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Abstract

Underground mines pose significant challenges, including hazardous working conditions, limited access, and the need to
ensure the safety of human workers. Digital transformation through the integration of modern technologies is essential to
mitigate these challenges and enhance the overall safety and efficiency of mining operations. This paper addresses the pressing
need for 5G connectivity for the digital transformation of underground mines and demonstrates its application through a live
3D point cloud mapping by a mobile robot. The results of the experiments conducted to validate the network’s performance
for such a use-case are presented. The first experiment involved testing the latency of the network over a test drift at various
loads. The second experiment involved mapping the drift and streaming the 3D point cloud map of the drift over the 5G
network. These initial experiments emphasize the potential of the 5G-enabled automation in underground mines and holds

promise in digitalizing underground mining operations.

Keywords 5G - Underground mines - Point cloud mapping - Network latency - Digital transformation

1 Introduction

The fourth industrial revolution has played a crucial role in
various sectors, laying the groundwork for future industrial
development. The mining and construction industries too
have witnessed a notable shift in focus, marked by the adop-
tion of strategies that incorporate cutting-edge technologies.
Ongoing efforts are underway to seize the vast opportunities
arising from this transition.

Digital transformation (DT) in the mining sector revolves
around the integration of advanced digital technologies and
modern methodologies to automate and digitalize various
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facets of mining operations. At its core, this transformation
is built upon three fundamental pillars: data, connectivity,
and decision-making (Ebert and Duarte 2018). The interac-
tion between these components is illustrated in Fig. 1.

Data, the first pillar, plays a pivotal role in the process
of DT. Recent advancements, have opened up vast amounts
of data in mining from various sources, including photo-
grammetric data sourced from UAV surveys and equipment
performance data with unprecedented level of detail. Fur-
thermore, contemporary mining operations are enhanced by
sensors enabling real-time monitoring of the mining envi-
ronment. These sensors measure various attributes such
as temperature, remote monitoring of machine health and
maintenance and the operational state of heavy equipment
through tele-remote operations. Leveraging these data ena-
bles mining companies to gain valuable insights, optimize
processes, and make informed decisions (Soofastaei 2020).

The second pillar, connectivity, forms the infrastructure
that binds the disparate elements of a mining operation into
a cohesive and interconnected network. Enabling seamless
data exchange along with real-time communication between
different components necessitates the need for robust con-
nectivity. This leads to improvement in overall operational
efficiency, allowing for timely responses to dynamic condi-
tions within the mining environment.
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Fig. 1 The different pillars of digital transformation in mining (Young and Rogers 2019)

Informed decision-making—the third pillar—empowers
mining entities, by contributing to improved productivity,
resource utilization, and overall operational performance.

Thus, in the context of DT, emphasizing the significance
of a stable interconnected network capable of streaming data
with minimal latency is crucial. Additionally, given that
mining sites are frequently situated in remote and dynami-
cally changing environments, the scalability of the network
requires a wireless infrastructure.

Yet, traditional wireless technologies like WiFi are
unlikely to meet the coverage, latency, bandwidth, and reli-
ability requirements presented by innovative use-cases.

The emergence of 5G technology shows potential to meet
these demands. Specifically, the promise of 5G communica-
tion networks to attain large bandwidths, low latencies, and
high reliability facilitates the implementation of diverse new
strategies for the digital transformation of the industry (Shafi
et al. 2017).

Despite the potential, there are limited studies and use-
cases on the digital transformation of construction and
underground mines using 5G, particularly in comparison
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to production environments. The inherent challenges of
unstructured and dynamic environments in construction and
mining have acted as barriers to the widespread adoption of
digital technologies. Unlike the relatively controlled setting
of manufacturing, the constant movement of heavy machin-
ery and personnel, coupled with the ever-expanding nature
of underground mines, has posed unique challenges for the
seamless integration of digital tools and solutions.

This paper contributes to the existing literature by show-
casing the successful integration of 5G connectivity with
mobile robots for live 3D point cloud mapping. In doing so,
insights on the potential of 5G in underground mining are
gained through a practical use-case.

