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A B S T R A C T

Background and objective: Cell segmentation in bright-field histological slides is a crucial topic in medical
image analysis. Having access to accurate segmentation allows researchers to examine the relationship between
cellular morphology and clinical observations. Unfortunately, most segmentation methods known today are
limited to nuclei and cannot segment the cytoplasm.
Methods: We present a new network architecture Cyto R-CNN that is able to accurately segment whole cells
(with both the nucleus and the cytoplasm) in bright-field images. We also present a new dataset CytoNuke,
consisting of multiple thousand manual annotations of head and neck squamous cell carcinoma cells. Utilizing
this dataset, we compared the performance of Cyto R-CNN to other popular cell segmentation algorithms,
including QuPath’s built-in algorithm, StarDist, Cellpose and a multi-scale Attention Deeplabv3+. To evaluate
segmentation performance, we calculated AP50, AP75 and measured 17 morphological and staining-related
features for all detected cells. We compared these measurements to the gold standard of manual segmentation
using the Kolmogorov–Smirnov test.
Results: Cyto R-CNN achieved an AP50 of 58.65% and an AP75 of 11.56% in whole-cell segmentation,
outperforming all other methods (QuPath 19.46∕0.91%; StarDist 45.33∕2.32%; Cellpose 31.85∕5.61%, Deeplabv3+
3.97∕1.01%). Cell features derived from Cyto R-CNN showed the best agreement to the gold standard (𝐷 = 0.15)
outperforming QuPath (𝐷 = 0.22), StarDist (𝐷 = 0.25), Cellpose (𝐷 = 0.23) and Deeplabv3+ (𝐷 = 0.33).
Conclusion: Our newly proposed Cyto R-CNN architecture outperforms current algorithms in whole-cell
segmentation while providing more reliable cell measurements than any other model. This could improve
digital pathology workflows, potentially leading to improved diagnosis. Moreover, our published dataset can
be used to develop further models in the future.
1. Introduction

Advances in artificial intelligence (AI) and digital pathology have
revolutionized medical research. Nowadays, it is possible to extract
precise information about a tumor just from its microscopical image.
For example, neural networks have made it possible to predict a tumor’s
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malignancy and prognosis [1] and can even detect genetic differences
just from histological images [2]. These advancements are particularly
valuable, because they are able to operate on hematoxylin-eosin (HE)
stained images. This is a great achievement, because HE staining is
inexpensive, widespread and part of many clinical routines [3].
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Fig. 1. A sample image from the CytoNuke dataset. Tumor nuclei annotations are
shown in yellow, tumor cell annotations are shown in blue. Not every nucleus
annotation has a corresponding cell annotation, since cell boundaries are not always
clearly distinguishable. In such cases, only the cell’s nucleus was annotated.

However, understanding the reasoning of these neural networks
is not always straightforward. This is why explainability is such an
important factor, both for research purposes as well as for bringing AI
into clinical routine [4]. As shown by Diao et al. [5] automated cell
segmentation can help fill that gap in explainability, because the cell
nucleus and cytoplasm contains important morphological and staining-
related information. If this information can be automatically extracted
from histological images via cell segmentation, this can potentially offer
explanations for the predictions of a neural network.

For this reason, we developed a cell segmentation algorithm that
can segment both the nucleus and the cytoplasm in HE-stained his-
tological images. We conducted a number of experiments to compare
our method against QuPath, StarDist, Cellpose and the gold standard
of manual segmentation.

1.1. Related work

Whole cell segmentation is a well-studied topic in cytology and
immunofluorescence imaging. Over the last years, multiple algorithms
have been developed to support both nucleus and cytoplasm segmen-
tation in different cytological image modalities [6]. Most recently, the
SegPC-2021 challenge [7], inspired multiple solutions for whole cell
segmentation of multiple myeloma cells.

Unfortunately, methods coming from the cytological domain are
often unsuitable for histological bright-field images, in particular when
dealing with hematoxylin-eosin (HE) staining. This is due to a few
key differences between cytological and histological images. First, cy-
tological images usually have a uniform background and contain only
fewer, separated cells. In histological images, the opposite is true. There
is barely any background visible and the whole image is filled with
contiguous cells. Second, in cytological images cell usually has a clearly
distinguishable cell membrane. This is not the case for all histological
images. In HE-stained tissue slides, the cells are so close together that
it is not possible to identify the cell membrane in all cases.

