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The Perturbed Chain Polar Statistical Associating Fluid Theory (PCP-SAFT) equation of state (EoS) is widely
used to predict fluid-phase thermodynamics, but parameterization of PCP-SAFT for individual molecules is
often challenging. We propose a machine learning framework called ML-SAFT that can turn experimental data
in predictive models of PCP-SAFT parameters. We demonstrate methods for automated large scale regression of
PCP-SAFT parameters and thus create a large PCP-SAFT parameter dataset in the literature. We then evaluate

several machine learning architectures for predicting PCP-SAFT parameters. We find that our best model
provides accurate predictions for a wider range of molecules than existing predictive methods with 40 %
average absolute deviation (% AAD) in vapor pressure predictions and 8 % AAD in density predictions.

1. Introduction

Fluid-phase thermodynamic predictions are required for a range of
fine and bulk chemical applications, yet experimental parameterization
of thermodynamic models to predict fluid-phase thermodynamics is of-
ten time and labor-intensive. This motivates the long-standing research
interest in predicting parameters of thermodynamic models directly
from molecular structures. In addition to established approaches such
as group contribution [1-9] and quantum mechanical (QM) simula-
tions [10-15], recent work has shown that machine learning (ML)
methods can be used for predictive thermodynamics. A wide variety
of ML methods have been used for predicting activity coefficients and
solvation energies from molecular structures including matrix comple-
tion [16], graph neural networks [17-23], transformers [24] and a
variety of other architectures [25]. However, the limitation of these
works is their lack of thermodynamic consistency that comes with
rigorously derived equations of state [26] or their inability to predict
multiple thermodynamic properties.

To enable general and thermodynamically consistent predictions,
one approach is to predict thermodynamic model parameters [27-32].
This enables straightforward use of thermodynamic models in existing

process simulation software packages, which contrasts with approaches
that require replacing the full thermodynamic model with a neural
network [33-35]. Given the predicted parameters, the thermodynamic
model can in turn be used to predict thermodynamic properties. For
instance, Winter et al. [31] developed a model for predicting the
parameters of the NRTL activity coefficient model for a wide range of
binary mixtures.

In this work, we extend this approach of predicting parameters to
an Equation of State (EoS), namely Perturbed Chain Polar Statistical
Associating Fluid Theory (PCP-SAFT) [36], an established extension
of the original PC-SAFT EoS to include polar molecules [37]. With
the PCP-SAFT EoS, it is possible to express the residual Helmholtz
free Energy as a function of the PCP-SAFT parameters. All properties
computed from the PCP-SAFT EoS are derived from the Helmholtz free
energy and are therefore inherently thermodynamically consistent. The
advantages of PCP-SAFT include its ability to predict mixture properties
using parameters regressed on pure component data (though we only
explore pure component predictions in this work) and its accurate
representation of polar compound properties [38].

We introduce ML-SAFT, a framework for creating machine learn-
ing models that predict PCP-SAFT parameters, shown conceptually in
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Fig. 1. ML-SAFT is a framework for predicting PCP-SAFT parameters directly from molecular structures. PCP-SAFT parameters predicted by ML-SAFT can be used in any PCP-SAFT

implementation. Shown schematically is a density prediction.
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Fig. 2. Schematic illustrating the physical significance of the five PCP-SAFT parameters.

Fig. 1. The PCP-SAFT parameters are physically interpretable, but they
must be regressed or predicted for each molecule. Therefore, we de-
veloped a database (871 molecules) of regressed PCP-SAFT parameters
using experimental data and a combination of deep learning and heuris-
tics. We then carried out an evaluation of several machine learning
architectures for predicting these regressed PCP-SAFT parameters.