2 Related work

The following section describes the existing literature
categorized into digital transformation, mapping in
underground mines and 5G in mining. In Sect. 2.1, exist-
ing literature on digital transformation in mining and
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construction is discussed, outlining its potential benefits.
A specific use-case of DT is detailed in Sect. 2.2 and
finally, the previous studies covering the integration of
5G technology in mining is referenced in Sect. 2.3.

2.1 Digital transformation

The construction and mining sectors are presently experi-
encing a digital transformation, heading toward the evo-
lution of more interconnected and intelligent systems.
Recent studies have centered on the automation of con-
struction machinery to improve efficiency and safety on
construction sites (Lee and Brell-Cokcan 2023, 2023a, b).

In Lee and Brell-Cokcan (2023), the researchers intro-
duced a novel methodology employing a deconstruction
machine to enhance the overall autonomy level, which
leads to increased controllability and safety along decon-
struction processes. In another stream of the work, a rein-
forcement learning (RL) framework is utilized to ena-
ble construction machines to discover efficient control
approaches for accomplishing tasks autonomously, with-
out human intervention. The policies formulated by these
agents can aid human operators by offering task-space
control (Lee and Brell-Cokcan 2023a) or transferring the
obtained knowledge through virtual fixtures back to the
human operator (Lee and Brell-Cokcan 2023b).

The mining sector is also undergoing a digital trans-
formation by adopting modern technologies to automate
and digitalize various processes of the workflow. Digital
transformation (DT) can take various forms in mining
such as remote operation centers (ROC) that facilitate
remote control and monitoring of mining operations;
positioning devices that enable tracking of people, equip-
ment, and other assets, leading to increased security and
productivity and analytic models for predictive mainte-
nance of machinery (Sganzerla et al. 2016). The need for
digital transformation (DT) in the mining industry arises
from the increasing prevalence of digital technology such
as automation, cameras, sensors, touchscreens, artificial
intelligence, etc. DT can help mining companies increase
efficiency and productivity, and leverage digital technol-
ogy for additional gains. Furthermore, the long-term suc-
cess of the mining industry is dependent on a labor force
with new skills (data management, analytics, digital lit-
eracy, etc.) (Young and Rogers 2019). Therefore, DT is
necessary for mining companies to remain competitive
and relevant in the digital age. Some aspects where DT
has been introduced in mining are: underground mapping
of mines, using network technologies (WiFi, 4 G, 5G) and
IoT for communication in mines.

2.2 Mapping in underground mines

Mapping in underground mines is an important use-case for
DT for several reasons. First, it helps to ensure the safety of
workers by identifying potential hazards and risks, such as
unstable rock formations or areas prone to flooding. Second,
accurate maps can also help to optimize mining operations
by identifying areas with high concentrations of valuable
minerals. Additionally, mapping can be used to monitor
changes in the rock mass, such as subsidence caused by
mining activities, which can help to prevent accidents and
ensure the long-term stability of the mine (Borg et al. 2017).
According to Roucek (2019), in security and search-and-
rescue scenarios, robots are supposed to create a map of
the affected area and identify locations of potential victims
or other relevant objects. These robots can be designed to
perform tasks that are too dangerous or difficult for humans
to do, and to reduce the risk of human injury or death in
underground mines.

There have been multiple attempts at generating maps
of underground mines using autonomous guided vehicles
(AGV). Losch (2018) discussed the design and requirements
of an autonomous robot for exploring and generating 2D
maps in an underground mine. The robot is equipped with
2D laser scanner, IMU, and wheel encoders allowing it to
operate in harsh environments where wireless communica-
tion is limited. In another attempt, Roucek et al. describe
a multi-robot system developed by the CTU-CRAS team
for the DARPA Subterranean Challenge (Roucek 2019).
Ebadi et al. surveyed recent progress and discussed future
opportunities for simultaneous localization and mapping
(SLAM) in underground mine mapping (Ebadi 2023a). The
paper discussed the attempts by multiple teams in develop-
ing multi-robot centralized systems focusing on pushing the
boundaries of autonomous robotic exploration and mapping
in complex underground environments. The main focus of
these challenges is to increase the safety and efficiency of
underground search-and-rescue missions.