For these reasons, algorithms developed for whole cell segmentation
in cytology often cannot be directly applied to HE-stained histology.
2

For example, the winning submission of the SegPC-2021 challenge
leverages a ‘‘‘whole-cell’ class to help predictions of the two classes of
interest, namely nucleus and cytoplasm’’ [7]. This assumption does not
hold for all cells in histological HE-stained images.

Therefore, most histopathological papers use a different method for
cellular analysis in bright-field images. In a first step, the nucleus is
segmented, e.g. via QuPath [8] or StarDist [9]. In a second step, the
heuristic of ‘‘cell expansion’’ is used. This heuristic will approximate the
cell boundary and thus offer a whole-cell and cytoplasm segmentation
mask. This method can be considered state-of-the-art in histopatholog-
ical analysis. It is implemented in standard pathological software such
as QuPath and CellProfiler [10] and is used across several impactful
papers [11–14].

Despite its popularity, it can be shown that cell expansion does not
always perform well on bright-field histological images. Under some
circumstances it is possible that cell expansion provides very unreli-
able segmentations. These segmentations will then result in inaccurate
measurements of morphological and staining-related properties.

In this paper, we will develop a method for whole cell segmentation
that can deal well with the peculiarities of HE-stained histological
images and offer more reliable measurements than the state-of-the-art
cell expansion.

2. Material and methods

We developed a new architecture based on Mask R-CNN for whole-
cell segmentation in hematoxylin-eosin stained bright-field histological
images. We then compared this architecture against cell segmentation
algorithms from StarDist, Cellpose and QuPath. To enable a fair com-
parison, all methods needed to be evaluated on the same dataset. To the
authors’ knowledge, there is no publicly available dataset that contains
both nucleus and cytoplasm annotations in HE images. For this reason,
we created a new dataset which is being published alongside this paper.
Using this new dataset, the models have been evaluated under different
categories. First, the segmentation accuracy has been compared using
the standard measures AP50 and AP75. In a second step, the predicted
cell segmentations were imported into QuPath to measure a number
of cell features. These cell features were then statistically compared
against the gold standard measurements.

2.1. Dataset

We created a dataset of nuclei and cell annotations using publicly
available images of head and neck squamous cell carcinoma (HNSCC)
from the CPTAC dataset [15,16]. Nuclei and cells were manually
annotated in QuPath (version 0.4.3) by J.R. and K.X. All annotations
were reviewed by a third investigator B.P. and finally reviewed and
approved by a senior pathologist T.B. The resulting annotations were
then exported from QuPath as COCO-compatible JSON files. The corre-
sponding images were exported in patches of 256×256 px at a resolution
of 0.5 μm/px.

As the CPTAC dataset contains whole slide images from multiple
facilities, the staining intensities can vary between images. To elimi-
nate these differences, all images were normalized using the Macenko
algorithm [17]. This is a standard practice used to facilitate training
of deep learning models [18]. The resulting images were then split
into a training (70%), validation (15%) and test set (15%) To avoid
overfitting, we made sure not to allocate images from the same patient
to different subsets.

The resulting dataset contains 3991 tumor nuclei and 2607 tumor
cell annotations. Fig. 1 shows an example image from our dataset with
corresponding annotations.
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Fig. 2. Architectural overview of Cyto R-CNN. The backbone and region proposal network (RPN) are trained to only predict nuclei. The nuclei proposals are then forwarded to
two different branches. The first branch will perform a regular bounding box and mask regression for the nucleus. The second branch will scale the nucleus proposal and perform
mask regression for the whole cell, including the cytoplasm. Both branches are then combined to generate instance segmentations for cell and nucleus at the same time.
2.2. Methods

2.2.1. QuPath
QuPath is a popular software tool to analyze whole slide images and

is widely used in pathological research [8,19]. It provides a built-in cell
and nuclei segmentation algorithm, which we used as a baseline for our
experiments.

The nucleus detection within QuPath is built upon the watershed
algorithm, which utilizes the fact that a nucleus appears darker than
its surrounding cytoplasm when stained by HE. To detect the whole
cell including its cytoplasm, QuPath implements a method known as
‘‘nucleus expansion’’ [20] or ‘‘cell expansion’’ [14]. This algorithm
will expand each nucleus by a fixed number of pixels as long as the
expansion does not intersect with the expansion of an adjacent nucleus.

