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A B S T R A C T   

The effect of halide substitution in Grubbs-Hoveyda II catalysts (GHII catalysts) embedded in the engineered 
β-barrel protein nitrobindin (NB4exp) on metathesis activity in aqueous media was studied. Maleimide tagged 
dibromido and diiodido derivates of the GHII catalyst were synthesized and covalently conjugated to NB4exp. 
The biohybrid catalysts were characterized spectroscopically confirming the structural integrity. When the two 
chloride substituents at ruthenium center were exchanged against bromide and iodide, the diiodo derivative was 
found to show significantly higher catalytic activity in ring-closing metathesis of α,ω-diolefins, whereas the 
dibromido derivative was less efficient when compared with the parent dichlorido catalyst. Using the diiodido 
catalyst, high turnover numbers of up to 75 were observed for ring-closing metathesis (RCM) yielding unsatu
rated six- and seven-membered N-heterocycles.   

1. Introduction 

With no equivalent in nature, olefin metathesis represents an 
attractive biorthogonal reaction that offers a wide application scope for 
C––C bond cleavage and forming catalysis in biological systems. [1–4] 
Ruthenium-catalyzed olefin metathesis is predestinated for these re
actions as the catalysts display a high tolerance towards water and air. 
[5,6] Examples include application in chemo-enzymatic cascade re
actions, [7–11] chemical modification of biomolecules, [12–15] use as 
biosensors, [16,17] olefin metathesis in living cells [18,19] and in vivo 
drug synthesis. [20–22] While the reaction mechanism and degradation 
pathways of ruthenium carbene catalysts are well-understood in organic 
media, mechanistic understanding of olefin metathesis in water is still 
limited. [3] Aqueous olefin metathesis can be optimized by performing 
the reaction in acidic media [23] and by adding chloride salts to the 
solution. [24] This prevents the halide-exchange leading to dihydroxy 
complexes and binuclear species [25] as the major decomposition 
pathway in water (Fig. 1). [26] A recent report demonstrates that the 
exchange of the chloride ligand with a nitrato group improved the ac
tivity of a water-soluble second generation Grubbs-Hoveyda catalyst 

(GHII catalyst) in the presence of biological additives such as phosphate 
buffer and glutathione. [27] This suggests that the halide ligand might 
be a key for improving the efficiency of aqueous olefin metathesis. 

Another recent approach for optimizing aqueous olefin metathesis is 
the development of artificial metalloenzymes as biohybrid catalysts, 
[20,28–35] which consist of artificial metal-based cofactors conjugated 
to a protein. [36] Biohybrid catalysts can be utilized to carry out bio
rthogonal reactions in biological environments [37] but can also be used 
to combine mutually incompatible reactions. [10,11] Tanaka et al. 
developed a biohybrid catalyst based on an iodide-substituted GHII 
catalyst which is stable against decomposition in aqueous media when 
compared to the dichloride parent. [22] Halide substituted GHII cata
lysts played rather a niche role, [38–51] but recent reports describe their 
higher stability against air [50] and water compared to the chloride 
parent species. [52,53] Effects of the metal first coordination sphere in 
biohybrid catalysts has only been investigated to a limited extent. [54] 
Here, we report biohybrid catalysts based on halide substituted GHII 
catalysts conjugated to an engineered variant of the β-barrel protein 
nitrobindin NB4exp. [55] NB4exp proved to be a robust scaffold for 
biohybrid catalysts promoting to different types of olefin metathesis 
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(cross-metathesis, RCM and ring-opening metathesis polymerization) 
[55,56] and numerous other reactivities. [57–67] A goal of this work 
was to understand the effect of the halide-substitution in Grubbs- 
Hoveyda catalyst on the olefin metathesis reactivity in different reac
tion media. 

2. Experimental section 

2.1. General information 

All experiments were performed under a nitrogen or argon atmo
sphere using standard Schlenk techniques or an MBraun argon or 
nitrogen-filled glovebox. Chemicals were purchased from Merck, TCI 
and other common suppliers. Acetone was dried over activated molec
ular sieves. DMSO and 1,4-dioxane were degassed by using “pump- 
freeze-thaw” cycles. Water was degassed by bubbling with argon for at 
least one hour. The maleimide tagged GH-catalyst (Ru-Cl2) was pre
pared according to previously reported procedures. [34] RCM substrates 
and products were synthesized according to previously reported 
procedures. 

