Incremental Process Discovery

Von der Fakultit fiir Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Daniel Schuster, M. Sc. M. Sc.

aus Kassel

Berichter: Univ.-Prof. Prof. h. ¢. Dr. h. ¢. Dr. ir. Wil M. P. van der Aalst
Prof. Dr. ir. Boudewijn F. van Dongen

Tag der miindlichen Priifung: 19. Juni 2024

Diese Dissertation ist auf den Internetseiten der Universitéatsbibliothek online verfiigbar.

Abstract

Many organizational processes rely on information systems to support operational func-
tions such as administration, finance, production, and logistics. These systems track pro-
cess executions in great detail, generating event data that contain valuable information
about process executions. Process mining analyzes these event data and yields crucial
insights into the processes, such as process models, conformance diagnostics, and perfor-
mance metrics. Process analysts and owners can use the derived insights to understand
how processes are executed in practice and ultimately optimize them, for example, by
reducing cycle times, improving resource allocation, and enhancing conformity. Overall,
process mining aims to improve processes through data-driven approaches.

Process discovery is concerned with learning process models from event data and is
a fundamental task within process mining. However, most existing process discovery
algorithms are fully automated, i.e., they operate as black boxes from the users’ perspec-
tive, discover process models in a one-shot fashion, devoid of user interaction, and often
discover subpar models, particularly when applied to real-world data. Moreover, these
process discovery algorithms fail to exploit domain knowledge beyond event data.

This thesis presents a framework for incremental process discovery that allows users to
learn and refine process models from event data iteratively. Thereby, users can observe
intermediate process models learned so far. Further, users can manually edit intermediate
process models before they are fed back into the incremental process discovery framework
for further learning. Moreover, users can selectively incorporate process behaviors from
event data. In short, we propose an incremental process discovery framework that allows
users to interact and steer the discovery phase of a process model. We further extend
the incremental process discovery framework as follows. First, we allow the gradual
addition of process execution fragments alongside complete process executions. Most
automated process discovery algorithms assume complete process executions that span
the process from start to end. In contrast, process execution fragments describe a small
part of an entire process execution. The second extension allows for the freezing of
model components, which allows users to constrain the incremental discovery approach
by preventing it from altering frozen model parts during incremental process discovery.

Given users’ pivotal role in gradually selecting process behaviors for inclusion in the
process model, we introduce novel visualizations for process execution variants. Central
to process mining, these variants group individual process executions that have identical
arrangements of the activities executed. Considering that activities within a process can
run concurrently and overlap, yielding partially ordered event data, we propose visual-
izations to illustrate such activity relationships. Additionally, this thesis contributes to
the field of process querying. We propose a query language for process execution variants
that allow the specification of complex control flow patterns among activities. When
executing a query, process execution variants satisfying the specified constraints are re-
turned. In short, the proposed query language supports the handling of large event data
volumes, enhances the filtering and selection of process execution variants, and, thus,

iii

facilitates users during incremental process discovery.

Next to process discovery and event data handling, this thesis contributes to con-
formance checking, a further fundamental process mining task. Conformance checking
techniques are used to compare observed with modeled process behavior and are crucial
to incremental process discovery, providing information and diagnostics on how well the
so-far learned process model aligns with the provided event data. We extend the concept
of alignments, i.e., a state-of-the-art conformance checking technique, to accommodate
process execution fragments. We define infix and postfix alignments and show their com-
putation. Infix and postfix alignments are critical as they enable incremental process
discovery with trace fragments.

Moreover, we present Cortado, an open-source process mining software tool that im-
plements the algorithms and techniques proposed in this thesis in an integrated and
comprehensive fashion. Through Cortado, we showcase how the methods and algorithms
presented in this thesis serve the overall goal of incremental process discovery. Finally,
this thesis presents a case study applying Cortado and, therefore, the various contribu-
tions of this thesis in a real-life scenario.

v

Kurzfassung

Ein Grofsteil der Prozesse und betrieblichen Abldufe in Organisationen, beispielsweise
Verwaltungs-, Finanz-, Produktions- und Logistikprozesse, wird durch Informationssys-
teme unterstiitzt. Diese Systeme zeichnen die Ausfithrung betrieblicher Prozesse detail-
liert auf und erzeugen Ereignisdaten, die wertvolle Informationen iiber die Prozessaus-
flihrung enthalten. Process Mining analysiert diese Ereignisdaten, um Erkenntnisse in den
Prozess zu gewinnen, beispielsweise Prozessmodelle, Konformitéitsstatistiken und zeitliche
Performancestatistiken. Prozessanalytiker und -verantwortliche nutzen die gewonnenen
Erkenntnisse wiederum, um die Ausfiihrung von Prozessen zu verstehen und diese let-
ztlich zu optimieren, zum Beispiel durch Verringerung der Zykluszeiten, Verbesserung
der Ressourcenzuweisung und Erhéhung der Konformitét. Allgemein zielt Process Min-
ing darauf ab, Prozesse auf datengetriebene Weise zu verbessern.

Process Discovery befasst sich mit dem Lernen von Prozessmodellen aus Ereignisdaten
und ist eine grundlegende Aufgabe innerhalb von Process Mining. Die meisten beste-
henden Process Discovery Algorithmen sind jedoch vollstandig automatisiert, d. h. sie
arbeiten aus der Sicht der Benutzer als Blackboxen, ermitteln Prozessmodelle in einer
einstufigen Weise ohne Benutzerinteraktion und ermitteln hiufig unzureichende Modelle,
insbesondere bei Anwendung auf reale Daten. Dariiber hinaus nutzen diese Prozesserken-
nungsalgorithmen kein {iber die Ereignisdaten hinausgehendes Dom&nenwissen.

In dieser Dissertation wird ein Framework fiir inkrementelles Process Discovery vorge-
stellt, welches es Anwendern erméglicht, schrittweise ein Prozessmodell aus Ereignisdaten
zu lernen. Dabei kénnen die Benutzer die bisher gelernten intermedidren Prozessmod-
elle einsehen. Dariiber hinaus kénnen die Nutzer die intermedidren Modelle bei Bedarf
manuell bearbeiten, bevor diese erneut in das inkrementelle Process Discovery Framework
zum weiteren Lernen eingespeist werden. Aufserdem kénnen Anwender schrittweise das
Prozessverhalten, d. h. die aufgezeichneten Prozessausfiihrungen aus den Ereignisdaten
auswihlen, welches dem Prozessmodell hinzugefiigt wird. Kurz gesagt, das vorgeschla-
gene inkrementelle Process Discovery Framework befdhigt Anwender zur Interaktion und
Steuerung der Discovery-Phase eines Prozessmodells aus Ereignisdaten. Dariiber hin-
aus schlagen wir zwei Erweiterungen des inkrementellen Process Discovery Frameworks
vor. Erstens erlauben wir das schrittweise Hinzufiigen von Prozessausfiihrungsfragmenten
zusétzlich zu vollstdndigen Prozessausfiihrungen. Die meisten automatisierten Algorith-
men im Process Discovery gehen von vollstdndigen Prozessausfiihrungen aus, die den
Prozess von Anfang bis Ende umfassen. Im Gegensatz dazu beschreiben Prozessaus-
flihrungsfragmente einen kleinen Teil einer gesamten Prozessausfilhrung. Als zweite Er-
weiterung fiihren wir die Mdoglichkeit des Einfrierens von Modellteilen ein, die es An-
wendern ermoglicht, den inkrementellen Process Discovery Ansatz einzuschréinken, in-
dem dieser daran gehindert wird, eingefrorene Modellteile wihrend der inkrementellen
Prozessentdeckung weiter zu veréndern.

Da die schrittweise Auswahl des Prozessverhaltens durch Anwender, welches in das
Prozessmodell aufgenommen werden soll, fiir die inkrementelle Prozessentdeckung von

zentraler Bedeutung ist, schlagen wir ferner neue Visualisierungen fiir Prozessausfiih-
rungsvarianten vor. Varianten sind ein zentrales Konzept im Process Mining, die einzelne
Prozessausfithrungen mit identischer Anordnung der ausgefiihrten Aktivitdten biindeln.
Vor dem Hintergrund, dass Aktivititen innerhalb eines Prozesses zeitlich parallel laufen
koénnen, auch als partiell geordnete Ereignisdaten bekannt, schlagen wir Visualisierun-
gen zur Darstellung solcher Aktivitatsbeziehungen vor. Dariiber hinaus leistet diese Ar-
beit einen Beitrag zu dem Forschungsgebiet Process Querying. Wir présentieren eine
Abfragesprache fiir Prozessausfithrungsvarianten, die die Spezifikation von komplexen
Kontrollflussmustern iiber Aktivitdten ermdglicht. Bei der Ausfiihrung einer Abfrage
werden Prozessausfiihrungsvarianten zuriickgegeben, die den spezifizierten Bedingungen
entsprechen. Die vorgeschlagene Abfragesprache unterstiitzt den Umgang mit grofien
Mengen von Ereignisdaten, erleichtert die Filterung und Auswahl von Prozessausfiih-
rungsvarianten und tragt somit zur Unterstiitzung von Nutzern bei der Anwendung von
inkrementellem Process Discovery bei.

Neben der Prozessentdeckung und der Verarbeitung von Ereignisdaten leistet diese
Dissertation einen Beitrag zum Conformance Checking, einer weiteren grundlegenden
Aufgabe innerhalb des Process Mining neben Process Discovery. Conformance Checking
Techniken erlauben den Abgleich von aufgezeichneten Prozessverhalten mit modelliertem
Prozessverhalten und sind daher entscheidend fiir inkrementelles Process Discovery, da
diese Techniken Informationen dariiber liefern, inwiefern das bisher gelernte Prozessmod-
ell die bereitgestellten Ereignisdaten abdeckt. Wir erweitern das Konzept der Align-
ments, welche eine State of the Art Conformance Checking Methode sind, um Prozes-
sausfiihrungsfragmente. Wir definieren Infix- und Postfix-Alignments und zeigen, wie
diese berechnet werden kénnen. Infix- und Postfix-Alignments sind von entscheidender
Bedeutung, da sie inkrementelle Process Discovery mit Prozessausfithrungsfragmenten
ermoglichen.

Dariiber hinaus stellen wir Cortado vor, ein Open-Source-Softwaretool fiir Process
Mining, das die in dieser Dissertation vorgeschlagenen Algorithmen und Techniken in
einer integrierten und umfassenden Weise implementiert. Das Tool Cortado demonstriert,
wie die in dieser Arbeit vorgestellten Methoden und Algorithmen dem Gesamtziel der
inkrementellen Prozessentdeckung dienen. Schlieflich stellen wir eine Fallstudie vor, in
der Cortado und damit die verschiedenen Beitrage dieser Dissertation in einem realen
Szenario angewendet werden.

vi

Contents

List of Acronyms xiii

List of Mathematical Notations XV

I. Opening & Fundamentals 1

1. Introduction 3

1.1. Process Mining L L 3

1.2. Process Models 6

1.3. Process Discoveryo 8

1.3.1. Conventional Process Discovery 9

1.3.2. Non-Conventional Process Discovery 10

1.4. Research Goals & Contributions 13

1.5. Thesis Outline 14

2. Literature Review 19

2.1. Distinguishing Features 22

2.1.1. Defining Distinguishing Features 22

2.1.2. Overview of the Distinguishing Features 22

2.1.3. Dependencies Among Characteristics and Features 28

2.2. Methodology & Design 29

2.3. Identified Approaches L 31

2.3. 1. Overview 31

2.3.2. Analysis & Discussion 40

2.4. Challenges & Opportunities, 43
2.4.1. Challenge 1—Blending Explicit Domain Knowledge & User Feed-

back 43

2.4.2. Challenge 2—Advanced User Interaction 43

2.4.3. Challenge 3—Various Modes of Interactivity 43

2.4.4. Challenge 4—Scalable Conformance Checking 44

2.4.5. Challenge 5—Minimizing Representational Bias 44

2.4.6. Challenge 6—FEvent Data & Process Model Visualizations 44

2.4.7. Challenge 7—Domain Knowledge Specification 44

2.4.8. Challenge 8—FEvent Data & Domain Knowledge Fusion 45

2.4.9. Challenge 9—Software Support 45

2.4.10. Challenge 10—Discovery Beyond Control-Flow 46

2.5. Conclusion 46

vii

Contents

3. Preliminaries 47
3.1. Basic Mathematical Concepts 47
3.1.1. Sets & Relations 47
3.1.2. Functions e 48
3.1.3. Multisetso 48
3.14. Ordered Sets 49
3.1.5. Sequences 52
3.1.6. Graphs & Trees. 53

3.2. Event Data & Event Logs 59
3.3. Process Models 62
3.3.1. PetriNets 62
3.3.2. Process Trees L e 66

3.4. Conformance Checking Overview 70
3.5, Alignmentso 71
3.5.1. Alignments for Petrinets 72
3.5.2. Alignments for Process Trees 73
3.5.3. Computing Alignments 76

4. Alignments for Trace Fragments 81
4.1, Overviewo 82
4.2. Defining Prefix, Infix & Postfix Alignments 83
4.3. Computing Infix & Postfix Alignments 86
4.3.1. Baseline Approach 88
4.3.2. Extended Baseline Approach Using Subsequent Filtering 90
4.3.3. Process-Tree-Based Approach 92

4.4. Evaluation L 101
4.4.1. Experimental Setup 0. 102
4.4.2. Results 102
4.4.3. Discussion & Threats to Validity 106

4.5. Conclusion 106
II. Incremental Process Discovery 107
5. Incremental Process Discovery Framework 109
5.1. Introduction to the Framework 109
5.1.1. Input-Output Perspective 110
5.1.2. Motivation & Opportunities 111

5.2. Naive IPDA 112
5.3. Lowest Common Ancestor IPDA 115
5.3.1. Running Example 0. 115
5.3.2. Algorithm 118
5.3.3. Summary & Termination L. L. 127
5.3.4. LCA Lowering 127

54. Evaluation 130
5.4.1. Experimental Setup 130

viii

Contents

54.2. Results
5.4.3. Discussion & Threats to Validity
5.5. Mlustrative Example oo
5.6. Trace Ordering Effects 0.
5.6.1. Framework for Recommending Trace Orderings
5.6.2. Sample Instantiations of Strategy Components
5.6.3. Ewvaluation oo
5.7. Conclusion

6. Supporting Trace Fragments in Incremental Process Discovery
6.1. Extended IPD Framework
6.2. Trace-Fragment-Supporting IPDA
6.2.1. Running Example
6.2.2. Algorithm
6.3. Evaluation. e
6.3.1. Experimental Setup
6.3.2. Results
6.3.3. Discussion & Threats to Validity
6.4. Conclusion

7. Freezing Process Model Parts in Incremental Process Discovery
7.1. Extended IPD Framework L.
7.2. Naive Freezing-Enabled IPDA
7.3. Freezing-Enabled LCA-IPDA

7.3. 1. Overviewo
7.3.2. Component (1)—Replacing Frozen Subtrees
7.3.3. Component (2)
7.3.4. Component (3)—Projecting Previously Added Traces
7.3.5. Component (4)—Reinserting Frozen Subtrees
74. Evaluation Lo
7.4.1. Experimental Setup L.
7.4.2. Results
7.4.3. Discussion & Threats to Validity
7.5. Tllustrative Example o
7.6. Conclusion L

III.Facilitating Interaction with Event Data

8. Defining & Visualizing Variants
8.1. Overview e
8.2. High-Level Variants
8.2.1. High-Level Case View
8.2.2. Calculation & Visualization of High-Level Variants
8.2.3. Limitations of the High-level Variant Visualization

ix

Contents

8.3.

8.4.
8.5.
8.6.

8.7.

Low-Level Variants
8.3.1. Low-Level Case View
8.3.2. Calculation & Visualization of Low-Level Variants
Computing High- & Low-Level Variants
Time Granularity Modifier
Evaluation
8.6.1. Automated Experiments
8.6.2. User Study
Conclusion e

9. Query Language for Variants

9.1.
9.2.

9.3.
9.4.

9.5.

Related Work Lo
Query Language
9.2.1. Syntax
9.2.2. Semantics
9.2.3. Query Evaluation.
Mustrative Example
Evaluation
9.4.1. Experimental Setup L.
9.4.2. Results
9.4.3. Discussion & Threats to Validity
Conclusion

IV.Realization & Application

10.Tool Support: Cortado

10.1.
10.2.

10.3.

10.4.

10.5.
10.6.
10.7.

OVerview e e
Variant Handling oo oL
10.2.1. Variant Explorer
10.2.2. Variant Querying
10.2.3. Variant Modeler L oo
10.2.4. Variant Frequent Pattern Mining
10.2.5. Variant Sequentialization
Incremental Process Discovery
10.3.1. Visualizing & Editing Process Models
10.3.2. Adding Behavior to a Process Model
Temporal Performance Analysis
10.4.1. Overview Lo
10.4.2. Model-Independent Performance Analysis
10.4.3. Model-Based Performance Analysis
Supported Data Exchange Formats
Software Architecture & Distribution
Conclusion e

255
256
257
257
260
264
264
266
266
266
268
270

Contents

11.Case Study 307
11.1. Related Work e 308
11.2. OVErvIEW v ot e e e e e e e e e 308
11.3. Analysis Objectives & Approach 310
11.4. Analysis Results 311

11.4.1. Event Data Extraction & Initial Preparation 311
11.4.2. Interactive Process Discovery 314
11.5. Discussion e e 323
11.5.1. Lessons Learned 323
11.5.2. Practical Implications 324
11.5.3. Limitations & Future Work 324
11.6. Conclusion L 325

V. Closure 327

12.Conclusion 329
12.1. Contributions 330

12.1.1. Review of Domain-Knowledge-Utilizing Process Discovery 330
12.1.2. Incremental Process Discovery 330
12.1.3. Variants for Partially Ordered Event Data 331
12.1.4. Cortado 331
12.2. Limitations & Remaining Challenges 331
12.2.1. Nondeterminism of the LCA-IPDA 331
12.2.2. Representational Bias 00 332
12.2.3. Support for Partially Ordered Event Data 332
12.2.4. Lack of Thorough User Evaluation 333
12.2.5. Incorporating Low-Level Variants 333
12.3. Future Research Directions 333
12.3.1. Beyond Adding Individual Tracesin IPD 333
12.3.2. Incremental Process Reduction 334
12.3.3. Enhanced Interaction & Assistance 334
12.3.4. Incremental Discovery Beyond Control Flow 335
12.3.5. Supporting Object-Centric Event Data 335

References 337

List of Publications 362

Acknowledgment 366

Curriculum Vitae 367

xi

List of Acronyms

BPM
BPMN

CRM
CcT

DFG

EPC
ERP

FOL
ID

M
IPD
IPDA
IT
LCA
NTOS
PI

RG
SCM
SPN
ST
STA
TFS-IPDA
TGM

Ul
UML

WF-net

Business Process Management.
Business Process Model and Notation.

Customer Relationship Management.
Cycle Time.

Directly Follows Graph.

Event-Driven Process Chain.
Enterprise Resource Planning.

First-Order Logic.

Identifier.

Inductive Miner.

Interactive Process Discovery.

Incremental Process Discovery Algorithm.
Idle Time.

Lowest Common Ancestor.

Next Trace Ordering Strategy.

Performance Indicator.

Research Goal.

Supply Chain Management.

Synchronous Product Net.

Service Time.

Semantic Tree Analysis.

Trace-Fragment-Supporting Incremental Process Dis-
covery Algorithm.

Time Granularity Modifier.

User Interface.
Unified Modeling Language.

Workflow net.

xiii

List of Acronyms

WT Waiting Time.

YAWL Yet Another Workflow Language.

Xiv

List of Mathematical Notations

Sets & Universes

Fopt

Finf
Fpre

t
Uit

Fopt

pre

Fpos
Fopt

pos

Empty set

Natural numbers

Natural numbers including zero
Real numbers

Real numbers greater or equal zero
Boolean values

Power set of a set X

Universe of multisets for a set X
Empty multiset

Universe of total orders
Universe of strict total orders
Universe of partial orders
Universe of strict partial orders
Universe of (full) alignments

Universe of optimal (full) align-
ments

Universe of infix alignments
Universe of prefix alignments
Universe of optimal infix alignments

Universe of optimal prefix align-
ments

Universe of postfix alignments

Universe of optimal postfix align-
ments

Universe of cases

Universe of events

A
N

N, accept Universe of accepting Petri nets

Universe of activity labels

Universe of Petri nets

4% Universe of Workflow nets (WF-
nets)

T Universe of labeled, rooted, ordered
trees

P Universe of process trees

® Universe of process tree operators

Frequently used variable names
Vv Tree/graph vertices
E Tree/graph edges

A Tree

v Tree vertex

v (Full) alignment

Ypre Prefix alignment

Ying Infix alignment

Ypos Postfix alignment

N Petri net

t Transition

T Set of transition

P Place

P Set of places

F Arcs in a Petri net

M Marking of a Petri net
M™ TInitial marking of a Petri net

M/imal Final marking of a Petri net

XV

List of Mathematical Notations

pST‘C

Dsink
L

LS
C

Other

N

AN N A

Il

~ @

Xvi

Source place

Sink place

Event log
Simplified event log
Case

Event

Sequence

symbols

Partial order

Strict partial order

Total order

Strict total order

Arbitrary order

Isomorphism of labeled ordered sets
Multiset union

Empty sequence

true

false

MM

>

RS

RM

Concatenation of
quences

(sets of)

se-

Interleaving (sets of) sequences
Boolean true

Boolean false

Subtree relation

Isomorphic subtree relation
Sequence process tree operator
Loop process tree operator

Exclusive choice process tree oper-
ator

Parallel process tree operator
Process tree running sequences
Process tree running steps

Petri net’s reachable markings

fall

Concurrency-aware variants

through operator

Labeling function

Part 1.

Opening & Fundamentals

Chapter 1.

Introduction

Most organizations, ranging from businesses to government agencies, organize their oper-
ations through processes that specify, control, and coordinate the various activities and
resources involved in executing a process. Many operational processes exist, ranging from
production to administrative processes. The execution of operational processes (hereafter
referred to as processes) is often supported and controlled by information systems, in-
cluding Enterprise Resource Planning (ERP), Supply Chain Management (SCM), and
Customer Relationship Management (CRM) systems. These systems track the execution
of such processes, often in great detail. The data generated during process execution
are referred to as event data. Event data contain valuable information about the ac-
tual execution of processes. Hence, the field of process mining [208, 211] has emerged,
providing algorithms, techniques, and tools that allow for the analysis of event data
to generate insights into the process. These insights include, for example, discovered
process models from event data [216], conformance checking diagnostics [45], temporal
performance statistics [226], process simulation results [139], and prediction models [65].
Process analysts, designers, owners, and other stakeholders use these insights to derive
process modifications and refinements to optimize the process. Processes can be opti-
mized for various aspects, such as reducing cycle times, improving resource allocations,
and increasing conformity with reference models.

1.1. Process Mining

The goal of process mining is the data-driven optimization of processes through the
analysis of event data. Overall, process mining provides unique opportunities for orga-
nizations to streamline their processes [141, 209], thus contributing to the creation of
business value [17]. Several industries have successfully applied process mining, for ex-
ample, in production [166, 150, 82], in auditing [106, 222], in healthcare [134, 135, 142],
in finance industry [61], in software development [167], and in education [33].

Figure 1.1 illustrates various process mining artifacts and techniques, as well as their
interactions.! As shown, processes that are supported and controlled by information
systems are central to process mining. Executing these processes allows for information
systems to track event data that record the various process executions. For example,
event data contain information about which activities were performed during which pro-
cess executions and which resources were involved, as well as temporal information about
activity executions. Event data extraction [51, 66] from information systems is a chal-

INote that Figure 1.1 does not present a complete picture of process mining; instead, it illustrates
essential artifacts, techniques, and exemplary interconnections among them.

Chapter 1. Introduction

Information Systems y generate Operational Processes
CS event data
e J = ,®® = oo
suppor h i
@ control l ® TQT
|
Event Data Action-Oriented
Extraction Process Mining |
Process l Conformance/ l Process
Models Conformance Pe.rforma{‘lce - Predictions &
Process o1 0 Checking & Diagnostics PM & Improvements
Discovery i T_Q Y ~ Performance -’ Kl Predictive '}
(—/O%O Analysis T_g PM
—
* Exploration I * Interpret o Moty
. TFilteri * Adapting 0 Elemfi-EaEn improvements
. Cll e ¢ Extending analysis * Process
. V?gus.g * Inspecting o lefillaedk simulations
SiCa g * Repairing i (e.g., what-if
* Repairing Y e
Process Mining Techniques & Tasks

Process T l

Riodcline Process-Stakeholder
| Process Designers, Participants,
Analysts, Owners, ...
[OPNO)

o
f‘m’\

Figure 1.1: Broad overview of key process mining techniques, tasks, and artifacts

lenging task that generally involves substantial manual effort [195]. We refer to event
data describing a particular process as an event log, cf. Figure 1.1.

As in any other data-driven domain, the preparation and preprocessing of even data are
paramount for subsequent analysis. Various techniques exist, for example, exploration,
filtering, and cleaning techniques. Most process mining techniques require an event log as
input to gain insights into the actual process. Traditionally, three main disciplines within
process mining are distinguished: process discovery, conformance checking, and process
enhancement [211]. Since process enhancement [55] is often used as an umbrella term
for various process mining types, we use a more nuanced view in this thesis. According
to [215], six different types of process mining can be distinguished, as shown in Figure 1.1.

1. Process discovery [216] deals with learning process models from event data and
potentially other information, for instance, domain knowledge as considered in this
thesis. Process discovery is a central discipline within process mining, since process
models are an important artifact and serve as an input for many subsequent analysis
approaches, cf. Figure 1.1.

2. Conformance checking techniques [45] compares observed with modeled process
behavior. While observed behavior refers to recorded process executions as reflected

1.1. Process Mining

by event data, modeled process behavior refers to process models. These techniques
aim to align observed and modeled process behavior to detect mismatches between
them. Therefore,these techniques are used to find deviations in process executions
compared with reference process models and to assess the quality of process models
concerning event data.

3. Performance analysis techniques derive temporal performance statistics [226].
Since a significant optimization scenario for processes often involves temporal as-
pects, performance analysis is essential in the practical application of process min-
ing.

4. Comparative process mining compares multiple event logs. For instance, pro-
cess cubes [34, 210] provide an approach to slice an event log into sub-logs that
are compared with each other. That is, event data might be divided according to
geographical locations and then compared, for example, to analyze location-based
differences in the execution of processes.

5. Predictive process mining deals with providing various process-related fore-
casts [138]. In contrast, techniques mentioned above, such as process discovery,
conformance checking, and performance analysis, are usually backward-oriented.
Thus, these techniques take event data that record historical process executions and
provide insights. In many cases, however, it is of great practical importance to react
proactively while the processes are still being executed. Predictive process mining
is a large field that includes various aspects and can be considered forward-oriented
compared to the abovementioned disciplines. For instance, predictive process min-
ing comprises approaches for predicting the remaining cycle time of running process
executions [49] and the next activity in an ongoing process execution [200].

6. Action-oriented process mining combines backward-oriented with foreword-
oriented process mining. Actions influencing the actual process are generated based
on insights and diagnostics into processes. A general framework for action-oriented-
process mining in which stakeholders define constraints representing patterns of
interest in a process is presented in [148]. During the execution of the process, a
constraint monitor supervises the occurrence of the defined constraints; for instance,
concept drift detection techniques [44] can be used to detect specific patterns. Once
a constraint is detected, corresponding actions defined by stakeholders are executed.
For example, if a particular activity is executed significantly longer, more resources
are attached to this activity.

Note that these six types represent only the main process mining types. Various other
process mining tasks, for example, event data extraction [51] and preprocessing [35], are
left out. Most techniques from these six process mining types rely on process models to
some extent, making process models a crucial artifact of process mining in general. In
this context, process discovery is of critical importance.

Chapter 1. Introduction

1.2. Process Models

Process models are essential artifacts within process mining and are used as input for
many analysis techniques, cf. Figure 1.1. There are several process modeling formalisms,
such as Petri nets [168], process trees [122], Business Process Model and Notation (BPMN)
[48], Unified Modeling Language (UML) [81], Yet Another Workflow Language (YAWL)
[220], and Event-Driven Process Chains (EPCs) [171, 205]. However, this thesis mainly
focuses on Petri nets and process trees, which are an essential subclass of Petri nets often
used in process mining.

For example, Figure 1.2 depicts three process models in different formalisms, all mod-
eling the same travel permission process. Initially, a travel permission is submitted, cf.
activity ‘Permit submitted’. If it is not rejected, the trip takes place, indicated by the ac-
tivities: ‘Permit Final Approval’, ‘Start Trip’, and ‘End Trip’. Next, a travel declaration
is submitted. If the declaration is submitted too late or if a rejected declaration is not re-
submitted in time, ‘Send Reminder’ is executed. Once approved, cf. activity ‘Declaration
Final Approval’, payment-related activities ‘Request Payment and ‘Payment Handled’
are performed, and the process is complete. Figure 1.2a models the process as a Petri
net; more precisely a workflow net [204, 168], which is a subclass of Petri nets often
used to model business processes. Figure 1.2b models the process as a process tree, also
referred to as block-structured process models [122]. In comparison to Petri nets, pro-
cess trees have an inherent hierarchical structure due to their tree structure. Finally,
Figure 1.2¢ models the process in BPMN.

All three models represent the same control-flow of activities that constitute the pro-
cess. The control-flow refers to how and when activities within a process can be executed:
(1) the activities are executed sequentially; (2) their execution is optional; (3) the ac-
tivities are executed in parallel; (4) the activities are executed multiple times; (5) the
activities are executed once specific dependencies are fulfilled. In this thesis, the control
flow perspective is primarily considered with regard to process models. Note, however,
that formalisms such as BPMN allow allow the modeling of additional perspectives such
as organizational and data aspects [77]. For example, the BPMN model depicted in Fig-
ure 1.2c contains information about organizational aspects. This model contains one pool
called ‘Example Organization’, indicating that the modeled process represents an internal
process in which no external parties are involved. This pool is divided into three parts
by lanes, each representing different stakeholders and systems involved in the process:
‘Travel Applicant’, ‘Supervisor’, and ‘Travelling Permit System’.

In addition to playing an essential role in process mining, process models serve as a
focal point for stakeholder discussions. Furthermore, process models are used to specify
process-aware information systems [76]. For instance, Business Process Management
Systems (BPMSs) support the entire BPM lifecycle, ranging from design, modeling, and
execution to monitoring [78]. These systems require formal process models and through
an execution engine, these models are implemented. In short, process models are central
artifacts used for many different use cases.

1.2. Process Models

Permit
Rejected
Send
Reminder
Permit Declaration
Permit . Start End Declaration : Request Payment
Final =(M . F . Final P PO
@ Submitted 1r.n Trip Trip Submitted u.la Payment Handled
Approved Approved
Declaration
Rejected

(a) A Petri net (a WF-net to be precise)

Submitted

Permit
Rejected
Permit Declaration
. Start End . Request Payment
Final . . o Final K
Trip Trip Payment Handled
Approved Approved
Declaration
Rejected
(b) A process tree
48 hours
Eee Send R t P, t
='c en eques aymen
K] g% Reminder Paquent Hayndled
Co g
=
'S
c . Declaration
@)
a 5 | Approved
= 2
&g —
ols
21° Permit Final Declaration
£ Approved Rejected
Z -
A
(7
_c -
g Tg; Shermit Start Trip End Trip
Fo Declaration
< ~ ~ Submitted

(¢) A BPMN model

Figure 1.2: Process models specified in the same travel permission process using different
formalisms (partly adapted from [184, Figure 4])

Chapter 1. Introduction

1.3. Process Discovery

This section introduces the central topic of this thesis—the field of process discovery.
Process discovery is an important discipline within process mining and deals with learning
process models from event data. Note that the term process discovery is also used within
the field of Business Process Management (BPM) [78]. However, within BPM, the term
is defined more broadly as collecting information about a process under consideration and
transforming this information into an as-is model [78]. Process discovery techniques in
the BPM domain consist of three primary methods: interview-based discovery, analysis of
documents specifying processes, and manual observation of individual process executions.
These methods are used to obtain information about the process executions to eventually
create a model of the overall process. In this thesis, however, we focus on process discovery
as considered in process mining, i.e., using data-driven approaches to (automatically)
learn process models from event data. Furthermore, we focus on discovering control-flow
structures of processes, i.e., the control-flow perspective.

Process discovery comprises data-driven approaches to (automatically) learn process
models from event data, as opposed to manually modeling processes. Therefore, the
problem of process discovery can be described as learning a process model that represents
the process behavior from a given event log. However, different quality criteria and
common challenges in handling event data pose challenges to process discovery because
they have frequently quality problems [141, 254]. These data quality issues directly affect
the quality of the discovered process models. Overall, four major process model quality
dimensions exist that influence each other [40, 211].

e Fitness: The model should incorporate the process behavior as recorded in the
event log.

e Precision: The model should not underfit the event log, i.e., the model should not
allow behavior that is not recorded in the event log.

o Generalization: The model should not overfit the event log, i.e., it should generalize
the process behavior recorded in the event log.

e Simplicity: The model should be easy for process stakeholders to understand. The
simplest model should be used, since there are different ways to model the same
behavior. Research indicates that the model size is a primary driver of perceived
complexity [144].

The four quality dimensions listed above are interconnected. As a result, optimizing only
one dimension generally has a negative impact on the other dimensions. For example,
there is often a trade-off between precision and generalization, i.e., between underfitting
and overfitting. These circumstances, i.e., interdependent quality dimensions, coupled
with event data quality issues, make process discovery challenging and explain why dif-
ferent approaches have been developed. This section further introduces conventional
process discovery (Section 1.3.1) and unconventional process discovery approaches (Sec-
tion 1.3.2) on which this thesis focuses.

1.3. Process Discovery

1.3.1. Conventional Process Discovery

This section presents process discovery as it is mainly considered in process mining. We
use the term conventional process discovery to refer to approaches that solely use event
data as input and discover process models in a fully automated fashion.? A large body
of work exists regarding conventional process discovery. We refer to [15, 60, 235] for
detailed review articles. Figure 1.3 illustrates the general operating principle of conven-
tional process discovery approaches from a user’s perspective. An event log capturing
various executions of a process is provided, and the process discovery approach learns a
process model without any further interaction required from users, i.e., fully automati-
cally. Apart from the ability to configure the algorithm’s configuration parameters, users
cannot interact with or influence the discovery algorithm. Their influence is limited to
preprocessing the input (i.e., the event log) or postprocessing the output (i.e., the discov-
ered process model). Therefore, conventional process discovery appears as a black box to
users and offers limited interaction options to guide and influence the discovery phase®.

Configuration
Parameters

o

|

Conventional
Output

Process Model

ss Discovery

Algorithm

Figure 1.3: Schematic visualization of conventional process discovery algorithms

Many conventional process discovery algorithms have been proposed that focus on
discovering the control flow of processes from event data. However, no clear dominating
discovery approach exists that works best for all event logs. Thus, users must find
a suitable process discovery algorithm for an event log to obtain satisfactory results.
Furthermore, users often need to know the setting parameters and, therefore, the details of
an algorithm to obtain valuable results. The plethora of conventional discovery algorithms
even led to approaches recommending the best suiting discovery algorithm for a given
event log [47, 163].

Various distinction criteria can be used to organize existing conventional process dis-
covery approaches. For instance, the process model formalism used for the discovered
process models, supported control-flow structures, runtime, implementation, and formal

2Note that conventional process discovery, as considered in this thesis, is also often referred to auto-
mated process discovery [15, 78, 119]. We use a differentiated perspective on the term automated in
this thesis. While all conventional process discovery algorithms, which learn a process model solely
from an event log, are automated because no interaction during the actual discovery is required,
and the algorithm works fully automated, also non-conventional process discovery algorithms (cf.
Section 1.3.2) can be automated.

3We use the term discovery phase to describe the phase in which the discovery algorithm learns a
process model from the existing inputs. In conventional process discovery (cf. Section 1.3.1), this
phase is fully automated and functions like a black box from the user’s perspective.

Chapter 1. Introduction

guarantees on the resulting process model such as soundness [224] or replay-fitness guar-
antees, i.e., all process behavior from the event log is reflected by the process model. In
short, many conventional process discovery algorithms exist that differ in various aspects
and provide different results for the same input event log. However, from a user’s per-
spective, these algorithms do not provide any interaction, as they solely depend on event
data to discover a process model, making them function like a black box as illustrated in
Figure 1.3.

1.3.2. Non-Conventional Process Discovery

This section introduces non-conventional process discovery [184]. The critical difference
to conventional process discovery is the utilization of additional information, hereinafter
referred to as domain knowledge, besides event data. Domain knowledge can be any
information about the process to be discovered; for instance, precedence constraints about
the activities in the process [99]. Further, we also consider user interactions with a
discovery algorithm to steer and guide the discovery phase as domain knowledge for
simplicity, for instance, cf. [71]. In short, domain knowledge is any form of information
utilized to discover a process model other than event data or configuration parameters.
Figure 1.4 illustrates non-conventional process discovery from a users perspective similar
to Figure 1.3.

Configuration

Input Parameters
Event Log i
=

Output
Process Model

Domain 2
Knowledge User
Interaction

Figure 1.4: Schematic visualization of non-conventional process discovery algorithms;
next to an event log domain knowledge or user interaction is used

Next to the usage of domain knowledge besides event data, the provision timing of
domain knowledge may differ. We call a non-conventional process discovery approach
automated if domain knowledge is provided as an input at the beginning next to the
event log; no further possibility to provide domain knowledge exists during the discovery
phase to ingest further domain knowledge, for example, user interactions. We refer to a
non-conventional process discovery approach allowing the ingestion of domain knowledge,
for example, user interaction, during the process discovery phase as interactive.

10

1.3. Process Discovery

Non-conventional process discovery emerged to overcome the limitations of conven-
tional process discovery. Event data are often affected by data quality issues posing
challenges for process discovery in general; studies with process mining practitioners con-
firm this challenge [141, 254]. Event data quality issues comprise various aspects, below
we list some common issues.

e Incorrect event data refers to scenarios in which event data is wrongly captured.
For instance, incorrect timestamps may occur that do not reflect the timing in-
formation of the actual execution of an activity within a process execution. Since
timestamps are essential for process discovery to learn the control-flow of a process,
said issues may severely affect the quality of discovered process models.

e Imprecise event data refers to scenarios in which event data information is too
inaccurate for the intended process analysis. For instance, activity names might be
recorded too coarsely. As a result, multiple executions of identical labeled activities
might exist within individual process executions.

e Irrelevant event data refers to logged activities in event logs that are irrelevant
to the intended process analysis. For example, irrelevant low-level events may have
been recorded that either need to be filtered or aggregated to high-level events.

Various event data per-processing techniques exist that support process analysts in
mitigating these event data quality issues [35, 59, 211]. Further, automated filtering
techniques have shown to improve process discovery results, for instance, consider [169,
253]. Existing conventional process discovery approaches, however, still often generate
low-quality process models based on real event data. In addition, the fully automated
approach of conventional process discovery may be tedious, as process models must be
learned repeatedly from scratch when the input event data is filtered or adjusted due to
non-satisfactory results.

Besides event data quality issues, insufficient availability of event data impacts the
process model quality. Missing event data refers to scenarios in which event data are
incomplete for the intended process analysis. For instance, individual events might be
missing in the event log; thus, the event data represents process executions only partly.
Further, event data might be, in general, incompletely capturing the actual process.
Although individual process executions are recorded correctly, not all possible process
executions of the actual process are recorded in the event data because they did not
happen in the period the event data was extracted. Incomplete event data can result in
an incomplete understanding of the process; the process discovery approach cannot fully
discover the actual process. In such a scenario, the use of domain knowledge alongside
event data is advantageous.

As conventional process discovery focuses exclusively on event data, it is only possible to
consider process behavior if contained in the event data. However, in specific scenarios,
process analysts may want to include normative process behavior in a process model
alongside the behavior recorded in the event data, representing the actual execution of
the process. Note that event data is assumed to record the actual execution of a process
and not the intended execution. Although domain knowledge about the process being
analyzed exists, it is largely ignored and not utilized within process discovery. In [19], the

11

Chapter 1. Introduction

Process Discovery
(TTTTTTTTTTm oo 5 (T T T N
i : b _ |
: : I f) |
: ! I Incremental | :
1 | ¢t 1
i ! 0 Process !
' Conventional I q !
: - | | i Discovery 1l
: Process Discovery | | 4 -
! : | STt |

1

i] I . I
: ! | Non-Conventional |
i] I Process Discovery |
§ / _)

- - - automated

- - - interactive

Figure 1.5: Relation between conventional, non-conventional, incremental, automated,
and interactive process discovery: Conventional discovery techniques are al-
ways automated, incremental discovery techniques are considered interactive,
and non-conventional discovery approaches besides incremental techniques
can either be automated or interactive

authors identify nine central research problems of the BPM domain. The utilization of
domain knowledge within process mining is one of these problems. Further, the authors
reinforce prevalent data quality issues of event data and the potential of utilizing domain
knowledge to overcome these challenges.

Finally, the lack of user interaction in conventional process discovery can have disad-
vantages. Recall the four process model quality dimensions that influence each other, cf.
Section 1.3. Influencing these quality dimensions through parameter settings of process
discovery algorithms is often not directly possible, as many parameter settings cannot be
assigned to specific dimensions. Further, if a conventional process discovery algorithm
produces an undesired process model, the discovery must start from scratch, i.e., the pre-
viously discovered model is discarded. In contrast, non-conventional process discovery
allows users to interact and steer the discovery phase. Thus, process models are learned
gradually, with users having the opportunity to intervene, correct, or guide the algorithm.

Compared to conventional process discovery, few non-conventional process discovery
approaches exist [184]. This thesis contributes to the field of non-conventional process
discovery by proposing novel incremental discovery approaches allowing the utilization
of domain knowledge within process discovery. Furthermore, this thesis breaks with the
prevailing approach of fully automated process discovery and enables a gradual approach
to process discovery. Figure 1.5 summarizes the various terms in the context of process
discovery and positions incremental process discovery within process discovery in general.
Conventional process discovery is always automated. In contrast, non-conventional pro-
cess discovery comprises both automated and interactive approaches. Incremental process

12

1.4. Research Goals €& Contributions

discovery, i.e., part of non-conventional process discovery, is considered interactive.

1.4. Research Goals & Contributions

This section presents the central Research Goals (RGs) of this thesis. Further, we outline
how this thesis contributes to achieving these RGs.

