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Abstract  Plants can produce complex pharmaceuti-
cal and technical proteins. Spider silk proteins are one 
example of the latter and can be used, for example, as 
compounds for high-performance textiles or wound 
dressings. If genetically fused to elastin-like poly-
peptides (ELPs), the silk proteins can be reversibly 
precipitated from clarified plant extracts at moderate 
temperatures of ~ 30 °C together with salt concentra-
tions > 1.5 M, which simplifies purification and thus 
reduces costs. However, the technologies developed 
around this mechanism rely on a repeated cycling 
between soluble and aggregated state to remove plant 
host cell impurities, which increase process time 

and buffer consumption. Additionally, ELPs are dif-
ficult to detect using conventional staining methods, 
which hinders the analysis of unit operation per-
formance and process development. Here, we have 
first developed a surface plasmon resonance (SPR) 
spectroscopy-based assay to quantity ELP fusion pro-
teins. Then we tested different filters to prepare clari-
fied plant extract with > 50% recovery of spider silk 
ELP fusion proteins. Finally, we established a mem-
brane-based purification method that does not require 
cycling between soluble and aggregated ELP state 
but operates similar to an ultrafiltration/diafiltration 
device. Using a data-driven design of experiments 
(DoE) approach to characterize the system of revers-
ible ELP precipitation we found that membranes with 
pore sizes up to 1.2 µm and concentrations of 2–3 M 
sodium chloride facilitate step a recovery close to 
100% and purities of > 90%. The system can thus be 
useful for the purification of ELP-tagged proteins 
produced in plants and other hosts.
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HCP	� Host cell protein
ITC	� Inverse transition cycling
ITP	� Inverse transition purification
NHS	� N-hydroxysuccinimide
RU	� Resonance unit
SPR	� Surface plasmon resonance
TSP	� Total soluble protein
UF/DF	� Ultrafiltration/diafiltration

Introduction

Plants can have several advantages for the production 
of biopharmaceutical proteins such as low upstream 
production costs of ~ 50 € kg−1 wet biomass due to 
simple cultivation (Ridgley et al. 2023) and an inher-
ent safety because they do not support the replication 
of human pathogens (Schillberg et  al. 2019; Donini 
and Marusic 2019; Moustafa et  al. 2016; Tschofen 
et  al. 2016; Buyel 2023). However, the recovery of 
recombinant proteins from plant extracts can be chal-
lenging due to large quantities of particles and host 
cell proteins that are typically released during bio-
mass homogenization (Wilken and Nikolov 2012; 
Buyel 2015). Various methods have been develop in 
the last years to address this issue, including floccula-
tion or blanching to simplify clarification and purifi-
cation respectively (Buyel et al. 2014; Buyel and Fis-
cher 2014a).

Apart from process modifications, purification 
challenges can be circumvented by genetically engi-
neering a product. For example, the product can be 
extended with short stretches of amino acids, so 
called tags, that simplify product capture (Costa et al. 
2014; Pina et al. 2014; Young et al. 2012). One of the 
most commonly used tags facilitating affinity chroma-
tographic purification is a stretch of about six histi-
dine residues typically located at the N-terminus or 
C-terminus of a product. This tag enables selective 
binding of a product to immobilized divalent metal 
ions (Debeljak et  al. 2006). However, the histidine 
tag may be inefficient for purification for example if 
chelating agents are present (Gengenbach et al. 2018). 
Also, the tag may be cleaved of in dependence of the 
plant cultivation conditions such as growth tempera-
tures > 40 °C (Knödler et al. 2019) or the correspond-
ing chromatography resin can be too costly for the 
bulk production of technical proteins. An example 
of the latter are spider silk proteins that can be used 

as high-performance textile fibers (Belbéoch et  al. 
2021).