The pH values were measured with Voltcraft KBM-110 pH-meter 
Redox. NMR spectra were recorded on a Bruker Avance III HD 400 NMR 
spectrometer. Chemical shifts are reported in ppm relative to residual 
solvent resonances. [68] ESI-MS analysis was performed on a Thermo 
Fisher Scientific LTQ Orbitrap XL mass spectrometer. Circular dichroism 
(CD) spectra were recorded on a JASCO J1100 CD spectrometer. UV/VIS 
spectra were recorded on a JASCO J1100 CD spectrometer (for pro
teins). IR spectra were recorded on a Shimadzu IRSpirit spectrometer 
fitted with a Single Reflection ATR accessory. ICP-OES measurements 
were conducted on a Spectro Analytical Instruments Spectroblue ICP- 
OES spectrometer. Gas chromatography (GC–MS) was performed on a 
Shimadzu GCMS-QP2010 Plus equipped with a Macherey Nagel FS- 
Surpreme-5 ms PLUS column (30 m × 0.25 mm, 0.5 μm) with helium as 
carrier gas. The gradient was carried out as follows: Injector temperature 
340 ◦C; 120 ◦C for 2 min, ramp with 10 ◦C min− 1 to 300 ◦C, 2 min at 
300 ◦C. 

2.2. Synthesis of halide-substituted GH-catalysts 

2.2.1. Synthesis of Ru-Br2 
Ru-Cl2 (52 mg, 65 μmol, 1.0 equiv.) was dissolved in acetone (20 

mL) and sodium bromide (3.72 g, 36.1 mmol, 560 equiv.) was added. 
The reaction solution was stirred at room temperature for 72 h. The solid 
was removed by filtration. The filtrate was concentrated under reduced 
pressure and repeatedly taken up in toluene. Remaining precipitate was 
removed by filtration and the product was obtained by removing the 
solvent under reduced pressure. Ru-Br2 was obtained as green micro
crystals. Yield: 56 mg, 62 μmol, 95%. 1H NMR (CD2Cl2, 400 MHz): δ 
[ppm] = 16.46–16.20 (m, 1H, Ru––CH), 7.60 (td, J = 7.9, 1.7 Hz, 1H, 
Ar–H), 7.17–6.95 (m, 5H, Ar-H), 6.96–6.83 (m, 2H, Ar-H), 6.66 (s, 2H, 
C––CH), 5.05–4.85 (m, 1H, C(CH3)2CH), 4.77–4.54 (m, 1H, N-CH-CH2), 
4.32 (t, J = 11.0 Hz, 1H, N-CH2-CH), 4.28–4.10 (m, 2H, N-CH-CH2O), 
4.00 (dd, J = 10.8, 7.1 Hz, 1H, N-CH2-CH), 3.51 (t, J = 6.9 Hz, 2H, N- 
CH2-CH2), 2.82–2.20 (m, 20H, Ar-CH3 / CO-CH2-), 1.85 (p, J = 7.1 Hz, 

2H, CO-CH2-CH2), 1.45–1.22 (m, 6H, C(CH3)2CH). 13C NMR (CD2Cl2, 
100 MHz): δ [ppm] = 299.5 (br), 215.7 (br), 173.0, 171.3, 152.8, 146.0, 
140.9, 140.3, 134.0, 138.8, 138.6, 138.0, 134.8, 134.6, 130.6, 130.5, 
130.2, 130.0, 129.7, 129.5, 128.7, 125.8, 122.9, 122.7, 113.8, 76.0, 
64.7, 64.1, 63.2, 62.4, 55.8, 54.5, 37.4, 34.7, 31.5, 29.6, 24.1, 22.9, 
22.6, 21.9, 21.4, 21.3, 19.3, 14.4. IR (neat): ṽ [cm− 1] = 2963, 2917, 
2862, 2361, 2342, 1736, 1703, 1607, 1588, 1575, 1474, 1452, 1442, 
1405, 1259, 1240, 1170, 1139, 1112, 1095, 1033, 1014, 979, 933, 877, 
851, 826, 804, 745, 694, 668. ESI HRMS: m/z = [M-Br]+ calc. 
832.1743, observed 832.1722. 