2.3 5Gin mining

Borg et al. (2017) discussed the need for a high-speed, low-
latency network to support the real-time transfer of LIDAR
data from underground vehicles to the surface. The network
must be able to support a large number of connected devices
and provide reliable coverage throughout the mine.
Establishing a network in an underground mine poses
communication challenges due to the physical and dynamic
environment, requiring a robust, reliable, economical, and
flexible infrastructure. The physical environment is often
hot, humid, and dusty, which can affect the transmission of
radio frequency signals. Underground mines are dynamic
environments with regular movement of people and
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machinery, so the need to keep track of where equipment is
and where people are, while keeping both safe, is paramount.
Communications infrastructure needs to be such that it does
not obstruct equipment nor is stopped from operating by the
presence of equipment between transmitters and receivers.
Finally, communication solutions for underground opera-
tions need to be sufficiently flexible to deal with the different
bit rates, latency, and loss requirements of the applications
that use them (Branch 2021).

To handle the large amount of data required during auton-
omous navigation and mapping in the DARPA Subterranean
challenge, the CTU-CRAS team employed three different
wireless networks with varying levels of reliability, band-
width, and latency (Roucek 2019). The existing wireless
networks are often limited in their range, throughput and
latency capacities for large-scale operations. Existing solu-
tions to bypass these limitations include resource manage-
ment like compression and down-sampling of sensor data,
hierarchical map representation, and sparse pose-graph for
localization (Ebadi 2023b).

The emergence of 5G technology shows potential to
meet these demands. Specifically, the promise of 5G com-
munication networks to attain large bandwidth, low laten-
cies, and high reliability facilitates the implementation of
diverse new strategies for the digital transformation of the
industry (Borg et al. 2017). Emontsbotz (2024) presented
the successful outcomes of field trials for the application of
5G networks in construction sites and underground mines,
highlighting the potential for future advancements in these
industries. The study emphasizes the unique challenges and
requirements of these industries, and the need for adaptable
and flexible wireless communication networks to meet their
specific demands.

Branch (2021) compared 5G and WiFi in the context of
underground mining communications. While WiFi is com-
monly used to provide connectivity to devices in the extrac-
tion drive, it has limitations in terms of distance and vari-
able delay. On the other hand, 5G promises increases in bit
rates, low energy consumption, and low latencies, making it
a potentially attractive technology for underground mining.
The distributed nature and movement to the cloud of costly
base station functionality make 5G a much more economic
proposition for use in extraction drives than previous cellular
generations. Rao et al. presented a 5G-based architecture for
underground coal mine fleet management systems, leverag-
ing the benefits of 5G to address the challenges of unreliable
communication and precise positioning in the underground
environment (Rao 2022).

Although, the potential for 5G in the context of DT has
been identified, there is limited literature on practical imple-
mentations of DT using 5G in underground mines. The aim
of this paper is to bridge this gap by evaluating the perfor-
mance of 5G in mining through a practical use-case viz. live
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3D mapping using a mobile robot. Moreover, the knowledge
gained here can be transferred to 5G enabled use-cases in
dynamic above-ground environments such as construction
sites.

3 Experimental setup

This section is broken down into descriptions of the under-
ground mine (Sect. 3.1), the hardware system (Sect. 3.2), the
software used for processing and communicating the data
(Sect. 3.3), the network configuration which was used for
the experiments defined here (Sect. 3.4), and the general
description of the use-case (Sect. 3.5).