Since the watershed algorithm is sensitive to its hyperparameters,
QuPath has been evaluated in two different modes: Once with default
settings and once with a set of improved parameters.

The default settings in QuPath version 0.4.3 were as follows: A
background radius of 8 μm, a sigma of 1.5 μm, a minimum area of
10 μm2, a maximum area of 400 μm2, an intensity threshold of 0.1 and a
cell expansion radius of 5 μm. We heuristically tuned the parameters on
our validation dataset and found the following values to deliver good
results for nucleus segmentation on our dataset: A sigma of 2.5 μm, a
minimum area of 20 μm2, a maximum area of 400 μm2 and an intensity
threshold of 0.15. The best expansion radius was identified to be 5 μm.

2.2.2. StarDist
StarDist is a U-Net based architecture developed specifically for the

purpose of nucleus segmentation [9]. It is built on the assumption that
3

a nucleus’ shape can be approximated by a star-convex polygon. For
each pixel, StarDist predicts both the object probability and the distance
towards the boundary of the nucleus across 32 directions.

For our experiments, we experimented with both training the net-
work from scratch as well as using the pre-trained model 2d_versatile_he.
Using the pre-trained model proved beneficial in our experiments. To
avoid overfitting, the input data was augmented with random flips
and rotations. After training, the best model was then combined with
nucleus expansion. The best expansion radius was identified to be
5.5 μm.

2.2.3. Theoretical optimum of cell expansion
Cell expansion is a heuristic method that relies on an existing

nucleus segmentation. We conduct another experiment to determine
the theoretical optimum performance of cell expansion independently
of the underlying nucleus segmentation. To achieve this, we use our
ground-truth nucleus annotations and expand them with different radii.
Under these conditions, the optimal expansion radius was identified to
be 10 μm.

2.2.4. Cellpose
Cellpose is a second U-Net based architecture. Unlike StarDist how-

ever, Cellpose was originally designed to work with immunohistologi-
cal images, where nucleus and cytoplasm were stained in high-contrast
colors [21]. This special coloring allows Cellpose to perform color
gradient tracking to derive the object masks. Since its invention, Cell-
pose has shown potential to generalize beyond its initial scope of
immunofluorescence images [22].
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We experimented with training Cellpose from scratch as well as
finetuning it starting from a number of pre-trained models as published
in Stringer and Pachitariu [23]. The input data was augmented with
random flips and rotations. We also experimented with all possible
combinations of color channels that serve as a hyperparameter for the
Cellpose model.

Out of all the pre-trained Cellpose models, CPx performed best,
oth in nucleus and whole-cell segmentation. It delivered optimal
erformance when setting the nucleus channel to 3 and the cytoplasm
hannel to 0.

.3. Multi-scale Attention Deeplabv3+

As part of the SegPC-2021 challenge, multiple methods for nucleus
nd cytoplasm segmentation in cytological images were developed. The
wo best-performing algorithms were an ensemble model presented
y Faura et al. [24] and a multi-scale Attention Deeplabv3+ pipeline
y Afshin et al. [25]. The first-place solution is not applicable to our
ataset, as it requires each nucleus annotation to have a corresponding
ytoplasm. The second place solution (Deeplabv3+) does not need this
equirement, enabling us to include it in our experiments.

The Deeplabv3+ pipeline consists of multiple stages. In the first
tage, a U-Net is trained for segmenting the nuclei. Afterwards, around
ach nucleus prediction multiple scaled image regions are extracted
rom the image. This extraction procedure is repeated for multiple
caling factors. Then, an Attention Deeplabv3+ model is trained for
ach scaling factor. Each model predicts the cytoplasm segmentation in
given image patch. In the final step, the different Deeplabv3+ models
re combined. An aggregation function ensures that the optimal scaling
actor is selected for each nucleus.

We include this method in our comparison to determine to what
xtent it is able to generalize from the cytological images in SegPC-2021
o the HE-stained images in our CytoNuke dataset. We experimented
ith training the nucleus and cytoplasm models from scratch as well
s finetuning those models that were pretrained on the SegPC-2021
ataset. We found the performance to be slightly better when training
he models from scratch.