We note that Habicht et al. [39] recently developed a feed forward
neural network model to predict PC-SAFT parameters from molecular
fingerprints. The novelty of our framework is that we consider the
complete pipeline including parameter fitting, training different ML
models, and prediction of thermodynamic quantities. This enables us to
generate a larger database of regressed PCP-SAFT parameters compared
to the one used by [39]. Furthermore, we also consider the polar and
associating terms, enabling prediction of PCP-SAFT parameters for a
wider range of compounds. We also note that, concurrently to the
publication of our work, Winter et al. published an ML model that
embeds the PC-SAFT EoS into an ML model, specifically a Transformer
operating on SMILES strings called SPT, thereby circumventing the
need for parameter regression [40]. Our work offers an alternative
perspective by comparing several model architectures and training
approaches. Also concurrent to our publication, Esper et al. published
a large database of PCP-SAFT parameters [41]. It would be interesting
for future work to compare and integrate the approach by Winter et al.
with other ML models that are part of ML-SAFT such as RFs and GNNs,
and we would also in the future consider the larger database by Esper
et al. [41].

2. Methods
2.1. The PCP-SAFT equation of state

The Perturbed-chain Statistical Associating Fluid theory (PC-SAFT)
was first introduced to give an expression for the residual Helmholtz
free energy [36]. The expression is based on a contribution for hard
sphere interactions and a contribution for chain interactions. These two
contributions describe repulsion and shape via two parameters, namely
m, the number of segments in a chain of a component, and ¢, the hard
sphere diameter. In addition, a third term describes the strength of the
dispersion and is determined by the dispersion parameter ¢/k. These
parameters are depicted in Fig. 2. For a more in depth description of

the physical meaning of the PCP-SAFT parameters, we refer readers to
the dissertation of Sebastian Kaminski [42].

Two terms were added to account for polar and associating ef-
fects [37,43]; this updated EoS is referred to as PCP-SAFT, which we
use in this publication. The term accounting for polar interactions
includes the dipole moment y as an additional parameter. Although
other multipole moments can also be used in addition, for this study,
we only use the dipole moment for ML-SAFT. Finally, for the associ-
ation, two more parameters are introduced: k,p is used to determine
the association volume and e, is used to determine the association
strength. Therefore, the goal of ML-SAFT is to predict the six named
parameters for a molecule necessary in order to apply the PCP-SAFT
EoS. We use the implementation of PCP-SAFT in FeO, [44].

2.2. Baseline predictive PCP-SAFT methods

There are several methods in the literature for predicting PCP-
SAFT parameters. As comparisons to ML-SAFT, we evaluated two state-
of-the-art methods that use QM and a group contribution method,
respectively.

As a QM method, we applied the Segment-Based Equation of State
Parameter Prediction (SEPP) with the 6+2+2 parameterization [14].
SEPP obtains m, ¢, and e¢/k from a multilinear model that uses DFT-
calculated features as input, while the dipole moment u is obtained
directly from QM calculations. We conducted new DFT calculations
for this publication. An analysis of the surface charge density from
COSMO [45] was utilized to calculate the associating parameters e,
and k4. In contrast to the original publication [14], we used the
strongest associating site, although SEPP can take into account all
binary associating interactions. This simplification was made to ensure
that the predicted parameters could be used with most PCP-SAFT
implementations. Since the multilinear model in SEPP was only fit to
alkanes and polar compounds with oxygen and nitrogen, it is not valid
for halogens, which are abundant in our dataset.

We used the homosegmented group contribution method by Sauer
et al. [46] as implemented in FeO, [44]. We used the fitted group
parameters from [46] for all predictions. Some molecules in our dataset
were not already segmented into groups by [46], so we used an
algorithm from the python package thermo [47] to identify the groups
that should be used for prediction. A modified version of the SMARTS
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Fig. 3. Building a dataset for ML-SAFT: (a) A workflow was developed to automatically regress PCP-SAFT parameters to pure component experimental data. A machine learning
model (PaiNN) trained on a combination of DFT and experimental data was used to predict the dipole moments of the experimental dataset, and the other parameters were
initialized using standard values. (b-c) Example regression of PCP-SAFT to vapor pressure and density data for 2-ethoxyethanol using the Levenberg-Marquardt algorithm. The

dashed line in the density plot represents liquid density.

strings from Ruggeri and Takahama (see Supplementary Data 2) were
used in the fragmentation algorithm [48].

