; = 1. This implies that there exist at least £ — 1 = [p°| — 1
days t between ¢; and t; with 23, = 1 due to the cyclic assignment. However, we then have

S
Z:Zt(ip ) s > |p°| + 1, which contradicts the constraints (SOHP.e]). For the municipality-

balancing, we simply define y = y* and y = * and therefore satisfy the constraints (OHP.g)

and (OHP.h). By construction, we have },c iy @y € Hﬁ > teT] mZStJ , [ﬁ Doter] Tpse | ¢ for
all pharmacies p € p® € P*. Then in combination with constraints and the definition
of °,1° € Z%, it follows that we satisfy the constraints (OHP.f)). This shows, that (w, Y yj) is
feasible for the OHP.

Given a fractional solution (xs, ¥, gjs) of the continuous relaxation of SOHP, we construct
a continuous solution (m, Y, yj) for OHP via z,; = ﬁxi}t forall p € p* € P, t € [T] as well
as y = y* and y = ¢°. The satisfaction of constraints (]OHP.bI), qOHP.cp, (]OHP.dl), (]OHP.gl),
and are analogous to the reasoning above. The satisfaction of the period of rest
constraints follow from

t+r(p) t+r(p) t+r(p°) s
S = Y = S as, < Py
/= St — St —
P | 2 B B
and the constraints ll directly from 3=, (7| zpt = ﬁ > te[T) Tpse- O

The proof shows that we can first compute an optimal solution for SOHP and then obtain
an optimal solution for OHP by distributing the shifts of superpharmacies among their
aggregated pharmacies in a cyclic way. Note that SOHP is actually stronger for non-trivial
cases, as the aggregation in superpharmacies corresponds to a strengthening of the pairwise
conflict constraints into clique inequalities. Therefore, SOHP is not only much smaller but
also stronger than OHP.

The number of variables and constraints in SOHP decreases for partitions P$ of P with
fewer superpharmacies. Therefore, we are interested in superpharmacies containing many
pharmacies. We call a superpharmacy p; C P maximal if there exists no other superpharmacy
p5 € P with pj C pd. Fortunately, there exists a unique partition P° of P into maximal
superpharmacies that can be computed easily. For three pharmacies pi,ps,p3 € P with
p1 ~ p2 and ps ~ ps, it follows from our definition of equivalency that p; ~ ps holds. Hence,
for two maximal superpharmacies p§ # p§ C P, it must hold p§ N p§ = 0, since otherwise
p§ U p§, would be a larger superpharmacy, contradicting the maximality of p§ or pf. It follows
that every pharmacy p € P is contained in exactly one maximal superpharmacy, consisting of
all pharmacies p’ € P withp ~ p'.

7.3 Solution Approaches for the OHP
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We will see in our case-study in Section[7.4]that the aggregation into superpharmacies reduces
the size of our formulation significantly, resulting in planning problems that are much easier
to solve. However, SOHP is still too difficult for our large real-world instance. We therefore
propose a heuristic for the planning of the out-of-hours service in the subsequent sections.
For simplicity, we will consider the original model OHP, but all following concepts can be
directly applied for solving SOHP.

7.3.2 A Rolling Horizon Approach

The decision variables x,, z,,¢ for different days ¢, ¢’ € [T are solely connected by the periods
of rest, municipality-balancing, and minimum number of shifts constraints. Thus, intuitively,
the choice of z,; € {0, 1} has less impact on the possible choices of z,+ € {0, 1} the farther
the days ¢,t' € [T] are apart. This is because both variables are not connected directly by a
period of rest constraint if |t — /| > 7 (p). Planning problems with such loose temporal links
over distant time periods can often be solved nearly optimally by a so-called rolling horizon
approach.

The general idea of rolling horizon approaches is to divide a problem with a large time
horizon into a sequence of smaller subproblems. In each of these subproblems, one considers
an iteratively extending fraction of the time horizon, which eventually equals the whole time
horizon. In doing so, one fixes decisions arising from the solutions of the previous subproblems
in order to ensure that each subproblem remains tractable. For solving the OHP, we first split
the time horizon [T into /+1 intervals [T'] = {1, ..., t1 }w{t; + 1,... t2}8---W{t, + 1,...,T}
and denote ty = 0 and ¢y,1 = T in the following for simplicity. We then iteratively determine
for i € [¢+ 1] a (partial) out-of-hours plan F; : [t;] — 2% that respects the shifts already
computed for the days [¢;_1] (note that [¢;_1] = () for i = 1). The plan computed in the last
iteration is then our plan for the whole time horizon [T] = [ts41].

Rolling horizon approaches often incorporate some form of look-ahead, such that the decisions
made in the current iteration also take into account restrictions imposed by later time periods.
We do this in our approach by including an additional interval into our subproblems. That is,
when computing F; : [t;] — 2% in iteration i € [¢], we actually compute a plan for all days in
[ti+1] but only fix shifts assigned in [¢;] as long as i < ¢. We thus pay attention to the direct
connection induced by the periods of rest, which are arguably the most restrictive temporal
constraints for our problem.

Let ;1 : [t;_1] — 2% be a partial plan from a previous iteration. For computing a plan
F; : [t;] — 27 that respects the already assigned shifts Sr._, (p) C [t;_1] of pharmacies p € P
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and takes the days of the next interval {¢; + 1,...,¢;,;1} into account, we solve the following
MILP

min > au+ >, Bbn (ROHP.a)
PEP tE€[tiv1] meM
st Y ap>1 VYm € M,t € [tiy1]  (ROHP.b)
peC(m)
> >d(m,t) VYm € M,t € [tiy1]  (ROHP.0)
pEP(M)
Tpt + T < 1 Vip,p'} €C,t €[tit1] (ROHP.d)
t+r(p)
> aw <1 Vpe Pt e [tiy1 —r(p®)] (ROHP.e)
t'=t
Ypip) < > @ < G VpeP  (ROHP.f)
t€[tit1]
_ btit1
Ym =Y, < 7 |t B (p) Vvme M  (ROHP.g)
Uy 2 {St; 1] ¥me M  (ROHP.h)
Tp =1 Vpe P,te Sk, (p) (ROHP.1)
z € {0,137l Ly 5 e RY, B, € 24, (ROHP.j)

Constraints fix variables z,; = 1 if we already assigned pharmacy p € P a shift
on day t € [t;—1]. However, we never fix z,; = 0, even if we already considered ¢ € [t;_1]
in a previous iteration and did not assign p € P a shift on day ¢. Doing so gives us more
freedom to satisfy the municipality-balancing constraints. For the case that we still cannot
construct a municipality-balanced plan, we introduce variables 3, € Z>( for all m € M in
constraints that allow a violation of the municipality-balancing but are penalized by
a big constant B € Z in the objective (ROHP.d). In this way, we ensure that a subproblem
will not be infeasible solely due to the municipality-balancing constraints. This is reasonable,
since we may be able to balance the out-of-hours plan in the following iterations. Note that
we scale the balancing coefficient b in constraints (ROHP.g) with the relative length of the
current time horizon t’% This is to ensure that the difference in the number of shifts within
the same municipality is not already large in the first partial plans, as this would be restrictive
in later iterations. We also scale the minimum number of shifts s in constraints (ROHP.H).
This prevents us from assigning unnecessary shifts in the first iterations and also encourages
an even distribution of shifts over the whole time horizon.

Algorithm [8| summarizes our rolling horizon approach using the above MILP. Note that our
algorithm might fail to compute a solution and returns nothing in this case (line 12). This is
especially if a partial plan F; renders the following subproblems infeasible. However, it is
also possible that we are not able to compute a solution for a subproblem within a given time
limit although there exists one. If this happens before the last iteration, then we proceed with
the following iteration using the previous partial plan (line 14). The subsequent problem

7.3 Solution Approaches for the OHP
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Algorithmus 8 : Rolling horizon heuristic for the computation of out-of-hours plans.
Input : An OHP instance and a sequence of days t; < --- < t; € [T
Output : An out-of-hours plan F : [T] — 27 or ()
Initialize F : ) — 27 and ¢y, =T
for i € [¢] do
Try to compute solution z € {0, 1}7*[t+1] to
if found solution then
if i = ¢ then
Define F : [T] — 27 with F (t) = {p € Play; = 1} forall t € [T
L return F

else
L Define F; : [t;] — 27 with F; (t) = {p € Play = 1} for all ¢ € [t;]
else
if i = ¢ then
L return ()

else
| Define F; : [t;] — 27 with F; (t) = F;_1 (t) if t € [t; 1] and F; (t) = 0 otherwise

might actually be easier to solve despite the extended planning interval and the lack of fixed
shifts from the unsolved subproblem. This is because the additional freedom in the planning
of the longer period can enable an easier municipality-balancing of the plan. In fact, the
existence of a municipality-balanced solution that does not use the violation variables £,,
is crucial for the tractability of the subproblems. If such a solution does not exist, then we
observe much larger integrality gaps, since optimal continuous solutions tend to not violate
the municipality-balancing.

7.3.3 Deletion of Non-Coverage Shifts

A potential problem of Algorithm [8]is that we fix shifts in the partial plans F; that are not
for the coverage but solely for the municipality-balancing and minimum number of shifts
constraints. By fixing these non-coverage shifts, we neglect the possibility to satisfy the
corresponding constraints in a later iteration by assigning shifts that are actually useful for
the coverage. As a result, we obtain an inefficient final plan F' that assigns more shifts than
necessary. To resolve this problem, we extend our approach with an additional step in which
we delete non-coverage shifts from the partial plans F;.

We aim for deleting as many shifts as possible while still satisfying all constraints but the ones
for the municipality-balancing and minimum number of shifts. Since we only consider shifts
ondayst € Sg, (p) for p € P, we do not have to consider conflict constraints (ROHP.d) and
periods of rest constraints (ROHP.€), as they are always satisfied due to the feasibility of F;.
Therefore, we are only left with the covering constraints and can formulate the deletion of
non-coverage shifts as a covering problem in which we want to retain a minimum number of
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shifts. Covering problems are A/P-hard in general, but the problem of deleting non-coverage
shifts remains tractable in our practical case. This is due to the fact that all days can be
considered independently, as we have no more linking constraints, and the number of shifts
per day is relatively small. In our case study, we will handle the deletion problem in iteration
i € [¢ — 1] by directly solving the following Non-Coverage Deletion Problem

min > > ay (NCDEL.a)
pEP tc(t;]
st Y ap>1 VYm € M, t € [t] (NCDEL.b)
peC(m)
>z =d(m,t) Vm € M, t € [t;] (NCDEL.c)
pEP(m)
Zpr =0 Vp e P,t e [T)\ Sk (p) (NCDEL.d)
z € {0,1} 7l (NCDEL.e)

We solve the above problem after computing F; in line 9 of Algorithm (8| Afterwards, we
update the partial plan with F; (t) = {p € P|z, = 1} for all p € P for an optimal solution
z € {0, I}Px[ti] of NCDEL. The partial plan F; then only assigns shifts that are necessary
for the coverage of residents. However, the partial plan F;;; computed in the next iteration
should be relatively easy to balance, since the remaining shifts in F; were originally planned
with the municipality-balancing and minimum number of shifts constraints in mind. In
contrast, if we would neglect these constraints completely in the first iterations when solving
ROHP, then we would probably not be able to fulfill them later on.

We will see in our caste study in the next section that the deletion of non-coverage shifts
not only leads to more efficient plans with a lower number of shifts but also reduces the
computation time of the rolling horizon approach. This is because the deletion actually yields
more possibilities to achieve municipality-balance in the next iteration. This typically results
in more tractable subproblems, as explained in the previous section.

7.4 Case Study

In this section, we study the planning of the out-of-hours service for a real-world instance
from the area North Rhine in Germany. We first describe the setting and basic parameters of
our test instance. Afterwards, we assess the performance of our solution approaches from
the previous section. Finally, we analyze the effect of different input parameters for our
test instance and discuss the computed plans regarding their coverage properties and the
distribution of out-of-hours shifts.

All tests are implemented in Java 8 and performed on a Linux machine with an Intel®
Core™i7-3770 CPU @ 3.4 GHZ with 32 GB RAM. We use CPLEX version 12.6.3 with
default settings to solve MILPs.

7.4 Case Study
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Figure 7.3. Geographical distribution of pharmacies (red dots) and municipalities (yellow squares)
in the area North Rhine.

Disclaimer After conducting and publishing the following experiments, we observed that
Gurobi version 9.5.0 is capable of solving the instance considered in Section [7.4.3|with
an optimality tolerance of 0.15% within 16,071 seconds (4.5 hours). The computed primal
bound is at 30,139 shifts and the dual bound at 30,093. For this, we use the superpharmacy
formulation [SOHP| but not the rolling horizon. This constitutes a major improvement over the
performance of CPLEX version 12.6.3, which is not able to solve the problem directly for the
whole time horizon. Nevertheless, this new observation does not render the rolling horizon
algorithm obsolete: While Gurobi requires 15,808 seconds to compute any solution, our
approach can compute almost optimal solutions within under 1,000 seconds. This is crucial
in a decision support setting, where decision-makers expect fast results when computing
plans with different input parameters. Furthermore, the rolling horizon approach will be
useful in the next chapter, where we consider harder instances for which a direct approach
yields no solution.

7.4.1 Setting of the Case Study

Our case study is based on the planning of the out-of-hours service for the year 2017 in the
area of North Rhine in Germany. Accordingly, our time horizon is [T'] = [365]. The Chamber
of Pharmacists North Rhine provided a set of |M| = 165 municipalities and |P| = 2291
pharmacies that existed in October 2016, see Figure The spectrum of municipalities
ranges from large cities such as Cologne in the mid-east of North Rhine, containing about
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Table 7.1. Numbers of municipalities and pharmacies as well as parameters by categories.

total large city medium town small town rural municipality

municipalities 165 22 101 34 8

pharmacies 2,291 1,408 799 70 14
cover radius 6V - 10 km 15 km 20 km 30 km
period of rest r - 15 days 7 days 7 days 5 days
conflict distance §°°° - 2 km 4 km 4 km 7 km

one million residents and 244 pharmacies, to rural municipalities in the Eifel region in the
south-west, containing a few thousand residents and often only one pharmacy. The distances
§: (PUM)? = R on the road network and affiliations M (p) € M of pharmacies p € P
are fixed by the geographical properties of the instance.

The demands d (m,t) are set individually by the Chamber of Pharmacists North Rhine for
each municipality m € M and day ¢ € [T]. Demands are zero year-round for 117 out of
the 165 municipalities and go up to 9 shifts per day for the city of Cologne. The cover radii
0%V (m) are defined via a classification of the municipalities m € M into four categories:
large cities, medium-sized towns, small towns, and rural municipalities. The same holds
true for the conflict distances 6°°" (p) and periods of rest r (p) of pharmacies p € P, which
are defined implicitly via the category of the corresponding municipality M (p). For each
category, the Chamber of Pharmacists North Rhine defines the three parameters based on
legal restrictions or experience from prior planning periods. Table shows the parameters
and the number of municipalities for each category as well as the number of pharmacies
within the municipalities belonging to the corresponding category.

The conflict distances range from 2 km for larger cities, where pharmacies are typically
close to each other, to 7 km for rural areas. Conversely, the periods of rest range from 15
days in larger cities to 5 days in rural areas, where shifts usually have to be distributed
among few pharmacies. The cover radii range from 10 km for larger cities to 30 km for
rural municipalities. The Chamber of Pharmacists North Rhine adjusts these cover radii for
some municipalities in their planning of the out-of-hours service. On the one hand, radii
are lowered for municipalities covered by many pharmacies in order to improve the quality
of coverage. On the other hand, radii of some smaller towns in remote areas are extended
in order to obtain a plan that satisfies the periods of rest. We decide to retain the default
radii for all but three municipalities in remote areas. For these, we increase the cover radii
by up to 10%, since otherwise the number of covering pharmacies would be too small for
guaranteeing the periods of rest. Overall, we increase the radius for fewer municipalities and
to a lesser extent than the Chamber of Pharmacists. This strengthens compliance with the
regulations for the out-of-hours service, which the Chamber of Pharmacists is not able to fully
achieve, as their planning is not based on mathematical optimization.

7.4 Case Study
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The minimum number of shifts per pharmacy s € Z> and the balancing coefficient b € Z>g
are not predefined. We choose s = 10, which is roughly the minimum number of shifts in the
real plan for 2017. Furthermore, we choose b = 1, since the Chamber of Pharmacists North
Rhine aims to equally split the burden for all pharmacies within one municipality. That is, the
difference in the number of shifts assigned to two pharmacies within the same municipality
cannot exceed one.

7.4.2 Performance of Solution Approaches

As mentioned before, the original formulation [DHP|becomes very large for our test instance.
In fact, CPLEX is not even able to solve the continuous relaxation in the root node of the
branching tree within a time limit of one day. Nevertheless, CPLEX’ primal heuristics find a
feasible solution that assigns 32,451 shifts. We show in the following that the approaches
from Section [7.3] are more reliable and lead to better results in less time.

The aggregation of pharmacies into superpharmacies, as proposed in Section[7.3.1} reduces
the size of the MILP considerably. We can partition the set of |P| = 2291 pharmacies into
|PS| = 1745 superpharmacies, thus reducing the number of binary decision variables by almost
a quarter. Here, 1,414 pharmacies p € P constitute their own superpharmacy {p} € P*® and
877 pharmacies can be aggregated into 331 superpharmacies of size greater than one. The
largest superpharmacy consists of 9 pharmacies. Table demonstrates the impact of the
aggregation by showing the size of the constraint matrices for both MILPs, OHP and SOHP,
after CPLEX performed its preprocessing.

The reduced size of the formulation results in CPLEX being able to solve the continuous
relaxation of the SOHP within 42,955 seconds (11.9 hours). From the continuous solution,
we deduce that a feasible out-of-hours plan assigns a total of at least 30,078 shifts. This is only
7.3% below the number of shifts in the plan computed for the OHP in 24 hours. Surprisingly,
we do not obtain a feasible integer solution within a time limit of one day when solving the
SOHP. Although this may suggest that the aggregation of pharmacies is counterproductive
for the computation of plans, we will see that the SOHP performs well together with the
rolling horizon approach.

In order to test the rolling horizon approach, we first define a penalty parameter B € Zx>
for the violation of municipality-balancing constraints in[ROHP| The penalty should be large
enough such that an optimal solution to ROHP always satisfies the municipality-balancing

Table 7.2. Size of constraint matrices after CPLEX’ preprocessing.

formulation rows columns non-zero entries
OHP 4,181,984 836,380 22,658,004
SOHP 1,060,723 637,036 14,630,106
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constraints if there exists a balanced solution. This can in theory be achieved by setting B to
an upper bound on the number of shifts that can be assigned, e.g., B = |P|T. Then every
solution that violates a municipality-balancing constraint has a larger objective value than
any balanced solution. However, setting B that large is undesirable from a numerical point
of view. In particular, if all solutions to ROHP are unbalanced, then the objective value would
be dominated by the balancing penalty. Thus, almost all solutions with a minimum violation
would be within the relative optimality tolerance, which leaves no incentive to minimize the
number of shifts after minimizing the violation. We therefore choose B = 1000, which is in
our experience large enough such that optimal solutions to ROHP are balanced, if possible.

Next, we partition the time horizon [T] into intervals for the rolling horizon approach. We
choose a number of breakpoints { < T — 1 and split the time horizon into ¢ + 1 intervals of
equal length (except for rounding) by defining breakpoints ¢; = L%J The intervals are then
T)={1,....;t1} w0 {ts +1,...,t2} &w---w {t, +1,...,T}. Note that we solve ¢ subproblems
ROHP, since the last interval {¢, + 1,...,T'} is already considered as a look-ahead in the ¢-th
iteration of our rolling horizon approach. Therefore, choosing ¢ = 1 corresponds to solving
OHP directly as one MILP. We test our rolling horizon approach for numbers of breakpoints

¢ € [51], yielding a minimum interval length of one week for ¢ = 51.

We set a total time limit of 10,000 seconds for the computation of all subproblems in the
rolling horizon approach. This reflects, on the one hand, that the planning of the out-of-hours
service is not on an operational level, and therefore does not have to be finished within
few seconds. On the other hand, the computation should not require too much time, since
our algorithms are intended as a decision support. We expect that decision-makers have to
perform several computations during the planning process, all with different input parameters
and possibly tailored constraints for special cases among the pharmacies and municipalities.

We split the time limit among the subproblems ROHP to consider as follows: Assume that
we are currently in iteration ¢ € [¢] and let 7 be the total computation time spent for the

previous subproblems. Then we set the time limit for the current subproblem to £3=7, that

is, we split the remaining time 10000 — 7 evenly among the ¢ + 1 — i remaining subproblems.
¢ 10000
‘

Accordingly, the time limit for each subproblem is at leas and unspent time in earlier
iterations can be used for subsequent iterations. If we are not able to compute a solution for
a subproblem ROHP within the time limit, then we fix no shifts in the current iteration and
proceed with the next subproblem, as described in Section[7.3.2] In case we obtain a solution
but cannot solve the subproblem to optimality, we fix the plan provided by the best solution
found. Given the heuristic nature of our algorithm, the fixing of non-optimal plans is not
critical. This is especially if we afterwards delete non-coverage shifts, as in Section|7.3.3} and
thus improve the efficiency of the plan. For the same reason, we are not interested in proving
optimality for ROHP in each iteration. We therefore raise the relative optimality tolerance
from the default of 0.01% to 0.1%. This allows for a faster termination of subproblems, and

thus saves time for later subproblems that might be harder to solve.

7.4 Case Study
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Using the setup above, we compute out-of-hours plans with the following four variants of the
rolling horizon approach:

ROL is the plain rolling horizon approach without aggregation into
superpharmacies (cf. Section[7.3.1) and deletion of non-coverage

shifts (cf. Section .

ROL-Super is the rolling horizon approach with aggregation into superphar-
macies but without deletion of non-coverage shifts.

ROL-Delete is the rolling horizon approach with deletion of non-coverage
shifts but without aggregation into superpharmacies.

ROL-SuperDelete is the rolling horizon approach with aggregation into superphar-
macies and deletion of non-coverage shifts.

Exact computational results for all four variants and numbers of breakpoints ¢ € [51] are
given in Table in Appendix [A] The plots in Figure give an overview on the total
number of shifts assigned, the sum of municipality-balancing violations }_,,c \( fm, and
the computation time required to solve the subproblems ROHP. A gap in the plot of a
variant indicates that we did not obtain a solution in the final iteration of the rolling horizon
approach for the corresponding number of breakpoints ¢. Additionally, solutions that violate
municipality-balancing constraints are shown with an unfilled circle.

