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The development of platforms for distributed analytics has been driven by a growing need to comply 
with various governance-related or legal constraints. Among these platforms, the so-called Personal 
Health Train (PHT) is one representative that has emerged over the recent years. However, in projects 
that require data from sites featuring different PHT infrastructures, institutions are facing challenges 
emerging from the combination of multiple PHT ecosystems, including data governance, regulatory 
compliance, or the modification of existing workflows. In these scenarios, the interoperability of 
the platforms is preferable. In this work, we introduce a conceptual framework for the technical 
interoperability of the PHT covering five essential requirements: Data integration, unified station 
identifiers, mutual metadata, aligned security protocols, and business logic. We evaluated our 
concept in a feasibility study that involves two distinct PHT infrastructures: PHT-meDIC and PADME. 
We analyzed data on leukodystrophy from patients in the University Hospitals of Tübingen and 
Leipzig, and patients with differential diagnoses at the University Hospital Aachen. The results of our 
study demonstrate the technical interoperability between these two PHT infrastructures, allowing 
researchers to perform analyses across the participating institutions. Our method is more space-
efficient compared to the multi-homing strategy, and it shows only a minimal time overhead.

Introduction
Motivation and current state of the art.  During the last decade, data-driven methodologies have found 
applications in a variety of research disciplines and have become even more essential with the introduction of 
more sophisticated data analyses such as Machine/Deep Learning1,2. Particularly in the healthcare domain, 
advanced analytics obtaining information from medical data has considerable potential to improve patients’ 
quality of life, enable more precise diagnostics and personalized treatments, and make healthcare infrastructures 
more efficient3,4. Data as such can only demonstrate its potential if it is available in a sufficiently large amount. 
However, due to its highly sensitive nature, patient data for research purposes is often sparse5. Furthermore, 
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recently introduced data protection regulations have made accessing and moving healthcare data more chal-
lenging, e.g., due to data immanent privacy risks6,7. As a consequence, external access for research purposes is 
often limited or even prohibited, leading to data becoming siloed within individual healthcare institutions6,8. This 
means that data is typically required to remain under the control of its originating entity. This situation motivates 
the adoption of methods for Distributed Analytics (DA), such as Federated Learning (FL), that have been intro-
duced to overcome these challenges of accessing and performing data analysis on distributed privacy-sensitive 
data8,9. The topic of DA has been considered and investigated in multiple initiatives and organizations, such as 
the European Health Data Space (EHDS - https://health.ec.europa.eu/publications/proposal-regulation-europe-
an-health-data-space_en), the German Medical Informatics Initiative (MII - https://www.medizininformatik-in-
itiative.de/en/start), or the German National Research Data Infrastructure initiative (NFDI - https://www.nfdi.
de/?lang=en). The main principle of DA results in a paradigm shift from pooling data at a single place to bringing 
the analysis task to the data9. This approach, by design, maintains the data controller’s sovereignty over the data, 
as it never leaves its original location. Moreover, this approach avoids moving high volumes of large medical data, 
e.g., Magnetic Resonance Images (MRI) or omics data, including high-throughput sequencing7,10.

A prominent representative of DA is the Personal Health Train (PHT)11–14. The PHT was created in the 
context of the GO FAIR initiative to facilitate privacy-preserving data analysis in a distributed fashion 
on medical data that has been collected (a) in hospitals representing a patient’s state and documenting all 
taken actions and (b) in medical research projects or studies, such as clinical trials (https://www.go-fair.org/
implementation-networks/overview/personal-health-train/). As part of the GO FAIR PHT Implementation 
Network, according to its manifesto, the German National Chapter focuses on the creation of standards, guide-
lines, specifications, and reference implementations for the core components of the PHT15. Since 2019, the 
German National Chapter has introduced two PHT ecosystems that have been developed and implemented 
in conjunction with various consortia (SMITH, HiGHmed, DIFUTURE, MIRACUM) of major initiatives in 
Germany (https://www.medizininformatik-initiative.de/en/node/5): One is the PHT implementation by de 
Arruda Botelho Herr et al., also known as PHT-meDIC (https://personalhealthtrain.de/), and the second is the 
Platform for Analysis and Distributed Machine learning for Enterprises (PADME - https://padme-analytics.de/) 
by Welten et al.16,17. While PADME was developed in coordination with SMITH and HiGHmed, PHT-meDIC 
was created in coordination with DIFUTURE and MIRACUM. Both systems were designed to operate on the 
basis of the specific assumptions established by the respective MII projects for which they were developed: 
PADME places a strong emphasis on service-oriented aspects, whereas PHT-meDIC focuses more on security 
aspects.

Although each infrastructure has demonstrated its capabilities across multiple projects, the ongoing challenge 
within the PHT context is to establish interoperability between different PHT infrastructures. This shortcoming 
is associated with the inherent complexity and multifaceted nature of interoperability, which has been regarded 
as the most challenging aspect of the FAIR principles18,19. According to Benson et al. and Kouroubali et al.,  
there are different types of interoperability, ranging from institutional, human, data, and technology interop-
erability19,20. Each type presents unique challenges that can make them hard to achieve19,20. In institutional 
interoperability, the variety of administrative procedures, legal standards, and organizational cultures presents 
significant challenges. Human interoperability, also known as process interoperability, requires coordination 
and shared understanding among people working within different systems and processes. Data interoperability 
faces hurdles due to non-standardized data formats and semantics across institutions. Finally, technological 
interoperability is complicated by the different technologies and platforms across systems, leading to issues 
with, e.g., compatibility. Enabling interoperability across various systems has been a long-standing problem and 
although interoperability offers multiple benefits and plays an important role in optimizing workflows, fostering 
data-sharing or collaboration, and reducing redundancies, there is a gap in exploring how analyses can be seam-
lessly exchanged between different PHT infrastructures18,19,21–26. Opening the boundaries of the infrastructure 
and enabling interoperability with external services (in our case, other PHT infrastructures) will facilitate the 
application of the FAIR principles and unlock the full potential of the PHT concept because researchers will have 
broader access to data sources for their data-intensive research.

Objectives.  Our aim is to elaborate a concept for interoperability among PHT ecosystems. Within this con-
text, we define the term interoperability between PHT infrastructures as the ability to individually configure anal-
ysis tasks in one infrastructure but allow to include data endpoints that are (potentially uniquely) connected to a 
second infrastructure. This requires the transfer of analyses across infrastructures while adhering to the technical 
specifications and security requirements of each ecosystem. Thus, our work is primarily focused on the technical 
dimensions of interoperability, which leads to our first research question (RQ1):

•	 RQ1: What are the requirements to enable (technical) interoperability across PHT infrastructures?
•	 RQ1.1: What specific architectural modifications or additional components are essential to enable interoper-

ability between distinct PHT infrastructures, ensuring seamless analysis exchange?
•	 RQ1.2: Can our solution enable cross-infrastructural data analysis within a real data use case?

In this study, given the variety of implementation methods for PHT, our focus is specifically on the concept of 
Container Trains27. This approach encapsulates the analysis code within a software container, which is then dis-
tributed across the PHT network27. Our goal is to maintain internal consistency within our involved infrastruc-
tures while investigating the potential and implications of interoperability in the scope of a Proof-of-Concept 
(PoC). In addition, we evaluate the feasibility of our implemented solution (RQ1.2) by conducting a data anal-
ysis using real patient data. By doing so, we aim to gain insights into the practicality and effectiveness of our 
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solution in a real-world scenario and aim to derive benefits from our concept compared with the approach called 
‘multi-homing’, i.e., hosting of two concurrent solutions in parallel28:

•	 RQ2: What are the potential benefits of our solution compared with multi-homing?

Contributions and findings.  The main contribution of this work is, to the best of our knowledge, the first 
study on interoperability in the context of the PHT and the corresponding challenges ahead. We introduce a 
conceptional framework for interoperability that comprises five integral layers: (0) harmonized data integra-
tion, (1) the establishment of unambiguous station identifiers, (2) the alignment of security protocols, (3) the 
definition of a metadata exchange schema, and (4) the overarching business logic responsible for train routing. 
These layers operate collaboratively to facilitate technical interoperability and are designed to comply with tech-
nical and security prerequisites. We demonstrate technical interoperability through a PoC that requires only 
minor modifications to the infrastructures involved, namely PADME and PHT-meDIC. We evaluate our solution 
through a real-world data use case that involves three institutions, the University Medical Center Leipzig, the 
University Hospitals Tübingen, and Aachen, all utilizing distinct PHT implementations within the context of the 
Leuko-Expert project (https://leukoexpert.hs-mittweida.de/).