RG 1 A structured overview of non-conventional process discovery approaches

RG 2 Incremental discovery of process models from event data and enabling users
of incremental process discovery algorithms to influence or steer the algorithm
beyond setting configuration parameters

RG 3 Facilitate the exploration of event data and the process behavior contained
therein to facilitate interactive approaches to process discovery

RG 4 Development of a comprehensive prototype that integrates and unifies the dif-
ferent methods, algorithms and techniques from the field of incremental process
discovery presented in this thesis

We address research goal RG 1 by conducting a systematic literature review of non-
conventional process discovery approaches. Further, we aim to develop a taxonomy for
said approaches. Research goal RG 2 aims at developing a novel process discovery ap-
proach that allows the incorporation of domain knowledge while gradually discovering
a process model. We address RG 2 by proposing a novel incremental process discovery
framework. This framework allows users to discover a process model from event data
incrementally. Figure 1.6 outlines the central idea. Within one iteration, process behav-
ior from an event log is selected by a user. Note that technically a user is not required;
instead, any automated method can also incrementally select the process behavior. The
selected process behavior, potential further domain knowledge, and an (initial) process
model M are fed into the incremental process discovery algorithm. The algorithm ex-
tends the process model M such that the intended process behavior is reflected by the
discovered model M’ and the intended domain knowledge is respected by M’. This
described iteration is repeated using the discovered model M’ as an input in the next
iteration. Several algorithmic contributions to incremental process discovery are provided
throughout this thesis, all founded in a common framework.

RG 3 is considered a building block for incremental process discovery, as users play an
essential role in incremental process discovery and must be supported accordingly in their
decision-making. We propose new approaches for defining and visualizing process execu-
tion variants from event data. Such variants are essential in process mining as they group
individual process executions with identical control-flow behavior. Thereby, variants fa-
cilitate the handling of vast amounts of event data. Variants are particularly significant
in process discovery as they decrease the number of individual process executions that
need to be analyzed by a process discovery approach to learn a process model. Espe-
cially in incremental process discovery, where the gradual selection of process behavior is
central, variants and corresponding visualizations are paramount. Further, we propose a

13

Chapter 1. Introduction

Incremental Process Discovery Approach

®
-
User y.
A
v o
Input Input Configuration
E p User-selected Parameters
vent Log --------- > P : a
= rocess N 23
= Behavior

Incremental

Input Process Output
Domain ———)| i R —— > Process
Knowledge

!
Algorithm MOd(;El M

Input
Process
Model M

Figure 1.6: Schematic visualization of the incremental process discovery framework pro-
posed in this thesis; one iteration of the procedure consists of selecting process
behavior from the event log, which is subsequently integrated into a process
model M resulting in M’ that serves as input in the next iteration

new query language for process execution variants that facilitates users in exploring and
selecting process behavior from event logs.

Regarding RG 4, we present an open-source process mining software tool implement-
ing the proposed contributions in an integrated fashion. Thus, the tool features among
others an incremental process discovery approach, conformance checking techniques, per-
formance analysis, and novel variant visualizations. As this tool was developed as a part
of this thesis, it is considered a substantial contribution. Furthermore, we present a case
study in which this tool is applied to analyze a healthcare process.

1.5. Thesis Outline

This thesis is divided into five parts. Subsequently, we introduce these five parts, outline
the chapters they contain, and highlight the essential contributions. Figure 1.7 illustrates
the outline.

Part I provides a broad introduction to the thesis topic incremental process discovery.
In Chapter 2, we provide an overview of related work and background information on pro-
cess mining, modeling, and discovery. Further, we present a systematic literature review
on domain-knowledge-utilizing process discovery. To this end, we propose a taxonomy for
such process discovery approaches. Chapter 3, outlines the necessary foundational defi-

14

1.5. Thesis Qutline

Part I Opening € Fundamentals

Ch. 1 Ch. 2 Ch. 3

Introduction Literature Review Preliminaries

e Overall research goals and e Review of non-conventional e Introducing concepts,
contributions process discovery [184] definitions and notations

Ch. 4 Alignments for Trace Fragments

e Definition and calculation of infix and postfix alignments [180]

Part II Incremental Process Discovery

Ch. 5 Incremental Process Discovery Framework

e Fundamental framework and algorithms for incremental process discovery [174]

e Investigation of order effects of incrementally added process behavior on the quality of the process

model [179]
Ch. 6 Supporting Trace Frag- Ch. 7 Freezing Process Model
ments in Incremental Process Dis- Parts in Incremental Process Dis-
covery covery
e Incremental process discovery with process e Extending the framework to allow for
execution fragments [185] submodel freezing [176]
Part IIl Facilitating Interaction with Event Data
Ch. 8 Ch. 9
Defining & Visualizing Variants Query Language for Variants
e Process execution variants for partially e Textual query language for partially ordered
ordered event data [183, 188] event data [181]
Part IV Realization € Application
Ch. 10 Tool Support: Cortado Ch. 11 Case Study
e Software tool Cortado for incremental process e Applying the proposed techniques using
discovery [182, 143, 177, 186, 178] Cortado to a healthcare process [187]

Part V. Closure

Ch. 12 Conclusion

e Summary of contributions, remaining challenges, and future research directions

Figure 1.7: Thesis outline

15

Chapter 1. Introduction

nitions, mathematical concepts, and process mining principles that we utilize throughout
the thesis. The last chapter of the first part, i.e., Chapter 4, proposes an extension of
the state-of-the-art conformance checking technique alignments; we extend alignments by
defining infiz and postfix alignments and presenting their computation. This extension
is used in the following part to specify an incremental process discovery approach.

Part II, which comprises three chapters, is devoted to incremental process discovery.
First, we propose a foundational incremental process discovery framework that allows
us to gradually discover process models from event data in Chapter 5. We extend this
framework in the two subsequent chapters. Chapter 7 proposes an extension allowing to
freeze submodels during incremental process discovery. The incremental process discovery
approach does not alter frozen process model parts, providing users with a powerful option
to guide the process discovery. Chapter 6 extends the framework by allowing users to
utilize process execution fragments within incremental process discovery next to complete
process executions.

Part IIT deals with event data interactions in the broader context. In Chapter 8, we
present novel definitions of process execution variants for partially ordered event data.
Further, we present corresponding wvariant visualizations that are generally paramount
for users during event data exploration. Proceeding from these variants, we introduce
a novel query language for process executions and variants that contain partially ordered
event data. The proposed query language facilitates users in event data exploration

Part IV deals with implementing and applying the techniques and approaches pro-
posed so far. We present an open-source process mining software tool called Cortado in
Chapter 10. Cortado implements all the proposed algorithms and approaches presented
earlier regarding incremental process discovery in an end-user-oriented tool. Chapter 11
presents a case study in which we analyze a healthcare process using Cortado and its
distinct features, as outlined in this thesis.

Finally, Part V concludes this thesis. Chapter 12 summarizes the central contributions.
Further, we discuss remaining challenges in the broad context of incremental process
discovery and present directions for future work.

Figures 1.8 to 1.11 position the chapters in the context of the incremental process
discovery framework, shown in Figure 1.6 (page 14). Figure 1.8 shows the positioning of
Chapter 5, formally introducing the overall framework and presenting concrete algorithms
supporting complete process executions. Figure 1.9 positions Chapter 6, which introduces
an algorithm that supports process execution fragments besides complete executions,
compared to Figure 1.8. Moreover, the proposed algorithm in Chapter 6 utilizes the infix
and postfix alignments presented in Chapter 4. Figure 1.10 positions Chapter 7, which
extends the framework by allowing for specifying frozen process model parts, i.e., a form
of domain knowledge. Finally, Figure 1.11 positions Chapters 8 and 9, which deal with
representing and querying process behavior from event data.

16

1.5. Thesis Qutline

Incremental Process Discovery Approach

a focus on complete process
U/Sf’r Y. executions, i.e., complete
: . traces
Y . ,/
Input Input) // Configuration . . .
Event Log -} User-selected) 7 Parameters Chapter 5 Incremental Pro-

= Process : o8 cess Discovery Framework
= Behavior e Introduces the overall

Incremental

framework
e Presents incremental

];211:12; K Process ?)UtPUt process discovery
Discovery rocess algorithms for complete
Knowledge

/7
Algorithm MOd?I bt

Input
Process
Model M

traces (c.f. user-selected
process behavior)

Figure 1.8: Positioning Chapter 5 Incremental Process Discovery Framework (Part II) in

the context of incremental process discovery

Incremental Process Discovery Approach

O focus on complete process
= executions and fragments,

U/s:sr)’7..‘ i.e., trace prefixes, infixes,
P fi _
na and IiOSt e Chapter 6 Supporting Trace
Input Input .+ Configuration Fragments in Incremental
R)
Event Log -+-¥ User-selected ¢ Pararnoeters Process Discovery
=]; rﬁ)ce-s ® e e Presents an incremental
s £ J/ process discovery algorithm

Incremental
Process
Discovery
Algorithm

Input k'..
Domain
Knowledge

Output
Process
-~ _ Model M’

S~

~<

supporting complete traces
and trace fragments

Chapter 4 Alignments for

< Trace Fragments

Input e Defines infix and postfix
Process alignments, which are
Model M utilized within the

proposed incremental

process discovery algorithm

Figure 1.9: Positioning Chapter 6 (Part II) and Chapter 4 (Part I) in the context of
incremental process discovery

17

Chapter 1. Introduction

Incremental Process Discovery Approach

focus on complete process
°

- executions, i.e., complete
User 2. traces
A e
. 4
¥ ,/, i
Input Input o Configuration Chapter 7 Freezing Process
Event Log -} User-selected ,/; Parameters Model Parts in Incremental
s Proce.ss o: Process Discovery
Behavior .
e Presents an incremental
- Incremental process filscovery algorithm
frozen process Input - Process Output supporting submodel
model parts of --» Domain —— Discovery —> Process freezing
' 4 J !
M Knowledge e it Mod(:el M
Input
Process
Model M

Figure 1.10: Positioning Chapter 7 in the context of incremental process discovery

Incremental Process Discovery Approach

-
User 2.
Part IIT Facilitating Interac- e %
tion with Event Data v
e Defining and visualizing Input — B Cenitgreion
. . User-selected Parameters
process execution variants Event Log ----» 3 o
. = Process : e 4
that summarize process = q 8
. Behavior :
behavior from an event log J/

(Chapter 8)

e Querying process execution Input k'.. In(l:;.em.e{ltal Output
variants to facilitate Domain D'focevess " —> Process
exploration and selection of Knowledge ey Model M’
process behavior Algorithm :

(Chapter 9)
Input
Process

Model M

Figure 1.11: Positioning Part III, comprising Chapters 8 and 9, in the context of incre-
mental process discovery

18

Chapter 2.

Literature Review

This chapter is largely based on the following published work.

e D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Utilizing domain
knowledge in data-driven process discovery: A literature review.
Computers in Industry, 137:103612, 2022.
d0i:10.1016 /j.compind.2022.103612 [184].

This section presents a systematic literature review on non-conventional process discov-
ery. Recall that conventional process discovery solely discovers process models from event
data automatically, cf. Figure 1.3 and Section 1.3.1. In contrast, reconsider Figure 1.4,
which provides a high-level overview of non-conventional process discovery approaches.
These discovery approaches assume domain knowledge in addition to event data as in-
put and may allow for user interaction with the discovery algorithm. Thus, from an
input-output perspective, non-conventional process discovery differs significantly from
conventional process discovery.

Figure 2.1 provides a more detailed conceptual view on non-conventional process dis-
covery. For simplicity, we consider any form of additional information besides event
data as domain knowledge; thus, user interaction with a process discovery approach is
considered domain knowledge, too. As illustrated in Figure 2.1, three phases can be
distinguished within the context of non-conventional process discovery:

1. the event data preprocessing phase,

2. the actual process discovery phase in which the process model is discovered based
on an event log and domain knowledge, and

3. the process model post-processing phase.

In each phase, domain knowledge can be utilized. Note that Figure 2.1 summarizes
various options for utilizing domain knowledge; however, concrete approaches use only
selected options illustrated in Figure 2.1. Thus, most approaches can be easily cate-
gorized into one of three phases, i.e., event data preprocessing, process discovery, and
process model post-processing approaches. Therefore, Figure 2.1 should be considered
a summarizing overview of various options on domain-knowledge-utilization within the
context of process discovery.

19

Chapter 2. Literature Review

Event Data
Pre-Processing

@_

Process
Discovery

Configuration
Parameters

|

Automated Process

Process Model
Post-Processing

For example:

* Post-processing,
repair, adapt
process model
based on domain

knowledge
Discovery Algorithm !
Event
Log L Event Data @
° Pre-Processing Eventl
Log L 0O
== o .
@ Domain 0«0 Domain
Knowledge Process Knowledge — —
(a priori) Model M (a posteriori)
Domain
Knowledge Event 0s0
a priori Log L' . .
(a pr -) Interactive/Incremental Process —— 1
S . . —
For example: DISCOVGI‘V Algorlthm DiEovei:d
+ Interactive filtering/ @ Event — Process Model
repairing of event Loe L/ - M
data (i.e., knowledge Domai 08 % 0O
on incorrect logged K omlagx Dloyrain L !
behavior) nowledge @ 0«0 Process Model
(a priori) Knowledge I Process
+ Event abstraction) (a priori) Model M Post- ~—
techniques ! @) Processing
| |
1
| Domain Knowledge
| (in vivo) O
: | L
O«<0O
For example: For example: Final Process
* Control-flow constraints * Incrementally selecting process M(; del M:

Pre-defined process
model, i.e., initial process
model

Labeling of traces
(positive/negative)

behavior to be integrated into a
process model under
construction

* Interactively decide on model
suggestions from the discovery
algorithm

Scope of Literature Review

Figure 2.1: Conceptual overview of different non-conventional process discovery ap-
proaches and potential provisioning timing of domain knowledge, i.e., a priori,
in vivo, and a posteriori (partly adapted from [184, Figure 2|)

During the event data preprocessing phase, domain knowledge can be utilized in various
ways. Domain experts can use interactive event data exploration and filtering approaches,
for instance, [73, 129, 170], and apply their knowledge to increase the quality of the event
log L, cf. Figure 2.1. Further, event abstraction techniques might be applied that often
require domain experts to provide activity patterns that are used to generate high-level

20

activities from low-level activities [132]. We refer to [238| for an extensive overview of
event abstraction techniques. In short, many event data preprocessing techniques exist
that allow the utilization of domain knowledge to improve the quality of event logs;
however, we do not consider such approaches in this review.

For the second phase, the actual process discovery phase, Figure 2.1 distinguishes
automated and interactive/incremental non-conventional process discovery approaches.
Automated approaches utilize a priori-provided domain knowledge and an event log L/,
which is obtained after applying preprocessing techniques, cf. Figure 2.1. Based on these
inputs, a process model M is fully automatically discovered. Thus, domain knowledge is
considered an additional input compared to conventional process discovery, cf. Figure 1.3.
For instance, a priori domain knowledge can be negative process executions that should
not be incorporated into the discovered process model [192]. Control-flow constraints,
i.e., precedence constraints over activities [99], are a further example of a priori domain
knowledge used within the process discovery phase.

In contrast to automated non-conventional process discovery, interactive/incremen-
tal approaches (cf. Figure 2.1) utilize domain knowledge in vivo, i.e., domain knowl-
edge is provided and utilized while the approach discovers the process model. For in-
stance, domain knowledge provided in vivo includes incrementally selected process ex-
ecution variants provided to an incremental process discovery approach [174], or user
feedback on activity positioning recommendations provided by the process discovery ap-
proach [74]. Additionally, interactive/incremental process discovery algorithms may uti-
lize a priori-provided domain knowledge. In short, automated and interactive/incremen-
tal non-conventional discovery approaches differ mainly because the domain knowledge
is provided in vivo in incremental /interactive approaches, i.e., they do not operate fully
automated.

Finally, process model post-processing can be applied after discovering a process model
M, cf. Figure 2.1. Note that process model post-processing and, likewise, event data pre-
processing are not a necessity. Nevertheless, these two phases are often performed as part
of process discovery. For example, domain experts may manually edit the process model
in an editor [113]. Further, (interactive) process model repair techniques [14, 85, 86, 162]
may be applied to add behavior not yet reflected by the model M. Likewise, approaches
to process model simplification can be applied [190]. Moreover, the discovered process
model M could be merged with other process models using techniques as [116]. Note that
some techniques mentioned above require further inputs than domain knowledge and a
process model. However, a detailed review of process model post-processing approaches
is outside the scope of this thesis.

In conclusion, Figure 2.1 demonstrates that non-conventional process discovery algo-
rithms are more diverse compared to conventional ones, from the user’s point of view.
Therefore, we present a systematic literature review to organize said approaches. We
focus on the actual process discovery phase as highlighted in Figure 2.1. Thus, we
exclude non-conventional approaches for event data preprocessing and process model
post-processing. However, we include selected approaches for repairing process models
if they can be employed as incremental process discovery algorithms. Note, however,
that process model repair approaches were primarily developed for the process model
post-processing phase, cf. Figure 2.1. In the course of this literature review, we provide
more detailed insights into how process model repair can be used for incremental process

21

Chapter 2. Literature Review

discovery. For the sake of simplicity, we also refer to the process model repair approaches
that we consider in this literature review as non-conventional process discovery.

The remainder if this chapter is structured as follows. We present distinguishing fea-
tures in Section 2.1 to organize the various non-conventional process discovery approaches.
Section 2.2 introduces the applied methodology and the design of this literature review.
The identified and considered approaches in the context of this literature review are
briefly presented in Section 2.3. Further, the approaches are systemically compared
using the distinguishing features from Section 2.1. Next, open challenges in the field of
non-conventional process discovery are presented and linked to this thesis and its research
questions. Finally, Section 2.5 concludes this literature review.

2.1. Distinguishing Features

In this section, we present distinguishing features with corresponding characteristics to
organize and compare various non-conventional approaches. first, we will briefly describe
our approach to specifying the distinguishing features and how we have organized them.
Next, we present the individual distinguishing features in detail and introduce the cor-
responding characteristics. Finally, we briefly discuss potential dependencies between
different features and characteristics.

2.1.1. Defining Distinguishing Features

This section briefly covers the identification and organization of the distinguishing fea-
tures for non-conventional process discovery. In [147], the authors define a method for
taxonomy development for the information systems field. Note that a taxonomy is used to
classify objects in a systematic manner. According to [147], a taxonomy comprises a set of
n € N dimensions, referred to as Dy, ..., D,,. Further, each dimension D; € {D1,...,D,}
has at least two k; > 2 corresponding characteristics C; ; for j € {1,...,k;}. Moreover,
characteristics are 1) mutually exclusive, i.e., an individual object can have not more
than one characteristic for the same dimension, and 2) collectively ezhaustive, i.e., an
individual object must have one characteristic for each dimension.

In this literature review, we omit mutual exclusiveness; however, collective exhaustive-
ness remains. Thus, an individual object, in this specific case a non-conventional process
discovery approach, can have multiple but at least one characteristic for a dimension.
To distinguish from the taxonomy concepts presented in [147], we refer to dimensions as
distinguishing features. In the next section, we present the identified features.

2.1.2. Overview of the Distinguishing Features

Figure 2.2 summarizes the identified distinguishing features. We use gray highlighted
boxes for features and light gray highlighted boxes for characteristics. The presented
features are the result of analyzing identified approaches, internal discussion among the
authors [184], and discussion with peers. Overall, we have identified first-level and second-
level features, cf. Figure 2.2. For instance, if an approach has the characteristic ‘interac-
tive/incremental’ for the feature ‘Degree of interactivity’, we are further interested if an

22

2.1. Distinguishing Features

Distinguishing
features

for non-
conventional
process
discovery

— a priori
Timing of
domain L
[knowledge omvve
provision

L a posteriori

. — explicit
| Domain know- i
ledge type
— user feedback
— automated
| Degree of i
interactivity | interactive/
incremental
— imperative
Output process
— model formalism -
type
— declarative
Output process [Y
— model formalism -
restrictions L no
— yes
| Output guaran-
tees
L no
— — process discovery
| Application
focus .
L model repair
— available
| Software i
realization | unknown/not (pub-

licly) available

__ Specification
formalism

__ Auto-complete
option

| Process model
formalism

__ Process model
formalism

{ imperative

declarative

— yes
—no

— Petri nets
— BPMN

Causal nets
|| (C-nets)

| Information
control nets (ICNs)

Directly-follows

graphs (DFGs)
— Log-trees

— DECLARE

| First-Order Logic
(FOL)

Figure 2.2: Overview of the distinguishing features for non-conventional process discov-
ery, cf. gray filled boxes, and corresponding characteristics, cf. light gray filled
boxes (partly adapted from [184, Figure 6])

23

Chapter 2. Literature Review

‘Auto-complete option’, i.e., second-level feature exists. In the following, we introduce
each distinguishing feature and corresponding characteristics from Figure 2.2.

Timing of Domain Knowledge Provision

During the process discovery phase, as illustrated in Figure 2.1, domain knowledge can
be utilized at different points in time. For instance, domain knowledge can be an addi-
tional input next to event data, domain knowledge can be utilized during an interactive
discovery phase, and domain knowledge can be used after the discovery of a model to
post-process it. Therefore, we are interested in comparing and classifying the ‘timing of
domain knowledge provision’; we distinguish three characteristics:

1. a priori describes approaches in which domain knowledge is provided as an addi-
tional input alongside event data at the beginning of the discovery phase,

2. in vivo describes approaches where domain knowledge is provided while the process
model is actively discovered,

3. a posteriori® describes approaches where domain knowledge is provided and used
after a process model is discovered.

Domain Knowledge Type

The concept of domain knowledge is vast and can take on various forms. Thus, we
aim to classify the type of domain knowledge that is utilized by the approaches. We
distinguish two primary forms of domain knowledge: explicit domain knowledge and
domain knowledge in terms of user feedback.

1. Explicit domain knowledge is a type of domain knowledge that is formally specified
and inputted into the discovery algorithm. In other words, the user needs to specify
the domain knowledge formally. Examples of explicit domain knowledge are prece-
dence constraints between process activities and initial process models, which are
used as a starting point for incremental process discovery algorithms.

2. On the contrary, user feedback refers to the decisions made by a user from the
available options presented by a discovery algorithm. An example of user feedback
is the gradual selection of process behavior that an incremental process discovery
incorporates into a process model. Unlike explicit domain knowledge, discovery
algorithms actively request user feedback.

If an approach utilizes explicit domain knowledge, we are further interested in the
specification formalism used to specify the explicit domain knowledge. Note that the
specification formalism represents a second-level distinguishing feature. We distinguish
two specification formalisms.

INote that we excluded non-conventional approaches that are intended for process model post-
processing, i.e., the third phase, cf. Figure 2.1. However, since there are approaches that are classified
to the second phase, i.e., process discovery, and utilize domain knowledge also a posteriori, we include
this characteristic for the feature ‘Timing of domain knowledge provision’.

24

2.1. Distinguishing Features

1. Imperative formalisms for domain knowledge follow a closed-world assumption.
Therefore, only the behavior explicitly described in the formalism is permissible,
while behavior not mentioned is excluded. For instance, recall the imperative pro-
cess model formalism depicted in Figure 1.2.

2. Declarative domain knowledge formalisms follow an open-world assumption. There-
fore, declarative formalisms usually allow the specification of constraints. If the
behavior of a process conforms to the specified rules, it is permissible. Thus, unlike
imperative formalisms, not all permissible behavior must be explicitly specified.

Finally, note that feature ‘domain knowledge type’ and feature ‘timing of domain
knowledge provision’ are independent. As an illustration, a user can provide explicit
domain knowledge directly to the discovery approach in vivo, which means during the
discovery phase or beforehand, referred to as a priori.

Degree of Interactivity

During the process discovery phase, non-conventional discovery approaches differ in their
course to involving users. Some algorithms are fully automated, meaning users cannot
interact during the discovery phase. Others, however, involve users significantly in an in-
teractive discovery phase that allows users to make important decisions about the process
model being discovered. Consider Figure 2.1; we distinguish two main non-conventional
approaches.

1. Automated approaches do not offer any option to provide domain knowledge during
the actual discovery of the process model. Hence, by definition, approaches being
classified as automated do not utilize domain knowledge in vivo.

2. Interactive/incremental approaches, on the contrary, allow to provide domain knowl-
edge in vivo, i.e., during the actual process discovery phase.

We further distinguish approaches classified as ‘interactive/incremental’ by a second-
level feature auto-complete option. An auto-complete function enables the algorithm
to progress in discovering a model independently when the user opts out of providing
feedback. Approaches can either have or not have an auto-complete option.

Output Process Model Formalism Type & Restrictions

As already shown in Figure 1.2, various process model formalisms exist.? Generally, it
is not possible to translate any process model into another formalism while maintaining
the exact behavior specified in the target formalism. If a model contains elements or
behavioral constructs from a formalism that are not part of or cannot be modeled in
the target formalism, the model cannot be translated with behavioral exactness. Thus,
the formalism used by a discovery approach is of great importance. Second, potential
restrictions on the class of process models that a discovery algorithm can discover within a
given formalism are another critical distinguishing feature. Examples of such restrictions
are, for instance, if a discovered model can contain the same activity labels multiple

?Note that Figure 1.2 solely illustrates imperative process model formalisms.

25

Chapter 2. Literature Review

times. Therefore, the process model formalism used by a discovery approach and potential
restrictions regarding the class of models within a given formalism, also referred to as
representational bias [206, 227], are critical distinguishing features.

To this end, we distinguish the class of supported process model formalism per ap-
proach, i.e., the first-level distinguishing feature output process model formalism. We
distinguish between imperative and declarative process model formalisms; we refer to [87,
88, 153] for detailed comparisons between these two model paradigms. In brief, impera-
tive language specifies how a process is executed by explicitly modeling what is allowed.
Instead of explicitly defining what is allowed, declarative languages initially allow for all
possible behavior, and every new element in such a model restricts the potential execu-
tions further. For each formalism class, we further distinguish the exact formalism used,
i.e., Petri nets, BPMN, causal nets (C-nets), information control nets, Directly Follows
Graphs (DFGs), log-trees, DECLARE, or FOL.?

Furthermore, we distinguish the approaches according to whether they constrain the
chosen process model formalism. For example, specific process discovery algorithms can-
not identify models that contain identical activity labels in separate locations within the
model, so-called duplicate labels—although process model formalisms allow this. We
have two characteristics for the distinguishing feature constraints on the output process
model formalism, namely yes and no.

Output Guarantees

When comparing different approaches, it’s crucial to consider the guarantees provided
regarding the discovered model concerning the provided event log and domain knowledge.
For instance, if replay fitness is guaranteed, all the process behavior from the event log
is captured in the model. Further, does the approach guarantees that the discovered
model adheres to the provided explicit domain knowledge? Guarantees can also pertain
to process models and their properties, such as the approach guarantees to return a sound
WF-net for arbitrary input. In short, guarantees regarding the discovered process model
are essential when comparing discovery approaches.

Application Focus

Although this literature review focuses on non-conventional process discovery, approaches
from model repair [85, 86], which is considered a dedicated research field within process
mining, can also be used to discover process models incrementally. Hence, we consider
model repair to a certain extent as non-conventional process discovery and, therefore,
include model repair approaches. However, a complete overview of model repair is beyond
the scope of this review. Instead, we list approaches that can be distinguished using
the proposed distinguishing criteria and can be considered for non-conventional process
discovery.

Figure 2.3 provides a high-level illustration of model repair. As input an event log L
and a process model M is assumed. If M does not entirely support the process behavior
recorded in L, the process model repair algorithm alters respectively extends the process

3The list of process model formalisms is derived from the identified approaches. Therefore, it is not
considered complete and may need to be extended for future approaches not considered in this review.

26

2.1. Distinguishing Features

incrementally

o _ adds new pro-
User cess behavior to
- event log L
v Configuration
Input Parameters
Event Log L o
v |
| Output
Process Model Process Model M’
Repair —— (entirely supporting
Algorithm the process behavior
| recorded in L)
Input :

Process Model M
(not entirely supporting
the process behavior
recorded in L)

Figure 2.3: Schematic overview of process model repair approaches; elements highlighted
in red illustrate the use of a model repair algorithm for incremental process
discovery purposes

model M such that all process behavior from L is supported by the altered respectively
extended model M’. Process model repair algorithms aim to change the model M as little
as possible, i.e., model M and M’ should be as close as possible [86]. The reason for this
goal is the intention to repair the process model. If this goal did not exist, users could
use instead process discovery algorithms (cf. Figure 1.3 in comparison) that are fitness-
preserving to learn a new process model M’ from L that entirely supports the process
behavior from L. In this case, however, there is no guarantee of similarity between the
provided process model M and the new model M’ as the input model M is ignored.
Model repair approaches can be applied gradually and thus mimic incremental process
discovery, cf. Figure 2.3. Assume the output process model M’ is used in a further itera-
tion again as input, and a user gradually extends L by adding more process behavior. In
this regard, model repair approaches can be used to mimic incremental process discovery.
We are therefore interested in distinguishing the intended application focus of algorithms
that we consider in the context of this literature review. The application focus indicates
whether an approach is primarily designed for process discovery or model repair use cases.

Software Realization

Having software support is crucial, especially for process discovery approaches that uti-
lize domain knowledge. Interactive algorithms for process discovery must communicate

27

Chapter 2. Literature Review

intermediate results, design decisions, or questions to the user and request feedback from
them. Additionally, users require software support for eliciting and specifying domain
knowledge, such as constraints in a specific formalism, and verifying that the specified
knowledge is free of contradictions. As a result, we are interested in comparing the
software realizations of different approaches.

Aside from the software’s implementation, we also seek information about its graphical
user interface (GUI) and how it facilitates user interaction. Specifically, we would like to
understand how the tool assists users in defining explicit domain knowledge and how it
handles the feedback loop between the user and the algorithm.

2.1.3. Dependencies Among Characteristics and Features

Table 2.1.: Overview of mutual exclusiveness regarding characteristics for each distin-
guishing feature; second-level distinguishing features are colored gray (partly
adapted from [184, Table 2])

Distinguishing Feature Mutual Exclusive Characteristics

Timing of domain knowledge provision
Domain Knowledge Type
Specification formalism”
Degree of Interactivity
Auto-complete option
Output Process Model Formalism Type
Process model formalism
Output Guarantees
Application Focus
Software Realization

NN N NN

* The feature ‘specification formalism’ characteristics are mutually exclusive per individual, ex-
plicit domain knowledge input. For instance, assume an approach that requires two different
domain knowledge inputs that are both explicit. Thus, each explicit domain knowledge input is
either provided using imperative or declarative specification formalism. However, an approach
that utilizes explicit domain knowledge can be categorized as imperative and declarative in the
case of multiple explicit domain knowledge inputs.

As discussed earlier, we do not require mutual exclusiveness for the characteristics
of individual distinguishing features. In Table 2.1, we report per distinguishing feature
if mutual exclusiveness applies. The reason for omitting mutual exclusiveness for the
feature ‘Timing of domain knowledge provision’ is, for example, that approaches may
utilize domain knowledge at different points in time. Therefore, we cannot assign such
approaches to a single characteristic; instead, several characteristics apply. A similar
argumentation applies for the feature ‘domain knowledge type’. For example, approaches
can use both explicit domain knowledge and user feedback.

Further, there exist two dependencies between certain features and characteristics.
Thus, not all theoretically potential feature/characteristic combinations exist. In the

28

2.2. Methodology & Design

following, we explain these two dependencies.

1. If the feature ‘application focus’ of an approach is model repair, the approach
requires a process model as input, i.e., explicit domain knowledge. Hence, the
approach’s ‘domain knowledge type’ is explicit. Note that the approach can ad-
ditionally utilize user feedback because the characteristics of the feature ‘domain
knowledge type’ are not mutual exclusive.

2. If the ‘degree of interactivity’ of an approach is automated, the characteristic ‘in
vivo’ is not applicable for the feature ‘timing of domain knowledge provision’.

2.2. Methodology & Design

This section, briefly presents the methodology applied for conducting the literature re-
view. We follow the established methodologies and guidelines presented in [105, 242].
According to [242], five phases of a literature review can be distinguished.

Defining the literature review’s scope
Conceptualizing the topic of the literature review
Literature search

Literature analysis and synthesis

Research agenda

T W=

Regarding the first phase, i.e., defining the literature review’s scope, reconsider Fig-
ure 2.1, which overviews the field of non-conventional process discovery and highlights the
scope of this literature review. Our focus in this literature review is on approaches incor-
porating domain knowledge in the process discovery phase while excluding those solely
pertaining to event data preprocessing or process model post-processing, cf. Figure 2.1.
As an example, we omit event data filtering techniques using domain knowledge [170] and
event abstraction techniques [132, 238]. Further, we are interested in specific approaches;
thus, we exclude case studies on applying non-conventional process discovery, for in-
stance, [22, 23]. Moreover, we exclude work describing conceptual ideas and frameworks
without a specific implementation, respectively instantiation. For example, in [100], the
authors present requirements for an interactive workflow mining system. Similarly, in
[104], the authors propose a high-level framework for mining workflows from document
versioning systems. Furthermore, we exclude approaches that do not use event data as
input, for instance, approaches that solely use natural language text to discover a process
model [95, 96]. Lastly, we exclude approaches that are presented in this thesis.

Finally, we partly consider process model repair techniques, cf. Section 2.1.2. Although
they are intended to be used as a process model post-processing technique, these tech-
niques can also be applied incrementally to discover a process model as discussed in
Section 2.1.2. Therefore, we include repair techniques; however, we do not provide a
complete overview of these techniques unless they can be differentiated based on the pro-
posed distinguishing features. Conclusively, we define the scope using four criteria (C),
which are evaluated for each document found during the database search.

29

Chapter 2. Literature Review

Table 2.2.: Executed search queries to identify relevant literature

Database Executed query

TITLE-ABS-KEY("process mining" AND ("process discovery" OR

SCO[HJS "model repair") AND ("interactive" OR "domain knowledge" OR

"hybrid intelligence" OR "human-in-the-loop"))

[A1l: ‘'"process mining"] AND [[All: ‘'process discovery"] OR

ACM Digital Library [A1l: "model repair"]] AND [[All: “"interactive"] OR [All:

"domain knowledge"]l OR [All: "hybrid intelligence"] OR [All:
"human-in-the-loop"]]

"process mining" AND ("process discovery" OR "model repair")

Sprh1gerLink AND ("interactive" OR "incremental" OR "domain knowledge" OR

"hybrid intelligence" OR "human-in-the-loop")

C1

C2

C3

C4

The document found is a single article, not a proceedings volume, a PhD thesis, or
the like. Further, the document is written in English. After all, the document is
not part of this thesis. For example, we exclude [69, 93].

The main focus of the found document is either on process discovery or on pro-
cess model repair. For instance, approaches on conformance checking designed for
interactive process discovery are excluded [72].

The document proposes a specific algorithm; as explained above, for example, case
studies [22, 23], overviews [162], and general frameworks without concrete instan-
tiations [111] are excluded.

The document deals with process discovery or process model repair using event
data and domain knowledge as input, i.e., the approach can be considered a non-
conventional process discovery approach, cf. Figure 1.4 (page 10).

The second phase, i.e., the conceptualization of the research field, is approached
through the distinguishing features, cf. Section 2.1. We use the distinguishing features
to systematically compare the identified approaches. In addition, we briefly summarize
each identified approach to provide insight into the distinctive approaches.

For the literature search, we perform search queries in common research databases.
We queried Scopus*, ACM Digital Library®, and SpringerLink® that together index a
plethora of conference proceedings and journals related to computer science. We use the
semantically same query for all three databases; Table 2.2 provides an overview of the
executed queries. We do not further restrict the search results; for example, we do not
limit the publication time or restrict the results to journal publications only.

4https://scopus.com
Shttps://dl.acm.org/
Shttps://link.springer.com/

30

https://scopus.com
https://dl.acm.org/
https://link.springer.com/

2.8. Identified Approaches

Table 2.3.: Overview of the literature search process; twelve non-conventional process
discovery approaches were eventually identified

Publications satisfying

Source Hits™ C1-C2 C1-C3 C1-C4
Scopus 61 26 14 7
ACM Digital Library 70 26 11 2
SpringerLink 690 96 74 8
Sum of approaches” 11
Backward Search (given the

12 identified publications) 270 71 61 7
Sum of approaches” 12

* The total given shows the number of unique approaches, not the number of publications identified.
As there are sometimes several publications describing the same approach, for example, a workshop
paper that was extended in a journal article or a corresponding tool paper, and there are overlaps
between the database results, the total shown is lower than the total of the values per database.

** The queries were performed on 25.08.2021 as part of the corresponding publication [184] and again
on 30.06.2023 to ensure up-to-dateness.

2.3. Identified Approaches

First, Section 2.3.1 provides an overview of the identified approaches and introduces them
briefly. Subsequently, Section 2.1 systematically compares the identified approaches using
the distinguishing features introduced.

2.3.1. Overview

Table 2.3 summarizes the results from the performed queries. For example, the query
executed in Scopus yielded 61 results. Next, we evaluate the criteria listed in Section 2.2
for each result. For the results from Scopus, we identify seven publications that satisfy
all four criteria. In total, we have identified eleven approaches from the three queried
databases, i.e., Scopus, ACM, and SpringerLink. Next, we performed a backward search
given the eleven identified approaches. The backward search yielded one more publica-
tion that we did not find before. Thus, we finally identified twelve approaches that are
considered in this literature review.

Table 2.4 lists the twelve identified approaches. Note that we summarized approaches
if they have been introduced among multiple publications; as stated in Table 2.4. In
addition, Table 2.4 provides an overview of the distinguishing features and the corre-
sponding number of approaches that can be assigned to certain characteristic values. In
the following, each approach, i.e. Al to A12, is briefly presented and key characteristics
of selected features (cf. Section 2.1) discussed.

31

Chapter 2. Literature Review

Table 2.4.: Overview of identified non-conventional process discovery approaches that
meet the four criteria, i.e., C1 to C4, specified in Section 2.2

*

Abbr. First Author Title™ Reference” Year"

Robust process discovery with artificial

Al Goedertier et al. . (98, 196] 2009
negative events

A2 Maggi et al. User-guided discovery of declarative pro- [130] 2011
cess model

A3 Rembert et al. Process discovery using prior knowledge [161] 2013

Ad Yahya et al. Proc.ess. discovery b7y synth.esnzmg activity [246] 2013
proximity and user’s domain knowledge

A5 Dixit et al. Using Domgln Knowledge to Enhance [70] 2017
Process Mining Results

A6 Greco et al. Proc.:ess Discovery under Precedence Con- [97, 99] 2015
straints

A7 Fahland et al. Model.repalr — aligning process models [85, 86] 2015
to reality

A8 Armas Cervantes Interactive and }ncremental business pro- (14, 13] 2017

et al. cess model repair

A9 Canensi ot al. M.ul.m—level interactive medical process [43] 2017
mining

A10 Dixit et al. Intera'ctlve data-driven process model con- [74, 71] 2018
struction

All Yiirek et al. Interactive process miner: a new approach [248] 2018

for process mining

Incremental declarative process mining

Al12 Ferilli et al. with WoMan

[90, 91, 92] 2020

* We summarize approaches published in different articles, for example, a workshop paper extended in
a journal article.
** We list the title and the year of the most recent publication.

32

2.8. Identified Approaches

Table 2.5.: Overview of the number of approaches assigned to the individual characteris-
tics of the defined distinguishing features, cf. Figure 2.2

Distinguishing feature (15t level)
Distinguishing feature (224 level)

Characteristic

Number of Approaches™™

Timing of domain knowledge*

Domain knowledge type”
Specification formalism

Degree of interactivity

Auto-complete option

Output process model formalism
Process model formalism

Process model formalism
Output process model
formalism restrictions
Output guarantees

Application focus

Software realization

a priori
in vivo
a posteriori

explicit
imperative
declarative

user feedback

automated
interactive/incremental
yes
no

imperative
Petri nets
BPMN
Causal nets (C-nets)
Information control nets
Directly follows graphs
Log-trees

declarative
DECLARE
FOL

yes
no

yes
no

process discovery
model repair

available
unknown/not
(publicly) available

9 (75%)
6 (50%)
1 (8%)

11 (92%)
6 (55%)
5 (45%)
4 (33%)

5 (42%)

7 (58%)
5 (71%)
2 (29%)

40

[en}
SEESE S

SE

10 (83%)
2 (17%)

7 (58%)
5 (42%)

* Non mutual exclusive characteristics, cf. Table 2.1

** For the calculation of the relative numbers of the characteristics of 279 level distinguishing features,
we have taken the absolute number of approaches classified to the corresponding characteristic of the
15t level feature as a basis. The relative numbers are rounded to integers.

33

Chapter 2. Literature Review

Approach A1—Goedertier et al. (2009)

Goedertier et al. [98, 196] present the AGNEs algorithm, an automated discovery ap-
proach that utilizes negative events to transform process discovery into a classification
problem. The approach assumes the completeness of the event log provided, i.e., the
event log fully describes the behavior of the actual process under consideration. Note
that the completeness assumption can be problematic if processes contain much parallel
behavior. In this case, many different sequences of activities are likely due to parallelity.
For instance, consider a process with 6 parallel activities; thus, 6! = 720 many different
permutations of these activities exist. However, it is unlikely that all these permutations
will also be found in an event log. Therefore, the approach allows the optional input of
domain knowledge that characterizes parallel and sequential activities and dependencies
between activities. If the domain knowledge conflicts with the recorded behavior in the
event log, the provided domain knowledge is favored. Next, for each process execution,
negative events are generated, i.e., at each position in a process execution, events that are
not allowed to take place are automatically determined. From these process executions
enriched with negative events, a Petri net is eventually discovered.

Approach A2—Maggi et al. (2011)

Maggi et al. [130] propose an automated approach for discovering DECLARE models,
which use behavioral templates to represent relationships between process activities. The
user selects a priori a desired subset of templates for the algorithm to use, restricting the
resulting process model. The approach then learns constraints based on the selected tem-
plates and generates a process model that ensures the given event data fits the discovered
constraints. This user selection is considered domain knowledge, a crucial aspect of the
proposed approach, and significantly impacts the discovered process model. Further, this
selection lets the user focus on specific process parts/constraints of interest. We consider
this a priori user selection as domain knowledge because it is a fundamental part of the
proposed approach and significantly influences the discovered process model.