Alternatively, elastin-like polypeptide (ELP) based 
purification tags offer a straightforward and sim-
ple chromatography-free separation of product and 
host cell proteins (HCPs). Also, ELPs can be effec-
tively produced in plants and plant cells (Floss et al. 
2010) and the tag can be cleaved-off after purifica-
tion (Lan et  al. 2011) so that authentic product can 
be recovered. ELPs comprise 30‒100 repeats of a 
VPGXG motif, where X is any amino acid except 
proline (Urry 1988). This sequence mediates a revers-
ible aggregation of ELPs as well as ELP-fusion pro-
teins (Christensen et  al. 2013) at a so called transi-
tion temperature (Tt), which is ≥ 30 °C in the presence 
of ≥ 1.0 M salt. The Tt can be reduced by increasing 
the salt concentration as well as by increasing num-
ber of VPGXG repeats in the ELP tag (Conley et al. 
2009) as well as by increasing the hydrophobicity 
of the guest residue X in the ELP motif (Urry et al. 
1992; Miao et al. 2003). Accordingly, the method is 
compatible with heat-labile fusion proteins (Bischof 
and He 2005). The aggregates formed by ELP fusion 
proteins are in the micrometer range (Miao et  al. 
2003) so that > 95% of soluble HCPs can be removed 
with the supernatant after centrifugation (Meyer and 
Chilkoti 1999) or in the flow-through of a membrane 
filtration step (Phan and Conrad 2011). The method 
is termed ‘inverse transition cycling’ (ITC) and it has 
been used successfully to purify spider silk proteins 
(Weichert et  al. 2014), hemagglutinin (Phan et  al. 
2014) and lectins (Tian and Sun 2011).

However, both centrifuge (cITC) and membrane-
based (mITC) methods are currently operated in a 
discontinuous mode, requiring several aggregation-
disaggregation cycles to achieve high product purity 
and have limited scalability. We therefore set out to 
investigate if ITC can be adapted to ultrafiltration/dia-
filtration and the corresponding good manufacturing 
practice-compliant equipment, which allows a simple 
scale-up and a continuous operation with only a sin-
gle aggregation step because residual HCPs can be 
separated from the product in diafiltration operation 
mode (Fig. 1). We termed this approach ‘membrane-
based inverse transition purification’ (mITP) to dis-
criminate it from the previous methods that require 
cyclic processing of feeds. Five spider silk-ELP 
fusion proteins (Fig.  2A) were used to develop the 
method and to demonstrate its transferability.
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Materials and methods

Plant material and cultivation

Transgenic N. tabacum VFlag-100×ELP line 5-6/2 
(Flag, UniProtKB O44359), VMaSp1-100×ELP line 
24-8/1 (MaSp1, UniProtKB Q8WSW4), VMaSp2-
100×ELP line 56-3/1 (MaSp2, UniProtKB P46804), 
VSO1-100×ELP line 15-2/3 (VSO1, UniProtKB 
P19837) and 100xELP line 16 (100×ELP) (Schel-
ler et  al. 2001; Heppner et  al. 2016; Hauptmann 
et al. 2015) were a kind donation of Dr. Udo Conrad 
of the Leibnitz Institute of Plant Genetics and Crop 
Plant Research (Gatersleben, Germany). Seeds were 
germinated in soil. The total cultivation time in a 
greenhouse (50°47′07.1′′N 6°03′00.5′′E) 50 days with 
25/22  °C  day/night temperature and 70% relative 
humidity using a 0.1% (m/v) solution of Ferty 2 Mega 

(Kammlott GmbH, Germany) for irrigation. Leaves 
were stored in plastic bags at − 20  °C after harvest 
until protein extraction.

Protein structure, extraction and clarification

ELP fusion proteins FlagELP (61.6 kDa), MaSp1ELP 
(70.4  kDa), MaSp2ELP (74.6  kDa), VSO1ELP 
(58.8 kDa) and 100×ELP (45.6 kDa) consisted of an 
N-terminal spider silk protein part, a central c-myc 
tag (UniProtKB P01106) and 100 repetitions of the 
ELP motive VPGXG at the C-terminus (Phan and 
Conrad 2011) (Fig.  2A). A combination of signal 
peptide (N-terminus, UniProtKB P05190) and KDEL 
tag (C-terminus) was used to retain the protein in the 
endoplasmic reticulum.