3.1 Sondershausen underground mine

The Sondershausen salt mine, operated by Gliickauf Sonder-
shausen Entwicklung- und Sicherungsgesellschaft mbH
(GSES), has been in operation since 1883. The deposit
is extracted using room-and-pillar mining at 650-750 ms
depth. Approximately 230,000 tons of raw materials are
extracted annually and transported to the surface via skip
haulage. GSES also operates an underground storage site
for non-recyclable waste and backfill mining, in which waste
from mining, construction and industry is used to backfill
cavities created by mining operations. The mine covers an
area of 32 km? and has approximately 80 km of open tunnels
called drifts. The mine layout is characterized by parallel
drifts intersected perpendicularly by crosscut drifts at regu-
lar intervals, creating a checkerboard pattern. The drifts are
rectangular, measuring 5 ms in height and 8 ms in width.
The 5G trial field comprises two drifts, A and B, at a depth
of -700 m. Drift A is a straight tunnel that spans approxi-
mately 950 m in length. The tunnel’s terrain features height
variations of about 50 m. The radio equipment is mounted
at the start of the drift and aligned with the drift’s central
axis. At an angle of around 45°, Drift B diverges from Drift
A and extends for 350 m until it terminates at a crushing
station that delineates the trial field’s boundary. The network
and live mapping tests were conducted in Drift A (Fig. 2).

3.2 Mobile robot platform

The mobile robot utilized in this project is based on a com-
mercial platform, INNOK, provided by Innok Robotics (see
Fig. 3). The INNOK platform has a four-wheel differen-
tial drive, making it the ideal mobile platform for the nar-
row tunnels of underground mines. Each of its wheels is
equipped with odometry encoders whose measurements are
read out using a USB-CAN Bus module.

To ensure full visibility of the environment and to
monitor robot’s operational state, a variety of sensors have
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Fig.2 Trial field in the Sondershausen mine, junction of drift A and
B

Ouster 3D
LIDAR |

SICK 2D
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Fig.3 The INNOK mobile robot used in this work. It carries sev-
eral sensors such as a IMU, 3D LIDAR and a 2D Laser Scanner. An
Nvidia Jetson Xavier module is used for onboard computing and a
Siemens 5G-router was used to transfer the data over the network

been integrated into the robot. Placed at the center of the
base, an inertial measurement unit (IMU), specifically the
Xsens MTi-30-2A8G4, offers critical information about
rotational speed and acceleration. Additionally, the robot
is outfitted with a 2D laser scanner, the Sick micro Scan
3, which aids in obstacle detection and the creation of 2D
environment maps for localization tasks. For 3D visualiza-
tion of the workspace, the Ouster OS1 128 3D LiDAR was
mounted at the front of the mobile robot.

The INNOK comes equipped with a compute mod-
ule with all the sensor drivers pre-installed. However, it
lacked the capacity to simultaneously process data from
multiple sensors and run various localization and mapping

algorithms. Hence, the NVIDIA Jetson AGX Xavier
(32GB) module was chosen to replace it.

The experiments in this study required us to remotely
communicate with the INNOK over 5G with a control PC.
To establish bi-directional wireless communication between
the INNOK and the control PC, the Jetson was connected to
a 5G capable router (Siemens SCALANCE MUMS856-1).

3.3 Software setup

The software setup of our robot, including communication
with the various onboard sensors and processing of the same
information, was built using the ROS framework. ROS is an
open-source middleware framework built to facilitate the
development of robotic systems. It provides libraries, tools
and packages which allow for hardware abstraction, inter
process communication, diagnostics and other processes
which are crucial for building robotic applications (Quigley
et al. 2009).

The raw data from the sensors were read out using exist-
ing ROS packages which were then published as ROS mes-
sages. To localize the the INNOK accurately in the drift, a
stable source of odometry was required. For this purpose,
the robot_localization package was used to combine the
odometry/pose information from the different sensor mod-
ules. Furthermore, to navigate remotely between waypoints
in the test drift, the slam_toolbox and the move_base pack-
ages were used.

To ensure consistent environmental measurements and
to prevent issues resulting from time discrepancies between
these two PCs, the Chrony (2022) package was utilized to
synchronize their system clocks. Here, the system clock of
the Control PC was used as the reference for the Jetson’s
clock.