.3.1. Mask R-CNN
Mask R-CNN is a general-purpose instance segmentation architec-

ure consisting of two stages [26]. The first stage extracts a number of
ectangular regions of interest (ROIs) from the image. The second stage
s responsible for classifying the object and predicting its binary object
ask. This design has proven successful in many instance segmentation

asks, including nucleus segmentation [27,28].
However, a standard Mask R-CNN is unable to guarantee geomet-

ical constraints between objects. In particular, nucleus and whole cell
ill be segmented independently from each other.

This will inevitably lead to suboptimal segmentation results. For
xample, it would be possible to predict a cytoplasm segmentation
ithout a nucleus inside. Likewise, it would be possible that there are
ultiple cytoplasm segmentation masks for a single nucleus. From a
edical and regulatory perspective, it is important to make these kinds

f mistakes impossible by design.

.4. Cyto R-CNN

Cyto R-CNN is a modified version of Mask R-CNN that encodes these
eometrical constraints on an architectural level. Its design is illustrated
n Fig. 2. The first stage is a standard regional proposal network, which
s only trained on nucleus annotations. The second stage then splits
nto two branches: One for the nucleus and one for the whole cell.
he nucleus branch consists of the regular Mask R-CNN steps: First
bounding box regression, then a binary mask prediction. The cell

ranch on the other hand has to first create a regional proposal for
he cytoplasm. This is achieved by scaling the nucleus ROI by a fixed
4

a

percentage. The resulting cell-ROI is then passed forward to a regular
mask head. In a way, this modified region proposal network can be
considered a deep-learning equivalent of the traditional cell expansion.

As Mask R-CNN is a large network, there are a number of hyper-
parameters that can be tuned. The backbone of Cyto R-CNN has been
set to mask_rcnn_R_101_FPN, pre-trained on COCO [29] as provided
by detectron. Training data was augmented with random flips and
rotations. Different learning rates were evaluated using an exponential
learning rate decay. Different cell scaling factors were evaluated as
well. The optimal cell scaling factor for our dataset was determined
to be 2.0. For the ROI heads, the non-maximum suppression was tuned
due to the relatively large number of small objects in each image. A
threshold of 0.3 delivered best results in our experiments.

.5. Computational setup

Our experiments were performed on GPUs of type V100-SXM2.
he algorithms were implemented using python 3.9, detectron2 [30],
ytorch and tensorflow.

.6. Statistical analysis

All methods were evaluated in their performance using class-specific
P50 and AP75. These two endpoints are commonly used in the

iterature [31,32], as they allow for insights not only into the detection
ccuracy, but also into the segmentation quality of a model. A model
ith high AP50, but low AP75 will be expected to detect objects quite
ell, but would fail to generate segmentation masks that accurately
atch their shape.

The segmentation masks produced by each model were subse-
uently imported into QuPath to measure a set of cell features related
o morphology and staining. The features we chose for our compar-
son were: Cell area, perimeter, circularity, solidity, minimum and
aximum diameter, cell-to-nucleus ratio, HE staining (median, mean,

tandard deviation, minimum, maximum). This specific set of features
as chosen to resemble what is commonly used in the literature [12,
3–36].

The resulting measurements were then compared to the ground
ruth measurements using the Kolmogorov–Smirnov test. We used its
est statistic 𝐷 to quantify the similarity between the measurements

derived from the different models and the measurements resulting from
manual annotations. This statistical analysis was implemented in R
(v4.2.2).

3. Results

3.1. Segmentation accuracy

Table 2 lists the AP50 and AP75 for whole-cell and nucleus seg-
mentation. Cyto R-CNN achieves the highest accuracy for whole-cell
segmentation, both in AP50 (58.65%) and AP75 (11.56%). For nucleus
segmentation, Cyto R-CNN achieves the highest AP50 (78.32%) and
StarDist the highest AP75 (47.24%). QuPath and Cellpose are being
outperformed in all categories.

For additional context, we also provide the average precision that
would arise from performing cell expansion on a perfect nucleus
ground-truth. The results of this experiment are stated in the last row
of Table 2. This theoretical setup achieved a whole cell AP50 of 56.22%

nd an AP75 of 1.07%.
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Table 1
Test statistics 𝐷 of the Kolmogorov–Smirnov test between each model and the gold standard.
Fig. 3. Measurements of morphological whole-cell features as obtained via different segmentation methods. The measurements have been obtained by first converting segmentation
asks into GeoJSON files, importing them into QuPath and then using built-in functionalities to calculate shape and staining features.
D
i

.2. Measurement of cell features

The cell measurements as calculated by QuPath are visualized in
igs. 3 and 4. A tabular representation of these values can be found in
he supplementary material.