Approach A3—Rembert et al. (2013)

Rembert et al. [161] propose an automated discovery approach that utilizes a priori do-
main knowledge in the form of an augmented Information Control Net (ICN), which is
an imperative formalism. ICNs are directed graphs where nodes represent activities and
different edge types model control flow constraints, for instance, precedence constraints,
dependency relations, independency relations, and mutual exclusion constraints. In an
augmented ICN, the user assigns belief values between 0 and 1 to the relationships ex-
pressed in the ICN, representing the user’s belief in the given dependency between the
corresponding activities. The approach learns a process model automatically from the
event data and the augmented ICN; the output formalism is also an ICN. The authors
emphasize that their approach is particularly useful for dealing with uncertain event data
or rare process behavior.

34

2.8. Identified Approaches

Approach A4—Yahya et al. (2013)

Yahya et al. [246] proposes the proximity miner, i.e., an automated approach utilizing
a priori provided domain knowledge. Users can input their knowledge about a process
in terms of causal, unrelated, and parallel relationships between activities. They can
also specify the start and end activities. Using the concept of activity proximity, which
indicates the connections between activities as recorded in the event log, and the provided
domain knowledge, the proximity miner creates a process model. This model is a directed
graph that displays the directly-follows-relation between activities, i.e., a DFG [212].

Approach A5—Dixit et al. (2017)

Dixit et al. [70] present an automated discovery approach that uses, besides an event log,
an initial process model and user-specified DECLARE constraints [151] as input. Note
that the approach restricts to a subset of all available DECLARE templates. Process
model modifications are applied to the initially provided process model to generate a set
of candidate models. The authors present three techniques: 1) a brute force modification
approach that randomly edits the initial model, 2) a genetic modification approach that
applies edit operations guided by the standard four quality measures for process models,
and 3) a constraint-specific modification that edits the initial model guided by the user-
defined constraints. All three approaches yield a set of process models derived from the
initial process model. Next, the resulting models are evaluated based on the event data—
standard quality measures are calculated, i.e., replay fitness, precision, generalization,
and simplicity—and based on the number of satisfied user-specified constraints.” These
five measures are used to create a Pareto front of the best process models. In contrast,
consider Figure 1.1 showing that a process discovery returns a single process model.
Therefore, the obtained selection of process models is presented to the user, who can
select a process model. We categorize this final selection as a posterior: user feedback.

Approach A6—Greco et al. (2015)

Greco et al. [97, 99] present an automated approach to process discovery that incorpo-
rates explicit domain knowledge in the form of precedence constraints. These precedence
constraints define the relationships between activities and are provided a prior: alongside
the event log. The resulting process models are represented as extended causal nets.®
The approach guarantees that the resulting extended causal net describes the behavior in
the event data and fulfills the given precedence constraints; otherwise, if event data and
user-defined precedence constraints contradict, no model is returned. According to the
authors, this approach is beneficial for addressing the log completeness problem, which
arises when event data only captures some but not all possible executions of the process
being studied.

"For an introduction to the standard quality measures, we refer to [211, Chapter 6.4.3] and [38].
8Causal nets C-nets are introduced in [223].

35

Chapter 2. Literature Review

Approach A7—Fahland et al. (2015)

Fahland et al. [85, 86] introduce the first process model repair approach, which works
automated. As input, the proposed approach assumes an a priori provided process model
and an event log. By modifying the input model, the approach ensures that the resulting
process model accurately represents all the process behavior recorded in the provided
event log. As discussed before, cf. Section 2.1.2, model repair techniques can be applied
incrementally to mimic incremental process discovery, i.e., a process model is gradually
repaired. Thus, a repaired process model is used again as input in the next iteration, cf.
Figure 2.3 (page 27). This procedure allows users to discover the process model gradually
and to control the process discover phase by selecting event data to be added incremen-
tally. We categorize this repair approach as interactive/incremental, i.e., starting from
an initial process model (ezplicit, a priori domain knowledge), we repair the process
model by incrementally adding trace variants to it (explicit, in vivo domain knowledge).
The repair approach generally works on Petri nets, i.e., no restriction on a specific sub-
class. Moreover, an auto-complete option is theoretically given by automatically adding
all remaining non-fitting process behavior from a given log in one go.

Approach A8—Armas Cervantes et al. (2017)

Armas-Cervantes et al. [14] propose an interactive and incremental process model repair
approach that relies on user feedback. The approach requires an a priori provided process
model in BPMN notation as input besides an event log. In brief, mismatches between
the provided model and the event log are detected and displayed to a user who manually
repairs the process model. These visualizations of discrepancies between the model and
the log are key feature of the approach. Next to visualizing the discrepancies, the ap-
proach also visualizes repair proposals based on modification patterns in the model. The
user can manually repair the process model or apply the suggested repair based on the
visual feedback. However, the authors note that resolving discrepancies between the log
and model may require a significant amount of manual effort on the user’s part.

Approach A9—Canensi et al. (2017)

Canensi et al. [43] propose an interactive/incremental process discovery approach that
consists of two main phases. First, a process model, i.e., a log-tree, is discovered using
a conventional process discovery algorithm [36]. In brief, a log-tree encodes all traces
from the event log in a tree structure and thus can contain identical activity labels mul-
tiple times. The discovered log-tree describes the entire event log, i.e., perfect fitness,
and additionally has perfect precision, i.e., the model allows no other behavior that is
not recorded in the event log. Since the log tree has perfect fitness and precision, the
model may lack generalizability and simplicity, which are important quality dimensions
of process models [40]. To address this issue, the second phase of the approach in-
volves abstraction and generalization of the process model based on user feedback and
explicit domain knowledge. Users can specify subgraphs, which the approach identifies
and highlights in the log-tree. Next, based on user feedback, i.e., the user selects identi-
fied subgraphs in the log-tree, the approach merges the selected subgraphs to obtain a
simplified log-tree. While this may result in a log-tree that describes other behavior not

36

2.8. Identified Approaches

present in the provided event log, the model’s initial perfect accuracy is balanced against
generalizability and simplicity.

Approach A10—Dixit et al. (2018)

Dixit et al. [71, 74] propose an interactive/incremental process discovery approach where
the user constructs the process model in an interactive editor. The approach recom-
mends modeling options based on the provided event log to the user. The process model
formalism used is free-choice [63] WF-nets, a subclass of Petri nets. Starting from an
initial model, the user gradually constructs the model by adding new elements. The ap-
proach guarantees that the Petri net under construction remains sound and free-choice,
two favorable property of Petri nets, by restricting the edit operations to applying syn-
thesis rules [63]. The approach offers the user three rules or methods to change the net:
abstraction rule (adding a new place and a new transition), place rule (adding a new
place), and transition rule (adding a new transition). These three rules are called synthe-
sis rules [63], which guarantee that the Petri net under construction remains free-choice
and sound; both are favorable properties of Petri nets. In short, a user element-wise con-
structs a WF-net guided by recommendations that are derived from the provided event
log from the approach.

Approach A11—Yiirek et al. (2018)

Yiirek et al. [248] propose the Interactive Process Miner (IPM), an approach to interac-
tive/incremental discovery that leverages explicit domain knowledge in vivo. First, the
approach discovers a DFG from the given event log. Then, the user can explicitly modify
the model by merging multiple activities into a single one, deleting activities, and adding
activities. However, the algorithm processes the actual change to the DFG, and the user
only specifies one of the three above mentioned changes, for example, between process
activity a and b, process activity x should be executed. The algorithm then updates the
process model accordingly. This procedure can be repeated iteratively, cf. [248, Figure
3.

Approach A12—TFerilli et al. (2020)

Ferilli et al. [90, 91, 92] propose an interactive/incremental process discovery approach
called WoMan that represents process behavior in a declarative way using FOL [18].
Thus, the resulting process model is a set of FOL formulae. Starting from an initial
model, i.e., a set of FOL formulae that might also be empty, a user can incrementally add
new process behaviors, i.e., individual process executions, incorporated into the model
by the approach. We categorize the initial model as a priori provided explicit domain
knowledge and the incremental user selections as in wvivo explicit domain knowledge.
Compared to the other approaches, the process model discovered by WoMan also contains
process information beyond the control flow, including details on the resources involved
in executing process activities. WoMan also offers an auto-complete option by adding all
behavior from an event log at once. Thus, if the user starts from the empty process model
and adds the entire event log at once, WoMan functions like a conventional discovery
approach.

37

Chapter 2. Literature Review

Table 2.6.: 15 part of the overview of the identified approaches’ characteristics regarding
the distinguishing features (partly adapted from [184, Table 5])

Domain Knowledge (Input)

«x Degree of Timing of
Abbr. Interactivity Provision Type
- lici 1 i arallel executed pro-
Al automated a priori exp icit (dec r‘aratlve) (parallel executed pro
cess activities)
- explicit (declarative) (allowed DECLARE
A2 automated a priori templates)
A3 automated a priori explicit (imperative) (augmented ICN)
explicit (declarative) (declarative constraints
- specifying the relationship between activities
A4 S . .
automated a priort and specification of potential start and end
activities)
(1) explicit (declarative) (DECLARE con-
A5 interactive/ (1) a priori & straints) & (2) user feedback (selecting finally
incremental (2) a posteriori @ process model from a set of result candi-
dates)
- lici 1 i -ecedence constraints
A6 automated a priori ztglch (d?? Aalia‘tlv\'/e.) <(p1(cedence constraints
T process activities)
interactive/ (1) a priori & (1) explicit (imperative) (initial process
AT incremental 2) inpvivo model) & (2) explicit (imperative) (traces in-
(auto-complete option) crementally selected by the user)
(1) explicit (imperative) (initial process
interactive/ (1) a priori & model) & (2) explicit (imperative) (traces in-
A8 incremental 2) inpvivo crementally selected by the user) & (2) user
(auto-complete option) feedback (accepting/modifying proposed re-
pair)
. . explicit (imperative) (subgraphs contained in
t t . . ' . .
A9 ;Ecizanfeilvtz/l in vivo the log-tree) & user feedback (selection of de-
tected subgraphs in the process model)
interactive/ user feedback (supported by suggestions from
A10 incremental in vivo the algorithm, a user creates the process
(auto-complete option) model in an editor)
All ;E:::EZE;Z/I in vivo explicit (imperative) (merging, deletion,
(auto-complete option) adding requests of activities from the user)
. . (1) explicit (declarative) (initial process
Al2 ;EZ?Z?EZ:;Z/I (1) a priori & model, specified with FOL formulae) & (2)

(auto-complete option)

(2) in vivo

explicit (imperative) (traces incrementally
selected by the user)

* Consider Table 2.4 for an overview of approach abbreviations and their references.

38

2.8. Identified Approaches

Table 2.7.: 2" part of the overview of the identified approaches’ characteristics regarding

the distinguishing features (partly adapted from [184, Table 5])

Process Model (Output)

Formalism Appli- Software
Abbr.” Formalism Restric- Guarantees cation P
. realization
tions focus
Al imperative no no process available
(Petri nets) discovery (ProM plugin)
declarative yes (event data fits the process available
A2 (DECLARE) no (11500\'9&3(1 DECLARE discovery (Pro.M
model) plugin)
imperative no (resulting model con- rocess unknown/not
A3 (I(?N) no tains only statistically sig- giscover (publicly)
nificant behavior) Y available
imperative process available
. ProM
Ad (DFG) noe ne discovery E)hll‘(’)'in)
(=)
. . no (resulting process mod- unknown/not
imperative yes (process N) process .
A5 (Petri nets) trees) els candidates are ran- discover (publicly)
- domly generated) Y available
. _ yes (event data and the available
imperative discovered process model process
A6 no e . (ProM
(C-nets) satisfy the precedence con- discovery Jlugin)
straints) ps
. . yes (incrementally added available
imperative . ‘ . model
AT . no traces fit the resulting . (ProM
(Petri nets) repair .
model) plugin)
no (only (yes) (incrementally added available
. . ’ traces are accepted in (stand-alone
imperative control flow . . model
A8 (BPMN) repective the resulting model if the reair tool
(}‘):\Iv:?:é)lw user follows the proposed P Apromore
o changes) [117])
. . yes (discovered model de- unknown/not
imperative o . . process .
A9 no scribes all behavior from . (publicly)
(log-tree) the log) discovery available
he log
yes .
A10 imperative (free-choice yes (discovered model is al- process ?1\;?:)12\11[)16
(Petri nets) & sound ways sound) discovery ;)lllo‘ill)
WPF-nets) ©
imperative process unknown /not
All no no . (publicly)
(DFG) discovery available
declarative zlgsrt-,,] . yes (incrementally added o unknown/not
Al2 (FOL H ata-log traces fit the resulting P (publicly)
orn discovery .
formulae) clauses) model) available

* Consider Table 2.4 for an overview of the approach abbreviations and their references.

39

Chapter 2. Literature Review

2.3.2. Analysis & Discussion

This section analyzes and discusses the presented approaches based on the distinguish-
ing features, cf. Figure 2.2. Table 2.5 presents an overview of the distribution of the
frequency of the various characteristics of the corresponding distinguishing features. Ta-
bles 2.6 and 2.7 provide a detailed overview of the twelve identified approaches and their
characteristics for each distinguishing feature. Subsequently, we organize the discussion
along the first-level distinguishing features; thus, we discuss key findings per distinguish-
ing feature.

Degree of Interactivity

We observe a balanced number of automated and interactive/incremental approaches;
five approaches are automated and seven approaches are classified interactive/incremen-
tal. Reconsider Figure 2.1 illustrating that automated approaches do not allow for in
vivo provided domain knowledge while interactive/incremental approaches require in vivo
provided domain knowledge. Moreover, five of seven interactive/incremen-tal approaches
include an auto-complete option. Such an option ensures that approaches that utilize do-
main knowledge in vivo can still discover a process model if the in vivo domain knowledge
is absent, or the user stops providing in vivo domain knowledge at some point.

Timing of Domain Knowledge Provision

Comparing the timing of domain knowledge provision, we observe that 75% of the ap-
proaches assumes domain knowledge being provided a priori, 50% assumes domain knowl-
edge in vivo, and only one approach assumes domain knowledge a posteriori. Recall that
the characteristics of this distinguishing feature are not mutually exclusive, cf. Table 2.1;
thus, an approach can assume domain knowledge being provided a prior, in vivo, as
well as a posteriori. Moreover, recall that we exclude approaches solely utilizing domain
knowledge provided a posteriori.

Of the twelve identified approaches, only seven approaches are interactive/incremental.
Thus, seven approaches assume domain knowledge is being provided in vivo. In contrast,
approaches purely utilizing domain knowledge provided a priori—thus, these approaches
are automated—do not allow intervention during the discovery phase to correct respec-
tively steer the discovery phase. The identified incremental/interactive approaches

Domain Knowledge Type

Eleven of the twelve approaches utilize explicit domain knowledge, while only four uti-
lize user feedback. Focusing on the approaches utilizing explicit domain knowledge, we
observe that imperative and declarative formalism to specify domain knowledge is nearly
equally used, cf. Table 2.5. Most approaches using declarative explicit domain knowledge
consider constraints, such as precedence, over the activities contained in a log, cf. Al,
A4, and A6. The two model repair techniques identified, i.e., A7 and A8, both use an
initial imperative process model as explicit domain knowledge and traces that are incre-
mentally added as a second explicit domain knowledge. Similarly. approach A12 uses
an initial model provided as FOL formulae, i.e., considered a declarative formalism, and

40

2.8. Identified Approaches

incrementally added traces as explicit domain knowledge. Interestingly, only A12 uses
both domain knowledge specified in declarative and imperative formalisms.

In total, four approaches utilize user feedback. Approaches A8-10 propose changes to
a process model during the discovery phase and leave the final decision to the user on
whether to apply the proposed change to the model. Approach A5 discovers multiple
process models and leaves the final decision which one to choose to the user.

Output Process Model Formalism: Type, Restrictions & Guarantees

Examining the process model formalisms used to specify the discovered process model,
we find that a wide variety of formalisms are employed. Only two approaches discover
a declarative process model, while the others use imperative process model formalisms.
However, many process model formalisms utilized are not typically seen in industrial
process mining software; such uncommon formalisms include Petri nets, process trees,
log-tree, C-nets, and ICNs.

Most process discovery approaches, i.e., four, use Petri nets as process model formalism.
However, three approaches that use Petri nets focus on a subclass, process trees, or free-
choice workflow nets. Process trees, representing block-structured and sound Workflow
nets, are widely used in conventional process discovery approaches like Inductive Min-
ing [121] and Evolutionary Tree Miner [39]. Process trees ensure favorable behavioral
characteristics, such as being deadlock-free and sound by construction. However, it’s im-
portant to note that process trees have limited expressiveness and cannot, for example,
model long-term dependencies. Free-choice WF-nets are more expressive than process
trees; in return, such nets are not sound by construction compared to process trees. Fur-
ther, also free-choice WF-net We provide a more detailed introduction to different classes
of Petri nets in Section 3.3.1.

Approaches A4 and All employ DFG as process model formalism. DFGs have the
most limited expressiveness compared to all identified model formalisms. They cannot
model control flow operators such as parallelism and choices, which are fundamental
control flow patterns [221]. Moreover, using DFGs can lead to inaccurate diagnoses, as
exemplified in [212], despite their frequent usage in industrial process mining applications
due to the simplicity of both their interpretation and discovery.

In general, note that many process models represented in a particular formalism can be
translated into other formalism. For instance, any process tree can be easily translated
into BPMN models or Petri nets [121]. However, for example, not every Petri net can be
transformed into a BPMN model and vice versa [125].

Output guarantees

Comparing the output guarantees concerning the discovered process model, we find that
seven approaches provide guarantees. In contrast, the other approaches do not provide
guarantees or are unknown, respectively not evident from the corresponding publications.
Fitness is one of the most common output guarantees, i.e., the discovered process model
fully reflects process behavior recorded in the provided event data. In this regard, we dis-
tinguish automated and interactive/incremental approaches, cf. Figure 2.1. Automated
approaches guarantee that the entire provided event log is fitting the discovered process

41

Chapter 2. Literature Review

model (for instance, A2 and A6), while interactive/incremental approaches guarantee to
fit the incremental added process behavior (for instance, A7, A8, A9, and A12).

Output guarantees are especially important in automated approaches, since users have
no way to provide their domain knowledge in vivo to steer and correct the algorithm; thus,
they are at the mercy of the algorithm. Further, data quality is paramount in automated
approaches, especially for approaches guaranteeing that the discovered process model has
perfect fitness regarding the provided log. In case the event log has quality issues, for
example, incomplete captured process behavior and incorrect activity orderings due to
incorrect timestamps, these issues will very likely be present in the process model if these
quality issues are not resolved in the data preparation phase. Thus, the quality of the
input is critical to the output model quality.

In addition to the guarantees for the discovered process model concerning the event
log, guarantees may also concern the domain knowledge provided. Only approaches A2
and A6 also provide guarantees regarding the provided domain knowledge. Approach
A2 allows the user a priori to restrict the process model to be discovered, i.e., users can
specify DECLARE templates that should be incorporated in the process model. A2 guar-
antees that the learned model only consists of the allowed templates and that the learned
constraints fit the process behavior in the provided event log. Approach A6 guarantees
that the discovered process model fits the event log and the a priori provided domain
knowledge, i.e., precedence constraints among activities. Therefore, no process model is
returned if the a priori domain knowledge and the event log conflict. This observation
leads to an interesting algorithmic challenge, i.e., how to combine conflicting domain
knowledge with event data. Similarly, as automated approaches, interactive/incremental
approaches benefit from output guarantees. Imagine that an interactive approach of-
fers no guarantees; for example, the algorithm could ignore domain knowledge supplied
in vivo. Therefore, the user would no longer have guaranteed control over the process
discovery algorithm.

Application Focus

As elaborated in Section 2.1.2, model repair techniques can be utilized to discover process
models in an incremental fashion—although these techniques were not designed for such
purpose. In total, we identified two approaches primarily intended for model repair, i.e.,
A7 and A8, while all other approaches are intended for process discovery. Recall that we
do not provide a complete review of model repair techniques as elaborated in Section 2.2.

Software Realization

Mots approaches, i.e., six of twelve, have been implemented as a plugin within the pro-
cess mining software ProM [234]. ProM is an open-source process mining software that
provides a plugin infrastructure for process mining algorithms and approaches. A large
number of plugins have been developed for ProM making it one of the most common
software solutions within process mining research. Approach A8 has been implemented
in Apromore [117], a commercial process mining solution. For the other approaches,
no (publicly) available software implementation could be found. All available software
implementations come with a graphical user interface.

42

2.4. Challenges € Opportunities

2.4. Challenges & Opportunities

From the identified approaches, this section derives research challenges and opportunities
for the area of non-conventional process discovery. In total, we present ten research
challenges.

2.4.1. Challenge 1—Blending Explicit Domain Knowledge &
User Feedback

As the review has shown (cf. Tables 2.6 and 2.7), most approaches utilize explicit domain
knowledge and only a few approaches truly incorporate user feedback. Nevertheless,
individual evaluations of the identified approaches indicate that both types of domain
knowledge are advantageous. Therefore, incorporating both forms of domain knowledge
would offer users more flexibility and options. Nevertheless, the incorporation of more
and different domain knowledge also poses challenges on fusing these different sources of
information, as explained in a later challenge, cf. Challenge 8—Fvent Data & Domain
Knowledge Fusion.

2.4.2. Challenge 2—Advanced User Interaction

The identified approaches that leverage user feedback often merely delegate a specific task
to users. For example, Approach A5 suggests a repair to the user, who can either accept
or repair it manually. Similarly, approach A10 recommends where to place a transition
in a WF-net; the user can follow the suggestion or manually place the transition. These
examples highlight that user interaction usually centers on a single task. In addition, user
interaction often consists only of a one-way question-answer pair; a dialogue between the
discovery algorithm and the user often does not occur. Therefore, we derive the challenge
of enhancing user feedback beyond a single task by gathering feedback on multiple aspects.

2.4.3. Challenge 3—Various Modes of Interactivity

The twelve identified approaches can be clearly categorized into automated and incre-
mental /interactive approaches, cf. Table 2.6. Five of seven interactive/incremental ap-
proaches offer an auto-complete option allowing users to skip providing in vivo domain
knowledge and automatically discover a process model. An interesting direction for future
work is to provide different levels of interactivity that users can freely switch between as
needed. For example, a user may run an interactive/incremental discovery approach in
an automated mode where only some intermediate process models are displayed to the
user. However, as soon as the user notices that an intermediate process model is devel-
oping in an undesirable direction, for example, activities become optional that should
not be optional, the user intervenes and switches to a more interactive mode to steer or
influence the algorithm and thus the process discovery phase by providing in vivo domain
knowledge. After the observed issue in the intermediate process model is solved, the user
can switch back to a less interactive mode of the discovery approach and resume the
supervisory position.

43

Chapter 2. Literature Review

2.4.4. Challenge 4—Scalable Conformance Checking

Conformance checking techniques are a central component of several approaches, for in-
stance, approach A7. Moreover, in incremental /interactive process discovery approaches,
it is essential to compare intermediate process models with the provided event data to
make informed decisions on how to continue. However, state-of-the-art conformance
checking techniques like alignments [6, 226] suffer from the state-space explosion prob-
lem [45]. Thus, calculating alignments may be an exponential problem depending on the
complexity of the process model and the process behavior. Therefore, it is crucial for
interactive/incremental approaches to have fast, reliable, and interpretable conformance
checking results.

2.4.5. Challenge 5—Minimizing Representational Bias

Each process discovery approach discovers models in a specific formalism. The discover
approach might further restrict the model class; for instance, approach A10 discovers
free-choice WF-nets, i.e., a subclass of Petri nets. This upfront predetermination on a
model class is referred to as representational bias since the discovery approach assumes
that the process to be discovered can be represented in the given formalism.

For instance, approaches A4 and A11 discover DFGs. Although DFGs are widely used
in commercial process mining solutions and easy to interpret, they lack expressiveness
compared to, for example, Petri nets or BPMN. DFGs cannot explicitly model central
control-flow constructs such as concurrency and choices. Further, DFGs can lead to
wrong conclusion to their simplicity [212].

2.4.6. Challenge 6—Event Data & Process Model Visualizations

The identified approaches use various different process model formalisms, cf. Table 2.7.
As elaborated before, many model formalisms used are hardly used in organizations.
Also the authors in [141] found that ‘incomprehensible outcomes’, i.e., non-standard
visualizations of process models lead to challenges when applying process mining in orga-
nizations. Likewise, the authors in [225] list the improvement of output representations
for non-process mining experts as a general challenge. To this end, it is important to
visualize discovered process models and especially intermediate process models in an
interactive/incremental process discovery setting in well-known formalisms. Note that
the formalism used to visualize a process model and the formalism used during process
discovery internally within a algorithm may differ. For instance, an automated process
discovery algorithm might learn a process tree that is, however, visualized as a BPMN
model to users. Similarly, as many approaches require user interaction and user decisions
regarding the event log, adequate visualizations of process behavior in an event log are
paramount to facilitate users’ decision-making.

2.4.7. Challenge 7—Domain Knowledge Specification

Most of the identified approaches use explicit domain knowledge, for instance, control-flow
constraints among activities. Since explicit domain knowledge is specified in a particular

44

2.4. Challenges € Opportunities

formalism, it is clear to support users in this specification task. The identified approaches,
however, presume that explicit domain knowledge is specified in the required formalism
and ready for use. Nevertheless, it is equally important to consider where this explicit
domain knowledge comes from and how tools, techniques, and approaches can assist
users in specifying explicit domain knowledge. Furthermore, questions like what happens
when conflicting information exists must also be addressed since domain knowledge may
originate from various stakeholders.

2.4.8. Challenge 8—Event Data & Domain Knowledge Fusion

Many approaches utilize explicit domain knowledge that specifies relations among activ-
ities, cf. Section 2.3. Moreover, also the recorded process behavior in the provided event
log indirectly specifies relations among activities. As long as these relationships are not
contradictory, both sources of information can be used complimentary within the process
discovery. However, in case of conflicting information, a decision must be made.

For instance, imagine the situation in which the user provides a priori the precedence
constraint that activity a; is always executed before as. Further, assume that the pro-
vided event log contains process executions in which as is executed before a;. Obviously,
the provided domain knowledge contradicts the observations recorded in the event log.
This contradiction leads to the question: “Which source to prioritize?” Several options
may exist for how a non-conventional process discovery approach could resolve the con-
flict. The most naive option could always prioritize the event log or the domain knowledge
when conflicts arise. Another option could be to examine how often the domain knowl-
edge, i.e., a precedence constraint, occurs in the event log and how often it conflicts.
Next, statistics could be calculated, and only significant domain knowledge would be
considered. For the example, we would check how often a; is executed before as and
vice versa. If only a few examples contradict the precedence constraint, we favor the
domain knowledge., i.e., the precedence constraint, over the observations in the event
log. Alternatively, the algorithm interactively presents them to the user upon detection,
who has to decide how to proceed in conflicting situations.

The above example illustrates the ample solution space for potential process discov-
ery approaches using domain knowledge and the importance of carefully designing these
approaches. From the observations in this review, disagreements between domain knowl-
edge and event data are often not or only partially considered. Therefore, we highlight
this issue, domain knowledge fusion with event data [80], as an important challenge.

2.4.9. Challenge 9—Software Support

Having adequate software support is central for process discovery approaches utilizing
domain knowledge. In cases where the approach utilizes user feedback or explicit domain
knowledge in vivo, a sophisticated implementation is required as users need to interact
with the algorithm during the actual process discovery phase. Since many approaches
require users to make decisions during the process discovery phase, adequate represen-
tation of all information needed to decide is paramount. For instance, in incremental
process discovery (cf. A7, A8, and A12), users decide on process behavior to be added

45

Chapter 2. Literature Review

to a process model. This decision requires that users are equipped with adequate rep-
resentations of the vast amount of observed process executions in the event log to make
informed decisions; consider Challenge 6—Fvent Data & Process Model Visualizations.
Further, as elaborated in Challenge 7—Domain Knowledge Specification, the specification
of explicit domain knowledge is currently often ignored but also requires decent software
support. Moreover, the authors in [141] found that insufficient analytical skills are a com-
mon challenge when process mining is applied in organizations. Although the software
design can only partially address this problem, the software realization is critical in how
easily users can use an approach. In short, software support comprises more than a ba-
sic implementation of the approach but also requires the adequate representation of the
user’s information needs to facilitate design making and includes support in specifying
explicit domain knowledge.

2.4.10. Challenge 10—Discovery Beyond Control-Flow

Most identified approaches focus on discovering process models that reflect the control
flow perspective of processes. Moreover, timing information of activities are often ignored
by process discovery approaches; instead, timestamp information is only used to deduce
the order relationships between activities. As briefly elaborated in Section 1.2, process
model formalisms like BPMN allow to model further aspects of a process beyond the
control flow perspective. Especially in non-conventional process discovery, it is reasonable
to discover from the provided inputs further perspectives such as organizational structures
including resource allocations and process rules, such as, maximal waiting times between
two activities.

2.5. Conclusion

This section concludes the presented literature review. Twelve non-conventional process
discovery approaches’ were identified and systematically compared along the proposed
distinguishing features. Compared to the number of algorithms and approaches in conven-
tional process discovery [15, 60, 211, 235], the field of non-conventional process discovery
is still relatively small. Further, the various challenges and opportunities indicate the
need for further development. To this end, this thesis’s incremental process discovery ap-
proach contributes to this area by providing a novel approach to interactive/incremental
non-conventional process discovery.

9For the sake of simplicity, we also refer to the identified process model repair approaches as non-
conventional process discovery.

46

Chapter 3.

Preliminaries

This chapter introduces concepts, notations, and definitions used throughout this thesis.
First, basic mathematical concepts are presented in Section 3.1. Next, Section 3.2 intro-
duces event data and defines corresponding concepts such as events, cases, event logs,
and traces. Section 3.3 introduces process model formalisms. Finally, Section 3.4 intro-
duces conformance checking, and Section 3.5 introduces alignments, i.e., a state-of-the-art
conformance checking technique.

3.1. Basic Mathematical Concepts

This section introduces sets and multisets in Section 3.1.1. Section 3.1.2 introduces func-
tions. Multisets are introduced in Section 3.1.3. Further, Section 3.1.4 introduces ordered
sets. Sequences, corresponding notations, and operators are introduced in Section 3.1.5.
Finally, we introduce trees in Section 3.1.6.

3.1.1. Sets & Relations

We denote the natural numbers by N = {1,2,3,...}; Ny denotes the natural numbers
including 0, i.e., Ng = {0,1,2,3,...}. Analogously, we denote the real numbers by
R and real numbers that are greater or equal zero by R>g. The Boolean values are
denoted by B = {true, false}. We denote the empty set by §. We write X C Y to
denote that X is a subset of Y, and we write X C Y to denote that X is a strict
subset of Y, ie., X CY & X CY A X # Y. We denote the power set of an
arbitrary set X as P(X) = {X’ - X}. For instance, let X = {x1, z2, 3}, the power set
]P)(X) = {@, {371}, {$2}, {333}{.%1, $2}, {.1‘1, $3}, {332, .133}, {331, o, xg}}

Let Xi,...,X, be arbitrary sets (for n > 2). We define the Cartesian product of
these n sets as X1 x --- x X,, = {(xl,...,xn) |z1 € Xq,...,2 € Xn}. For instance, let
X ={a,b,c} and Y = {d,e, f}. The Cartesian product X x Y contains the following
tuples {(a, d), (a,e),...,(ce), (e, f)} = X xY. Given a Cartesian product of n arbitrary
sets, i.e., Xq,...,X,, we refer to a set R C Xi,..., X, containing n-tuples as relation.
If n = 2, we refer to R C X; x X5 as a binary relation.

Further, we define projection functions that extract a specific element from a tuple. Let
(x1,...,2n) € X1 X ... X, for n € N be an arbitrary n-tuple. We define the projection
functions m; : X1 x ... X,, = X; for all 1 < ¢ < n that extract the i-th element from the
tuple. For instance, 3 ((a, b,c, b, e, d)) =c.

47

Chapter 3. Preliminaries

3.1.2. Functions

In this section, functions and corresponding properties and classifications of functions
are introduced. Let X,Y be sets and f : X — Y be a function that assigns to each
element in X at most one element from Y. Thus, function f represents a binary relation
R; C X xY such that VzeX (Hy ey ((Jc,y) € Rf) =M ey (y’ #yA(z,y) € Rf)>.
Set X is referred to as the domain of f. We write dom(f) = X. Analogously, we denote
the codomain of f as codom(f) =Y. Further, let X’ be a subset of X, i.e., X’ C X. We
denote the restriction of f’s domain to X’ as f[y, : X’ = Y with f|y, (z) = f(x) for
xze X'

A partial function from X to Y, denoted as f : X-»Y, is a function from X’ C X to
Y. Thus, a partial function f is only defined on a subset X’ C X.

Given a function f : X — Y, we call f a bijective-function if the following properties
are satisfied.

1. Function f is surjective; thus, each element from Y is assigned at least one element
from X, ie.,VyeY (Hﬂc €EX(y= f(x)))

2. Function f is injective; thus, no two different elements from X are assigned the
same element from Y, i.e., Va1, 22 € X ((z1 # x2) = f(z1) # f(22))

3.1.3. Multisets

Multi sets generalize the notion of sets by allowing the occurrence of an element multiple
times. For instance, assume the set X = {a,b,c}. The multiset M over the set X with

M = [a,c?] contains once element a, three times ¢, and no b. Note that we omit the
superscript if an element is contained only once in a multiset. We denote the empty
multiset as []. We formally define multisets as follows.

Definition 3.1 (Multiset)
Let X be an arbitrary set. A multiset M is a function assigning every element from
X a cardinality, i.e., M : X — Ng. We denote the universe of multisets over X as

M(X).

Given a multiset M, we write © € M if element x is contained at least once in M;
for example, a,c € [a,c?]. Further, we refer to a’s cardinality in M as M(x) € Np.
Reconsider the example above; M(c) = 3 and M (b) = 0. We denote the union of two
multisets My, My € M(X) by My & M,. For instance, [a?,b] W [a%,b, c] = [a5, V%, c].

Note that any multiset over a set X’ can be trivially extended to be a multiset over a
set X that is a superset of X', i.e., X' C X | by assigning all x € X\ X’ to 0. Further, any
set X can be easily transformed into a multiset M € M(X) by assigning each element
from X the cardinality 1. For instance, the set {a,b, ¢} is represented by the equivalent
multiset [a, b, ¢].

Given a multiset M € M(X), we denote its unique elements by M as defined below.

M={zeM}CX

48

3.1. Basic Mathematical Concepts

For instance, for multiset M = [a%, b2, ¢, d'!], the set M = {a,b,c,d}.
Finally, given n sets containing multisets, i.e., By,...,B, C M(X), we define the
Cartesian product over By until B,, by By x-+-x B, = {biW... Wb, | by € By A---A b, €

B,,}. For instance, {[a2,b], [c]}x{[d?’]} = {[a2,b7 d?], [c, d3]}.

3.1.4. Ordered Sets

This section introduces orders over elements of a given set. We generally distinguish
partial and total orders that define ordering relations over a set of elements. A total
order makes any two elements from a set comparable, while a partial order may not
make any two elements comparable, i.e., there might be incomparable elements.

Figure 3.1 shows an example of a strict partial order < over the set X = {a,b,c,...,j}
visualized as a graph. Vertices represent elements of the set X and arcs indicate relations
among elements according to <. For instance, a < b, a < ¢, and a < j; however, a £ a,
¢ 4 d, and f £ i. Note that dotted arcs represent transitive relations. As (strict) total
orders are a refinement of partial orders, we introduce partial orders first.

Figure 3.1: Graph representation of a strict partial order < over the set X = {a,b,¢, ...,
J}; vertices represent the elements of X, arcs represent the relations among
elements (for example, a<b, b<c, a<c, b<d), and dotted arcs represent tran-
sitive relations

49

Chapter 3. Preliminaries

Definition 3.2 ((Strict) Partial Order)
Let X be an arbitrary set. A partial order over X is a binary relation, i.e., < C
X x X, that satisfies the following conditions for all a,b,c € X.

1. a % a (reflexive)
2. Ifa<bandb< a, then a =>b (antisymmetric)
3. Ifa<xbandb < c, then a <X ¢ (transitive)

A strict partial order, denoted as < C X x X, is defined as follows.

1. a A a (irreflexive)
2. If a < b, then b £ a (asymmetric)
3. Ifa<bandb < c, then a < ¢ (transitive)

Reconsider the strict partial order depicted in Figure 3.1. Next, we define (strict) total
orders that further restrict (strict) partial orders (cf. Definition 3.2). In a total order,
any two elements are related to one-another. For instance, the < operator defines a total
order on the set of natural numbers N. Any two elements are related to each other; x <y
or y < z hold for arbitrary z,y € N. Similarly, < defines a strict total order on N. Next,
we define (strict) total orders.

Definition 3.3 ((Strict) Total Order)
A total order over X is a binary relation, i.e., < C X x X, that satisfies the following
conditions for all a,b € X.

1. < is a partial order (cf. Definition 3.2)
2. a <b orb< a (strongly connected)

A strict total order, denoted as < C X x X, is defined as follows.

1. < is a strict partial order (cf. Definition 3.2)
2. If a # b, then either a < b or b < a (connected)

In the remainder of this thesis, we simply refer to an order, if we define/discuss concepts
that are generally applicable for (strict) total or (strict) partial orders. Assume a set X
and an order < C X x X. We refer to X as an ordered set, written as (X, <).

Next, we define the transitive reduction of an ordered set. Consider Figure 3.1. All solid
arcs together represent the transitive reduction, while all solid and dashed arcs together
represent the transitive closure.! Thus, the transitive reduction excludes all relations
that emerge from the transitivity property of orders, cf. Definition 3.2 and Definition 3.3.
Subsequently, we define the transitive reduction.

INote that the transitive reduction of a finite, directed, acyclic graph is unique. In contrast, for
directed graphs with cycles, the transitive reduction might not be unique [9]. However, the ordered
sets considered in this thesis can all be represented by an acyclic, directed graph; thus, their transitive
reduction is unique.

50

3.1. Basic Mathematical Concepts

Definition 3.4 (Transitive Reduction)
Let (X,<) be an ordered set. Further, we assume that the order is acyclic, i.e., the
order can be represented as an acyclic, ordered graph. The transitive reduction of <,

denoted by <%, is defined as < = {(a,b) ladb A fz € X(aQI/\zdb)}.

Reconsider the ordered set (X, <) in Figure 3.1. Let X’ = {b,¢,d} C X be a subset.
We define the restricted partial order < [x/ € X’ x X’ that orders the elements in X' € X
identical to <€ X x X. Hence, b <[xscand b < [xsd. In general, order restrictions
allow us to generate from an ordered set any ordered subset such that elements from the
subset are identically ordered as in the superset.

Definition 3.5 (Order Restriction)
Let (X,<) be an ordered set, and let X' C X. We define the order restriction of < to
set X' as <) xs € X' x X with (1 < [x x2) < (1 < 3) for all 1,29 € X'.

Next, we define labeled orders. The difference to orders respectively ordered sets as
introduced so far is that the elements of the set over which the order is defined are labeled.
For instance, consider the set X in the left part of Figure 3.2. The elements of X are
assigned labels, for example, element x; is labeled a and x5 is labeled d.

Definition 3.6 (Labeled Ordered Set)
Let (X, <) be a ordered set, ¥ be a set of labels, and A : X — X be a label function.
We refer to (X,<,3,A) as a labeled ordered set.

Finally, we introduce isomorphism for labeled ordered sets. For instance, consider the
two labeled ordered sets X and Y depicted in Figure 3.2. We call X and Y isomorphic
because we can map each element from X to an element in Y such that the mapping
preserves the label and the ordering relations. For example, x5 € X is mapped toy; € Y
because both have the same label a and neither element is related to any other element
of the respective set. Below, we define isomorphism of labeled ordered sets.

Definition 3.7 (Isomorphism of Labeled Ordered Sets)
Let (X,<X, 2% AX) and (Y, <Y, %Y, \Y) be two arbitrary labeled ordered sets. The
labeled ordered set (X, <X, XX A\X) is isomorphic to (Y,<¥, XY, \Y), denoted as

(X7 qX? EX? >\X) g (Y’ qY? EY’ AY)?

iff a bijective function f: X — Y exists such that:
1. Vxe e X ()\X(x) =\ (f (x))) and

2. V.’El,xg e X (l‘l <X To & f(l‘l) <~ f(xg))

o1

Chapter 3. Preliminaries

(X, <X, 52X %) (Y, <Y, 5Y,\Y)
o a ; C T T T a !
! T | f(175) = Y1 : |
: 5 < .vc. : : TR > yl c :
| ! i f(za) = y3 :
‘ T4 <o <‘ > Y3 ‘
| | L f(zs) = ue l
a d b Ca d |
| L ! A I
' - > T2 > T3 Y > Us > Y2 o
| ¥ | ‘ " |

flz1) =i

f:(f.z)v: l/g

Figure 3.2: Two isomorphic labeled ordered sets (X, <%, % A\X) and (Y, <Y, XY \Y);
for simplicity and readability, black arcs indicate the transitive closures and
red dotted arcs correspond to the isomorphic mapping, i.e., a bijective func-
tion f: X —»Y

3.1.5. Sequences

Assume the set X = {a,b, ¢,d}. A sequence over X is an enumerated collection consisting
of elements from X. For instance, o = (d, a, a, b, d) is a sequence with length five over X.
Below, we define sequences.

Definition 3.8 (Sequence)
Let X be an arbitrary set. A sequence o of length n € N over set X is a function
assigning each index an element from X, i.e., o : {1,...,n} = X.®

“Note that we can easily construct a labeled ordered set ({1, ...,m}, <) that adheres to the ordering
defined by o. Elements from {1,...,n} are assigned a label from X according to o. The strict
total order < orders the elements such that 1 < ... < n.

For an arbitrary set X, we denote the set of all sequences over an arbitrary set X as
X*. We denote the length of a sequence o as |o| € Nyg. The empty sequence is denoted
as (). For sequence o € X* with length n = |o|, we write o as (o(1),...,0(n)). Thus,
for a sequence o with length n and ¢ € {1,...,n}, o(i) denotes the i-th element of o.
We overload the notation of element inclusion for sequences; for a sequence o € X* and
z € X, we write z € 0 if 31 <i < |o] (o (i) =x).