2.3. Building a dataset for ML-SAFT

2.3.1. Data extraction from the dortmund data bank

Experimental data were extracted from the Dortmund Data Bank
(DDB, 2022 version) [49], which contains data for over 40k unique
molecules. The software package Pura [50] was used to resolve the
name or CAS numbers available in the Dortmund database into a
cheminformatics friendly identifier, namely SMILES. Pura called on
PubChem [51], the Chemical Identifier Resolver [52], OPSIN [53], and
the Chemical Abstracts Service [54] to resolve a name or CAS number,
and we required that at least two services agreed on the resolved
SMILES. Pura resolved 68% (27.2k/40.3k) of names or CAS numbers
to SMILES. Many of the molecules that were not resolved did not have
CAS numbers or had obscure names.

The experimental data were subsequently filtered to obtain only
data that were reasonable for PCP-SAFT regression. Ionic molecules
were removed from the dataset as well as any molecules with temper-
atures outside the range 200-1000 K and pressures outside the range
10-10000 kPa. Densities greater than 2000 kg/m* were also excluded.
Ideally, we would use the critical points to filter data, but unfortunately
such data were not available in our dataset, so we simply remove
the highest pressure and temperature data as a heuristic. Finally, only
molecules with at least four density data points and five vapor pressure
data points were considered. After all filtering steps, the experimental

data for 988 unique molecules were available for regression of PCP-
SAFT parameters. This significant decrease in the size of the data set
from 27k to 1k by the filtering step has been noted in other attempts
to build models on data available in literature databases [55,56].

2.3.2. PCP-SAFT parameters regression

We used the well-established Levenberg-Marquardt (LM) least
squares algorithm and experimental vapor pressure and density data,
as shown in Fig. 3. The same initial guess shown in Table 1 was applied
for all molecules, which was based on the analysis of a large set of PCP-
SAFT parameters calculated by QM simulation (see Section 2.2) [14].
We considered relaxing these constraints but found that wide ranges
resulted in worse regression results. The following equation was applied
to calculate the sum of squared errors £; for molecule i:

(pfat,SAFT(Tj) _ pfat,EXP (Tj) >2
¥ p}s‘at,EXP (T] )

PPN P — o PR (T P\
+ Z 1,EXP
7 P, P))

where p‘i“” (T)) and pll. (T;, P;) are the saturation vapor pressure and the
liquid density for molecule i, respectively, at temperature T; and P;.
The superscripts SAFT and EXP represent PCP-SAFT predictions and
experimental data, respectively.

Only m, o, ¢/k were regressed for all molecules, and ¢, and x,p
were additionally regressed for associating molecules. Molecules were
considered to be associating if they had at least one hydrogen-bond
acceptor and donor site via RDKit [57]. The associating parameters

L. =

i
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Table 1
Parameters fitted in PCP-SAFT regression to experimental data.

Parameter name Bounds Initial value
m 1.0<m <10.0 3.26

o 25<0<50 3.69

e/k 100.0 < e/k < 1000.0 284

€4p 0.0 < €45 <4000.0 2400

Table 2

Data sets used to train PaiNN architecture for predicting dipole moments. ..
is the method used to generate dipole moments; DFT is density functional theory,
and Exp. is experimental.

Dataset Hyource Conformer type Size Ref.
QM9 DFT DFT 134 k [61]
CRC Exp. RDKit [60] 482 [62]
SEPP DFT DFT 1106 See Section 2.2

e4p and k,p were set to zero for these non-associating molecules.
We also found that associating parameter x,p could be set to 0.01
and not regressed for all associating molecules while maintaining low
regression error (see Table S1). Reducing the number of parameters to
predict simplified the downstream machine learning task.

We decided to predict the dipole moment u because previous work
has shown that adjusting the dipole moment causes regression to fail
due to high correlation with ¢/k [38,58]. Specifically, we trained a deep
learning model to predict dipole moments using a combination of DFT
calculated and experimentally determined dipole moments, as shown
in Table 2. Once trained, the model made dipole moment predictions
for hundreds of molecules in seconds. For the model architecture, we
chose a tensorial equivariant message passing neural network called
PaiNN developed by Schiitt et al. since it has been shown to give
accurate predictions of dipole moment [59]. Briefly, PaiNN takes as
input a relaxed conformer of a molecule and uses a series of message
passing steps on both a vector and rank three tensorial representation
to produce a representation of each atom. For training, we used the
conformer generation methods shown in Table 2, and for inference,
we used the RDKit ETKDGv3 algorithm to generate conformers [60].
Subsequently, the dipole moment was calculated using the final vector
and tensorial representations of the network:

N
/7 = [Z ﬁatom (‘71) + qamm(si )?l (2)
i=1
where s; is the vector representation and v; is the tensorial represen-
tation, 7; are the positions of the atoms and u,,, and q,,, are both
feedforward networks. Training for 63 epochs resulted in a validation
mean absolute error of 0.005 for held-out dipole moment predictions.