The test statistic 𝐷 of the Kolmogorov–Smirnov test (cf. Table 1)
rovides a quantification of how similar the distribution of predicted
ell features are to the distribution of the gold standard. 𝐷 ranges from
(perfect resemblance to the gold standard) to 1 (strong deviation from

he gold standard). The cell area and perimeter were best approximated
5

by Cyto R-CNN (𝐷𝑎𝑟𝑒𝑎 = 0.25, 𝐷𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 0.29). StarDist, Cellpose,
eeplabv3+ and finetuned QuPath could offer comparable performance

n some cases (0.26 ≤ 𝐷 ≤ 0.49), while the default QuPath settings
resulted in clearly different measurements (𝐷𝑎𝑟𝑒𝑎 = 0.54, 𝐷𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 =
0.60). Regarding the cell circularity, Cyto R-CNN was the most accurate
method (𝐷 = 0.24), followed by QuPath’s default (𝐷 = 0.31). Other
methods were significantly worse (0.46 ≤ 𝐷 ≤ 0.61). The cell solidity
was best approximated by QuPath’s default (𝐷 = 0.11). Cyto R-CNN
offered the second best approximation (𝐷 = 0.24). For the maximum
diameter, the best results were obtained by Deeplabv3+ (𝐷 = 0.22),
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Fig. 4. Measurements of whole-cell staining features resulting from different segmentation methods. The above measurements have been obtained by first converting segmentation
masks into GeoJSON files, importing them into QuPath and then using built-in functionalities to calculate shape and staining features.
Table 2
Average precision of different algorithms on the test dataset.

Model AP50
nucleus

AP75
nucleus

AP50
cell

AP75
cell

Deeplabv3+ 37.58% 9.23% 3.97% 1.01%

QuPath Default 22.95% 6.85% 11.12% 0.28%

QuPath Finetuned 35.24% 11.07% 19.46% 0.91%

Cellpose 48.35% 23.84% 31.85% 5.61%

StarDist 70.36% 47.24% 45.33% 2.32%

Cyto R-CNN 78.32% 42.54% 58.65% 11.56%

Perfect nucleus with
cell expansion

– – 56.22% 1.07%

followed by Cyto R-CNN (𝐷 = 0.34) and Cellpose (𝐷 = 0.42). The
minimum diameter was best approximated by finetuned QuPath (𝐷 =
0.17), closely followed by Cellpose (𝐷 = 0.19), Cyto R-CNN (𝐷 =
0.20) and StarDist (𝐷 = 0.21). Deeplabv3+ and default QuPath was
ignificantly worse in their performance (𝐷 ≥ 0.31). For the nucleus-to-
ell ratio, Cyto R-CNN and default QuPath offered the best performance
𝐷 = 0.17). All other methods were significantly worse (0.35 ≤ 𝐷 ≤
.51). Hematoxylin median and mean intensity were best predicted by
efault QuPath (𝐷𝑚𝑒𝑑𝑖𝑎𝑛 = 0.11, 𝐷𝑚𝑒𝑎𝑛 = 0.10). However, all models

offered similarly good performance (0.10 ≤ 𝐷 ≤ 0.28). The cells’
standard deviation of hematoxylin intensity was best approximated
by default QuPath and Cellpose (both 𝐷 = 0.05) with Cyto R-CNN
following closely (𝐷 = 0.07). The best results for eosin median and
mean intensity were delivered by QuPath Default (𝐷𝑚𝑒𝑑𝑖𝑎𝑛 = 0.10,
𝐷𝑚𝑒𝑎𝑛 = 0.07) and Cyto R-CNN (𝐷𝑚𝑒𝑑𝑖𝑎𝑛 = 0.13, 𝐷𝑚𝑒𝑎𝑛 = 0.11). The
same applies to the standard deviation of eosin intensity (𝐷𝑞𝑢𝑝𝑎𝑡ℎ =
0.06 and 𝐷𝑐𝑦𝑡𝑜𝑟𝑐𝑛𝑛 = 0.08). Minimum and maximum intensities of both
hematoxylin and eosin were best approximated by Cyto R-CNN. Most
other methods were generally close in performance (0.03 ≤ 𝐷 ≤
0.17). Only Deeplabv3+ showed large deviations from the ground truth
(𝐷𝑚𝑖𝑛 = 0.37, 𝐷𝑚𝑎𝑥 = 0.31).