We show that our PoC successfully facilitates interoperability, allowing us to exchange Container Trains 
between these two infrastructures and, ultimately, conduct cross-infrastructural data analyses. Furthermore, 
our PoC adheres to the security concepts in both infrastructures without making significant adjustments to 
the internal workflows (RQ1). We also demonstrate the advantages of our PoC in relation to resource efficiency 
and timely overhead (RQ2). Consistent with the objectives outlined in the manifesto of the German National 
Chapter (GO FAIR) described earlier, our work provides multiple impulses for PHT community to achieve 
interoperability at technical (and to some extent semantic) levels15. Additionally, it sets a reference for further 
adaptations in the interoperability of the PHT as a whole. From the perspective of end-users, particularly sci-
entists utilizing either of these infrastructures, our findings offer considerable benefits. Users can retain their 
preferred infrastructure while our interoperability concept allows them to increase their datasets, thereby 
expanding the scope of their research studies.

The remainder of this work is structured as follows. Results covers the concept of our work, its corresponding 
PoC, and the results of our data analysis as part of our feasibility study. Discussion summarizes the findings from 
our feasibility study and discusses the interoperability aspect, along with its advantages and disadvantages. The last 
section Methods presents the two involved infrastructures and gives an overview about interoperability in general.

Results
Within this section, we present our conceptual framework for interoperability, provide an overview of the prac-
tical implementation details of our PoC, and describe the evaluation of our PoC applied in a feasibility study 
with real-world patient data. Our PoC is applied to a study within the Leuko-Expert project funded by the 
German Ministry of Health. The objective of the project is to develop an expert system to aid in the diagnosis of 
the rare disease (RD) leukodystrophy, a genetic disorder that affects the brain and causes movement and sensory 
perception disturbances29. The project involves clinical and genetic data that has been collected and generated 
by the clinics in Aachen, Leipzig, and Tübingen (see Fig. 1) in Germany. In detail, the patient data is collected 
from two reference centers specialized in both childhood and adult variants of leukodystrophies, located at the 
University Hospitals of Tübingen and Leipzig. Furthermore, data is also collected from patients who received 
differential diagnoses at the University Hospital Aachen. Regarding data provision, the project relies on the data 
integration centers (DICs - https://www.medizininformatik-initiative.de/en/consortia/data-integration-centres) 
at the corresponding university hospitals that are part of the MII and facilitate external access to the data. The 
patient data used in this study is subject to privacy and ethical considerations and, as such, is not publicly avail-
able. Access to the data is restricted to protect patient confidentiality and comply with ethical guidelines. Data 
access will be provided upon request, taking into account the data-sharing infrastructure. To apply for data 
access, we refer to the Research Data Portal for Health (https://forschen-fuer-gesundheit.de, currently available 
only in German) or contact the DICs directly in Aachen, Leipzig, and Tübingen.

Our designed analysis ‘Data Discovery’ encompasses the execution of a train exchanged between the infra-
structures PADME and PHT-meDIC. In the Leuko-Expert scenario, the interoperability between these infra-
structures to analyze more data becomes desirable, since two DICs have deployed PADME and one has deployed 
PHT-meDIC (see Fig. 1). For exact implementation details, see our supplementary materials30. Note that the 
purpose of the feasibility study performed is to assess the practicability of our PoC and the selected analyses 
are arbitrary. Further, note that when we refer to interoperability, we are using it synonymously with technical 
interoperability or horizontal interoperability.

Conceptual framework for interoperability.  Among our key outcomes was the formulation of five dis-
tinct layers to achieve PHT interoperability. This layered methodology draws inspiration from the ‘Layers of 
Interoperability’ by Benson et al.19. Our layers have been derived from the review in the Methods section and their 
relationship is visualized in Fig. 2 and Fig. 3. The five layers can be summarized as follows:

•	 Layer 0 - Data integration. The foundational step in our multi-layered approach involves harmonizing data 
across different infrastructures. This layer focuses on aligning and integrating the different data formats, 
structures, and standards from various data sources into a unified format such that it can be seamlessly pro-
cessed by the analysis train.
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•	 Layer 1 - Assigning (globally unique) identifiers to stations. In order to transfer trains between infrastruc-
tures, it is necessary to establish a method for identifying the station unambiguously across infrastructural 
borders. This is essential to ensure the correct routing of trains between the infrastructures and stations.

•	 Layer 2 - Harmonizing the security protocols. The PHT infrastructures were developed with different 
requirements regarding the security protocols and the encryption of the train. Therefore, we formulate an 
overarching security protocol that aligns with infrastructure-specific requirements.

•	 Layer 3 - Common metadata exchange schema. By employing distinctive station identifiers (Layer 1), we 
establish the initial building block of a shared communication standard. As the security protocol also requires 
metadata for proper functioning (e.g., exchange of public keys), our third objective is to create a common set 
of metadata that facilitates technical interoperability and also extends to a first foundation for semantic com-
patibility. This layer primarily merges the metadata items from Layers 1 and 2 into a machine-readable format.

•	 Layer 4 - Overarching business logic. After we have established all the preliminaries mentioned above, we 
need to develop the actual business logic to transfer trains between the infrastructures from a technical per-
spective based on the route defined by the identifiers (Layer 1).

In the following, we describe each of the layers in more detail.

Layer 0 - Data integration.  Conceptualization.  In our scenario, the challenge lies in integrating three 
decentralized datasets from different institutions. Each institution houses its raw data in various clinical application 
systems. For example, as mentioned above, the data provided by Tübingen and Leipzig is highly specialized with 
respect to both childhood and adult variants of leukodystrophies, while Aachen only provides data on differential 
diagnoses. This data is unstructured and varies significantly in volume, format, and content, posing a significant 
challenge for standardization and integration. Therefore, a central data repository is needed in each institution that 
consolidates this diverse data in a more structured and accessible format. A key aspect of this integration process is 
the definition and implementation of a mutual data schema, such as the German MII Core Data Set (https://www.
medizininformatik-initiative.de/en/medical-informatics-initiatives-core-data-set). This schema provides a standard-
ized structure for the data, ensuring consistency and facilitating interoperability among the different institutions at the 
data level. Be aware that the design of such an ETL (Extract, Transform, Load) pipeline can vary widely, influenced by 
factors such as the nature of the data, the chosen data schema, and the specific technologies for data provision. In the 
subsequent section, we will briefly outline our specific strategy to harmonize the distributed data on leukodystrophy.

Fig. 1  Deployment of stations within the Leuko-Expert project. Leipzig and Aachen use a PADME station, 
whereas Tübingen utilizes a PHT-meDIC station. In Layer 0 (see Fig. 2), a Research Electronic Data 
Capture (REDCap) system is implemented at each institution to facilitate data provision. Since two PHT 
implementations are present, their interoperability might be desirable to enlarge the global dataset.
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PoC implementation.  In order to harmonize the data and make it analysis-ready, we store the data in a Research 
Electronic Data Capture (REDCap - https://www.project-redcap.org/) database system. REDCap is essentially 
designed for data collection and management in research studies and clinical trials and, therefore, suitable for 
our purpose31,32. At this point, we acknowledge that other technologies like Fast Healthcare Interoperability 
Resources (FHIR) could also facilitate data provision. However, in our scenario, REDCap was pre-installed at all 
participating sites and the medical teams were already familiar with this tool. For these reasons, we opted to use 
REDCap for our PoC. Each participating institution received a pre-compiled REDCap questionnaire, establish-
ing a data schema to collect, structure, and standardize patient data across all institutions. The process of filling 
out the questionnaires for each patient has been performed manually or by semi-automatic means by the clinical 
teams in each hospital. The results of the REDCap questionnaire, which we refer to as the dataset later, is divided 
into three distinct sections:

•	 Baseline: Master data that contains patient details such as sex, age, and diagnosis.
•	 Examination: Data that provides information regarding the patient’s health status. This includes, among oth-

ers, attributes such as abnormalities in higher brain functions or loss of libido that are defined in the Human 
Phenotype Ontology (HPO)33. The answers to the questions within this section encompass a wide spectrum 
of response types, spanning from yes/no/unknown options to open text fields.

•	 Genetics: Data that refers to genetics and serves as a documentation of the results obtained from genetic 
testing. This section includes details such as the observation year, the specific affected gene, and other attrib-
utes related to genes, such as the classification of the American College of Medical Genetics (ACMG) or the 
underlying mutation in the nomenclature of the Human Genome Variation Society (HGVS)34,35.