We observe high computation times and relatively high numbers of shifts for small ¢. This is
especially for the two variants without the aggregation into superpharmacies, which both
yield no plan at all for four runs each with ¢ < 9. The aggregation into superpharmacies
results in easier subproblems, and thus improves the reliability of our approach. Although
most plans computed with ¢ < 10 violate municipality-balancing constraints, ROL-Super and
ROL-SuperDelete at least return an out-of-hours plan for all ¢ € [51]. Apart from a speed-up
in computation time, the aggregation yields no structural advantage, since both SOHP and
OHP are equivalent. This results in solutions of similar quality once the subproblems ROHP
are easy enough to be solved without aggregation: ROL and ROL-Super yield similar results
for ¢ > 23; for ROL-Delete and ROL-SuperDelete, this already holds for ¢ > 13.

Even more important than the aggregation into superpharmacies is the deletion of non-
coverage shifts. We already mentioned in Section that fixing fewer shifts leads to
more freedom in the municipality-balancing of subsequent plans, and thus results in easier
subproblems. In fact, ROL-Delete is often faster than ROL-Super. Moreover, the unfixing
of non-coverage shifts allows for more efficient solutions, which is especially important for
high numbers of breakpoints ¢. Enforcing balance in each iteration yields many non-coverage
shifts that add up over the course of the rolling horizon approach for ROL and ROL-Super.
Deleting these shifts makes ROL-Delete and ROL-SuperDelete less sensitive to the choice of ¢
and generally provides a stable performance.
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ROL-Delete and ROL-SuperDelete not only compute better plans compared to ROL and
ROL-Super but even almost optimal solutions. Both compute their best plan for ¢ = 14, with
30,170 shifts for ROL-Delete and 30,174 shifts for ROL-SuperDelete. This yields an optimality
gap of 0.3% when compared to the lower bound of 30,078 shifts provided by the continuous
relaxation. Furthermore, we have a reduction of 10.1% in the number of shifts compared
to the real plan of the Chamber of Pharmacists North Rhine in 2017, which assigns 33,574
shifts and has a lower compliance with planning constraints.

We conclude that our test instance is hard to solve with a direct approach but has a fairly low
integrality gap of at most 0.3%. This makes the subproblems relatively easy to solve once
they are small enough. Our fastest approach ROL-SuperDelete is thus able to compute plans
within less than 1,000 seconds for ¢ > 29, while the computation of the best plan for ¢ = 14
requires 3,098 seconds. Furthermore, the structure of our planning problem with the loose
temporal links between distant days allows for computing nearly optimal solutions with our
rolling horizon approach.

7.4.3 Influence of Input Parameters

In the following, we study the influence of the minimum number of shifts s € Z>o and
balancing coefficient b € Z>. These parameters are particularly interesting for discussion,
as they are critical to the fairness of a plan but are not specified by any regulations for the
planning of the out-of-hours service. We will first analyze the impact of adjusting s and b on
the performance of our algorithms and the number of shifts on an aggregate level. In the
following section, we will then study specific plans to explore the possibilities and limitations
of planning a fair out-of-hours service by adjusting these parameters.

We test the influence of the minimum number of shifts by considering the same setting as in
the previous section except that we choose s € [15],. We solve the resulting problems by using
the best performing variant of our rolling horizon approach from the last section, namely
ROL-SuperDelete. We use a number of ¢ € {11, 23} breakpoints for each instance, yielding
¢+ 1 intervals with an approximate length of one month or half a month, respectively. ROL-
SuperDelete performed well for ¢/ > 11 and worse for ¢ < 10 in the previous section, which
makes ¢ = 11 an interesting number of breakpoints. Furthermore, ROL-SuperDelete showed
a stable performance with low computation times around ¢ = 23, and thus should compute
reliably good results for the adjusted parameters. We denote with ROL11-SuperDelete and
ROL23-SuperDelete the approach with 11 and 23 breakpoints, respectively. We also compute
a lower bound on the number of shifts by solving the continuous relaxation of SOHP. Exact
computational results are reported in Table in Appendix [A]

Figure gives an overview of the computational results. The left-hand graphic shows that
the minimum number of shifts s has a large effect on the total number of shifts and that
the corresponding constraints (OHP.h)) are an actual restriction even for small values of s.
The increase from s = 0 to s = 1 in the value of the lower bound shows that an optimal
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continuous solution assigns less than one shift to some pharmacies. While we cannot verify
this for optimal integer solutions, we can deduce that an optimal plan for s € {0, 1,2} assigns
fewer than three shifts to some pharmacies, since the best known plans for s € {0, 1,2} assign
fewer shifts than the lower bound for s = 3. As s grows, its impact on the number of shifts
also increases, since the constraints become restrictive for more pharmacies. This is
demonstrated by the increasing slope of the number of shifts for growing s.

The minimum number of shifts s has not only an effect on the total number of shifts but also
on the performance of our algorithms. The right-hand graphic in Figure shows that the
required computation time of our approach tends to increase for decreasing s. Moreover,
ROL11-SuperDelete is not able to reliably compute good balanced solutions for s < 8. This
can most likely be attributed to a higher integrality gap for small s. Assuming that our
computed solutions are almost optimal, we see that the integrality gap is roughly 2.58%
for s = 0 but only 0.14% for s = 15. This is also supported by the number of fractional
variables in the computed optimal continuous solutions. For example, the optimal continuous
solution computed within the first iteration of ROL11-SuperDelete for s = 0 consists of
8,863 integer-infeasible variables, that is, variables that should be integer but take fractional
values. In contrast, the solution for s = 15 only consists of 1,608 integer-infeasible variables.
Intuitively speaking, the continuous relaxation has less freedom to assign fewer shifts if the
number of shifts is significantly bounded from below.

Although we generally observe lower computation times for higher s, ROL23-SuperDelete
is not able to compute a plan for s = 15. This is because the small intervals sometimes
do not provide enough freedom to meet the highly restrictive minimum number of shifts
constraints (ROHP.L), which leads to infeasible subproblems ROHP. CPLEX then fails to
find a solution for the following larger subproblem, resulting in a propagation of unsolved
problems until the final iteration. This shows the limits of our approach when using a high
number of breakpoints ¢ for more restricted instances.

To test a variation in the balancing coefficient, we set the minimum number of shifts back
to s = 10 and choose b € {0, ...,5} to be the maximum permitted difference in the number
of shifts within municipalities. We use the same algorithms as above and report exact
computational results in Table in Appendix [A] while Figure [7.6] gives an overview.

We see in Figure that adjusting the balancing coefficient only has a minor impact on
the optimal continuous solutions. Here, the number of shifts range from 30,110 for b = 0
to 29,980 for b = 5. The same holds for the computed integer solutions for b € [5], where
we achieve optimality gaps of 0.36% and lower. However, there is a notable difference
between b = 1 and b = 0. ROL11-SuperDelete computes a solution with highly violated
municipality-balancing constraints, which can therefore not be compared to the continuous
solution. The plan computed by ROL23-SuperDelete is almost balanced but assigns 985
shifts more than the lower bound, yielding a gap of 3.17%. It is not surprising that enforcing
an equal number of shifts within a municipality results in a significant increase in the total
number of shifts. This is already due to rounding effects. For example, if two pharmacies
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need to be assigned 21 shifts in total, then both will receive 11. This is also the reason for the
larger integrality gap, as a continuous solution can assign 10.5 shifts each.

The trend in the computation time of ROL11-SuperDelete suggests that the subproblems
ROHP become easier to solve for high b. However, we see nearly no effect on the computation
time of ROL23-SuperDelete. We thus conclude that the cost of municipality-balancing is small
for both the total number of shifts and the computation time, provided that we do not choose
b=0.

7.4.4 Discussion of Out-of-Hours Plans

We have seen in the last sections that we are able to compute plans that assign fewer shifts
and have a higher compliance with regulations than the real plan used by the Chamber of
Pharmacists North Rhine. However, this does not necessarily imply that our plans are suitable
in practice. The main concerns here are fairness in terms of the distribution of shifts among
pharmacies and coverage in terms of the mean travel distance to the nearest out-of-hours
pharmacy. In the following, we analyze selected plans computed in Section [7.4.3] with respect
to these two criteria.

We start with an evaluation of the plans on a global level and later consider fairness aspects
locally. We already noted in the previous section that a variation of the balancing coefficient
b € [5] has nearly no effect on the global level. Furthermore, choosing b = 0 is not reasonable
from a practical point of view, as the number of additional shifts compared to b = 1 is
disproportionate to the enhanced balancing. Hence, for our evaluation on the global level,
we consider a fixed balancing coefficient b = 1 together with a varying minimum number
of shifts s € {0,5,10,15}. For each value of s, we consider the plan with the best objective
value computed by ROL11-SuperDelete and ROL23-SuperDelete in Section|7.4.3

First, we analyze the distribution of out-of-hours shifts among pharmacies. As a reminder,
Table |[7.4] shows the total number of shifts assigned to all pharmacies. The left-hand plot
in Figure gives a more detailed view by showing the cumulative distribution of the
number of shifts. The plan for s = 0 assigns no shifts at all to 6.4% of all pharmacies and
fewer than five shifts to 18.8% of all pharmacies. This is consistent with the observation
from the previous section that the minimum number of shifts constraints are an

Table 7.4. Total number of shifts assigned and the mean distance from the center of the municipalities
to the nearest out-of-hours pharmacies over the course of the year in meters. For each
value s, we consider the solution with the best objective value computed in the previous

section.
s=0 s=5 s=10 s=15 realplan2017
total number of shifts 26,520 27,712 30,186 36,224 33,574
mean distance to nearest pharmacy 8,705 8,456 8,030 7,559 7,204
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Figure 7.7. Computational results for different minimum numbers of shifts s. Left: cumulative
distribution of numbers of shifts assigned to pharmacies. Right: cumulative distribution
of mean distance from municipality centers to their nearest out-of-hours pharmacy.

actual restriction for the planning. We will see later that most pharmacies without any shifts
are located in the vicinity of larger cities. Municipalities bordering cities are often covered
year-round by pharmacies within the city, which need to be assigned shifts to meet the city’s
demand constraints (OHP.c). Then pharmacies outside the city are assigned not more than
the minimum number of shifts for the sake of efficiency. Note that we observe this effect
although the plans meet the municipality-balancing constraints with b = 1. Hence, we have
whole municipalities in which the included pharmacies are assigned almost no shifts in the
plan for s = 0.

For the reason above, it is not surprising that the introduction of a minimum number of shifts
s > 0 results in many pharmacies being assigned exactly s out-of-hours shifts. For s = 5,
we assign 20.3% of the pharmacies exactly s shifts. For s = 10, this proportion increases to
34.7% and for s = 15 even to 84.5%. Enforcing a minimum of s = 15 shifts for all pharmacies
reduces the efficiency of the plan, with 36.6% more shifts compared to s = 0, but it also
promotes fairness. While 6.5% of the pharmacies are assigned more than 20 shifts for s = 0,
this proportion is nearly halved for s = 15 to only 3.3% of all pharmacies. This shows that
the shifts can be distributed more evenly in order to relieve pharmacies with relatively many
shifts. Unfortunately, raising the minimum number of shifts does not relieve the pharmacies
with the highest burden: The number of pharmacies with at least 40 shifts is similar for
all plans. We therefore require other tools if we want to reduce this peak in the number of
shifts.

7.4 Case Study
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The necessity to develop tools for relieving highly burdened pharmacies can be deduced
from the distribution of shifts in the real plan of 2017. While a general comparison between
our plans and the real plan is not appropriate due to the adjusted cover radii used by the
Chamber of Pharmacists North Rhine, the real plan indicates that there is a political will to
limit the maximum number of shifts: The cover radii in rural areas are extended such that
the number of shifts assigned to any pharmacy is at most 40. We will see later that this can
be achieved without extending the cover radii.

In order to evaluate the quality of coverage of a municipality m € M, we consider the mean

distance that residents need to travel from the center of the municipality to the nearest out-of-
min {¢ (m, p)|p € F ()}

hours pharmacy over the whole time horizon, i.e., 7 (m) = >te[r]
for an out-of-hours plan F : [T] — 2F. We argued in Section to aggregate values
with the shifted geometric mean instead of the arithmetic mean, since the latter is mainly
influenced by large values and almost neglects differences in smaller values. We now argue
that emphasizing longer distances with the arithmetic mean is reasonable, since the difference
between 10 km and 20 km is more relevant than the difference between 1 km and 2 km in
emergency situations.

Table shows the global quality of coverage by stating the mean of §x (m) over all
municipalities m € M. We see that a higher minimum number of shifts leads to a better
coverage, with a reduction of 13.2% in the mean distance for s = 15 compared to s = 0.
However, a comparison with the real plan shows that the additional shifts implied by s = 15
are not distributed efficiently, as we observe longer mean distances despite assigning more
shifts. This effect is due to the indifference of our model with respect to the day to which we
assign additional non-coverage shifts. Given this indifference, we might assign multiple non-
coverage shifts to pharmacies within the same area on the same day instead of distributing
them over the time horizon. We will return to this problem in Section [8.6.2.2} showing that
the mean distance can be reduced without increasing the number of shifts.

The right-hand plot in Figure shows the impact of the minimum number of shifts on the
distribution of the mean distances 0 (m) for all municipalities m € M. The improvement
resulting from an increase of s is primarily observable for municipalities with a mean distance
of more than 4 km. This is because municipalities with a lower mean distance are usually
larger cities with a positive demand d > 0 that requires an assignment of several shifts to
pharmacies within the cities. Thus, while the additional shifts are not assigned efficiently,
they at least benefit the municipalities with a lower quality of coverage. For example, the
maximum mean distance max {51:» (m) ‘m € M} is 21.3 km in the plan for s = 0 and 19.8 km
in the plan for s = 10.

Figure gives an explanation for the improvement in the maximum mean distance by
showing the geographic distribution of out-of-hours shifts assigned in the plans for s € {0, 10}.
The municipality of Dahlem, which has the highest mean distance, is highlighted with a
circle in the very south of the planning area. Dahlem is not only a rural municipality but also
located at the border of the planning area, and is thus surrounded by few pharmacies that

Chapter 7 Planning the Out-of-Hours Service for Pharmacies



‘#Shifts Qo-4 95-9 Q10-14 ©15-19 ©20-29 Q30-39 Q40-49 950-00‘

ot tme e g G B .
L Bl

Raesfeld | } Ludinghausen \
Y ) / N.ﬂlem am \
Ko o0

250 smenﬁbuk % s e\ )
) '\ "l"”“" Mart Daneln !
v 4 ‘ K,,,’,,Ln Recklmg\hausen i"_‘f\wm =
- ;gtn)m i, Gt
e
Lk

/ | Drensteinfu
|

Raesfeld | [ Ludinghausen \
\J. J N.‘\(em am \
Woifen™ (156 P
\/ Oen duen

A\
Seherfhbeck |/

9 {] /l

X2 1{ AN

Retklmghausen WalTOP Givgn.
\———\

Dojtrund Doitmund

i~ W 0 aPe g /
=i PSRN e T W%
L RO

Hene 1) A\ /Lﬁn,;f Herne |\ /L‘;naf,f
= G :

QWIER 3 SOETE < prancienls (WIEER 3 SIAETE prencin s

T R Y vaulngen L S
A E!‘u) __Igérionn, { aa{u) __igériohn

H}gen

|

® 4 Hagen

) Y L

b 19 & ceveidterg N Geveldberg (N

(v A il B = & I align
Al smmmd Werdot

2 g :
AL R
= bt Mowald
- w R i ]
% S
rchen ' N 1 )
Wippe¥urth

*vm. nwlhigen

.‘f %g \' ».L«

M Breckerfeld N \"Fmdur
e A
AL Luensihed |

- S Uk

e w.ppgum\ ) W

¢ B [ i - =g
0 [ 9:% 9< ~m.7 [ Vet v %

N

(/\.7 ch, ,\’/",.- g z,.&? mg% ,\’/9/-
Sy w Yo Rl g Ny 9 ="
n»y/“”‘ 9 g 9 M’/uth g 9
X b Num¥red X NomBrec
s { e
e \ < W:&m QB 8. A w:&,m )
L™ X G . ¥
5 o
R 2 wissen” ﬁ B\ wisser
V\‘/\'ﬁ LA ) W 3 Q Kecliau A /é
\ Mooy ’ Q9 .9 \ Ao
P (Westerwald) —— Raereh, 9 ? S/é 20 9 (Westerwald)——
e J C/fd 9 o g
T ) & T Eupen g 9 3
s Qv rmm? X e e vm(lv?
L Gotichou o e R ks 9/ sdaraasereil
= et i

Rhélnbrohl

Gl i B “ H -
Is Ahelqprond 20 g
pa \ Rordk ang i ’6 9 mgy’r;:/m ) ) ’ Py \ Noturpk oW %

Rhein-Ahr- ; X
/ Eifel. ) ¢ i
: et R o
venn - ] Verm ( -~
Maime Eneimwied Sourgés. Mpimes ) Nelwed
SR ey Eifel/ Pafe 9 \ TSR ’ i ¥ Eifel / Pare () \ B sy
Stavelot’ N eriai {3 P \_ﬁmmmwm *Stavelot, g ' 4 \,ﬁwmmmnm
K%« 4 Mang = T 4 Mand o
Haure X s0dd otz 4 Haue i i " kobienz
Fognes had wiien L L) e Dal B egnee 3 wiien L D e 2l

Figure 7.8. Geographical distribution of shifts. Left: plan for s = 0. Right: plan for s = 10.

are subject to our planning. Moreover, for the sake of efficiency, the pharmacy in Dahlem is
assigned only three shifts in the plan for s = 0, as it can cover few municipalities due to its
proximity to the border. Hence, requiring a minimum number of shifts yields a significant
reduction of the mean distance to the nearest out-of-hours pharmacy.

We already noted above that pharmacies in the vicinity of cities are often assigned few shifts,
as their municipalities are already covered by pharmacies within the city. This can, for
example, be observed in the municipalities north of the city of Aachen, which are highlighted
in Figure in the west of the planning area. Here, we see many pharmacies being assigned
fewer than five shifts in the plan for s = 0. This not only results in a worse quality of coverage
for the residents but also in many shifts for some of the surrounding pharmacies. To the north
and east of the highlighted pharmacies, there are several pharmacies to which we assign 35
to 39 shifts. In the plan for s = 10, these previously highly burdened pharmacies are assigned
fewer than 15 shifts. A minimum number of shifts thus can prevent a concentration of many
shifts on some pharmacies.

The pharmacies with few shifts in the north of Aachen are in contrast to the highly burdened
pharmacies in the south of Aachen. Here, we assign up to 60 shifts per pharmacy in order
to cover the rural municipality of Monschau. As discussed above, these pharmacies are
unaffected by an increase of the minimum number of shifts, since all pharmacies covering
Monschau are already assigned at least ten shifts in the plan for s = 0. Nevertheless, it is
possible to achieve an assignment of at most 40 shifts per pharmacy by redistributing the

7.4 Case Study
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Figure 7.9. Distribution of shifts to pharmacies around Monschau for the plan with b = 5.

shifts more evenly. Unfortunately, an even distribution is not optimal for the OHP due to the
municipality-balancing. To see this, consider Figure in which the pharmacies covering
Monschau are highlighted. The map shows the assignment of shifts to pharmacies for the
plan with minimum number of shifts s = 10 and balancing coefficient b = 5, that is, we
have a rather loose municipality-balancing with a permitted difference of five shifts. The
pharmacies in the northwest and northeast covering Monschau are assigned 16 shifts. This is
more than in the plan with s = 10 and b = 1 but not enough to substantially relieve the other
pharmacies. However, assigning more shifts to them would necessitate assigning additional
shifts to all pharmacies within their municipalities, which is not efficient with respect to the
total number of shifts.

We conclude that, despite its importance for local fairness, municipality-balancing can
promote a high difference in the number of shifts across municipalities. Moreover, Figure[7.9
shows that even the highly burdened pharmacies that are not restricted by municipality-
balancing are assigned a range of 39 to 60 shifts. This highlights that our model has no
incentive to achieve a globally fair plan. Regardless of the increased efficiency, our plans are
therefore not yet suitable for practice, as only a fair plan would be accepted by pharmacists.
We will resolve this issue in the next chapter by developing new tools for computing plans
that are much fairer and at the same time similarly efficient.

Chapter 7 Planning the Out-of-Hours Service for Pharmacies



7.5 Conclusion

In this chapter, we introduced the optimization problem [OHP|in order to compute efficient
plans for the out-of-hours service for pharmacies. We proved that finding a feasible solution
to the OHP is strongly N/P-complete in theory, but we also proposed MILP-based approaches
that are capable of computing good solutions in practice. In our aggregation approach, we
identify pharmacies that are equivalent within our model and combine them into one artificial
superpharmacy. The aggregation significantly reduces the size of our MILP formulation
and furthermore breaks symmetries arising from permuting out-of-hours shifts of equivalent
pharmacies. We showed that the aggregation is exact, as shifts assigned to a superpharmacy
can later be distributed among the aggregated pharmacies without losing optimality. In our
rolling horizon approach, we decompose the OHP into multiple tractable subproblems by
sequentially computing plans for an iteratively extending fraction of the time horizon. The
rolling horizon approach is a heuristic that offers no approximation guarantee, as we fix shifts
for a fraction of the time horizon without considering later days. However, the approach
fits the structure of the OHP, where decisions taken at the beginning of the time horizon
only have a minor impact on decisions at the end of the time horizon. Together with the
aggregation of equivalent pharmacies, the rolling horizon approach enables us to compute
nearly optimal plans in short computation time for the real-world instance considered in our
case study.

The plans computed in our case study for the out-of-hours service in the area North Rhine
show the potential of an optimization-based planning: In comparison with the real plan used
by the Chamber of Pharmacists North Rhine, our plans assign roughly 10% fewer shifts while
maintaining a higher compliance with regulations for the out-of-hours service. Decision-
makers may choose to benefit from the increased efficiency of an optimization-based planning
by actually reducing the number of shifts, and thus relieving pharmacies. Alternatively, they
may decide to apply stricter planning constraints in order to improve the coverage of residents
to an extent that the number of shifts assigned is the same as before. Here, the reliability
of our approach allows for analyzing the implications of adjusting parameters and applying
custom constraints.

In our case study, we analyzed the implications of adjusting the parameters for the balancing
within municipalities and the minimum number of shifts that needs to be assigned to each
pharmacy. We observed that a strong municipality-balancing can have a negative impact
on the global fairness of the plan by promoting inter-municipal differences in the number
of shifts. A higher minimum number of shifts can mitigate this effect to some extend, but
it is not sufficient for ensuring a fair assignment of shifts among the pharmacies with the
highest burden. We address this problem in the next chapter by proposing an approach that
integrates fairness directly into the planning of the out-of-hours service.