Fig. 1   Schematic representation of the membrane-based 
inverse transition purification (mITP) process. Starting with a 
clarified plant homogenate (A), the temperature is increased in 
the presence of salt to trigger the precipitation of ELP-fusion 
proteins (B, here: fused to spider-silk proteins). The suspension 
is then applied to a membrane of suitable pore size (e.g. 0.2–
2.0  µm), for example in an ultrafiltration/diafiltration device, 

so that the precipitate is retained whereas the bulk homoge-
nate passes into the flowthrough (C). Next, the membrane is 
flushed with a hot, salt-rich buffer to remove residual impuri-
ties whereas the ELP-fusion proteins remain in a precipitated 
state (D). Lastly, a cold buffer (without salt) or plain water is 
used to re-dissolve the ELP precipitate and to elute the product 
from the membrane (E)



24	 Transgenic Res (2024) 33:21–33

1 3
Vol:. (1234567890)

Total soluble protein (TSP) was extracted from 
0.15 to 2.00  kg of leaves of transgenic plants in 
blade-based homogenizers using 3 L extraction 
buffer (50 mM sodium phosphate, 500 mM sodium 
chloride, 10 mM sodium bisulfite, pH 8.0) per kilo-
gram wet biomass as previously described (Buyel 
and Fischer 2014b). A sequence of bag (~ 1 µm pore 
size), depth (0.3–10.0 µm pore size) and sterile fil-
ters (0.2 µm pore size) was used for clarification as 
recently reported (Buyel and Fischer 2014b). Depth 
filtration was carried out with a linear flow rate of 
0.15 m h−1 (2.5 L m−2 min−1) using different filters 
(Table S1) of 60 mm diameter (~ 0.003 m2). Alter-
natively, filtration steps were replaced by centrifug-
ing samples twice at 16,000× g for 20 min at 4 °C. 
The supernatant was used for further testing.

Membrane‑based inverse transition purification 
screening

Clarified plant extract was used for mITP and the 
process parameters aggregation temperature, salt 
concentration during aggregation and wash as well 
as membrane pore size were optimized in terms of 
product purity and recovery using a 70-run (includ-
ing 10 replicates) d-optimal response surface design 
with quadratic base model (Table S2). Design Expert 
v11 was used to set up and evaluate the experimental 
design. For each run, the conductivity was adjusted 
to the required value by adding sodium chloride to 
a 10-mL aliquot of extract, which was heated to the 
temperature defined in the experimental design using 
a water bath (E300, Lauda, Lauda-Königshofen, Ger-
many). Then, 3  mL of sample were passed through 

Fig. 2   Spider silk elastin-like polypeptides (ELP) fusion pro-
teins and their quantification of with a surface plasmon reso-
nance (SPR) spectroscopy competitive binding assay. A Sche-
matic representation of the five fusion proteins used in this 
study. The c-myc part of the fusion protein is shown in blue, 
whereas the spider-silk domain is colored in green and the ELP 
part is orange. B Competition assay principle. Anti-c-myc anti-
body (red) pre-incubated with c-myc-tagged ELP fusion pro-
tein (domain color code as in A) containing sample or standard 

is brought in contact with a surface decorated with peptides 
containing a c-myc epitope or variant thereof. Only antibod-
ies with at least one unoccupied valency can bind to the sur-
face resulting in a response signal. C Response resulting from 
antibody (green—9E10, n = 1; orange—A00704, n = 3) bind-
ing to a surface decorated with peptide 3 in dependence of the 
concentration of ELP standard the antibody was pre-incubated 
with. Data were fitted to a site competition model (Eq.  1) to 
derive inflection points
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0.62 × 10–3 m2 membranes (Minisart, Sartorius Ste-
dim, Göttingen, Germany) with pore sizes as required 
for the experiment (Table S2) using 5-mL single-use 
syringes (B.Braun, Melsungen, Germany). Residual 
liquid in the 0.15 mL filter dead volume was recov-
ered by an injection of air followed by a 6-mL wash 
with the appropriate, pre-warmed solution. Proteins 
were eluted from the membranes in two fractions, 
first by passing 6 mL of ice-cold buffer (15 mM phos-
phate buffer pH 7.5) through the membrane followed 
by 6 mL of ice-cold water.

Protein analysis and quantitation

The TSP concentration was determined using a micr-
otiter version of the method of Bradford as described 
before (Buyel and Fischer 2014a) and TSP composi-
tion was analyzed by lithium dodecyl sulfate poly-
acrylamide gel electrophoresis (LDS-PAGE) with 
4–12% (m/v) continuous Bis–Tris gradient gels 
followed by Coomassie-staining or silver-staining 
according to the manufacturers information (Ther-
moFischer, Carlsbad, USA).