While the baseline section is mandatory for each patient, the others are optional and can consist of multiple 
instances (i.e., multiple examinations). In the final step, after all patient data instances have been entered into the 

Fig. 2  Our multi-layered framework for interoperability: From data integration to business logic. In 
our interoperability framework, Layer 0 is associated with the data level. The harmonization of station 
types, such as PADME or PHT-meDIC, is addressed in Layers 1 and 2, and to some extent in Layer 3. The 
overarching business logic is encapsulated within Layer 4 at the infrastructure level. The arrows illustrate the 
interdependencies and collaborative interactions across the layers: Layer 4 utilizes the metadata established by 
Layer 3 to navigate the trains through the infrastructures. Layer 3 consolidates the metadata produced by Layers 
2 and 1. Layer 2 then uses the unique station identifiers to secure the trains accordingly.

Fig. 3  Our concept for the train transfer between PADME and PHT-meDIC. Each ecosystem has a dedicated 
interface that can receive trains. After the train of another ecosystem arrived, it is ‘reloaded’ into an ecosystem-
specific and -compatible train (Layer 4). This can be interpreted as a ‘transfer station’ in the real-world, where 
cargo is reloaded from one train to another. Since each ecosystem adheres to its specific security protocol and 
the reloaded train contents are encrypted according to this protocol, we modularized each security protocol 
and make it available for the other ecosystem and vice versa. This is then used at the stations in order to decrypt 
(Layer 2) the contents - see Fig. 4 - using the metadata (Layer 3) attached to the train. The stations can be 
accessed through their unique station identifier (Layer 1).

https://doi.org/10.1038/s41597-024-03450-6
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REDCap system at each DIC, the REDCap database has been made accessible to the station software located at 
the respective DIC (see Fig. 1).

After the establishment of the data provision for the stations Aachen, Leipzig, and Tübingen, we need to 
move a layer up to ensure that the stations are accessible and can pull the trains. This includes assigning unique 
identifiers to the stations to provide a clear and unambiguous destination for the analysis train.

Layer 1 - Assigning (globally unique) identifiers to stations.  Conceptualization.  In this layer, we 
address the disambiguation of the stations within a PHT ecosystem, especially during the route selection process. 
Up until now, the infrastructures have been using their own custom station identifiers, creating a potential risk 
of ambiguities due to the absence of a shared agreement on these identifiers between different infrastructures. 
Furthermore, the lack of global identifiers prevents one from choosing stations that belong to a different ecosys-
tem for the train route. Therefore, we employ an additional authority on top of the infrastructures that acts as an 
indexing or directory service. In general, this approach is inspired by the well-established Domain Name System 
(DNS), which manages the namespace of the Internet36,37. Establishing such a namespace for the stations is our 
main objective, such that we can select stations for the train route and support the routing through our business 
logic (see Layer 4). In essence, we require that each station’s identifier must be a Uniform Resource Locator 
(URL). This URL represents the destination where the train is to be directed, enabling its execution at that par-
ticular station.

PoC implementation.  Taking inspiration from DNS servers, we use the Station Registry (SR - https://
station-registry.de/) as a component that serves as a central database for stations. Note that the SR has already 
been partially introduced in the work by Welten et al.38. Station administrators must register their stations at the 
SR before or after the installation and specify the affiliation of the station, e.g., in our case, either as a PADME or 
a PHT-meDIC station. Similarly to DNS, we have chosen a basic hierarchical structure for our station identifiers:

https://station–registry. de/ PADME/d7b0a9a7–07fd–4a31–b93a–3c946dc82667� ������������������ ������������������ � ���� ���� � ����������������������� �����������������������
authority affiliation UUID

Using these URLs, the business logic (as described in Layer 4) can effectively resolve the URLs and orches-
trate the routing of trains between stations. This process is analogous to how requests are navigated on the 
Internet, starting from a higher level (the PHT ecosystem) and moving down to a more granular level (the indi-
vidual stations). This hierarchical structure allows us to precisely locate each station, determine its association 
with a particular ecosystem, and dispatch the trains accordingly.

Fig. 4  Interaction of the security concepts of the PADME and PHT-meDIC platforms. The overarching security 
concept for each infrastructure represents a combination of both. In our scenario, the PADME security protocol 
is applied on top of the PHT-meDIC protocol, when the train is at a PADME station. At a PHT-meDIC station, 
the order of the protocols would be flipped: first the PHT-meDIC, then the PADME protocol.

https://doi.org/10.1038/s41597-024-03450-6
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After establishing a method to identify each station through its URL, our next step involves synchronizing 
the internal workflows of each station type, whether it is a PADME or PHT-meDIC station. In our study, this 
specifically entails the alignment of the security protocols used by each station, which is part of the next section.

Layer 2 - Harmonizing the security protocols.  Conceptualization.  The next aspect that we need to 
address is the conceptualization of an overarching security concept, coupled with the alignment of the PADME 
and PHT-meDIC security protocols. One crucial challenge is that each infrastructure adheres to its own pro-
tocols and workflows with respect to encryption or the signing of digital assets. To overcome this, we propose 
adopting modular software containers, a methodology suggested by Hasselbring et al.24, to enhance software and 
workflow portability. Consequently, our strategy involves the containerization of all security-related processes of 
each ecosystem’s workflows to enable interoperability24. With this strategy, we achieve the flexibility required to 
implement these workflows across various ecosystems, while also ensuring the seamless distribution of protocol 
updates without substantial modifications in other ecosystems. The extracted containerized workflow can serve 
as a supplemental service, accessible for other PHT ecosystems, allowing different infrastructures to integrate 
this service into their own workflows. Alternatively, a comparable and probably less resource-intensive approach 
to distributing security protocols in a container could involve structuring them in a library-like structure that 
is installed in each involved infrastructure. All in all, the overarching protocol requires the containerized pro-
cess steps to be arranged in sequence (see Fig. 4 as an example). The train undergoes decryption (pre-run) or 
encryption (post-run) incrementally, with each containerized module being invoked in succession to perform 
the necessary operations. The practice of nesting various workflows has the additional advantage that it can be 
applied multiple times, especially when more than two infrastructures are involved in the process. Having this 
concept in mind, we argue that the concept of this overarching security protocol, potentially comprising several 
sub-protocols, adheres to the established security policies of each PHT infrastructure involved, due to the sequen-
tial execution of each sub-protocol. In the following, we provide one exemplary integration of a security protocol 
in the context of our PoC.

PoC implementation.  In our PoC, the security and encryption protocols of the PHT-meDIC ecosystem have 
been modularized through containerization. The container code can be found in the supplementary materials. 
This module is then seamlessly integrated into the execution environment of the PADME station(s). Note that 
this modular approach is reciprocal; the PADME protocol can also be similarly containerized and integrated 
within the PHT-meDIC station. Conceptually and metaphorically speaking, we consider this module image as 
a supplementary train that can be pulled and placed next to the real train that arrives at a station. During train 
execution, both security protocols are executed in sequence while preserving the integrity of the original sys-
tem’s processes. The operation of this series of security protocols, as exemplified by our two protocols, is shown 
in Fig. 4 and works as follows:

•	 Train arrival (Beginning of process): Upon arrival at a PADME station, the train was secured with dual 
encryption: The external layer conforms to the PADME protocol, whereas the internal layer is encrypted 
following the PHT-meDIC protocol.

•	 Pre-run protocol of PADME (Decryption - Outer layer): The initial step involves the PADME pre-run pro-
tocol decrypting the external encryption layer.

•	 Pre-run protocol of PHT-meDIC (Decryption - Inner layer): After the decryption of the outer layer, the 
PHT-meDIC pre-run protocol decrypts the inner encryption layer, preparing the train for its execution.

•	 Train execution: Upon successful validation, the train is executed by the station environment.
•	 Post-run protocol of PHT-meDIC (Re-encryption - Inner layer): Post-execution, the train is re-encrypted, 

starting with the PHT-meDIC post-run protocol addressing the inner layer.
•	 Post-run protocol of PADME (Re-encryption - Outer layer): Following the inner layer’s re-encryption, the 

PADME post-run protocol re-encrypts the external layer.
•	 Train departure (End of process): This marks the completion of the entire train lifecycle at a station. After 

this step, the train is dispatched to the next station on the route.