7.5 Conclusion
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Integrating Fairness into the
Planning of the Out-of-Hours
Service

We have seen in the last chapter that we can efficiently construct out-of-hours plans that assign
relatively few shifts and are balanced within municipalities. However, we also observed
variations in the number of shifts of pharmacies in different municipalities, even if the
pharmacies are in similar locations and almost equal in terms of the coverage of municipalities.
In this chapter, we focus on a globally fair planning that reduces inter-municipal differences
while maintaining efficiency regarding the total number of shifts.

8.1 Fairness Concepts for the Planning of the
Out-of-Hours Service

Deciding whether an out-of-hours plan is fair is not trivial, as the notion of fairness is
subjective and influenced by individual perspectives. It is therefore crucial to clearly define
fairness criteria that are widely accepted among pharmacists. Such criteria should be intuitive
to understand in order to raise transparency, and thus acceptance, of the planning process. In
particular, fairness criteria should not be tailored individually for each pharmacy but should
be universally applicable for the whole planning.

Probably the simplest fairness criterion is to require a fully egalitarian plan in which all
pharmacies are assigned the same number of shifts. Applying this criterion seems tempting,
as we would place an equal burden on all pharmacies. However, the equal treatment of all
pharmacies comes at the cost of many shifts that would otherwise be unnecessary. This is
because the number of shifts of all pharmacies is determined by few pharmacies that need to
be assigned many shifts in order to cover a municipality. For the instance from our case study
in Section [7.4}, where one municipality can be covered by only 10 pharmacies, we would
need to assign [%W = 37 shifts to each pharmacy. If we neglect that this is not even possible
due to the period of rest in cities, then this amounts to 84,767 shifts for the 2,291 pharmacies
in the area North Rhine. In contrast, our plans computed in the last chapter assign roughly
30,000 shifts and the real plan of the Chamber of Pharmacists North Rhine assigns roughly

33,000 shifts.
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One can argue that equality possesses an inherent value that justifies lower efficiency. How-
ever, the large gap between the fully egalitarian plan and the real plan shows that the pursuit
of equality must in practice not come at the expense of efficiency at all cost. This implies that
the concept of fairness we seek for planning the out-of-hours service does not equal equality.
Hence, approaches that minimize an inequality measure, such as the maximum difference
in the number of shifts, are not suitable for our cause. Although inequality measures can
be combined with efficiency aspects in order to obtain a trade-off between equality and
efficiency [[97]], we argue that these approaches are also not suitable. This is because the
effect of the trade-off is not trivial to understand, which reduces transparency for pharmacists.
Moreover, defining the trade-off requires a difficult-to-establish consensus on when efficiency
takes precedence over equality.

Although we discard equality as the goal for our planning, it is still an intuitive principle of
fairness that similar entities should be treated similarly. This implies that pharmacies covering
the same municipalities should be assigned the same number of shifts (+-1). We are thus left
with the question to what extend pharmacies that cover different municipalities can be treated
differently. If some pharmacies cover nearly the same municipalities, then their burden should
be similar in some way. In particular, we should not assign an exceptionally high number
of shifts to a pharmacy when it is also possible to redistribute some shifts to less burdened
pharmacies. This is reflected by the intuitive goal of relieving the pharmacies with the highest
burden as much as possible. Minimizing the maximum burden is a popular approach for
incorporating fairness in an optimization model [7]1. This is not only because this goal
can be easily incorporated in the objective function of optimization problems but also because
it coincides with the difference principle that was philosophically justified by Rawls [85]].
Rawls bases this principle on a thought experiment in which a just society is designed by
entities that are behind a “veil of ignorance”. This veil conceals all personal characteristics in
order to ensure an unbiased decision process. Rawls argues that such entities would design a
society in favor of the least advantaged entity, as they may find themselves in a disadvantaged
position once the veil is lifted. For the planning of the out-of-hours service, this implies
that pharmacists would agree to relieve pharmacies in disadvantaged locations as much as
possible if they would be unaware of their own location.

Rawls’ difference principle should in practice be extended, because it otherwise can result
in solutions that are not Pareto-optimal. The principle only gives an incentive to reduce the
burden of the worst-off entity but neglects all others. Therefore, even the fully egalitarian
out-of-hours plan discussed above would be optimal with respect to the difference principle.
A natural and popular extension is lexicographic fairness. For this, we not only minimize
the highest burden but afterwards also the second highest burden, then the third highest
burden, and so forth. Formally, let X be a set of solutions and ¢ : X — R"™ a function
reflecting the individual burden of n € Z-( entities. We rate solutions by applying a
leximax comparison. Given two solutions z,z’ € X, we first sort the burden for both
solutions individually from maximum to minimum, i.e., ¢;, (z) > --- > ¢;, (z) and ¢, (z') >
.-+ > ¢;j, («'). Afterwards, we compare the sorted burden vectors (¢;, (z),...,¢;, (z)) and
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(¢, (@) ,...,¢;, (z')) lexicographically. We say that x is leximax smaller than 2’ if there exists
an index k € [n] with ¢;, (z) < ¢;, (¢/) and ¢;, (z) = ¢;, (') for all £ € [k — 1]. In this case,
we write x <jex 2. If z is leximax smaller than 2’ or both are rated equal, i.e., ¢;, (z) = ¢;, (z')
for all k£ € [n], then we write & <jox 2’. The problem leximaxmin {¢ (x)|z € X'} then consists
in finding a solution x € X such that z < 2’ holds for all ' € X. We say that such a
solution is a leximax minimal solution.

A leximax minimal solution 2 € X is Pareto-optimal, because a dominating solution z’ € X
with ¢ (2/) < ¢ (x) and ¢; (z') < ¢; (z) for some i € [n] would be leximax smaller. Therefore,
lexicographic fair optimization is theoretically efficient while yielding solutions with a high
level of fairness. Karsu and Morton even mention in their review on inequity averse
optimization that “lexicographic approaches are very inequality averse and considered by
some studies as the “most equitable” solution.” For the planning of the out-of-hours service,
the lexicographic approach reflects the intuitive concept of assigning more shifts to less
burdened pharmacies if this enables us to relieve other pharmacies with a higher number
of shifts. As a consequence, pharmacies that are similarly important for the coverage are
assigned a similar number of shifts. However, dissimilar pharmacies can differ in their number
of shifts, as we do not assign unnecessary shifts solely for the sake of equality.

Although lexicographic fair optimization yields Pareto-optimal solutions, the high level of
fairness comes in practice sometimes at the cost of reduced overall efficiency. This can be
the case if reducing the burden ¢; () is very “expensive” for some i € [n|. For example,
assume that we need to allocate money for medical treatment, and there is one person having
an incurable disease that can be slightly alleviated with an expensive therapy. A leximax
minimal solution treats this worst-off person, which yields a small benefit while leaving
little budget for other treatments [|97]]. Fortunately, such effects tend to be less relevant
for the planning of the out-of-hours service. This is because the removal of a shift of one
pharmacy can often be compensated by assigning few additional shifts to other pharmacies.
Therefore, relieving highly burdened pharmacies is usually not costly with respect to the
total number of shifts. However, efficiency can decline when applying a lexicographic fair
planning together with municipality-balancing. For example, assigning one more shift to one
of the 244 pharmacies in the city of Cologne can imply the need for assigning 243 additional
shifts to retain balance within the city. This highlights once more that there is a general
conflict between municipality-balancing and inter-municipal fairness. We will later propose
approaches to resolve this conflict and show that we can obtain fair plans based on the widely
accepted principles of lexicographic fairness while maintaining efficiency.

8.1 Fairness Concepts for the Planning of the Out-of-Hours Service
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8.2 Lexicographic Fair Planning of the Out-of-Hours
Service

We incorporate the concept of lexicographic fairness into the planning of the out-of-hours
service by defining the burden ¢, (z) = > ;c[y 2 of pharmacy p € P as the total number

of shifts in a solution x € {0, 1}7DX[T The Lexicographic Fair Out-of-Hours Planning Problem
then reads
leximaxmin (Z wpt) (LOHP.a)
te[T) peP
st > ap>1 Vm € M,t € [T] (LOHP.b)
peC(m)
> ap >d(m,t) VYm € M,t € [T] (LOHP.c)
pEP(m)
Tpt + Tpp < 1 V{p,p'} €C,telT] (LOHP.d)
t+r(p)
Z rpp <1 Vpe P,te[T —r(p)] (LOHP.e)

t'=t

> ap < by (Z x,,/t> Vp,p' € P (LOHP.f)

te[T] te[T]

Y ap>s VpeP (LOHP.g)
te[T)

x € {0,1}7<1T (LOHP.h)

Note that we still include constraints (LOHP.g)), which ensure that every pharmacy is assigned
a minimum number of shifts, since the lexicographic planning alone is not able to guarantee
that all pharmacies participate in the service. Furthermore, we define more general balancing
constraints (LOHP.f), where a balancing function b,, : R>o — Rx¢ defines for a pair of
pharmacies p,p’ € P the maximum number of shifts that can be assigned to pharmacy p
based on the number of shifts assigned to pharmacy p'.

It may seem counter-intuitive to define balancing constraints in a model that ensures fairness
via the lexicographic objective. However, when only considering lexicographic fairness, then
neighboring pharmacies can differ significantly in the number of shifts if one is critical for
covering a rural municipality while the other is not. The constraints are therefore intended
to ensure balancing due to political reasons. Admittedly, this political balancing is not ideal,
as we would prefer a planning where the coverage model and the lexicographic fairness
intrinsically result in a balancing of neighboring pharmacies. The coverage can, however,
later be refined to smooth the assignment of shifts for neighboring pharmacies.

We require some technical properties of the balancing functions b,, : R>o — R that are
not very restrictive in practice and mostly quite natural. For this, let X;, = 3=,cp) pt In
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the following be the number of shifts assigned to a pharmacy p € P. First, we assume
that by, is greater than or equal to the identity function, i.e., b, (X,7) > X, holds for all
X, € R>g. This assumption is natural, as the constraints should ensure that the
difference X, — X, is bounded but should not force X, < X,,. Second, we assume that b,,,
is non-decreasing, which is intuitive, as a higher number of shifts X, should not result in
a smaller upper bound on X,,. Third, we assume that b,,, is continuous. This requirement
is not necessary from a modeling point of view, but we argue that most practical balancing
functions are continuous anyway. From a technical point of view, continuity ensures that the
set of solutions to the continuous relaxation of the LOHP is closed, and thus compact. Lastly,
we assume that b, is concave. Then the left-hand side of the constraint X, — by, (X,/) < 0is
convex for X,, X,» € R>o, and thus the set of solutions to the continuous relaxation of LOHP
is also convex. The concavity of b, is not restrictive in practice, as we are not interested
in increasing growth rates of by, (X,/) for increasing X, . Stated otherwise, the maximum
permissible difference X, — X, should not increase disproportionately for higher X,,. We
will later use affine functions for b,,, that have the required properties and are defined with
respect to the distance between the pharmacies p, p'.

Computing leximax minimal solutions is in general not trivial due to the non-linear ob-
jective function. This is especially true for the LOHP, for which it is even hard to com-
pute any solution. We are not aware of an algorithm that would be tractable for the
LOHP but sketch a theoretical approach in the following. One can solve general problems
leximaxmin {¢ (z)|z € X'} with some burden function ¢ : X — R” by iteratively deter-
mining the value of the highest burden, then the second highest burden, and so forth.
For this, we first compute a solution with a minimum maximal burden, that is, we solve
min {w|3z € X : ¢; () <w Vi € [n]}. Let w be the optimal value of this problem. Then
we know that for a leximax minimal solution z*, there exists an index i; € [n] with
max (¢ (z*)) = ¢4, (¢*) = wi. We can fix ¢;, (r) = w; and compute the second highest
burden by solving min {w|3x € X' : ¢;, (z) = w1, ¢; (z) <w Vi € [n]\ {i1}}. The new opti-
mal value w9 can again be fixed for some ¢;, (). Repeating these steps eventually yields
the leximax minimal solution z*. However, we obviously do not know which burden ¢;; ()
to fix in iteration j € [n]. A remedy for this issue is to enumerate all possible choices
ij € [n] \ {#1,...,4;—1} in an enumeration tree. This essentially results in enumerating all
n! possible permutations of the burden ¢ (x). However, the approach can be converted into
a branch and bound algorithm by pruning nodes in the enumeration tree for which fixing
(gbil (T),..., b (m)) = (wil, e ,wij) is infeasible or (wil, ey Wiy =00, —oo) is worse
than ¢ (2') for an already computed solution =’ € X.

Note that it is crucial to consider all remaining indices i; € [n] \ {i1,...,i;_1} for fixing
¢i; () = w;. Contrary to a statement in , it is not sufficient to only consider indices
ij € [n]\ {i1,...,4;-1} for which the computed burden ¢; () in iteration j € [n] is equal
to w;. This can be seen when considering the set of solutions X = {(2,3),(3,1)} with the
burden function ¢ () = x being the identity. In this case, (2,3) is optimal for the first
subproblem, in which we compute w; = 3. When only considering the possibility of fixing
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¢2 (z) = 3, and thus 3 = 3, then we obtain (2, 3) at the end of the algorithm. This is despite
that (3, 1) is the unique optimal solution.

While the approach above is not practicable for our purpose, it at least shows the existence
of leximax minimal solutions. All subproblems in which we compute w; have an optimal
solution if X C R™ is compact and the burden function ¢ is continuous. This yields the
following statement, which was already mentioned, for example, in [87]l.

Corollary 36. Let X C R™ be a non-empty, compact set and ¢ : X — R"™ be a continuous
function. Then there exists an optimal solution to leximaxmin {¢ (z)|z € X'}.

In particular, the corollary shows that there exists a leximax minimal solution to the LOHP if
there exists any feasible solution.

Ogryczak and Sliwinski [79]] show that leximax minimization problems can also be solved
by a more direct approach without enumerating possible permutations. They propose two
reformulations of leximax minimization problems in which the ordering of the burden is
already included in the feasible solutions. It is then sufficient to solve a classical lexicographic
optimization problem. This can be done similarly to the approach above where we compute w;
but without the need to guess which burden ¢;; () to fix. The downside, however, is that the
size of the reformulation increases significantly. This increase renders the direct approaches
impractical for our purposes, as the original problem for computing any out-of-hours plan is
already time consuming.

Due to the lack of tractable approaches for solving the LOHP, we will consider the computation
of leximax minimal plans for relaxed problems in the following sections. Remember that
continuous solutions to the were close to integer solutions in our case study from
Section Hence, leximax minimal solutions to a relaxed problem might give a good
indication of the number of shifts each pharmacy should be assigned in a fair plan. We will
therefore use this indication later as guidance for computing fair out-of-hours plans.

8.3 Min-Max Fairness

In the following, we will consider the concept of min-max fairness, which is closely related
to lexicographic fairness. The advantage of min-max fairness over lexicographic fairness is
that it is easier to handle notation-wise and also provides additional structure. This structure
will later be useful for computing and proving fair solutions. We will first consider min-max
fairness theoretically and then show how it can be of practical use.

Given a set of solutions X C R™ and a burden function ¢ : X — R", we call x € X min-max
fair if for all y € X and i € [n] with ¢; (y) < ¢; (x), there exists an index j € [n] with
¢j (y) > ¢j () > ¢; (v). Intuitively speaking, a solution is min-max fair if we cannot decrease
burden ¢; () without increasing some already greater or equal burden ¢; (x). Hence, just
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like lexicographic fairness, min-max fairness aims for decreasing the burden of the most
disadvantaged entities, possibly at the cost of the more advantaged. When maximizing
benefits instead of minimizing burdens, then the analogous concept to min-max fairness
is max-min fairness. In this case, a solution x € X is max-min fair if we cannot increase
benefit ¢; (x) without decreasing some already smaller or equal benefit ¢; (). Many results
from the literature on max-min fairness translate to min-max fairness and vice versa. In
particular, a solution x € X’ is min-max fair for a burden function ¢ : X — R" if and only if it
is max-min fair for the benefit function —¢.

Min-max (max-min) fairness is in the literature usually defined directly for a set of solutions
X C R™ without considering a burden (benefit) function [B7. Thatis, z € X is
min-max (max-min) fair if it is fair with respect to the identity ¢ : X — R", z — z. We call
a set X min-max achievable (max-min achievable) if there exists a min-max (max-min) fair
solution = € X'. The same can be applied for lexicographic fairness, that is, x € X is leximax
minimal if it is leximax minimal respect to the identity. We will often omit the function ¢
and only consider fairness with respect to the set of solutions X” to simplify notation. Many
results can then be generalized to the case with a non-identity function ¢ by replacing X
with ¢ (X'). For example, there exists a min-max fair solution in X with respect to ¢ if ¢ (X)
is min-max achievable.

Min-max achievability cannot be taken for granted, even if there exists a leximax minimal
solution. To see this, consider the set of solutions X = {(1,0), (0, 1)}. In both solutions (1, 0)
and (0, 1), we can decrease one component by increasing the other, which is not greater
or equal to the decreased component. Therefore, neither solution is min-max fair, despite
both being lexicographic fair. This shows that min-max fairness and lexicographic fairness
are not equal, although both aim to relieve the disadvantaged. The following proposition
summarizes some results of Sarkar and Tassiulas and shows that min-max fairness is
actually stronger than lexicographic fairness.

Proposition 37 (Sarkar and Tassiulas [[87]]). If x € X' is min-max fair; then it is also leximax
minimal. Furthermore, if X is min-max achievable, then there exists exactly one min-max fair
(leximax minimal) solution.

The proposition shows that if X" is min-max achievable, then min-max fairness is equivalent to
leximax minimality, as there only exists one fair solution that is both min-max fair and leximax
minimal. We can therefore use the characterization of min-max fairness for computing leximax
minimal solutions in min-max achievable sets. This raises the question of when min-max
fair solutions exist. In our example above with X = {(1,0), (0,1)}, the solution (1,0) is not
min-max fair, because we can opt for the “fairer” solution (0, 1), which decreases the first
component without increasing an already larger or equal component. The issue, however,
is that the change is not continuous in the sense that the situation is now reversed and we
can apply the same argument to show that (1,0) is “fairer” than (0,1). This observation
indicates that the discrete nature of X, with (1,0) and (0, 1) being disconnected, might be

8.3 Min-Max Fairness

175



176

hindering for min-max achievability. We therefore investigate whether connected sets are
min-max achievable.

A topological space X is called path-connected if there exists a continuous path between
all z,y € X, that is, there exists a continuous function f : [0,1] — X with f(0) = = and
f)y=y §24]. Now, consider X = {(1,a), (a,1)|a € [0,1]} as a subspace of R? with
the standard topology (see 8§13 and §16]). Observe that X is a single continuous path
from (1,0) via (1,1) to (0,1), and thus path-connected. However, there exists no min-max
fair solution in X, since (1,0) and (0, 1) are again not min-max fair and all other solutions
are dominated. Hence, connected sets are in general not min-max achievable.

Although connectivity is not sufficient for min-max achievability, the idea is a step in the right
direction. For this, note that convexity is a stronger form of connectivity, with the continuous
path between two points being the direct line. When considering X = conv ({(1,0),(0,1)}),
then ( %, %) is a min-max fair solution. The idea here is that if x is fairer than y and y is fairer
than x, then we can travel along the direct line from x to y to a point z that strikes a balance
between x and y and is fairer than both. More generally, Radunovic and Le Boudec
showed for max-min fairness that ¢ (X') is max-min achievable if ¥ C R" is compact and
convex and ¢ : X — R™, z + (¢1 (x1),... ¢, (z,)) is a component-wise function such that ¢;
is continuous and strictly increasing for all ¢ € [n]. In particular, this proves that X’ itself is
max-min achievable if it is compact and convex when considering ¢ as the identity. This also
translates to min-max fairness, since X is min-max achievable if —X is max-min achievable,
which is the case because —X is compact and convex. We can derive the following result on

min-max achievability for the planning of the out-of-hours service.

Proposition 38. If there exists any solution to the continuous relaxation of then there
exists a min-max fair continuous solution.

Proof. Let X C [0,1]"* 7] be the set of solutions to the continuous relaxation of LOHP. Then
X is compact and convex. Furthermore, the burden functions ¢, (z) = > c7) 2pt for p € P
are linear, and therefore preserve compactness and convexity. Hence, the set of possible
burdens ¢ (X) is compact and convex, and thus min-max achievable. O

Note that if our burden function was not linear, then the result of Radunovic and Le
Boudec would not be applicable due to the limitation to increasing, component-wise
functions ¢. First, our burden functions ¢, (z) = >_,¢7) 7pt are not defined component-wise.
Second, the result is for max-min fairness, and we thus needed to consider —¢ instead of ¢,
which is not increasing. Although it is not of practical relevance for our particular problem,
we give a generalization of the result of Radunovic and Le Boudec for theoretical interest.
Here, we additionally consider functions ¢ that are not defined component-wise and replace
the need for strictly increasing functions ¢; with a more general notion of strict monotony.
To this end, we first need to define monotony of functions in higher dimension. Given a
convex set X', we call f : X — R monotone if for all z,y € X with f (x) < f (y), we have
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f(z) < f(z) < f(y) for all proper convex combinations z € X of x and y. We call f strictly
monotone if it is monotone and f (z) < f (y) also implies f () < f (2) < f (y).

Theorem 39. Consider a non-empty set of solutions X C R™ and a function ¢ : X — R™. If X
is convex and compact and ¢; is continuous and strictly monotone for all i € [n], then ¢ (X) is
min-max and max-min achievable.

Proof. Assume that the statement is true for min-max achievability. Then —¢ (X)) is also
min-max achievable, because —¢ is component-wise continuous and strictly monotone. The
statement follows for max-min achievability, since ¢ (X) is max-min achievable if and only if
—¢ (X)) is min-max achievable.

To show that ¢ (X') is min-max achievable, let z € X be such that ¢ (x) is leximax minimal
in ¢ (X). The existence of z follows from Corollary [36 due to the continuity of ¢ and the
compactness of X. Now, assume that ¢ (z) is not min-max fair. Then there exist y € X and
k € [n] such that ¢, (y) < ¢, (x) and there exists no j € [n] with ¢; (y) > ¢; () > ¢ (x). In
the following, we use the convexity of X’ to construct a convex combination z € X of x and y
such that ¢ (z) is leximax smaller than ¢ (z). This will contradict the choice of z, and thus
prove the statement.