Given two sequences 01,09 € X*, we refer to their concatenation as o1 ooy € X*. For
instance, (a,a) o (d,a) = (a,a,d,a). The concatenation operator is trivially extended to
sets of sequences. Therefore, we overload the concatenation operator o. Let Sy,S5, C X*
be two sets of sequences, their concatenation is defined as Sy 0 Sy = {1009 | 01 € S1 A
o2 € Sa}. For example, let S; = {(d,d)} and Sy = {{a,b) (b,d, d)}; their concatenation
Sy 08y ={(d,d,a,b),{d,d,b,d,d)}.

52

3.1. Basic Mathematical Concepts

For two sequences 01,09 € X™*, we refer to all interleavings of the two sequences
as 01 ¢ 09 C X*. Note that all interleaved sequences have length n + m, i.e., Vo €
01003 (o] =n+m). Let n = |o1| and m = |o3], the set of interleaved sequences

01009 =

—N

U|an*/\Elil,...,in,jl,...,jmE{l,...,n—l—m}[
7:1<"'<in N j1<"'<jm A {il,...,in,jl,...,jm}:{1,...,n+m}/\

V1<k< n(a(ik) = al(k)) AVI<Ek< m(a(jk) = ag(k))} }

For example, let o1 = (b,a) and oo = (d). The set of interleaved sequences o1 © o9 =
{{d,b,a),(b,d,a),(b,a,d)}. We extend the interleaving operator ¢ to sets of sequences.
Let 51752 - X*, we define Sl <>S2 = U01651702632(0—1 <>O'2).

Given a sequence o0 € X* and a subset X’ C X, we introduce the projection function |
that removes all elements from o that are in X \ X’. For instance, let X = {a,b, ¢, d, e, f},
X' ={bye,f} C X, and o = (b,b,c, f,d,e, f) € X*. Applying the projection function to
o, denoted as ol x/, results in ol x = (b,b, f,e, f) € (X')*.

Definition 3.9 (Sequence Projection Function)
Let X, X" be arbitrary sets with X' C X and 0 € X. The projection function
Ix: X* — (X')* is recursively defined. We write olx: instead of |x+ (o). For
oeX*:
0 if o=
olxr =< (x)odlx ifo=(x)od withz e X’
alx if o = (x)od withx ¢ X’

We define for sequences o containing n-tuples projection functions 7} that extract a
sequence containing the i-th element of each tuple. Let

o= <(x§,...,x;),...,(w,...,mzl)> e (Xy %...Xp)"

be a sequence of length m containing n-tuples. For all 1 < ¢ < n, we define the pro-
jection function 7} : (X1 x...X,)" — X} with 7} (o) = (z},...,2™). For example,

T (<(b,d),(a,c),(d’d)>> = (d,c, d). FER

3.1.6. Graphs & Trees

This section introduces graphs and trees. A graph consists of vertices and (un)directed
edges connecting vertices. For example, Figure 3.1 shows a directed graph G = (V, E)
with vertices V = {a,...,j} and directed edges E = {(a,b),...(i,j)} € E x E. Below,
we define directed graphs.

93

Chapter 3. Preliminaries

d h\
N |

a— b c e — f g —J

\/

Figure 3.3: Exemplary directed graph G = (V, E) with vertices V = {a,...,j} and di-
rected edges E = {(a,b),...,(i,j)}

L\

Definition 3.10 (Directed Graph)
Let 'V be a set of vertices, and E C V x V be a set of directed edges. We call
G = (V, E) a directed graph.

A directed path in a directed graph is a sequence of distinct edges—a path contains
an edge at most once—such that the end vertex of each edge in the sequence is identical
to the start vertex of the subsequent edge in the path. Consider the directed graph
depicted in Figure 3.3. For instance, the directed path o; = <(a,b), (b, ¢), (c, e)> leads
from vertex a to vertex e. Similarly, an undirected path in a directed tree is a sequence
of distinct edges such that consecutive edges always have a vertex in common. Thus, we
ignore the orientation of the directed edges and assume any edge exists in both directions.
For instance, the undirected path oo = <(f, h),(f,9),(g,7), (i,j)> is an undirected path
leading from vertex h to ¢ in the directed graph depicted in Figure 3.3. For an undirected
path, we refer to the vertex that is part of the first edge of the path but not part of the
second edge as the start vertex. Reconsider the undirected path o5. Vertex h is the start
vertex as h is not part of the second edge in o5. Similarly, we refer to the vertex of the
last edge not present in the previous edge as the end vertex.

An (un)directed path forms a cycle if the start vertex of the path’s first edge equals the
end vertex of the path’s last edge. The directed graph depicted in Figure 3.3 contains a
cycle, for instance, the path o3 = <(a, b), (b,c), (¢, e), (e, a)> forms a cycle starting/ending
at vertex a. We call directed graphs without cycles acyclic.

Further, we call a directed graph weakly connected if there exists for any two vertices
an undirected path connecting these two vertices. Analogously, we call a directed graph
strongly connected if there exists for any two vertices a directed path connecting these ver-
tices. The graph depicted in Figure 3.3 is weakly connected but not strongly connected,
for instance, there exists no directed path from vertex vg to v;.

Next, we introduce labeled, ordered, rooted trees that represent a subclass of directed
graphs. Said trees are directed graphs that are acyclic and weakly-connected. Figure 3.4
depicts an example tree Ay that consists of eleven labeled vertices V' = {v1,...,v11} that
are totally ordered with v; < ve < .-+ < w11 , ten directed edges E = {(v1,v2), (v1,v3),
(v3,v4), (vs,05), (v1,06), (V1,07), (v7,08), (V7,v9), (Vg,v10), (Ve,v11)}, labels ¥ = {4, R, Q,
Z,D,1,0,K,T}, labeling function A : V' — L with A(v1) = A,...,A(v11) = D, and the
unique root vertex v;. When considering the directed edges as undirected edges, between

54

3.1. Basic Mathematical Concepts

A v1
L N
R, Q. I, 0,
N\ N\
A s D e KI.(\ D oo
N\
T D

vio

Figure 3.4: Example of a labeled, ordered, rooted tree A; with vertices V = {vy,...,v11}
and labels ¥ = {A, D, I, K,0,Q, R, T, Z}; each vertex is labeled, for example,
)\(’Ug) =R

each two vertices exactly one path exists. Note that all edges point away from the root
vertex. Such trees are also called an out-tree, cf. [62, page 207]. Below, we define labeled,
ordered, rooted trees.

Definition 3.11 (Labeled, Ordered, Rooted Tree)
A labeled, ordered, rooted tree A is a 6-tuple A = (V, E, X, \,r, <) consisting of:

a set of vertices V,

a set of edges E C VXV,

a set of labels %,

a labeling function \ : V. — ¥ that assigns each vertex a label,
an unique root vertexr € V, and

a strict total order <€V x V.

Further, A satisfies the following constraints.

1. (V, E) represents a directed graph that is acyclic and weakly connected.
2. There ezists exactly one directed path from the root vertex r to any vertexr
veV\{r}

We denote the universe of labeled, ordered, rooted trees as T .

In the remainder of this thesis, we refer to labeled, ordered, rooted trees simply as trees.
Furthermore, since all edges point away from the root node, we refrain from representing
this in illustrations of trees hereinafter.

For a given tree A = (V, E, 3, \,r,<) € T and a vertex v € V, we refer to the child
vertices of v as childa(v). For instance, consider the tree A shown in Figure 3.4. The
child vertices of v; are child(v7) = {vs, vo} with vg < vg according to the ordering of V.
Similar, we refer to the parent of vertex v as parent, (v); for example, parent, (v3) = v;.
Further, we refer to the descendants of a vertex v as descy(v). For instance, consider
Figure 3.4, descp(v7) = {vs,vg,v10,v11}. Likewise, we refer to the ancestors of a vertex
v as ancA(v). For example, ancy(vs) = {vr,v1}. Below, we define these functions.

95

Chapter 3. Preliminaries

Definition 3.12 (Tree Child/Parent/Descendants/Ancestors Function)
Let A= (V,E, 2, \,r,<) €T and v € V. We define the following functions:

e Child function: childp : V' — P(V) with childp(v) = {v' € V | (v,0') € E}
e Parent function: parent, : V-~V with
parent (v) = v" such that (v',v) € E
parent s (1) is undefined

e Descendants function: descy : V. — P(V) with

descp (v) = child (v) U U desc (v;)

v; Echild (v)

e Ancestors function: ancp : V. — P(V) with

— {@, ifv=r,

{parent (v)} U ancy (parent,(v)), otherwise

Given the vertices of a tree, we distinguish inner vertices, i.e., vertices that have chil-
dren, and leaf vertices, i.e., vertices without children. For instance, consider A; depicted
in Figure 3.4. Vertices vy, vy, v5, Vg, Vs, U109, and vy1 are leaf vertices; the other vertices
are inner vertices. Below, we define functions to retain the inner leaf vertices of a given
tree.

Definition 3.13 (Inner/Leaf Vertices)
Let A= (V,E, 2, \,r,<) € T. We define the following functions:

o Leaf vertices leaves : T — P(V') with leaves(A) = {v € V| desca(v) = 0}
e Inner vertices inner : T — P(V) is defined as inner(A) =V \ leavesy (A)

We introduce the simplified textual representation of trees. Since vertices are strictly
totally ordered, a given tree’s textual representation is unique. Consider the tree depicted
in Figure 3.4. The textual representation of the tree is:

A= (Uz,vs (v4,v5) , v6, 7 (s, Vg (’0107011))) :
Similarly, we introduce the textual label-projected representation of a tree:
A1 =5 4(R.Q(2,D),1,0 (K.D(T,D))).

For two vertices v1,v2 € V of a given tree, the Lowest Common Ancestor (LCA)
defines the lowest vertex vpca € V in the tree that contains v; and vy as descendants.

56

3.1. Basic Mathematical Concepts

A V1
R, 3 Q.. 3 I, O, < lca(vg,v11)
Ao P

V10 V11

Figure 3.5: Example of a subtree and a LCA in tree A;

For example, consider v1; and vg in tree Ay depicted in Figure 3.4. The Lowest Common
Ancestor (LCA) of v1; and vg is lcaa (v11,vs) = v7, cf. Figure 3.5.

Definition 3.14 (Lowest Common Ancestor (LCA))
Let A = (V,E, 2, \,r,<) € T and v1,v3 € V.We define the LCA as a function
leap : V XV =V with lcap(v1,v2) = vrca such that:

1. v1,ve € descp(vrca) and

2. P’ € descp(vpoa) [1}1,’[}2 € descA(v’)].

For a given tree A = (V, E, X, A\, r, <) and a set of vertices V' = {v1,v9,...,0p-1,0,} C
V', we define the LCA of all vertices contained in V' as follows.

leapn(V') := lcap (’Ul, leay (vz, leap (ZCG,A(Un—la'Un))))>

Note that for the empty set @ C V, function lcap (@) is undefined. For example, recall
tree A (cf. Figure 3.5). The LCA of the vertices vg,vs, and vs is defined as follows.

leay, ({114,1)5,1)8}) = leap, (1)4, lCGAl(Ug),Ug)) =

For a given tree A = (V, E, X, \,r, <) and a vertex v € V', we refer to the subtree of A
that is rooted at v as Ap(v) € T. For instance, consider the tree depicted in Figure 3.5.
The subtree rooted at vs is Ap(vs) = ({’(}3,’1}4, U5}, {(vg,v4), (vg,v5)} {Q,Z, D}, N, 113)

with X' = Al 4, 0530 f- Figure 3.5. Below, we define the subtree function that returns
for a vertex v from a tree, the corresponding subtree rooted at v.

57

Chapter 3. Preliminaries

Definition 3.15 (Subtree Function)
Let A = (V,E, X, \,r,<) € T and v € V. The subtree Ap(v) = (Vouby Esuby Zsub,
Asuby Psuby <sub) 4 defined as follows.

o Vi = (desca(v) U{v}) CV

o Eop = {(v1,v2) €E |v1,v2 € Voo } CFE
o Yo ={A\W) |V EVewp} CX

L4)\sub = Mvm

® Tsub = U

[)

<sub = <fv,ub

For a given tree A € T and a subtree A’ of A, we write A’ C A. For instance, consider
A, depicted in Figure 3.4. The subtree Ay, (v7) C A;. Note that the vertices’ identifiers
have to match.

Z v, I
Figure 3.6: Tree As € T, which is an isomorphic subtree of Ay (cf. Figure 3.4) but not a
subtree of Ay (cf. Figure 3.4)

For given trees A1 = (V1, E1, %1, A1,71,<1), Ao = (Va, B2, X9, Ao, 12, <2) € T, we write
AEAs, if Ay is an isomorphic subtree of As. Consider tree Ay depicted in Figure 3.6.
Tree Ay is an isomorphic subtree of A; (cf. Figure 3.4) because we can map the vertices
from A5 to vertices in A; such that the mapping preserves the labels and connections
between vertices. However, Ao [Z A; since both trees have different vertices.

Definition 3.16 (Subtree Isomorphism)

Let Ay = (Vl,El, 21,)\1,7“1, <1),A2 = (VQ, Es, 227)\2,’)"2, <2) € T. Tree Ay is an
isomorphic subtree of Ao, denoted as AT Ao, if there is an injective function f :
Vi — V5 such that the following properties hold.

e VveV; ()\1(0) = A2 (f(v)))

e Vu,u' €V; ((U,v’) € E1 & (f(v), f(v)) € Eg)

Note that by definition, every subtree is also an isomorphic subtree. Thus, for arbitrary
A1,As € T it holds Ay C Ay = A;CAs. However, the other direction generally does not
hold.

58

3.2. Event Data & Event Logs

Table 3.1.: Example of an event log representing the execution of a mortgage application
process. Each row represents an individual event. Events are sorted based on
event Identifier (ID) in this table.

ID Temporal information

Event Case Ac't1v1ty label (activity label abbrevi- Timestamp Duration®
ation)

8245 134 credit request received (CRR) 16.06.21 12:43:35 —
8246 134 document check (DC) 17.06.21 08:32:23 1d, 3h, 28m, 48s
8247 134 Eg‘;ﬁ information from applicant g 1 91 09.34.00 2d, 23h, 38m, Os
8248 134 E;‘lﬁf’;t information from third parties g 5 91 14.:54:00 5d, 18h, 3m, 12s
8249 134 document check (DC) 28.06.21 14:23:59 —
8250 134 credit assessment (CA) 30.06.21 13:02:11 3d, 19h, m9, 21s
8251 134 security risk assessment (SRA) 01.07.21 17:23:11 5d, 1h, 28m, 32s
8252 134 property inspection (PI) 05.07.21 00:00:00 —
8253 134 loan-to-value ratio determined (LTV) 05.07.21 00:00:00 —
8254 134 decision made (DM) 08.07.21 14:13:18 —
8255 135 credit request received (CRR) 17.06.21 23:21:31 —
8256 135 18.06.21 11:34:12

document check (DC) 3d, 21h, 8m, 32s

* If the duration of an event e is e = 0, we display — within the duration column.

3.2. Event Data & Event Logs

This section introduces event data and related concepts such as cases and traces. In
general, event data describe the historical execution of processes. Table 3.1 provides an
example event log that describes multiple process executions of a mortgage application
process. Each row corresponds to an individual event. For instance, the first event with
ID 8245 describes that for the case 134, the activity ‘credit request received,” abbreviated
by ‘CRR,’ has been executed. Note that a case refers to a single execution of a process,
i.e., in the specific example, an individual mortgagee application. The activity ‘CRR’ was
executed on 16.06.2021 at 12:43:35; duration information is unavailable for this activity.
The three dots . .. indicate that each event may have many more attributes; for example,
the resource involved, costs of performing the activity, and various other features specific
to the activity at hand cf. [59]. However, we focus on five attributes that are present per
event: event ID, case ID, activity label, timestamp, and optional duration information.
For the sake of simplicity, we assume that time points and durations are represented as
non-negative real numbers.?

2For example, consider Unix time to represent date and time in computing. Timestamps are defined
based on the seconds that have elapsed since January 1, 1970. Thus, the above-made assumption
that real values represent timestamps is, therefore, feasible.

59

Chapter 3. Preliminaries

Definition 3.17 (Event)
Let A denote the universe of activity labels. An event e is a 5-tuple e = (i, ¢, a,t,d) €
NXxNxAxR>qxRsq consisting of an event ID i € N, a case ID ¢ € N, an activity
label a € A, a timestamp t € R>q, and a duration d € R>q.

We denote the universe of events as £; we assume that every event is uniquely
identifiable, as specified below.

V elz(il,Cl,al,tl,dl),egz(iQ,CQ,GQ,tQ,dg) S g (61 # €9 = il 7£ ZQ)

Note that the definition above allows both atomic and non-atomic events, i.e., events
that span a period. With Definition 3.17, we can, therefore, represent the execution of
an activity, which can extend over some time, with a single event. Note that in process
mining literature, events are often considered atomic, for example, cf. [211, Defintion 5.1]
and [215, Definition 2|.> Activities that span a period of time are usually described by
two separate atomic events, one of which indicates the start and the other the completion
of the period. Definition 3.17 allows us to avoid this split of an activity into two atomic
events. Moreover, activities can have a life cycle, for instance, an activity can be planned,
executed, paused, executed again and finally completed [59]. However, such a fine-grained
distinction is often not made in most process mining approaches and techniques. In this
thesis, life cycle information is also not considered. Therefore, Definition 3.17 is sufficient,
i.e., an event describing an activity is either atomic or describes a time period.

For an event e = (i,¢,a,t,d) € £, we introduce shortcuts for the specific components:
et = mi(e), e¢ = ma(e), e® = my(e), e = m4(e), and e? = 75(e). Next, we define an event
log as exemplified in Table 3.1.

Definition 3.18 (Event Log)
An event log L C & is a set of events.

Next, we define cases that group events from an event log with identical case IDs.
Cases describe individual process executions and are a key concept in process mining.

Definition 3.19 (Case)
Let L be an event log. Let ¢ € N be a case ID and C' C L is a set containing all
events from L having ¢ as case ID, i.e., C ={e € L | e® = c}.

Note that cases may also have attributes that affect the case itself, in addition to events
having attributes, cf. [211, Definition 5.3]. However, we do not consider case attributes
in this thesis.

Next, we introduce traces that order events within a case into a sequence. Thus, since
we can easily convert sequences into strictly totally ordered sets (Definition 3.8), traces
can also be represented as a strict total order over the events in a case. Below, we present
an example of such a strict total ordering over events of a sequence. Consider Table 3.1

3However, note that both referenced definitions allow having additional attributes like the duration
attribute explicitly specified in Definition 3.17.

60

3.2. Event Data & Event Logs

and let egoys denote the first depicted event; we refer to the other events accordingly. For
example, the trace for case 134 is o134 = (es245, €8246, - - - » €8252, €8253, €s254). Note that
all events are ordered based on their timestamp, starting from the earliest to the latest
event. For events having the same timestamp, i.e., ega52 and egos3, we use the event IDs
8252 < 8253 as a second order criterion. Hence, ega5o occurs before egoss in the trace.
Sequentializing events of a case into a trace is common in process mining [59, 211|. Since
events of a case may have identical timestamps, a second-order criterion is needed; we
use the event IDs in this thesis as exemplified above.

Definition 3.20 (Trace)

Let L be an event log and C = {e1,...,en} C L be a case with n € N events. The
trace representing case C' is a sequence of its events, i.e., a strict total order. We
define the trace of C as o € C* with:

¢ |o| =|C|=n,
o Vec C (e€o0), and

eVi<i<j<n (a(i)t <oa(j)t v (a(i)t =o(j) No(i) < O'(j)i)>.

Consider the trace o134 shown above. When projecting o134 to the sequence of activ-
ity labels?, we obtain 73(c134) = (CRR, DC, RIP, RIT,DC, CA,SRA, PI, LTV ,DM).
We refer to this sequence as simplified trace that only shows the sequence of executed
activities for a given case. Below, we define a simplified trace.

Definition 3.21 (Simplified Trace)

Let A be the universe of activity labels, L C be an event log, C C L be a case,
and o € C* be the corresponding trace. We define the simplified trace o’ € A* as
o' =ni(o).

Note that multiple traces may correspond to the same simplified trace because we only

consider the sequence of activity labels. Accordingly, we define a simplified event log
consisting of a multiset of simplified traces.

Definition 3.22 (Simplified Event Log)
Let A be the universe of activity labels. A simplified event log L® is a multiset of
simplified traces, i.e., L* € M(A*).

Unless otherwise noted, simplified traces are referred to as traces in the remainder of
this thesis for ease of reading. For instance, the simplified event log

LS = [(ORR, DC,RIP,RIT,DC,CA,SRA, PI, LTV,DM)®,

(CRR,DC, RIP,RIT, DC,DM)? (CRR, DC, DM)Q} € M(A%)

4We only use the activity label abbreviations in the following.

61

Chapter 3. Preliminaries

contains nine traces. Moreover, the simplified event log L® contains the following three
unique traces.

s = {(CRR, DC,RIP,RIT,DC,CA, SRA, PI, LTV, DM),

(CRR,DC, RIP,RIT, DC, DM), (CRR, DC, DM>} C A

In short, an event log L C & (cf. Definition 3.18) is a set of events. Given an event log
L, the corresponding simplified event log L® € M(A*) (cf. Definition 3.22) contains the
simplified traces (cf. Definition 3.21) from L. Finally, since L® is a multiset, we can refer
to the unique simplified traces as Ls C A*.

In Chapters 4 to 7, we assume simplified event logs and simplified traces, cf. Defini-
tions 3.21 and 3.22. Later, in Part III, comprising Chapters 8 and 9, we assume events
and event logs as specified in Definitions 3.17 and 3.18.

3.3. Process Models

This section introduces process model formalisms, which allow specifying process be-
havior. Most formalisms focus primarily on the control flow of activities, for example,
where are branches or decisions between activities, where are repetitions, in which order
are activities executed, and which activities are executed in parallel. In the remainder
of this section, we introduce two process model formalisms: Petri nets in Section 3.3.1
and process trees in Section 3.3.2. Note that many more formalisms exist, for example,
BPMN [48], event-driven process chains (EPCs) [205], yet another workflow language
(YAWL) [220], and UML statecharts [50|. However, most formalisms can be translated
to Petri nets, for instance, [67] describes a transformation from BPMN to Petri nets.

3.3.1. Petri Nets

Figure 3.7: Example Petri net Ny consisting of 14 places pgyc, p1, - - -, P12, Psink and 13 la-
beled transitions ¢1, ..., t13; the visualized initial marking contains one token
in place pg. and the final marking contains one token in place pgink

62

8.8. Process Models

Petri nets [152] allow to model process behavior and are a frequently used formalism
in process mining [204]. Figure 3.7 depicts an example Petri net Nj. Petri nets generally
consist of places visually represented as circles, transitions visually represented as squares,
and directed edges that connect places and transitions. Note that directed edges never
directly connect two places or transitions. Petri net Ny consists of twelve places and ten
labeled transitions; for instance, transition ts is labeled with a. Next, we define labeled
Petri nets.

Definition 3.23 (Labeled Petri net)

Let A be the universe of activity labels with T ¢ A. A labeled Petri net N is a 4-tuple
N = (P, T, F,\) where P is a set of places, T a set of transitions with PNT = (),
F C(PxT)U(T x P) a set of arcs, and a labeling function X\ : T — (AU {r}).
We denote the universe of Petri nets as N .

We refer to transitions labeled 7 as silent transitions we assume that these cannot be
observed, i.e., they do not represent a process activity. Let N = (P,T,F,\) € N be a
Petri net. Given a node x € P UT, we define the set of nodes having an arc pointing to
zasex={yecPUT]|(y,x) € F}. Similarly, we define the nodes with an incoming arc
from x as xe = {y ePUT | (x,y) € F} For example, consider Petri net N; depicted in
Figure 3.7, epg = {ts,to} and tze = {p3,ps}.

The state of a Petri net N = (P, T, F, \) can be described by a marking. Formally, a
marking M is a multiset of places, i.e., M € M(P). We illustrate a marking by drawing
dots, i.e., tokens, into the corresponding places contained in the multiset according to
their occurrence. As an example, consider Ny. The illustrated marking [psy.] is shown by
drawing one token in place pg., cf. Figure 3.7. Given a Petri net N and a marking M,
we write (IV, M) to refer to the marked Petri net. For instance, the Petri net depicted in
Figure 3.7 can be written as a marked Petri net (Nl, [STC]).

The transitions of a Petri net allow to change its state. For a Petrinet N = (P, T, F, \),
a marking M € M(P), and a transition t € T, we call ¢ enabled if Vp € ot [(M(p) > 0].
We write (N, M)[t) if t is enabled in M. For instance, (Nl,[sm]) [t1), cf. Figure 3.7.
Enabled transitions can be fired; firing a transition may lead to a state change. Upon
firing ¢ in marking M € M(P), we obtain M’ € M(P) with for all p € P the following
holds.

M'(p)=M(p)+1 ifpdet N pecte
M'(p)=M(p)—1 ifpcet A pdte
M'(p) = M(p) ifpcet Npecteorpdel A pédte

We write (N, M) 4 (N, M’) to denote that firing transition ¢ in marking M leads to
marking M’. For example, (Nl,[ST.C]) 5N (Nl, [pl]), cf. Figure 3.7. Likewise, we write
(N, M) Z (N, M') to denote that a sequence of transitions o € T* leads from marking
M to M’. For example, (Nl, [psm]) M (N17 [pg,pg,pﬂ)7 cf. Figure 3.7. Further,
we write (N, M) ~ (N, M’) iff 30 € T* ((N, M) Z (N, M’)). Finally, we define the

63

Chapter 3. Preliminaries

reachable markings of a Petri net N for a given marking by M by
RM (N, M) = {M’ e M(P)|3o eT* [(N,M) “, (N, M’)} }

For instance, RM (N1, [pg, p10]) = {[po, p10], [Pr0, P11]: [Po, P12], P11, P12, [Psink] }» of. Fig-
ure 3.7.5 Next, we define accepting Petri nets that combine a Petri net as defined in
Definition 3.23 with an initial and a final marking.

Definition 3.24 (Accepting Petri Net)

Let (P, T,F,\) € N be a Petri net. An accepting Petri net N is a 6-tuple N = (P, T,
Fo\, Mt Mfnaly with Mt € M(P) being the initial marking and M7 € M(P)
being the final marking.

We denote the universe of accepting Petri nets as Nyccept-

To define the language of accepting Petri nets, we first generalize the label function
A:T — AU {7} to the function * : T* — (AU {T})* with

(), ifo=(),
(o) = ¢ (A*(t)) if o = (t),
N (0") o (N*(t)) ifo=0"o(t)

For instance, consider Nj depicted in Figure 3.7, A* ((tl,tg,ts,tg,tlo,tn,tlz,tlg)) =
(r,7,a,b,7,e,a,7) and * (<t1,tg,t5,ts,tlo,tll,tlg,t13>) da = (a,b,e,a). Next, we define
for accepting Petri nets their language in terms of accepted traces of activity labels.

Definition 3.25 (Language of an Accepting Petri Net)
Let N = (P, T, F, A\, Mt Mfnal) € N,iceps be an accepting Petri net. We define the

language of N asL(N) = {)*(a)iA | o€T* A (N,M") % (N, Mﬁ"“l)} C A*.

Next, we define Workflow nets (WF-nets), which are a subclass of accepting Petri nets.
WF-nets have a unique source place representing the initial marking and a sink place
representing the final marking. Further, when connecting the sink place with an arc
to the source place, between any pair of nodes—places and transitions—there exists a
directed path.

Definition 3.26 (Workflow Net)
Let N = (P,T,F,\, Mt M)y € Nicepe be an accepting Petri met. N is a
WF-net if it satisfies the following requirements.

o Mmit —[p.] for pere € P with epse =0

5Note that the provided marking, in this case, [pg,p10], is also part of the set of reachable markings
since the empty sequence of transitions exists.

64

8.8. Process Models

o Ml — [pi] for some pgini, € P with painre =0

e N = (P, Tu{t}, Fu {(psmk,fL (t, psm)}, A) € N with arbitrary labeling

function X is strongly connected, i.e., a directed path exists from any pair of
nodes (transitions and places are considered nodes) in N.

We denote the universe of WF-nets as W C Naceept -

WF-nets are often used when modeling business processes [204, 211]. An important
subclass of WF-nets are sound WF-nets, which have favorable behavioral properties. We
define soundness below.

Definition 3.27 (Soundness of WF-net)
Let N = (P, T, F,\, M™% Mfral)y ¢ W with M™* = [pe] and M = [pyni]. N
is sound iff the following behavioral properties are fulfilled [224].

1. From any reachable marking there is always the option to complete, i.e., the
final marking is reachable. Thus, VM ERM (N, Mt) [Mﬁ”al € RM(N, M)]

2. If the sink place pgink 1S marked,_ no other place is marked, i.e., proper com-
pletion. Thus, VM € RM(N, M) [psink € M = [psink] = M}

3. N contains no dead transitions, i.e., all transitions can be fired.
Thus, VteT IMERM (N, M) [(N, M)[t)]]

Consider Ny, the WF-net depicted in Figure 3.7. All three behavioral properties are
fulfilled by Np; thus, Ny is sound.

Sound WF-nets
WF-nets

Accepting Petri nets

Figure 3.8: Overview of different Petri net classes

In this thesis, we always assume sound WF-nets when referring to WF-nets if not
otherwise specified. Figure 3.8 provides an overview of different Petri net classes. The
next section introduces process trees, which represent a subclass of sound WF-nets.

65

Chapter 3. Preliminaries

3.3.2. Process Trees

Process trees are a process model formalism that represent processes as a hierarchical
composition of activities; they have been introduced in [120]. Figure 3.9 depicts an
example process tree Acgample that models the sam ebehavior as the Petri net Ny, i.e.,
a sound WF-net, shown in Figure 3.7. Note that any process trees can be translated
into a language-equivalent, sound WF-net, cf. Figure 3.8. Table 3.2 provides a complete
overview on translating process trees into sound WF-nets. Note that process trees are
also often refered to as block-structured WF-nets [120, 211].

Vo

Figure 3.9: Example of a process tree that models the same language as the sound WF-
net depicted in Figure 3.7

In general, a process tree is a labeled, rooted ordered tree as introduced in Defini-
tion 3.11 that satisfies certain properties. Inner vertices of a process tree represent control
flow operators. We distinguish the four standard operators [216] in this thesis.

e The sequence operator (—) specifies that all its children must be executed in the
given order.

e The exclusive choice operator (x) specifies that precisely one child must be exe-
cuted.

e The parallel operator (A) specifies that its children can be executed in any order
including interleaving execution.

e The loop operator (O) specifies that its first child has to be executed once. After
each execution of the first child, the second child can be optionally executed; if the
second one is executed, the first must be subsequently re-executed.

Leaf vertices of a process tree represent activity labels from A or the unobservable activity
7. Next, we define the syntax of process trees.

6Note that to the best of our knowledge a formal definition of block-structuredness for WF-nets does
not exist.

66

8.8. Process Models

Table 3.2.: Conversion of process trees into language-equivalent, sound WF-nets

Activity/ Process tree WPF-net
operator
Psrc 31 Psink
Invisible ®—>n—)O
activity
Psre i1 Psink
Visible |Z| ®—’E—’O
activity
Vo
. Psrc p1 Pn—1 Psink
Sequence g
p1 P
Exclusive- K Ay R An
choice ' ’
Parallel A Ea
Vo
N Psink
Loop 1 A2

67

Chapter 3. Preliminaries

Definition 3.28 (Process Tree Syntax)
Let @ = {—, X, O, A} be the universe of process tree operators. A process tree A = (V,
E. X A\, <) €T is a tree (c¢f. Definition 3.11) satisfying the following restrictions:

e X=AU{r}U®
e Vv € child(A) [A(v) € A]
e Vv € inner(A) [A(v) € ®)]

o VoeV [(A(v) =0) = (|ehilds(v)| = 2)]

We denote the universe of process trees as P.

Next, we specify the semantics of process trees. Therefore, we define running steps
and running sequences of a process tree, i.e., a sequence of executed process tree leafs.

Definition 3.29 (Process Tree Running Steps & Running Sequences)

Let 7, open, close ¢ A and A = (V,E,; X, A\, r,<) € P be a process tree. If childa(r) #
0, we refer to r’s children as vy, ...,v, with vy < --- < v, according to V.

We define S(A) =V x (AU {7, open, close}) as the set of potential running steps.
We define the running sequences of A as RS(A) C (S(A))*

{{r, A} if A(r) € Au{r}*
{{(r, open)) } o RS(Ap(v1)) 0...0 RS(Ap(vn)) o {{(r, close)) } ifA(r) =—,n>1

{{(r, open)) } o {RS(AA(v1)) U...URS(Ap(vn))} o {{(r, close))} if A(r) = x,n>1
RS(A)=
{{(r, open)) } o {RS(Ap(v1)) ... 0o RS(Ap(vn))} o {{(r, close))} if A(r) =A,n>1

{((7‘, open))oci00) 0o 00h0...00, 1 00mo{(rcclose)) |
m>1 A V1<i<m [o; € RS(childp(v1))] A
Vi<i<m [a; € RS(childA(vg))] } FA(r) =0,n =2

“In this case, the tree consists of a single vertex.

Reconsider the process tree Aczampie depicted in Figure 3.9. This tree has infinitely
many running sequences because it contains a loop (). Below, we list three exemplary
running sequences o1, 02,03 € RS(Aegample). Further, we project each running sequence
onto the sequence of executed leaf nodes representing an activity.

® 01 = <(v0,0pen)a (’Ul.laopen)a (vQ.lvopen)a (’1)3_1,027671), (’1)4_17(1), (’U4.27b)a (’U3.17
close), (va.1, close), (v1.1, close), (v1.2,0pen), (vas,e), (v24,a), (vo, close)>

75 (01)da = {(a,b,e,a)

68

8.8. Process Models

® 0y = <(UO,0P€71), (v1.1, 0pen), (va.1,open), (v32,open), (vig,d), (vas,c), (v3a2,
close), (va.1, close), (v1.1, close), (v1.2,0pen), (vas,e), (vou4,a), (vo, close)>

w5 (o2)da = {d,c e, a)

e o3 = <(v07 open), (vi.1,open), (va.1,open), (v32,open), (vi,d), (vas,c), (vsa2,
close), (va.1, close), (va.2,7), (va.1, 0pen), (vs.2, open), (va3,c), (Vs.a,d), (vs.2, close),

(va.1, close), (v1.1, close), (vi.a,0pen), (vaq,a), (vas,e), (vo, close)
m5(o3)da = (d,c,c,d,a,e)

Next, we define the language of a process tree as a set of sequences over activity labels,
similar to the language definition of Petri nets presented in Definition 3.25.

Definition 3.30 (Process Tree Language)
Let A € P. We define its language L(A) = {(7@" (0)daloe RS(A)} C A",

Reconsider the example process tree Aczampie depicted in Figure 3.9 and the three
above shown running sequences; {(a,b,e,a>, (d,c,e,a),(d,c,c,d,a,e) p C L(Acgampie)-

Eventually, we define language equivalence of two process trees if they define the same
language.

Definition 3.31 (Process Tree Language Equivalence)
Let Ay, Ao € P. Process tree Ay is language equivalent to Ao, denoted as Ay ~ Ag,
if L(A1) = L(A2).

Finally, we define the function discovery that discovers from a given event log a process
tree such that the tree fully supports the provided event log, i.e., function discovery is
fitness-preserving.

Definition 3.32 (Fitness-preserving Process Discovery Function discovery)

The function discovery : M(A*) — P maps an arbitrary event log L* € M(A*)
onto a process tree A € P. The function discovery is fitness-preserving if L® C
L (discovery(L*®)).

An example of the above-defined fitness-preserving process discovery function is the
Inductive Miner algorithm [122]. Note that an entire family of IM algorithms exists;
however, not all are fitness-preserving.

This thesis focuses mainly on process trees as the primary model formalism. Process
trees are widely used in process mining research [121, 211, 198, 39, 191, 216, 38|, have
unambiguous semantics, and represent an essential class of process models; each process
tree can be converted into a sound WF-net and a BPMN model. Especially the fact that
process trees are sound by construction makes them a valuable formalism. In addition,
the hierarchical structure of process trees offers unique opportunities for manipulating
them in the context of incremental process discovery.

69

Chapter 3. Preliminaries

3.4. Conformance Checking Overview

This section provides a brief introduction into the field of conformance checking [45,
46, 79]. Overall, conformance checking techniques relate observed process behavior, as
reflected by the event data, with modeled behavior, as specified by process models. The
aim is to provide statistics for conformity between event data and a process model.
Further, conformance checking techniques are also used to assess the quality of process
models with respect to a given event log [40]. Here, we focus on three central approaches:
rule-based conformance checking, token-based replay, and alignments [46]. Figure 3.10
illustrates these techniques and their key differences. What these techniques have in
common is that they all assume a process execution from an event log.

Alignment, providing insights into
synchronization/mismatches between
the process execution from the
log and a process model execution
A

Alignments

} Aligning process executions E

recorded in the event log to ex-
ecutions of a process model

Rule-Based
Event Log) Copformance Chef:king Process
- — Verification of rules (derived from a L ITERRRE s ‘1'1
= process model) on the process ex- rode
ecutions recorded in the event log T

~

Satisfied and non-satisfied rules

Token-Based Replay

L% Replaying process executions recorded
in the event log on a process model

~
Statistics about the tokens during
playback, i.e., missing, remaining,
consumed, and produced tokens

Figure 3.10: Overview of three major conformance checking approaches according to [46]

Rule-based conformance checking verifies a set of rules that might be derived from a
process model on process executions from an event log. Compared to alignments and
token-based replay, cf. Figure 3.10, the process model is of little importance as it is only
used to derive rules. Process executions are assumed to fit if the set of rules is satisfied.
According to [45] four main rule types can be distinguished. Cardinality rules set upper
and lower limits for the execution of individual activities. Precedence and response rules

70

3.5. Alignments

define relations between two activities. A precedence rule specifies that an activity always
precedes another activity. In contrast, a response rule defines that an activity is always
eventually followed by another one. Ordering rules specify if two activities occur both
in individual process executions, their execution is ordered; for instance, one activity
is executed after the other one. Finally, exclusiveness rules define pairs of activities
that should never be executed both in individual process executions. In short, rule-based
conformance checking does not necessarily require a process model as input and evaluates
the conformance of process executions based on satisfied rules. However, covering all
constraints of a process model with rules may lead to an exponential number of rules
and in certain cases it may even be that impossible to specify the behavior of a model
completely with rules [45].

Token-based replay [165] is a technique that replays process executions from the event
log onto a process model. Process models are assumed to be Petri nets. During replaying
a process execution, statistics about consumed and produced tokens are recorded. In case
a part of a process execution cannot be replayed in the model, missing tokens are added
to the Petri net to ensure that the process execution can be replayed. After finishing
replaying the process executions, remaining tokens within the Petri net are counted.
Based on these numbers regarding tokens, conformance statistics can be computed. In
short, token-based replay takes a process execution and enforces its replay on the model.
However, token-based replay also has limitations. First, activities that are present in the
process execution but not in the model cannot be replayed by the technique. Further,
token-based replay results might be non-deterministic in case the same activity occurs
multiple times in a process model, i.e., also referred to as duplicate labels. Finally, silent
transitions in Petri nets are problematic for token-based replay as it is not upfront clear
which one to take in case multiple silent transitions are executable. To this end, extensions
of token-based replay have been proposed [25].

Alignments [6, 226] are a state-of-the-art conformance checking technique, relating a
process execution from the event log to a process execution from the process model.
Thus, a valid process execution allowed by the process model is aligned with a process
execution from the provided event log. An alignment, therefore, allows for identifying
missing behavior, which refers to behavior that should have occurred according to the
model but was not observed in the recorded process execution, and additional behavior,
which refers to behavior that was recorded but should not have taken place according to
the model. Compared to token-based replay, where a process execution from the event
log is forcibly replayed in the process model, alignments take a symmetric approach
concerning the process model and process execution [45].

3.5. Alignments

This section introduces alignments, which we will use in later chapters in the context
of incremental process discovery. Alignments match a given trace from event data to a
execution of a given process model. Alignments are initially introduced in [6] for Petri
nets. Below, we show the structure of alignments, followed by an example. Subsequently,
we formally define alignments for Petri nets (cf. Section 3.5.1) and process trees (cf.
Section 3.5.2). Finally, Section 3.5.3 briefly elaborates on computing alignments.

71

Chapter 3. Preliminaries

An alignment represents a sequence of alignment moves; we distinguish four different
move types as depicted below.

° ‘ Synchronous moves ‘indicate a match, i.e., a synchronization, between the model
and the current activity from the trace.

° indicate a mismatch, i.e., the current activity from the trace cannot
be replayed in the model.

o WALl IRy indicate a mismatch between model and trace, i.e., the

model is executing an activity that is not observed in the trace at that time.

e Invisible model moves indicates no true mismatch, yet the model performs a
T activity that by definition cannot be observed in the trace.

Subsequently, we formally introduce alignments for Petri nets (Section 3.5.1) and pro-
cess trees (Section 3.5.2).

3.5.1. Alignments for Petri nets

11. 12. 13. 14. 15.
> a e >
tio | ti2 | ti1 | t13

() | (a) | (e) | (7)

> > a b > >
t1 to ts ts tq t3

Figure 3.11: Exemplary optimal alignment v, = <(>>, t1), >, t2), ..., (f, >>)> consisting
of 15 alignment moves for the trace o = (a,b,d,d, a, e, f) and the Petri net
N; (cf. Figure 3.7); under each transition, the assigned label is shown

Reconsider Petri net Ny depicted in Figure 3.7. Further, let o = (a,b,d,d, a,e, f) be
a trace. Figure 3.11 illustrates an exemplary optimal alignment. Note that the first
row of an alignment corresponds to the given trace when ignoring the skip symbol >>.
The second row corresponds to a sequence of transitions leading from (Nl, [psm]) to
(Nl, [PsmkD- The alignment consists of a total of 15 alignment moves. The first two
moves are invisible model moves and, thus, do not indicate a deviation. After that, t¢5
and tg are the first executed transitions whose label represents an activity. The labels
of these two transitions correspond to the first two activity labels of the trace o; thus,
the 2. and 3. move are synchronous moves. Synchronous moves indicate that the model
in its current state agrees with the execution of the activities occurring in the trace.
Moves 5. and 6. are invisible model moves as the label of the corresponding transitions
are labeled with 7. Move 7. is again a synchronous move. Move 8. is a log move, i.e.,
the activity d cannot be replayed in the model at the current marking; thus, activity
d is considered an unexpected/additional activity. The next activity after the second
d observed in the trace is an a activity. However, the model requires to execute a ¢
activity before, as indicated by move 9., i.e., a visible model move. After the missing
¢ activity, the alignment indicates that the observed a and e activity from the trace

72

3.5. Alignments

can be replayed in the model, cf. synchronous moves 12. and 13. The last move is a log
move indicating unexpected/additional behavior according to the model, i.e., a f activity.
In conclusion, the alignment indicates three deviations: (1) an additional d activity (8.
move), (2) a missing ¢ activity (9. move), an additional f activity (15. move). Below, we
define alignments for a given trace and a Petri net.