In Layers 1 and 2 described above, we implicitly required metadata for each dispatched train. This includes 
details such as the station’s URL for precise train routing and security-related items such as the public keys of 
each station for encryption, which are especially crucial in Layer 2. To integrate these pieces of information into 
a single entity, we propose the creation of a unified data exchange schema. This schema will be instrumental in 
the decryption and encryption processes of the stations, as well as in directing the train on a given route. The 
formulation of this schema will be discussed below.

Layer 3 - Common metadata exchange schema.  Conceptualization.  The implementation of a mod-
ular security protocol (Layer 2) also requires the presence of metadata (e.g., public keys, hashes, or signatures), 
which plays a crucial role in ensuring proper functionality. Consequently, based on the initial two layers outlined, 
we identify an additional requirement: the establishment of a standardized metadata schema. As already pointed 
out by Lamprecht et al., software metadata is a necessity for (semantic) interoperability18. This corresponds to 
the definition of Benson et al., which characterize semantic interoperability as the capability ‘for computers to 
share, understand, interpret and use data without ambiguity’19. Hence, our aim is to develop a standardized set of 
metadata elements that can be used and exchanged in diverse workflows, ensuring that ‘both the sender and the 
recipient have data that means exactly the same thing’19. We aim for a solution that can be effortlessly expanded 
to incorporate security-related and infrastructure-specific requirements. We divide the metadata set into two 
categories:
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•	 Business Logic Metadata: This information is used by the business logic workflow, enabling tasks such as 
the routing of trains between stations. Within Layer 1, we have initiated the disambiguation of the stations by 
globally identifying them and incorporating them into the business logic metadata.

•	 Security Protocol Metadata: This category contains essential elements of modern security protocols and 
(asymmetric) encryption systems, such as public keys, hashes, and signatures that enable secure communica-
tion and data transmission by ensuring confidentiality, integrity, and authenticity39. The information provided 
can be utilized by the infrastructures to either apply external security protocols (as described in Layer 2) or 
their own protocols.

At this point, the question of the location of metadata storage for subsequent processing arises. Given the 
various possible approaches, such as centralized or decentralized storage, we require that the set of metadata is 
attached to the train and that each infrastructure handles it for internal business logic. This aligns with the train 
definitions proposed by Bonino et al., where trains are decomposed into metadata and the payload that contains 
the analysis27. Attaching metadata to the train offers the benefit of eliminating the need to query this informa-
tion from external services. This approach is also autonomous and does not rely on any central authority, which 
ensures that the information is readily available wherever it is required.

PoC implementation.  According to our conceptualization, we use a small selection of metadata items as 
depicted in Fig. 5. This schema covers business-related information concerning the train’s origin (e.g., the source 
repository), its creator, and the identifiers of the stations to be visited. Note that these (basic) items share similar-
ities with the definitions outlined by Bonino et al.27. Specifically, the route array captures essential station-related 
information and the station identifiers that have been introduced above in Layer 1. As each route item has a spe-
cific index the route can be systematically executed step by step. Additionally, the metadata includes the public 
keys of all participating entities, guaranteeing that assets can be encrypted in a manner that only the designated 
recipient can decrypt them. This is achieved in collaboration with the security protocols outlined in Layer 2, 
which process these keys. In terms of the integrity of the train contents, we also utilize signatures and hashes. In 
our particular case, each station’s public key is obtained from the SR. The installation and registration process 

Fig. 5  Metadata schema to enable interoperability. The schema contains information of two categories: Business 
Logic and Security Protocol metadata. Business Logic metadata is required for the train orchestration, while the 
security-related metadata is used by the security protocols.
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of a station in the SR necessitates the provision of its public key, which is then retrieved from the SR during the 
route selection. Before the train is dispatched, the metadata is attached to the train.

Once we have established an identifier mechanism (see Layer 1), aligned the security protocols involved 
(see Layer 2), and laid the groundwork for a common metadata exchange schema (see Layer 3), the next step is 
to facilitate actual technical interoperability. This implies that we leverage the work established in the previous 
layers to facilitate the exchange of actual trains between the two ecosystems, PADME and PHT-meDIC. In the 
following section, we will introduce a routine that outlines the business logic required for this process.

Layer 4 - Overarching business logic.  Conceptualization.  The objective of this layer is to perform the 
transfer of the analysis from one ecosystem to another. As the metadata attached to the train entails the concrete 
route information, the business logic is able to transfer the digital assets representing the train to a given desti-
nation. The destination endpoint can be a container repository, identified by a URL, to which the train can be 
sent for further processing. There might be several approaches and techniques to transfer and transform a train 
from one ecosystem to another. In the following, we briefly present our overarching business logic used to enable 
technical interoperability between PHT-meDIC and PADME.

PoC implementation.  We refer to Fig. 3 and Fig. 6 as a graphical representation of our overarching business 
logic to transfer (container) trains between ecosystems. From a top-level perspective (see Fig. 3), our business 
logic is modeled after the real-world practice of reloading cargo from one train to another. The encrypted con-
tents (the cargo) of the train, such as code and files, are unloaded from the arriving, external train and loaded 
into a new train that is compatible with the ecosystem.

From a technical perspective and to streamline the transfer of trains between ecosystems, we established a 
dedicated input repository (the ‘transfer station’) within each central service component. This repository is the 
designated location to which external trains should be pushed. A webhook monitors this repository, identifies 
incoming trains, and initiates the infrastructure-specific business logic to direct the train to its intended station 
after the train contents have been reloaded. This portal-inspired design decision has the advantage of keeping 
the actual stations private within the infrastructure, with only one repository accessible by external services or 
infrastructures. To send a train on its track, the entity requesting the train can select a route that utilizes infor-
mation from the SR, potentially including stations within the same infrastructure, as well as those that connect 
different infrastructures. If the next station is assigned to the current infrastructure, the standard business logic 
proceeds to dispatch the train. In the other case, when the next station is assigned to another infrastructure, the 
business logic needs to proceed differently: As shown in Fig. 3 and Fig. 6, the business logic of the sending infra-
structure detects the external station based on the metadata and transfers the train to the dedicated repository of 
the receiving infrastructure using a ‘push’ command (when using Container Trains). Subsequently, the receiving 
infrastructure’s business logic handles the train and prepares/reloads it for the next station along the route. The 

Fig. 6  PoC implementation of our interoperability concept involving the platforms PADME and PHT-meDIC. 
This figure shows the routing of the train from PHT-meDIC to PADME. The reverse route, from PADME to 
PHT-meDIC, follows a similar pattern.
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station receives the train and decrypts the envelope encryption using the modularized security protocol that has 
been introduced in Layer 2. After the execution of the train, it is re-encrypted using the envelope encryption and 
pushed back to the central service. Depending on the route, the train either remains in the infrastructure and is 
made available for the next station or is forwarded to the other infrastructure, following the same principle as 
described above. This cycle continues until all stations along the route have been processed.

Up to now, we have enabled the interoperability of the two involved ecosystems. Hereafter, we describe the 
evaluation of our PoC in the real-world setting of a research project.

Conducting cross-infrastructural analysis.  Upon completion of our PoC development, we validate our 
approach within a real-world scenario and real patient data. For our interoperability study, we have opted to 
conduct a basic statistical analysis of the leukodystrophy data at hand. Since our concept is based on Container 
Trains, we argue that other trains with various analytical functions will also operate successfully within our PoC. 
The process of our evaluation is shown in Fig. 7.

After we have deployed our described components in the previous section and in Fig. 6 (Step 1), we set up 
a station at each of the three sites - Aachen, Tübingen, and Leipzig - and ensure that the REDCap databases at 
these locations are accessible via these stations (Step 2). After passing the functional tests (Step 3), our infra-
structure is now operational. With access to the data, we can proceed with data analysis. The train design is part 
of the next section (Step 4).

Designing the ‘data discovery’-train.  The purpose of this study ‘Data Discovery’ is to initially inspect the data 
provided by the DICs, which, for example, can 1) support the identification of analogous studies that can be used 
as a reference point, 2) provide insights into the data quality, or 3) can be used as starting point for the design of 
a more sophisticated follow-up data analysis study. Since our work focuses on Container Trains, we create the 
train for our data analysis using Python (Version 3.10 - https://peps.python.org/pep-0619/) and Docker (https://
www.docker.com) as containerization technology. The train consists of two steps. The initial step involves load-
ing the REDCap data into the train, while the subsequent step involves the core data processing unit responsible 
for generating statistics and producing a PDF report for researchers. To streamline the data querying process, we 
have developed a custom data importer routine. This routine retrieves the data via direct access to the REDCap 
database, using the necessary credentials entered by the station administrator before initiating the train execu-
tion. For the creation of the report representing the analysis results, we gather several statistics. First, we deter-
mine the total number of male and female patients at each station (Table 1). Furthermore, we determine the age 
distribution at each station according to a k-anonymity level of 5 (Fig. 8)40. Lastly, we create plots showing the 
counts of the Baseline, Examination, and Genetic questionnaires (Fig. 9).