3.4 Network setup

An overview of the network setup for the experiments is
shown in Fig. 4. A stand-alone 5G core was set up in the
designated control room. To ensure a direct link, the control
PC was tethered to the Enterprise LAN switch via ethernet
cable. The Enterprise LAN switch has a direct SFP+ (10
Gbit/s) connection to the 5G core. The control PC served
as the centralized hub for communication from which the
operator could visualize, monitor and control the INNOK.
As mentioned in Ebadi (2023a), centralized architectures,
where the sensor data from the robots are transferred to a
remote server, are a popular approach in robotic exploration.
Such a system allows for a human operator to analyze local
and global maps which enables mission-planning. Hence, we
opted to design our test experiment to reflect such a system.

The 5G test field is operated with two 5G radios (Erics-
son 4408). The radios were connected to the 5G core using

@ Springer
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Fig.4 The network setup in the underground mine

single-mode fiber optic cables and were mounted on the
ridge in the middle of the route to ensure even network
coverage.

The Siemens router mounted on the INNOK provided
the Jetson access to the 5G network. The router was then
configured to communicate with the control PC over the
5G network.

Setting up ROS communication between multiple remote
machines connected to different LANs, was a non-trivial
task. Typically, ROS implementations reside within local
networks where robots and PCs coexist within the same
LAN. Our experimental configuration, however, demanded
a cross-LAN communication paradigm, requiring PCs to
interact using their public IP addresses.

Since ROS communicates all data as plain text, it is
recommended to use encrypted communication protocols
while exposing the ROS-enabled systems to the internet.
The common methods to establish such a connection are
the following:

1. Virtual private network (VPN) (such as OpenVPN
OpenVPN 2023)

2. ROS-based cloud solutions (like Husarnet Husarnet
2023)

3. Port forwarding

VPN and cloud solutions are considered the more secure
solution. However, they come with some drawbacks. The
tunneling and encryption protocols in VPNs can add addi-
tional network overhead. As for cloud-based solutions,
they require routing the network packets to a remote server
which is not part of the stand-alone 5G core. As both these
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alternatives were not optimal for assessing the network’s
performance in the underground mine, and considering the
temporary nature of the experimental setup, the port for-
warding solution was selected.

The process of establishing bi-directional communication
between two ROS machines involved the following steps:

1. Port forwarding:

The initial step involved enabling port forwarding on
both the Core and the Siemens router. By ensuring that
the designated ports were open, the messages can be
between various nodes on both the computers.

2. Host configuration for node discovery:

To enable ROS nodes on each PC to identify those
operating on the other, the /etc/hosts file on each PC was
modified to include the public IP address of the other.

3. ROS master configuration: The final step involved
configuring the ROS_MASTER_URI environment vari-
able on both the control PC and the Jetson. The control
PC was designated as the ROS master. The ROS_MAS-
TER_URI variable on the Jetson was set to the public [P
address of the control PC and to localhost on the control
PC.

3.5 Use-case description

Throughout the experimental phase, the INNOK traversed
the drift, from designated starting point and progressing
toward the specified endpoint, as depicted in Fig. 5. This
trajectory specifically covered a section of the drift A
where the 5G network coverage was established. Due to
ongoing mining operations, involving large machine and
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Fig.5 The layout of the Sondershausen mine. The dashed line shows
the test drive stretch where the network and 3D mapping tests were
conducted

Fig.6 The INNOK during the test drive in Drift A

trucks often driving through this section, the length of the
test drive was limited to 60 m.

The network tests in the drift involved scrutinizing
aspects such as latency and bandwidth to gauge the effi-
ciency and robustness of the network under operational
conditions.

In the course of the live 3D mapping assessments, the
Ouster LiDAR, was employed to produce a 3D map of
the drift. This map was continuously transmitted over the
network to the control PC, offering real-time visual feed-
back to a remote operator. The network performance was
analyzed throughout the duration of the mapping tests.
Figure 6 shows the INNOK during the test drive.

In the sections below, a detailed description of both
tests and the outcomes obtained from these experiments
is provided.

4 Testdrive

This section consists of two parts. Section 4.1 describes
the first experiment conducted to measure the latency of
the network and in Sect. 4.2 the live point cloud mapping
experiment is detailed.