Definition 3.33 (Complete Alignment for Petri Nets)
Let (P, T, F,\, M™* Mfrd)y ¢ W be a sound WF-net and o € A* be a trace. A

sequence 7 € (AU {>}) x (T x {>>}))* e
1. o =mi(y){a
2. (N, Mimity O, (N ppinaty
3. Vae AVt €T [(a,t) €v=a=A)]
4. (>,>) &~

We denote the universe of complete alignments for N and o by T'(N, o). We denote
the universe of optimal complete alignments for N and o by T°P*(N, o).

. 8.
> | > BB = > |
t1 l2 ts g t11 t12 EGE
M) EOREON (- HOBNON (1)
Figure 3.12: Exemplary non-optimal alignment vo = ((>,t1), (>, t2),...,(f,>>)) con-
sisting of 15 alignment moves for the trace ¢ = (a,b,d,d,a,e, f) and the

Petri net Ny (cf. Figure 3.7); under each transition, the assigned label is
shown

Y2 =

Many different alignments may exist for a given trace and a Petri net. For instance,
Figure 3.12 shows another alignment for Ny and o = (a,b,d,d,a,e, f). Still, the first
row corresponds to the given trace when ignoring the skip symbol >, and the second
row corresponds to a sequence of transitions leading from the initial to the final marking
when ignoring >. However, alignment 7, contains no synchronous moves compared to
~1, cf. Figure 3.11. The interpretation of this alignment means that there are deviations
everywhere. To this end, the notion of optimality exists. An alignment is optimal if the
number of visible model and log moves is minimal compared to other alignments. Thus,
alignment 7, is not optimal because there exists an alignment, for instance, 7, with a
lower number of log and visible model moves. In fact, alignment ~; is optimal.

3.5.2. Alignments for Process Trees

This section introduces alignments for process trees. Note that the fundamental concept
of alignments remains unchanged; compared to complete alignments on Petri nets, the

73

Chapter 3. Preliminaries

second row of an alignment is a running sequence of the tree rather than a sequence of
transitions. Consider the alignment 3 depicted in Figure 3.13 for process tree Aczampie
and the same trace as before 0 = (a,b,d,d,a,e, f). The second row represents now a
running sequence of the process tree A czqampie When ignoring the skip symbol (>>). Below,
we define alignments for process trees.

Definition 3.34 (Complete Alignment for Process Trees)
Let A € P be a process tree and o € A* be a trace. Let > be the skip symbol with

>¢ A. A sequence 7y € ((A U{>}) x (S(A)U {>>}))* is a complete alignment iff:

2. w3 (V)ds) € RS(A)
3. Va€ AVs € RS(A) [(a,5) €7 = a=A(ma(s))]

4. (>>) ¢y

We denote the universe of complete alignments for A and o by T'(A,0). We denote
the universe of optimal complete alignments for A and o by T°PY(A, o).

1. 2. 3. 4. 5. 6. 7. 8. 9. 10
- > > > > a b > > > >
3 (o, (via, | (w21, | (w31, | (va1, | (va2, | (31, | (v2.1, | (v22, | (v2.1,
open) | open) | open) | open) a) b) close) | close) T) open)
11. 12. 13. 14. 115, 16. 17. 18. 19. 20.
> d > > > > a e
(v3.2, | (va.a, (v3.2, | (v2.1, | (v, | (viz, | (v24, | (v23, [
open) d) close) | close) | close) | open) a) e)
21. 22. 23.
> >
(v1.2, (vo,
close) | close)
Figure 3.13: Exemplary optimal alignment -3 = <(>>, (vo, open)) oo (f, >>)> for the
trace (a,b,d,d,a,e, f) and the process tree Aczomple, depicted in cf. Fig-
ure 3.9

In the remainder of this thesis, we refer to complete alignments simplistically as align-
ments. Further, we refer to the overall universe of all alignments—independent of a
specific process model and trace—simply as I'. Subsequently, we introduce various aux-
iliary functions for alignments. We use the above-specified auxiliary functions primarily
for defining incremental process discovery approaches in Part II of this thesis.

74

3.5. Alignments

Assume an arbitrary process tree A = (V, E, ¥, \,r, <) € P and trace 0 € A*. Let
v € T'(A,0) be an alignment and 7(¢) for 1 < i < |y| be an arbitrary alignment move of
~. For ease of reading, we define three auxiliary functions to extract specific components
of an alignment move.

o traceLabel : ((.AU >} x (S(A)U {>>})) — AU {>} with
traceLabel ((i)) = m1 (y(i))
e modelVertex : ((A U{>}) x (S(A)U {>>})) — VU {>} with

modelVertez (y(i)) =)
> otherwise

e modelLabel : ((A U{>}) x (S(A)U {>>})) — AU {7, >} with
o <7r2 ('y(z))) if T ((i)) #>

modelLabel (y(i)) = .
> otherwise

For example, consider alignment 3 depicted in Figure 3.13. The following applies:

e traceLabel (v3(5)) = a,

e traceLabel (y3(1)) = >,

e modelLabel (v3(5)) = a,

e modelLabel (v3(13)) = >,
e modelLabel (y3(9)) =T,

e modelLabel (y3(1)) = open,
e modelLabel (v3(7)) = close,
[]

L]

modelVertez (y3(15)) = vs.2, and
modelVertez (v3(13))

Moreover, we define four auxiliary functions to assess if an arbitrary alignment move
is either a log, a visible model, an invisible model, or a synchronous move.

e logMv : ((AU >} x (S(A)U {>>})) — B with

logMv (y(4)) = {

true if modelLabel ((i)) = >
false otherwise

o inModelMo : ((AU{>}) x (S(A)U{>})) = B with
true if modelLabel (v(i)) =T

imvModelMv (’Y(Z)) - {false otherwise

o visModelMv : ((.AU {>}) x (S(A)U {>>})> — B with

true if traceLabel ((i)) = > A modelLabel (v(i)) € A

visModelMv (7(2)) - { false otherwise

75

Chapter 3. Preliminaries

o syncMv : ((.AU {>}) x (S(A)U {>>})) — B with

£ I A I ,
syneMo(1(i)) = true i tmce' abel (v(i)) = modelLabel (y(i))
false otherwise
Further, we introduce invModelMvTau : ((.AU {>}) x (S(A)U {>>})> — B that re-

turns true if the provided alignment is an invisible model move and the executed vertex
in the tree represents a leaf node; thus, the vertex is labeled 7.

true invModelMv(v(i)) A modelLabel(v(i)) =T

moModelMyTan (7(2)) B {false otherwise

We say that alignment v indicates a deviation between the corresponding process tree
and the trace if v contains at least one visible model move or log move. For instance,
the optimal alignment ~3 depicted in Figure 3.13 indicates a deviation as it contains two
log moves, i.e., the 13*" and 23"d move, and one visible model move, i.e., the 14" move.
Analogously, we say that alignment move (i) for 1 < i < |y| indicates a deviation if (i)
is a log or visible model move.

We define the auxiliary function deviationMuv : ((AU {>}) x (S(A)U {>>})> - B

that returns true if the given alignment move is either a log move or a visible model
move.

true logMv (y(i)) V wvisModelMv (v(i))

deviationMv (v(i)) = {false otherise

Subsequently, we define the auxiliary function deviation : ' — B that returns true if
an alignment indicates a deviation, i.e., there exists at least one log move or visible model
move.

true if 3 1<i<|y| (deviationMv (7(@)))

deviation(y) =
false otherwise

Finally, we define the partial function firstDeviationMviIndex : I'-»N that returns the
index of the first deviation-indicating alignment move from a given alignment if such
move exists.

firstDeviationMvIndez(vy) =i € {1,...,|y|} such that
deviationMv(y(i)) A FO<j <i (deviationMv (7(])))

3.5.3. Computing Alignments

The computation of alignments can be reduced to a shortest path problem [6, 45, 230].
This section introduces the definition of the Synchronous Product Net (SPN), a WF-net
defined for a given process model and a trace for which an alignment should be computed.
The SPN’s state space defines the search space of the shortest path problem. The SPN
itself is composed of a trace net, encoding the given trace as a WF-net, and a process

76

3.5. Alignments

/’ th

l’1 l’> p: 3 /’4 l)'

Figure 3.14: Example trace net N,, for the trace o1 = (d,a,e, h) (adapted from [180,
Figure 5])

model provided as WF-net.” Further, we assume in this chapter that all WF-nets are
sound; note that trace nets are sound by definition Definition 3.35. Consider the trace
o1 = (d,a,e, h). Figure 3.14 depicts the corresponding trace net. A trace net encodes
a given trace in a Petri net; thus, each transition represents an activity from the trace.
Below, we formally specify a trace net for a given trace.

Definition 3.35 (Trace net)
Let 0 € A* with length n = |o|. We define the corresponding trace net N, = (P,
Ty, Fyy Ao, M MSA) apith:

P, = {p|1<i<nt1},

T, ={t;| 1 <i<n},

Fo ={(pi,t:) |1 <i<n}U{(ti,piy1) | 1 < i <},
Ap:) =o(i) for 1 <i<mn,

Minlt*[pl] and

Mﬁnal [pn+1]

Figure 3.15: Example WF-net N; with M = [p;] and M/ = [p1,] (partly adapted
from [180, Figure 2])

Next to the example trace o1 = (d, a,e, h) and the corresponding trace net, consider
the example WF-net shown in Figure 3.15. Given the trace net (cf. Figure 3.14) and
the process model (cf. Figure 3.15), we can construct the SPN, which is illustrated in

"Note that process trees can be easily translated into WF-nets, cf. Table 3.2 (page 67). Therefore, we
present the computation of alignments for WF-nets.

7

Chapter 3. Preliminaries

Trace part

Model part

Figure 3.16: Example SPN using the trace net depicted in Figure 3.14 and the process
model shown in Figure 3.15; each transition corresponds to an alignment
move (partly adapted from [180, Figure 2|)

Figure 3.16. Each transition in the SPN corresponds to an alignment move. We highlight
the transitions according to the alignment move they represent—we use the same colors
as in Section 3.5 (page 71 ff.). Two parts within an SPN can be distinguished.

1. The trace part (cf. Figure 3.16) is constructed from the provided trace net and
contains solely transitions representing log moves.

2. The model part (cf. Figure 3.16) is constructed from the provided WF-net and
contains solely visible and invisible model moves.

Between the trace and model part, transitions solely representing synchronous moves are
placed. These transitions are, in general, the only elements connecting the trace and
model part.

A complete alignment for the trace o1 = (d,a, e, h) and the WF-net depicted in Fig-
ure 3.15 corresponds to a firing sequence from the initial marking [p},p1] to the final
marking [pf, p12] in the SPN depicted in Figure 3.16. Using a cost function that assigns
cost to each alignment move respectively each transition in an SPN, we can compute
an optimal complete alignment. In this thesis, we assume the standard cost function
that assigns cost 1 to deviation-indicating alignment moves (i.e., log moves and visi-
ble model moves) and cost 0 to non-deviation-indicating alignment moves (i.e., invisible

78

3.5. Alignments

model moves and synchronous moves) [45].8 The actual computation of a complete align-
ment reduces to a shortest path problem on the state space of the SPN. Since moving
from one state to another—which can only be done by firing a transition—always has as-
sociated costs assigned by the provided cost function, the problem of computing optimal
alignments is a shortest path problem. Various established search algorithms exist, like
Dijkstra’s algorithm [68] or the A* algorithm [101]; the latter is often used for alignment
computation [6, 45]. Below, we define the SPN for a given trace net and WF-net.

Definition 3.36 (Synchronous product net)

For a given trace o € A*, the corresponding trace net Ny = (Py, Ty, Fy, Ay, M,
My and a WF-net N = (P, T, F,\, M"™* Mfnal) sych that P° N P = () and
T°NT =0, we define the SPN Ng = (PS,TS,FS,)\S7M§"”,M§€"M) with:

e Ps=P,UP,

Ts= (T, x {>}) U ({>}xT) U{{t,t)eT, xT | At)=Xo(t)) #7},

Fs —{(,(t',t)) € Ps xTs | (p,t') € F, V (p,t) eF}u,
{((tlvt)ap) eTs x P° | (t',p) € E, V (t,p) € F}

e X T5 5 (AU{r,>}) x (AU{r,>}) (assuming >¢ AU{7}) s.t.:
- X((',>>) = (A7 (#'),>) fort' €T,
— A5 ((>, 1) = (>,At)) forteT
— A5 ((t,t) = (A ('), A(t)) fort €T, ,teT,

Mipit = Mty Mt and

Mgmal _ M(];inal w M final

In short, alignments are a state-of-the-art conformance-checking technique. They pro-
vide detailed information on how and where observed and modeled process behavior
diverge. We introduce alignments since they are integral for incremental process dis-
covery. For example, they can help determine if an intermediate process model already
covers the user-selected process behavior and which parts of a process model need to be
changed. Moreover, in the subsequent chapter, we extend alignments as introduced in
this section for trace fragments, i.e., trace prefixes, infixes, and suffixes. Alignments for
trace fragments are required to support trace fragments in incremental process discovery.

8Note that when implementing alignment computation, invisible model moves are often assigned very
low costs (i.e., 0+ ¢ for some 0 < € < 1) to avoid infinite alignments. This can happen if the process
model allows loops on 7-labeled activities.

79

Chapter 4.

Alignments for Trace Fragments

This chapter is largely based on the following published work.

e D. Schuster, N. Focking, S. J. van Zelst, and W. M. P. van der Aalst.
Conformance checking for trace fragments using infix and postfix
alignments. In M. Sellami, P. Ceravolo, H. A. Reijers, W. Gaaloul, and
H. Panetto, editors, Cooperative Information Systems, volume 13591 of
Lecture Notes in Computer Science, pages 299-310. Springer, 2022.
doi:10.1007/978-3-031-17834-4 18 [180]

Alignments, as introduced in Section 3.5, are usually defined for complete traces, i.e.,
traces that span the process from start to completion. This chapter extends the widely
used conformance checking technique alignments [6, 45, 226] for trace fragments, which
comprises trace prefixes, infixes, and postfixes. Prefix alignments for comparing a trace
prefix with a process model were introduced in [6]. Prefix alignments are, for instance,
used in online conformance checking [41] where event streams rather than event logs are
considered [173, 237, 250, 251]. However, alignments for trace infixes and postfixes do not
exist. Therefore, this chapter introduces infix and postfix alignments to support trace
fragments fully.

Computing alignments for trace fragments is paramount for the proposed incremental
process discovery approach that will be introduced in Chapter 6. Trace fragments are
an essential artifact in incremental process discovery as they give users more flexibility
in discovering processes than the exclusive focus on full traces, as often assumed in
process discovery. Thus, conformance checking techniques supporting trace fragments
are essential in the context of this thesis.

Even though we motivate and leverage infix and postfix alignments in this thesis in the
context of incremental process discovery, the proposed alignments for trace fragments can
be used in a broader context for general conformance-checking purposes. For example,
processes can often be divided into stages, each representing different logical or temporal
phases. Consequently, conformance requirements might differ per stage; conformance-
critical and conformance-uncritical stages might exist. Thus, conformance checking for
trace fragments covering conformance-critical process stages is very important. Further-
more, event data must often be extracted and combined from various data sources to
analyze a process holistically because multiple information systems are involved in the

81

Chapter 4. Alignments for Trace Fragments

execution of a process. In such scenarios, conformance-checking techniques for trace
fragments are valuable as these do not require complete traces as input and can be di-
rectly applied to trace fragments. In short, alignments for trace fragments are a valuable
extension and may be applied not only in incremental process discovery.

4.1. Overview

Complete Trace Complete E?
(A1, o) @iy v, @y oov, Q) Synchronous alignment i
or =p{ product net > => or =
Trace prefix (SPN) Prefix ”
(ay, ., a;) alignment g
) Alignment o
(Reference) computation
process Auxiliary (i.e., shortest
model = process path serach on -
model the state space g
I L Z of the SPN) w,
Trace infix Infix &
(aj, ..., @) Synchronous ;gj :;: ;ﬁ?;the goal alignment @
or =i product net P depending on whether = or)
Trace postfix (SPN) e B G Postfix g
postfix align-ments .
(ai. o0 an) are calculated. ahgnment

Figure 4.1: Overview of alignment computation and this chapter’s contributions regard-
ing infix and postfix alignments (partly adapted from [180, Figure 1])

Figure 4.1 provides a high-level overview of alignment computation. As presented in
Section 3.5, a SPN is calculated for a given trace and process model. The state-space
defined by the SPN represents the search space of the alignment computation for the given
trace and model. This described procedure is applied for complete as well as for prefix
alignments. However, when computing infix and postfix alignments, we cannot use the
SPN directly. Therefore, we modify the SPN to adapt it for infix and postfix alignment
computation by creating an auziliary process model from the (reference) process model.
We use this auxiliary process model for the SPN generation instead of the provided
(reference) process model. The SPN generated from the auxiliary process model allows
us to rely on the established alignment computation machinery without adapting further
established concepts and techniques, cf. Figure 4.1. Thus, the search for the shortest
path on the state space of the SPN remains unchanged compared to the computation of
the complete and prefix alignment except for modifying goal states. Therefore, the main
contribution of this chapter is the creation of said auxiliary process model for computing
infix and postfix alignments. We propose two approaches to derive an auzxiliary process

82

4.2. Defining Prefix, Infix & Postfix Alignments

model from a given reference process model. The first approach assumes WF-nets as a
(reference) process model, while the second assumes process trees. We evaluate these two
approaches on publicly available event data capturing real-life processes.

This chapter’s remainder is organized as follows. Section 4.2 defines prefix, infix and
postfix alignments. Section 4.3 presents the computation of infix and postfix alignments.
We evaluate infix and postfix alignments in Section 4.4. Finally, Section 4.5 concludes
this section.

4.2. Defining Prefix, Infix & Postfix Alignments

This section formally defines alignments for trace fragments, i.e., prefix, infix and postfix
alignments. Note that prefix alignments have already been defined in [6]. First, we
provide an informal introduction to prefix, infix, and postfix alignments and present
examples. Subsequently, we present corresponding definitions.

(a) WF-net Ny with M™"* = [p1] and M/ = [p15] (partly adapted from [180, Figure 2|)

d | g b [d > IFB
1= ta | s Ye=|t2 | ta | t5 | t7 >
(@ | () OIRORNGNRE
(b) An optimal infix alignment 1 for trace (c) An optimal infix alignment ~, for trace
infix o1 = (d, g) infix o2 = (b,d, f, g)

Figure 4.2: Optimal infix alignments (Figures 4.2b and 4.2c) for WF-net N; (Figure 4.2a)

The conceptual idea of an infix alignment is to align a given trace infix against an
infix of the WF-net’s language. The model part of an infix alignment starts at some
marking that is reachable from the initial marking of the given WF-net and ends at an
arbitrary marking of the WF-net. Consequently, every complete alignment is also an infix
alignment, but not vice versa. Figure 4.2 depicts two infix alignments for the WF-net
shown in Figure 3.15 and two different trace infixes. As for complete alignments (cf.
Definition 3.33), the first row of an infix alignment corresponds to the given trace infix
when we ignore the skip symbol >>. The second row of an infix alignment corresponds to
a firing sequence (ignoring >>) starting from a marking that is reachable from the initial

83

Chapter 4. Alignments for Trace Fragments

marking of the provided WF-net. Recall infix alignment ; depicted in Figure 4.2b. Infix
alignment +; specifies the firing sequence (t4,tg). Given the initial marking M = [p;]
of the WF-net depicted in Figure 3.15, only one marking exists in the set of reachable
markings that enables transition t4, i.e., [ps, ps] € RM (Ni, [p1]). Hence, infix alignment
~1 indicates in its model part to start at marking [p4, ps] and execute transitions ¢, and
tg; thus,

(N1, [p1]) ~ (N1, [pa, ps)) Lats), (N1, [p11]) ~ (N1, [pra]) -

Similarly, the model part of infix alignment v (cf. Figure 4.2¢) indicates that:

(ta,ta,ts,t7)
Rl A

(N1, [p1]) ~ (N1, [p2,ps)) (N1, [p7,p10]) ~ (N1 [pia]) -

d d g
3= ta V4= ta | ts
(d) (d) | (9)
(a) An optimal postfix alignment ~s for (b) An optimal postfix alignment -4 for
trace postfix o3 = (d, g) trace postfix o4 = (a,d, g)

Figure 4.3: Optimal postfix alignments for WF-net N; (Figure 4.2a)

The definition of postfix alignments is based on the same concept as that of infix
alignments. The model part of a postfix alignment starts at a reachable marking from
the given WF-net’s initial marking; however, it must end in its final marking. Figure 4.3
shows examples of optimal postfix alignments for the WF-net Ny depicted in Figure 3.15.
For instance, the model part of postfix alignment ~3 indicates that:

) ta,ts,t
(N1, [p1]) ~ (N1, [pas ps)) AELLLUN (N1, [p12]) -
The model part of 4 (cf. Figure 4.3b) indicates that:

(t2,ta,ts5,t7)
=T,

(N1, [p1]) ~ (N1, [p2, ps]) (N1, [p12]) -

Subsequently, we define prefix, infix, and postfix alignments for Petri nets.! Compared
to the definition of complete alignments (cf. Definition 3.33 on page 73), the definition
for prefix, infix, and postfix alignments differs in the second requirement.

! Note that the prefix alignments have already been defined in [6]. However, the definitions for infix
and postfix alignments are considered a contribution of this thesis.

84

4.2. Defining Prefix, Infix & Postfix Alignments

Definition 4.1 (Prefix, Infix, and Postfix Alignment for Petri Nets)
Let N = (P, T, F,\, Mt MFinaly ¢ W be a sound WF-net and o € A* be a trace.

A sequence v € ((AU {>}) x (T x {>>})) is a prefiz/infix/postfix alignment if
the subsequent constraints are satisfied.

2. e Itis a prefix alignment if there exists a
M’ € RM(N, M™%) such that

(N, M'mzt) M (N, MI) - (N, Mﬁnal)'

e It is an infiz alignment if there exists a
M',M" € RM(N, M™*) such that

(]\/'7 Minit) sy (N, M/) w5 (Vo (N, M//) ~ (N, Mﬁnal).

e [t is a postfix alignment if there exists a
M’ € RM(N, M™%*) such that

(N, Minity o (N, M?) 2Ny (7 ppfinaly,
8. Vae AVt eT [(a,t) €y = a= A1)
4. >>) ¢v
For N and o, we denote the set of

e prefiz alignments by Ty (N, o), optimal prefiz alignments by T'%2L(N, o),

pre
o infix alignments by T'in¢(N, o), optimal infix alignments by Fiof;(N, o),

o postfiz alignments by T'pos(N, 0), and optimal postfix alignments by F;gﬁ(N, o).

Moreover, we denote the universe of

opt
pre’

o prefix alignments by I'pre, optimal prefix alignments by I'

o infiz alignments by L'y ¢, optimal infix alignments by ng},

o postfix alignments by I'pos, and optimal postfiz alignments by F;g;.

As for complete alignments, optimality applies equally to prefix, infix, and postfix
alignments. In general, a complete/prefix/infix/postfix alignment is optimal if no other
complete/prefix/infix /postfix alignment exists with fewer log and visible model moves,
i.e., an optimal complete/prefix/infix/postfix alignment is cost-minimal regarding the
standard cost function, cf. Section 3.5.3.

85

Chapter 4. Alignments for Trace Fragments

4.3. Computing Infix & Postfix Alignments

Computing complete and prefix alignments is done by solving the shortest path problem
on the corresponding SPN as defined in Section 3.5.3. For a detailed introduction, we
refer to [6, 45]. However, it is not possible to calculate infix and postfix alignments
in the same manner. Recall Definition 4.1. For both infix and postfix alignments, the
transition sequence from the second row of the alignment starts in some marking M’
that is reachable from the initial marking M. For instance, reconsider the discussed
examples of infix and postfix alignments in Figure 4.3. Therefore, we cannot use the SPN
as defined in Definition 3.36 (page 79) because the SPN’s initial marking requires starting
in its model part at the initial marking of the provided model. However, according to
Definition 4.1, we must start at a marking M’ that is reachable from M in the model
part.

We solve this issue by modifying the SPN. Reconsider Figure 4.1 (page 82) outlining
our approach to compute infix and postfix alignments. We achieve the SPN modification
indirectly by using an auxiliary process model instead of the given process model for
constructing the SPN. The SPN constructed using the auxiliary process model allows to
jump to a marking in the model part that is reachable from the initial model marking and
serves as the starting point for the infix/postfix alignment to be computed, i.e., marking
M’ in Definition 4.1. In the remainder of this section, we refer to candidate markings for
M’ (cf. Definition 4.1) as relevant markings.

Definition 4.2 (Relevant markings for infix/postfix alignment computation)
Let N = (P, T, F, X\, M™* Mf") be q sound WF-net and o € A* be a trace in-

fix/postfiz. We define relevant markings {M, ..., M} C RM (N, Mi”it) that are
opt

v € T4 N,o), cf. Definition 4.1. Thus, {Mi,...,M,,} € RM (N, Mi"it> are

pos

relevant markings if M’ € {Ma, ..., My,}.

candidate markings for M’ for optimal infix v € T;P.(N, o) or postfix alignments

The central research question is how to (efficiently) determine relevant markings from
a given WF-net. We summarize the overall approach for computing infix/postfix align-
ments below and in Figure 4.4.

1. Create an auxiliary WF-net from the provided reference WF-net.

a) Calculate relevant markings in the given WF-net that may represent the start
of an infix/postfix alignment in the model part, cf. marking M’ in Defini-
tion 4.1.

b) Create the auxiliary WF-net using the relevant markings

2. Construct the SPN, according to Definition 3.36, using the auziliary WF-net con-
structed in the previous step and the given trace infix/postfix.

3. Perform a shortest path search on the SPN’s state space with corresponding final
markings, i.e., goal states regarding the shortest path search.?

2The actual shortest path search on the state space of the SPN remains unchanged compared to com-
puting complete/prefix alignments, cf. Figure 4.1 (page 82); however, the goal states differ.

86

4.8. Computing Infix & Postfiz Alignments

e Infix alignment: all markings of the SPN that mark the last place of its
trace net part are goal markings for the shortest path search
e Postfix alignment: the goal marking is the SPN’s final marking as specified
in Definition 3.36
4. Post-process the calculated infix/postfix alignment because the infix/postfix align-
ment aligns the given trace infix/postfix with the auxiliary WF-net and not the
original WF-net. Thus, we remove the alignment moves that result from using the
auxiliary WF-net instead of the provided WF-net.

Focus of this chapter (Step 1)

Computing Relevant Markings
Three different approaches are proposed.
e Baseline approach (Section 4.3.1)
e Extended baseline approach (Section 4.3.2)
e Process-tree-based approach (Section 4.3.3)

!

Constructing the auxiliary WF-
net (Definition 4.3 on page 88)

|
<+

Constructing the SPN (cf.
Definition 3.36 on page 79)

!

Shortest path search on
the state space of the SPN [6]

!

Infix/postfix alignment for the given
trace infix/postfix and the auziliary WF-net

OUTPUT
Post-processed infix/postfix alignment for

the given trace infix/postfix and reference WF-net

INPUT n
Trace infix/postfix

| INPUT
Reference WF-net

Figure 4.4: Overview of computing infix and postfix alignments

As described above, the first step is essential, i.e., the creation of the auxiliary WF-net.
The subsequent SPN generation using the auxiliary WF-net and the trace infix/postfix,
i.e., Step 2, is performed as specified in Definition 3.36. Next, the shortest path search
is executed, i.e., Step 3. Note that compared to complete/infix alignments, the goal
marking(s) differ as described above. However, apart from different goal markings, the
shortest path problem remains and can be solved similarly to complete/prefix alignments.
Finally, the computed infix-/postfix alignment is post-processed.

In the remainder of this section, we focus on constructing the auxiliary process model
and present two approaches for determining relevant markings. We present a naive ap-
proach in Section 4.3.1 that we improve in Section 4.3.2. Finally, Section 4.3.3 proposes
an process-tree-based approach tailored to process trees for computing relevant markings
needed to create the auxiliary process model.

87

Chapter 4. Alignments for Trace Fragments

4.3.1. Baseline Approach

This section proposes a baseline approach to compute an auxiliary WF-net. The proposed
baseline approach assumes an arbitrary, sound WF-net N = (P, T, F, \, Mt Mfinal) a5
input. Since sound WF-nets are bounded by definition [224], their state space is finite.
Hence, the following equation holds.

RM(N,M™")| =neN

Further, we can list all markings of N that are reachable from the initial marking, i.e.,
RM(N, M"it)y = {My,...,M,}. For instance, for WF-net N; depicted in Figure 3.15
(page 77), the set of markings reachable from the initial one

RM(N, M"™) = {My=[p1], Ma=[p2,ps], Ms=[ps,ps], Ma=[p3,pa], Ms=[pa,ps],
Mes=[ps], Mr=[p7,ps], Mg=[ps,p9], Mo=[p7,p10}, M10=[p9,P10],
Mi1=[p11], Mi2=[pi2]}.

Thus, twelve reachable markings including the initial marking M = [p;] exist, i.e.,
|[RM(N, M™)| = 12. The baseline approach considers all these reachable markings as
relevant markings, i.e., candidates for marking M’ when computing infix/postfix align-
ments, cf. Definition 4.1 (page 85). Obviously, considering all reachable markings as
relevant markings is feasible according to Definition 4.2 because it is guaranteed that one
marking from the set of all reachable markings is a candidate marking for M’.

The corresponding auxiliary process model, referred to as Ng,,, comprises the pro-
vided WF-net Ny, a new place pj, and twelve transitions, i.e., for each relevant marking,
that connect place p; with the places specified in the corresponding relevant marking.
Further, the initial marking of the auxiliary WF-net is updated to M = [p{]. Consider
Figure 4.5 showing the auxiliary WF-net Ny, for the WF-net N; depicted in Figure 3.15
(page 77). Blue highlighted elements, comprising the new place pj,, transitions, and arcs,
have been added to the provided WF-net. For each relevant marking, a transition is
added, ie., t|,...,t}5. Further, each added transition is enabled in the initial marking
Mm% = [p{] and, upon firing, yields a relevant marking. No further transitions are en-
abled by the initial marking. For instance, transition ¢} is enabled and yields upon firing
the relevant marking My = [ps, p4], cf. Figure 4.5. Adding a silent transition for each rele-
vant marking allows the auxiliary WF-net to reach one of the relevant markings from the
initial marking. In short, the auxiliary WF-net allows once, i.e., from its initial marking
Mm% = [p(], to yield any relevant marking by firing one of the added silent transitions,
ie, t],...,th,. After firing one of the added transitions, the auxiliary WF-net behaves
as the provided WF-net. Below, a formal definition of an auxiliary WF-net is provided
that assumes a WF-net and corresponding relevant markings as input.

Definition 4.3 (Auxiliary WF-net)

Let N = (P, T, F, A\, M Mfnal) be o WF-net and {M, ..., M,} C RM(N, M)
be the set of relevant markings. We define the auziliary WF-net Nayz = (Paugs Tauzs
Fouz, Aauz, MIEE, MInaly awith:

auzx) aux

88

4.8. Computing Infix & Postfiz Alignments

Poue = PU{p}} (assuming that py ¢ P)

Towe =T U {t§|1 <1< n} (assuming that t; ¢ T for all1 <i<mn)

Foww =FU{(ph,t) [1<i<n}U{(th,p)|1<i<nApe M}

At) ifteT
T otherwise (i.e., t € Touz \ T)

Mim't — [p6]

aux

Mﬁnal — Mﬁnal

aux

Figure 4.5: Auxiliary WF-net N;, generated by the baseline approach for WF-net
N; (Figure 4.2a); blue highlighted elements (i.e., places, transitions, arcs)
were added to the provided WF-net depicted in Figure 3.15 (partly adapted
from [180, Figure 8])

When using the auxiliary WF-net depicted in Figure 4.5 for the construction of an
SPN, the added silent transitions, i.e., t],..., |5, turn into invisible model moves, which
do not indicate a deviation and are therefore assigned no cost according to the standard
cost function (Section 3.5.3 page 76 fI.). Thus, in the model part of the corresponding
SPN, we must first fire one of the transitions representing invisible model moves on the
added transitions to proceed. As a result of firing one of the added silent transitions, we

89

Chapter 4. Alignments for Trace Fragments

yield a relevant marking in the model part. Since the auxiliary WF-net has a fixed initial
marking and allows to reach any relevant marking, the computation for infix/postfix
alignments can be executed as for complete/prefix alignments, cf. Section 3.5.3.

4.3.2. Extended Baseline Approach Using Subsequent Filtering

The proposed baseline approach, cf. Section 4.3.1, can be further improved for computing
relevant markings used eventually for constructing the auxiliary WF-net. This section
extends the previously presented baseline approach by a subsequently applied filtering
function. First, all reachable markings are computed as before. Subsequently, the actual
trace infix/postfix is considered for which an infix /postfix alignment should be computed.
Each reachable marking is considered and checked, which transitions the marking enables.
If all transitions enabled are not labeled with any label from the given trace infix/postfix,
we can remove this marking from the set of reachable markings. Equation (4.1) formally
specifies the set of relevant markings using the described filtering.

{M € RM(N,M™") | 3teT ((N, M)ty A (A(t)eo vV At) = r))} U {Mﬁ”“l}

(4.1)

It is permissible to ignore all markings that solely enable visible transitions whose
label is not contained in the trace infix/postfix because we aim to compute only optimal
infix /postfix alignments. However, as long as a marking enables a transition whose label is
contained in the provided trace infix/postfix or whose label is 7, we consider the marking
relevant. Any reachable marking that enables solely visible transitions whose label is
not contained in the trace infix/postfix cannot be the start of an optimal infix/postfix
alignment. Starting in a marking that enables only visible transitions whose labels are
not contained in the trace infix/postfix leads to a visible model move to proceed in the
SPN; hence, such markings cannot be relevant starting markings for optimal infix/postfix
alignment computation.

In the context of incremental process discovery, we are not interested in all potential
optimal prefix/infix/postfix alignments for a given trace fragment and process model.
Instead, a single optimal prefix/infix/postfix alignment for a given trace fragment and
model is sufficient. To this end, we can further reduce the number of relevant markings
as specified above. We exclude all transitions that do not enable any visible transition
whose label is contained in the provided trace fragment o. Thus, we ignore if a marking
enables a silent transition. Equation (4.2) specifies the modified set of relevant markings
compared to Equation (4.1).

{M € RM(N,M™t) |3t eT ((N, M)[t) A (A(t) € a))} U {Mﬁ”’”} (4.2)

Note that when using the above-specified set of relevant markings (cf. Equation (4.2)),
not all optimal prefix/infix/postfix alignment might be found for a given trace fragment
and process model. Since markings are removed that, for example, only enable silent
transitions, not all optimal prefix/infix/postfix alignments can be found.?

3 Recall that this thesis assumes the standard cost function, cf. Section 3.5.3. Thus, invisible model
moves have cost zero.

90

4.8. Computing Infix & Postfiz Alignments

> | f e f e
Ys=| ts | tr | t6 Y6 =| tr | tg
() | (/) () | (e)
t t
(Nla [pﬁD = (va [p7ap8]) - (]\717 [p';,pg]) t—7> (Nl, [p?,plOD t—8>
t
(N1, [p7,p10]) = (N1, [po, p1o]) (N1, [po, p10])
(a) An optimal infix alignment 75 and the (b) An optimal infix alignment ¢ and the
corresponding execution sequence in Ny corresponding execution sequence in Ny
as indicated by s as indicated by s

Figure 4.6: Optimal infix alignments for WF-net N; (Figure 4.2a) and trace infix (f, e)

For example, reconsider Ny (cf. Figure 4.2a) and the trace infix o = (f, e). Figure 4.6
depicts two corresponding optimal infix alignments; both alignments have cost zero ac-
cording to the standard cost function. Alignment 5 contains one invisible model move
and two synchronous moves, while g contains solely synchronous moves. When using
the relevant markings as defined in Equation (4.2), we cannot compute -5 because the
corresponding set of relevant markings does not include a marking enabling t5, which is
executed first in v5. Note that only one reachable marking exists that enables 5, i.e.,
[ps] € RM (Ny, [p1]) with (Ny, [pg]) [t5). Marking [pe] is contained in the set of relevant
markings as specified in Equation (4.1); however, it is not contained in the set specified
by Equation (4.2). Hence, using the relevant markings as specified by Equation (4.1),
we can find both shown alignments, and when using the relevant markings as specified
by Equation (4.2), we can only find ~¢ for the given example. In short, when using the
relevant markings as specified in Equation (4.2), the optimal alignments found do not
start with invisible model moves. However, as mentioned above, we are only interested
in one optimal alignment for a given trace fragment and process model in the context of
this thesis, which is why we assume Equation (4.2) in the following when referring to the
extended baseline approach.

Consider the same WF-net as before, i.e., N7 (Figure 3.15 on page 77), and the trace
infix/postfix o = (b, d, f). The relevant markings using the extended baseline approach
are as follows. For the sake of comparability with the baseline approach introduced
in Section 4.3.1, we cancel non-relevant markings according to the extended baseline
approach.

RM(Ny, M™) = { Ms=[p2, ps), Ms=[p2,ps], Ms=I[p4, ps],
Mr7=(pr,ps], Ms=I[ps,po],
Miso=[p12]}

Figure 4.7 shows the auxiliary WF-net when using the relevant markings, as defined
above. We mark out transitions that are not relevant to the extended baseline approach
for comparability. Observe that the auxiliary WF-net using the extended baseline ap-
proach contains only six additional transitions. For instance, the transition ¢} is not
relevant as the marking [ps, p4] enables only transition ¢3, which is labeled ¢. Since a ¢ is

91

Chapter 4. Alignments for Trace Fragments

Figure 4.7: Auxiliary WF-net Ni generated by the baseline approach with subsequent
filtering for WF-net Ny (Flgure 4.2a) and the trace infix/postfix (b, d, f); blue
highlighted elements (i.e., places, transitions, arcs) were added to N; (partly
adapted from [180, Figure 8])

not contained in the given trace postfix, i.e., ¢ ¢ (b,d, f), we do not include transition ¢
because marking [ps, pa] is considered not relevant.

Comparing the baseline approach (cf. Section 4.3.1) and the extended baseline approach
presented in this section, note that the auxiliary WF-net constructed using the extended
baseline approach is tailored to the provided trace infix/postfix. Thus, for each trace
infix/postfix alignment, the SPN has to be recalculated. In comparison, the auxiliary
WF-net constructed using the baseline approach is independent of any trace infix/postfix
because it is solely built from the set of reachable markings, cf. Section 4.3.1. Never-
theless, depending on the provided trace infix/postfix, the auxiliary WF-net constructed
from the extended baseline approach may contain significantly fewer transitions leading
to a more efficient alignment computation since the resulting SPN’s state space is smaller
when using a smaller auxiliary WF-net.

4.3.3. Process-Tree-Based Approach

This section proposes a third approach for calculating relevant markings. The proposed
process-tree-based approach assumes process trees as input, i.e., a subclass of sound WEF-
nets (cf. Section 3.3.2). The critical difference between the two baseline approaches (cf.

92

4.8. Computing Infix & Postfiz Alignments

Sections 4.3.1 and 4.3.2) is that the process-tree-based approach calculates relevant mark-
ings directly from the tree structure. In contrast, the baseline approaches exhaustively
calculate all relevant markings on which the extended baseline approach subsequently
applies filtering.

Motivating Example

ts t7

Figure 4.8: Process tree Ay, corresponding to WF-net Ny (Figure 4.2a); below each leaf
vertex the corresponding transition from N is indicated

Reconsider the WF-net N; depicted in Figure 4.2a (page 83) and the trace postfix
o = (b,d, f). Further, reconsider the set of reachable markings RM (N7, M ™) depicted
in Section 4.3.1. Moreover, note that N7 can also be represented as a process tree,
as shown in Figure 4.8. The extended baseline approach (cf. Section 4.3.2) considers
marking M = [pe, ps] as relevant because it enables transition ¢o with A(t2) =b € o (cf.
Figure 4.7); further, Ms enables t3 with A(t3) = ¢ ¢ . Consider the auxiliary WF-net
Ny, constructed using the relevant markings from the extended baseline approach, cf.
Figure 4.7. Assume we fire t} to reach the relevant marking My = [p2,ps] and next
transition to with A\(t2) =b € 0.

t

t
(N{W,Pf)) — (N{QW [Pzam]) = (N{Wv [P3,P4])

Starting in relevant marking My = [p2, p3] works well initially because we can directly
align o’s first activity b by executing ¢o with A(¢2) = b. However, upon executing tran-
sition to, we reach marking [ps, ps]. In this marking, only transition ¢3 is enabled with
A(ts) = ¢ ¢ 0. Thus, when computing an optimal postfix alignment, we need to execute
next a visible model move on transition ¢3 to proceed in the model part of the corre-
sponding SPN. The execution of this visible model move would increase the alignment
cost by one, according to the standard cost function.

Alternatively, consider the relevant marking M3 = [ps, p5]. From marking M3 we can
align activity b as well by executing to with A(t3) = b = o(1). Further, we can, after firing
to, immediately execute transition t4 with A\(¢4) = d = 0(2). Thus, we avoid the invisible

93

Chapter 4. Alignments for Trace Fragments

model move on t3 when starting in marking M3 instead of My. Therefore, we know in
this case that marking Ms, considered relevant according to the baseline approaches (cf.
Sections 4.3.1 and 4.3.2), is not part of any optimal postfix alignment because marking
M3 is always be favored over Ms when computing a postfix alignment for N; and o.
Thus, M5 can be removed from the set of relevant markings. Similar considerations lead
to an exclusion of marking M7 = [p7, ps], i.e., transition t/.