Let z = (1 — o) x + oy for an a € (0, 1). Since ¢; is monotone with respect to the definition
above and z is a convex combination of z and y, we have ¢; (z) < ¢; (x) for all j € [n]
with ¢; (y) < ¢; (x). In particular, ¢y, (2) < ¢, (x) holds due to ¢, (y) < ¢y, («) and the strict
monotony. Consider an index j € [n] with ¢; (z) > ¢, (z). Then we have ¢; (y) < ¢; (z),
and thus ¢; (z) < ¢; (z), as otherwise ¢; (y) > ¢; (x) > ¢, (z) contradicts the choice of y
and k. Now, consider an index j € [n] with ¢; (z) < ¢, (z). The continuity of ¢; implies
that there exists a sufficiently small ; € (0,1) with ¢; ((1 — ;) z + €;y) < ¢, (x). Moreover,
the strict monotony of ¢; implies ¢; ((1 — o) z + ay) < ¢, (z) for all a € (0,¢;]. Choosing
a =min{eg;|j € [n],¢; () < ¢ (x)} thus yields in summary

* ¢j(2) < ¢;(z) forall j € [n] with ¢; (z) > ¢y (2),
* Or (2) < o (2),
* ¢ (2) < ¢ (x) for all j € [n] with ¢; (z) < ¢, ().

Assume without loss of generality that the indices are ordered such that ¢; (z) > -+ > ¢,, (x)
and either ¢y, () > ¢y41 (z) or k = n holds. We then have ¢; (2) < ¢, (z) for all ¢ € [k — 1]
and j € {¢,...,n}. Hence, when sorting ¢;, (2) > --- > ¢;, (2), then ¢;, (2) < ¢; (z) holds
for all ¢ € [k — 1]. Furthermore, we have ¢; (z) < ¢ (x) for all j € {k,...,n}, and thus
®i, (2) < ¢k (z). This shows that z is leximax smaller than # and completes the proof. O

The theorem above is a proper generalization in the sense that it applies to functions ¢ that
are not covered by the result of Radunovic and Le Boudec and whose image ¢ (X) is
non-convex. For example, consider X = [0,1]% and ¢ : X — R?, z + (x — y,?), which fulfill
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all criteria of the theorem. The function ¢ is not defined component-wise and the image
¢ (X) is non-convex. To see the latter, note that ¢ (1,0) = (1,0) and ¢ (1,1) = (0,1) but

(%, %) ¢ ¢ (X) because then we needed y = % andz =3 +y> 1.

Knowing that a set X' is min-max achievable is crucial, because it enables us to compute
fair solutions much more efficiently. Algorithm [9] shows how to compute the unique min-
max fair solution z* € X in this case. The general idea of the algorithm is similar to that
from last section for computing leximax minimal solutions. That is, we first compute the
value w; = min {w|3r € X : z; < w Vi € [n]}, which corresponds to the largest component
in z* (line 4). The min-max fair solution z* is then in X| = {z € X|x; < w; Vi € [n]}
(line 5). Afterwards, we compute with S; = {i € [n]|3z € X] : ; < w1} the indices whose
corresponding components can be below w;, given that all other components are at most w;
(line 6). In fact, S; contains exactly the indices i € [n] with x} < w;. We therefore fix x; = w;
for all « ¢ S; (line 7) and then proceed in the next iteration by minimizing the remaining
components for ¢ € S;. In contrast to the approach from last section for computing leximax
minimal solutions, we do not have to enumerate all possibilities for fixing the values wy, for
some component z;. Thus, instead of enumerating all n! permutations in the worst case, we
have to compute at most n values wy and sets Sy. Here, Si, can be determined by computing
x, = min {z;|z € X} for all : € Sy_; and checking whether 2 < w;, holds. Hence, we need
to solve at most |Sx_1| < n subproblems for computing S;. We will show in the proof of
Theoremthat there always exists an index i € Si_; with z} = wy, and thus ¢ ¢ S. This
implies that we need at most n iterations until we have S; = (), implying that the number of
subproblems to solve within Algorithm[9]is in O (n?).

Algorithmus 9 : Computation of min-max fair solutions.
Input : A min-max achievable set X C R"
Output : The unique min-max fair vector in X
Initialize £k = 0, Sop = [n], and Xy = X
while S, # () do
Update k + k + 1
Compute wy, = min{w|3z € X1 :x; <w Vi€ Sp_1}
Let Xé = {I’ S Xk71|$i <wy Vi € Skfl}
Compute Sy, = {i € Si_1|Fx € X} : x; < wg}
Let X} = {x S Xk_1|xi =w Vi € Sp_1 \ Sk}

return The single element in X},

Radunovic and Le Boudec propose an algorithm for max-min fairness that is similar to
Algorithm[9] Unfortunately, their version contains a small but significant mistake in the choice
of Sj. The analog for our version would be choosing S, = {i € Si_1|z; < wy, Vo € &} }, which
implies that z; is not decreased further if there exists any solution = € X} with z; = wy,. For
example, consider the set of solutions X = {x € [o, 2]2‘301 > 1}. Then we have w; = 1 and
X[ = {x € [0, 2]2‘:c1 =1,z9 < 1} in the first iteration. Hence, (1,1) € A{ holds and defining
S1 = {i e {1,2}|z; < wy Vz € X} = () would terminate the algorithm with X; = {(1,1)},
although the min-max fair solution is (1,0). To overcome this issue, we prove the correctness
of our algorithm in the following.
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Theorem 40. Algorithm [9]computes a min-max fair solution if X is min-max achievable.

Proof. Let x* be the unique min-max fair solution in X. To prove that the algorithm is
correct, we show that it terminates and that the final set X}, equals {«*}. For this, we prove
via induction for k¥ € Z>( that z* € A} holds. During the induction, we will also show
that Sx_1 2 Sk holds for k € Z~(. This proves that the algorithm terminates after ¢ € Z~
iterations with Sy, = (). We then obtain X, = {z*}, since we have z* € A and each component
x; is fixed in some iteration k € [I] by the definition of Aj.

We have z* € X = X after the initialization, which proves the induction hypothesis for
k = 0. Now, consider an arbitrary iteration k € Z~( within the algorithm and assume that
the induction hypothesis is true for £ — 1. We then have z* € X},_; and can choose = = z* in
line 4 of the algorithm, which yields wj, < max {z}|i € Sk_1}. We show equality by proving
the following:

Claim Let x € Aj_; with max {z;|i € Sp_1} < max{z|i € S,_1}. We then have
x+ =z for all i* € argmax {x}|i € Sp_1}.

For this, let i* € argmax {z}|i € S;_1} and assume there exists a solution x € Xj,_; with
max {z;|i € Sk_1} <z} and z;= < z}.. Since x* is min-max fair, there exists an index j € [n]
with z; > r; > xj.. We then have j ¢ S;_; due to x; < z. for all i € S;_;. However,
x € Xj_q and j € [n] \ Sk implies that x; has already been fixed to some wy, in an earlier
iteration k" € [k — 1]. Together with z* € &},_;, this implies z; = 7, which contradicts the

choice of j and proves the claim.

The claim implies that wj;, = max {z}|i € Si_1} holds, because otherwise there would exist
a solution = € Aj_q with max {z;|i € Sp_1} < max{z}|i € Sy_1}. Furthermore, we obtain
i* ¢ Sy, for all i* € Si_; with 2. = wy, since the claim implies that there exists no = € X}
with z;+ < wy. Thus, Sy_1 2 Sk holds and the algorithm terminates. For all indices i € S;_1
with 27 # wy, we have i € S, due to z* € &), and z} < wy. Hence, x7 = w;, holds for all
i € Sk—1 \ Sk, which shows z* € A} and completes the induction. O

Knowing that there exists a min-max fair solution for the continuous relaxation of LOHP, we
can use Algorithm|§| to compute a fair continuous plan. For this, we define S° = P and let
X0 be the set of solutions to the continuous relaxation of LOHP. We then determine

w =min{w|3z € Xy_1: ¢p () <wVp € Sip_1},
Xy = {z € Xi1|¢p (z) < wp, Vp € Sp—1},

Sk ={i € Sk_1|Fzx € X}, : ¢p (z) < wy},

X ={x € Xy_1|dp (x) = wi Vp € Sk—1 \ Sk}

in each iteration k € Z~(. However, although Algorithm [9]is much more efficient compared to
the approach from last section for computing leximax minimal solutions, we still need to solve
many linear programs over the course of the iterations. Remember from last chapter that
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solving the linear relaxation for the instance in our case study was very time consuming due
to the size of the formulation. We therefore refrain from computing min-max fair solutions
for the continuous relaxation of LOHP. Instead, we consider another relaxation, for which
we can compute min-max fair solutions very efficiently.

8.4 Aggregated Planning and Water-Draining

We are only concerned with the number of shifts of each pharmacy when it comes to fairness.
In particular, our burden function is indifferent with respect to the day on which a shift
is assigned. We therefore consider a relaxed planning problem in which we aggregate the
over the whole time horizon in order to simplify the problem. We will show that
the aggregated problem can be solved efficiently via a water-draining algorithm, which is
analogous to better known water-filling algorithms.

For the aggregated relaxation of the LOHP, we denote with X, € [0,7] the total number
of shifts that we assign to pharmacy p € P. We allow the assignment of fractional shifts
in order to obtain a convex problem. The continuity of the relaxation only slightly reduces
the predictive power of the solutions regarding the burden of pharmacies in a fair plan,
as it is less relevant whether a pharmacy is assigned 20.5 or 21 shifts. Aggregating the
constraints of LOHP over the time horizon and replacing 3¢y zpr With X, yields the
Aggregated Lexicographic Fair Out-of-Hours Planning Problem

leximaxmin (Xp),cp (ALOHP.a)
st. Y X >T vm e M (ALOHP.b)
peC(m)
Y X, > > d(m,t) VYm € M (ALOHP.c)
peP(m) te[T]
X, < [TW Vpe P (ALOHP.d)
SR g |
X, < bpy (Xp) Vp,p € P (ALOHP.e)
X,>s Vp e P (ALOHP.f)
X elo,17”. (ALOHP.g)

Constraints (ALOHP.b) and (ALOHP.c)) follow directly from summing the constraints (LOHP.b))
and (LOHP.c) over all days ¢ € [T] of the time horizon. Constraints (ALOHP.d) reflect the
T

periods of rest and can be derived by covering the time horizon [T'] with [WW intervals of

length r (p) + 1 and summing the corresponding constraints (LOHP.€). Constraints (ALOHP.e))

and (ALOHP.f) correspond directly to constraints (LOHP.f) and (LOHP.g). Note that we do
not add constraints corresponding to the conflict constraints (LOHP.d)), as the upper bound

on the number of shifts imposed by conflicts is in practice dominated by the aggregated

period of rest constraints (ALOHP.d)).
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The burden function ¢ for the ALOHP is the identity ¢ (X) = X. Hence, we neglect ¢ in the
following and search for fair solutions directly within the set of solutions. The restrictions
on the balancing functions by, : R>g — R>( requested in Section ensure that the set of
solutions to ALOHP is convex and compact. Therefore, Theorem [39]implies that there exists
a min-max fair solution that can be computed using Algorithm [9] from last section. Doing so
is much easier than computing a fair solution to the continuous relaxation of LOHP due to
the reduced size of ALOHP. However, we can use a special property of ALOHP to compute
fair solutions even more efficiently with a combinatorial algorithm. For this, we generalize a
theorem from Radunovic and Le Boudec in the following.

Radunovic and Le Boudec state that max-min fair solutions can be computed with a so-called
water-filling algorithm if the set of solutions X has the free disposal property. A set X C R"
is said to have the free disposal property if, first, there exists a vector x € R" with z < z
for all x € X and, second, for all 2/ € R" and z € X with 2 < 2’ < z, we have 2/ € X.
Intuitively speaking, each entity i € [n] can choose to dispose some of the x; goods that they
were assigned until they reach a lower bound of x;. Since we are considering the allocation
of burden instead of goods, we define the following analog for min-max fairness. We say
that a set X C R" has the free contribution property if, first, there exists a vector 7 € R™ with
7 > g for all x € X and, second, for all ' € R" and = € X with z < 2’ < 7, we have 2’ € X.
That is, each entity can choose to increase their burden x; up to a bound Z;. If X has the free
contribution property, then we call Z the contribution bounds.

Unfortunately, the set of solutions to ALOHP does not have the free contribution property.
On the one hand, increasing the number of shifts X, of pharmacy p € P up to the individual
upper bound [ﬁw is advantageous for the coverage constraints (ALOHP.b)) and (ALOHP.c
as well as the minimum number of shifts constraints (ALOHP.f). On the other hand, the
balancing constraints can prohibit increasing X, without increasing X, if we

already have X, = b,y (X,/). To overcome this problem, we introduce the following weaker

property. We say that a set X C R"™ has the joint contribution property if, first, there exists a
vector T € R"® with # > z for all x € X and, second, forallw € Rand z € X, wehave 2’ € X
with 2/ = min {max {z;, w},Z;}. The difference here compared to the free contribution
property is that all x; smaller than w are simultaneously increased to the level w, while
respecting the individual contribution bounds Z;. We will see later that the set of solutions to
ALOHP has the joint contribution property, because the simultaneous increase ensures that
the balancing constraints remain fulfilled. Before that, we show how to use the
joint contribution property for computing min-max fair solutions.

Given a min-max achievable set X with the joint contribution property and contribution
bounds 7, Algorithm [10] computes the unique min-max fair solution z* € X. The algorithm
is similar to Algorithm [9] from last section, with the only difference being the computation
of wy. Due to the joint contribution property, there exists a solution x € Xj,_; minimizing
wy = min{w|3zr € X1 :x; <w Vi € Sp_1} that is uniquely defined by the contribution
bounds 7 and the value wy. For this, we simply set all not yet fixed components z; for

8.4 Aggregated Planning and Water-Draining

181



182

N O b~ W=

(o]

1 € Sg_1 to the minimum of w; and 7; (line 4). Hence, finding the minimum w;, reduces to a
one-dimensional problem.

Algorithmus 10 : Water-draining for computing min-max fair solutions.
Input : A min-max achievable set X C R™ fulfilling the joint contribution property and
its contribution bounds
Output : The unique min-max fair vector in X
Initialize £k = 0, Sp = [n], and Xy = X
while S, # () do
Update k < k + 1
Minimize wy, such that z € X} exists with z; = min {wy, T;} for all i € S;_4
Let Xé = {:E € Xk—1|$i <wy Vi€ Sk—l}
Compute Sy, = {i € Sp_1|Fz € X[ : z; < wy}
Let X, = {:L‘ S Xk_1|fL‘i =wy Vi € Sk_1 \ Sk}

return The single element in X},

Intuitively, the idea of the algorithm is to think of the values x; as water levels within
interconnected water tanks of heights 7;. The water level in each tank x; = min {w,z;} is
determined by a global level w, which is at first high enough such that all tanks are full. We
carefully lower the global water level w by draining water from the system, which yields a
simultaneous reduction of the levels in all tanks of height Z; > w. We stop draining once
any further reduction would render the corresponding solution infeasible. Afterwards, we
close all water tanks that don’t allow for a further reduction, thus fixing their water level
x; at the current global level w. In the algorithm, this corresponds to fixing z; = w; and
removing the specific indices from Sj;_1, the set of all open tanks. We then proceed lowering
the water level wy; in the remaining tanks Sy, subsequently closing them until no more are
open. Given this intuition and the analogy to well-known water-filling algorithms, we call
Algorithm [10] a water-draining algorithm.

Radunovic and Le Boudec propose a water-filling algorithm for computing max-min
fair solutions, which unfortunately has the same issue in the choice of Sy, as Algorithm [9]
Nevertheless, their statement on the exactness of water-filling algorithms for sets X with the
free disposal property still holds true. This result also translates to min-max fairness when
applying water-draining in the case that X’ has the free contribution property. We show in the
following that the water-draining algorithm is also exact if X’ only has the joint contribution

property.

Theorem 41. Algorithm [10]computes a min-max fair solution if X is min-max achievable and
has the joint contribution property.

Proof. We show that the water-draining algorithm is equivalent to Algorithm [9]by proving
via induction that &), and Sj, are the same in both algorithms for all & € Z>(. For this, let
XY and S}V be the sets computed in the water-draining algorithm and XM and S}! be those
computed in Algorithm [9]
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The induction hypothesis holds for the base case k = 0, since we have X" = X = A} and
Sy = [n] = S}I. Now, consider an arbitrary iteration k € Z-( within the algorithms and
assume that the induction hypothesis is true for k — 1. We show that the value w}¥ computed
in the water-draining algorithm is equal to the value w} computed in Algorithm@ Then

AW = xMand S)V = SM hold by definition.

Consider the solution ™ € XM | computed in line 4 of Algorithm [9|for minimizing w}!. Let 2’
be the solution obtained by raising =™ to the level wl!, i.e., 2} = min {max {x% w};/[} ,@-} for
all i € [n]. We then have 2’ € X due to the joint contribution property. We show that 2} = zM
holds for all i € [n] \ SM , in order to prove 2’ € XM ,. To this end, remember from the proof
of Theorem E that wy = max{ lie Sy 1} holds for the unique max-min fair solution

z* € X and all k¥’ € Zs¢. Accordingly, we have w}] > w} for all ¥’ € [k] due to St ; D SM ;.

Moreover, for all i € [n] \ SM ,, there exists a k¥’ € [k — 1] with M = w}. Hence, we have
zM > wM, and thus 2} = min {max{x%w}:f[} ,@-} = min {:):%\4,902} = oM, which proves
z € XM,. We furthermore have z; = min {max {xz\d,w%} ,Ti} = min {wk ,xl} for all
i € SM | due to zM < wi by the choice of 2M. Together with the induction hypothesis, we
conclude 2’ € XM, = AW, as well as 2} = min {w}y,@} foralli e SM, = SYV,. Hence, 2/
is a valid choice in line 4 of the water-draining algorithm and yields w}" < w}'.

We also have w)¥ > wh. Otherwise, there would exist a solution z%V € A\, = xM | with

W

aV < wd foralli e SV, = Sk - Then 2V would also be a valid choice in line 4 of

Algorithm EI with max { x,
completes the induction. O

- } < w,€ , which contradicts the minimality of w};/[. This

In order to use the water-draining algorithm for the planning of the out-of-hours service, we
first show that the set of solutions to ALOHP has the joint contribution property. We compute
contribution bounds X € [0,7]” on the variables X € [0,7]” by using Algorithm which
propagates the upper bounds from the aggregated period of rest constraints (ALOHP.d)) via
the balancing constraints (ALOHP.€)).

Algorithmus 11 : Computation of contribution bounds on the number of shifts.
Input : An instance of ALOHP
Output : Contribution bounds X € [0,7]” on the variables X € [0,7]"

Initialize P’ = P and X, = [ o) +J forallpe P

while P’ £ () do
Choose p’ € argmin {Yp |pe€ P’} and update P’ <— P\ {p}
Update X, + min {bpp/ (Yp/) ,Yp} for all p € P’

We show in the following that Algorithm [T1]is exact and that the set of solutions to ALOHP
indeed has the joint contribution property. For this, it will be important that the balancing
functions b,,, are non-decreasing and that b,y (X,) > X, holds for all p,p’ € P, as requested
in Section
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Proposition 42. The set of solutions to ALOHP has the joint contribution property, with X
computed by Algorithm (11| being the contribution bounds.

Proof. Let X C |0, T]73 be the solution space of ALOHP. After initialization in Algorithm |11
X, = [ﬁw is a valid upper bound for all X € X and p € P due to constraints (ALOHP.d).

Furthermore, if X, is a valid upper bound on X,,, then b, (Yp/) is a valid upper bound on
X, due to the constraints (ALOHP.e]) and b,,, being non-decreasing. It follows that X, is a
valid upper bound at the end of Algorithm[11]

Let X € X be an arbitrary solution to ALOHP. It remains to show that X’ € R” with
X, = min {max {Xp, w} ,Yp} is also a solution for all w € R. The vector X’ meets the
coverage constraints and as well as the minimum number of shifts
constraints (ALOHP.{), since we have X’ > X. Furthermore, we have XZ’) < Yp < [#W,
and thus X’ meets the aggregated period of rest constraints (ALOHP.d).

Now, assume that there exists a pair of pharmacies p,p’ € P that violates a balancing
constraint (ALOHP.e), i.e., X, > b,y (Xl’,,>. We have X, = min {w,fp}, because otherwise
X, = X, and thus

X} = Xp < by (Xp) < by (X))

holds due to X, < X]’D,. We also have X;’a' = min {w, Xy }, since otherwise X,y > w and then
X <w < Xy < Xpy < by (Xpr)

holds due to the assumption on b,,. Together with X:r/a > bpy (Xz’),) > XI’,,, we obtain
w > min {w,fp} = X/ > X/, which implies X/, = X,,..

Assume that p’ was chosen before p in Algorithm Then we would have
X}, < X < by (X)) = by (Xpr)

which contradicts the assumption X, > b, (X z/)’)' Now, assume that p was chosen before p'.
If we have X, < X, then

/
X! <

>
bS]

< yp’ < bppr (Yp’> = by (leo’>

would again contradict our assumption and complete the proof. To show that X, < X, holds,
we prove that the contribution bounds are non-decreasing with respect to the order in which
the pharmacies are chosen in Algorithm [11} For this, let p;, € P be the pharmacy chosen in
iteration k € Z~ of Algorithm [11|and let sz be the upper bound at the start of iteration
Jj € [k]. We then have Y’;k < X,,,, due to the choice of pj, as well as Y’;k < bpe 1 (ng)

due to the assumption on b, It follows

k+1Pk*

Xy = X, <min {by i (X3,) Ko} = Xl = X O

Pr )77 Pk+1 Pr+1
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The proposition shows that we can use the water-draining algorithm together with Algo-
rithm [11] for computing a min-max fair solution to the ALOHP. It only remains to see how
the values wy and the sets Sy are computed during the water-draining algorithm.

We only consider the not yet fixed variables X, with p € S;,_; for the problem of minimiz-
ing wy,. In particular, we treat all variables X, with p ¢ S;_; as constants. We can then
neglect all constraints that solely contain variables X,, with p ¢ Sj,_;, as these are already
fulfilled. We can also neglect the aggregated period of rest constraints (ALOHP.d), because we
always have X, = min {wk, Yp} <X, < [ﬁw Furthermore, the balancing constraints
X, < byy (X,y) can be neglected as long as p,p’ € Si_1 holds, because we have seen in the

proof of Proposition that min {wk, Yp} < by (min {wk, X, }) holds, and thus

X, = min {wk,yp} < by (min {wk,yp/}) = by (Xp) -

If we have p’ ¢ Sj_1, then we know from the proof of Theorem that X,; > wy, holds.
Therefore, we have
X, = min {wk,yp} < Xy < byy (Xp)

for all p € Sk_1, and thus the balancing constraint can again be neglected. If we oth-
erwise have p ¢ S, and p’ € Si_1, then let b;pl, (Xp) be the smallest value such that
by (b;pl/ (Xp)> = X,. In this case, the balancing constraint reduces to X, > b;pl/ (Xp), with
b;pl, (X,) being constant.