4.1 5G network performance

The experimental assessment aimed to scrutinize the
round-trip time (RTT) performance within a 5G network
under varying load conditions, considering its substan-
tial relevance in network infrastructures and controlling
mobile robots. To evaluate the latency within the 5G envi-
ronment, the tests were conducted utilizing the ping utility
to measure the RTT between the mobile robot platform
and the control PC. First, the throughput of the 5G network
was measured. The downlink and uplink throughput of the
network were found to be approximately 600 Mb/s and
140 Mb/s, respectively. Then, the investigation explored
how differing network loads, reflecting Empty conditions
and loads approximately at 40%, 70%, and near 100%,
impact RTT behavior. These varied load conditions were
instrumental in emulating real-world usage patterns and
evaluating the network’s responsiveness under differing
traffic scenarios. The analysis sought to decipher the impli-
cations of RTT variations on 5G network performance,
considering 5G’s promises of ultra-low latency and high
throughput. The tests were meticulously executed in the
test drift of a real mining site to ensure the accuracy and
reliability of the RTT data collected, see Fig. 6. By visual-
izing the RTT measurements using a box plot, this experi-
ment aims to offer insights into how 5G networks perform
under different load conditions, emphasizing the criticality
of latency management in realizing the full potential of
5G technology.

Under minimal load Empty, the RTT maintained a com-
paratively low mean of approximately 10ms. As the load
approached approximately 40%, 70%, and near 100%, a
progressive escalation in RTT was observed, yielding
mean RTT values of around 21 ms, 29 ms, and 104 ms,
respectively. Also under escalating network loads, the
standard deviations exhibited notable increments, indi-
cating a greater instability in communication. The Empty
network load condition yielded a standard deviation of
approximately 4 ms. As the network load intensified
to approximately 40%, 70%, and near 100%, the stand-
ard deviations increased to 11 ms, 12 ms, and 18 ms,
respectively.

These increasing RTT and standard deviations under-
score the amplified communication delay and instability,
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Fig.7 Analysis of RTT variations conducted on the 5G network
under different load scenarios

Table 1 The measured round-trip time for different network loads

Network load 0% 40% 70% 100%
(OMb/s) (240 Mb/s) (420 Mb/s) (600 Mb/s)

RTT mean 10 ms 21 ms 29 ms 104 ms

RTT std. dev. 4 ms 11 ms 12 ms 18 ms

indicative of the network’s reduced performance under
higher load conditions. The observed changes emphasize
the potential challenges for 5G highlighting the necessity
for load-aware resource management strategies to main-
tain low-latency and robust communication within 5G net-
works (Fig. 7, Table 1).

4.2 Live 3D mapping performance

The incorporation of digital processes in mining unfolds
many possibilities, particularly when implemented in tan-
dem with the capabilities of 5G technology. Among the
various potential applications, a standout use-case revolves
around the mapping of the underground mine’s constantly
expanding layout. Recognizing the prevailing usage of man-
ual 2D mapping techniques by GSES, the main focus was to
create a static 3D point cloud maps for the drift.

The mapping experiments were conducted over the same
section defined in Fig. 5. This test section had no ground-
level obstructions and a gentle upwards slope. In addition to
the structural considerations, the mining environment pre-
sented challenges, in the form of substantial particulate mat-
ter in the atmosphere. Coupled with the absence of lighting
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within the drift, the effectiveness of camera-based mapping
solutions was expected to be significantly compromised.

Consequently, a deliberate choice was made to use the
Ouster LiDAR as the primary source for generating the 3D
point cloud map using the KISS-ICP algorithm from Univer-
sity of Bonn (Vizzo 2023). KISS-ICP uses a point-to-point
variant of the Iterative Closest Point (ICP) algorithm, which
is computationally more efficient than other variants, thanks
to a novel outlier rejection scheme. It generates a map based
on a voxel grid that is used to store a subset of 3D points.
Although, it was designed to be an lidar odometry solution,
there was minimal drift in the odometry over the linear test
drift throughout the tests. Thus, the map generated for the
point cloud registration was visually accurate enough to be
used for our purposes. Rather than aiming for an precise
representation of the tunnels, our objective was to scrutinize
the network performance when transferring large 3D point
cloud maps from the INNOK to the control PC.