2.2.2. Synthesis of Ru-I2 
Ru-Cl2 (100 mg, 122 μmol, 1.0 equiv.) and sodium iodide (10.0 g, 

66.7 mmol, 550 equiv.) were dissolved in acetone (10 mL). The reaction 
mixture was stirred at room temperature for 36 h. Toluene (50 mL) was 
added to precipitate excess sodium iodide. Acetone was removed under 
reduced pressure and the precipitate was removed by filtration. The 
filtrate was concentrated under reduced pressure and repeatedly taken 
up in toluene. Remaining precipitate was removed by filtration and the 
product was obtained by removing the solvent under reduced pressure. 
Ru-I2 was obtained as dark green microcrystals. Yield: 102 mg, 101 
μmol, 83%. 1H NMR (CD2Cl2, 400 MHz): δ [ppm] = 15.65 (s, 0.7H, 
Ru––CH), 15.60 (s, 0.3H, Ru––CH), 7.64 (ddd, J = 8.8, 7.3, 1.8 Hz, 1H, 
Ar-H), 7.33–6.99 (m, 5H, Ar-H), 6.98–6.88 (m, 2H, Ar-H), 6.70 (d, J =
4.5 Hz, 2H, C––CH), 5.17–4.95 (m, 0.7H, C(CH3)2CH), 4.78–4.64 (m, 
0.3H, C(CH3)2CH), 4.65–4.48 (m, 1H, N-CH-CH2), 4.42–4.14 (m, 3H, N- 
CH2-CH / N-CH-CH2O), 4.04 (dd, J = 10.7, 6.0 Hz, 1H, N-CH2-CH), 3.56 
(td, J = 6.9, 3.8 Hz, 2H, N-CH2-CH2), 2.86 (s, 2H, Ar-CH3), 2.71 (s, 1H, 
Ar-CH3), 2.63–2.43 (m, 12H, Ar-CH3), 2.43–2.31 (m, 5H, Ar-CH3 / CO- 
CH2-), 1.99–1.81 (m, 2H, CO-CH2-CH2), 1.54 (dd, J = 22.4, 6.1 Hz, 5H, C 
(CH3)2CH), 1.41 (dd, J = 8.5, 6.1 Hz, 1H, C(CH3)2CH). 13C NMR 
(CD2Cl2, 101 MHz): δ [ppm] = 299.4, 299.2, 298.3, 298.1, 217.4, 
216.9, 173.1, 172.8, 171.3, 153.5, 153.4, 145.7, 145.4, 140.0, 139.8, 
139.5, 138.6, 138.4, 137.8, 137.6, 136.9, 136.1, 134.6, 134.3, 131.2, 
131.1, 131.0, 130.7, 130.4, 130.1, 130.0, 130.0, 129.5, 128.7, 125.8, 
123.3, 122.4, 114.0, 76.6, 76.4, 64.6, 64.0, 63.6, 62.7, 55.9, 37.4, 31.7, 
31.6, 29.7, 24.3, 24.1, 23.9, 23.0, 22.4, 22.3, 22.1, 22.0, 21.4, 21.3, 
20.9, 20.5. IR (neat): ṽ [cm− 1] = 2959, 2916, 2857, 2359, 2341, 1736, 
1704, 1605, 1590, 1575, 1474, 1451, 1441, 1406, 1374, 1259, 1238, 
1220, 1169, 1137, 1112, 1095, 1033, 1014, 977, 931, 877, 850, 838, 
824, 745, 695, 668. ESI HRMS: m/z = [M-I]+ calc. 876.1446, observed 
876.1446. 