Alternatively, gels were used for western-blot anal-
ysis with a commercial mouse-anti-c-myc antibody 
(A00704, ThermoFisher, 1:5000 dilution) as primary 
antibody and goat-anti-mouse-Fc polyclonal antibody 
mixture labelled with alkaline phosphatase (Jack-
son, UK, 1:5000 dilution) as secondary antibody. 
Subsequently, a nitroblue tetrazolium and 5-bromo-
4-chloro-3-indolyl phosphate solution was used to 
develop protein-specific staining.

Mouse-anti-c-myc antibody 9E10 or peptides 
(Table 1) were immobilized on amine chips by EDC/
NHS coupling (Table S3) for use in surface plasmon 
resonance (SPR) spectroscopy. ELP fusion proteins 
and 9E10 antibody samples were diluted in run-
ning buffer (10 mM HEPES, 3 mM EDTA, 150 mM 
sodium chloride, 0.05% (v/v) Tween-20, pH 7.4) 
and quantified by SPR spectroscopy on a Sierra SPR 
2 device (Bruker (formerly Sierra Sensors), Ham-
burg; Germany) using antibody standards in the 
0.25–10.00 mg L−1 range.

For SPR competition measurements, 1:40 (v/v) 
diluted process samples were mixed 1:1 (v/v) with 
5.0  mg·L−1 (33.6  nM) 9E10 antibody or 2.5  mg 
L−1 (16.8  nM) anti-c-myc antibody (A00704, 

Table 1   Ligands used for the quantification of ELP fusion proteins by SPR assays

The peptides contained the fraction of c-myc representing the epitope of mAb 9E10 and were used as ligands during indirect SPR 
assays. Peptide sequences were selected based on a previous report (Krauss et al. 2008)
a The N-terminal and C-terminal functional groups of the peptides are shown in italics and represent the corresponding atoms 
whereas the rest of the sequence (regular font) represents one-letter amino acid code. bthese modifications of the peptide allowed 
a coupling in both orientations (either C-terminus or N-terminus in proximity to the chip surface) so minimize potential steric hin-
drance during antibody binding. c this modification increases the number of free amine groups available for coupling. The core 
epitope recognized by antibody 9E10 is underlined. dNo saturation was observed during immobilization

Unit Immobilized ligand

Peptide 1 Peptide 2 Peptide 3 mAb 9E10

Specificity [–] Antigen (part of c-myc) recognized by antibody 9E10 c-myc
Sequencea [–] NH2-GGEQKLI-

SEEDLN-COOH
CH3CO-RRGEQKLISE-

FELN-CONH2
NH2-KRGEQRLISE-

FELN-COOH
Not shown

Molecular mass [kDa] 1.43 1.72 1.72 148.92
Sequence modifications [–] none Acetylated N-terminus 

and C-terminal amide 
and additional arginine 
at the N-terminusb

Additional lysine and 
arginine residue at the 
N-terminusc

none

Ligand immobilization [RU] 20 250 380 1500
Ligand density [g m−2] 0.02 × 10–3 0.25 × 10–3 0.38 × 10–3 1.50 × 10–3

Ligand density [M m−2] 14 × 10–9 145 × 10–9 221 × 10–9 10 × 10–9

Maximal 9E10 binding 
signal

[RU] 9 115 700d n.a

Regeneration stability [# of cycles] n.d 50  > 100 20
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ThermoFisher). Standards of 100 × ELP were pre-
pared as a serial dilution in the 8–2000  µg·L−1 
(0.2–43.9 nM) range. Standards and process samples 
were then incubated for 16  h before injection. The 
signal of standard samples was taken for competition 
curve fitting using a one site competition function 
(Eq. 1) in Origin 8.1 (OriginLab Corporation, North-
ampton, USA), where y is the SPR signal in response 
or resonance units (RU), x is the molar ELP concen-
tration, A1 and A2 are the upper and lower bound-
ary of the sigmoidal function respectively, log x0 is 
molar ELP concentration at the inflection point of the 
function.