2.4. ML-SAFT machine learning models

For prediction of the regressed PCP-SAFT parameters from molec-
ular structures, we tested several machine learning architectures that
have previously been successfully applied to molecular property pre-
diction tasks. We included a random forest (RF) [63] and a standard
feed-forward network (FFN) that use ECFP4 fingerprints with 2048
bits as input features [64]. RFs are known to have strong perfor-
mance for molecular property prediction in drug discovery but are
less common in process systems engineering [65,66]. Feed-forward
networks were used successfully by Habicht et al. in previous work
on predicting PCP-SAFT parameters [39]. Furthermore, we developed
a standard message passing neural network (MPNN) [67] that has
previously been used to predict several thermodynamic parameters
including fuel properties [68] and activity coefficients [21,23]. MPNNs
use a molecular graph representation where atoms are represented as
nodes and bonds as edges. By iteratively passing information contained
in features between the nodes, the model builds up atom features,
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that are finally pooled (summed or averaged) to create a fixed length
learned feature vector, often referred to as a molecular fingerprint, that
can be passed through a feed-forward network. We also tested a variant
of an MPNN in which the encoder acts on edges (bonds) instead of
nodes (atoms); this architecture is called a directed MPNN (D-MPNN)
and has been shown to have state-of-the-art performance for molecular
property prediction [18,66].

All models were trained in multi-task mode to predict all param-
eters. All neural network models (FFN, MPNN and D-MPNN) were
trained for 1000 epochs to minimize the mean squared error loss
between the predicted and regressed PCP-SAFT parameters using the
Adam optimization solver [69] and the Noam scheduler [70]. The best
model checkpoint according to validation loss was used. The learning
rate was tuned for each model. We found that using dropout after
the pooling step in the MPNN and D-MPNN improved generalization
performance. For the MPNN and D-MPNN, the sum pooling function
was used (cf. [71]).

The hyperparameters for each model were explored using a quasi-
random design with a budget of 100 trials [72]. The best hyperpa-
rameters for each model architecture were selected by evaluating the
sum of the validation RMSE for all PCP-SAFT parameters. All the final
hyperparameters can be found in Table S4.

We experimented with two adaptations of ML to PCP-SAFT pre-
diction. First, since we could already distinguish between associating
and non-associating molecules using the heuristic from our regres-
sion (i.e., checking the number of association sites), we automatically
clamped the association parameters e,z and x,p to zero for non-
associating compounds. We evaluated this clamping of non-associating
molecules both as a post-processing step for all models and, for the
neural networks, inside the loss function of the neural network. Second,
we observed that there were more non-associating than associating
molecules in the dataset. Therefore, we tested oversampling of asso-
ciating molecules in each batch during neural network training using a
weighted random sampler:
wh =L 3)
ny
where w! is weight for a molecule i with association status A and n, is
the number of molecules of that association status in the whole dataset.
We call this oversampling procedure balanced association sampling.

2.5. Evaluation of predictive PCP-SAFT methods

To evaluate ML-SAFT models and the baseline predictive PCP-SAFT
methods, a set of 79 molecules was held out from training any models
and only used for testing. These molecules were selected such that the
majority could be predicted by SEPP and also had regressed parameters.
We then split the remaining 905 molecules into training and validation
(5%) sets using a clustering procedure. Specifically, ECFP fingerprints
with 2048 bits were generated using RDKit, and the k-means clustering
algorithm [73] was run on five dimensional projections of these finger-
prints from UMAP [74]. We found three clusters to most effectively
model the data, as shown in Fig. 4b. Upon manual inspection, we
found that the clusters represented chemically interpretable classes of
molecules such as alkanes and aromatics. Finally, the molecules were
assigned to the training and validation sets so that cluster proportions
in each split matched the cluster proportions in the overall dataset using
the Stratified Shuffle Split method in scikit-learn [75]. This ensured that
each split had a balanced set of molecules. As shown in Fig. 4c, the
functional groups in the train and validation splits were balanced, and
the test set had even numbers of molecules in each cluster.