2.3. Preparation of the biohybrid catalysts 

NB4exp was prepared as previously described. [55] A preculture of 
5.0 mL of LB-medium (supplemented with 50 μg mL− 1 of kanamycin) 
was inoculated with E. coli BL21 Gold (DE3) harboring a pET42(+) 
vector containing a gene encoding NB4exp fused N-terminally with a 
Strep-tag and incubated at 37 ◦C with 250 rpm shaking for 17 h. A main 
culture of 200 mL TB-medium (supplemented with 50 μg mL− 1 kana
mycin) was inoculated with 1.0 mL of the preculture and incubated at 
37 ◦C with 250 rpm shaking until an OD600 of 0.6–0.8 was reached. 
Protein expression was induced by addition of 0.5 mM of IPTG and the 

Fig. 1. Degradation of GHII catalysts in aqueous environments by ligand exchange of chloride with hydroxide.  
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temperature was set to 18 ◦C for 20 h. Cells were harvested by centri
fugation (4000 xg, 20 min, 4 ◦C) and washed with 50 mM of potassium 
phosphate buffer (pH 7.0). The cells were suspended with 20 mM of Tris- 
HCl (pH 8.0) containing 300 mM of sodium chloride (1:8 m,v) and dis
rupted by sonification on using a sonotrode. The cell debris and insol
uble protein fraction was removed by centrifugation (15,000 xg, 45 min, 
4 ◦C). The supernatant was filtered through a syringe filter (0.45 μm 
pore size) and loaded onto a StrepTactin Sepharose column and washed 
with 10 cv of 20 mM Tris-HCl (pH 7.0) containing 300 mM of sodium 
chloride. NB4exp was eluted by 1 mM of desthiobiotin in the same 
buffer. The fractions contained the desired protein were pooled and 
subjected to a buffer change towards potassium phosphate buffer (50 
mM, pH 7.0) using a HiTrap Desalting column (5 mL bed volume). Pu
rified protein was stored shortly (<3 h) at 4 ◦C until further use. Alter
natively, the protein can be stored at − 45 ◦C when frozen in liquid 
nitrogen prior to storage. 

In a glovebox under N2-atmosphere, protein (20 μM) in Tris-buffer 
(10 mM, pH 7.4) containing 250 mM of potassium halide salt and 10 
vol% DMSO was incubated with catalysts Ru-X2 (100 μM, 5.0 equiv.) 
one hour. The solution was shortly centrifuged (10 min, 12,000 x g), the 
supernatant was concentrated to <1.0 mL using an Amicon centrifugal 
filter (cutoff Mw 10,000) and subjected to size exclusion chromatog
raphy using a HiTrap Desalting column (5 mL bed volume). Protein was 
eluted using 200 mM potassium halide salt for use in catalytic reactions 
or potassium phosphate buffer (50 mM, pH 7.0) for analytical purposes. 
The protein concentration was determined by BCA-assay (Thermo Sci
entific) according to the manufactures protocol or on a Nanodrop using 
the calculated molecular weight and absorption at 280 nm. 

2.4. Cysteine titration with ThioGlo-1 

To 150 μL of a solution of apoprotein or protein conjugated with Ru- 
X2 (5.0 μM) in 50 mM potassium phosphate buffer (pH 7.0), 1.5 μL of a 
solution of ThioGlo-1 in acetonitrile (1.5 mM; final concentration: 15 
μM) was added. The reaction mixture was incubated at room tempera
ture for 30 min and the fluorescence (excitation wavelength 379 nm) at 
513 nm was measured. In addition, blank measurements in the absence 
of protein were performed. All measurements were performed in 
triplicates. 

2.5. Catalytic ring-closing metathesis 

The final reaction mixture consisted of 20 mM of buffer (pH 4.0 or 
5.5; sodium acetate, sodium citrate, potassium phosphate, MES or pyr
idine) or alternatively no buffer, 250 mM of potassium halide salt, 30 vol 
% of dioxane, and 25 μM of Ru-X2@NB4exp in doubly distilled water. 
The conjugates were diluted from a stock solution of protein in 200 mM 
of KX solution. The reaction was started by addition of 2.5 mM of the 
substrate N,N-diallyltosylamide from an appropriate stock solution (25 
mM in 1,4-dioxane). Reactions were carried out in triplicates at 30 ◦C 
with orbital shaking at 900 rpm for 20 h. The reaction was stopped by 
addition of 375 μL of dichloromethane containing 1.0 mM n-tetradecane 
as internal standard and 6.7 vol% of ethyl vinyl ether. The phases were 
separated, the organic phase was dried over anhydrous magnesium 
sulfate and analyzed by GC–MS. Alternatively, reactions were carried 
out with N-allyl-N-(3-butenyl)tosylamide or N-allyl-N-(4-pentenyl) 
tosylamide instead of N,N-diallyltosylamide. 