As shown above, identifying markings that cannot be part of an optimal alignment is
not trivial for WF-nets, as a semantic analysis is required to identify the implications
starting in a particular relevant marking has. However, when considering process trees,
we can exploit their hierarchical structure to calculate relevant markings directly. More-
over, we obtain potentially fewer relevant markings compared to the baseline approaches.
Recall that less relevant markers generally lead to a faster alignment calculation.

Figure 4.9: Auxiliary WF-net Ni’ generated by the process-tree-based approach for Ny
(Figure 4.2a) and trace infix/postfix (b, d, f); blue highlighted elements (i.e.,
places, transitions, arcs) were added (partly adapted from [180, Figure 8])

Figure 4.9 shows the auxiliary WF-net N’ — that the process-tree-based approach
constructs. Compared to WF-net N. {mm constructed by the extended baseline approach
(cf. Figure 4.7), two transitions less are included, i.e., t5 and ¢;. As stated before, the
less complex the provided auxiliary WF-net, the less complex is the corresponding SPN,
and eventually the less complex is the optimal infix/postfix alignment computation.

94

4.8. Computing Infix & Postfiz Alignments

Overall Algorithm

Figure 4.10 provides an example of the process-tree-based approach applied to process
tree Ay, (cf. Figure 4.8) and trace infix/postfix (b,d, f). The process-tree-based ap-
proach generates relevant markings bottom-up. A relevant marking is generated for each
leaf vertex whose label is contained in the provided infix/postfix trace. Figure 4.10 ex-
emplifies this approach for the leaf vertex labeled b that represents transition ¢, in the
corresponding WF-net N; (cf. Figure 3.15). Since the label A(t2) = b € (b, d, f), we start
constructing the relevant marking by considering the preset of transition o, i.e., ot (cf.
Figure 4.10a). Next, we recursively consider the parent, cf. Figure 4.10b. As this is a
parallel operator, we must also consider the other child vertices to obtain a valid marking
that is reachable from the WF-net’s initial marking. The only child vertex not considered
is labeled ¢, cf. Figure 4.10c. Since ¢ ¢ (b, d, f), we only consider the postset of t3 because
we want to avoid executing t3. Next, we recursively go up the hierarchy and create a
marking for the subtree rooted at the parallel operator, i.e., oty U tge, cf. Figure 4.10d.
Finally, we reach the root operator, cf. Figure 4.10e. Since the root vertex represents
a sequence operator, the calculated marking for the subtree considered before is also a
marking of the entire tree, and we store the relevant marking [p2, ps]. Subsequently, we
start all over from the next leaf vertex labeled b, d, or f.

Algorithm 4.1: Process-tree-based approach for calculating relevant markings
for process trees, i.e., block-structured WF-nets
input : A= (V,E, X \,r,<) € P, // process tree
Ny = (PA,TA,FA,)\A,M};"it7M/j\inal), // corresponding WF-net for process tree A
o € A* // trace infix/postfix
output: RC RM(NA,MXL“) // relevant markings

begin
1 R+ {} // initialize the set of relevant markings
A« {a cA I a < O'} // store all activity labels from o in set A

forall v € {’U S leaves(A) |)\(’U) S A} do // iterate over leaf vertices v whose
label is contained in o

4 R+ RUBuMG (A, v, undefined, Ny, 0, A) // BuMG returns relevant

markings R € R,‘\/l(;\"‘,\,ﬂlr'\"’”) such that markings in R enable the transition

representing v

5 return R U {M/]\‘inal} // adding the final marking j\]:f\mal is necessary for

postfix alignments to enable skipping the entire model part

Algorithm 4.1 formally presents the proposed process-tree-based approach in detail.
As input, a process tree A, a corresponding WF-net representing the tree A, and the
trace infix/postfix o. The algorithm returns the set of relevant markings R. First, the
algorithm initializes the set R (line 1) and extracts the activity labels from the provided
trace infix/postfix o into the set A (line 2). In lines 3 and 4, the actual computation takes
place. For each leaf vertex whose label is contained in the provided trace infix/postfix
(line 3), the algorithm BuMG is called. This algorithm calculates in a bottom-up fashion

95

Chapter 4. Alignments for Trace Fragments

Parallel operator te tr
= recursively
process children
(a) Starting at a leaf vertex whose label is (b) Considering the leaf vertex’s parent;
contained in the given infix/postfix since it is a parallel operator, we must

consider the other child vertices

c ¢ (bd, f) =tse ¢4 tr
(c) Since c is not in the infix/postfix, only (d) Creating a valid marking for the WF-
ts’s postset is considered net part representing this subtree

oty Utze = [pa, ps]

(e) The root vertex is reached; the calcu-
lated relevant marking is [p2, ps]

Figure 4.10: Example of the process-tree-based-approach calculating the relevant marking
[p2, ps] for process tree Ay, and trace infix/postfix (b, d, f)

96

4.8. Computing Infix & Postfiz Alignments

for the provided leaf vertex a marking from the corresponding WF-net that enables the
transition representing the leaf vertex. We introduce the BuMG algorithm in detail below.
Finally, the calculated set of relevant markings is returned (line 5). Note that adding the
final marking is needed only for postfix alignments because according to Definition 4.1
(85), postfix alignments must end in the final marking of the provided WF-net.

Bottom-up Marking Generation Algorithm BuMG

Algorithm 4.2 presents the recursively defined bottom-up marking generation algorithm
BuMG that is called in Algorithm 4.1 line 4. BuMG calculates for a given leaf vertex
when called from Algorithm 4.1, relevant markings that enable the transition representing
the provided leaf vertex v. In general, Algorithm 4.2 assumes as input:

the process tree A as considered in Algorithm 4.1,

a currently considered vertex v of A as determined in Algorithm 4.1 line 3,

a child vertex v" of vertex v (note that v" might be undefined),

a WF-net N, representing the tree A as considered in Algorithm 4.1,

a set of markings R that might not necessarily be reachable markings, i.e., R C
RM(Np, M) does not hold in general, because BuMG is a recursively defined
algorithm, and

6. the set of activity labels A as calculated in Algorithm 4.1 line 2.

O W=

Starting from a leaf vertex v whose label is contained in the trace infix/postfix, when
being called in Algorithm 4.1 line 4, BuMG recursively creates relevant markings that
enable the corresponding transition in Ny. To this end, the algorithm recursively moves
up the tree hierarchy from the initially provided leaf vertex v until the root vertex r is
reached (line 9). First, all places having an arc towards transition ¢,, which represents
the leaf vertex v (line 2), are added to a marking, which is added to the set of relevant
markings (line 3). Note that this marking, although it enables transition ¢, is not nec-
essarily a reachable marking from the initial marking of WF-net N,. Thus, the marking
added must be further enriched by other places.

Assume v has a parent vertex. Next, we recursively call Algorithm 4.2 on v’s parent,
i.e., parent,(v) (line 10). We keep going up the tree hierarchy (line 10) until either (1)
we reach the root vertex (line 9) or (2) we reach an inner vertex labeled with a parallel
operator A (line 4). In case (1), we return R. Further, at this point, all markings in R are
reachable markings from Nj’s initial marking. In case (2) (line 4), i.e., we reach an inner
vertex labeled with the parallel operator, we know that the markings generated so far in
R are not complete, i.e., these markings cannot be reached from Nj’s initial marking.
Thus, we have to consider all subtrees beneath except the one from which we reached v
with (line 5).* To this end, we call the Top-down marking generation algorithm TdMG
(line 6), which we present later in Algorithm 4.3. As input, algorithm TdMG is provided

4If we ignored the inner vertex labeled with the parallel operator, we would not get any markings
reachable from the initial marking of Ny because the semantics of the parallel operator defines that
any subtree under it can be executed concurrently, respectively interleaving. The markings generated
so far only consider one subtree beneath the reached vertex labeled with the parallel operator. Thus,
we must extend the markings to include tokens from places representing parts of the other subtrees
that we have ignored so far.

97

Chapter 4. Alignments for Trace Fragments

Algorithm 4.2: Bottom-up marking generation (BuMG)
input : A=(V,E, X \r,<)€P,

v eV, // currently considered vertex
v eVu {undeﬁned}, // vertex to be ignored with v’ € childp (v)
Ny = (PA, Tay Fa, A, Mf\nit, anal), // WF-net representing A
RC M(PA), // (partially complete) relevant markings
ACA // activity labels contained in trace infix/postfix o
output: R C M(PA) // (partially complete) relevant markings
begin
1 if /\(’U) € A then // v is a leaf vertex of A with a visible label
2 let t, € T be the transition representing v € V'
3 R+ {[p € ot,]} // initialize R with a marking enabling t,
4 else if /\(’U) = A then // v represents a parallel operator
5 forall v; € Child/\(’u) with Vj 75 v' do // iterate over the children of v
without v’; thus, the siblings of v’
6 L Rvj +— TdMG (A, NA,’U]',A, true) // cf. Algorithm 4.3
7 R+ RxR,, x-xXRy, // Cartesian product because A(n) = A
if v =r then // vertex v is the root node of A
9 L return R
else // vertex v is not the root of A
10 L return BuMG (A,parentA(U),v,NmR, A) // call BuMG on v’s parent

the tree A, the corresponding WF-net N, the vertex v;, the set of activity labels from the
trace infix/postfix A, and a Boolean flag indicating if the marking reached after executing
the part in WF-net Nj representing the subtree should be included. Algorithm TdMG
returns a set of markings, which we have to assemble using the Cartesian product (line 7).

In summary, Algorithm 4.1 calls BuMG for any leaf vertex labeled with a label in
the provided trace infix/postfix. The algorithm BuMG is responsible for creating a
relevant marking that enables at least the transition representing the provided vertex
by Algorithm 4.1 (cf. line 4 in Algorithm 4.1). To this end, BuMG creates a marking
containing all places having an arc towards the determined transition. Next, starting from
the provided leaf vertex, BuMG recursively goes up the hierarchy in the tree until the
root vertex is reached and the marking is finally returned. However, if on the bottom-
up walk in the tree hierarchy a vertex labeled with the parallel operator is detected,
BuMG invokes the Top-down marking generation algorithm TdMG on the subtrees not
yet covered. This step is required to ensure that the markings eventually returned are
reachable from Nj,. When reaching the root vertex, BuMG returns the set of relevant
markings for the vertex provided by Algorithm 4.1.

98

4.8. Computing Infix & Postfiz Alignments

Algorithm 4.3: Top-down marking generation (TdMG)
input : A=(V,E, X \r,<)€P,

Ny = (PA, Tay Fa, AA, Mf\mt, M/J;inal)7 // WF-net representing A
v E V, // currently considered node
ACA // activity labels contained in trace infix/postfix o
addFinalMarking € B // Boolean flag
output: R C M(P,)
begin
1 if v € leaves(A) then
2 let t, € T\ be the transition representing vertex v
3 R+ {}
4 if A(v) € A then
5 | R RU{[peet,]} // t,’s label is in the trace infix/postfix
if addFinalMarking then
7 | R« RU{[petyo]}
8 return R
9 else // r represents an operator, i.e., A(r) € {—,A, O, x}
10 let (v1,...,vk) = childa(r)
11 if A(v) = — then
12 return TdMG(A, N, vy, A, false) U ... U
L TdMG (A, N,vi_1, A, false) U TAMG(A, N, vg, A, addFinalMarking)
13 if A(v) = A then
14 L return TdMG(A, N, vy, A, true) x ... x TAMG(A, N, v, A, true)
15 if AM(v) € {0, x} then
16 return TdMG(A, N, vy, A, addFinalMarking) U
L TAMG(A, N, vq, A, false) U ... U TdMG(A, N, v, A, false)

Top-down Marking Generation Algorithm TdMG

Algorithm 4.3 presents the recursively specified Top-down marking generation algorithm
TdMG, which is called in Algorithm 4.2 line 6. As the name indicates, algorithm TdMG
moves from a given vertex v down the tree hierarchy until leave vertices are reached. As
input, TdMG is provided the process tree A, the corresponding WF-net Ny, a starting
vertex v € V, the set of activity labels A that are contained in given trace infix/postfix,
and a Boolean flag addFinalMarking indicating if the final marking from the WF-net
part representing the subtree rooted at v should be incorporated.

When TdMG eventually reaches a leaf vertex (line 1), TdMG only returns a marking
if either the transition representing the vertex v is labeled with a label from A (line 5) or
if the Boolean flag addFinalMarking is true (line 7). In all other cases, TdMG returns
the empty set, i.e., R = ().

When TdMG is called by Algorithm 4.2 (line 6), vertex v is not a leaf. Thus, we enter

99

Chapter 4. Alignments for Trace Fragments

the else part starting at line 9. First, we retrieve the child vertices of v (line 10). Next,
we make a case distinction based on the operator of v, i.e., the label of v.

1. If v is labeled with a sequence operator (line 11), we recursively execute TdMG on

the child vertices of v (line 12). Note that we set the Boolean flag addFInalMarking
to false for vertices vy, ...,vx_1. Only for the last child vertex vy, we set the flag
according to the input, i.e, addFinalMarking. Note that when TdMG is called from
BuMG (cf. Algorithm 4.2 line 6), the flag addFinalMarking = true. Thus, if non of
the subtrees below vertex v contains leaf vertices that are labeled with labels from
A, only the final marking of the WF-net part that represents the subtree rooted at
vy, 1s returned.

. If v is labeled with a parallel operator (line 13), we recursively execute TdMG on

the child vertices of v (line 14). Note that we set the Boolean flag addFInalMarking
to true for all child vertices. This is required to ensure skipping the parallel branch.
Thus, if non of the subtrees below vertex v contains leaf vertices that are labeled
with labels from A, the final marking contains places from N, representing the end
of each parallel branch.

If v is labeled with a exclusive-choice or loop operator (line 15), we recursively
execute TdMG on the child vertices of v (line 16). In case we deal with a loop
operator, we know that k& = 1 because a vertex labeled with a loop operator has
always two child vertices, according to Definition 3.28 (page 68).° Thus, we set
the Boolean flag addFInalMarking for the first subtree to true while for the other
subtree to false. In case neither the first nor the second subtree below v contains a
transition labeled with a label from A, we start in the final marking of the WF-net
part that represents the first subtree, i.e., do part.

If we deal with a exclusive-choice operator, we have in general k child vertices to
consider. Since we can freely choose which subtree to execute, we must ensure to
include at least the corresponding final marking of the WF-net part representing
one of the k subtrees. For the sake of simplicity, we always choose the subtree
rooted at v;.%

In conclusion, TdMG is only called from BuMG (cf. Algorithm 4.2 line 6) when a
parallel operator is reached during the recursive traversing from a leaf vertex to the root
vertex. If a parallel operator is hit, BuMG calls TdMG for each subtree beneath the
vertex labeled with the parallel operator individually. While BuMG recursively goes up
in the tree hierarchy, TdMG goes down the hierarchy starting from a provided vertex
until leaf vertices are reached. In general, TdMG is required to ensure the markings
eventually returned by BuMG are reachable markings from the initial marking M} of
Ny, which represents the provided tree A.

5Recall that the first subtree represents the do part and the second subtree the redo part. Further,
executing the redo part requires another execution of the do part, cf. Definition 3.29.

SNote that any but at least for one vertex the Boolean flag baddFinalMakring must be set to true. The
decision for the first subtree was made for the simple reason that we can handle the cases for the loop
and the exclusive-choice operator in the same way.

100

4.4. Evaluation

Example

Here, we present an extensive example of the process-tree-based approach. Reconsider the
example provided at the beginning of Section 4.3.3. The WF-net depicted in Figure 3.15
(page 77) represents the process tree Ay, shown in Figure 4.8. Below each leaf vertex,
the corresponding transition in WF-net NV; is displayed. Further, reconsider the trace
infix/postfix o = (b, d, f).

First, we call Algorithm 4.1 (page 95). As input, we provide tree Ay,, Ny, and o.
First, the set of labels from o is calculated, i.e., A = {b,d, f}. Next, for transitions to, t4,
and t7, algorithm BuMG (cf. Algorithm 4.2) is called because A(t2), A(t4), A(t7) € A (ct.
Algorithm 4.1 line 3). Subsequently, we exemplify the call of BuMG for transition ¢;.

1. Call: BuMG(ANl,m_g,undeﬁned,]\h,@,Ao)
Calling algorithm: Algorithm 4.1 (line 4)
Intermediate result: R = {[ps]}

2. Call: BuMG (ANl V3.4, 042, N1, {[ps]} ,A)
Calling algorithm: Algorithm 4.2 (line 10)
a) Call: TdMG(ANl,Nl,m_l,A, true)

Calling algorithm: Algorithm 4.2 (line 6)
Intermediate result: R = {[po]}

Intermediate result: R = {[ps,po]} = {[ps]} x {[po]} (at line 7)

3. Call: BuMG(ANl,U2_4,U3.4,N1, {[p87p9]} :AU)

Calling algorithm: Algorithm 4.2 line 10)
Intermediate result: R = {[pg,pg]}

4. Call: BuMG(ANl,Ul,UQA,Nh {[p8,p9]} aA‘7>

Calling algorithm: Algorithm 4.2 line 10)
Final result: R = {[pg,pg}}

Above, we have shown the call of BuMG for transition ¢7. Algorithm BuMG returns
one relevant marking, i.e., [ps,pg]. Calling BuMG also for transition o would yield
the marking [ps,ps] and for transition ¢4 would yield marking [p4, ps]. Thus, we obtain
three relevant markings. When eventually adding the final marking to the set of relevant
markings (cf. Algorithm 4.1), we end up with four relevant markings that are used to
create the auxiliary WF-net shown earlier in Figure 4.9 (page 94).7

4.4. Evaluation

This section presents an experimental evaluation of the proposed computation of infix and
postfix alignments. Aim of the evaluation is demonstrate the applicability of the proposed

"Recall that the final marking of the provided WF-net is only considered a relevant marking if a postfix
alignment is calculated.

101

Chapter 4. Alignments for Trace Fragments

approaches on real-life event logs. Further, we aim at comparing the three proposed ap-
proaches for determining relevant markings, i.e., the baseline approach (cf. Section 4.3.1),
the extended baseline approach utilizing subsequent filtering (cf. Section 4.3.2), and the
process-tree-based approach (cf. Section 4.3.3). Section 4.4.1 outlines the experimental
setup, followed by the presentation of results in Section 4.4.2; and finally, a discussion of
the findings and threats to validity in Section 4.4.3.

4.4.1. Experimental Setup

We use publicly available event logs capturing real business processes: the BPI Challenge
logs from 2020—Prepaid Travel Cost log (BPI Ch. 2020) [232], 2012 (BPI Ch. 2012) [228],
2019 (BPI Ch. 2019) [231], and the Road Traffic Fine Management log (RTFM) [56].
We sampled up to 10,000 trace infixes (if possible) from the full traces for each log.
Further, we discovered a process model for each log using the Inductive Miner infrequent
algorithm [120] from the original event log using a noise threshold of 0.9. We choose
the Inductive Miner infrequent to obtain a process tree, i.e., a block-structure WF-net,
and thus being able to compare all three approaches. Further we made use of the noise
threshold to obtain a process model not fully supporting the provided event log and thus
to obtain alignments indicating deviations.

4.4.2. Results

This section presents the findings. Figure 4.11 shows the computation time of the rel-
evant markings using the three proposed techniques (cf. Sections 4.3.1 to 4.3.3). Recall
that the baseline approach (cf. Section 4.3.1) calculates relevant markings only from the
provided WF-net. Thus, the time spent by the baseline approach is independent of the
infix and, hence, the infix length. Therefore, a horizontal blue line can be seen in the
plots shown in Figure 4.11. For the two other approaches, i.e., the extended baseline
approach (cf. Section 4.3.2) and the process-tree-based approach (cf. Section 4.3.3), the
time spent differs for each considered trace infix. We grouped these time values based on
the infix length for better visibility. We observe for both approaches, i.e., the extended
baseline approach and the process-tree-based approach, that the infix length is relatively
independent of the time spent determining the relevant markings. This observation is,
however, not surprising since, for the extended baseline approach, all reachable markings
are first calculated, which is independent of the provided infix, and then the subsequent
filtering is applied. Since the extended baseline approach performs subsequent filtering,
the approach takes longer on average than the baseline approach. This phenomenon can
be observed for all four logs. Further, observe that the whiskers of the box plots for the
extended baseline approach go lower than those for the baseline approach. Theoretically,
this observation should not occur since the extended baseline approach performs identi-
cal computations plus additional filtering. This phenomenon can only be explained by
uncontrollable load fluctuations or other influences on the computer system in which we
performed the experiments. Nevertheless, the interquartile range of the extended baseline
approach is always above the time spent by the baseline approach. Overall, the three
approaches have similar times spent in the millisecond range. Further, we observe that

102

4.4. Evaluation

the process-tree-based approach is the fastest on average since it does not exhaustively
calculate all reachable markings compared to the baseline approaches.

Figure 4.12 shows the time spent for computing optimal infix alignments for each pro-
posed approach. The time values shown cover all four steps as introduced in Section 4.3
and Figure 4.4; thus, ranging from determining relevant markings, i.e., the times indi-
cated in Figure 4.11 (step la), generating the auxiliary WF-net (step 1b), creating the
SPN (step 2), solving the shortest path problem (step 3) until the postprocessing (step
4). In most cases, the process-tree-based approach outperforms the other approaches.
However as we observed in Figure 4.11, the differences among the three approaches in
computing the relevant markings and thus also the generation of the auxiliary WF-net

— Baseline approach (cf. Section 4.3.1)
I Extended baseline approach (cf. Section 4.3.2)
B Process-tree-based approach (cf. Section 4.3.3)

EEHH SEXERY
= Hﬁ“

LLLL&&

o
=3
a

o
9
@

o
Q
[N

Preprocessing Duration (in seconds)
o
°

Preprocessing Duration (in seconds)

o
=3
1S3

19-34 35-51 52-67 68-83 84-100 -94 95-186 187-278 279-370 371-462 463-554
Infix Length Infix Length
(b) Event log BPI Ch. 2012 (¢) Event log BPI Ch. 2019

SRR 144040
T ERN

1-3 4-5 6-8 9-10 112 13-15 1-3 4-5 6-7 8-9 10-11 12-14
Infix Length Infix Length

Preprocessing Duration (in seconds)
Preprocessing Duration (in seconds)
o o o o o
© o © o o
S 2 2 8 B8
& 5 @ S o

o
o
=1
o

(d) Event log BPI Ch. 2020 (e) Event log RTFM

Figure 4.11: Time spent in seconds for determining relevant markings, i.e., step la (cf.
Section 4.3 on page 86), using the three proposed approaches (cf. Sec-
tions 4.3.1 to 4.3.3)

103

Chapter 4. Alignments for Trace Fragments

B Baseline approach (cf. Section 4.3.1)
¥ Extended baseline approach (cf. Section 4.3.2)
B Process-tree-based approach (cf. Section 4.3.3)

(a) Legend

35

® =)
w
o

=)

IS

Consumed Time (in seconds)
)
o o o

Consumed Time (in seconds)

[N}

¢ =
+

=)
o
o

]

19-34 3551 52-67 68-83 84-100 3-94 95186 187278 279370 371462 463554
Infix Length Infix Length
(b) Event log BPI Ch. 2012 (c¢) Event log BPI Ch. 2019
1.2 -

025

210 r n

é €020

8 8

8 0.8 8

£ £015

E 0.6 2

= [

o

8 04 E 0.10

5 5

2 2

§o02 E I §oos ¥+

0.0 I - 0.00 ;
13 4-5 6-8 9-10 1-12 13-15 13 45 67 8-9 10-11 12-14
Infix Length Infix Length
(d) Event log BPI Ch. 2020 (e) Event log RTFM

Figure 4.12: Time spent in seconds for calculating optimal infix alignments, i.e., steps
1-4 (cf. Section 4.3), using the three proposed approaches for calculating
relevant markings (cf. Sections 4.3.1 to 4.3.3) (partly adapted from [180,
Figure 8|)

and the SPN are marginal. Therefore, we conclude that the state space of the SPN
when using the auxiliary WF-net constructed with the relevant markings computed by
the process-tree-based approach has the smallest state space and hence the overall com-
putation time is lowest. Further, we observe that the longer the infix size, the longer it
takes to compute a corresponding optimal infix alignments.

Figure 4.13 shows the number of relevant markings computed per approach. We observe
that the number of relevant markings computed by the process-tree-based approach is,
on average, lowest compared to the baseline approach. Further, we observe a significant
difference regarding the number of relevant markings between the baseline and extended

104

4.4. Evaluation

— Baseline approach (cf. Section 4.3.1)
I Extended baseline approach (cf. Section 4.3.2)
B Process-tree-based approach (cf. Section 4.3.3)

(a) Legend
40
20 35
» » 30
£15 £
2 225
© o
E <§-' 20
§ 10 §
H 315
Q Q
14 o
10
5
5
0 0 — — — — — —
2-18 19-34 35-51 52-67 68-83 84-100 3-94 95-186 187-278 279-370 371-462 463-554
Infix Length Infix Length
(b) Event log BPI Ch. 2012 (c) Event log BPI Ch. 2019

>
N N
S a

Relevant Markings
3

Relevant Markings
&

o

o

1-3 4-5 6-7

T L

6-8 9-10 11-12 13-15 8-9 10-11 12-14
Infix Length Infix Length
(d) Event log BPI Ch. 2020 (e) Event log RTFM

Figure 4.13: Number of calculated relevant markings using the three proposed approaches
(cf. Sections 4.3.1 to 4.3.3)

baseline approaches. In short, the number of relevant markings and the associated com-
plexity of the auxiliary WF-nets used to construct the SPNs is the main reason for the
performance differences in computation time between the approaches.

Regarding the correctness of the proposed approaches determining relevant markings,
we calculated in the conducted experiments the costs of each infix alignment. We note
that for each trace infix the computed optimal infix alignment has the same cost regardless
of which of the three approaches we use. Since, the baseline approach is guaranteed
to be correct since it considers all reachable markings as relevant markings, the made
comparison regarding the costs is feasible although no general conclusions can be drawn
beyond the event logs used.

105

Chapter 4. Alignments for Trace Fragments

4.4.3. Discussion & Threats to Validity

The conducted experiments indicate the applicability of infix and postfix alignments to
real-world event logs. We primarily focused on the computation time, i.e., for determining
relevant markings and for computing optimal infix alignments overall. As stated in
Section 4.4.2, the data points for the extended baseline approach should theoretically
never be below the baseline approach. However, we observe this phenomenon in some
instances. These observations indicate that there are slight fluctuations regarding the
calculation period when computing relevant markings. As mentioned in Section 4.4.2,
these fluctuations cannot be controlled and must be considered measurement inaccuracies.

We solely used process trees as input models for all approaches. Recall that only the
process-tree-based approach requires process trees. Further experiments could analyze
the differences between the baseline and the extended baseline approach when using WF-
nets that cannot be represented as a process tree. Moreover, we use one process model
per event log in the conducted experiments. In particular, the degree of parallelism of the
process model provided is a significant factor for the computing time as the state space
grows exponentially. The baseline approaches, in particular, would have a significant
disadvantage compared to the process-tree-based approach in the case of a high degree
of parallelism in the process model provided, as they have to calculate all reachable
markings. Since we only use one process model per event log, this effect can only be
observed to a limited extent in the experiments presented. Synthetic experiments, in
which the degree of parallelism in the given process model is systematically changed,
would be an option to show that the baseline approaches perform increasingly worse
than the process-tree-based approach as the degree of parallelism increases.

4.5. Conclusion

Alignments are a state-of-the-art conformance checking technique [45, 46]. So far, align-
ments were defined for complete traces—most process mining approaches solely focus
on complete traces—and trace prefixes [6]. This chapter extended alignments by infix
and postfix alignments. We provided a formal definition and approaches to calculate in-
fix/postfix alignments. The proposed calculation of infix/postfix alignments builds upon
established approaches in alignment computation. Thus, we utilize the SPN and the
reduction of computing optimal alignments to a shortest path problem; reconsider Fig-
ure 4.1 (page 82). While for complete and prefix alignment, the starting marking in the
provided WF-net is clear (i.e., the WF-net’s initial marking), we must find the starting
marking when computing infix and postfix alignments. To this end, we create an auxiliary
process model that allows starting from its initial marking to reach via silent transitions
potential marking representing the start of the model part in an optimal infix/postfix
alignment. We presented three approaches: a baseline approach, an extended baseline
approach, and an process-tree-based approach specifically for block-structured WF-nets
respectively process trees. The conducted experiments indicate that the process-tree-
based approach outperforms the baseline approaches since it creates overall a lower num-
ber of relevant markings. However, recall that the process-tree-based approach solely
supports process trees, while the baseline approaches support arbitrary WF-nets.

106

Part 1I.

Incremental Process Discovery

107

Chapter 5.

Incremental Process Discovery
Framework

Parts of this chapter are based on published work.

e Sections 5.1 to 5.4 are largely based on D. Schuster, S. J. van Zelst, and
W. M. P. van der Aalst. Incremental discovery of hierarchical process
models. In F. Dalpiaz, J. Zdravkovic, and P. Loucopoulos, editors,
Research Challenges in Information Science, volume 385 of Lecture Notes
in Business Information Processing, pages 417-433. Springer, 2020.
doi:10.1007/978-3-030-50316-1_ 25 [174].

e Section 5.6 is largely based on D. Schuster, E. Dommnitsch, S. J. van Zelst,
and W. M. P. van der Aalst. A generic trace ordering framework for
incremental process discovery. In T. Bouadi, E. Fromont, and
E. Hiillermeier, editors, Advances in Intelligent Data Analysis XX, volume
18205 of Lecture Notes in Computer Science, pages 264-277. Springer,
2022. doi:10.1007/978-3-031-01333-1_ 21 [179].

This chapter introduces an incremental process discovery framework that allows the
gradual discovery of a process model from event data. The incremental aspect refers to the
step-by-step addition of traces to a process model that is considered under construction.
Section 5.1 introduces the overall framework and details the inputs and outputs. The
two subsequent chapters introduce instantiations of this framework; Section 5.2 presents
a naive baseline instantiation while Section 5.3 presents a more advanced approach. Sub-
sequently, Section 5.4 evaluates the proposed instantiations. Section 5.5 provides an
illustrative example showcasing the proposed incremental approach’s advantage over a
conventional process discovery algorithm. Finally, Section 5.6 deals with trace ordering
effects in incremental process discovery.

5.1. Introduction to the Framework

This section introduces the incremental process discovery framework that provides the
foundation of the subsequent chapters. Section 5.1.1 presents its inputs and outputs,

109

Chapter 5. Incremental Process Discovery Framework

Incremental Process Discovery Approach

~ \ . ;
Previously added traces Configuration Updated added traces
AC A* Paranfters A = AU {opeat}
Simplified with A C L(A) xs with 4’ C L(A)
event log
L® € M(A*) °
- -
= User
o T Incremental
Trace pool (User-)selected trace I.’TOCGSS Extended process tree
ISUX CA* > tobe added next — LN NeP
Onext € LsuX Algorithm {U'rwrlrb} UA C L(Al)
- (IPDA) ;
Manually
created
traces I—)
X C A* (Initial) process tree
Ty AeP
< with opent ¢ L(A) and
2 ACL(A)
User -

Figure 5.1: Input-output perspective of the incremental process discovery framework

while Section 5.1.2 discusses the underlying motivation and the resulting opportunities.

5.1.1. Input-Output Perspective

Figure 5.1 illustrates the incremental process discovery framework focusing on the input-
output perspective. Central to this framework is an Incremental Process Discovery Al-
gorithm (IPDA), which assumes three inputs:

1. an (initial) process tree A € P that is gradually extended during execution of the
incremental process discovery approach!,

2. previously added traces A C A* that have been added to the process tree in previous
iterations, and

3. a trace to be added next o,y € A* to process tree A.

The trace to be added next o,e;; can be selected by a user or by an algorithmic
approach from the trace pool. The trace pool originates from a provided simplified event
log L* € M(A*) and manually created traces X C A*, cf. Section 5.1. Further, all

IThe initial process tree in the first iteration can be as simple as containing only a single labeled or a
silent activity.

110

5.1. Introduction to the Framework

previously added traces contained in A are assumed to fit the current process model.
Thus, A CL(A).

The IPDA takes the three described input and modifies the provided process tree A
into A’ such that previously added traces A and the selected trace o, are fitting A’.

{Onext} UA CL(A)

Process tree A’ is then used within the subsequent incremental execution as an input.
Further, trace 0 ,q. is added to the set of previously added traces. The extended set A’
is used as an input in the subsequent incremental execution, too. Finally, note that the
IPDA might offer additional configuration parameters that a user can specify. However,
these configuration parameters are specific to the particular IPDA emplyoed and will not
be discussed further here. Subsequently, we formally define an IPDA.

Definition 5.1 (Incremental Process Discovery Algorithm (IPDA))
The function
ipda : P x A* x P(A*) = P

is an IPDA if for any (initial) process tree A € P, trace o
added traces A C A* with A CIL(A) it holds that

e A*, and previously

next

Au{o,.} € L(ipda(A,o,,,,A)).

next

If AZ L(A), function ipda is undefined.

5.1.2. Motivation & Opportunities

Providing the option to discover process models in an incremental fashion enables new op-
portunities for users. First, users can observe how the discovered process model evolves
during the overall process discovery phase.? Thus, users see intermediate discovered
process models compared to automated process discovery, which comprises all conven-
tional process discovery algorithms and also automated non-conventional approaches (cf.
Figure 1.5). Observing intermediate discovered process models may help users better
understand why the discovery approaches develop a specific model. Thus, incremental
process discovery may help to increase trust in the finally discovered process model, as
process discovery is not perceived as a black box. In [141], the authors identified the lack
of trust in process mining insights as a critical challenge when applying process mining
in organizations. Additionally, the authors found that the absence of trust stems from
a limited comprehension of the utilized methods and the perception of process mining
techniques as black boxes.

Access to intermediate discovered process models allows users to intervene and correct
the discovery algorithm. For instance, a user might change an intermediate process model
before it is used in the next incremental iteration. Consider Figure 5.1. If a user changes
the process tree A’ into A”, a check is required if the traces in A’ are still supported by

2We refer to the process discovery phase as the procedure leading up to the discovery of a final process
model.

111

Chapter 5. Incremental Process Discovery Framework

the user-modified process model A”. If traces from A’ are not covered anymore by A"
they have to be removed such that the assumptions regarding the inputs made by the
IPDA are satisfied. In short, users can direct and control the discovery phase by not
only selecting traces but also making manual adjustments to the intermediate discovered
process models.

Moreover, the incremental process discovery approach allows to utilize a priori domain
knowledge by incorporating an initial process model. Recall that this domain knowledge
is virtually optional since one can start with a model containing only a visible or invisible
activity label. Moreover, the gradual interaction with the event data results in users
paying more attention to event data quality aspects when incrementally selecting traces
to be added to the process model. While automated or manual filtering of event data
may also be performed in conventional process discovery, direct feedback on what effect,
for example, an incorrect trace from the event log has on the discovered process model
is much more apparent due to the incremental approach and the possibility to observe
intermediate discovered learned process models after adding a trace.

In the remainder of this section, we focus on algorithmic aspects of IPDAs, i.e., we
propose two concrete IPDA instantiations that comply with the introduced framework
depicted in Figure 5.1. Section 5.2 proposes a naive IPDA, while Section 5.3 proposes a
more advanced IPDA.

5.2. Naive IPDA

This section introduces a naive IPDA that can be employed in the proposed incremental
process discovery framework, cf. Figure 5.1. The core idea of this naive approach is to first
calculate an optimal alignment for o, and process tree A to assess if o, , fits A. If the
optimal alignment indicates deviations, the naive IPDA processes each alignment move
that indicates a deviation separately. For each deviation-indicating alignment move, i.e.,
log moves and visible model moves (cf. Section 3.5), process tree modifications are applied
that resolve this particular deviation-indicating alignment move. After processing all the
deviation-indicating alignment moves, the baseline IPDA guarantees that o . fits the
resulting process tree A’, cf. Figure 5.1.

The naive IPDA resolves alignment moves that indicate a deviation from left to right
until eventually the provided trace fits the altered process tree. Figure 5.2 illustrates
four resolution rules that cover different scenarios regarding the occurrence of a deviation
move in an alignment.® The presented resolution rules are complete; a resolution rule
covers any deviation move in an alignment. The 1% case covers visible model moves,
while the other three cases, the 2°d to the 4" case, cover log moves.

next

next

e The 1% rule resolves a visible model move on activity a . The rule adds a new vertex
representing an exclusive choice operator to the tree that has two child vertices: a
new vertex labeled 7 and the existing activity a, cf. Figure 5.2b. This construct
allows skipping the execution of vertex v; labeled a; thus, when recalculating an
alignment, the visible model move on vertex v; no longer occurs.

3Note that the activity labels used in Figure 5.2, i.e., a and b, are only representatives and can be
replaced by any other label from A.

112

5.2. Naive IPDA

turn activity a
into an optional one

(a) 1°° case: a visible model IZI
move on activity a v;

(b) 1°* case: resolving rule

a b |
(Ui7 a) > ‘ add missing
q activity b as
(C) 2" case: a IOg move on an optional one
activity b with a preced- SN —

ing synchronous move

o fofa]

(d) 2™ case: resolving rule

add missing
activity a as
an optional one

=

> a
(v, 7) IS

(e) 3 case: a log move on
activity a with a preced-
ing invisible move on ac-
tivity 7

E add missing

activity a as

(g) 4™ case: a log move on an optional one
activity a where neither =
the 2°¢ nor the 3*¢ case S A
applies

(h) 4™ case: resolving rule

Figure 5.2: Baseline IPDA’s resolving rules for alignment moves that indicate a
deviation—four case distinctions (partly adapted from [174])

113

Chapter 5. Incremental Process Discovery Framework

e The 2" resolution rule resolves a log move on activity a with a directly preceding
synchronous move on activity b, cf. Figure 5.2c. The rule modifies the tree such that
after executing the activity a, activity b can be optionally executed, cf. Figure 5.2c.
Thus, the log move on activity b after the synchronous move on activity a is resolved.

e The 3" rule resolves a log move on activity a with a preceding invisible model
move, cf. Figure 5.2e. The rule modifies the tree such that the 7 activity will be
placed under an exclusive-choice together with an a activity, cf. Figure 5.2f. Thus,
activity a can be optionally executed and the log move is resolved.

o The 4*" rule resolves a log move that has neither a preceding invisible model move
nor a preceding synchronous move; hence, generally only log or visible model moves
are preceding. However, since the naive IPDA resolves deviations from left to right
it follows that this rule only applies if a log move is the first move of an alignment.
The rule modifies the tree A such that before executing the original tree A, the
activity a can be optionally executed, cf. Figure 5.2h.

Algorithm 5.1 presents the naive IPDA. As input, the naive IPDA assumes the trace
to be added next o, , € A* and the process tree A € P. Compared to the introduced
incremental process discovery framework depicted in Figure 5.1, the naive IPDA does
not make use of the set of previously added traces A C A*. Ignoring A is valid because
the four resolution rules (cf. Figure 5.2) ensure that all previously fitting traces still fit
the altered process tree A’ i.e., L(A) C L(A’). All resolving rules presented in Figure 5.2
extend the resulting process tree’s language.

Algorithm 5.1: Naive IPDA (N-IPDA)

Input: 0, , € A*, AP

Output: A’ e P

begin
let v e [ept (A, O'MIL) // calculate an optimal alignment <y
N — A
while deviation(vy) do /] G & L(A)

let © € N be the index of the first deviation move in y
// deviationMv (y(i)) A P <j<i ((Iri'z)’iat’i(mj\flu (7(/)))

W N =

5 A’ + apply suitable resolving rule for v(i) and A’ // cf. Figure 5.2
6 let v € [ort (A/,Unm) // calculate an optimal alignment v
7 return A’ /! Oy € L(A)

First, an optimal alignment is calculated to assess if o, fits process tree A’. If not,
the first alignment move that indicates a deviation is determined, i.e., (i) (cf. line 4).
Next, one of the four resolution rules (cf. Figure 5.2) is applied to resolve the determined
alignment move. This procedure, i.e., calculating an optimal alignment and resolving
the first move indicating a deviation, is repeated until the optimal alignment does not
indicate a deviation anymore; hence, o, € L(A’) and A’ is returned.

next

114

5.8. Lowest Common Ancestor IPDA

The termination of Algorithm 5.1 is guaranteed as all four resolution rules (cf. Fig-
ure 5.2) resolve an alignment move that indicates a deviation. Thus, after each iteration,
i.e., lines 3 to 6, the optimal alignment ~ contains one deviation-indicating move less and
eventually trace o,_, fits process tree A'.

Finally, note that none of the presented resolution rules (cf. Figure 5.2) adds a loop
operator nor a parallel operator to the tree. Thus, if the initial model from which the
incremental process discovery starts does not contain any loop or parallel operator, the
resulting process tree does not contain such operators either. Thus, we subsequently
present a more advanced approach that fully exploits the process tree formalism.

5.3. Lowest Common Ancestor IPDA

The previously presented naive IPDA resolves each alignment move that indicates a
deviation individually. Further, the resolution rules shown are simple and may lead to
large process models because every deviation-indicating alignment move leads to a process
tree that contains more vertices, cf. Figure 5.2. This section introduces an alternative
IPDA called Lowest Common Ancestor IPDA (LCA-IPDA) that can handle entire blocks
of deviation-indicating alignment moves, compared to the naive IPDA. Moreover, LCA-
IPDA utilizes all three inputs illustrated in Figure 5.1. Finally, it utilizes all process
tree operators, compared to the naive IPDA, which can only add sequence and exclusive
choice operators.

The core idea of LCA-IPDA involves detecting subtrees in process tree A that cause
o,., non-fitting. For these subtrees, sublogs are computed that represent trace fragments
that the corresponding subtree should support. All detected subtrees causing o, , non-
fitting are then rediscovered from their corresponding sublog using a fitness-preserving
conventional process discovery algorithm. Eventually, the rediscovered subtrees replace
the detected subtrees and the final tree A’ is returned, cf. Figure 5.1.

5.3.1. Running Example

In the following, we introduce the LCA-IPDA by a running example. Assume the follow-
ing input according to Figure 5.1:

e previously added traces A = {(a,b,c,d,a,b,¢, f),{(c,d,d,c,c,d, f,e)} C A,

e trace to be added next o,,, = (a,b,b,b, f,e) € A*, and

next

e process tree A € P as depicted in Figure 5.3.