We used two metrics for evaluation of the models. For the eval-
uation of the error between the parameter predictions and regressed
parameters, we applied the root mean squared error (RMSE):

RMSE = @
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Fig. 4. Data splitting for ML-SAFT datasets. (a) Schematic of the workflow for stratified splitting of the ML-SAFT dataset. UMAP [74] is used for dimensionality reduction of
2048 bit ECFP fingerprints followed by k-means clustering [73] and cluster splitting using stratified shuffle split in scikit-learn [75]. (b) 2D visualization of the clustering using
UMAP. (c) The frequency of the top five functional groups in each split are shown. The different functional groups are well-balanced between splits.

where y; is the regressed PCP-SAFT parameter and j; is the predicted
PCP-SAFT parameter. For evaluation of the predictions of density and
vapor pressure, we used the percent absolute average deviation (%
AAD):

%AAD =

# 100

Z QJ_Qj (5)

j J

where Q is the experimental value of vapor pressure or liquid den-
sity and O is the corresponding PCP-SAFT prediction. Note that, to
our knowledge, % AAD is the same as AARD used in some other
publications [76].

3. Results
3.1. A robust regression method for PCP-SAFT parameters

We sought to develop an automated approach to regressing the
PCP-SAFT parameters from experimental data. Since we used the same
initial guess for the regression of all 871 molecules in our dataset,
we first aimed to understand the quality of this initial guess across
the dataset. As shown in Fig. 5(a-b), the standard initial guess gave
liquid density initialization with 35%AAD on average, while the initial
accuracy for vapor pressure predictions were significantly worse with
an average of 367%AAD. The larger errors for vapor pressure are likely
due to the values for vapor pressure varying over several orders of mag-
nitude. However, after regression, most of the PCP-SAFT predictions
had less than 5%AAD, and the overall average was 2.31%AAD for vapor
pressure predictions and 0.33%AAD for liquid density predictions, as
shown in Fig. 5(c—d).

We compared our regressed parameters to a subset of molecules
that also had parameters regressed in the literature (see Figure S3 and
S4). There were discrepancies between our regressed parameters and
the literature values, particularly for associating molecules, reinforcing
that parameter degeneracy is a challenge for PCP-SAFT regression [38].
As we show in Figure S10 and S11, after models are trained on the
regressed data, model uncertainty could potentially be used to indicate
cases where parameter degeneracy is taking place; we find that a large
uncertainty in the model predictions is correlated with uncertainty in
the parameters regressed from experimental data.

Table 3

RMSE (lower is better) of each model architecture. The best score for each target
is marked in bold. RF: Random forest, FFN: Feed-forward neural network, MPNN:
Message-passing neural network, D-MPNN: Directed message-passing neural network.

RF FFN MPNN D-MPNN
m 0.44 0.72 0.88 0.74
4 0.14 0.24 0.29 0.29
e/k 16.67 32.85 30.79 37.68
€4p 172.25 315.24 450.23 376.38

3.2. ML-SAFT accurately predicts regressed PCP-SAFT parameters

To evaluate the accuracy of ML models trained to predict the
regressed PCP-SAFT parameters, we first compared the PCP-SAFT pa-
rameter predictions from the ML models with the regressed PCP-SAFT
parameters. Table 3 shows the RMSE of PCP-SAFT parameter predic-
tions from the various machine learning architectures (full parity plots
are shown in the SI). The RF with ECFP fingerprints overall performed
best in predicting PCP-SAFT parameters. The FFN, MPNN and D-MPNN
models perform worse, likely because they require more data for better
performance [77]. However, it most important to look at the end
thermodynamic prediction accuracy.