2.6. Molecular modelling 

Modelling of the apo-form of NB4exp was performed as reported 
previously [55,57,58] using YASARA [69] Structure Vers. 20.12.24, 
employing force field AMBER14. [70] The modelling of the biohybrid 
catalysts was carrired out using GAFF [71] using AM1/BCC [72] partial 
charges for the catalyst covalently bound to Cys96. [57,58] The metal 
was replaced by iron since no parameters are available for ruthenium. 

To maintain the correct coordination geometry, the distances, and an
gles from the metal to all coordinating atoms were constrained ac
cording to the X-ray structure of the GHII catalysts (Cl, I and with 
estimated values for Br) by force field arrows. The charge of the metal 
was set to +2 and the total charge of the catalyst was set to zero. The 
linker was placed manually in the cavity adjacent to Cys96. A bond from 
the Cys96 sulfur atom to the C1 atom of the maleimide group was 
defined, according to the linker geometry in the high-resolution X-ray 
structure of the rhodium complex. The constructed hybrid catalysts were 
solvated in a box of TIP3P water molecules using periodic boundaries at 
pH 7.0 and a density of 0.997 g/mL. Three starting structures were 
analyzed, and favorable models were identified for covalent attachment 
to the reactive maleimide atoms by steepest descent minimization and 
simulated annealing. The pre-minimized structures were relaxed using 
molecular dynamics calculations at 298 K for 5000 ps and snapshots 
were taken every 25 ps to analyze the binding modes. Van der Waals 
volume of the ligand was calculated using Yasara and the MSMS pro
gram. [73] 

3. Results 

3.1. Preparation and characterization of biohybrid catalysts 

Halide-substituted homologs of the maleimide tagged Ru-Cl2 were 
prepared by salt metathesis in acetone with a large excess of sodium 
halide salt to give the complexes in yields of 95% (Ru-Br2) and 83% (Ru- 
I2). The formation of the disubstituted species was confirmed by 1H NMR 
spectroscopy (Figs. S1-S2). In view of different cavity sizes of NB vari
ants (Table S2), we focused on the NB4exp scaffold to ensure accom
modation of the heavier halide-substituted complexes. These complexes 
were covalently conjugated to the Cys96 residue of NB4exp via Michael 
addition reaction in Tris-HX buffer (10 mM, pH 7.4, 200 mM KX) in the 
presence of 10% DMSO (Fig. 2a). These conditions ensure the presence 
of an excess of the corresponding halide salt to prevent ligand exchange 
with chloride typically contained in biological buffers. 

The structure of the biohybrid catalysts was calculated using 
YASARA structure based on previous molecular modelling [55] and 
showed similar binding motifs of the complexes in the cavity (Fig. 2b, c, 
d). No specific interactions between the halide ligands and the protein 
scaffold were identified. High conjugation efficiencies >95% of the 
ruthenium complex were determined by ICP-OES measurements (see 
Table S2). To exclude non-specific interactions between the protein and 
the metal complex, we further confirmed the conjugation yields by 
cysteine titration with the maleimide-containing fluorescence dye 
ThioGlo-1 (Fig. S12). While a solution of free NB4exp showed a signif
icantly increased fluorescence after addition of ThioGlo-1, the samples 
of Ru-X2@NB4exp exhibited <5% fluorescence, indicating a coupling 
efficiency of >95%. The biohybrid catalysts obtained were further 
characterized by ESI MS analysis (Table S3, Figs. S8–11 in the Sup
porting Information). The calculated mass for catalysts Ru-Br2@NB4exp 
(m/z = 23,427) and Ru-I2@NB4exp (m/z = 23,494) was observed in the 
ESI MS spectra. We further confirmed the structural integrity of NB4exp 
by CD-spectroscopy (Fig. 3a). The β-barrel of NB4exp has a typical CD- 
minimum at λ = 217 nm and a maximum below λ = 200 nm. [55] The 
measured spectra of both the apoprotein and the conjugates match these 
characteristics well. Thus, the structural integrity of the protein scaffold 
was confirmed. The prepared biohybrid catalysts were also character
ized by UV–Vis spectroscopy (Fig. 3b). The characteristic absorptions 
bands corresponding to the ligand to metal charge transfer (X➔Ru) of 
the complexes Ru-Cl2 (ca. 380 nm), Ru-Br2 (ca. 395 nm) and Ru-I2 (ca. 
415 nm) remain visible after conjugation to NB4exp. 