Execution and results of the analysis.  After creating the Container Train, we executed the train (Step 5) accord-
ing to our workflow depicted in Fig. 6. In summary, Figs. 8 and 9 provide an overview of the data underlying 

Fig. 7  Validation process for the PoC. Step 1 encompasses the deployment of the PoC (Layer 1–4). In Step 2, we 
set up the data provision using REDCap. Step 3 involves an initial test run to ensure operational functionality. 
Step 4 is dedicated to the development of the ‘Data Discovery’ train that performs the analysis. The final 
Step 5 includes executing the analysis, extracting results, and benchmarking our PoC to acquire quantitative 
performance metrics for our interoperability concept.

(a) Aachen

Sex Count

Male 140

Female 95

(b) Leipzig

Sex Count

Male 179

Female 71

(c) Tubingen

Sex Count

Male 116

Female 100

Table 1.  Number of males and females from the stations in Aachen, Leipzig, and Tübingen30.
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each station, providing information, such as the age distributions or the number of the Baseline, Examination, 
and Genetics sections in the questionnaire. The investigation of the age distribution, as shown in Fig. 8, indicates 
that in Tübingen, there is a balanced representation of male and female patients, most under the age of 20 years. 
This demographic trend is probably a result of the focus of the medical center on the treatment of leukodystro-
phies in children. On the contrary, Leipzig has a higher proportion of male patients and the majority of them are 
adults. Lastly, Aachen and Leipzig contribute more male patients than female (Table 1). Importantly, the dataset 
from Aachen is missing genetic data, as shown in Fig. 9, in contrast to the complete sets of questionnaires avail-
able from Leipzig and Tübingen. Measuring the impact of our interoperability concept in terms of the size of 
the dataset (number of patients), we come to the following conclusion. In cases where only one infrastructure is 
used, we either have 485 patients (Aachen + Leipzig) or 216 (Tübingen). However, through the interoperability 
of both ecosystems, we have achieved a total patient count of 701 (Aachen + Leipzig + Tübingen). These results 
highlight the success of our approach, enabling us to expand the total dataset and enhance our data-sharing 
capabilities.

Discussion
In this section, we briefly discuss our results from the feasibility study, our interoperability approach, and the 
pros and cons of multi-homing compared to our approach.

Feasibility study.  Our data analysis within our feasibility study demonstrates the functionality of our inter-
operability concept (RQ1.1). We state that the execution of the ‘Discovery Train’ within the scope of our PoC 
implementation has been successful, demonstrating that our interoperability concept including global identifiers, 
harmonized security protocols, a common metadata exchange schema, and an overarching business logic enables 
technical interoperability between PHT infrastructures. Although our PoC implementation is functional, we 
encountered several challenges throughout the development of our train, primarily stemming from the distrib-
uted nature of both infrastructures. One significant challenge was related to the debugging of the train. Due to the 
slight variations in the dataset (inconsistencies during data acquisition) between Tübingen, Leipzig, and Aachen, 

Fig. 8  The age distribution from the Aachen, Leipzig and Tübingen. We organized the number of patients into 
bins that are tailored to ensure compliance with a k-anonymity threshold of k = 530.

Fig. 9  The count of patients across the three sections: Baseline, Examination and Genetics30.
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we encountered some minor bugs during the execution of our train. These bugs emerged as critical single points 
of failure, requiring an additional development cycle to identify and fix them. Therefore, resolving these bugs 
proved to be a rather time-consuming task, demanding a significant level of communication and coordination 
between the three sites. The station administrators needed to inspect the error message output for potentially sen-
sitive information and subsequently provide a secure version of the error report to the train developers. To mit-
igate the occurrence of errors during the execution of the train, we identified two crucial factors that come into 
play. First, harmonizing the datasets through, e.g., the usage of REDCap across all participating stations is vital. 
Second, testing the train with mock data that closely resembles real data can help identify and resolve potential 
issues before they arise in the real execution environment. As a result, we conclude that the seamless flow of inter-
operability can be disturbed by debugging procedures during the analysis development phase. However, we argue 
that this challenge may also manifest itself within a single PHT ecosystem, even when there is no interoperability 
required. Another method to support the debugging process could involve employing a second schema, similar to 
the data schema, specifically for logging output. This would ensure that only privacy-compliant log information is 
generated and utilized for debugging purposes.

In general, the results of our study highlight the importance of the FAIRification of health data, particularly 
in terms of data interoperability, which we refer to as Layer 0 in our conceptual framework. Previous research, 
such as the FAIR4HEALTH project, has demonstrated that approaches like FL (in our case, the PHT), can ben-
efit from FAIR data41. These alternative methodologies on the data level, in contrast to our REDCap approach, 
are driven by FAIRification processes using, e.g., standards like HL7 FHIR or other technologies of the Semantic 
Web41–43. Overall, our research aligns with and complements the objectives and outcomes of existing interoper-
ability initiatives - with a focus to a different aspect of interoperability44–46. For instance, CrowdHealth focuses 
on data integration and interoperability, featuring an analytical platform built on top of the the data layer44. 
InteropEHRate propose standardized healthcare data exchange formats and protocols and aims to achieve 
semantic and technical interoperability through HL7 FHIR profiles46. A comparable approach is conducted 
by the SmartCHANGE project, where also FL has been applied45. In contrast, our efforts are directed towards 
enhancing technical interoperability between two already established (PHT) infrastructures, avoiding the cre-
ation of a new infrastructure from scratch. Our work leverages the containerization technology, which ensures 
that the (PHT) infrastructures are compatible with emerging and established data standards (e.g., HL7 FHIR), 
thus supporting these existing works on data interoperability44–47.

Interoperability: A detailed analysis.  As we have pointed out earlier, the aspect of interoperability is 
complex, multifaceted, and its assessment can encompass various dimensions, spanning from governance to 
technical perspectives. Since we focused on the technical aspects of interoperability, we will examine our concept 
of interoperability in accordance with the recommendations of Hasselbring et al.24. These recommendations are 
structured and based on the FAIR principles for research software ‘to make research software FAIR and open’24. 
Especially for interoperability, they have introduced four suggestions that offer qualitative assessment dimensions 
for evaluating our concept:

	 1.	 Provision of proper interface definitions in modular software architectures:
Both PHT-meDIC and PADME, were initially designed with inherent modularity. This modularity allows 
the separation of different software components, making it easier to integrate and adapt them for various 
purposes. Second, the SR is also a separate module of our global infrastructure that can be queried through 
Application Programming Interfaces (APIs). In our combined infrastructure, APIs serve as the bridge 
between different software modules, facilitating smooth communication and metadata exchange, e.g., the 
transmission of the trains. The security container also has predefined interfaces to de-/encrypt the train 
(see supplementary materials). This enhances interoperability and promotes reusability or scalability. We 
also involve dedicated public repositories that can be used to transfer trains from one ecosystem to another 
through predefined interfaces of the containerization technology.

	 2.	 Conformity to established software standards:
We follow established standards of the World Wide Web Consortium (W3C) and the Request for Com-
ments (RFC) of the Internet Engineering Task Force (IETF) to ensure that our metadata is interoperable 
and readable by other systems. In our specific context, we have chosen JavaScript Object Notation (JSON) 
as a widely recognized data interchange format. In terms of security and encryption, our schema en-
compasses all essential components (public keys, signatures, hashes) required for the implementation of 
well-established encryption standards, for example, as outlined in RFC 801739,48. Further, we adhere to 
common communication protocols, such as http(s), to exchange trains between the infrastructures.
In addition, in Layer 1 we use identifiers, such as UUIDs (RFC 4122), to provide clear and unambiguous 
identification for stations within both ecosystems49. This identification system follows a hierarchical and 
DNS-inspired concept that has similarities to the well-established routing principles used within the Web.