The previously added traces contained in A are replayed on process tree A to determine
sublogs for each subtree, cf. Figure 5.3. A sublog contains trace fragments from traces in
A that the corresponding subtree supports. Therefore, the sublog for the entire tree, i.e.,
the subtree rooted at vy, always equals A. For instance, the sublog for subtree Ax(v2.1)
contains twice the trace fragment (a, b), three times (¢, d), and once (d, c). All three trace
fragments origin from traces in A.

Next, LCA-IPDA computes an optimal alignment to assess if o, , fits A; Figure 5.4

shows an optimal alignment. The 6" and 7' alignment moves indicate a deviation,

115

Chapter 5. Incremental Process Discovery Framework

Sublog for Ay, (vo)
[<a" b7 c? d’ a? b? 67 f>7
<C7 d7 d7 C? C? d7 f7 e>]

Sublog for Ap, (v1.1) Sublog for
[<a7ba c, d7a7b>7 AA], (U1.2)
<C’ d’ d’ C7 C’ d>] |:<e’ f>7 <f7 6>]

Sublog for Ax, (v2.1)
[(a, b>2a {c, d>37 <d7 C>]

Figure 5.3: Sublogs for the process tree A and the previously added traces A; the red
highlighted subtree has been identified to be responsible for the first block of
deviations in the alignment for o, , and A (cf. Figure 5.4)

Tt

i.e., log moves on activity b. The two deviation-indicating alignment moves are next to
each other and thus considered one deviation block. The deviation block is encompassed
by two synchronous moves, i.e., a synchronous move on vertex vs; labeled a and on
v4.0 labeled b. Next, the LCA-IPDA computes an LCA from the vertices of these two
synchronous moves, i.e., lca(vy.1,v4.2) = v3.1. The subtree rooted at vs 1 is Ax(vs.1), cf.
the red marked subtree in Figure 5.3. According to the computed optimal alignment,
subtree Ap(vs.1) causes the non-fitting of o,_,.

Next, the sublog of Ap(vs.1) is extended. Therefore, the already-computed alignment
is considered and the opening and closing of vertex vz, i.e., the root vertex of the
determined subtree, are searched. In the example, the subtree’s root node is opened in
the 4™ alignment move and closed in the 9", cf. Figure 5.3. In between, i.e., 5'"-8" move,
the trace fragment (a, b, b, b) should have been executed; however, only (a, b) is supported

by the subtree. Therefore, the LCA-IPDA extends the sublog to [(a, b)2, {(a,b,b, b)} . The

extended sublog is used as input to any fitness-preserving conventional process discovery
algorithm (cf. Definition 3.32) to discover an updated subtree. The discovered subtree
replaces the identified subtree in A. Since the alignment contains only one deviation
block, no further adjustments are needed. Finally, LCA-IPDA returns A’, cf. Figure 5.5.

116

5.8. Lowest Common Ancestor IPDA

1. 2. 3, 4. 10.

> > > > >

(UO, (vl.l7 (?}2.1, (03.1’ (U2.17

open) | open) | open) | open) close)
11. 12. 13. 14. 16. 17.
> f e > > >
(’01.1, (01.2, (02.4, (112.37 (U1.2, (UO,
close) | open)) e) close) | close)

Figure 5.4: An optimal alignment for process tree A (cf. Figure 5.3) and trace o, , =
{a,b,b,b, f,e); the 61 and 7" move indicate a deviation

Sublog for Ax, (ve)
[<a7 b’ C7 d7 a7 b’ e’ f>7
<C? d? d? c7 C’ d? f’ e>]7

<aa b7 b7 b7 f7 €>]
Sublog for Ax, (v1.1)
[<aa b7 c, da a, b>7 Sublog fOI‘
<Cv dv dv G C, d>]7 AAl (’1)1‘2)
(a,b,b,b) [{e,), (f.€)’]

Sublog for Ay, (v2.1)
[(a,0)2, {¢,d)?, (d,c),

V2.2

Figure 5.5: Resulting process tree A’ and updated sublogs after adding previously devi-
ating trace o, , = (a,b,b,b, f,e)

next

117

ot

Chapter 5. Incremental Process Discovery Framework

5.3.2. Algorithm

Algorithm 5.2 formally presents the LCA-IPDA, which consists of three phases. In the
input preprocessing phase, the algorithm adds artificial start » and end B activities to
the tree as well as to the provided traces, cf. lines 1 to 3. We assume that the two
symbols are unique, i.e., »,l ¢ A. Figure 5.6 schematically depicts the extension, which
is applied in line 1, of an arbitrary input tree by start and end activities. In short, a new
sequence operator is created with three children: the start activity, the original tree, and
the end activity. Adding artificial start and end activities to the tree and to the traces,
ie., o, and traces in A, is needed to ensure that an LCA can always be found. The
added start and end activities ensure that every process tree running sequence contains
the execution of vertices representing the artificial start and end, i.e., vp.; and vgs in
Figure 5.6. Thus, every optimal alignment for an arbitrary extended trace, i.e., o, ,, and
traces in A after executing , and the extended tree contains two synchronous moves, one
on the start activity (») and one on the end activity (H).

Algorithm 5.2: LCA-IPDA

Input: AC A*,0, , € A" AcP
Output: A€ P
begin
/* input preprocessing phase */
1 A < extend A by artificial » and B activities // cf. Figure 5.6
2 A+ AU {U,”w} // adding o, to A
3 A« {<P> [sNoae} <.> | o€ A} // extend traces by start & end activities
/* main phase */
4 let v € Fo‘m(A, 07Lezt) // calculate an optimal alignment -~
5 while deviation(vy) do /] O & L(A)
6 74— ﬁrstDeviationMv[ndex(’y) // first deviation-indicating move
7 Apca + subtree(A,~,1) // Definition 5.2 (page 122)
8 Lca < computeSublog(A, ALca, A) // Algorithm 5.3 (page 124)
9 A « replace Aca T A by discovery(Lica)
10 let v e rort (A, O'Heu) // calculate an optimal alignment -y
/* output postprocessing phase */
11 A < remove artificial » and B activities from A // added in line 1
12 A + apply process tree reduction rules to A // cf. [120, Chapter 5]
13 return A

After the input preprocessing phase (cf. lines 1 to 3), the main phase of the LCA-IPDA
starts (cf. lines 4 to 10). First, an optimal alignment ~ is calculated for tree A and o, _,
(cf. line 4). If v does not indicate a deviation, we know o, , € L(A) and thus move to
the output postprocessing phase. Otherwise, the following steps are executed.

1. First, we determine the index of the first deviation-indicating alignment move in -y
(cf. line 6). Note that such index i € {1,...,|vy|} always exists because alignment
~ contains a deviation (cf. line 5).

118

5.8. Lowest Common Ancestor IPDA

modified tree

original tree
add artificial
start & end
activity

Figure 5.6: Schematic overview of extending a tree A by artificial start (») and end (H)
activities; overall, three new vertices vy, vg.1, vo.2 and corresponding edges are
added

2. Function subtree identifies the subtree that causes the first (block of) deviation(s),
cf. line 7. We present subtree in Definition 5.2 (page 122) in detail. In short,
subtree identifies the subtree that causes the first (block of) deviation(s) (starting)
at position 7 in the alignment . Note that although subtree is a partial function,
the function always returns a tree with the inputs used in line 7.

3. The function computeSublog calculates the sublog for the previously determined
subtree Apca, cf. line 8. We present computeSublog in Algorithm 5.3 in detail. In
short, computeSublog calculates the corresponding sublog for the previously deter-
mined subtree Apca. Sublog Lpca represents all relevant trace fragments from the
set of previously added traces A and trace o, that the subtree Arca must support
to resolve the first .

4. Next, a fitness-preserving conventional process discovery algorithm is invoked to
discover a process tree from the previously calculated sublog. This discovered tree
replaces the determined subtree, cf. line 9.

5. Finally, we recalculate an optimal alignment for the modified tree A and o,_, (cf.
line 10). If the alignment indicates further deviations, we re-execute the while block

(cf. lines 4 to 10). Otherwise, we exit the while block, cf. lines 5 to 10.

Eventually, the output post-processing phase starts (cf. lines 11 to 13). First, the in the
beginning added artificial start » and end B activities are removed (cf. line 11). Next,
language-preserving reduction rules are applied to simplify if applicable certain structures
in the process tree (cf. line 12). Finally, the modified tree A with {0, ,} UA CL(A) is
returned (cf. line 13).

next

119

Chapter 5. Incremental Process Discovery Framework

Subtree Determination

This section defines the subtree function that is used within Algorithm 5.2 line 7. The
function subtree : P xT' x N —» P assumes a process tree A € P, an alignment v € T'(A, o)
for some o € A*, and an index i € {1,...,|vy|} C N that represents the index of the first
deviation-indicating alignment move. In short, subtree finds (if possible) the closest
alignment moves before and after the alignment move (i), each of which is either a
synchronous move or an invisible model move; thus, alignment moves that do not indicate
a deviation and can be associated to a leaf vertex in the process tree. Since the function
subtree is called for a deviation-indicating alignment move (i) (cf. Algorithm 5.2), the
two alignment moves that subtree aims to determine enclose the deviation-indicating
alignment move ().

Recall the running example presented in Section 5.3.1. Figure 5.4 (page 117) shows an
alignment for o, and the process tree A shown in Figure 5.3 (page 116). Calling subtree
for this process tree, alignment, and the index 6 that is the index of the first deviation-
indicating alignment move, subtree finds the 5** and 8" alignment move that are the
closest alignment moves enclosing the 6" move and are both synchronous moves. Next,
the two corresponding vertices vy7 and vy4.0 are derived from the 5th and 8th alignment
move. Finally, Ap(lca(vy1,v4.2)) = An(vs1) is returned, cf. red highlighted subtree in
Figure 5.3.

In the following, %pefore denotes the index of the alignment move that is before ~(z)
and represents a synchronous or invisible model move on a leaf vertex. Likewise, iqfer
denotes the index of the alignment move that is after v(i) and represents a synchronous
or invisible model move on a leaf vertex. In the following, we simplify by saying that
Tbefore OF iqfter €Xists or does not exist, respectively. Since both ipefore and @44 could not
exist, four cases can be distinguished. Figure 5.7 visualizes these four cases. The first case
applies if ipefore and iqper exist; thus, the first (block of) deviation-indicating alignment
move(s) (starting) at index ¢ is enclosed by synchronous or invisible model moves on a
leaf vertex. The second case applies if %46 does not exist; thus, all alignment moves
from index 7 indicate a deviation or are invisible model moves on inner vertices. The third
case applies if 7pcfore does not exist; thus, all alignment moves before ¢ are invisible model
moves on inner vertices. Finally, the fourth case applies if neither ipcfore DOT 7qfer exists;
thus, no subtree can be determined. Note that the fourth case cannot apply if subtree
is called in Algorithm 5.2 because any optimal alignment for which subtree is invoked
contains at least two synchronous moves, i.e., one on the artificial start (») and one on
the end (M) activity. Thus, at least ipefore OF igfter exists. Subsequently, we formally
define subtree.

4In the subsequent chapter, however, we deal with trace fixes for which case 4 can occur. Therefore,
and for the sake of completeness, we present all cases here.

120

5.8. Lowest Common Ancestor IPDA

Included Alignment Moves

Color Interpretation Log Sync. Vis. Model Inv. Model

on inner on leaf
vertices vertices

I o deviation-indicating moves v v v

no deviation-indicating moves ez-
cluding inv. model moves on inner v v
vertices
I (cviation-indicating moves v v
deviation-indicating moves and in-
visible model moves on inner ver- v v v
tices

invisible model moves on inner ver- v
tices

any move v v v v v

(a) Legend for Figures 5.7b to 5.7e; each color represents certain types of alignment moves

N = 1 co ibefore_]- ibefore e 0 e 7;a)"ter iafteT+1 e |7|

(b) Case 1: before (ipefore) and after (iqper) the first deviation-indicating alignment move ¢ exists
a synchronous move or an invisible model move on a leaf vertex

N = 1 co ibefore_l 'I:before h i | i+l - |’7|

(c) Case 2: only before (ipefore) the first deviation-indicating alignment move ¢ exists a syn-
chronous move or an invisible model move on a leaf vertex

= U - a=1[a]| [dafter | taftertl - |

(d) Case 3: only after (iqfer) the first deviation-indicating alignment move 7 exists a synchronous
move or an invisible model move on a leaf vertex

1--i—1]| i+l - [

(e) Case 4: neither before nor after the first deviation-indicating alignment move i exists a
synchronous move or an invisible model move on a leaf vertex

Figure 5.7: Tllustration of the four cases distinguished by subtree (cf. Definition 5.2) re-
garding the composition of the alignment

121

Chapter 5. Incremental Process Discovery Framework

Definition 5.2 (Subtree Detection Function)

The partial function subtree : P x I' X N - P takes as input a process tree A € P,
an alignment v € T'(A, o) for some o € A*, and an index i € {1,...,|y|} CN. The
function is undefined for i ¢ {1,...,|v|} and for v € T(A',0) with A # A € P. We
distinguish four cases.

e Case 1: Before and after the alignment move (i) indicating a deviation there
18 respectively a synchronous move or an invisible model move that executes a
leaf vertex, i.e., a vertex labeled 7. Thus, if

3 ipefore€{l, ..., i—1} (synch(’y(ibefore)) V invModeleTau(y(ibefore))) A
Vj € {inegoret1, - i=1}(~syneMo(y(inegore)) A
ﬂinvModeleTau('y(ibefom)))} (5.1)

and

Fiaper€{i+1, ..., Y[} | (syncMv(y(iafter)) V invModelMvTau(y(iafter))) A

Vj e {i+l,..., lapter—1} (ﬁsynch('y(iaﬁer)) A
—w’nvModeleTau(’y(iaﬂer))>} (5.2)

the following subtree is returned.

subtree(y,i,) = AA<lcaA (modelVertem(’y(ibefore)), modelVerte:I:('y(iaﬂer))))

e Case 2: Before the alignment move (i) indicating o deviation there is a syn-
chronous move or an invisible model move that executes a leaf vertex. However,
there is neither a synchronous move nor an invisible model move that executes
a leaf vertex after alignment move v(i). Thus, if Equation (5.1) holds and

V tapter€{i+1, ... |V} | syneMo(Y(igfter)) A ﬁinvModeleTau('y(iafter))}

(5.3)
the following subtree is returned.

subtree(y,i, A) = Ap (modelVertex(’y(ibefore)))

e Case 3: After the alignment move (i) indicating a deviation there is a syn-
chronous move or an invisible model move that executes a leaf vertex; however,

122

5.8. Lowest Common Ancestor IPDA

there is neither asynchronous move nor an invisible model move that executes
a leaf vertex before alignment move v(i). Thus, if Equation (5.2) holds and

Y ipefore€{1, ..., i—1} [—\synch(y(ibefore)) A —invModelMvTau(7y(ivefore))

(5.4)
the following subtree is returned.

subtree(v,i, A) = Ap(modelVertez (Y (iafier)))

e Case 4: Neither before nor after the alignment move (i) exists a syn-
chronous move or an invisible model move that executes a leaf verter.® Thus,
if Equations (5.2) and (5.3) hold, the function subtree(vy,i,A) is undefined,
i.e., nothing is returned.

%Note that when invoking function subtree in Algorithm 5.2, case 4 never applies because the
alignments for which subtree is invoked always contain a synchronous move on the start activity
» and a synchronous move on the end activity M. Thus, for each alignment move, at least one
synchronous move exists either before or after it. Hence, subtree always returns a subtree when
invoked by Algorithm 5.2.

Sublog Calculation

This section introduces the algorithm computeSublog, which is called in Algorithm 5.2
line 8 (page 118), for calculating the sublog corresponding to the determined subtree
causing the first (block of) deviation(s). Algorithm computeSublog takes three inputs:

1. the entire process tree A € P,

2. the determined subtree A;ca C A causing the first (block of) deviation(s), and

3. the set of traces A C A* that contains the set of previously added traces and the
trace to be added next o

next *

Algorithm computeSublog returns an event log that specifies traces that the determined
subtree Ay ca should support. We refer to this returned event log as sublog.

Introductory Example Before we formally introduce computeSublog, we provide an
example.” Recall the running example introduced in Section 5.3.1. The entire process
tree A is shown Figure 5.3 (page 116) including the detected subtree Apca, which is
highlighted in red. Further, assume the below-specified set of previously added traces.

A: {<a’b7cﬂd3a,b7e7f>7<C’d7d7cﬂc7d’f7e>7<a7b’b7b7f76>}

Note that when computeSublog is called from Algorithm 5.2 in line 8, the set A contains
all previously added traces and the trace to be added next, i.e., o, , = (a,b,b,b, f,e€)

next

5For the sake of simplicity, we omit the input preprocessing phase of Algorithm 5.2; thus, we do not
extend all traces and the tree by an artificial start » and end B activity. In the example we will
present, these artificial activities have no effect. Note, however, that these artificial start and end
activities are generally necessary for the algorithm to work correctly.

123

Chapter 5. Incremental Process Discovery Framework

in the example.® Next, for each trace in A an optimal alignment is computed. Since
except of o, , € A all other traces fit the process tree A, the corresponding alignments
contain only synchronous moves and invisible model moves, i.e., these alignments do not
indicate a deviation. For non-deviation-indicating alignments, we search for open and
closing invisible model moves on the root vertex of the determined subtree A;c4. From
all synchronous moves between opening and closing of the root vertex that belong to the
subtree Apca, the trace for the sublog of Ay ca is extracted.

Algorithm computeSublog Algorithm 5.3 introduces computeSublog, which we exem-
plified and informally introduced above. First, the eventually returned sublog Ljca for
the subtree Apc4 is initialized, cf. line 1. For each trace in A (cf. line 2), computeSublog
computes an optimal alignment on the tree A, cf. line 3. Next, the computed alignment ~
and the subtree Aoy are provided to the algorithm extractSubTraces, which extracts the
relevant sub-traces for A;ca from the provided alignment, cf. line 4. After an alignment
has been computed and corresponding sub-traces have been extracted for all traces in A,
the sublog L ¢4 is finally returned, cf. line 5.

Algorithm 5.3: computeSublog (called in Algorithm 5.2 line 8)

input : A€ P, // entire process tree
Apca C A, // subtree causing deviation(s)
ACA* // contains previously added traces and o,
output: Lica € M(A*) // sub-log for Apca
begin
1 Lica + H // initialize sub-log for Arca
2 forall o € A do
3 let v e [ept (A, 0’) // calculate an optimal alignment <y
4 L Lipca < Lpca W extractSubTraces(Apca,?y) // Algorithm 5.4

return Lo

%]

Algorithm extractSubTraces Algorithm 5.4 introduces eztractSubTraces that is ex-
clusively called in Algorithm 5.3 line 4. The inputs of extractSubTraces are the determined
subtree Apca C A and an optimal alignment v € T°P!(A, o) for some o € A, cf. Algo-
rithm 5.3. Overall, extractSubTraces iterates over the alignment ~y (cf. line 2) and creates
thereby trace(s) o’ that are stored in the sublog L;ca. Generally, two case distinctions
based on the subtree Apca are made by extractSubTraces. The first case applies if the
subtree Apca contains only one vertex; hence, Apca represents a leaf vertex in A (cf.
line 4). The second case applies if the subtree Apca contains more than one vertex;
hence, Afca’s root vertex represents a process tree operator (cf. line 15). Note that per
call of extractSubTraces, only one of the two cases applies since the subtree Apcs does
not change during executing eztractSubTraces. Subsequently, we present the two cases
in detail.

6 Algorithm 5.2 adds o, to A in line 2.

next

124

5.8. Lowest Common Ancestor IPDA

Algorithm 5.4: extractSubTraces (called in Algorithm 5.3 line 4)

input : Arca = (Vica, Erca, Xrca, Anca,Trca, <wca) T A € P,

vy E FoPt(A,O') // opt. alignment v for some o € A* and a tree A
output: Lo € M(A*) // sublog for Apca
begin

1 Lica + H // initialize sublog for Ajca
2 forall 1 <1< |"y‘ do // iterate over alignment moves
3 o <> // initialize trace eventually added to Lyca
4 if Vica = {TLCA} then // Case 1: Apcs contains only one vertex ryca
5 while modelVertex (7(@)) #rpca do
6 if logMv(v(i)) then
7 o'+ oo tmceLabel(v(i))> // add log moves
8 14 i+1
9 if modelVertez (y(i)) = rrca then
10 o' +—o'o <modelLabel(7(i))> // modelLabel (v(1)) = Arca(rroa)
11 1 1+1
12 if Vi <j <|y| (ﬂsynch('y(j)) A ﬂim)Modele(’y(j))) then
// no more synchronous move or invisible model move that would
determine a new LCA in the next iteration of Algorithm 5.2; thus,
we add the remaining trace labels (ignoring >>) to o’
13 L o'+ oo <tmceLabel(7(j)) ,. .., traceLabel (fy(|’y\))>
la
14 Lica <+ Lioa W [0”] // add trace o’ to the sublog of Ajca
15 else // Case 2: Trca contains more than one vertex
16 if modelVertez (v(i)) =rpca A modelLabel (v(i)) = open then
// current move ¢ represents an opening of Apca’s root 7Trc4
17 while modelVertez (v(i)) # rpca V modelLabel (v(i)) # close do
// consider all subsequent moves until r;ca is closed
18 if modelVertez (v(i)) € Voca A syncMv ((i)) then
19 L o'+ oo <modelLabel(7(i))>
20 else if traceLabel (v(i)) € A then // traceLabel (v(i)) # >
21 L o'+ oo <tmceLabel(’y(i))>
22 14— 1+1
23 Lica < Lioa W [O’l] // add trace o’ to the sublog of Ajca
24 return Ljca

125

Chapter 5. Incremental Process Discovery Framework

In the first case (cf. line 4), subtree A;ca contains only one vertex, i.e., the root vertex
rrca. Hence, A;ca represents a leaf vertex of A. In this case, extractSubTraces looks for
executions of r1,ca, cf. line 9. In case log moves before the execution of rjca exist, we
add these to the sub-trace o’ (cf. lines 5 to 7). Adding these log moves to ¢’ is required
since the eventually returned sublog Ljc4 containing o’ represents all traces that tree
Arca should support. Next, we add the label of the root vertex rrca to o’ (cf. line 10).
Finally, we check if all subsequent alignment moves after ;o4 was executed are neither
synchronous moves or invisible model moves (cf. line 12); thus, only log or visible model
moves follow. If this is the case, we know that in the next iteration of Algorithm 5.2
no other subtree Apca can be found; thus, we add the remaining trace labels to o’ (cf.
line 13). Finally, we add o’ to Lpca (cf. line 14).

Note that extractSubTraces is called for alignments indicating a deviation and for
alignments indicating no deviation. Recall Algorithm 5.3 that calls extractSubTraces
for each o € A. Further, recall that all traces except o, , in A fit the tree A. Thus, per
execution of Algorithm 5.3, extractSubTraces is called once with a deviation-indicating
alignment and |A| — 1 times with alignments that indicate no alignment. For alignments
that indicate no deviation, i.e., neither log moves nor visible model moves exist, only
traces of length one containing the label of ;o4 are added to Lpca. Thus, only lines 9
to 11 and 14 are executed.

In the second case (cf. line 15), subtree Aypca contains more than one vertex. Thus,
its root vertex r;ca represents a process tree operator. Thus, we look for the invisible
model move representing the opening of rpca (cf. line 16). Next, we iterate over the
alignment until 7704 is closed (cf. line 17).” Between the opening and closing of rca,
we add the activity label of 1) synchronous moves that belong to Ac4 and 2) log moves
(cf. line 19). Finally, we add trace o’ to the sublog L;ca and process the alignment ~y
further if applicable, i.e., we look for the next opening and closing of r;c4.

Detailed Example Recall the running example presented in Section 5.3.1. When
applying extractSubTraces to the alignment shown in Figure 5.4 (page 117) and the
determined subtree Ay ca highlighted red in Figure 5.3 (page 116) with root vertex vs 1,
extractSubTraces returns the sublog Lpca = [(a,b, b, b)] In detail, the second case of
extractSubTraces applies because Apca comprises multiple vertices, cf. line 15. Next,
the (first) opening of Apca’s root vertex vz is found, i.e., the 41 alignment move, cf.
Figure 5.4 (page 117). The next move, i.e., the 5'" one, is a synchronous move on activity
a and the corresponding executed vertex vy1 € Apca; thus, we add activity a to trace
o' = (a) (cf. lines 18 and 19 in Algorithm 5.4). The 6'" and 7*" move represent log
moves on activity b. Thus, we add two times activity b to the trace ¢’ = (a,b,b) (cf.
lines 18 and 19). The 8** move is a synchronous move on activity b and the corresponding
vertex vgo € Apca. Thus, we add activity b to o’ = (a,b,b,b) (cf. lines 18 and 19). The
9*" move closes the root vertex of Apca; hence, we add o' = (a,b,b,b) to Lpca (cf.
line 23). Since the root vertex is after the 9*® move never opened again, we finally return
Lica = [(a,b,b,b)] (cf. line 24).

"Note that a corresponding invisible model move representing the closing of 7,04 must exist in -y
because the model part of alignment -« represents a running sequence of A, cf. Definition 3.34

126

5.8. Lowest Common Ancestor IPDA

5.3.3. Summary & Termination

This section summarizes the proposed LCA-IPDA| cf. Algorithm 5.2. In short, the LCA-
IPDA utilizes alignments to assess if the trace to be added next o, , fits the provided
tree A. Note that the previously added traces contained in A are assumed to fit the tree.
If 0,,,, does not fit, the subtree Apca T A that is responsible for the first (block of)
deviation(s) is determined, cf. Definition 5.2. The objective is to replace this determined
subtree Apca with another one that resolves the first (block of) deviation(s). To this
end, we calculate a sublog that contains all trace fragments that the new subtree should
support such that all previously added traces still fit the altered overall tree and the
first (block of) deviation(s) in the alignment for o, is resolved. Therefore, optimal
alignments for all previously added traces and the trace to be added next are aligned
with the entire tree A. From these alignments, a sublog L;c4 for the determined subtree
A ca is calculated. This sublog reflects the trace fragments that the subtree Aypca must
support. Note that from the alignments for the previously added traces and A, only
trace fragments that are already fitting the subtree Ayca are extracted. Only from the
alignment for the trace to be added next o, and A, the corresponding sublog is extended
by trace(s) that do not fit the determined subtree.

The presented LCA-IPDA in Algorithm 5.2 guarantees termination because in each
iteration (cf. lines 4 to 10) the first (block of) deviation(s) is resolved. Thus, eventually
all deviations between A and o, , are resolved. As elaborated in Section 5.3.2, function
subtree, although a partial function, always returns a subtree Apcs when invoked in
Algorithm 5.2 because any alignment provided contains at least two synchronous moves
on the artificial start and end activity. Further, the corresponding computed sublog
L;ca for the determined subtree A;ca contains all trace fragments that are required
for replaying traces from A and corresponding trace fragments from o, , to ensure that
the first (block of) deviation(s) is resolved. By invoking a fitness-preserving discovery
algorithm in Algorithm 5.2 line 9 the new subtree that replaces Apca is guaranteed to
support all trace fragments from the computed sublog L;c4. Therefore, in each iteration
the respective first (block of) deviation(s) is resolved until eventually o, , € L(A).

next

5.3.4. LCA Lowering

This section describes an extension to the above presented LCA-IPDA. The extension
denoted as LCA lowering applies to the subtree determination function subtree, cf. Defi-
nition 5.2 (page 122). Recall the first case of the function subtree, i.e., synchronous moves
or invisible model moves on leaf vertices exist at position ipefore < ¢ and igper > % in the
alignment.® Figure 5.7b (page 121) visualizes the described first case. Thus, the (block
of) deviation(s) (starting) at position ¢ in the alignment is enclosed by two alignment
moves at positions ipefore and %g4per that do not indicate a deviation and execute a leaf
vertices in the corresponding process tree. In the following, we refer to these two leaf
vertices as v, . and vy, . Next, vertices v;,,, and v, are used to determine the
LCA (cf. case 1 of Definition 5.2). This LCA represents the root vertex of the subtree
that is eventually altered by Algorithm 5.2 in line 9.

8Recall that at position i the first deviation-indicating alignment move exists.

127

Chapter 5. Incremental Process Discovery Framework

The objective of the LCA lowering extension is to reduce the size of the subtree re-
turned by subtree that will eventually be altered by Algorithm 5.2. To this end, LCA
lowering alters the process tree such that the function subtree determines a smaller sub-
tree. This altering of the process tree A is language-preserving; thus, LCA lowering only
applies structural modifications to the process tree that do not change the language of
the tree. According to the process tree operator of the original LCA detected by subtree,
two distinctions can be made. Figure 5.8 illustrates these two cases. On the left side, the
original tree A is depicted, and on the right side, the modified tree A’ is shown, which
leads to a smaller subtree.

e Case 1: LCA vertex lcaa(Viy s Vig.,) = VIca Tepresents a sequence
operator, i.e., A(vpca) = —
In this case, subtree A; containing vertex v, ., subtree Ay containing v; ., and all
subtrees in between, i.e., Aj;1 to Ai_1, are lowered. Lowering implies that the root
vertices of these subtrees are moved one hierarchy level down and are connected to a
new vertex representing a sequence operator. Figure 5.8a illustrates the described
process tree transformation yielding A’. When determining the subtree from A’
instead of A (cf. Figure 5.8a), the function subtree returns the subtree rooted at the
newly added vertex representing a sequence operator, cf. the red highlighted vertex
in A’ in Figure 5.8a. Thus, the subtree that is eventually altered by Algorithm 5.2,
i.e., the subtree rooted at the lowered vyc4 vertex, is smaller. In detail, subtrees
Al, ey Aj—17 Ak+1, . ,An are not altered.

e Case 2: LCA vertex lcap(viy,.s Vig,) = Vrca represents a parallel or
exclusive-choice operator, i.e., A(vpca) € {—, A}
In this case, subtree A; containing vertex v;,,, . and subtree Ay containing v,
are lowered. Note that the subtrees in between, i.e., Aj 11 to Ay_1, are not lowered.
Lowering implies that the root vertices of these two subtrees are moved one hierar-
chy level down and are connected to a new vertex representing either an exclsuive-
choice or parallel operator respectively. Figure 5.8b illustrates the described process
tree transformation yielding A’. When determining the subtree from A’ instead of
A (cf. Figure 5.8a), the function subtree returns the subtree rooted at the newly
added vertex representing an exclusive-choice or parallel operator, cf. the red high-
lighted vertex in A’ in Figure 5.8b. Thus, the subtree that is eventually altered by
Algorithm 5.2, i.e., the subtree rooted at the lowered vyca vertex, is smaller. In
detail, subtrees Aq,..., Aj_1,, Ajy1, ..o, Ap—1, Agt, ..., Ay are not altered.

In conclusion, LCA lowering alters the subtree A such that the determined subtree
by subtree that is eventually changed by Algorithm 5.2 in line 9 is smaller. As a result,
less already discovered parts of the process tree are subject to be altered. The presented
lowering rules in Figure 5.8 only apply to the first case of the function subtree; thus, there
exists tpefore ANd Zpefore, cf. Figure 5.7b. In the other cases, i.e., the second and third
ones (cf. Definition 5.2 on page 122), the determined subtree comprises only a leaf vertex
and, thus, cannot be smaller.

128

5.8. Lowest Common Ancestor IPDA

Process tree A € P Process tree A’ € P

leay (Uibefw-e ’ Uiuﬂey-) =vLcA

Ui

o
fore Vet

(a) Language-preserving (i.e., L(A) = L(A")) lowering of an LCA representing a sequence oper-
ator

Process tree A € P Process tree A’ € P

leay (Uiaefm) Uiafm-) = VULCA

(b) Language-preserving, i.e., L(A) = IL(A’), lowering of an LCA vertex representing an
exclusive-choice or parallel operator, i.e., O € {x, A}

Figure 5.8: Language-preserving (i.e., L(A) = IL(A’)) lowering of an LCA vertex

129

Chapter 5. Incremental Process Discovery Framework

5.4. Evaluation

This section presents an evaluation of the presented IPDAs. Section 5.4.1 presents the
experimental setup while Section 5.4.2 presents the results.

5.4.1. Experimental Setup

In the experiments, we compare the proposed LCA-IPDA against the Inductive Miner
(IM) [122], which discovers a process tree that accepts the given event log, and the model
repair approach presented in [86]. Note that the repair algorithm does not guarantee to
return a hierarchical process model. Since both the LCA-IPDA and the IM algorithm
guarantee the above mentioned properties for the returned process tree, we use the IM
algorithm as a comparison algorithm. Furthermore, we use the IM algorithm inside the
proposed LCA-IPDA as an instantiation of the discovery function, cf. Algorithm 5.2.

As input, we use a publicly available event log that contains data about a road fine
management process [56]. We use the complete event log, for example, we do not filter
outliers. We sorted the event log based on variant frequencies in descending order, i.e.,
the most occurring variant first. We chose this sorting since in real applications it is
common to consider first the most frequent behavior and filter out infrequent behavior.
Note that the order of traces influences the resulting process model in our approach and
in the model repair approach.

We use the F-measure regarding the whole event log to compare the obtained process
models. The F-measure takes the harmonic mean of a process model’s precision and
fitness concerning a given event log. Fitness reflects how well a process model can replay
a given event log. In contrast, precision reflects how much additional behavior not present
in a given event log is supported by the process model. The aim is that both the fitness
and the precision and, thus, the F-measure are close to one. This thesis uses alignment-
based approaches for fitness [226] and precision calculations [8]. To this end, we transform
all process trees into WF-nets and apply the alignment-based approaches to these WF-
nets. In addition to the F-measure, we also report the size of the incrementally discovered
WPF-nets, i.e., the sum of places and transitions. The size provides an indication of the
complexity or simplicity of the model.’

The procedure of the conducted experiments is described below. First, we discover a
process tree on the:

e first variant,

e top 1% variants,

e top 2% variants,

e top 5% variants, and

e top 10% variants
with the IM algorithm since the LCA-IPDA and the model repair algorithm require an
initial process model. Note that the LCA-IPDA can be used with any initial model.
Afterward, we add variant by variant to the initially given process model with the LCA-
IPDA. Analogously, we repair the initially given process model trace by trace with the

9Note that a large number of complexity measures exists [154], each focusing on different aspects.
However, most complexity measures have in common that they incorporate the number of graphical
symbols.

130

5.4. FEvaluation

model repair algorithm. In addition, we iteratively apply the IM algorithm on the 15
variant, the 15¢+2°d variant, etc.

5.4.2. Results

Figures 5.9 to 5.11 show the results regarding the F-measure for the road traffic fine
management [56], the receipt [110], and the hospital billing event log [133].1° In each
plot, the approaches started from a different initial process model. Overall, there is no
dominant approach that clearly outperforms the other approaches. Note that the goal
is not to outperform at 100% of processed variants. Instead, it depends on the user’s
needs and how much behavior the process model should describe. Moreover, the three
event logs exhibit a power law distribution [214], i.e., a few trace variants have a very
high frequency, while most trace variants have a low frequency. Since we sort by trace
frequency, after adding the first trace variants, the fitness value of the models quickly
approaches values close to 1. Therefore, the dynamics we see in the F-measure are mainly
due to changes in the precision values.

Surprisingly, the naive IPDA yields models with high F-measure values. Similarly, also
the model repair approach sometimes yields models with F-measure values. However,
when investigating the corresponding models, these models are significantly larger com-
pared to the models discovered by the other approaches. Figure 5.13 plots the number of
places and transitions per incrementally discovered WF-net. Note that we transformed
the process trees into WF-nets to compare these models with the models returned by the
model repair approach, which operates on Petri nets. Since the models discovered by the
naive IPDA and the model repair approach quickly become very large, they are of little
use as they are hardly readable for users. Furthermore, recall that the naive approach
only adds vertices to an existing tree, i.e., does not add parallel-labeled and loop-labeled
vertices, cf. Section 5.2. Therefore, if the initial process tree provided to the naive IPDA
does not contain any vertex labeled with a loop or parallel operator, all incrementally
discovered process trees also do not contain such vertices. In short, the naive IPDA dis-
covers only a very restricted class of models, i.e., the possibilities for specifying process
behavior provided by the process tree formalism are only used to a minimal extent.

Comparing the LCA-IPDA variants with/without LCA lowering, we observe that the
variant with lowering yields slightly larger process models than the version without low-
ering. This observation is reasonable since when LCA lowering is used, the subtree being
rediscovered is potentially smaller compared to the subtree that would be rediscovered
when not using LCA lowering. As a result, the chance to introduce duplicate labels
increases when rediscovering a smaller subtree increases within the LCA-IPDA.

In conclusion, the results show that a clear dominant approach cannot be determined
in these automated experiments. However, the proposed LCA-IPDA approach can keep
up with established approaches and offers the benefits and opportunities of incremental
process discovery. Furthermore, the experiments also show that the model repair and the
naive approach generate huge models, which are of little practical use in the context of
Interactive Process Discovery (IPD).

10We used a sample of the hospital billing event log because the experimental setup is too computationally
intensive. We filtered infrequent traces; the sampled log contains 98,948 traces (209 trace variants)
compared to the original one containing 100,000 traces (1,028 trace variants).

131

Chapter 5. Incremental Process Discovery Framework

100

1.0
—— LCA-IPDA (w/o LCA lowering)
—— LCA-IPDA (w LCA lowering)
0.9 —— Naive IPDA
—— Inductive Miner (IM)
—— Model Repair
208
=
[Z2]
©
9}
£
L 07
0.6
0.5
0 20 40 60 80
% processed variants
(a) Initial model covers first variant
1.0
0.9
208
=
[Z2]
©
£
w07 - -,
—— LCA-IPDA (w/o LCAlowering) ~—
—— LCA-IPDA (w LCA lowering)
0.6 —— Naive IPDA
—— Inductive Miner (IM)
—— Model Repair
0.5
0 20 40 60 80

% processed variants

100

(c) Initial model covers top 2% variants

1.0

0.9

o
™

F-measure
o
q

0.6

0.5

20

40
% processed variants

1.0
0.9
2os
=]
(2}
©
o]
E W =
uw 07
—— LCA-IPDA (w/o LCA lowering)
——— LCA-IPDA (w LCA lowering)
0.6 —— Naive IPDA
—— Inductive Miner (IM)
—— Model Repair
0.5
0 20 40 60 80 100

% processed variants

(b) Initial model covers top 1% variants

1.0
—— LCA-IPDA (w/o LCA lowering)
—— LCA-IPDA (w LCA lowering)
0.9 —— Naive IPDA
—— Inductive Miner (IM)
—— Model Repair
2os
=]
(2]
©
o]
£
uw 07
0.6
0.5
0 20 40 60 80 100

% processed variants

(d) Initial model covers top 5% variants

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
Naive IPDA

Inductive Miner (IM)

Model Repair

60 80 100

(e) Initial model covers top 10% variants

Figure 5.9: Results regarding the F-measure for the hospital billing event log [133] using
different initial process models

132

5.4. Evaluation

1.00

0.95

0.90

0.85

0.80

F-measure

0.75

0.70

0.65

0.60

o

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)

Naive IPDA
Inductive Miner (IM)
Model Repair
ui__’_u_,:],—
20 40 60 80 100

% processed variants

(a) Initial model covers first variant

1.00

0.95

0.90

0.85

0.80

F-measure

0.75

0.70

0.65

0.60

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
Naive IPDA

Inductive Miner (IM)

Model Repair

20 40 60 80 100
% processed variants

(c) Initial model covers top 2% variants

1.00
—— LCA-IPDA (w/o LCA lowering)
0.95 —— LCA-IPDA (w LCA lowering)
—— Naive IPDA
0.90 —— Inductive Miner (IM)
0.85 _ —— Model Repair

F-measure
o
(o]
o

0.70
0.65
0.60
0 20 40 60 80 100

% processed variants

(b) Initial model covers top 1% variants

1.00

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
Naive IPDA

Inductive Miner (IM)

Model Repair

o
I
@ O
© 0.80
£
w075

0.70

0.65

0.60

0 20 40 60 80 100

% processed variants

(d) Initial model covers top 5% variants

1.00
—— LCA-IPDA (w/o LCA lowering)
0.95 —— LCA-IPDA (w LCA lowering)
—— Naive IPDA
0.90 —— Inductive Miner (IM)
© 085 — Model Repair
>
@
3 0.80
£
cer [T 1 '
0.70
0.65
0.60
0 20 40 60 80 100

% processed variants

(e) Initial model covers top 10% variants

Figure 5.10: Results regarding the F-measure for the road traffic fine management event
log [56] using different initial process models

133

Chapter 5. Incremental Process Discovery Framework

0.9

0.8

0.7

0.6

F-measure

0.5

0.4

0.3

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
Naive IPDA

Inductive Miner (IM)

Model Repair

20 40 60 80 100
% processed variants

(a) Initial model covers first variant

1.0

0.9

0.8

0.7

0.6

F-measure

0.5

0.4

0.3

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
Naive IPDA

Inductive Miner (IM)

Model Repair

20 40 60 80 100
% processed variants

(c) Initial model covers top 2% variants

1.0

F-measure
o o o o o
[5,] o ~ (=) ©

I
~

0.3
0 20

(e) Initial model covers top 10% variants

0.9

0.8

0.7

0.6

F-measure

05

0.4

0.3

40
% processed variants

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
Naive IPDA

Inductive Miner (IM)

Model Repair

60 80 100

(b) Initial model covers top 1% variants

1.0

e
3

F-measure
o
o

0.3

40
% processed variants

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
Naive IPDA

Inductive Miner (IM)

Model Repair

60 80 100

(d) Initial model covers top 5% variants

Naive IPDA

Model Repair

40 60
% processed variants

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)

Inductive Miner (IM)

Figure 5.11: Results regarding the F-measure for the receipt event log [110] using different

134

initial process models

5.4. Bvaluation

250 = —— LCA-IPDA (w/o LCA lowering) —— LCA-IPDA (w/o LCA lowering)
—— LCA-IPDA (w LCA lowering) 200 ~ —— LCA-IPDA (w LCA lowering)
—— Naive IPDA ——— Naive IPDA
200 |nductive Miner (IM) —— Inductive Miner (IM)
9 —— Model Repair Q 150 ~—— Model Repair
% 150 @
I3 [
[= [=
% % 100
& 100 i
50 50
0 20 40 60 80 100 0 20 40 60 80 100
% processed variants % processed variants
(a) Initial model covers first variant (b) Initial model covers top 1% variants

—— LCA-IPDA (w/o LCA lowering) 175
—— LCA-IPDA (w LCA lowering)
200 —— Naive IPDA 150

—— Inductive Miner (IM)

© —— Model Repair o 125
N 150 N
[z 2]
5 © 100
c =
= E
@ 100 o 75
o o ——— LCA-IPDA (w/o LCA lowering)
50 —— LCA-IPDA (w LCA lowering)
50 —— Naive IPDA
25 —— Inductive Miner (IM)
—— Model Repair
0 20 40 60 80 100 0 20 40 60 80 100
% processed variants % processed variants
(c) Initial model covers top 2% variants (d) Initial model covers top 5% variants
140
120
" 100
N
»
5 80
c
B 60
o —— LCA-IPDA (w/o LCA lowering)
40 —— LCA-IPDA (w LCA lowering)
—— Naive IPDA
20 —— Inductive Miner (IM)
——— Model Repair
0 20 40 60 80 100

% processed variants

(e) Initial model covers top 10% variants

Figure 5.12: Results regarding the size of the WF-nets, i.e., the number of transitions and
places, for the hospital billing event log [133] using different initial process
models

135

Chapter 5. Incremental Process Discovery Framework

175 | —— LCA-IPDA (wfo LCA lowering) 175 LGA-IPDA (wio LGA lowering) r
LCA-IPDA (w LCA lowering) LCA-IPDA (w LCA lowering)
150 | —— Naive IPDA T 180 Naive IPDA
—— Inductive Miner (IM) 125 —— Inductive Miner (IM) _/_/—
9 1256 =~ —— Model Repair] —— Model Repair
D)
b 5 100
= c
= =
3 T 75
a o |
TT—
50 f
25
0 20 40 60 80 100 0 20 40 60 80 100
% processed variants % processed variants
(a) Initial model covers first variant (b) Initial model covers top 1% variants
160
—— LCA-IPDA (w/o LCA lowering) —— LCA-IPDA (w/o LCA lowering) _/_,—/_
140 LCA-IPDA (w LCA lowering) 140 LCA-IPDA (w LCA lowering)
10 T Naive IPDA —— Naive IPDA
—— Inductive Miner (IM) 120 —— Inductive Miner (IM) e
—— Model Repair —— Model Repair
& 100 v & 100 P
[w
T g 2 g0
& 60 = & 60
40 40
20 20
0 20 40 60 80 100 0 20 40 60 80 100

% processed variants

(c) Initial model covers top 2% variants

% processed variants

(d) Initial model covers top 5% variants

120
100
2 80
7]
g
£ 60 A
@
o —— LCA-IPDA (w/o LCA lowering)
40 LCA-IPDA (w LCA lowering)
—— Naive IPDA
20 —— Inductive Miner (IM)
—— Model Repair
0 20 40 60 80 100

% processed variants

(e) Initial model covers top 10% variants

Figure 5.13: Results regarding the size of the WF-nets, i.e., the number of transitions
and places, for the road traffic fine management event log [56] using different
initial process models

136

5.4. Bvaluation

350

300

250

200

150

Petri net size

100

50

(a) Initial model covers first variant

300

250

200

150

Petri net size

100

50

(c) Initial model covers top 2%

o

o

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
Naive IPDA

Inductive Miner (IM)

Model Repair

—— LCA-IPDA (w/o LCA lowering)

% processed variants

LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
Naive IPDA

Inductive Miner (IM)

Model Repair

250 LCA-IPDA (w LCA lowering)
—— Naive IPDA

200 T Inductive Miner (IM) J_,_/—
@ —— Model Repair
N
2]
T 150
[=
3
& 100

50

80 100 0 20 40 60 80 100

% processed variants

(b) Initial model covers top 1% variants

300 —— LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)
250 — Naive IPDA
—— Inductive Miner (IM)

—— Model Repair

N
o
=3

Petri net size
@
o

20 40 60
% processed variants

300

Petri net size
- - N N
o (%)) o w
o o o o

o
o

~—
100
50
80 100 0 20 40 60 80 100
% processed variants
variants (d) Initial model covers top 5% variants

—— LCA-IPDA (w/o LCA lowering)
LCA-IPDA (w LCA lowering)

—— Naive IPDA
—— Inductive Miner (IM)
—— Model Repair
=
20 40 60 80 100

% processed variants

(e) Initial model covers top 10% variants

Figure 5.14: Results regarding the size of the WF-nets, i.e., the number of transitions and
places, for the receipt event log [110] using different initial process models

137

Chapter 5. Incremental Process Discovery Framework

5.4.3. Discussion & Threats to Validity

In the experiments, we executed each approach for a given event log and a given initial
process model once, in particular due to the high computational complexity of the ex-
periments. While we fixed the order in which trace variants are incrementally added,
the model repair approaches and the LCA-IPDA with and without LCA lowering use
internally alignments. As there can be several optimum alignments for a particular trace
model combination, there is a certain degree of randomness as to which alignment is used.
The resulting process models might be affected by the specific optimal alignment found.