3.2. Ring-closing metathesis of N,N-diallyltosylamide as benchmark 
substrate 

Next, we tested our newly prepared biohybrid catalysts (Ru- 
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X2@NB4exp) for aqueous RCM of the benchmark substrate N,N-dia
llyltosylamide (Table 1). The robust protein scaffold tolerates water- 
miscible co-solvents, thus the use of 30% 1,4-dioxane ensuring solu
tion homogeneity did not lead to protein denaturation. In these exper
iments, the effect of different aqueous buffer solutions and their 
interplay with the halide ligands on the catalytic performance of the 
biohybrid catalysts was evaluated. With Ru-Cl2@NB4exp, TONs be
tween 31 and 36 were observed in all buffers at pH 5.5 (Entries 1–3). The 

use of acetate was leading to the lowest TONs. These TONs are in good 
agreement with our previous reports. [55] The decrease of the pH in 
acetate buffer to pH 4.0 led as expected to an improvement of the TON to 
45 (Entry 4) which is in line with the general observation of aqueous 
olefin metathesis proceeding better under acidic conditions. [3,23] 
Comparably lower TONs of 19 to 27 were observed with Ru- 
Br2@NB4exp under all investigated conditions (Entries 6–9). The sub
stitution of chloride by iodide (Ru-I2@NB4exp) gave the highest TONs 

Fig. 2. Preparation and calculated structure of biohybrid catalysts Ru-X2@NB4exp. (a) Synthesis of Ru-X2 via salt-metathesis of maleimide-tagged GHII catalyst Ru- 
Cl2 and subsequent conjugation to NB4exp forming the artificial metalloenzymes Ru-X2@NB4exp; Reaction conditions (I): 500 equiv. Acetone, 500 equiv. NaX, RT, 
36 or 72 h; Reaction conditions (II): H2O/DMSO (9:1), 10 mM Tris-HX (pH 7.4), 200 mM KX, 100 μM Ru-X2 (5 equiv.), 20 μM NB4exp (1 equiv.), RT, 1 h. (b) 
Structure of Ru-Cl2@NB4exp. (c) Structure of Ru-Br2@NB4exp. (d) Structure of Ru-I2@NB4exp. The structures were calculated based previously published structure 
of NB4exp [55] and visualized with YASARA software. See further images of the structures from different angles in Fig. S3 in the Supporting information. 

Fig. 3. Characterization of NB4exp (orange)and the conjugates Ru-Cl2@NB4exp (green), Ru-Br2@NB4exp (blue) and Ru-I2@NB4exp (violet). (a) CD spectra in MES 
buffer (20 mM, pH 5.5). Potassium halide salts were not added due to the strong absorption in the region of the CD signal, spectra were recorded immediately after 
preparation of the biohybrid catalyst. (b) UV–vis spectra in MES buffer (20 mM, pH 5.5) containing potassium halide salt (250 mM). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

A.A. Ingram et al.                                                                                                                                                                                                                               



Journal of Inorganic Biochemistry 258 (2024) 112616

5

between 40 and 53 at pH 5.5 (Entries 11 to 13). The TON was improved 
up to 48% in comparison with the chloride complex in MES buffer (pH 
5.5). For Ru-I2@NB4exp, the use of acetate at pH 5.5 led to a decrease of 
the TON by 25%. When using salt-supplemented water at pH 7.0 (Entry 
5), similar TONs as in the weakly coordinating buffers at pH 5.5 were 
observed with Ru-Cl2@NB4exp. No catalysis was observed in pure po
tassium bromide solution at pH 7.0 with Ru-Br2@NB4exp, probably due 
to lower protein/catalyst stability (Entry 10). In contrast, the TON of the 
reaction in pure water was lower when compared to the weakly coor
dinating buffers at pH 5.5 with Ru-I2@NB4exp (Entry 15). 