Let m € Z~( be the number of non-neglected constraints and index them with j € [m]. It
follows from above that each constraint can be written as }_ cp, X, > ¢; for some subset
of pharmacies P; C S,_; C P and a constant right-hand side ¢; € R. The left-hand side
> per; Xp = 2 pep; min {wk,yp} is a non-decreasing, piece-wise linear function in wy, with
at most |P;| break points. Therefore, each constraint reduces to wy, > c;-, where ¢ can be

jE€ [m]}

After computing wy, as above, it is easy to compute Sy. For this, we consider all constraints

computed in linear time. Then we simply have w; = max {c;

j € [m] that imply a tight lower bound cg = wy. The variables X,, contributing to these
constraints are exactly the variables that cannot be reduced further. Therefore, we have

Sk,l\Sk: pE U PjXp:wk

Je[m]rwe=c}

Note that S;_; \ Si is the set of indices whose variables are fixed in theory according to

the water-draining algorithm. In practice, all X, with p € {J . P; are fixed to
J

jE[m]:wg=c

min {wk, Yp}, since none of these variables can be reduced.

We conclude that min-max fair solutions to ALOHP can be computed efficiently using the
water-draining algorithm. Algorithm computes the contribution bounds X in O (|77|2)
Afterwards, we go through at most |P| iterations in the water-draining algorithm, because
at least one variable is fixed in each iteration. Assuming that b;pl, (X,) can be computed
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in constant time, the lower bounds ¢ < wy can each be computed in O (|P;]). Let N be
the number of non-zero entries in the constraint matrix. We then have }~;cp,,, [P;| < N,

and can thus compute wy in O (N). The set |J . Pj, and thus Sy, can then again be
J

je[m]:wg=c
computed in O (). This amounts to a complexity of O (|P| N). In practice, the number
of steps required is much lower. This is because we usually fix multiple variables in each
iteration and also only have to update ¢/ if one of the variables X, with p € P; has been fixed

in the iteration before.

8.5 Bringing Fairness into Practice

We discuss in the following how the information contained in the min-max fair solution
to can be used in practice for computing fair out-of-hours plans. Given the size of
our real-world problem, we need to formulate a tractable model for which we can compute
solutions in reasonable time. Furthermore, the model should again be easy to understand,
just like the lexicographic fairness, in order to enhance transparency.

Danna et. al propose a practical and simple approach for using max-min fair solutions in
traffic engineering problems in order to find a compromise between fairness and efficiency.
In traffic engineering, commodities are routed in a network by allocating a bandwidth to
each commodity. An efficient solution optimizes the throughput by maximizing the total
bandwidth and a max-min fair solution ensures that the smaller bandwidths are as large
as possible. Given a max-min fair solution, Danna et. al propose to maximize the total
bandwidth while bounding the degradation of each individual bandwidth compared to the
max-min fair solution. That is, if y is the bandwidth of commodity i € [n] in the max-min
fair solution, then one adds the constraint y; > gy for a quotient ¢ € [0,1] or y; > y —a
for an absolute value a € Rx¢ to the problem of computing bandwidths y € RY,. This
approach is appealing because the resulting problem remains tractable and transparent, as
decision-makers directly control the degradation of fairness. In contrast, when defining a
trade-off between fairness and efficiency in the objective, then the impact on the fairness
cannot be quantified directly [38].

Applying the above approach to the planning of the out-of-hours service means that we bound
the number of shifts 3,y z: of each pharmacy p € P with respect to their number of shifts
X, in the min-max fair solution to ALOHP. Analogous to above, we could add constraints
Ztem Ty < ¢X, with g > 1 or Zte[T] Ty < X; +awitha >0 for all pharmacies p € P.
However, we argue that the approach should be slightly modified for our purpose. Our case
study in the following section will reveal that the min-max fair solution X* is very efficient.
Hence, we do not need to reduce fairness for the sake of efficiency but can aim for a plan in
which the numbers of shifts =,y 2, are as close as possible to X for all p € P. Therefore,
when applying 3 ;i zpe < ¢X;, we would choose ¢ € R as small as possible such that
there still exists a feasible plan. Using a global parameter ¢ for all pharmacies does not seem
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appropriate, as it would be dictated by the pharmacy with the maximum quotient

We then have ¢ > 1.2, and thus a highly burdened pharmacy p’ € P with X, =40 can be
assigned 48 shifts. This is despite that there may exist a plan that actually assigns only 40
shifts. Analogous concerns can be raised for using constraints » ;) zpe < X, + a.

In order to compute a plan that is close to the min-max fair plan X*, we use upper bound
constraints » ¢z Tpt < {X;W + B3,. Here, 3, € Z> is an individual variable for each p € P

that allows for assigning more than [Xzﬂ shifts. By penalizing 3, in the objective, we ensure
that we only obtain () zp > [Xzﬂ if absolutely necessary. We also apply lower bound

constraints {X;J — Bp < X iepr) Tyt SO that no pharmacy is assigned too few shifts. Adding
both, the lower and upper bound constraints, might appear redundant at first, as the min-max
fairness of X* implies that we cannot assign p fewer shifts than X7 without increasing the
number of shifts of other pharmacies p’ € P above X,. However, the rounding of X, in

the constraints 3=, 2pr < [Xzﬂ + [, necessitates the addition of lower bound constraints.

For example, assume that 100 shifts have to be distributed among eleven pharmacies and

100

we neglect the lower bounds. The fair plan then assigns %3 shifts each, which would allow

100} = 10 shifts to ten pharmacies and zero sh1fts to the eleventh pharmacy.

for assigning [
In contrast, when adding the lower bound constraints, we are inclined to assign nine shifts
to ten pharmacies and ten shifts to the eleventh pharmacy. Accordingly, we propose the

following Fair Out-of-Hours Planning Problem

min Z Z Tpt + Z Bﬁg (FOHP.a)
pEP te|T) pEP
st > ap>1 Vm € M,t € [T] (FOHP.b)
peC(m)
> ap >d(m,t) Vm € M, t € [T] (FOHP.c)
pEP(m)
Tpt + Ty < 1 V{p.p'} €C,t €[T] (FOHP.d)
t+r(p)
> aw <1 VpeP,te [T —r(p) (FOHP.e)
t'=t
X =B <3 am < [X;] + 5 Vp e P (FOHP.f)
te[T]
Z Tpt > 8 VpeP (FOHP.g)
te[T]
ze {0,371 g ezl (FOHP.h)

We penalize the assignment of more shifts than [X]ﬂ or fewer shifts than {X;J by adding
> pep B Bg to the objective function, where B € Z is a big constant. We choose the variables
Bp to be quadratic in order to avoid an uneven increase of 3, among the pharmacies. That is,
if we can choose between 3, = 3,y = 1 and 3, = 2, 3,y = 0, then we opt for the former. The
non-linear objective can be easily linearized by replacing 3, with a sum }_, e[3,] Bpi of binary
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X* :

p
For example, assume that we need to assign 12 shifts to a pharmacy p € P with X; = 10.
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variables /3,; € {0, 1} for an upper bound Bp € Zx>o on the value of §,. We then can substitute
5;% = Zie[ﬁ ] (2¢ — 1) By under the assumption that 8, > --- > ’Bpﬁ holds. The latter can
P p

be assumed without loss of generality, as Zz‘eﬁ ] (2¢ — 1) Bp; is minimized. In theory, we can
P

choose Bp = max { L(T%W — {Xﬂ , LX;J — §}, which is an upper bound on the maximum
possible distance between ;7 2 and the interval HX;J , {X;-‘ } In practice, this distance

will be much smaller, which allows for substituting 3, with few binary variables. We will
discuss later how to do this efficiently in our rolling horizon approach from last chapter.

Note that we omit the balancing constraints > ;i Tpt < bpy (Zte[T} xprt) in the FOHP.
Although balancing is not ensured by the other constraints, it is considered in the computation
of X*, and thus almost implied by the constraints (FOHP.f). To see this, remember that
we assumed in Section that by, is non-decreasing. Together with X} < b, (X;,), we
obtain

Z Tpt <

te[T)

X;] + B

|
< [ (X5)] + 5,
[

b (| X5] + 5 = X5 |) | + 2

{bpp’ (Z Tyt + By + Xy — {X;’J)

te[T]

IN

+ Bp'

In our case study in the next section, we will consider balancing functions b,y (y) = y + a,y
for y € R>( and an absolute value a,,, € Z~. Therefore, we have

{bpp’ (Z Tyt + By + Xy — {X;’J)

te[T]

+5p

+ By = {Z Tyt + Xy — LX;/J + By + apy

te[T)

= Z Tyt + Qppy + [X;’ - {X;’H + By + Bp
te(T)]

< bpp’ (Z :ij/t> + 1+ ﬂp’ + Bp‘

te(T)

Hence, the balancing constraints > i Tpr < bpy (Ztem mp/t) are violated by at most
1+ By + Bp, where 3, + 5, will be zero for most p,p’ € P. Therefore, omitting balancing
constraints is not exact but only results in a small potential error. The omission of the up to
|P?| constraints is thus a pragmatic way to significantly reduce the size of our problem.

We show in the following how the approaches developed in Section [7.3] can be adapted for
solving the FOHP. That is, we use the aggregation of equivalent pharmacies into superphar-
macies together with the rolling horizon approach. Here, the latter is again enhanced with
an intermediate step in which we delete non-coverage shifts, as in Section[7.3.3]

For the aggregation into superpharmacies, we have to redefine equivalence between phar-
macies. Just like in Section [7.3.1} equivalent pharmacies must be in the same municipality,
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cover the same municipalities, have the same period of rest, and have the same conflicts. We
now additionally request that equivalent pharmacies p ~ p’ must also be equal with respect
to the number of shifts in the min-max fair solution X* up to rounding, i.e., {X;J = {X;/J

and {X]ﬂ = {Xﬂ. Then the constraints (FOHP.f)) are equal for both pharmacies and we can

assign both the same number of shifts. This additional requirement is a proper restriction, as
pharmacies p,p’ that were equivalent with respect to the old definition might have X # X
if their balancing constraints (ALOHP.e)) are different.

After partitioning the set of pharmacies P into superpharmacies p° € P$ consisting of
equivalent pharmacies, we replace ° s z,: in FOHP with variables x5, in order to obtain

min Z Z Tpst + Z BBQ (FSOHP.a)
PSEPS te[T] pEP
st Y ady > 1 Vm € M,t € [T] (FSOHP.b)
pSeCs(m)
>y > d(m,t) VYm € M,t € [T] (FSOHP.c)
pSEPS(m)
t+r(p°)
> aby < b Vp* e PS,t € [T —r(p°)] (FSOHP.e)
t'=t
S K] -8 <Y a <> X+ 8 Vp* € P°  (FSOHP.f)
peEPS te[T] pEPS
Z Tpsy > PPl s vp® € P® (FSOHP.g)
te[T]
2 e {0,137 g e 7L, (FSOHP.h)

The construction is mostly analogous to that of [SOHP| from Section The difference
here is that we replace the fairness constraints (FOHP.f) and the minimum number of
shifts constraints (FOHP.g) with constraints (FSOHP.f) and (FSOHP.g), which arise from
aggregating the original constraints for all p € p*. The aggregation of the constraints is exact,
since we can later distribute the shifts >,y z}s, of each superpharmacy p® evenly (up to
rounding) among the aggregated pharmacies p € p°. This is analogous to the procedure in
the proof of Proposition [35for the original superpharmacy formulation SOHP. Note that we
do not substitute 3° s 3, = SBps, since this would yield a difference in the quadratic objective
2
(Zpeps Bp) F D peps ﬁg. However, when substituting 3, = Zie[B ] Bpi for the linearization of
P

the objective, then we can aggregate all binary variables /3,; with p € p® into a single integer
variable Bys; € [|p|]g, i.€., Bpsi = 2 peps Bpi-

For the rolling horizon approach, we consider subproblems of FSOHP on intervals [t;] C [T]]
for a sequence of days t; < --- < t; < ty1 = T. The construction of the subproblems is
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analog to that in Section That is, we replace [T'] with [¢;] in the formulation of FSOHP
and replace the constraints (FSOHP.f)) with

X*t; X*t;
Z\\;J_Bpg ZSU;StSZ";-“FIBp
]

peEP’ te(T peEP’

sti

as well as replace constraints (FOHP.g) with 3=, pt > [TW

The rolling horizon approach is particularly suitable for linearizing the quadratic terms 62 in
the objective function. We can give tighter bounds on the value of /3, in an optimal solution
due to the smaller number of days to be planned. In theory, the optimal value of f3, is at
most (3, = max { [r(zf)i +J - [Xélﬂ : {Xg’fJ - g} for a subproblem on the interval [t;]. We
observe in practice that we can even choose 3, = 1 within the first interval, that is, 3, can

be substituted by a single variable 3,; € {0,1}. We then dynamically adjust 3, based on the
value of 3, within the last iteration. That is, if we have 3, = 3, then we increase 3, by one
for the next iteration. Hence, the problem remains tractable in practice despite the quadratic
objective function.

We will see in the next section that combining superpharmacies and the rolling horizon
approach enables us to compute consistently good solutions to FOHP. We will also see that
the resulting out-of-hours plans are very close to the min-max fair solutions to ALOHP, and
thus are as fair as we could hope for.

8.6 Case Study

In this section, we apply our fair planning approach to the real-world instance in the area
North Rhine from Section[7.4] The parameters for our problem are as before, that is, we
consider |P| = 2291 pharmacies, | M| = 165 municipalities, and a time horizon [T] = [365]
of one year. The coverage, periods of rest, and conflict distances are again with respect to
the size of the municipalities, as stated in Table Furthermore, we request a minimum
number of shifts s = 10 for each pharmacy. The only differences to the problem considered
in Section [7.4] are the way we balance the number of shifts and that we now incorporate

fairness into the planning.

We start our study by considering different balancing approaches and analyzing their impact
on the out-of-hours service. Afterwards, we discuss two concepts of refining the coverage of
municipalities in order to even the distribution of shifts among pharmacies and to improve
the quality of coverage for residents. In our analysis, we first focus on min-max fair solutions
to as their particular structure is useful for evaluating changes to the model. In a
second step, we then test how the min-max fair solutions translate into practice by using
them as input for the After discussing the changes to our model, we close our study
with a comparison of the resulting plan for the FOHP with the optimal plan computed for the
in the last chapter.
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All experiments are implemented in Java 11 and performed on a Linux machine with an
Intel® Core™ i7-5930K CPU @ 3.50GHz with 32 GB RAM. We use Gurobi version 9.5.0
with default settings to solve MILPs.

8.6.1 Balancing Approaches

We first test the impact of the municipality-balancing from last chapter on the min-max fair
solution to ALOHP, that is, we allow a difference of at most one in the number of shifts
assigned to pharmacies within the same municipality. For this, we define b, (X,/) = X,y + 1
if p,p’ € P are in the same municipality and b, (X,/) = oo otherwise. The ALOHP with
municipality-balancing can be solved easily with the water-draining Algorithm which
computes the min-max fair solution within 0.1 seconds. This solution assigns a total of
> pep Xp = 32222 shifts, which is 2,083 shifts more than in the optimal plan computed for
the OHP in the last chapter. The decline in efficiency is due to the interaction between min-
max fairness and the municipality-balancing. Assume that p € P (m) is the only pharmacy
within a city m € M covering a rural municipality m’ € M that is covered by few pharmacies
C (m'). An efficient solution to the OHP would not assign many shifts to p for covering
m’, because the municipality-balancing would then force us to assign many shifts to all
pharmacies within P (m). However, when applying min-max fairness, then we need to assign
many shifts to p, and thus to all pharmacies in P (m), as otherwise the other pharmacies
p' € C(m')\ {p} covering m’ would be assigned even more shifts.

The left-hand map in Figure shows the assignment of shifts in the min-max fair solution
to ALOHP with municipality-balancing. Here, the numbers of shifts X, are rounded to the
nearest integer. We have a closer look at the city of Aachen, which is located in the southwest
of the planning area and marked by a white circle. There are 69 pharmacies within Aachen,
all of which are assigned 22 or 23 shifts. This is due to two pharmacies that are assigned

their maximum number of L(p")r +J = [31%5} = 23 shifts in order to cover the rural town of
Monschau south of Aachen. This assignment is necessary, as all other pharmacies covering
Monschau are assigned 40 shifts, and thus should be relieved as much as possible in a fair
solution. However, the assignment of at least 22 shifts to all pharmacies in Aachen solely
for the sake of balancing is not acceptable. We therefore need to consider other balancing

functions by, .

When applying no balancing at all, i.e., b,y (X,y) = oo for all p,p’ € P, then the min-max
fair solution to ALOHP can again be computed within 0.1 seconds. The solution assigns
> pep Xp & 30157 shifts, which is only 18 shifts more than in the optimal plan to the OHP
from last chapter. This proves that min-max fair solutions can be efficient, at least when
considering the aggregated problem ALOHP. The middle map in Figure shows the
assignment of shifts to pharmacies. The pharmacies in Aachen are now mostly assigned
eleven shifts, yielding a total reduction of 724 shifts within a single city.
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Figure 8.1. Geographical distribution of shifts for min-max fair solutions to ALOHP with different balancing approaches. Left: municipality-balancing. Middle:
no balancing. Right: geographic-balancing.



The efficiency of the solution without balancing comes at the cost of unacceptable differences
in the number of shifts of neighboring pharmacies. This is most evident in the town of Hennef,
located in the southeast of the planning area and marked with a white circle, where one
pharmacy is assigned 33 shifts while another pharmacy only 300 meters apart is assigned
ten shifts. This difference is due to the rigorous definition of coverage: The highly burdened
pharmacy is barely within the cover radius of the municipality of Eitorf, and can thus fully
contribute to its coverage, while the other pharmacy is few meters outside the radius and
cannot contribute to the coverage at all. We can resolve this issue by applying a small
adjustment to the coverage such that either both or none of the pharmacies cover Eitorf.
Then balancing is achieved naturally from min-max fairness and does not need to be enforced
via constraints. Since this has implications on the quality of coverage, we are faced with a
political task in which we seek a compromise between efficiency, balance, and coverage. We
will propose an approach for achieving a reasonable compromise in the next section.

In order to identify pairs of pharmacies for which there is a conflict between balance and
efficiency, we first need to define functions b,,, that reflect our balancing goals. We request a
geographic-balancing that is with respect to the distance between pharmacies. Neighboring
pharmacies should be assigned a similar number of shifts, while pharmacies located farther

/
apart may have a larger difference. We define b,, (X) = X, + P%’&” if p,p’ € P are
within the same municipality; that is, the difference in the number of shifts increases by one
for every kilometer that the pharmacies are apart. Since we also want to avoid inter-municipal

differences, we define b,y (X,y) = X,y + P%ﬁﬂ for all p, p’ € P in different municipalities.

The inter-municipal balancing is weaker, as there is a particular historical emphasis on balance
in municipalities.

Solving the ALOHP with geographic-balancing requires 1.6 seconds, which is slower compared
to the other balancing approaches. The slow-down is due to the individual balancing
constraints for each pair of pharmacies, which lead to more distinct numbers of shifts, and
thus to more iterations in the water-draining Algorithm[10] Nevertheless, the computation
time is still negligible compared to the time required for computing an actual out-of-hours
plan. The computed min-max fair solution assigns > ,cp X, &~ 31020 shifts, which is 1,202
fewer shifts than in the solution with municipality-balancing. Furthermore, we see on the
right-hand map in Figure that the geographic-balancing yields a relatively homogeneous
assignment of shifts to pharmacies.

In order to evaluate how min-max fair solutions translate into practice, we use the solutions
computed for the three balancing functions above as input for the FOHP. We attempt to
solve each of the three problems in two ways. First, we apply an exact approach by solving
the fair superpharmacy problem for the whole time horizon. Second, we use the
rolling horizon heuristic together with the aggregation into superpharmacies as described
in Section [8.5| For the rolling horizon, we define ¢ = 23 breakpoints for dividing the time
horizon into 24 intervals and set a total time limit of 10,000 seconds, which we split among
the subproblems as described in Section [7.4.2} For both the exact and the heuristic approach,
we define B = 1000 as the coefficient for 3 p ,Bg in the objective of FOHP for penalizing the
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Table 8.1. Total number of shifts, quadratic fairness violation > 2, and computation time in
seconds for different balancing approaches.

municipality-balancing no balancing geographic-balancing
FSOHP FSOHP FSOHP
ALOHP ALOHP ALOHP
exact heuristic exact heuristic exact heuristic

number shifts 32,222 32,131 32118 30,157 30,162 30,178 31,073 31,011 31,024
fairness violation - 0 20 - 13 16 - 13 23
computation time 0.1 8,350 705 0.1 7,305 660 1.6 5,890 663

violation of {X;J < Yt Tpt < [X‘,ﬂ , where X is the number of shifts in the corresponding
min-max fair solution.

Table shows computational results in comparison with the corresponding min-max fair
solutions to ALOHP. Interestingly, all three problems are solved exactly in at most 8,350
seconds (2.3 hours), which is roughly half the time required for solving the OHP from
Section [7.4] exactly. This decrease in computation time might be attributed to the structure
implied by the fairness constraints (FSOHP.f)), which almost fix the number of shifts of each
pharmacy. This is in line with the observation in Section where a higher minimum
number of shifts s resulted in lower computation times. The rolling horizon heuristic is able
to compute solutions in under 13 minutes. It therefore computes solutions roughly 10 times
faster than the exact approach, where the first feasible plan is in each case computed at the
very end of the computation time.

Both the exact and heuristic solutions are very close to the corresponding min-max fair
solutions: The observed gap between the number of shifts in the min-max fair solution
and the corresponding out-of-hours plans is at most 0.32%. Even more important, the
assigned numbers of shifts >,y zp are very close to X for all pharmacies p € P in
all solutions. In the exact solution for the municipality-balancing, we have ° p 512; =0,
and thus }>;cip op € { {X;J , [X[ﬂ } for all pharmacies. The highest fairness violation is
2 pep ﬁf, = 23 in the heuristic solution for the geographic-balancing. Here, we have 19
pharmacies with 8, = 1 and one pharmacy with g, = 2. Conversely, this implies that 2,271

pharmacies have ;i zpt € { LX;J , {Xﬂ }

We conclude that all three balancing approaches yield min-max fair solutions that are very
close to an actual out-of-hours plan. Hence, all are suitable for our approach of using
the min-max fair solution as an orientation for the actual plan. We will continue with
the geographic-balancing, as it additionally strikes a compromise between balance and
efficiency.
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8.6.2 Refining Coverage

We have seen that min-max fair solutions can be computed fast and serve as good predictors
for the number of shifts of each pharmacy in the out-of-hours plans computed for the FOHP.
This predictive power is valuable, as min-max fair solutions have a clear structure that makes
them relatively easy to analyze. Remember from Section that the assignment of X shifts
to pharmacy p € P in the water-draining Algorithm [10|can be attributed to constraints of
ALOHP that contain X,, and become tight in the iteration in which X, is fixed. We need to
adjust exactly these constraints if we want to relieve p without assigning more shifts to other
pharmacies that are already assigned at least X, shifts. We use this insight in the following
in order to refine the coverage of municipalities.