Table 4 presents the absolute average deviation from experimental
data of PCP-SAFT predictions of vapor pressure and liquid density using
the predicted PCP-SAFT parameters from various ML models. The RF
model gave the most accurate predictions for the vapor pressure with of
40% AAD, while the MPNN gave more accurate predictions the liquid
density for 8.3% AAD for the molecules in the test set. For the best
RF model, the error in vapor pressure and density comes primarily
from error in m. As shown in the PCP-SAFT parameter parity plots
(Figure S6), the RF consistently underestimates large m. As an example
molecule, 1-Perfluoroethyldecalosin has the highest overall error of
any molecule in the test set for vapor pressure predictions using the
parameters from the Random Forest (see Fig. 6). Here, the error in the
vapor pressure measurement is primarily driven by the large error in
m, as shown in Table 5. Similarly, to look at an associating molecule,
the errors for 3-heptanol are primarily due to errors in m as shown in
Table 6.
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Table 4

Comparison of thermodynamic predictions using PCP-SAFT parameters predicted by
ML-SAFT models only. The best score for each thermodynamic quantity is marked
in bold. n is the number of molecules in the test set that each method can predict.

FFN MPNN D-MPNN RF Regressed
n 73 73 73 73 73
%AAD p,,, 1403.93 79.32 61.46 39.93 2.46
%AAD pt 112.25 11.90 8.67 8.32 0.28
Table 5
PCP-SAFT parameters for
1-Perfluoroethyldecalosin.
RF Regressed
m 4.64 6.46
o 3.75 3.78
e/k 191 200
€48 0 0
Kup 0 0

Additional evaluations for models trained via cross-validation yield
similar results and can be found in Table S6; these results are consistent
with the results in Table 4. Additionally, in SI section S.9, we show that
there is not a strong correlation of error in vapor pressure or density
prediction with temperature or pressure.

We also note that we experimented with several methods to adapt
neural network training to PCP-SAFT parameter prediction. In our
experiments, we found that there was no significant difference be-
tween clamping the values of the association parameters to zero as
a post-processing step versus during training. Furthermore, balanced
association sampling did not offer any noticeable improvement in the
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Table 6
PCP-SAFT parameters for
3-Heptanol.
RF Regressed

m 3.91 4.27

c 3.60 3.58

e/k 241 241

€4p 1838 2054

Kap 0.01 0.01

accuracy of PCP-SAFT parameter predictions (see Table S4). While bal-
anced association sampling did improve predictions of the association
parameter ¢,p, it also degraded the prediction accuracy of the other
PCP-SAFT parameters and ultimately led to worse performance on the
thermodynamic predictions. Full results of hyperparameter tuning can
be found in Table S4.

To answer the question of whether certain classes of compounds
have high errors for vapor pressure and density predictions, we plotted
in Figs. 7 and 8 the distribution of % AAD for various functional groups.
Generally, errors for most functional groups are similar with a small
number of outliers in alkanes and halogens.

3.3. Comparison to existing predictive PCP-SAFT methods

We compared ML-SAFT to predictions from the QM method SEPP
[14] and the group contribution from Sauer et al. [46]. Please note that
the number of test molecules reduces to 65 as SEPP could not provide
predictions to 9 molecules due to its inability to predict halogens. When
comparing to SEPP, the RF produces more accurate vapor pressure
predictions, while SEPP leads to more accurate density predictions, as
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Fig. 6. PCP-SAFT predictions of vapor pressure and density data for 1-Perfluoroethyldecalosin using parameters from various models as well as using the regressed parameters.
The dashed line in the density plot represents liquid density.

Table 7
Comparison of thermodynamic predictions using PCP-SAFT parameters predicted by
ML-SAFT models and SEPP [14]. The best score for each thermodynamic quantity is
marked in bold. n is the number of molecules in the test set that each method can
predict.