3.3. Ring-closing metathesis forming N-heterocycles with increased ring 
size 

RCM reactions forming six- and seven-membered heterocycles with 
the halide-substituted biohybrid catalysts Ru-X2@NB4exp were studied 
(Table 2). Each catalyst formed RCM products for all three substrates. 
Higher conversions were observed for the six-membered cycle (Entries 
5–7) over the five-membered cycle with all catalysts (Entries 1–3). 
Especially for the known biohybrid catalyst Ru-Cl2@NB4exp, a two-fold 
increase of the TON was observed. The increase for the dibromide 
analogue was only small. The highest TON of 74 was achieved using the 
diiodide homolog. With the increase of ring size to seven (Entries 9–11), 
the TON dropped for Ru-Cl2@NB4exp to 23. In contrast, slightly higher 
TONs compared to the reactions forming smaller heterocycles were 
observed with the halide-substituted analogues Ru-Br2@NB4exp and 
Ru-I2@NB4exp. Non-productive side-reactions such as olefin isomeri
zation proceeding via β-hydride elimination [50] were not observed for 
any catalyst-substrate combination. 

4. Discussion 

Molecular modelling using YASARA software suggested that the 
halide substitution did not change the overall binding situation for all 
conjugates. In all conjugates, one halide ligand is directed towards the 
protein backbone and the other is directed towards the surface, thus 
being susceptible to the aqueous environment. Ligand exchange of 
chloride with water or hydroxide is assumed to be the most prominent 
decomposition pathway of GH-catalyst. [26] With our experimental 
setup, some insight into the effect of the halide ligand with the hydro
phobic environment provided by the cavity of NB4exp was obtained. A 
general trend that the iodide based biohybrid catalyst give higher TONs 
compared to the chloride catalyst was observed, while the bromide 
based biohybrid catalysts gives lower TONs. 

These experiments follow the rule that weakly coordinating buffers 
are more suitable compared to stronger coordinating buffers such as 
acetate which negatively influenced the TON of Ru-Cl2@NB4exp and 
Ru-I2@NB4exp at pH 5.5. [26,74] In acetate solution, the formation of 
acetate-chelated GH complexes is likely occurring. Stronger coordi
nating buffers are reported to decrease the efficiency of aqueous olefin 
metathesis. [24,26] In contrast, Ru-Br2@NB4exp, exhibits the highest 
TONs in this buffer. The replacement with the typically unfavored ace
tate performing best with bromide underlines the unfavorable character 
of this ligand. Decreased stability of the intermediate species is also 
reported for other bromide-substituted ruthenium olefin metathesis 
catalysts. [75] In line with previous reports on aqueous olefin metathesis 
proceeding better under acidic conditions, a lower pH value of the ac
etate buffer increased the TONs for all biohybrid catalysts. [23] 

The different behavior of the iodide substituted biohybrid catalysts 
can be explained by the hydrophobicity of the iodide ligand. In contrast 
to chloride, iodide is not able to form hydrogen bonds with the aqueous 
environment. [76] Together with the effects of the protein cavity, Ru- 
I2@NB4exp is protected from decomposition/inactivation in the 
aqueous solution. These effects have also been reported in wet organic 
reaction media. [52,53] We propose that a higher hydrophobicity at the 
Ru-center stabilizes the complex in the presence of water. In aqueous 

Table 1 
Comparison of different buffers for the RCM N,N-dia
llyltosylamide catalyzed by biohybrid catalysts Ru-X2@NB4exp. 