8.6.2.1. Smoothing Coverage

We noted above that the differences in the numbers of shifts of neighboring pharmacies in
the min-max fair solution without balancing is due to the rigorous definition of coverage. We
now want to smooth the coverage in order to obtain a more balanced solution even when
not enforcing balancing constraints. For this, we again consider the situation in the town of
Hennef, where pharmacies are assigned either 33 or ten shifts in the min-max fair solution
without balancing. The map in Figure shows the distribution of shifts to pharmacies in
the concerned area, wherein Hennef is located in the west. The difference in the numbers
of shifts assigned to the pharmacies in Hennef is undesirable: Once geographic-balancing
is requested, the pharmacies with ten shifts will be assigned 32 shifts that are mostly not
necessary for the coverage.

Thanks to the clear structure of the min-max fair solution, we know that the assignment of
the 33 shifts is due to the coverage constraint of the municipality of Eitorf, which
is located in the center of the map in Figure Relieving the highly burdened pharmacies in
Hennef essentially comes down to two possibilities. First, we may assign more shifts to other
pharmacies covering Eitorf. Second, we may extend the set of covering pharmacies in order
to distribute the shifts among more pharmacies. The first possibility achieves local balance
within Hennef at the cost of global unfairness, which is exactly the opposite of what we aim
for in this chapter. The second possibility relieves the pharmacies covering Eitorf but results
in longer travel distances for the residents in Eitorf. The average travel distance especially
increases if we redistribute shifts from pharmacies in the center of Eitorf to pharmacies
outside the original cover radius. However, if we only redistribute shifts from pharmacies in
Hennef to their neighboring pharmacies, then we achieve balance while maintaining almost
the same quality of coverage. We show in the following how to incorporate this idea into
ALOHP in order to compute min-max fair solutions that are more balanced without using
balancing constraints.

More generally, let X* be the min-max fair solution to ALOHP without balancing and let P’ C
P be a set of neighboring pharmacies that differ highly in their assigned number of shifts. We
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Figure 8.2. Assignment of shifts to pharmacies around Eitorf for the min-max fair solution to ALOHP
without balancing.

will define later when pharmacies are considered neighboring. Let p’ € argmax {XI’)k

pE 77’}
be a pharmacy with the highest number of shifts in P’. Assume that we have X, < X, for all
p € P'with X < X, that is, we may assign more shifts to pharmacies in 7P’ that are not
assigned the highest number of shifts. Additionally, assume that the assignment of the X,
shifts to p’ can be attributed to the coverage constraint > pec(my Xp = T of a municipality
m’ € M with p' € C (m/). This is the case if X, could not be reduced further due to the
coverage constraint becoming tight in the corresponding iteration of the water-draining
Algorithm Then we have p ¢ C (m/) for all p € P" with X7 < X, as we would otherwise
assign more shifts to these pharmacies in a min-max fair solution. Hence, if we extend the
set of pharmacies covering m' to be C' (m') U P/, then we can assign shifts to pharmacies in
P\ C (m') so that the coverage constraint for m’ is not tight any longer. We can then reduce
the burden on p’ if there exists no other tight constraint that restricts X,,. If there exist more
coverage CONStraints -, () Xp > 1’ of other municipalities m € M restricting X,,, then
we can also extend their sets of covering pharmacies C' (m). If there exists a tight constraint
of a different type, then we cannot achieve balance for the pharmacies in P’ by adjusting the
coverage. In the following, we assume that there exists no tight constraint of a different type
and we thus can actually relieve p'.

If we solved ALOHP again with }° o yup Xp > T instead of 35 cc() Xp > T, then
we would not only redistribute shifts of pharmacies within P’ but potentially also from
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pharmacies in C'(m') \ P’ to pharmacies in P’ \ C (m'). To prevent this, we instead replace
ZpGC(m’) Xp > T with

min{ZXp, > X;}+ > X, >T,
peC

pEP’ peC(m/)NP! (m)\P’

that is, all pharmacies in P’ can contribute to the coverage of m’ but they cannot contribute
more shifts than the pharmacies in C (m’) NP’ contributed in the previous solution X*.
Then the pharmacies within C (m') \ P’ need to be assigned at least the same number of
shifts as before. In fact, they are assigned exactly the same number of 7' — 3~ c () X,
shifts in the new min-max fair solution, as the new solution would otherwise be less fair
than X*, which is still feasible for the adjusted ALOHP. Simultaneously, we can distribute
the 3, cc(mynpr X, shifts previously assigned to the pharmacies in C' (m’) NP’ more evenly
among the pharmacies in 7’. Note that we may assign more than 3, ¢(,n/)npr X, shifts to
the pharmacies in P’ in order to meet other constraints.

The above adjustment to the coverage constraint },c (/) Xp > T can be applied multiple
times in case we not only want to balance the number of shifts of a single set of pharmacies P’.
Let P1,..., Py, C P be disjoint sets of pharmacies which we want to allow to cover m’. We
then define the smoothed coverage constraint

Zmin{ZXp, > X;}+ > X, >T (8.1)
i€l PEP; peC(m/)NP; peo(m/)\uiem P;

for replacing the original coverage constraint 3°,cc () Xp > T in ALOHP. We call the
adjusted problem, with potentially multiple smoothed coverage constraints, the smoothed
ALOHP.

The set of vectors X e [0, 7] fulfilling the smoothed coverage constraints is convex
and compact. It follows that the set of solutions to the smoothed ALOHP is also convex and
compact, and thus remains min-max achievable. Furthermore, the set of solutions still has
the joint contribution property, as increasing X never leads to a violation of constraints (8.1)).
Hence, we can solve the smoothed ALOHP with the water-draining Algorithm Computing
wy, in the k-th iteration of the algorithm is again easy: Replacing X, with X, = min {wk, Yp}
in the smoothed coverage constraints yields a piece-wise linear function in wy, with at
most ¢+ ’C (m) UlUieig 791-’ breakpoints. Thus, the minimum value wy, fulfilling the constraint
can be computed in linear time.

After determining the smoothed coverage constraints (8.1), we add the geographic-balancing
constraints to the smoothed ALOHP and compute a min-max fair solution X’. We use X'
as input for the FOHP and replace the original coverage constraints > ,cc () Tpt > 1 with
>pecr(mr) Tpt > 1 for all days ¢ € [T, with C' (m’) = C' (m') U U,¢q Pi- By doing so, we
risk that m’ is covered more often by pharmacies in C’ (m/) \ C (m') than in the min-max
fair solution X’. However, we can expect in practice that most pharmacies p € P will be
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assigned at least LX;J shifts in the solution to FOHP. In order to ensure that these shifts
are not on the same day, we introduce conflicts between all pharmacies in C (m/), that is,
we add (C(g‘/)) to the set of conflicts C. We do this for all municipalities m’ € M for which
the coverage constraint is smoothed. Then m' is covered by pharmacies within C' (m’) on
roughly as many days in the actual out-of-hours plan as in the min-max fair solution X’. The
additional conflicts pose in our experience no problem in practice. To see this, note that we
only smooth the coverage of municipalities m’ € M with > pec(m) Xp = T. Now, consider a
solution to the FOHP with the original coverage. When assigning ;) zpt € { LX;J ) [X ]ﬂ }

shifts to each pharmacy p € C (m/), then there can be at most 3 () [Xﬂ — X, days with
more than one shift. A fair out-of-hours plan therefore tends to avoid assigning two shifts on
the same day, even when conflicts are not enforced.

After discussing how the coverage can be smoothed with limited impact on the coverage
quality, we need to identify cases in which the coverage of a municipality should be smoothed
and determine the pharmacies that should be included in the coverage. Since this is again
a political question, we only consider cases that most likely need to be addressed, that
is, when neighboring pharmacies differ highly in their number of shifts. For this, let X*
again be the min-max fair solution to ALOHP without balancing. Here, we consider two
pharmacies p, p’ € P as candidates for smoothing the coverage if their geographic-balancing
constraint X, < by, (X;) is violated by at least 50%, i.e., X, > Sbwyp (X;). Assume that
the assignment of the X, shifts to p can be attributed to the coverage constraint
of a municipality m’ € M. If X; < X, holds, then p is not within C (m'), and can thus be
considered for an extended coverage of m’ in order to relieve p’. However, we only let p cover
5C°V1(0m’).
In this case, p and p’ are geographically close and the distance from m' to p is at most 10%

m’ if the distance from p’ to p is at most 10% the cover radius of m/, i.e., § (p',p) <

higher than the cover radius. We then consider p and p’ together for the smoothed coverage
of m/.

Note that there might be multiple pairs of pharmacies p € P\ C(m/) and p’ € C(m’)
that we want to consider together for the coverage of m’. We use these pairs to build
the disjoint sets P1,..., P, C P that define the smoothed coverage constraints (8.1). For
this, we define a bipartite graph G = (P, E) with the set of pharmacies P being the nodes
and an edge {p,p’'} € E between two pharmacies p € P\ C (m/), p’ € C (m/) if p and p/
are considered together for the coverage of m’. We then let Py,..., P, be the connected
components within G that contain at least two pharmacies. The pharmacies in the sets P; are
not only geographically close to each other but are also close to the border of the cover radius.
=
from a pharmacy p’ € C (m’) within the cover radius, and vice versa. We therefore maintain

This is because each pharmacy p € P\ C (m’) outside the cover radius is at most

away

a similar quality of coverage when redistributing shifts within the sets P;.

When applying the above procedure to our real-world instance in the area North Rhine, then
we smooth the coverage of five out of the 165 municipalities. The min-max fair solution to
the smoothed ALOHP with geographic-balancing assigns a total of 3 p X, ~ 30696 shifts,
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Figure 8.3. Geographical distribution of shifts for min-max fair solutions to ALOHP. Left: standard
coverage. Right: smoothed coverage.

which is 377 fewer shifts than the solution for the non-smoothed problem. This is only a
reduction of 1.2%, however, note that our changes to the model are rather conservative
and that most pharmacies remain unaffected. In fact, only 98 out of the 2,291 pharmacies
are assigned a different number of shifts after smoothing the coverage. This includes 71
pharmacies with fewer shifts and 27 pharmacies that are assigned more shifts to compensate
for the decrease of the others. When only considering these 98 pharmacies, then the total
number of shifts decreases from 1,843 down to 1,466, which is a reduction of 20.5%.

Figure [8.3|shows the distribution of shifts to pharmacies for both solutions with and without
smoothing. Pharmacies that are directly affected by the smoothing of coverage, that is, they
are considered together for the coverage of a municipality, are marked with circles. The
smoothing proves to be very effective in the municipality of Emmerich, which is located in
the very north of the planning area. There are six pharmacies which were previously assigned
31 to 33 shifts, as one of them needed to cover the municipality of Rees to the southeast of
Emmerich. After the smoothing, each of these pharmacies is assigned 17 shifts. The already
considered pharmacies in Hennef, which are located in the southernmost circle in Figure 8.3}
are now assigned 22 or 23 shifts instead of 31 to 33 shifts. This reduction also leads to a
decrease in the number of shifts of the pharmacies around Hennef, which were previously
assigned many shifts to ensure geographic-balancing.

The reduction of the shifts could be even larger if the pharmacies in Hennef did not need to
be balanced with a pharmacy to the southeast which is not considered in the smoothing and
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default coverage smoothed coverage extended coverage

Eitorf 8,339 8,438 9,698
Lindlar 9,631 9,618 9,876
Rees 9,017 9,097 10,476
Reichshof 12,233 12,243 13,006
Straelen 9,631 9,708 10,522
average 9,770 9,821 10,716

Table 8.2. Mean distance to the nearest out-of-hours pharmacy over the whole time horizon. Dis-
played for the five municipalities with smoothed coverage constraints.

is therefore still assigned 33 shifts. The same applies for the pharmacies in Gummersbach,
located in the easternmost circle, which can only be relieved by 2 to 3 shifts due to the
geographic-balancing with the surrounding pharmacies. Decision-makers might opt for
relieving the surrounding pharmacies by applying a more aggressive or specifically tailored
smoothing for the respective area. For this study, we continue with the smoothing described
above.

The min-max fair solution to the smoothed ALOHP again translates well into practice. An
optimal solution to the corresponding FSOHP, which can be computed within 1,505 seconds,
assigns a total of 30,631 shifts. This is 65 shifts less than in the min-max fair solution and 380
shifts less than in the optimal out-of-hours plan computed for the default coverage. We obtain
> opep 63 = 13, with , = 1 for 13 pharmacies. Hence, the actual plan and the min-max
fair solution are again similar in terms of the number of shifts assigned to each pharmacy.
Most importantly, the quality of coverage is only slightly worse in the plan computed for the
smoothed coverage. Table shows the mean distance to the nearest out-of-hours pharmacy
for the five municipalities whose coverage constraint is smoothed. The municipality with
the largest increase is Eitorf, for which the mean distance rises by 1.2% from 8,339 meters
to 8,438 meters. Coincidentally, the mean distance for Lindlar even decreases slightly. The
average over the five municipalities increases only by 0.5% from 9,770 meters to 9,821
meters.

To put the quality of coverage into perspective, we compute an additional plan in which we
also extend the set of covering pharmacies but don’t adjust the coverage as in the smoothed
coverage constraints . Instead, we only replace > pecim) Xp 2T with > peciimy Xp 2T
in the ALOHP and >° (/) Tpt = 1 With 35 cr(y 2pe > 1 for all days ¢ € [T in the FOHP.
Here, C' (m') is the same extended set of covering pharmacies as used for the smoothed
coverage. An optimal plan with the extended coverage assigns 542 shifts less than the plan
with default coverage. Thus, the reduction in the number of shifts is 41.1% higher compared
to the plan for the smoothed coverage. However, the mean distance to the nearest out-of-
hours pharmacy increases significantly for the five affected municipalities, as can be seen
in Table The travel distance is on average 9.7% higher than in the plan for the default
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coverage. In particular, we observe an increase of 16.3% for Eitorf. We therefore prefer the
smoothed coverage over the extended coverage in the following.

The observations above prove the concept of smoothing the coverage with the use of the
min-max fair solution. The min-max fair solution to the ALOHP without balancing indi-
cates precisely which constraints need to be adjusted. The min-max fair solution to the
smoothed ALOHP then corresponds to an out-of-hours plan with fewer shifts and a more
even distribution at almost no cost with respect to the quality of coverage.

8.6.2.2. Tightening Coverage

Remember from Section [7.4] that some pharmacies are assigned no shifts at all in solutions to
the OHP without minimum number of shifts constraints (OHP.)). Assigning shifts to these
pharmacies is often not necessary for the coverage, as the local municipalities can already be
covered by shifts that need to be assigned to surrounding pharmacies. Once the minimum
number of shifts is requested, our model is indifferent of the day to which we assign such
non-coverage shifts. We then might assign multiple shifts on the same day to pharmacies
within the same area, which is ineffective for reducing the travel distance of residents to their
nearest out-of-hours pharmacy. We analyze and resolve this issue, again using min-max fair
solutions to ALOHP.

We consider the case of the town of Langenfeld, which is marked in Figure Langenfeld
is surrounded by several cities with many pharmacies and can therefore be covered by a
total of 143 pharmacies. These pharmacies need to be assigned % ~ 2.6 shifts on average
to cover Langenfeld in a solution to ALOHP. Thus, the coverage constraint is
clearly redundant when the minimum number of s = 10 shifts is requested. In fact, the
coverage constraint is even redundant when neither balancing nor minimum number of shifts
constraints are applied. The left-hand map in Figure [8.4] shows the min-max solution for this
setting. All pharmacies within Langenfeld are assigned zero shifts, since the surrounding
pharmacies are already assigned a total of 851 shifts to meet the demand within the cities.
The coverage of Langenfeld is thus not ensured by nearby pharmacies but by pharmacies
that are barely within the cover radius. To counteract this, we reduce the set of covering

pharmacies. In this process, we take care that the total number of shifts does not increase.

More generally, let X* be the min-max fair solution to the ALOHP with geographic-balancing
and minimum number of shifts constraints. We only consider non-smoothed coverage
constraints for simplicity. The following idea extends analogously to smoothed constraints. Let
m € M be a municipality with 3°,c(,,y X; > 7. Then not all shifts assigned to pharmacies
in C' (m) are needed for covering m. We might therefore consider tightening the coverage
constraint by removing pharmacies from C' (m). For this, let p; € argmax {d (m,p)|p € C (m)}
be a most distant pharmacy covering m. We remove p; from C (m) if 3> c oy g1} Xp = T
holds, that is, if X* is still a feasible solution to ALOHP after the removal. Then X* is still a
min-max fair solution to ALOHP with the adjusted coverage, as the set of feasible solutions is
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Figure 8.4. Assignment of shifts to pharmacies around Langenfeld for min-max fair solutions to the
smoothed ALOHP without balancing and minimum number of shifts constraints. Left:
without tightened coverage. Right: with tightened coverage.

non-increasing when tightening coverage constraints. We repeat this step for the sequence of
most distant pharmacies py, . . . , p; until the next pharmacy py,, cannot be removed, i.e., until

we have -, y X, < T. We can apply this procedure sequence-independently

m)\{P1,--,Pk+1
for each municipality m € M, as the min-max fair solution X* remains unchanged. In the
following, we consider the tightening applied to all municipalities after the smoothing of

coverage constraints as in the prior section.

While the tightened coverage has no effect on the min-max fair solution X*, the impact is
significant when considering the ALOHP without geographic-balancing and minimum number
of shifts. Before adjusting the coverage, we only assign 26,166 shifts in the min-max fair
solution when omitting these constraints. After adjusting the coverage, we assign 30,190
shifts. This almost equals the 30,696 shifts that are assigned in the min-max fair solution to
ALOHP with geographic-balancing and minimum number of shifts. After tightening, the town
of Langenfeld is covered by 37 pharmacies, which are all assigned almost ten shifts, as can
be seen on the right-hand map in Figure Hence, the s = 10 shifts that are assigned for
meeting the minimum number of shifts constraints are now also important for the coverage.
We are therefore inclined to better distribute these shifts in an out-of-hours plan, such that
Langenfeld is covered by nearby pharmacies year-round.

The FOHP with tightened coverage is significantly harder to solve than the previous problems.
Before tightening the coverage constraints, the large sets of covering pharmacies provide
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Table 8.3. Total number of shifts, quadratic fairness violation Zpep 612), mean distance from munici-
palities to nearest out-of-hours pharmacies, and computation time in seconds for different
tightening coefficients.

tightening coefficient 7

1.0 1.1 1.2 1.3
exact heuristic exact heuristic exact heuristic exact heuristic
number shifts - 31,168 - 30,738 - 30,670 30,629 30,642
fairness violation - 445 - 51 - 24 13 23
mean distance - 7,376 - 7,546 - 7,629 7,693 7,701

computation time 100,000 100,000 100,000 46,651 100,000 4,120 72,981 1,081

1.4 1.5 00

exact heuristic exact heuristic exact heuristic

number shifts 30,632 30,643 30,630 30,644 30,631 30,640

fairness violation 13 21 13 21 13 26
mean distance 7,757 7,751 7,794 7,798 8,062 8,024
computation time 14,072 779 2,411 673 1,505 657

much freedom for achieving solutions with 3=, zp € { {X;J , [Xlﬂ } This freedom no
longer exists, now that each coverage constraint is nearly tight in the min-max fair solution
% . . *
X*. For tight coverage constraints > cc(m)\{p.,..p} Xp = 1> We need an almost perfect
rotation of the covering pharmacies p € C' (m) \ {p1,...,px} in order to achieve an out-of-
hours plan with 37,7 zp € HX;J , [Xzﬂ } Unfortunately, synchronizing these rotations
across sets of covering pharmacies for different municipalities m € M is not always possible.
Hence, it is likely that there exists no out-of-hours plan that almost matches the min-max fair

solution.

Since the above adjustment is too strong, we consider different levels of tightening coverage
constraints. For this, we define a tightening coefficient 7 > 1 that determines the degree of
tightening: We only remove pharmacies p;, ..., p; from the set of covering pharmacies C' (m)
if we have 3 c o)\ (p1,...pr} Xp = 71 Note that we might already have }° () X, < 7T
for some m € M in the case of 7 > 1. These constraints are already tight and remain
unchanged. Thus, choosing 7 = 1 corresponds to the procedure above and 7 — oo yields no
adjustment at all. We test tightening coefficients 7 € {1.0,1.1,..., 1.5, 00} for analyzing the
effect of our approach. Since we are not able to compute any solution for 7 € {1,1.1} within
10,000 seconds, we increase the time limit to 100,000 seconds in order to analyze the effect

of tightening for small 7.

Table shows computational results for solving FSOHP exactly and the rolling horizon
heuristic with ¢ = 23 breakpoints for all 7 € {1.0,1.1,...,1.5,00}. We see that the problems
become increasingly difficult for smaller 7. In fact, we are not able to compute any solution
for 7 < 1.2 within 100,000 seconds using the exact approach. Interestingly, the computed
optimal solutions for 7 > 1.3 all have the same objective value when neglecting the small
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variations in the number of shifts, which are within optimality tolerance of 0.1%. Choosing
7 = 1.3 over 7 = oo thus yields an equally efficient plan while reducing the mean distance by
4.6%. However, the computation time of 72,981 seconds (20.3 hours) of the exact approach
is rather high for 7 = 1.3.

The rolling horizon approach is more practical, as it computes solutions much faster. Moreover,
the heuristic solutions for 7 > 1.3 are similar to the corresponding optimal solutions in terms
of the total number of shifts and the fairness violation. Even for 7 € {1.1, 1.2}, for which
the exact approach yields no solution at all, the heuristic solutions are close to the min-max
fair solution: For 7 = 1.1, we have 47 pharmacies with 3, = 1 and one pharmacy with
Bp = 2, which implies that 2,243 out of the 2,291 pharmacies are assigned a number of shifts
>te[r) Tpt € { LX;J , {Xﬂ } For 7 = 1, we observe a larger increase in the total number of
shifts and the fairness violation. It is unclear whether this worsening is inevitable due to
the tightened constraints or whether it is due to bad decisions taken in the rolling horizon
approach, during which most subproblems could not be solved to optimality. The exact
approach yields a dual bound on the objective value of 89,702, provided by the optimal
continuous solution, which indicates that there might be a plan with roughly 30,702 shifts
and > cp ﬁf, = 59. However, the integrality gap for 7 = 1 might also be much larger due to
the already mentioned impossibility to synchronize the rotations of pharmacies implied by
tight coverage constraints.