	 3.	 Usage of software virtualization techniques for portability:
Both PHT-meDIC and PADME, already utilize containerization as a means to encapsulate their com-
ponents and dependencies. Hence, the infrastructures follow this practice of interoperability from the 
beginning. A new aspect that arises from our concept is the containerization of security protocols, aimed 
at achieving portability and, consequently, fostering interoperability among diverse security protocols by 
nesting them. Containerization of the security protocol also enhances the scalability of our interoperabil-
ity approach, as it allows for the seamless integration of additional security protocols into the respective 
stations.
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	 4.	 Participation in artifact evaluation processes to evaluate interoperability:
Artifact evaluation processes in the context of research software are designed to assess the quality and reus-
ability of the software artifacts produced during research, in our case, the containerized security protocols. 
Up to now, we currently have an open issue regarding participation in such an artifact evaluation process, 
but we are committed to promoting interoperability through transparency and the provision of well-doc-
umented assets. All of our artifacts in this study are open source, which aligns with the FAIR principles by 
encouraging community collaboration and auditing processes.

Interoperability versus multi-homing.  An essential element of the discussion revolves around the 
comparison between the benefits of interoperability and what we term multi-homing - ‘the situation in which 
users tend to use several competing platform services in parallel’ as defined by the Directorate-General for 
Communications Networks of the European Commission28. In our specific PHT case, this implies that a single 
institution deploys at least two station software applications from at least two distinct PHT implementations and 
operates them concurrently. This scenario would make interoperability, as described in this work, redundant. 
Throughout our data analysis and execution of the train, we identified various factors that posed challenges to the 
multi-homing of both platforms. In the following, we discuss several disadvantages of multi-homing associated 
with hosting multiple platforms at a single location, in contrast to achieving interoperability, to answer RQ2:

•	 Increased Complexity: Multi-homing introduces an increased level of complexity. Institutional personnel 
must undergo training to proficiently manage and utilize two distinct systems, which requires significant 
investment in education and adaptation. In our specific situation, for instance, we would need to provide 
training to the personnel in Tübingen for operating the PADME station.

•	 Governance Challenges: Maintaining two infrastructures can entail governance hurdles. This involves 
obtaining approvals and ensuring compliance for both systems, which can be cumbersome and time-consum-
ing. Further, the introduction of a potential redundancy might raise the question of whether a second platform 
is even necessary. This would prevent the institutional authorities from multi-homing, which would lead to a 
quasi data silo as the data is only accessible through a single platform. This approach would limit the access of 
data to a certain initiative, project, or geographic area. In our case, for instance, PADME is set up in Aachen 
and Leipzig, while PHT-meDIC is based in Tübingen (see Fig. 1). However, data analysis should not only be 
limited to accessible locations but should also encourage cooperation between scientists and data providers 
on an interregional or international scale. Thus, achieving interoperability among these platforms allows for 
data access and sharing across different regions or initiatives. In the particular scenario we encountered in 
this work, the interoperability framework we developed allowed for the integration of data from three distinct 
institutions into our study that have been affiliated with different initiatives (e.g., SMITH or DIFUTURE).

•	 Security Risks: Especially in a sensitive environment such as healthcare, multi-homing opens the door to 
additional security concerns (related to the governance aspect). With two ecosystem endpoints active, insti-
tutions face additional attack vectors that could potentially make them more vulnerable to security breaches 
and vulnerabilities. Trivially, achieving interoperability with other platforms necessitates just one endpoint.

•	 Resource Consumption: Running several PHT stations simultaneously requires more resources. This results 
in increased operational costs and may strain the institution’s IT infrastructure (related to the increased com-
plexity aspect). Depending on where the software is deployed (e.g., in a cloud environment), an increased 
consumption of the resources might also impact the financial resources of an institution.

•	 Data Integration: Depending on the specifics of the infrastructures, data integration becomes a challenge. 
Data must potentially be integrated multiple times and made accessible through the PHT station application. 
Since data integration is inherently a time-intensive process, this stage would involve duplicating and storing 
data multiple times to ensure compatibility with multiple infrastructures (related to the aspect of resource 
consumption). Additionally, each multi-home may establish its own data schema and involve a unique data 
storage technology. When a clear schema mapping exists, this necessitates an extra step of transforming data 
from one schema format to another. If there is no defined schema mapping, this process becomes even more 
complex. In this work, we addressed this challenge through our Layer 0 defining a global data schema for the 
provided data to enable interoperability on the data level for both infrastructures.

•	 Analysis Development Overhead: When adopting a multi-homing approach, analysis development becomes 
a duplicate effort. In a heterogeneous landscape, where certain institutions use multiple PHT applications, 
while others do not, analyses may need to be developed separately for each system. Finally, merging results, 
either ad hoc or manually, adds an additional layer of complexity and time-consuming work for analysis 
developers. The debugging overhead we mentioned earlier, which we have encountered during our feasibility 
study, could potentially also have a negative impact on this aspect, as it can occur twice. Especially, this is a 
challenge that can be addressed through interoperability. With interoperability, the analysis code only needs 
to be developed once and can be effortlessly distributed across the PHT ecosystems.

Based on these aspects and the results of our feasibility study, we conclude that the multi-homing of similar 
infrastructures presents various drawbacks with respect to efficiency, security, and governance, making inter-
operability desirable. Particularly with regards to governance, achieving interoperability emerges as a necessary, 
and possibly the sole, solution in scenarios where the landscape is heterogeneous and multi-homing is not prac-
ticed - see our scenario of the feasibility study. Additionally, at this level of scale, it cannot be assumed that there 
will be only a single data analysis infrastructure that covers either a nationwide or international scope and would 
make interoperability unnecessary. Therefore, considering these factors, interoperability could be an appropriate 
strategy to address the aforementioned challenges. Ultimately and importantly, it should be acknowledged that 
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multi-homing can still be a viable option, especially beneficial when multiple infrastructures that offer comple-
mentary features, such as diverse functionalities, are hosted together.

The costs of our interoperability concept.  This brings us to the question of what the expenses or over-
head associated with our concept of interoperability are. A crucial aspect to consider is the incorporation of the 
containerization of the security protocol(s). This addition involves an extra layer in the local protocol and intro-
duces possible time and resource demands, as the additional container must be pulled before the train execution. 
In our PoC, the security container has a size of 460.23 MB, which can be pulled once for future reuse. Additionally, 
the security container is also considerably smaller than our train used in the feasibility study: 1.22 GB. In contrast 
with the multi-homing scenario, we would have to install either a station of approximately 2.9 GB (PADME) or a 
size of 1.7 GB (PHT-meDIC). Hence, our concept is more efficient in resources. Since our interoperability concept 
encompasses the integration of multiple security protocols (in the form of an envelope), it results in an extended 
overall duration of the security protocol at the stations. In our specific situation and with our involved hardware, 
both decryption processes require 3 seconds each, resulting in a total decryption time of 6 seconds. Conversely, 
the encryption procedures take 8 seconds for the first step and an additional 15 seconds for the second step. The 
retrieval of the security container takes 6 seconds and only needs to be done once. Consequently, we argue that the 
added time required for our nested encryption approach is relatively small compared to the manual effort involved 
in managing two concurrent infrastructures during analysis. Regarding our business logic, Layer 4, the reloading/
copying of the contents from one train to another takes less than 10 seconds. However, this reloading depends on 
the size of the contents and whether the images are already in the cache. If they are not, they need to be down-
loaded once. Furthermore, the introduction of an additional authority at the top level, in turn, requires potential 
administrative efforts regarding the creation and maintenance of standardized global identifiers. In our PoC, the 
SR is considered as the central registry for stations. As we have shown in our previous work, SR can be seamlessly 
integrated into the station installation workflow38. Therefore, we argue that administrative efforts are manageable.

Limitations.  Despite our successful establishment of technical interoperability between two distinct PHT 
infrastructures, our approach has certain limitations. These limitations are as follows.

Initial step in interoperability.  As emphasized by Benson et al., achieving full interoperability (e.g., in health-
care) involves multiple levels, covering processes, clinical factors, governance, and regulatory dimensions19. Our 
work constitutes only one layer (i.e. the technology layer) among several to achieve complete interoperability 
among PHT infrastructures. For example, while our metadata schema (Layer 3) incorporates a core set of nec-
essary items to serve two security protocols and business logics, additional items may be required to ensure, 
e.g., semantic interoperability with additional ecosystems beyond the scope of our study. Therefore, further 
investigations are required to facilitate interoperability from various points of view. Furthermore, as previously 
noted, it is essential to integrate data following a specific schema. The data schema (Layer 0) we developed was 
designed exclusively for our feasibility study and is not necessarily generically applicable or transferable to other 
data studies. Hence, our contribution is further limited in terms of data interoperability.