Results and discussion

ELP fusion proteins can be quantified by an SPR 
competition assay

We first set out to establish a reliable quantitation 
assay for ELP fusion proteins based on a myc-tag pre-
sent in all constructs (Fig.  2A). This was important 
because common detection methods such as densi-
tometric analysis of Coomassie-stained polyacryla-
mide gels have proven insensitive to ELP-containing 
proteins, probably because the latter contain < 2% 
basic amino acids, which are necessary for bind-
ing the Coomassie dye (Hassouneh et al. 2010). Ini-
tially, we immobilized mouse-anti-c-myc antibody 
9E10 (Krauss et al. 2008; Hilpert et al. 2001) on an 
amine sensor chip with dextran coating (the latter 
can increase chip capacity) for a direct quantification 
assay (Fig. S1A) achieving up to 1500 RU (Fig. S1B) 
after coupling, which was equivalent to ~ 1.5 mg m−2 
of mAb and good compared to previous reports 
(Schasfoort and Schasfoort 2017; Murphy et al. 2017; 
Opdensteinen et al. 2023). Using repeated injections 
of the same clarified plant extract sample containing 
VSO1ELP in a 1:20 dilution in SPR running buffer, 
we found that the RU signal declined in the course 
of 150 runs from 790 to 82 RU (Fig. S1C). Because 
the baseline signal was stable, we excluded leach-
ing of mAb from the chip surface as a reason for 
this reduction. Instead, we assumed that the required 

(1)y = A
2
+

A
1
− A

2

1 + 10(Log10x−Log10x0)
.

regeneration conditions (30  mM hydrogen chlo-
ride, Table  S3) were too harsh for mAb 9E10 caus-
ing its denaturation (Lazar et al. 2010) and thus sig-
nal reduction. We therefore deemed this direct assay 
inadequate for ELP quantitation.

Next, we tested an indirect SPR assay where a 
defined amount of anti-c-myc antibody was added 
to ELP fusion protein samples and the resulting anti-
body binding to a chip surface covered with pep-
tides containing the c-myc epitope was measured 
(Fig. 2B). Because of their small size, these peptides 
did not have a distinct three-dimensional structure so 
denaturation was not an issue during the regeneration 
of the sensor chip surface. However, the small size 
may also limit the number and steric accessibility of 
functional groups for coupling to the chip surface. We 
therefore tested three peptide variants (Table 1) that 
we developed based on previous recommendations 
(Krauss et  al. 2008). The highest coupling response 
and signal stability over repeated sample injections 
was observed for peptide 3 (Fig. S1D), which then we 
used for all subsequent quantifications.

We confirmed that the competition assay provided 
quantitative results by establishing a high-quality 
standard curve (adj. R2 > 0.99; Eq. 1; Fig. 2C) using 
defined mixtures of an 100xELP standard with anti-
body 9E10 as well as a commercially available anti-
c-myc antibody A00704 as reference material. The 
inflection points of the models were ~ 5 × 10–8  M 
(9E10) and ~ 3 × 10–8  M (A00704) correspond-
ing to ~ 250 and ~ 350  µg L−1 of 100xELP respec-
tively, which marked the most reliable quantification 
region of the assay. Given TSP levels of ~ 12 g  kg−1 
in tobacco biomass (Opdensteinen et  al. 2018) and 
fusion protein expression levels of up to 0.02–1.00% 
TSP in previous work (Phan et al. 2013), a 1:4 dilu-
tion during extraction and a 1:40 dilution during sam-
ple preparation, we expected product concentrations 
of 15–750 µg L−1 during measurement and concluded 
that this matched well with the quantitation range of 
the assay.

A modified clarification process is necessary to avoid 
product losses

We then individually expressed the five fusion 
proteins VSO1ELP, MaSp1ELP, MaSp2ELP, 
FlagELP and 100xELP in transgenic tobacco 
plants and observed product levels of ~ 0.02 
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(MaSp2ELP) to 0.60 (100xELP) g kg−1 biomass 
(VSO1ELP ~ 0.40 g kg−1; MaSp1ELP ~ 0.45 g kg−1; 
FlagELP ~ 0.30 g  kg−1), which was slightly higher 
compared to previous reports where ELP fusion 
proteins accumulated up to 0.01–0.12 g kg−1 (Phan 
and Conrad 2011; Phan et al. 2013). We extracted 
the products with a buffer containing salt in a con-
centration required for the subsequent mITP (1.50 
to 3.00 M sodium chloride) to streamline the pro-
cess. A sequence of bag and depth filtration was 
used for clarification as described before (Buyel 
and Fischer 2014b). Interestingly, the recovery of 
ELP fusion proteins was low under these condi-
tions, for example < 5% for VSO1ELP (data not 
shown). We first speculated that even at ~ 22  °C 
the high salt concentrations may have caused 
some degree of ELP fusion protein aggregation 
as reported before (Christensen et  al. 2013). This 
could result in a retention of the product on the 
filters, especially as the latter had nominal pore 
diameters of < 1.0  µm, which is about the size of 
ELP aggregates (Hassouneh et al. 2010, 2012; Dre-
her et al. 2008).