In the following, we will consider the heuristic solution obtained for = = 1.2, as it can be
computed in reasonable time. In comparison with 7 = oo, the solution provides a reduction
of 5.5% in the mean distance together with a negligible increase in the number of shifts
and fairness violation. Thus, we achieve an improvement of the quality of coverage while
maintaining the same burden on the pharmacists. The improvement is particularly noticeable
for towns located between larger cities, such as Langenfeld, where the mean distance is
reduced by 24.9%.

The above observations once again show that min-max fair solutions are valuable for un-
derstanding and improving the structure of our coverage model. Moreover, we have seen
that the rolling horizon approach is still able to construct good out-of-hours plans for tighter
coverage constraints. This raises hope that the approach is also effective for other real-world
instances with different coverage structures.

8.6.3 Comparing OHP and FOHP

We conclude our case study by comparing the optimal plan computed for the OHP in the
last chapter to the plan for the FOHP with geographic-balancing as well as smoothed and
tightened coverage. We focus here on efficiency, quality of coverage, and fairness.

The plan for the OHP assigns a total of 30,139 shifts and is thus more efficient than the plan
for the FOHP, which assigns 30,670 shifts. However, the increase of 1.8% is surprisingly
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Figure 8.5. Comparison of the plans for OHP and FOHP. Left: scatter plot of mean distances from
municipality centers to their nearest out-of-hours pharmacy. Right: scatter plot of
numbers of shifts assigned to pharmacies.

small when bearing in mind that the min-max fairness approach, which is the foundation
of the FOHP, aims to reduce the number of shifts of the highly burdened pharmacies at
all costs. As already discussed in Section highly burdened pharmacies can usually
be relieved by a redistribution of shifts without assigning many additional shifts to other
pharmacies. The price of fairness thus seems acceptable for the planning of the out-of-hours
service. Note that, in order to achieve this level of efficiency for the FOHP, we replaced
the municipality-balancing, which is applied for the OHP, with the geographic-balancing.
Furthermore, we adjusted the coverage of five municipalities to smooth the assignment of
shifts. We thus may have gained the preservation of efficiency at the expense of a potentially
weaker local balancing and a potential decline in quality of coverage. However, we will see
later that the balancing in the plan for the FOHP is stronger. Additionally, we already showed

in Section [8.6.2.1| that the smoothing of coverage has only a negligible impact on the quality
of coverage.

The overall quality of coverage is better in the plan for the FOHP. Here, the mean distance
to the nearest out-of-hours pharmacy over all municipalities and the whole time horizon is
7,629 meters. The mean distance in the plan for the OHP is 8,049 meters, and thus 5.5%
higher. Note that this improvement is not due to the higher number of shifts in the plan
for the FOHP but due to the tightening of the coverage. From Table we know that the
plan for the FOHP without tightening has a mean distance of 8,024, which almost equals
that of the plan for the OHP. The left-hand plot in Figure shows the mean distance for
each municipality in the plans for the OHP and the FOHP. Most points are located below the
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diagonal line, indicating that the distance for the corresponding municipality is shorter in the
plan for the FOHP. Municipalities whose mean distance is significantly higher in the plan for
the FOHP are those in which pharmacies with many shifts have been relieved.

The right-hand plot in Figure shows the number of shifts assigned to each pharmacy in
the plans for the OHP and the FOHP. We see that all pharmacies with more than 25 shifts
in the plan for the OHP are assigned less shifts in the plan for the FOHP. In particular, the
redistribution results in a reduction of the maximum number of shifts from 61 to 41. In
return, some pharmacies that are assigned few shifts in the plan for the OHP receive more
shifts in the plan for the FOHP in order to relieve other pharmacies. Figure shows the
geographical aspect of the redistribution. We consider again the case of Monschau, located in
the southwest of the planning area, which we already analyzed in Sections[7.4.4]and [8.6.1]
In the plan for the OHP, the pharmacies covering Monschau are assigned up to 61 shifts,

while they are assigned at most 41 shifts in the plan for the FOHP. This is primarily due to
an increase in the number of shifts of a pharmacy in the municipality of Nideggen, which is
located in the left of the southwestern circles in Figure This pharmacy is now assigned 41
shifts instead of 14 shifts to relieve the other pharmacies covering Monschau. The approach
of using the min-max fair solution as an orientation thus resolves a crucial issue of the OHP,
which is that there was no incentive to evenly distribute shifts across municipalities.

We began this chapter by quoting Karsu and Morton [[60]]: “lexicographic approaches are very
inequality averse and considered by some studies as the “most equitable” solution.” With our
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plan for the FOHP being close to the min-max fair solution to the ALOHP, and the min-max
fair solution being “fairer” than any lexicographically optimal plan, we have successfully
constructed an out-of-hours plan that is almost lexicographically optimal. Thus, if we adopt
the point of view that lexicographic fair solutions are “most equitable”, then our plan can be
regarded almost maximally fair. This global fairness is important from a centralized planning
perspective, but it is not sufficient for gaining acceptance among pharmacists if the plan is
locally unbalanced: If pharmacists have to work many shifts more than their geographically
closest competitors, then they may feel treated unfairly. In order to quantify local balance, we
compare the number of shifts of each pharmacy with those of the surrounding pharmacies.
For this, let N [p] € (fl) be the set of pharmacies containing p and the ten closest pharmacies
p € P\ {p'} with respect to the distance § (p,p’). We consider the standard deviation

2
\/ZPIGN[;)] (”(p)_Zte[T] xp’t)

o(p) = N of the number of shifts of pharmacies within N [p] for

_ Lpeniy) 2oein) Tt

measuring the balance around p, where x (p) N is the mean number of
shifts.

Looking at the distribution of shifts in Figure the plan for the FOHP appears to be more
homogeneous than the plan for the OHP. Indeed, the mean standard deviation W
for the former plan is 0.96, while it is 1.32 for the latter. The plan for the FOHP thus yields a
better balancing on an aggregated level. Figure shows the standard deviation o (p) of
each pharmacy in both plans. We see that the maximum standard deviation is roughly 12 in
the plan for the FOHP and almost 18 in the plan for the OHP. The largest improvement in

balance is achieved for four pharmacies in Xanten, which are marked in Figure in the
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north of the planning area, whose standard deviation decreases from 16.3 in the plan for the
OHP down to 2.3 in the plan for the FOHP. The largest increase in the standard deviation is
from 2.1 up to 9.8, attained by two pharmacies in Nideggen, which are located in the right of
the southwestern circles in Figure This increase results from the more even distribution
of shifts in the southwestern Eifel region: The pharmacies in Nideggen are now assigned
more shifts to relieve other pharmacies, and thus the border between the highly burdened
pharmacies in the Eifel region and the less burdened pharmacies outside the Eifel region now
passes through Nideggen. Therefore, the increased standard deviation is not an expression
of a worse local balancing but, in fact, a result of a smoother transition between the highly
burdened and the less burdened pharmacies.

Whether the balancing in the plan for the FOHP is sufficient needs to be decided by practi-
tioners at the chamber of pharmacists, who are mandated to plan the out-of-hours service.
If they decide that some pairs of pharmacies are still too unbalanced, then our approaches
offer multiple possibilities to achieve a higher balance: We may apply stronger balancing
constraints, smooth the coverage with a negligible deterioration of the quality of coverage,
or even adjust the cover radii if we are willing to accept a worse quality of coverage. If
practitioners decide that a difference in the number of shifts is acceptable, then they can
easily justify the assignment: Due to the orientation towards the min-max fair solution, we
know that a pharmacy can only be relieved if we worsen the coverage or assign more shifts
to pharmacies with an already higher or equal burden.

8.7 Conclusion

In the preceding chapter, we demonstrated that our solution approaches enable us to compute
out-of-hours plans in short time that are efficient with respect to the total number of shifts.
However, we observed that the only provides an indirect control regarding an even
distribution of shifts among pharmacies, which results in unfair out-of-hours plans. We
addressed this issue in the current chapter by integrating fairness directly into our model.
We decided that the concept of lexicographic fairness is particularly suitable for achieving an
even distribution of shifts, as it relieves the pharmacies with the highest burden as much as
possible but does not result in an assignment of many additional shifts.

Since the computation of lexicographic fair plans is not practical, we considered the simpler
which arises from the original problem via aggregation over the time horizon. A
lexicographic fair solution to the ALOHP reflects the assignment of a number of shifts in an
idealized planning, which we use as an orientation for computing fair actual out-of-hours
plans. In order to solve the ALOHP, we considered the concept of min-max fairness, which is
stricter than lexicographic fairness and provides useful additional structure. We were able to
generalize and prove several statements from the literature and showed that we can compute
min-max fair solutions to the ALOHP within seconds with a water-draining algorithm.

Chapter 8 Integrating Fairness into the Planning of the Out-of-Hours Service



In our case study for the out-of-hours service in the area North Rhine, we observed that we
can compute out-of-hours plans that almost match the min-max fair solutions in terms of the
number of assigned shifts for each pharmacy. The computed plans thus have a high level of
fairness, as the min-max fair solutions itself can be seen as maximally fair. Furthermore, the
orientation towards the min-max fair solution enhances the explainability of our planning
to highly burdened pharmacists, as these can only be relieved by relaxing the coverage or
assigning more shifts to pharmacies with an already higher or equal burden.

In addition to their value for computing fair out-of-hours plans, min-max fair solutions are
also useful for analyzing the impact of adjusting planning constraints in a decision support
environment. Here, the min-max fair solutions serve as reliable predictors for the number of
shifts assigned, which can be computed within seconds. We demonstrated the potential of
this approach by applying some rather conservative but effective changes to the model. First,
we smoothed the coverage of rural municipalities with a minor deterioration of the quality
of coverage. Second, we tightened the coverage of municipalities with many surrounding
pharmacies, resulting in a negligible increase in the number of shifts. Decision-makers
might choose to apply stricter adjustments. If they aim to improve the coverage of a certain
municipality, then they may reduce the cover radius and directly analyze the effect on the
assignment of shifts using the min-max fair solution. Conversely, if they wish to reduce the
number of shifts of a pharmacy to a certain level at the expense of a worse quality of coverage,
then they can derive from the water-draining algorithm which coverage constraints need to
be adjusted to what extend. Hence, we not only computed fairer plans in this chapter but
also developed tools to adapt the planning more easily to the needs of decision-makers.

For future work, it would be interesting to extend the fairness concept by considering different
types of days. Out-of-hours shifts on Sundays or public holidays are less desirable than shifts
on working days, and should thus be distributed evenly among the pharmacies. An easy
approach would be to assign each pharmacy a fraction of % of all shifts on Sundays and
holidays, where X is the number of shifts in the min-max fair solution. However, this
neglects that the demand for out-of-hours pharmacies in cities is higher on Sundays and
holidays, and thus the corresponding constraints require the assignment of an above-
average number of shifts on these days. It therefore remains to be seen whether there exists
an elegant way of incorporating different types of days into the concept of using min-max
fair solutions.

8.7 Conclusion

209






Bibliography

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

ABDA - Federal Union of German Associations of Pharmacists. German Pharmacies:
Figures Data Facts. URL: https://www.abda.de/fileadmin/user_upload/assets/|
[ZDF/ZDF-2023/ABDA_ZDF_2023_Brosch_english.pdf]

T. Achterberg. “Constraint Integer Programming”. In: Ph. D. Thesis, Technische Univer-
sitat Berlin (2007). DOI:[10.14279/depositonce-1634]

T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. “Presolve reductions
in mixed integer programming”. In: INFORMS Journal on Computing 32.2 (2020),
pp. 473-506. DOI: [10. 1287/1j0c.2018.0857}

T. Achterberg, T. Koch, and A. Martin. “Branching rules revisited”. In: Operations
Research Letters 33.1 (2005), pp. 42-54. DOI:{10.1016/5.0r1.2004.04.002}

T. Achterberg and R. Wunderling. “Mixed integer programming: Analyzing 12 years of
progress”. In: Facets of combinatorial optimization. Springer, 2013, pp. 449-481. DOI:
[10.1007/978-3-642-38189-8_18]

E. Alvarez-Miranda, 1. Ljubi¢, and P. Toth. “A note on the Bertsimas & Sim algorithm
for robust combinatorial optimization problems”. In: 40R 11.4 (2013), pp. 349-360.
DOI:[10.1007/510288-013-0231-6]

Apothekenbetriebsordnung in der Fassung der Bekanntmachung vom 26. September 1995
(BGBL. I S. 1195), die zuletzt durch Artikel 4a des Gesetzes vom 19. Juli 2023 (BGBL
2023 I Nr. 197) gedindert worden ist. URL: https://www.gesetze—im-internet.de/
lapobetro_1987/BJNRO05470987 .html{

Apothekerkammer Nordrhein. “Kammer im Gesprich”. In: Sonderausgabe Herbst 2013
(2013).

A. Atamtiirk. “Strong formulations of robust mixed 0-1 programming”. In: Mathemati-
cal Programming 108.2-3 (2006), pp. 235-250. DOI:{10.1007/s10107-006-0709-5|

A. Atamtiirk, G. L. Nemhauser, and M. W. Savelsbergh. “Conflict graphs in solving
integer programming problems”. In: European Journal of Operational Research 121.1
(2000), pp. 40-55. DOI:|10.1016/S0377-2217(99) 00015-6]

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wéichter. “Branching and bounds
tightening techniques for non-convex MINLP”. In: Optimization Methods & Software
24.4-5 (2009), pp. 597-634. DOI:[10.1080/10556780903087124]

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton Series
in Applied Mathematics. USA: Princeton university press, 2009. DOI: [10 . 1515
9781400831050

A. Ben-Tal and A. Nemirovski. “Robust convex optimization”. In: Mathematics of
Operations Research 23.4 (1998), pp. 769-805. DOI: [10.1287/moor.23.4.769|

A. Ben-Tal and A. Nemirovski. “Robust solutions of linear programming problems con-
taminated with uncertain data”. In: Mathematical Programming 88.3 (2000), pp. 411-

424. DOI:|10.1007/PL00011380}

211


https://www.abda.de/fileadmin/user_upload/assets/ZDF/ZDF-2023/ABDA_ZDF_2023_Brosch_english.pdf
https://www.abda.de/fileadmin/user_upload/assets/ZDF/ZDF-2023/ABDA_ZDF_2023_Brosch_english.pdf
https://doi.org/10.14279/depositonce-1634
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/s10288-013-0231-6
https://www.gesetze-im-internet.de/apobetro_1987/BJNR005470987.html
https://www.gesetze-im-internet.de/apobetro_1987/BJNR005470987.html
https://doi.org/10.1007/s10107-006-0709-5
https://doi.org/10.1016/S0377-2217(99)00015-6
https://doi.org/10.1080/10556780903087124
https://doi.org/10.1515/9781400831050
https://doi.org/10.1515/9781400831050
https://doi.org/10.1287/moor.23.4.769
https://doi.org/10.1007/PL00011380

212

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Ben-Tal and A. Nemirovski. “Robust solutions of uncertain linear programs”. In:
Operations Research Letters 25.1 (1999), pp. 1-13. DOI: [10.1016/S0167-6377(99))

[0ois-4

T. Berthold. “Measuring the impact of primal heuristics”. In: Operations Research Letters
41.6 (2013), pp. 611-614. pOI:[10.1016/7.0r1.2013.08.007}

D. Bertsekas and R. Gallager. Data networks. Second. Prentice Hall, 1992. URL:
[/ /web.mit.edu/dimitrib/www/datanets.html]

D. Bertsimas and D. den Hertog. Robust and Adaptive Optimization. Dynamic Ideas
LLC, 2022. 1SBN: 9781733788526. URL: lhttps://books.google.de/books?id=V |
RPzwEACAAT

D. Bertsimas, D. B. Brown, and C. Caramanis. “Theory and applications of robust
optimization”. In: SIAM Review 53.3 (2011), pp. 464-501. DOI:[10.1137/080734510}

D. Bertsimas, I. Dunning, and M. Lubin. “Reformulation versus cutting-planes for
robust optimization”. In: Computational Management Science 13.2 (2016), pp. 195-
217. DOI1:[10.1007/s10287-015-0236-2|

D. Bertsimas, V. F. Farias, and N. Trichakis. “The price of fairness”. In: Operations
research 59.1 (2011), pp. 17-31. DOI: |https://doi.org/10.1287/opre.1100.0865|

D. Bertsimas and M. Sim. “Robust discrete optimization and network flows”. In:
Mathematical Programming 98.1-3 (2003), pp. 49-71. DOI: [10.1007/s10107-0031

[03%6-4

D. Bertsimas and M. Sim. “The price of robustness”. In: Operations Research 52.1
(2004), pp. 35-53. DOI:[10. 1287/opre. 1030. 0065}

R. Bixby and E. Rothberg. “Progress in computational mixed integer programming—a
look back from the other side of the tipping point”. In: Annals of Operations Research
149.1 (2007), pp. 37-41. Do1: [10.1007/510479-006-0091-y}

K. H. Borgwardt. “The average number of pivot steps required by the simplex-method
is polynomial”. In: Zeitschrift fiir Operations Research 26 (1982), pp. 157-177. pot:
fttps://doi.org/10.1007/BF01917108]

J. Borsch. Keine Notdienstkreise mehr in Hessen. Deutsche Apotheker Zeitung. 2023.
URL: https://www.deutsche-apotheker-zeitung.de/news/artikel/2023/08/11/
lkeine-notdienstkreise-mehr-in-hessenl

S. S. Brito and H. G. Santos. “Preprocessing and cutting planes with conflict graphs”.
In: Computers & Operations Research 128 (2021), p. 105176. DOI: [10.1016/j . cor}

E. K. Burke, P. De Causmaecker, G. V. Berghe, and H. Van Landeghem. “The State of
the Art of Nurse Rostering”. In: Journal of scheduling 7.6 (2004), pp. 441-499. poI:

[10.1023/B: JOSH.0000046076.75950.0bl

C. Biising, T. Gersing, and A. Koster. “Recycling Inequalities for Robust Combinatorial
Optimization with Budget Uncertainty”. In: Integer Programming and Combinatorial
Optimization. IPCO 2023. Ed. by A. Del Pia and V. Kaibel. Vol. 13904. Lecture Notes
in Computer Science. Cham: Springer, 2023, pp. 58-71. DOI: [10.1007/978-3-0311

B2726-1 §

C. Biising, T. Gersing, and A. Koster. “Recycling Inequalities for Robust Combinato-
rial Optimization with Budgeted Uncertainty”. In: In Revision at Mathematical Pro-
gramming Series B, Preprint available at Optimization Online (2023). URL:

/optimization-online.org/?p=23462
P g/p

Bibliography


https://doi.org/10.1016/S0167-6377(99)00016-4
https://doi.org/10.1016/S0167-6377(99)00016-4
https://doi.org/10.1016/j.orl.2013.08.007
https://web.mit.edu/dimitrib/www/datanets.html
https://web.mit.edu/dimitrib/www/datanets.html
https://books.google.de/books?id=V_RPzwEACAAJ
https://books.google.de/books?id=V_RPzwEACAAJ
https://doi.org/10.1137/080734510
https://doi.org/10.1007/s10287-015-0236-z
https://doi.org/https://doi.org/10.1287/opre.1100.0865
https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.1287/opre.1030.0065
https://doi.org/10.1007/s10479-006-0091-y
https://doi.org/https://doi.org/10.1007/BF01917108
https://www.deutsche-apotheker-zeitung.de/news/artikel/2023/08/11/keine-notdienstkreise-mehr-in-hessen
https://www.deutsche-apotheker-zeitung.de/news/artikel/2023/08/11/keine-notdienstkreise-mehr-in-hessen
https://doi.org/10.1016/j.cor.2020.105176
https://doi.org/10.1016/j.cor.2020.105176
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1007/978-3-031-32726-1_5
https://doi.org/10.1007/978-3-031-32726-1_5
https://optimization-online.org/?p=23462
https://optimization-online.org/?p=23462

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

C. Biising, T. Gersing, and A. M. Koster. “A branch and bound algorithm for robust
binary optimization with budget uncertainty”. In: Mathematical Programming Compu-
tation (2023). DOI: [10.1007/512532-022-00232-2]

C. Biising, T. Gersing, and A. M. Koster. “Planning out-of-hours services for pharmacies”.
In: Operations Research for Health Care 27 (2020), p. 100277. 1SSN: 2211-6923. DOI:
fhttps://doi.org/10.1016/j.orhc.2020.100277]

M. Cardei and D.-Z. Du. “Improving Wireless Sensor Network Lifetime through Power
Aware Organization”. In: Wireless Networks 11.3 (2005), pp. 333-340. DoI:

S = = =

M. W. Carter and S. D. Lapierre. “Scheduling emergency room physicians”. In: Health
care management science 4.4 (2001), pp. 347-360.

G. Ceyhan and O. Ozpeynirci. “A branch and price algorithm for the pharmacy duty
scheduling problem”. In: Computers & Operations Research 72 (2016), pp. 175-182.
por:[10.1016/3 . cor.2016.02.007]

T. Christof and A. Loebel. POlyhedron Representation Transformation Algorithm (PORTA).

[https://porta.zib.de/| Accessed: 2023-10-24.

M. Conforti, G. Cornuéjols, G. Zambelli, et al. Integer programming. Vol. 271. Cham:
Springer, 2014. DOI: [10.1007/978-3-319-11008-0}

E. Danna, S. Mandal, and A. Singh. “A practical algorithm for balancing the max-min
fairness and throughput objectives in traffic engineering”. In: 2012 Proceedings IEEE
INFOCOM. 2012, pp. 846-854. DOI:[10.1109/INFCOM.2012.6195833]

G. B. Dantzig. “Maximization of a linear function of variables subject to linear inequal-
ities”. In: Activity analysis of production and allocation 13 (1951), pp. 339-347.