Technology scope.  Our study focused on technical interoperability between two specific PHT infrastructures 
with a limited technology stack. The suitability and evaluation of our approach on a larger scale, involving mul-
tiple PHT ecosystems with other technologies, remains open. Further, our concept is centered around the utili-
zation of Container Trains. However, as pointed out by Bonino et al., there are other types of trains that do not 
depend on containerization27. Therefore, it remains to be addressed in future work to achieve interoperability 
among various types of trains and the corresponding platforms.

Interoperability concept.  Related to the limitations associated with the technology stack above, our findings 
are limited by our chosen method of approaching our objective. The development of our layered methodology 
was principally guided by an in-depth analysis of the differences in the technologies to build our interoperability 
concept. Our five layers for PHT interoperability might be one potential approach, while there may be other 
strategies to tackle the technical interoperability of the PHT.

Hierarchical identifier system.  We designed our concept with a hierarchical identifier system inspired by the 
DNS, involving the SR. However, the introduction of a top-level authority could introduce a single point of fail-
ure that potentially disrupts the entire workflow. We have attempted to mitigate the first risk by implementing a 
cache for station identifiers. Alternatively, decentralized identifiers might offer a solution to comply with other 
identity management systems50.

These limitations highlight areas for potential future research and development to enhance the capabilities 
and scalability of our interoperability concept. Furthermore, reaching agreements across the entire community 
on selected aspects can enhance the progress of creating interoperable PHT platforms. Our five introduced 
layers may offer initial guidance or impulses in this regard, such as fostering a community-wide consensus 
regarding global station identifiers or a standardized PHT security protocol that can be applied to multiple 
platforms. This work serves as an initial study in the context of the German PrivateAim project (https://www.
medizininformatik-initiative.de/de/privateaim-sichere-verteilte-auswertung-medizinischer-daten), which is 
dedicated to the establishment of a collaborative platform for DA known as Federated Learning and Analysis 
in Medicine (FLAME). Our efforts have laid the conceptual and technical foundation for the development of 
this collaborative platform. As future work, we intend to intensify the cooperation between the PADME and 
PHT-meDIC infrastructure. Our aim is to shift our focus from technical interoperability to data interoperability, 

https://doi.org/10.1038/s41597-024-03450-6
https://www.medizininformatik-initiative.de/de/privateaim-sichere-verteilte-auswertung-medizinischer-daten
https://www.medizininformatik-initiative.de/de/privateaim-sichere-verteilte-auswertung-medizinischer-daten


1 5Scientific Data |          (2024) 11:663  | https://doi.org/10.1038/s41597-024-03450-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

with the ultimate goal of improving the efficiency of DA with the PHT. To achieve this, we plan to utilize both 
existing and upcoming reference works from established initiatives in Germany. One additional aspect of our 
approach is the reduction of redundancies via our interoperability concept, which reduces energy consumption. 
Analyzing the energy efficiency of our approach could be a focus for future research. Since interoperability and 
energy consumption have already been explored in the context of the Internet of Things, this existing knowledge 
could be leveraged to evaluate the energy efficiency of our solution in subsequent studies51–53.

Methods
In this section, we briefly discuss the relation between interoperability and the FAIR principles. We then present 
the core components of the two involved infrastructures, their similarities, and differences as part of a technology 
review. Finally, we outline our assumptions and the corresponding design objectives we made prior to the concept.

The ‘I’ in FAIR.  Organizing and managing well-structured scientific data serves as the basis for the perfor-
mance of knowledge discovery systems and data analysis13,54. Therefore, the management and techniques for 
generating digital artifacts from research studies are essential for discovery, retrievability, evaluation, and reuse. 
To endorse this concept, a set of core guidelines called FAIR Data Principles was propagated in 201654:

•	 Findable: Make the given dataset findable by maintaining clear, explicit, and rich metadata with a globally 
unique and persistent identifier. Data and metadata should be properly registered and indexed to make them 
searchable in the future.

•	 Accessible: Metadata and data should be retrievable using any standard communication protocol. The 
protocol includes an authentication and authorization procedure and is open-source and universally 
implementable.

•	 Interoperable: Both data and metadata use qualified, formal, accessible, and shareable vocabularies for the 
representation of knowledge with suitable references to other metadata or data.

•	 Reusable: The presence of a clear and accessible data usage license with detailed provenance and domain-rel-
evant community standards makes a given dataset and its metadata reusable.

Originally, the idea was that the FAIR principles apply to data and other assets such as research software, 
including workflows, tools, algorithms, and even software systems used in data processing55. Other studies or 
reports, such as the six recommendations for the Implementation of FAIR Practice by the FAIR in Practice Task 
Force of the European Open Science Cloud (EOSC) or the FAIR Principles for Research Software (FAIR4RS 
Principles) by the FAIR for Research Software Working Group (FAIR4RS WG), endorsed the need for FAIR 
research software to enhance reproducibility, transparency, interoperability and reusability of research18,21–23,56,57. 
As Lamprecht et al. pointed out, software per se cannot be considered as data18. Therefore, Lamprecht et al. 
refined the original definitions of the FAIR principles so that they can be applied to software18. Of interest for 
this work is the interoperability component of the FAIR principles. According to Lamprecht et al. and the IEEE 
Standard Glossary of Software Engineering Terminology, interoperability is the ‘ability of two or more systems 
or components to exchange information and use the information that has been exchanged’18,19,58. As this definition 
has kept the actual meaning of system or component generic, Lamprecht et al. introduced two dimensions of 
interoperability to address the variability in software assets (see Fig. 10)18.

According to the more refined definition of interoperability, we can distinguish between horizontal and verti-
cal interoperability. Vertical interoperability defines the compatibility of a stack of software objects among each 
other, such as software close to the hardware (e.g., drivers) and executable programs on top of it (e.g., scripts)18. 
In the scenario of this work, vertical interoperability is achieved through the inherently incorporated paradigm 
of containerization, i.e., virtualization, in the PHT. Horizontal interoperability defines the compatibility of mul-
tiple software stacks as part of a workflow. In this work, we interpret such a single workflow as the execution of 
a train within a single PHT infrastructure. Therefore, based on this definition, our goal is to achieve technical 
horizontal interoperability between two PHT infrastructures, specifically, two software stacks.

The concept of the Personal Health Train.  As part of the well-known GO FAIR initiative, the PHT has 
been initiated as an enabler for the FAIRification of research data18,55,59. The fundamental concept behind PHT 
involves the practice of DA, which brings the analysis code to where the data resides. As the PHT approach plays 
an important role in this work, we provide an overview of the various components of the infrastructure. The PHT, 
as its name might suggest, draws an analogy from real-world railway systems and the trains that operate on them. 
The PHT comprises three core components: Train, Station, and Track (Handler)9,13,27. The Train created by a data 
consumer, e.g., a researcher, represents a data analysis. The purpose of the Train is to transfer the analysis between 
each data-holding institution, called Station, using the Tracks that connect these institutions. The Station, on the 
other hand, is an institution that provides and grants access to sensitive and confidential data that is processed by 
the Train. Each Station in the PHT infrastructure receives a Train, executes the analysis, appends the result to the 
Train, and passes the Train onto the next Station. As emphasized by Bonino et al., there may be various types of 
Trains, each serving different purposes and using different underlying technologies27. For example, a Train could 
be a Query Train, Script Train, or Container Train. The latter is relevant to this work. A Container Train encap-
sulates the algorithm integrated into an analysis program, along with all essential dependencies (libraries) and 
the execution environment, within an image or container, for example, using Docker. So far, the concept of the 
PHT has already shown its capabilities in several use cases, such as radiomics, hypertension, or lung cancer anal-
ysis13,60,61. Several implementations following the PHT concept have been developed up to now, such as vantage6 
(https://distributedlearning.ai/), PADME, or PHT-meDIC16,17,62. Since PADME and PHT-meDIC are relevant for 
this work and our PoC, we discuss their implementations in more detail.
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Reference architectures.  In this section, we briefly review the key components of each infrastructure and 
further indicate if and how the derived commonalities or differences support or complicate our plan for technical 
interoperability. For an overview, Fig. 11 provides a top-level perspective of the components and Table 2 gives a 
summary. For a detailed description of the infrastructures, we refer to the corresponding publications16,17.

Overview and architecture.  PADME, developed by Welten et al., is composed of two primary components 
for managing trains and data analysis17. The first component, the Central Service (CS), handles the reception 
and orchestration of trains following predefined routes. The second component, the station software or local 
service (LS), serves as the endpoint for executing these trains. Similarly, PHT-meDIC consists of two archi-
tectural components: a central orchestration component and LS components. Furthermore, the PHT-meDIC 
central user interface (UI) offers users the capability to request, approve, and submit analyses, with the added 
feature of providing a link to download the encrypted analysis results. The LS component also includes a desktop 
app, allowing users to manage key pairs, sign trains, and locally decrypt results. In terms of interoperability: 
Both infrastructures follow a star topology in their architectural design. This aspect facilitates and stream-
lines horizontal interoperability because there is no need to modify the internal architectural design of both 
infrastructures.