FFN SEPP MPNN D-MPNN RF Regressed
n 65 65 65 65 65 65
%AAD p,, 1553.23 107.62 78.30 61.74 36.50 2.48
%AAD pt 124.02 4.49 11.64 8.77 8.10 0.25
Table 8

Comparison of thermodynamic predictions using PCP-SAFT parameters predicted by
ML-SAFT models and a group contribution method (GC) [46]. The best score for
each thermodynamic quantity is marked in bold. n is the number of molecules in
the test set that each method can predict.
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Fig. 7. % AAD in vapor pressure by functional group using PCP-SAFT parameters pre-
dicted by the RF. Groups are adapted from Ruggeri and Takahama (see Supplementary
Material) [48]. The number of molecules in the test set in each molecular family are
shown in parentheses.
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Fig. 8. % AAD in density by functional group using PCP-SAFT parameters predicted
by the RF. Groups are adapted from Ruggeri and Takahama (see Supplementary
Material) [48]. The number of molecules in the test set in each molecular family are
shown in parentheses.

GC FEN D-MPNN MPNN RF Regressed
n 11 11 11 11 11 11
%AAD p,, 123.68 83.60 61.43 55.92 35.28 1.49
%AAD p 8.44 29.68 8.23 15.66 13.11 0.17

shown in Table 7. However, SEPP has a significant associated computa-
tional cost that can extend into days, including conformer generation,
two DFT calculations, and a COSMO calculation. In contrast, ML-
SAFT methods immediately predict the PCP-SAFT parameters from a
SMILES string in milliseconds for each molecule while still maintaining
a competitive predictive accuracy.

Comparison with the group contribution method was impaired by
the need to convert molecules to groups prior to predictions. Only
11 of the molecules in our test set had functional groups that were
already parameterized in the database by Sauer et al. [46]. For this
small group of molecules, the RF predictions were significantly more
accurate than the GC method for vapor pressure. For the liquid density,
the predictions by D-MPNN were more accurate than those of the GC
method. Therefore, ML-SAFT resulted in higher accuracy compared to
the GC method (see Table 8).

4. Discussion

We proposed ML-SAFT, a machine learning framework for predic-
tion of PCP-SAFT parameters directly from molecular structures. We
developed a large database of PCP-SAFT parameters (871 molecules)
derived from the Dortmund Data Bank. ML-SAFT models trained on
this dataset quickly predicted the regressed PCP-SAFT parameters,
and these predicted PCP-SAFT parameters could be in turn used for
accurate predictions of thermodynamic quantities. Random forests had
the highest accuracy for the thermodynamic predictions of vapor pres-
sure, while D-MPNN also shows promising results for liquid density
prediction.
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The best ML-SAFT models perform comparably with or better than
established/non-ML predictive PCP-SAFT methods, such as SEPP and
GC, predictive PCP-SAFT methods while being applicable to a wider
range of molecules and giving fast predictions. Group contribution
methods require new molecules to be fragmented into groups, and
we found that a large fraction of molecules in our dataset were miss-
ing parameterized groups or could not be resolved by the automatic
fragmentation algorithm. On the other hand, the QM method used for
comparison, SEPP, currently is restricted to molecules without halogens
as the linear regression model was only fit on alkanes. Furthermore,
SEPP requires significant computational time for each molecule, while
ML-SAFT affords accurate predictions on a wide range of molecules in
milliseconds. We note that for some compound classes, such as amines,
data for model training is very limited or not readily available at all, so
predictions to these classes should be treated with caution. Here, more
data will be required to extend the applicability domain of the models.

There are several ways in which ML-SAFT could be improved. First,
we solely used vapor pressure and density data for regression, which
can result in parameter degeneracy. Including more experimental data
could potentially remove this issue. Second, the training data for ML-
SAFT was primarily small molecules with less than 15 atoms. Previous
work has shown that PCP-SAFT can effectively predict properties of
larger drug-like molecules (e.g., solubility) [78], and the success of
RFs and MPNNs in predicting the properties of drug-like molecules
suggests that ML-SAFT would be effective given sufficient training
data. Please note that drug-like molecules are significantly larger than
the molecules used for training and, therefore, predictions on drug-
like molecules using the current models are likely not accurate (see
Table S7). Third, we do not predict the binary interaction coefficients,
which has been shown to significantly improve the quality of PCP-SAFT
predictions for mixtures. Future work could address this limitation by
training models that contain message-passing between two molecular
graphs. This would be a next step towards accurate predictions of
multi-component mixture properties using PCP-SAFT.
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