Entrya) Catalyst Buffer TONb,c)

1

Ru-Cl2@NB4exp

Acetate (pH 5.5) 31

2 Phosphate (pH 5.5) 34

3 MES (pH 5.5) 36

4 Acetate (pH 4.0) 45

5 - 35

6

Ru-Br2@NB4exp

Acetate (pH 5.5) 25

7 Phosphate (pH 5.5) 21

8 MES (pH 5.5) 19

9 Acetate (pH 4.0) 27

10 - n.d.

11

Ru-I2@NB4exp

Acetate (pH 5.5) 40

12 Phosphate (pH 5.5) 48

13 MES (pH 5.5) 53

14 Acetate (pH 4.0) 53

15 - 42

a) Reaction conditions: V = 0.5 mL, water/1,4-dioxane (7:3), 250 
mM KX, 20 mM buffer (pH 5.5), 2.5 mM N,N-diallyltosylamide, 
25 μM Ru-X2@NB4exp (1 mol%), 30 ◦C, 20 h reaction time. b) 
Determined by GC–MS analysis. c) Δ(TON) = ± 3. 

Table 2 
RCM for substrates leading to heterocycles with increased ring size 
catalyzed by the biohybrid catalysts Ru-X2@NB4exp. 

Entrya) Substrate Product Catalyst TONb,c)

1 Ru-Cl2@NB4exp 36

2 Ru-Br2@NB4exp 19

3 Ru-I2@NB4exp 53

4 NB4exp -

5 Ru-Cl2@NB4exp 63

6 Ru-Br2@NB4exp 25

7 Ru-I2@NB4exp 74

8 NB4exp -

9 Ru-Cl2@NB4exp 23

10 Ru-Br2@NB4exp 26

11 Ru-I2@NB4exp 76

12 NB4exp -

a) Reaction conditions: V = 0.5 mL, water/1,4-dioxane (7:3), 250 
mM KX, 20 mM buffer (pH 5.5), 2.5 mM dialkenyltosylamide, 25 μM 
Ru-X2@NB4exp (1 mol%), 30 ◦C, 20 h reaction time. b) Determined 
by GC–MS analysis, c) Δ (TON) = ±3. 
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solution, this effect is less prominent than in organic media. Further
more, the relative degree of improvement of catalyst performance by 
iodide ligands (1.5 fold) is lower compared to the biohybrid catalyst 
reported by Tanaka et al. (3 to 4 fold) [22] which is in agreement with 
the solvent susceptibility of the ruthenium center. The NB4exp scaffold 
is not capable of suppressing ligand exchange completely in the protein 
environment. Nevertheless, the hydrophobic cavity of NB4exp has a 
stabilizing effect on the ruthenium center reducing decomposition re
actions. The expected catalyst dimerization assumed to be occurring 
under aqueous conditions [77] is sterically less favored due to the pro
tein backbone. β-Hydride elimination typically occurs during the prep
aration of macrocycles, [50] but was not observed with the biohybrid 
catalysts. This enabled the successful formation of unsaturated six- and 
seven-membered N-heterocycles especially with Ru-I2@NB4exp. To the 
best of our knowledge, these results represent the highest TONs reported 
for RCM yielding six- and seven-membered heterocycles with biohybrid 
catalysts exceeding the TONs reported by Tanaka et al. although under 
less favorable conditions. [20,22] 

5. Conclusion 

In this study, bromide- and iodide-substituted GHII catalysts were 
conjugated to the engineered β-barrel protein NB4exp. The bio
conjugates were characterized by ICP-OES, CD spectroscopy, UV–Vis 
spectroscopy and ESI MS. Both halide-substituted biohybrid catalysts 
promoted aqueous RCM of dialkenyltosylamides. While the dibromido 
homolog suffered from low stability leading to decreased TONs in RCM 
reactions under the conditions tested compared to the dichloride cata
lyst, the exchange with iodide ligands led to significant improvement of 
the TONs. The diiodide catalyst showed increased RCM activity for 
substrates forming six- and seven-membered heterocycles. None of the 
tested biohybrid catalysts promoted undesired side-reactions. Substitu
tion of the chlorido ligands with iodide appears to be a promising 
approach to further tune aqueous olefin metathesis. 
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