Summarizing the results above, Cyto R-CNN’s predictions show the
highest similarity to the gold standard in 8 out of the 17 examined
6

cell features. In 7 of the remaining 9 categories, Cyto R-CNN offers the
second best approximation. In two categories, Cyto R-CNN provided
third best results. Based on all 17 features Cyto R-CNN had the best
average agreement with the ground truth (𝐷 = 0.15) outperforming
QuPath (𝐷 = 0.22), StarDist (𝐷 = 0.25) and Cellpose (𝐷 = 0.23).

4. Discussion

The proposed architecture Cyto R-CNN enables segmentation of nu-
cleus and cytoplasm in bright-field histological images. It outperforms
QuPath, StarDist, Cellpose and a multi-scale Deeplabv3+ in whole-cell
AP50 and AP75. Moreover, Cyto R-CNN’s predictions are more reliable
for measuring cell features than any other model.

These performance differences can be qualitatively explained by
looking at a few example predictions in Fig. 5. The right-most column
shows manual segmentations that are considered the gold standard. The
first column from the left displays nuclei and cell masks as predicted by
the multi-scale Deeplabv3+ model. As can be seen, the model clearly
has difficulties separating individual objects in our dataset. Adjacent
nuclei are often segmented as a single object. And boundaries of cell
masks are often too large and overlapping each other. This is caused by
to the underlying U-Net that produces a semantic segmentation mask
only. The individual nuclei are only obtained by separating connected
components. This heuristic can work well on cytological images, but
does not produce good results on our histological dataset, where nuclei
can be very close to each other. As a consequence, the scaled region
proposals will fail to accurately capture single cells together with their
cytoplasm. And as a result, the whole-cell segmentation masks will
become inaccurate as well. The second column contains results from
finetuned QuPath. Two things can be noticed: First, not all nuclei
are detected. Second, the cytoplasm shape is very uniform. This is
a direct result of nucleus expansion: When expanding a given shape
outwards by a fixed number of pixels, the resulting shape will appear
more circular. Differences in the original shape’s curvature will be
smoothed out. This leads to all cells appearing somewhat similar. The
third column shows results of StarDist. The nuclei segmentations are of

high quality, but the whole-cell segmentations are very uniform and
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Fig. 5. Three images from the test dataset together with various nucleus and cell masks. Figures (a) to (e) show predicted object masks from different segmentation methods.
Figure (f) displays the gold standard masks that were obtained through manual annotation. In figure (a) only some of the predicted masks from Deeplabv3+ are shown as the
image would become too cluttered otherwise.
always resemble a circular shape. Just like with QuPath, this is the
result of nucleus expansion. StarDist itself is a nucleus-only segmen-
tation model. Combining it with nucleus expansion is popular in the
literature [37,38], but does not yield good results in our experiments.
The fourth column shows results of Cellpose. We can see that not all
nuclei are detected, which is particularly visible in the third image.
Apart from that, we see that nucleus and cytoplasm do not have a one-
to-one correspondence. Many nuclei are without cytoplasm and some
cytoplasm predictions do not have an underlying nucleus. This is a
result of Cellpose’s architecture, in which nucleus and cytoplasm are
segmented by different models. This limitation of Cellpose does not
seem to work well in our bright-field histological images. The fifth
column shows the results of Cyto R-CNN. The nuclei segmentations
are of high quality and the cytoplasm shapes are much more diverse.
While there are a few cases of multi-nuclei cells and overlapping
segmentations, Cyto R-CNN is the only model in this comparison that
is able to segment non-trivial cell shapes.

4.1. Segmentation accuracy

Our segmentation results as reported in Table 2 meet expectations
from the literature. The watershed algorithm is a traditional tool that
has been surpassed by application-specific neural networks [39]. Thus,
it is no surprise that QuPath performs worst in our experiments (AP50
22.95% with default parameters, AP50 35.24% with finetuned pa-
rameters). With such a low accuracy for the nucleus, it is expected
that the cell segmentation as obtained by nucleus expansion is equally
inaccurate (AP50 11.12% and 19.46%).