J. Edmonds. “Submodular Functions, Matroids, and Certain Polyhedra”. In: Combi-
natorial Optimization — Eureka, You Shrink!: Papers Dedicated to Jack Edmonds 5th
International Workshop Aussois, France, March 5-9, 2001 Revised Papers. Ed. by M.
Jinger, G. Reinelt, and G. Rinaldi. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 11-26. 1sBN: 978-3-540-36478-8. DOI: [10.1007/3-540-36478-1_2| URL:
[https://doi.org/10.1007/3-540-36478-1_2]

A. Ernst, H Jiang, M Krishnamoorthy, and D Sier. “Staff scheduling and rostering:
A review of applications, methods and models”. In: European Journal of Operational
Research 153.1 (2004). Timetabling and Rostering, pp. 3-27. 1SSN: 0377-2217. DOI:
[https://doi.org/10.1016/S0377-2217(03)00095-X}

M. Fischetti, F. Glover, and A. Lodi. “The Feasibility Pump”. In: Mathematical Program-
ming 104.1 (2005), pp. 91-104. pOI: [10.1007/s10107-004-0570-3]

M. Fischetti and M. Monaci. “Cutting plane versus compact formulations for uncertain
(integer) linear programs”. In: Mathematical Programming Computation 4.3 (2012),
pp. 239-273. DOI: [10. 1007/512532-012-0039-y]

V. Gabrel, C. Murat, and A. Thiele. “Recent advances in robust optimization: An
overview”. In: European Journal of Operational Research 235.3 (2014), pp. 471-483.
DOI:[10.1016/].ejor.2013.09.036]

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. Mathematical Sciences Series. W. H. Freeman & Co., 1979. URL:
[https://books.google.de/books?id=f jxGAQAATAAJ}

T. Gersing. Algorithms for Robust Binary Optimization. Dec. 2022. DOI:
[zenodo . 72633711

Bibliography

213


https://doi.org/10.1007/s12532-022-00232-2
https://doi.org/https://doi.org/10.1016/j.orhc.2020.100277
https://doi.org/10.1007/s11276-005-6615-6
https://doi.org/10.1007/s11276-005-6615-6
https://doi.org/10.1016/j.cor.2016.02.007
https://porta.zib.de/
https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1109/INFCOM.2012.6195833
https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/https://doi.org/10.1016/S0377-2217(03)00095-X
https://doi.org/10.1007/s10107-004-0570-3
https://doi.org/10.1007/s12532-012-0039-y
https://doi.org/10.1016/j.ejor.2013.09.036
https://books.google.de/books?id=fjxGAQAAIAAJ
https://doi.org/10.5281/zenodo.7463371
https://doi.org/10.5281/zenodo.7463371

214

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

T. Gersing. Computational Results: Algorithms for Robust Combinatorial Optimization
with Budgeted Uncertainty. Jan. 2024. DOI: [10.5281/zenodo . 10469044{

T. Gersing, C. Biising, and A. Koster. Benchmark Instances for Robust Combinatorial
Optimization with Budgeted Uncertainty. Dec. 2022. DOI:[10.5281/zenodo .7419028|

A. Gleixner, G. Hendel, G. Gamrath, et al. “MIPLIB 2017: Data-Driven Compilation of
the 6th Mixed-Integer Programming Library”. In: Mathematical Programming Compu-
tation (2021). DOI1:(10.1007/512532-020-00194-3|

Z. Gu, G. L. Nemhauser, and M. W. Savelsbergh. “Sequence independent lifting in
mixed integer programming”. In: Journal of Combinatorial Optimization 4 (2000),
pp- 109-129. DOI1: (10.1023/A:1009841107478]

Gurobi Optimization, LLC. Advanced user scaling. [https : / / www . gurobi . com /|
[documentation/9.5/refman/advanced_user_scaling.html| Accessed: 2022-09-27.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, Version 9.5. 2022. URL:
lhttp://www.gurobi.coml

C. Hansknecht, A. Richter, and S. Stiller. “Fast robust shortest path computations”. In:
18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2018). Vol. 65. OpenAccess Series in Informatics (OASIcs).
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 5:1-
5:21. DOI1:|10.4230/0ASTcs . ATM0S.2018.5]

C. Hohmann-Jeddi. System fiir gerechtere Notdienstpldne kommt. Pharmazeutische
Zeitung. 2022. URL: https://www.pharmazeutische-zeitung.de/system-fuery
|gerechtere-notdienstplaene-kommt-137095/]

IBM. IBM ILOG CPLEX Optimization Studio V12.6.3. URL: https://www.ibm. com/|
[products/ilog-cplex}

D. S. Johnson and M. A. Trick. Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993. Vol. 26. USA: American Mathematical
Soc., 1996. 1SBN: 978-0-8218-6609-2.

S. Joung and S. Park. “Robust Mixed 0-1 Programming and Submodularity”. In:
INFORMS Journal on Optimization 3.2 (2021), pp. 183-199. D01:{10.1287/ijoo.2019]

N. Karmarkar. “A new polynomial-time algorithm for linear programming”. In: Proceed-
ings of the sixteenth annual ACM symposium on Theory of computing. 1984, pp. 302-311.
DOL: [ittps://doi.org/10.1145/800057 . 808695}

)

R. M. Karp. “Reducibility among combinatorial problems”. In: Complexity of computer
computations. Springer, 1972, pp. 85-103. DOI:[10.1007/978-1-4684-2001-2_9|

O. Karsu and A. Morton. “Inequity averse optimization in operational research”. In:
European Journal of Operational Research 245.2 (2015), pp. 343-359. DOI1:{10.1016/j
[ejor.2015.02.035]

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Berlin Heidelberg,
2004. po1:|10.1007/978-3-540-24777-7]

L. G. Khachiyan. “A polynomial algorithm in linear programming (english translation)”.
In: Soviet Mathematics Doklady. Vol. 20. 1979, pp. 191-194.

F. Kocatiirk and O. Ozpeynirci. “Variable neighborhood search for the pharmacy duty
scheduling problem”. In: Computers & Operations Research 51 (2014), pp. 218-226.
DOI:[10.1016/] . cor.2014.06.001]

Bibliography


https://doi.org/10.5281/zenodo.10469044
https://doi.org/10.5281/zenodo.7419028
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1023/A:1009841107478
https://www.gurobi.com/documentation/9.5/refman/advanced_user_scaling.html
https://www.gurobi.com/documentation/9.5/refman/advanced_user_scaling.html
http://www.gurobi.com
https://doi.org/10.4230/OASIcs.ATMOS.2018.5
https://www.pharmazeutische-zeitung.de/system-fuer-gerechtere-notdienstplaene-kommt-137095/
https://www.pharmazeutische-zeitung.de/system-fuer-gerechtere-notdienstplaene-kommt-137095/
https://www.ibm.com/products/ilog-cplex
https://www.ibm.com/products/ilog-cplex
https://doi.org/10.1287/ijoo.2019.0042
https://doi.org/10.1287/ijoo.2019.0042
https://doi.org/https://doi.org/10.1145/800057.808695
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/j.ejor.2015.02.035
https://doi.org/10.1016/j.ejor.2015.02.035
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1016/j.cor.2014.06.001

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771]

[78]
[79]

B. Korte and J. Vygen. Combinatorial Optimization. Springer Berlin Heidelberg, 2018.
DOI:|10.1007/978-3-662-56039-6|

A. M. Koster and M. Kutschka. “Network design under demand uncertainties: A case
study on the abilene and GEANT network data”. In: Photonic Networks, 12. ITG
Symposium. VDE. 2011, pp. 1-8.

P Kouvelis and G Yu. Robust discrete optimization and its applications. USA: Springer,
1997. DOI: [10.1007/978-1-4757-2620-6]

S. Kuhnke, P. Richter, F. Kepp, et al. “Robust optimal aiming strategies in central
receiver systems”. In: Renewable Energy 152 (2020), pp. 198-207. DOTI:
[renene.2019.17.71dl

F. Kili¢ and N. Uncu. “Modified swarm intelligence algorithms for the pharmacy duty
scheduling problem”. In: Expert Systems with Applications 202 (2022), p. 117246. ISSN:
0957-4174. DOI: https://doi.org/10.1016/j.eswa.2022.117246|

A. Land and A. Doig. “An Automatic Method of Solving Discrete Programming Prob-
lems”. In: Econometrica: Journal of the Econometric Society (1960), pp. 497-520. DOI:
[10.2307/1910129}

T. Lee and C. Kwon. “A short note on the robust combinatorial optimization problems
with cardinality constrained uncertainty”. In: 40OR 12.4 (2014), pp. 373-378. DOI:
[10.1007/s10288-014-0270-7}

N. Leithéduser, D. Adelhiitte, K. Braun, et al. “Decision-support systems for ambulatory
care, including pandemic requirements: using mathematically optimized solutions”.
In: BMC Medical Informatics and Decision Making 22.1 (2022), pp. 1-20. DOI:
[/7doi.org/10.1186/512911-022-01666-%

J. T. Linderoth and M. W. Savelsbergh. “A computational study of search strategies
for mixed integer programming”. In: INFORMS Journal on Computing 11.2 (1999),
pp. 173-187. por: [[0.1287/1j0c.11.2.173}

A. Lodi and G. Zarpellon. “On learning and branching: a survey”. In: Top 25.2 (2017),
pp. 207-236. DOI:[10.1007/s11750-017-0451-6}

F. Margot. “Symmetry in Integer Linear Programming”. In: 50 Years of Integer Pro-
gramming 1958-2008. Ed. by M. Jiinger, T. Liebling, D. Naddef, et al. Springer Berlin
Heidelberg, 2009, pp. 647-686. DOI: [10. 1007/978-3-540-68279-0_17}

R. R. Meyer. “On the existence of optimal solutions to integer and mixed-integer
programming problems”. In: Mathematical Programming 7 (1974), pp. 223-235. DOI:
[10.1007/BF01585518|

M. Monaci and U. Pferschy. “On the robust knapsack problem”. In: SIAM Journal on
Optimization 23.4 (2013), pp. 1956-1982. DOI:|10.1137/120880355}

D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. “Branch-and-bound
algorithms: A survey of recent advances in searching, branching, and pruning”. In:
Discrete Optimization 19 (2016), pp. 79-102. DOI:(10.1016/j.disopt.2016.01.005|

J. R. Munkres. Topology. Second. Pearson Education, 2000.

W. Ogryczak and T. Sliwiniski. “On Direct Methods for Lexicographic Min-Max Op-
timization”. In: Computational Science and Its Applications - ICCSA 2006. Ed. by M.
Gavrilova, O. Gervasi, V. Kumar, et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 802-811. DOI: https://doi.org/10.1007/11751595_85]

Bibliography

215


https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-1-4757-2620-6
https://doi.org/10.1016/j.renene.2019.11.118
https://doi.org/10.1016/j.renene.2019.11.118
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117246
https://doi.org/10.2307/1910129
https://doi.org/10.1007/s10288-014-0270-7
https://doi.org/https://doi.org/10.1186/s12911-022-01866-x
https://doi.org/https://doi.org/10.1186/s12911-022-01866-x
https://doi.org/10.1287/ijoc.11.2.173
https://doi.org/10.1007/s11750-017-0451-6
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1007/BF01585518
https://doi.org/10.1137/120880355
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/https://doi.org/10.1007/11751595_85

216

[80]

[81]

[82]

[83]

[84]

[85]
[86]

[87]

[88]
[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971]

[98]

O. Ozpeynirci and E. Aglamaz. “Pharmacy duty scheduling problem”. In: International
Transactions in Operational Research 23.3 (2016), pp. 459-480. DOI: [10.1111/itor}
12204

M. W. Padberg. “On the facial structure of set packing polyhedra”. In: Mathematical
programming 5.1 (1973), pp. 199-215. DOI:[10.1007/BF01580121}]

K. Park and K. Lee. “A note on robust combinatorial optimization problem”. In: Man-
agement Science and Financial Engineering 13.1 (2007), pp. 115-119.

D. Pfeil, J. Pieck, and H. Blume. Apothekenbetriebsordnung, Kommentar. 11. Ergan-
zungslieferung 2014. Govi Verlag. 1sBN: 978-3-7741-0077-0.

B. Radunovic and J.-Y. Le Boudec. “A Unified Framework for Max-Min and Min-Max
Fairness With Applications”. In: IEEE/ACM Transactions on Networking 15.5 (2007),
pp.1073—1083.DOIJlO.11097TNET.2007.89623ﬂ

J. Rawls. A Theory of Justice. Harvard University Press, 1971.

“Richtlinien fiir die Dienstbereitschaft der offentlichen Apotheken im Bereich der
Apothekerkammer Nordrhein vom 19. Juni 2013”. In: vol. 30. Deutsche Apotheker
Zeitung, 2013.

S. Sarkar and L. Tassiulas. “Fair bandwidth allocation for multicasting in networks
with discrete feasible set”. In: IEEE Transactions on Computers 53.7 (), pp. 785-797.
DOI:[10.1109/TC.2004.30l

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

H. D. Sherali and W. P. Adams. A reformulation-linearization technique for solving
discrete and continuous nonconvex problems. Vol. 31. New York: Springer, 2013. DOTI:
[10.1007/978-1-4757-4388-3|

A. L. Soyster. “Convex programming with set-inclusive constraints and applications
to inexact linear programming”. In: Operations Research 21.5 (1973), pp. 1154-1157.
DOI: [10. 1287 /opre.21.5.1154

E. Speakman and J. Lee. “On branching-point selection for trilinear monomials in
spatial branch-and-bound: the hull relaxation”. In: Journal of Global Optimization 72.2
(2018), pp. 129-153. DOI:[10.1007/s10898-018-0620-7}

The SCIP Optimization Suite 7.0. ZIB-Report. Zuse Institut Berlin, 2020. URL:
|//optimization-online.org/?p=16345]

F. Wilcoxon. “Individual Comparisons by Ranking Methods”. In: Biometrics 1.6 (1945),
pp. 80-83. DoI: [10.2307/3001968]

Wissenschaftliche Dienste Deutscher Bundestag. “Grundgesetzlicher Anspruch auf

gesundheitliche Versorgung”. In: WD 3 -3000 -089/15 (Apr. 2015). URL:
[pundestag.de/resource/blob/405508/4dd5bf6452b5b3b824d8debefdad39dd/wd
[3-089-15-pdf-data.pdT}

L. A. Wolsey. “Facets and strong valid inequalities for integer programs”. In: Operations
research 24.2 (1976), pp. 367-372. DOI: 10.1287/opre.24.2.367}

L. A. Wolsey and G. L. Nemhauser. Integer and combinatorial optimization. Vol. 55.
John Wiley & Sons, 1999. por: [10. 1002/9781118627372]

V. Xinying Chen and J. Hooker. “A guide to formulating fairness in an optimization
model”. In: Annals of Operations Research 326 (2023), pp. 581-619. DoOI:
[/7doi.org/10.1007/510479-023-05264-y}

E. Zemel. “Lifting the facets of zero—one polytopes”. In: Mathematical Programming 15
(1978), pp. 268-277. DOI:[10.1007/BF01609032]

Bibliography


https://doi.org/10.1111/itor.12204
https://doi.org/10.1111/itor.12204
https://doi.org/10.1007/BF01580121
https://doi.org/10.1109/TNET.2007.896231
https://doi.org/10.1109/TC.2004.30
https://doi.org/10.1007/978-1-4757-4388-3
https://doi.org/10.1287/opre.21.5.1154
https://doi.org/10.1007/s10898-018-0620-7
https://optimization-online.org/?p=16345
https://optimization-online.org/?p=16345
https://doi.org/10.2307/3001968
https://www.bundestag.de/resource/blob/405508/4dd5bf6452b5b3b824d8de6efdad39dd/wd-3-089-15-pdf-data.pdf
https://www.bundestag.de/resource/blob/405508/4dd5bf6452b5b3b824d8de6efdad39dd/wd-3-089-15-pdf-data.pdf
https://www.bundestag.de/resource/blob/405508/4dd5bf6452b5b3b824d8de6efdad39dd/wd-3-089-15-pdf-data.pdf
https://doi.org/10.1287/opre.24.2.367
https://doi.org/10.1002/9781118627372
https://doi.org/https://doi.org/10.1007/s10479-023-05264-y
https://doi.org/https://doi.org/10.1007/s10479-023-05264-y
https://doi.org/10.1007/BF01609032

Computational Results for A
Chapter

The following tables list the exact computational result from Section
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Table A.1. Number of shifts assigned, sum of violations of balancing constrains and computation time
required for each solution computed by the variants ROL, ROL-Super, ROL-Delete, and
ROL-SuperDelete of the rolling horizon approach with numbers of breakpoints ¢ € [51].

ROL ROL-Super ROL-Delete ROL-SuperDelete

breakpoints shifts violation time shifts violation time shifts violation time shifts violation time
1 - 10,003 31,356 823 10,003 - - 10,003 31,356 823 10,003
2 - 10,003 31,997 962 10,003 - - 10,003 31,834 971 10,003
3 - - 10,004 32,746 1,053 10,002 31,726 1,001 10,003 32,002 963 10,002
4 32,929 1,199 10,002 32,129 762 10,002 - - 10,007 31,376 695 10,001
5 31,412 902 10,002 32,611 11 10,001 - - 10,005 31,317 2 10,001
6 33,314 1,230 10,002 32,815 908 10,001 31,388 1,038 10,002 31,267 0 9,326
7 33,436 1,165 10,002 32,971 724 10,001 31,235 867 10,002 31,008 557 10,001
8 33,507 810 10,001 32,220 633 10,001 31,284 958 10,001 30,320 2 10,001
9 - - 10,012 32,107 493 10,001 32,607 3 10,001 30,292 0 10,001
10 34,119 2 10,001 32,040 406 10,001 30,664 442 10,002 30,165 1 10,001
11 34,102 2 10,001 31,856 506 10,001 30,587 334 10,001 30,186 0 6,984
12 33,203 438 10,001 31,267 276 10,001 30,244 3 10,001 30,186 0 4,823
13 33,209 491 10,001 31,913 2 10,001 30,219 0 8,570 30,192 0 2,781
14 33,050 354 10,001 30,836 0 8,224 30,170 0 8,012 30,174 0 3,098
15 32,334 360 10,001 30,746 0 7,683 30,199 0 6,301 30,194 0 2,429
16 34,864 433 10,001 31,019 0 7,701 30,201 0 5,693 30,209 0 2,359
17 34,727 104 10,001 30,824 0 4,433 30,211 0 5,342 30,217 2 1,815
18 40,463 25,524 10,001 30,784 1 5,123 30,220 0 3,906 30,197 0 1,891
19 38,819 268 10,001 30,496 0 4,340 30,193 0 3,736 30,190 0 1,653
20 39,750 26,063 10,001 30,683 0 4,444 30,210 0 3,521 30,224 0 1,846
21 30,878 0 9,736 30,803 0 4,289 30,217 0 2,924 30,208 0 1,498
22 37,668 0 8,204 30,833 0 3,429 30,215 0 2,420 30,208 0 1,368
23 31,021 0 8,29 30,992 0 3,769 30,217 0 2,194 30,220 0 1,372
24 31,140 1 6450 31,004 0 3,054 30,221 0 2477 30,220 0 1,260
25 30,826 0 5897 31,068 0 3,402 30,226 0 1913 30214 0 1611
26 30,872 0 6,229 30,813 0 3,230 30,233 0 2,292 30,217 0 1,303
27 30,879 0 4732 30,851 0 3,260 30,236 0 1,909 30,233 0 1,195
28 30,981 0 5,635 30,939 0 3,010 30,229 0 1,889 30,222 0 1,070
29 30,828 0 4812 30,861 0 2380 30,224 0 1,722 30,215 0 965
30 30,997 0 4,132 30,991 0 2033 30,241 0 1,406 30,228 0 971
31 31,130 0 4,584 31,088 0 2,748 30,253 0 1,406 30,235 0 916
32 31,195 0 4,484 31,164 0 1,865 30,277 0 1,369 30,241 0 884
33 31,222 0 3,650 31,072 0 1,979 30,255 0 1,330 30,254 0 898
34 30,948 0 3,543 30,956 1 1,651 30,250 0 1,502 30,252 0 800
35 31,009 0 3,353 31,021 0 1,985 30,264 0 1,314 30,258 0 831
36 31,025 0 3,589 31,005 0 2,269 30,249 1 1,515 30,250 0 894
37 31,065 1 3,257 31,092 0 1,801 30,240 0 1,548 30,253 0 871
38 31,192 0 3,011 31,154 0 1,987 30,257 0 1,439 30,255 0 858
39 30,876 0 3,207 30,898 0 1,836 30,249 0 1,423 30,246 0 807
40 31,019 0 2,682 31,230 0 1,586 30,260 0 1,325 30,262 0 838
41 31,133 0 2,732 31,086 0 1,762 30,251 0 1,380 30,249 0 796
42 31,252 0 2,115 31,235 0 1,363 30,246 0 1,127 30,250 0 838
43 31,390 0 1,903 31,359 0 1,265 30,254 1 1121 30,247 0 758
44 31,339 0 1,991 31,402 0 1,307 30,245 0 1,180 30,261 0 774
45 31,475 0 1,404 31,503 0 1,005 30,272 0 1,100 30,271 0 803
46 31,521 0 1,581 31,551 0 1,045 30,284 0 1,093 30,278 0 816
47 31,567 0 1,293 31,591 0 1,017 30,298 0 1,085 30,294 0 817
48 31,617 0 1,428 31,609 1 1,072 30,289 0 1,112 30,274 0 796
49 31,664 0 1,585 31,475 0 1,084 30,305 1 1,150 30,269 0 764
50 31,474 0 1,312 31,485 0 1,033 30,308 1 1,162 30,307 0 788
51 31,538 1 1,347 31,455 0 997 30,307 1 1,185 30,300 0 840
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Table A.2. Number of shifts assigned, sum of violations of balancing constrains and computation
time required for different minimum numbers of shifts s € [15], using the approaches

ROL11-SuperDelete and ROL23-SuperDelete.

min. number

ROL11-SuperDelete

ROL23-SuperDelete

. relaxation shifts violation time shifts violation time
shifts s

0 25,835 27,403 651 10,001 26,520 0 8,942

1 26,083 29,289 0 9,104 26,585 0 9,116

2 26,375 27,642 733 10,001 26,622 0 8,887

3 26,715 28,767 0 9,095 26,941 0 8,595

4 27,080 29,280 0 9,254 27,307 0 6,122

5 27,501 28,689 1 10,001 27,712 0 3,606

6 27,966 28,759 517 10,001 28,139 0 2,509

7 28,443 30,821 2 9,182 28,613 0 2,186

8 28,929 29,373 328 10,001 29,094 0 1,871

9 29,451 29,552 0 8,339 29,600 0 1,627

10 30,078 30,186 0 6,984 30,220 0 1,372
11 30,858 30,946 0 2,902 30,971 0 1,355
12 31,846 31,902 0 3,074 31,929 0 1,087
13 32,996 33,059 0 1,987 33,069 0 930
14 34,483 34,546 0 3,166 34,617 0 2,639
15 36,174 36,224 0 1,675 - - -

Table A.3. Number of shifts assigned, sum of violations of balancing constrains and computation
time required for different balancing coefficients b € [5], using the approaches ROL11-

SuperDelete and ROL23-SuperDelete.

ROL11-SuperDelete

ROL23-SuperDelete

balancing : . o . . o .
relaxation shifts  violation time shifts violation  time
coeff. b

0 30,110 30,687 476 10,001 31,095 2 4,605
1 30,078 30,186 0 6,984 30,220 0 1,372
2 30,050 30,142 0 5,489 30,181 0 1,131
3 30,025 30,111 0 3,980 30,131 0 1,128
4 30,002 30,083 0 3,481 30,102 0 1,065
5 29,980 30,054 0 5,091 30,079 0 999
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