Technology stack.  Both, PADME and PHT-meDIC, implement containerization for their components, cre-
ating fully containerized web applications. In PADME, the CS maintains a repository for each participating 
station, with a central train repository known as Harbor (https://goharbor.io). Meanwhile, the station soft-
ware in PADME uses a custom web service to manage train arrivals and departures, which essentially acts as a 
remote control for the underlying container engine. The encryption and decryption of trains are handled by an 
encryption engine called Vault (https://www.vaultproject.io), which also locally manages the private key gener-
ated during the station installation. Similarly, PHT-meDIC is container-based and places a strong emphasis on 
security-by-design. It also utilizes Harbor and Vault to protect sensitive information during train orchestration. 
For long-running tasks, PHT-meDIC uses a message broker to distribute them asynchronously to microservices 
instead of processing them directly through APIs. Upon task completion, an API aggregates the results, updates 
the database records, and communicates the results to the user in real-time through a web sockets service. 
Unlike PADME, PHT-meDIC uses Airflow (https://airflow.apache.org) individually at each study site as a sta-
tion, and it also uses the message broker RabbitMQ (https://www.rabbitmq.com) to facilitate communication 
between central services. In terms of interoperability: The technology stack of both infrastructures is largely 
similar, if not entirely compatible. The primary benefit of these infrastructures lies in their mutual dependency 
on containerization. This inherent feature establishes predefined and standardized communication interfaces, 
which can be leveraged for our interoperability concept.

Data provision.  From the technology stack presented, it becomes evident that PADME and PHT-meDIC do 
not rely on a specific data provision technology. Each station software is designed to interface with any data 
storage technology, thereby facilitating access to the stored data for analysis purposes. In terms of interoper-
ability: While the flexibility provided by both infrastructures in data provisioning is advantageous, it also 

Fig. 10  Refined definition of interoperability. Interoperability is divided into two main categories: vertical and 
horizontal interoperability. Vertical interoperability focuses on the compatibility of software objects within a 
stack, encompassing, for example, hardware-level drivers and executable programs. Horizontal interoperability 
pertains to the compatibility of multiple software stacks within a workflow. In this work, we consider a workflow 
as the execution of a train within a PHT infrastructure. Our objective is to achieve horizontal interoperability 
between two PHT infrastructures by connecting two of such stacks/workflows including the data provision. 
Adapted from Lamprecht et al.18.
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poses difficulties in data integration as multiple approaches are conceivable. Therefore, a solution is required 
to establish a cross-infrastructural data schema and a data storage system at each data-holding institution.

Security concepts.  Both, PADME and PHT-meDIC, implement security measures for the management of 
train-related data and the protection of sensitive information. In PADME, when a developer dispatches a train, 
it is moved to the dedicated repository of the respective station and only the station can pull the train. PADME 
relies on envelope encryption with symmetric and public/private key pairs for each train execution. The CS 
and each station have their unique permanent key pair. The encryption method changes based on the location 
of the train. It is encrypted with the public key of the subsequent station when the train is at the CS, and with 
the CS’s public key when it is at a regular station. In contrast, PHT-meDIC introduced a security concept with 
‘pre_run’ and ‘post_run’ steps in 2019 (for additional information, see the supplementary materials). This con-
cept serves three crucial purposes. First, it allows for quick encryption and decryption of results using envelope 
encryption to ensure data security at rest and in transit. Second, a chain of digital signatures is used to detect 
any tampering with analysis algorithms, data queries, and results at any stage. This enables individual stations to 
execute or abort analyses. Third, PHT-meDIC employs unique pseudo-identifiers (UPIDs) to safeguard against 
inference attacks or manipulation of the route definition. In terms of interoperability: Both infrastructures 
share comparable security workflows at the conceptual level. Both utilize asymmetric encryption, which can be 
advantageous for our interoperability concept. However, aligning the precise implementation details of these 
security workflows poses challenges. While the encryption methods used in both infrastructures are similar, 
PHT-meDIC also conducts integrity checks on the route definition, involving a list of station identifiers that 
both infrastructures must be able to access. Moreover, to start the encryption process, we need a solution that 
ensures that all encryption-related assets, including public keys, hashes, or signatures, are readily available 
for their respective security workflows.

Based on this review of both involved infrastructures, we formulated our five-layer interoperability concept 
to enable interoperability between these PHT infrastructures. ‘Layer 0 - Data integration’ refers to the phase of 
harmonizing data across the two infrastructures. We term it ‘Layer 0’ as it is more closely associated with the 
data-holding institutions, rather than the infrastructures themselves, which are agnostic to the data source. This 
layer becomes unnecessary if the involved institutions are already aligned with a common standard that ensures 
data harmonization. The necessity of ‘Layer 1 - Assigning (globally unique) identifiers to stations’ stems from 

Fig. 11  Overview of PHT infrastructures: PADME and PHT-meDIC. PHT-meDIC and PADME follow a 
container-based security-by-design approach, employing tools like Harbor and Vault for secure operations. 
Both consist of two primary components: the Central Service (CS) and the station software, also referred to as 
local service (LS). The CS manages train repositories, including the central train repository using Harbor. The 
station software operates as a control interface for the container engine. Encryption in PADME uses envelope 
encryption with symmetric and asymmetric keys. The security concept of PHT-meDIC also focuses on the 
detection of encryption and manipulation detection using digital signatures.
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the different station identification mechanisms used by both infrastructures. As we have pointed out above, both 
infrastructures diverge in their approaches to security protocols. Based on this fact, we have derived ‘Layer 2 - 
Harmonizing the security protocols’ to develop an overarching security concept. Given that ‘Layer 2’ relies on 
security-related metadata, ‘Layer 3 - Establishment of a common metadata exchange schema’ becomes essential. 
‘Layer 3’ ensures the proper operation of the security protocol and the train routing by providing the necessary 
metadata in a standardized format. Ultimately, ‘Layer 4 - Unified business logic’ is required to orchestrate the trans-
fer of a train from one infrastructure to another, leveraging the groundwork laid by ‘Layers 1’ through ‘Layer 3’.

Assumptions and design principles.  Our concept is based on various assumptions and guiding design 
principles that shape our concept. Mainly, we strive to maintain the existing infrastructures along with their 
inherent architectural designs. In other words, our goal is to ensure that the workflows, policies, and (security) 
protocols of both infrastructures remain largely consistent in their current state-of-the-art. Another benefit of 
this approach is that it does not affect the usability of the infrastructures or necessitate modifications to the 
local station, thereby keeping the interaction with the local software consistent. According to that, we follow the 
design principle of loose coupling between these infrastructures, primarily to accomplish two objectives: First, 
even when interoperability is not required, both infrastructures should remain independently operational, and 
the interdependencies should be kept to a necessary minimum. Second, this will enhance the adaptability of 
our concept for future interoperability with other PHT platforms. As mentioned by Hasselbring et al., essential 
for research software to be interoperable are modular software components that use well-defined interfaces24. 
Hence, we pursue a module-based approach through software virtualization and web services, i.e., containeriza-
tion. These techniques contribute to enhanced portability, which itself fosters interoperability and the potential 
for reuse across additional (DA) platforms, beyond our two study-related infrastructures24. Similarly to loosely 
coupled components, we also want to leverage an asynchronous and event-driven approach to further contribute 
to the independence and autonomy of the infrastructures. Regarding the communication itself, we will rely on a 
standardized metadata exchange format and a common set of metadata that will comply with best practices and 
well-established standards of the Web.

Data availability
The data for Figs. 8, 9, and Table 1 can be found on Zenodo: https://doi.org/10.5281/zenodo.1110132130.

Code availability
Code for the PADME platform: https://git.rwth-aachen.de/groups/padme-development. Code for the PHT-
meDIC platform: https://github.com/PHT-meDIC. The implementation of the ‘Discovery Train’ can be found 
here: https://doi.org/10.5281/zenodo.11101321. The security container can be found: https://github.com/PHT-
Medic/train-container-library and its explanation: https://difuture.de/wp-content/uploads/2019/10/Marius-
Herr_DIFUTURE_Symposium_exported_High_quality.pdf.
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