The Deeplabv3+ model is only slightly better than QuPath in terms
of nucleus segmentation (AP50 47.58%). It segments nuclei with a
regular U-Net that struggles with objects touching each other. Apart
from that, its performance for whole-cell segmentation is very poor
(AP50 3.97%). The Deeplabv3+ model seems to struggle with finding
cell boundaries in our images. In contrast to the cytological images of
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SegPC-2021, the cell membrane in our dataset is much less pronounced,
which can explain the learning difficulties.

Cellpose can already provide large improvements for both nucleus
(AP50 48.35%) and cell segmentation (AP50 31.85%). However, Cell-
pose does not perform as well on our dataset as could be expected
from its publication [21]. This is because our dataset only contains
HE-stained images, for which Cellpose was not originally intended. The
color contrast in HE is much lower than in immunohistological staining,
so that the gradient tracking algorithm of Cellpose cannot work as
well. This was previously observed by [32,40], who also reported
non-optimal results for Cellpose on their datasets.

StarDist (AP50 70.36%) and Cyto R-CNN (78.32%) are the leading
methods for nucleus segmentation in our experiments. The review
by Lagree et al. [39] shows that this is in line with expectations
from the literature. In their review, the authors compare Mask R-
CNN, watershed and several U-Net based architectures on the MoNuSeg
dataset [41], which also contains HE images. Mask R-CNN achieves
an AP50 of 78.59%, which is similar to our results of Cyto R-CNN
(78.32%). The best U-Net architecture achieves an AP50 of 71.66%,
which is comparable to the results of StarDist in our experiments
(70.36%). Even though StarDist achieves great results in nucleus seg-
mentation, combining it with nucleus expansion only results in sub-
optimal accuracy (AP50 45.33%, AP75 2.32%). Cyto R-CNN is able
to significantly outperform that both in AP50 (58.65%) and in AP75
(11.56%). It is important to note that Cyto R-CNN even outperforms the
theoretical optimum of nucleus expansion. Our experiments show that
even if a perfect nucleus segmentation is used as the input, the average
precision (AP50 of 56.22% and AP75 of 1.07%) of cell expansion is
surpassed by Cyto R-CNN.

Our results for whole-cell segmentation are comparable to the re-
sults of Jiang et al. [42]. In this paper, the authors develop a new
method for whole-cell segmentation in cytological images and evaluate
its performance on two different public datasets. In cytological images,
the cell nucleus and cell membrane are much more pronounced than
in our HE-stained images. However, cells are often overlapping, which
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makes their task slightly different from ours. Nevertheless, the authors
follow a similar approach for designing their architecture. They also
extend Mask R-CNN by adding application-specific layers to it. Their
new architecture achieves a mean average precision of 64.02% on one
dataset and 49.43% on another. The results of our Cyto R-CNN (AP50
58.65%) are comparable to that. This shows that Mask R-CNN offers
great potential for complex tasks such as whole-cell segmentation.

4.2. Dataset

To the authors’ knowledge, CytoNuke is the first publicly available
dataset of HE stained images which includes annotations for both the
nucleus and the cytoplasm. Popular datasets such as PanNuke [43]
and MoNuSeg [41] are limited to nuclei only. At the same time, they
contain a number of different cell types (tumor, inflammatory, stromal
cells) each of which have different cytoplasm characteristics. For some
cells, the cytoplasm might not be visible at all or almost indistin-
guishable from the nucleus. This is often the case for lymphocytes for
example. For this reason, it is not easily possible to extend existing
datasets with whole-cell annotations. Thus, we decided to create our
own quality-controlled dataset.

We intentionally limited it to one specific tumor cell type. HNSCC
was chosen for multiple reasons. First, its similarity to regular epithe-
lium allows for a clear visual distinction of the cell membrane [44].
Second, its cancer cells are known to be morphologically heteroge-
neous [45,46], making whole-cell segmentation a challenging task.
Third, there are multiple hypotheses around morphological–clinical re-
lations in HNSCC that could benefit from accurate segmentation meth-
ods [47–51]. With 6598 annotations (3991 nuclei and 2607 whole-cell),
the size of our dataset is appropriate for a task as specific as whole-
cell segmentation in bright-field histology. For reference, the PanNuke
dataset contains around 3000 nuclei annotations for HNSCC.