Therefore, we shifted the salt addition to after 
depth filtration rather than before extraction for all 
subsequent experiments. This restored the recovery 
of VSO1ELP to 56 ± 9% (n = 9; Fig.  3A), whereas 
the recovery remained < 5% for all other ELP fusion 
proteins unless depth filtration was replaced by cen-
trifugation (Fig. S2), as was the case for MaSp1ELP 
(Fig. 3B). It seemed implausible to us that these pro-
teins would form aggregates due to the base salin-
ity of the extraction buffer (~ 20 mS cm−1) at 22 °C. 
Instead, unspecific binding of proteins to depth fil-
ters containing diatomaceous earth has been reported 
before (Knödler et  al. 2023; Opdensteinen et  al. 
2021), and we then assumed that electrostatic inter-
actions between the proteins and the charged com-
ponents of the depth filter caused the product losses 
as previously observed for other molecules (Menzel 
et al. 2018). We therefore tested a set of depth filters 
that contained less diatomaceous earth (Fig.  3C–E, 
Table  S1), because this component can absorb pro-
teins (Yigzaw et  al. 2006; Buyel et  al. 2015). Filter 
PDR1 performed best, combining a high filter capac-
ity (> 60 L m−2), low turbidity (< 25 NTU) and high 
product recovery (> 0.75) (Fig.  3F). This filter was 
then used for all subsequent experiments also because 

it was easier to scale up compared to centrifugation 
which achieved a similar product recovery.

Different membranes and aggregation conditions can 
be used for fusion protein purification

We used VSO1ELP for an initial statistical screening 
experiment to identify suitable conditions for mITP, 
achieving high purity and recovery. Extract clarified 
by bag filtration and depth filtration with PDR1 was 
used to test different mITP conditions (Table S2). The 
resulting model for product recovery was of fair qual-
ity given the complex sample preparation and small 
scale of the experiments (adj. R2 0.56; Table S4). The 
model indicated that the salt concentration during 
wash was the dominating factor for VSO1ELP recov-
ery and that aggregation salt concentration and mem-
brane pore sizes had a smaller effect. The aggregation 
temperature did not have a significant contribution in 
the investigated range (30–45  °C). High VSO1ELP 
recoveries were identified for two different factor 
combinations, both performing aggregation and wash 
at 2.0  M and 3.0  M respectively, but using either a 
1.20  µm or 0.20  µm membrane (Table  S2, Fig.  4A 
and B).

We also analyzed VSO1ELP purity in mITP elu-
tion fractions and found that hardly any protein 
was detected on Coomassie-stained LDS-PAA gels 
(Fig.  4C and D) but that silver-staining revealed a 
dominant band of the size expected for VSO1ELP 
(~ 70  kDa) as well as a smaller band at ~ 55  kDa. 
Because the latter band was also detected by western 
blotting and had a similar size as the 100xELP pro-
tein which did not contain a spider silk fusion part, 
we assume that it corresponded to a product-related 
degradation (Fig. 3E and F). Combining the detection 
limit of Coomassie brilliant blue-based protein stain-
ing of ~ 0.01  g L−1 (Opdensteinen et  al. 2018) with 
the VSO1ELP quantification by SPR, we estimated 
the minimal VSO1ELP purity to be > 90%. This was 
in good agreement with previous reports using mITC 
that achieved purities of up to 97% (Phan et al. 2013). 
Interestingly, no significant model was obtained for 
the product purity. We concluded that the mean purity 
was the best estimator and that model factors did not 
have a relevant influence on VSO1ELP purity in the 
investigated ranges.