As such, the map from the KISS-ICP algorithm was cho-
sen to be static point cloud map. The map was published on
a ROS topic as sensor_msgs/PointCloud?2 message type. The
Ouster LiDAR was operated at 1024 x 128 resolution with a
rate of 10 Hz. As the experiment progressed, the generated
map grew in size, and by the end of the test run, the gener-
ated point cloud averaged around 560 Mb/s approaching the
100% load of the network. The corresponding latency of
the network also increased linearly, aligning with the results
align with the network performance at 100 % load discussed
in Sect. 4.1.

In Fig. 8, different views of the generated 3D point cloud
map of the test drift are presented. To offer a comprehensive
perspective, Fig. 9 overlays the generated map on the 2D
layout of the underground mine. Our analysis of these maps
is primarily qualitative, as a quantitative assessment falls
beyond the scope of this paper. From Fig. 9, it becomes evi-
dent that the 3D map closely aligns with the cad drawings,
despite the challenging environmental conditions and the
absence of loop closure, indicating minimal odometry drift
in the results. Thus, the generated map has the potential to be
used in future applications like navigation, hazard monitor-
ing and search and rescue.

5 Discussions and conclusion

As the mining industry continues to embrace the possibili-
ties presented by digital transformation, the role of a network
capable of high bandwidth and low latency will become
increasingly pivotal. In this study, a mobile robot was used
to generate a 3D point cloud map of the tunnels of an under-
ground mine and the map was then live streamed to a remote
PC over a stand-alone 5G network.
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Fig.8 The generated 3D point
cloud map of the test drift of
the Sondershausen mine (from
different perspectives)

(a) Top View

Fig.9 A top-down overlay of
the 3D point cloud map of the
underground mine on the 2D
drawing

e Network latency: The experimental assessments con-
ducted in our study provide critical insights into the per-
formance of 5G technology in the challenging context
of dynamic environments such as underground mines.
At lower network loads, the network was stable and the
latency was as low as 10 ms. This characteristic aligns
with the promises of 5G, emphasizing its potential to
facilitate real-time communication crucial for applica-
tions like remote-controlled mining equipment. However,
as our mapping experiments unfolded and the size of
the generated map increased, the latency experienced

(d) Side View

e Pointcloud map: Despite unfavorable environmental

conditions such as lack of lighting, loose terrain and
presence of particulates in the atmosphere, the gener-
ated 3D map is visually close to the mine layout. This
means that, going forward, the generated map can serve
as a reliable reference for understanding the spatial layout
of the mine, aiding in tasks such as navigation, obstacle
avoidance, and overall situational awareness for mobile
robots or autonomous vehicles operating in similar chal-
lenging environments.

a gradual escalation, particularly as the network load  The findings emphasize the importance of conducting more
approached its maximum capacity. This observed spike ~ comprehensive studies to understand factors affecting 5G
in latency highlights a potential challenge when operat-  performance in the underground mining setting. Factors such
ing under high-throughput conditions such as multi-robot  as the size and complexity of data being transferred, the
explorations in large-scale mines, signaling the need for ~ density of connected devices, and the dynamic nature of the
further optimization and resource management. mining environment all contribute to the network’s behavior.
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Additionally, a noteworthy avenue for future research lies in
the direct comparison of 5G against existing technologies
such as WiFi.

Our study, hence, serves as a foundational exploration
into understanding the performance of 5G in underground
mining, paving the way for more in-depth investigations and
optimizations to harness the full potential of 5G technol-
ogy in underground mines. Additionally, this provides an
opportunity to extend this knowledge to the digitalization of
tunneling processes in the construction sector.

6 Future scope

Based on the conclusions of this study, the future scope of
integrating 5G technology with robotic underground map-
ping in mines envisions advancements in several key areas.
We plan to develop better data compression algorithms and
resource management methods to dynamically manage var-
ying network load. Additionally, our future work includes
developing multi-robot exploration algorithms specifically
designed for complex underground mines. These develop-
ments will open up the possibility of using multi-robot sys-
tems for mapping large-scale underground mines.
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