4.3. Clinical impact

There is a huge potential for extracting clinically important informa-
tion from cellular measurements in bright-field whole slide images. For
example, it has been shown that the PDL-1 score of non-small cell lung
carcinoma can be accurately predicted using only HE-staining [51].
And it was even found that certain nucleus shapes are associated with
improved survival rates in HNSCC [52].

In absence of better methods, several papers make use of watershed,
nucleus expansion and standard settings in QuPath. For example, Chen
et al. [38] used nucleus expansion in 2022 to analyze macrophages in
Covid-19. Bouhaddou et al. [37] used nucleus expansion to determine
the presence of biomarkers in a cell. And Sadeghirad et al. [53] used it
in 2023 to study the tumor microenvironment of HNSCC. Using nucleus
expansion in these cases can be problematic. As we have shown in this
paper, nucleus expansion is generally not a reliable method to obtain
cell segmentations.

Based on our results, we can derive the following recommenda-
tions for clinical analyses of cell segmentations in HE images: First,
one should use a more sophisticated method than watershed. Neural
networks such as Cellpose, StarDist and Cyto R-CNN all offer better
performance. The precise choice will depend on the application and
should be validated before-hand. Second, one should be careful when
using cell expansion. There might be cases in which it can be appropri-
ately used. But without prior knowledge about the cell, one should not
assume a circular cell shape, which will result from nucleus expansion.

4.4. Limitations and future work

Despite these promising results, there are some clear limitations
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of our study. Most importantly, we have limited ourselves to a small
dataset of one particular cell type. HNSCC was a great starting point for
developing our method because of the clearly visible cell cytoplasm and
heterogeneous morphology. It remains to be shown if the results of Cyto
R-CNN can be replicated on larger datasets of different cell types. There
is also some potential to further improve the Cyto R-CNN architecture
in the future. The cell scaling factor as described in Section 2.3.1 was
set to a constant value that worked well for our dataset. When Cyto
R-CNN will be applied to different cell types, it might be necessary to
tune this scaling factor to a more appropriate values. Similarly, it could
be possible to use multiple scaling factors simultaneously and train a
new part of the network to rank the different proposals. A similar multi-
scale approach is already known from cytological cell segmentation and
proved successful in the SegPC-2021 challenge [25].

Apart from these possible improvements of Cyto R-CNN itself, there
is now plenty of opportunity to develop completely new solutions for
whole-cell segmentation using our newly created CytoNuke dataset. It
would be interesting to investigate in the future whether more recent
network architectures such as Mask2Former [54] can also be used for
whole-cell segmentation. To achieve this, one would need to investigate
to what extent geometric constraints (nucleus has to be inside the
cytoplasm, maximum one cytoplasm per nucleus) can be translated at
an architectural level.

Another interesting research area will be to modify existing cell
segmentation methods from cytology in such a way that they can be
successfully applied to HE-stained histological images. The SegPC-2021
challenge gave rise to several new cell segmentation methods that are
promising candidates for future research. For example, Faura et al.
[24] achieved the first place in the SegPC challenge and outperformed
Deeplabv3+. However, this model operates under the assumption that
each nucleus has a corresponding cytoplasm annotation. This assump-
tion does not hold on our dataset. It would require some modifications
to be able to apply the first-place solution to our dataset. This is
why we settled with the second-place Deeplabv3+ for benchmarking
purposes in this paper. Additionally, Salvi et al. [55] recently published
a new architecture cyto-Knet that achieves even better results on the
SegPC dataset. Its pre-processing and post-processing steps are quite
specific for cytological images (e.g. allowing only a limited nuclei-to-
cell ratio), but it will be interesting to examine in the future how well
this method generalizes on histological images. We have made our
CytoNuke dataset publicly available and are looking forward to seeing
further progress in this area.

5. Conclusion

In this study, we developed a new method to accurately segment the
whole cell together with its nucleus in bright-field histological images.
This method has been able to outperform all alternatives, including the
popular setup of combining StarDist with nucleus expansion. Moreover,
we found that existing methods can result in misleading data for cell
measurements and should not be used for cytometric analysis without
further validation. Our new method is able to improve the reliability
of such morphological measurements, which could be used for future
studies.
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