The two optimal conditions in terms of 
VSO1ELP recovery were verified in independent 
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runs and yielded recoveries of 114 ± 28% (1.2-
µm membrane) and 86 ± 19% (0.2-µm membrane) 
respectively (n = 3). The high recoveries were in 
good agreement with previous reports for mITC 
where up to 90% were reported (Phan and Conrad 
2011; Floss et al. 2009).

Effective mITP conditions can be identified for 
individual ELP fusion proteins

We then conducted an additional design of experi-
ments to adapt the two optimal conditions to other 
fusion proteins MaSp1ELP, MaSp2ELP, FlagELP 
and 100xELP. Because 1.2-µm membranes were 
not available from the manufacturer of the ultra-
filtration/diafiltration (UF/DF) device for a subse-
quent scale-up, we limited the investigation to the 
aggregation temperature and salt concentration 
but kept the wash salt concentration at 3.0 M, the 
optimal level for all membranes. The recovery of 
MaSp1ELP was only affected by the aggregation 
salt concentration (adj. R2 = 0.89) with an opti-
mum at ~ 2.7  M sodium chloride (> 90% recov-
ery), whereas there were no significant effects 
on the recovery of FlagELP or 100xELP which 

were ~ 95% and 70% respectively. A model for 
MaSp2 was not established because the expres-
sion level and concentration after depth filtration 
of the recombinant protein were too low to allow a 
quantification.

Conclusions

Here we have developed an SPR-based quantitation 
method for ELP fusion proteins, which are difficult 
to detect using conventional staining methods. This 
will accelerate future process development because 
the performance of individual unit operations can 
be rapidly assessed, e.g. in terms of purity and 
recovery.

We have also established a fast, membrane-
based purification method for ELP fusion proteins 
that can simplify manufacturing, e.g. for future 
technical applications of spider silk proteins. Spe-
cifically, a repeated cycling of ELP fusion pro-
teins between aggregated and dissolved state can 
be avoided during purification as impurities are 
flushed out much like in a regular UF/DF opera-
tion. Because the method uses readily available 
membranes of 0.2 µm pore diameter, an implemen-
tation into production processes seems straight for-
ward. Once 1.2  µm membranes become commer-
cially available for UF/DF devices, the throughput 
of the system may be increased, e.g. due to a reduc-
tion in membrane fouling and concentration polari-
zation (Kim 2007). Quantifying such unwanted 
side effects along with typical loadings (i.e. grams 
of aggregated ELP fusion protein per square meter 
of membrane area) should be the focus of subse-
quent scale-up experiments, for example using 
tangential flow filtration devices. In this context, 
the impact of pH during wash and aggregation of 
ELP fusion proteins can be assessed too, but may 
have little effect due the uncharged amino acids 
constituting the ELP tag. Additionally, implement-
ing the removal of the ELP (and tag) fusion parts 
in the process, for example through (self-)cleavage 
(Lingg et  al. 2022; Li 2011), will be necessary in 
the future.

Fig. 3   Screening of depth filters and ELP fusion protein 
recovery during clarification. A Western blot of process sam-
ples using depth filter P1 and anti-c-myc for detection of 
VSO1ELP. Elution fractions originated from 1&3—0.2  µm 
membrane pore size, 2.0  M sodium chloride during aggrega-
tion, 30  °C during wash; 2&4—1.2  µm membrane pore size, 
2.4  M sodium chloride during aggregation, 45  °C during 
wash; primary elution was carried out using 15  mM sodium 
phosphate buffer pH 7.5 whereas de-ionized water (indicated 
by “w”) was used for a second elution step. B Western blot of 
process samples using centrifugation and anti-c-myc for detec-
tion of MaSp1ELP. Elution fraction conditions as in A. C ELP 
fusion protein recovery achieved with different depth filters 
(Table S1). D Filter capacity in dependence of filter layer com-
binations and ELP fusion protein. E Turbidity observed after 
clarifying ELP fusion protein containing extract with different 
depth filters. Error bars in C–E indicate the standard deviation 
(n ≥ 3). F Western blot of process samples using depth filter 
PDR1 and anti-c-myc for detection of ELP fusion proteins. 
ELP elastin-like polypeptide, ITP inverse transition purifica-
tion. Error bars indicate the standard deviation of replicate 
runs with n ≥ 2
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