As discussed already in Section 5.4.2, the significance of the F-measure values is limited.
As all logs exhibit a power law distribution [214], the precision values are the main driver
for changes in the F-measure values because fitness values are close to 1 for most models.
However, precision values have limitations as discussed in [202].

5.5. Illustrative Example

This section contains an illustrative example to demonstrate the advantages of the LCA-
IPDA over the Inductive Miner. In particular, the example shows how duplicate labels
can lead to more precise models. Recall that duplicate labels are a central argument why
the LCA-IPDA approach produces often better results than the Inductive Miner, as a
representative of conventional process discovery algorithms. We use the road traffic fine
management event log [56] for this example. Figure 5.15 provides an overview of a subset
of contained activities in this log. Furthermore, Figure 5.15 depicts the previously added
traces A and the trace to be added next o

next *

CF Create Fine RRAP Receive Result Appeal from Prefecture
SF Send Fine NRAO Notify Result Appeal to Offender
IFN Insert Fine Notification SAP Send Appeal to Prefecture
IDAP Insert Date Appeal to Prefecture P Payment
- AP Add Penalty AJ Appeal to Judge

(a) Overview activity abbreviations

A= {((JF,SF,IFN,AP,P}, (CF,SF,IFN,AP,P,P),(CF,SF,IFN, IDAP, AP,P}

o . =(CR,P,SF IFN,AP,P)

next

(b) Previously added traces A an trace to be added next o

next

Figure 5.15: Contextual information for the illustrative example using the road traffic
fine management log [56]

Figure 5.16 shows the results. Process tree A; depicted in Figure 5.16a is considered
the initial model with A CIL(A;) and o, , ¢ L(A;). When invoking the LCA-IPDA for
A1, A, and o, tree Ay as shown in Figure 5.16b is returned. Comparing A; and Ao, we

newt

138

5.5. Nllustrative Example

(c) Process tree Az returned by the Inductive Miner; tree Az has lower precision than As returned
by the LCA-IPDA regarding the traces A and trace o

next

Figure 5.16: Discovered process models using the LCA-IPDA and the conventional pro-
cess discovery algorithm Inductive Miner using the traces as specified in
Figure 5.15

observe that Ay allows after executing activity CF the optional execution of activity P.
Furthermore, note that tree As contains duplicate labels, i.e., activity P occurs twice. In
contrast, when invoking the Inductive Miner for traces AU{o,_,}, we obtain A3 depicted
in Figure 6.1c. Note that Az allows for much more behavior than specified in AU {o,_,}
because many activities can be executed in parallel. In short, Ay is clearly more precise
than As with respect to the traces AU {o,_,}.

139

Chapter 5. Incremental Process Discovery Framework

5.6. Trace Ordering Effects

10 1.0

< 4
? 3
5]]
@ @
£ E
L uw
0.5
04
0 20 40 60 80 100
% processed variants % processed variants
(a) Receipt event log [110] (b) Hospital billing event log [133]
10
09
208 3
?
@
E =
W 07
06
05
0 20 40 60 80 100

% processed variants

(c¢) Road traffic fine management event log [56]

Figure 5.17: Trace ordering effects for different event logs; starting from the same initial
model, each blue line represents one specific trace ordering and the red line
represents the average of the blue lines

In the conducted experiments, cf. Section 5.4, we fixed the order in which trace variants
are incrementally added, i.e., we sorted the trace variants based on their frequency.
However, when applying the proposed incremental process discovery framework, outlined
in Figure 5.1 (page 110), the resulting model might differ depending on the order in which
traces are added incrementally. We refer to this phenomenon as trace ordering effects, i.e.,
starting from the same initial process model and incrementally adding the same traces
in different orders results in other final process models. Note that trace ordering effects
do not originate from the IPD framework illustrated in Figure 5.1 (page 110) itself, but

140

5.6. Trace Ordering Effects

rather from the specific instantiations of this framework. As an example, the LCA-IPDA
(cf. Section 5.3) is affected by trace ordering effects. Thus, the resulting process model
may differ depending on the order in which traces are incrementally added. Figure 5.17
illustrates various trace orderings and their effect on the F-measure for real-life event
logs. Each blue line represents an individual trace ordering. Starting from the same
initial model, eventually, all traces from the event log have been incrementally added
with LCA-IPDA. Overall, we observe that the span between the lowest and largest F-
measure is large. Further, Thus, ordering traces to be added next significantly impacts
the F-measure of the resulting process model. In short, trace ordering effects are a
relevant practical phenomenon when considering incremental process discovery.

The remainder of this section is structured as follows. Section 5.6.1 proposes a frame-
work that allows to calculate trace ordering recommendations. Next, Section 5.6.2 pro-
vides examples of concrete instantiations of this framework, i.e., specific strategies that
determine a order over traces to be added next. In Section 5.6.3, we present experi-
mental results of evaluating the framework and its specific instantiations, presented in
Section 5.6.2, on real-life event logs.

5.6.1. Framework for Recommending Trace Orderings

This section proposes a framework for Next Trace Ordering Strategies (NTOSs). The
framework determines a trace ordering from a set of traces to be added next; thus, it
determines the trace to be added next o, from a set of trace candidates. The Next Trace
Ordering Strategy (NTOS) framework can be easily incorporated into the previously
presented incremental process discovery framework. Consider Figure 5.18 depicting an
NTOS embedded into the IPD framework. We highlight in red new respectively altered
elements compared to the original incremental process discovery framework shown in
Figure 5.1 (page 110). In detail, instead of an individual (user-)selected trace to be
added next o,_,, potentially multiple (user-)selected trace candidates to be added next
exist, i.e., Cp C L® U X. Further, an NTOS is placed between the (user-)selected trace
candidates and the IPDA. The NTOS is responsible for selecting an individual trace o,
from the trace candidates because the IPDA, as specified in Definition 5.1 (page 111),
assumes a single trace to be added next. After adding the trace o, ,, which is selected
by the NTOS, trace o, , is removed from the set of trace candidates Cy. Except for
the described modifications, the incremental process discovery framework remains as
previously introduced in Figure 5.1.

An NTOS is generally composed of multiple, sequentially-aligned strategy components.
Figure 5.19 illustrates the structure of an NTOS. The depicted NTOS comprises n strat-
egy components, referred to as scy,...,sc,. The first strategy component obtains the
complete set of (user-)selected trace candidates to be added next, i.e., Cy. Further, strat-
egy component sc; as well as all subsequent strategy components scs, . . ., sc, have access
to the set of previously added traces A, the process tree A, and the trace pool LW L.
Access to the trace pool allows strategy components to take frequency information about
individual traces into account. Note that not every concrete instantiation of a strategy
component uses all this provided information to determine a rating respectively ordering
among trace candidates. The output of a strategy component is a total order over the
trace candidates that were provided as input. This total order represents an ordering

141

Chapter 5. Incremental Process Discovery Framework

Incremental Process Discovery Approach

Previously Updated

added added traces
traces A =AU {onet}
AC A with A’ C L(AY)
. . with A CL(4) Updated trace
i’iﬁﬂi‘?{fd - e candidates
remuay o Ch = CoM{et}
= User with o,,,, € L(A)
- N $
: . Next Incremental
~ (User-)selected Trace B Extended
Trace pool trace candidates Oxdleing ez Discovery process tree
LsUX CA* to be added next Strate Algorithm NeP
~ Co CT°UX = {Onem} UA CL(A)
: 0= (NTOS) (IPDA) :
Manually :
created
traces
X CA* N e ;-
= . Configuration
= (Initial) Parameters
3 process tree @
° AeP ¢
- .
User with Cp ¢ L(A)

and A CL(A)
A

Figure 5.18: Embedding an NTOS into the incremental process discovery framework;
compared to Figure 5.1 (page 110), multiple trace candidates to be added

next have been selected, and a NTOS recommends from these candidates
one specific trace to be added next, i.e., o

next

from best to worst suitable trace to be added next; thus, each trace among the trace
candidates is rated to be added next. Below, we formally define a strategy component.

Definition 5.3 (Strategy Component)
A strategy component is a function sc : P(A*) x P x P(A*) x M(A*) = O<(A*)
that maps

1. previously added traces A C A*,

2. (initial) process tree A € P,

3. (user-) selected trace candidates to be added next Cy C A*, and

4. trace pool LS U X C A*
to a total order over the (user-) selected trace candidates to be added next, i.e.,
(Co, <) € O<(A*). We denote the universe of strategy components by SC.

Reconsider Figure 5.19. After each strategy component, we apply a filter function that

removes the worst-suited trace candidates. Whenever we apply the filter function, we
must provide a filter rate, denoted by r, determining the ratio of trace candidates to be

142

5.6. Trace Ordering Effects

Previously (Initial) process (User-)selected
added traces tree trace candidates to

be added next

AC A* AeP Co CLSUX C A

15¢ strategy
A, A, L?, X — component
sc

(Co, <)
Filter rate
@% 0<r; <1
Ch

2nd strategy
A, A, L%, X —| component

sca
(C1,2)
Filter rate
@% 0<rys<1
Co
(Jnfl

nth strategy
A, A, L7, X — component
SCn,

Next Trace Ordering Strategy (NTOS)

(Cjnf 1, S)
Filter rate
[ften}— """

(Cn, <) with Cn = {0, }

v

Trace to be
added next
O et € A*

Figure 5.19: Schematic structure of a NTOS consisting of multiple, sequentially-aligned
strategy components; each strategy component orders the trace candidates
from best to worst fitting, and subsequent filtering functions filter the worst
trace candidates before the following strategy component is invoked

143

Chapter 5. Incremental Process Discovery Framework

filtered. For instance, if » = 0.7, filter removes 30% of the worst trace candidates. If
r = 1, no trace candidate will be eliminated, while » = 0 will result in only one trace
candidate remaining. Thus, the following subset relations hold among the trace candidate
sets Cy, ..., C, within an NTOS.

ChnCCh1C---CC1 CC

Accordingly, each strategy component paired with the subsequent application of filter
can be considered a knock-out step that reduces the number of trace candidates to be
added next. Below, we formally define the function filter.

Definition 5.4 (Filter function filter)
The function filter : O<(A*) x [0,1] — P(A*) maps a total ordered set (C,<) €
O<(A*) and a filter rate 0 < r <1 to a set of trace candidates C' C A* such that:
1. C'CC,
2. |C'| = maz {1, [r « C1}, and
3. ¥ € C'Vee O\C' (¢ < ¢).

Finally, we define NTOSs consisting of sequentially aligned strategy components (cf.
Definition 5.3) and applications of the filter function (cf. Definition 5.4). Reconsider
Figure 5.19 for an illustration of an NTOS structure.

Definition 5.5 (Next Trace Ordering Strategy (NTOS))

A NTOS is a non-empty sequence of n € N pairs, each consisting of a strategy
component and a filter rate. Thus, p = <(scl,r1), o (scn,rn)> € (SC x [0, 1])*
with v, =0 is a NTOS.*

®The last filter rate 7, is required to be zero to ensure only one trace candidate eventually remains.

We made a deliberate choice to create an NTOS using a sequence of strategy com-
ponents paired with subsequent filtering.!! Each strategy component orders the trace
candidates from best to worst, and subsequently we filter out the worst candidates. This
approach was taken to ensure that recommendations can be computed quickly in an
interactive process discovery setting. By using multiple strategy components, the frame-
work can consider different aspects when evaluating which trace candidate to add next.
The idea behind this framework is to begin with fast evaluations in the initial strategy
components. More complex evaluations are then performed in the later strategy com-
ponents, which receive fewer trace candidates as the earlier strategy components have
already filtered out some of the options.

5.6.2. Sample Instantiations of Strategy Components

This section provides examples of specific strategy component instantiations according
to Definition 5.3. We present six strategy components in total as listed in Table 5.1.

HNote that also non-sequential arrangements of strategy-components are conceivable. For instance, each
strategy component evaluates all trace candidates, and eventually, one overall ordering is determined;
thus, no intermediate filtering between strategy components is applied.

144

5.6. Trace Ordering Effects

Table 5.1.: Overview of the six strategy component instantiations

Abbreviation Name Specific/General
C Alignment Costs general
M Missing Activities general
L Levenshtein Distance general
D Duplicates general
H LCA Height specific
B Brute Force general

Note that these six strategy component instantiations are only examples and many other
strategy components are conceivable.

Alignment Costs

Alignments, as introduced in Section 3.5, are a state-of-the-art conformance checking
technique that quantify the mismatches between a provided trace and a process model.
Further, alignments provide diagnostic information such as missing activities and un-
expected process behavior. Alignments are typically assigned costs. The standard cost
function assigns costs of one to visible model moves and log moves; other moves are
assigned costs zero [45]. When computing an optimal alignment for each trace candi-
date, the associated costs are used to order/rank the trace candidates from low to high
costs. Trace candidates with high costs have many deviations and are thus not close
to the current process model. The intention behind this strategy component is to favor
trace candidates that are already close to the specified behavior by the current process
model, i.e., trace candidates having low alignment costs. Note that alignment compu-
tation suffers from the state space explosion problem and has, therefore, an exponential
time complexity in worst case [45].

Missing Activities

When incrementally discovering a process model, it’s common to find that the first models
obtained don’t encompass all the process activities recorded in the event data. Since not
every trace in real-life event logs contains all possible executable process activities of a
process, missing activities within early-stage process models are possible. The ‘missing
activities’ strategy makes use of this observation. It ranks trace candidates based on
the number of activity labels in the process tree A. Trace candidates solely containing
process activities already in the current process tree A are assigned cost zero. In contrast,
costs for other trace candidates correspond to the number of unique activity labels not
yet part of the process tree A. The rational behind this strategy component is similar
to the ‘alignment costs’ component, i.e., favoring trace candidates that are close to the
current process model over traces containing new activities that are not yet present in
the tree A.

145

Chapter 5. Incremental Process Discovery Framework

Levenshtein Distance

The Levenshtein distance, originally defined over binary sequences [124], also known as
edit distance allows us to measure the similarity between two sequences. Thus, we can
utilize the Levenshtein distance to measure the similarity of the two traces. In short,
the Levenshtein distance counts the number of edit operations to convert one sequence
into another. Three potential edit operations exist insertion, deletion, and substitution.
Below, we formally define the Levenshtein distance.

Definition 5.6 (Levenshtein distance)
Let X be an arbitrary set and 01,09 € X* be sequences. We recursively define the
function lev : X* x X* — Ny as follows.

o] if lo2| =0
|o2] if o1 =0
lew (<0'1(2), o(en]), (o2(2), - .,02(\02|)>) if 01(1) = 02(1)
lev(o1,02) = ¢ 1+ min{lev <<01(2), e 01(\01\)> ,02) , otherwise
lev (ol,<02(2),...,02(|02\)>),
lev((crl(Q), coo01(|o1])), (o2(2), . . ., 02(|02|)>) }

We use the Levenshtein distance to determine the trace candidate that shares most be-
havior with all other trace candidates. We also use frequency information about the trace
candidates to weigh their distances. Since the proposed strategy components are mainly
designed to improve the discovered process models’ F-measure and frequency information
are vital in F-measure calculation, this strategy component considers frequency informa-
tion. Table 5.2 depicts an example of three trace candidates having different frequencies
in the trace pool. For each trace, we compute the weighted Levenshtein distance, i.e., the
Levenshtein distance of the current trace candidate to all other trace candidates, each
multiplied by the occurrence of the other trace candidate. For instance, first trace (a, b) is
compared to the second trace (a,b,b) and the third trace (a,c). In this example, the first
trace candidate would be ranked first. The rationale behind this strategy component is
to favor trace candidates with a lot of behavior in common with all other trace candidates
that will be incrementally added later.

Duplicates

This strategy is tailored to the LCA-IPDA introduced in Section 5.3. Further, we assume
that function discovery, which is used within Algorithm 5.2 line 9 (page 118) for redis-
covering subtrees, is instantiated with a conventional process discovery algorithm that
returns process trees having no duplicate labels, i.e., no two leaf vertices having the same
activity label.!?

In general, duplicate labels can increase the precision of a process model and are, there-
fore, often desirable [128, 240]. Recall that the LCA-IPDA determines subtrees that must

12Many process discovery algorithms cannot discover process models with duplicate labels, for instance,
the inductive miner algorithms [120].

146

5.6. Trace Ordering Effects

Table 5.2.: Example of the weighted Levenshtein distance strategy component for three
trace candidates (adapted from [179, Table 2])

Trace Frequency in

candidate trace pool’ Weighted Levenshtein distance Rank

u 50 x lev({(a,b),{a,b,b)) 4+ 20

{a,) 100 lev({a,b), {a,c)) =70 1
100 * lev({a,b,b),(a,b)) + 20 =«

{a,8,8) 50 lev({a,b,b), (a,c)) = 140 2
100 * lev({a,c),{(a,b)) + 5O«

(@,) 20 lev({a,c), {a,b,b)) = 200 3

* Note that the trace pool as defined in Definition 5.3 contains no frequency information about the
contained traces. However, frequency information about the traces can be obtained from the origi-
nally provided event log L®, cf. Figure 5.18. In addition, the trace pool can also contain manually
defined traces for which the user must also enter frequency information if the weighted Levenshtein
distance strategy component is to be used.

be altered. Altering a subtree involves rediscovering the subtree from a corresponding
sublog, cf. Algorithm 5.2 (page 118). If the determined subtree contains duplicate labels
and under the assumption that discovery is instantiated with a discovery algorithm un-
able to discover a process tree with duplicate labels, the rediscovered subtree no longer
contains duplicate labels. Thus, the rediscovery removes the potentially desirable du-
plicate labels in the determined subtree that have been learned so far. Therefore, this
strategy component, called Duplicates, favors trace candidates whose first LCA does not
contain leaf nodes with duplicate labels. The trace candidates are ranked in ascending
order based on the number of duplicate leaf vertices. Thus, the strategy component fa-
vors trace candidates that when being incrementally added to the process model do not
affect a subtree containing duplicate labels.

Finally, we will briefly elucidate one shortcoming of this strategy. When incrementally
adding a trace to a process model, a subtree is determined that causes the first (block
of) deviation(s) and is replaced by a new one. However, until the trace to be added fits
the process model, multiple subtrees may be altered by the LCA-IPDA, cf. Algorithm 5.2
line 5 (page 118). However, strategy component Duplicates considers the first subtree
only when determining the order of trace candidates. Considering only the first one is
done because executing the LCA-IPDA is necessary to know the potential next subtree
that is being altered. However, there are potential cases where the first subtree that
must be altered does not contain duplicate labels; however, the second subtree, which
needs to be altered after altering the first one, does contain duplicate labels. Since the
strategy component only considers the first one, the trace candidate would be rated good,
although when adding this candidate, duplicate labels would disappear from the overall
process model.

147

Chapter 5. Incremental Process Discovery Framework

LCA Height

Next to Duplicates, LCA Height is the second strategy component that is tailored for
the LCA-IPDA. The key idea of this strategy is to avoid changing large parts of the
already learned process model upon adding a new trace. Thus, the strategy prefers trace
candidates that lead to only minor changes in the process model. Therefore, the strategy
computes for each trace candidate the height of the first subtree that will be changed by
LCA-TPDA.'3 The height of an LCA is defined by the path length from the determined
LCA, i.e., the root vertex of the determined subtree to the root vertex of the entire tree.
Trace candidates are then descending ordered based on the first LCA’s height.

Brute-Force

The Brute-Force strategy separately applies the LCA-IPDA to all trace candidates in
C; and the process tree A.'* As a result, |C;| different process trees are obtained. A
quality metric, i.e., the F-measure representing the harmonic mean of fitness (recall) and
precision, is calculated on the given trace pool L W L’ for each obtained process tree.
The trace candidate that yields a process tree with the highest F-measure is ranked
first. Thus, the Brute-Force strategy can be considered as a greedy strategy, that locally
optimizes for the highest F-measure. Note that this strategy is computationally very
expensive since we calculate the F-measure based on alignments for various process trees
in each incremental execution.

5.6.3. Evaluation

This section presents an evaluation of the proposed NTOS, cf. Section 5.6.1, using the
introduced strategy component instantiations, cf. Section 5.6.2. The overall goal of the
evaluation is to demonstrate that by applying trace ordering strategies, on average bet-
ter process models can be discovered compared to random trace orderings. Note that
the parameter space of potential experiments is vast. Reconsider the introduced NTOS
framework depicted in Figure 5.19 (page 143). First, the number of strategy components
can be varied. Further, we can freely choose the instantiation of each strategy component.
Note that strategy component instantiations can occur multiple times; for instance, we
can utilize the identical strategy component instantiation at the beginning and the end
of an NTOS. Moreover, we can freely select a filter rate for each strategy component,
except for the last strategy component (cf. Figure 5.19). In short, the introduced NTOS
framework depicted in Figure 5.19 (page 143) has a vast parameter space.

The remainder of this section is divided into three parts. First, we introduce the
experimental setup. Subsequently, we present the results. Eventually, we discuss the
results and potential threats to validity.

13Similar to Duplicates, note that LCA Height can only determine the first subtree that is altered by
LCA-IPDA. Therefore, there is a risk that LCA Height rates the first subtree as good and thus
the corresponding trace candidate, but further subtrees must be changed by LCA-IPDA, which the
strategy would rate as bad.

14 Note that the i refers to the position of the Brute-Force strategy component within an NTOS.

148

5.6. Trace Ordering Effects

Experimental Setup

To ensure independence from any particular user selecting trace candidates to be added
next from the trace pool (cf. Cy in Figure 5.18 on page 142), we assume that all traces
from a given event log L are selected as trace candidates, and all candidates are eventually
added to the model incrementally. Thus, in the beginning, the set of trace candidates
represents the entire event log, i.e., Cy = L. After each incremental discovery step, the
last added trace is removed from the set of trace candidates Cy as depicted in Figure 5.18
(page 142).

To keep the overall parameter space for potential experiments manageable, we fixed
the length of evaluated NTOSs to six, i.e., n = 6 in Figure 5.19 (page 143). Thus, each
evaluated NTOS consists of six strategy components. Recall the six specific strategy
components introduced in Section 5.6.2 and their corresponding abbreviations shown
in Table 5.1 (page 145). We created all potential orderings by shuffling the order of
the strategies: C, M, L, D, and H. Finally, the brute force (B) strategy component is
added to each NTOS as the last strategy component. Note that the brute force (B)
strategy component is computationally expensive; therefore, we always add this strategy
component at the end, where the fewest trace candidates need to be ordered. The above-
described approach leads to 5! = 120 different NTOSs. To avoid further expansion of
the parameter space, we use one filter rate for each strategy component within a NTOS;
thus, 71 = ..., 75 and r¢ = 0 (as specified in Definition 5.5). In short, we test a large part
of all sequential combinations of the proposed strategy components in this evaluation.

We denote a particular NTOS as a sequence of abbreviations of the contained strategy
components. For instance, the strategy L-H-C-M-D-B F-Rate 10 refers to the NTOS
where first the Levenshtein distance component is applied and finally the brute force
component. All components within this specific strategy use a filter rate of r1 = ... 75 =
0.1 = 10%. We applied the different NTOSs on real-life event logs using the LCA-IPDA,
cf. Section 5.3.2. Furthermore, we use the same event logs that we already used in
Section 5.4. Furthermore, we measured the F-measure of each incrementally discovered
process tree using the entire given event log.

= Avg. Incremental =—&— C-H-L-D-M F-Rate: 7(
= Most Occurring First H-C-D-M-L F-Rate: 1(
=== Brute Force H-C-D-M-L F-Rate: 2(

L-H-C-M-D F-Rate: 10 H-C-D-M-L F-Rate: 4(

L-H-C-M-D F-Rate: 20
L-H-C-M-D F-Rate: 40
L-H-C-M-D F-Rate: 70
C-H-L-D-M F-Rate: 10
C-H-L-D-M F-Rate: 20
C-H-L-D-M F-Rate: 40

H-C-D-M-L F-Rate: 7(C
C-D-L-H-M F-Rate: 1(
C-D-L-H-M F-Rate: 2(
C-D-L-H-M F-Rate: 4(
C-D-L-H-M F-Rate: 7(

SR
bhit

Figure 5.20: Legend for the subsequently presented plots, cf. Figures 5.21 to 5.23

149

Chapter 5. Incremental Process Discovery Framework

Results

In Figures 5.21 to 5.23, we depict the results of 16 dynamic trace ordering strategies,
a static strategy, i.e., most occurring trace variant first (black line), the brute force
component as a stand-alone strategy (gray line), random trace orderings (blue lines),
and the average of the random trace orderings (red line). Note that we only show a
selection of the strategies evaluated; we evaluated many more combinations of strategy
components and show here the best performing ones. Figure 5.20 depicts the legend
listing all orderings evaluated strategies.

For each event log we plot the F-measure that has been calculated based on the entire
event log for all the incremental discovered process models.

We observe that for all four event logs, the trace candidate order has a significant impact
on the F-measure, cf. the large area covered by the blue lines in Figures 5.21 to 5.23. The
solid red line represents the average of the blue lines. Thus, the red line can be seen as a
baseline as it represents the quality of the models if a random trace order is applied. We
see that most strategies are clearly above the red line. Thus, applying a strategy is often
better than randomly selecting trace candidates. Note that with incremental process
discovery, the goal is often not to include all traces from the event log, as event logs often
have data quality issues. We observe that the brute force approach as a stand-alone
strategy (gray line) often performs better than the other strategies, although the brute
force approach can be considered as a greedy algorithm, i.e., it is only locally optimizing
the F-measure. For the hospital billing event log in particular, the brute force strategy
outperforms all other strategies in the majority of sections in terms of the number of
variants processed.

In short, the proposed LCA-IPDA is affected by trace ordering effects. The order of
traces incrementally added can significantly impact the quality, i.e., the F-measure, of
the discovered process models. Moreover, trace ordering strategies can help obtain better
process models when compared to random trace orders.

150

5.6. Trace Ordering Effects

F-measure
F-measure

0 20 40 60 80 100 0 20 40 60 80 100
% processed variants % processed variants

(a) Strategy C-D-L-H-M-B with different f- (b) Strategy C-H-L-D-M-B with different f-
rates rates

o
o

F-measure
F-measure
(=)
~

o
o

0.6

I
o

0.5

0 20 40 60 80 100 0 20 40 60 80 100
% processed variants % processed variants

(c) Strategy H-C-D-M-L-B with different f- (d) Strategy L-H-C-M-D-B with different f-
rates rates

Figure 5.21: F-measure values of the incrementally discovered process trees using different
NTOSs using the hospital billing event log [133]

151

Chapter 5. Incremental Process Discovery Framework

1.0 1.0

o g
=) =
& @
[5]
£ £
[T w
0 20 40 60 80 100
% processed variants % processed variants
(a) Strategy C-D-L-H-M-B with different f- (b) Strategy C-H-L-D-M-B with different f-
rates rates
10 1.0
0.9
0.8
g g 0.7
2 @
£ £ 06
W L
0.5
0.4
0.3
0 20 40 60 80 100
% processed variants % processed variants
(c) Strategy H-C-D-M-L-B with different f- (d) Strategy L-H-C-M-D-B with different f-
rates rates

Figure 5.22: F-measure values of the incrementally discovered process trees using different
NTOSs using the receipt event log [110]

152

5.6. Trace Ordering Effects

00 ME. —
R S

T

o
o

F-measure

o
~

0.6

0 20 40 60 80 100

% processed variants

(a) Strategy C-D-L-H-M-B with different f-
rates

F-measure

100

0 20 40 60 80
% processed variants

(c) Strategy H-C-D-M-L-B with different f-
rates

1.0
A A,
0.9 —L
SR AP i —
o S| | 1._.1%_4
E . b—"
2 [}
g = YV V.
£
L L
¢
0 20 40 60 80 100

% processed variants

(b) Strategy C-H-L-D-M-B with different f-
rates

F-measure

J
b

100

0 20 40 60 80
% processed variants

(d) Strategy L-H-C-M-D-B with different f-
rates

Figure 5.23: F-measure values of the incrementally discovered process trees using different
NTOSs using the road traffic fine management event log [56]

153

Chapter 5. Incremental Process Discovery Framework

5.7. Conclusion

We introduced a fundamental incremental process discovery framework that allows users
to gradually discover process models from event data (cf. Section 5.1). Central to this
framework is an IPDA, which requires a process tree, a (user-)selected trace to be added
next from a trace pool, and potentially previously added traces. The IPDA alters the
provided process tree such that the altered tree supports the previously added traces and
the newly selected trace. This described altering of a tree is counted as an increment.
Between increments, i.e., upon selecting the next trace to be added, the (intermediate)
process tree can be reviewed and also edited manually if necessary before further traces
are added incrementally.

We proposed two specific instantiations of IPDAs: the naive IPDA (cf. Section 5.2)
and the LCA-IPDA (cf. Section 5.3). The naive IPDA should be considered as the most
straightforward algorithm and is used for comparison purposes only. The central idea
of the naive IPDA is to resolve each deviation in an alignment between the process tree
and the trace to be added next individually by applying resolving rules (cf. Figure 5.2 on
page 113). As discussed, the naive IPDA cannot add parallel or loop operators to a model
and is, therefore, severely limited in terms of the process trees that can be discovered.
In comparison, the LCA-IPDA determines subtrees in the provided process tree that
cause deviations between the trace to be added next and the provided process tree. By
employing a conventional process discovery algorithm, the core idea of the LCA-IPDA
is to rediscover determined subtrees from so-called sub logs that specify trace fragments
the determined subtree should support such that previously added traces and the trace
to be added next are supported. For example, compared to the widely used Inductive
Miner algorithm family [120], the LCA-IPDA can discover process trees with duplicate
labels. Generally, process models with duplicate labels can be more precise than those
without [128, 240]. Thus, the ability to discover models with duplicate labels of the
proposed LCA-IPDA is considered an advantage.

Subsequently, we investigated trace ordering effects within incremental process discov-
ery. Trace ordering effects apply if different orderings in which (user-)selected traces are
incrementally added to the initially same process model result in different process models.
Further, we modified the presented incremental process discovery framework to allow for
multiple (user)-selected traces to be added next, i.e., trace candidates to be added next
(cf. Figure 5.18). In this regard, we defined NTOSs, which recommend from a set of trace
cnadidates to be added next a single trace that is eventually incrementally added by an
IPDA.

154

Chapter 6.

Supporting Trace Fragments in
Incremental Process Discovery

This chapter is largely based on the following published work.

e D. Schuster, N. Fécking, S. J. van Zelst, and W. M. P. van der Aalst.
Incremental discovery of process models using trace fragments. In C. Di
Francescomarino, A. Burattin, C. Janiesch, and S. Sadiq, editors, Business
Process Management, volume 14159 of Lecture Notes in Computer
Science, pages 55-73. Springer, 2023.
doi:10.1007/978-3-031-41620-0_ 4 [185]

Most process discovery algorithms [15, 60, 235], including incremental process discov-
ery, as proposed in Chapter 5, consider process executions, i.e., traces, recorded in the
event data to be complete. Thus, traces are assumed to span the process from start to
completion. In contrast, incomplete traces that do not cover a complete process execu-
tion, referred to as trace fragments, are usually considered noise and therefore filtered
during event data preparation [24, 31, 35] because most algorithms do not support them
respectively would falsely treat them as complete traces resulting in inaccurate or even
wrong results.! In addition, trace fragments are usually not marked as such in the event
logs, which makes it difficult to support or filter them.

State-of-the-art process discovery lacks support for trace fragments. However, trace
fragments may provide valuable information similar to complete traces. Filtering them,
therefore, may result in the loss of valuable data from event logs. As a result, there often
exist cases for which not all relevant events have been extracted. For this reason, [30]
proposes an approach to extend incomplete traces to complete traces. In short, trace
fragments are a regular phenomenon; most process discovery approaches do not support
trace fragments or consider trace fragments as complete and, therefore, are often filtered
in event data preprocessing phases.

We provide an illustrative example in Figure 6.1 to motivate the need for trace frag-
ment support. Figure 6.1b provides an overview of the various activities, which have
been abbreviated and color-coded for better readability. Figure 6.1b shows an initial

INote that trace fragments respectively incomplete traces are also sometimes referred to as partial
traces [35].

155

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

process model that has been discovered from the two complete traces (CF,SF,IFN,
ISDAP,AP,RRAP,NRAO, P) and (CF,SF,IFN,IDAP, AP, SAP, P) using the Induc-
tive Miner. The model precisely describes the two traces. Next, consider the trace postfix
(IFN, P, AP, P) that should be (incrementally) added to the initial model shown in Fig-
ure 6.1b. Note that since it is a postfix alignment, other activities could happen before.
When using the proposed LCA-IPDA (cf. Chapter 5), which does not support trace frag-
ments, i.e., all trace fragments are treated as complete ones, we obtain the model shown
in Figure 6.1c. Note that the Inductive Miner returns the same model when using the
two initial traces and the trace postfix. Recall that the Inductive Miner also does not
support trace fragments. Consider the model shown in Figure 6.1c. Activities CP, SF,
IDAP, RRAP, NRAO, and SAP become optional since they are not contained in the pro-
vided trace postfix. However, neither the trace postfix nor the two initially used traces
require these activities to be optional. Thus, the model shown in Figure 6.1c is impre-
cise. In contrast, the model depicted in Figure 6.1d is more precise than the one shown
in Figure 6.1c. For example, activities CF, SF, and IFN are not optional, i.e., they must
be executed at the beginning according to the model. The fact that these activities must
be executed at the beginning is consistent with the two initially-used traces and with
the trace postfix. For the trace postfix, these activities can be ignored as a trace postfix
does not contain any information on activities that are executed at the start. Overall,
the model shown in Figure 6.1d, which is discovered with the technique proposed in this
chapter, is preferred over the model shown in Figure 6.1c because the latter is more
imprecise concerning the two initially used traces and the trace postfix. Moreover, the
model in Figure 6.1d contains duplicate labels, i.e., there exists two leave nodes that
are labeled IFN. For instance, the Inductive Miner is not capable of discovering models
having duplicate labels. In short, the example shows the need to support trace fragments
if users want to consider process behavior from trace fragments in process discovery.

The central research question addressed in this chapter is: How can trace fragments,
i.e., trace prefizes/infizes/postfizes, be incrementally added to a process model? We an-
swer this research question by extending the incremental process discovery framework
introduced in Section 5.1 to support trace fragments. Further, we provide a specific in-
stantiation of the extended framework. We propose a novel Trace-Fragment-Supporting
Incremental Process Discovery Algorithm (TFS-IPDA) that allows gradually discovering
models from complete traces (as introduced in Chapter 5) and trace fragments. The
proposed Trace-Fragment-Supporting Incremental Process Discovery Algorithm (TFS-
IPDA) builds on the proposed LCA-IPDA.

The remainder of this chapter is organized as follows. Section 6.1 introduces the
extended incremental process discovery framework that incorporates trace fragments be-
sides complete traces. Finally, we present a concrete LCA-IPDA that instantiates the
extended framework introduced in Section 6.1 and employs infix and postfix alignments
presented in Chapter 4.

156

SF Send Fine NRAO Notify Result Appeal to Offender
IFN Insert Fine Notification SAP Send Appeal to Prefecture
IDAP Insert Date Appeal to Prefecture P Payment

AP Add Penalty

CF Create Fine I RRAP Receive Result Appeal from Prefecture

(a) Overview activity abbreviations

(b) Initial process model discovered wusing the Inductive Miner wusing the traces
(CF,SF,IFN,IDAP,AP, RRAP,NRAO, P) and (CF,SF,IFN,IDAP,AP,SAP, P)

(c¢) Adding trace postfix (IF'N, P, AP, P) using the LCA-IPDA (cf. Chapter 5), which considers
the trace postfix to be complete

mmh

(d) Adding trace postfix (IFN, P, AP, P) using the IPDA proposed in this chapter, which con-
siders the trace postfix as a postfix

Figure 6.1: Example from the road traffic fine management log [56] showing the impact
if a trace postfix is falsely considered as a complete trace within IPD

157

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

6.1. Extended IPD Framework

This section presents the extended IPD framework that supports trace fragments, i.e.,
trace prefixes, infixes, and suffixes, besides complete traces. Further, we briefly elaborate
on the potential origins of trace fragments and why trace fragments are worth to consider.
To this end, we first introduce notation conventions used throughout this chapter. We
use the symbol

O € {cmplt, pre, inf, pos}

to indicate the type of an artifact, for instance, a trace or an alignment. We refer to
complete as cmplt, prefix as pre, infix as inf, and postfix as pos. Recall Definition 3.30
(page 69), specifying the language of a process tree, i.e., complete traces supported by a
process tree. Below, we define a given process tree’s prefix, infix, postfix, and complete
language.

Definition 6.1 (Process Tree Prefix/Infix/Postfix/Complete Language)
Let A € P. We define its
o complete language as Lempir(A) = L(A) (c¢f. Definition 3.30 on page 69)°,
o prefix language as Ly,.(A) = {01 | 01,00 € A* A 01009 € IL(A)}
e infiz language as Ling(A) = {02 | 01,02,03 € A* A g1002003 € L(A)}, and

o postfiz language as Lpos(A) = {0’2 | 01,00 € A* A 01009 €]L(A)}.

“For completeness reasons and better distinguishability, we introduce a second symbol in this
chapter for the complete language of a process tree, i.e., Leppie (A) = L(A).

Figure 6.2 illustrates the extended IPD framework. We use red outlines in the ex-
tended framework depicted in Figure 6.2 to highlight essential modifications compared
to the IPD framework depicted in Figure 5.1 (page 110). Fundamentally, the extended
framework remains as presented in Figure 5.1. The essential modification appears in
trace to be added next o, that can be either a complete trace, a trace prefix, an in-
fix, or postfix. The corresponding interpretation [of o, , indicates the given type, i.e.,
O € {cemplt, pre, inf, pos}. Further, the set of previously added traces A (cf. Fig-
ure 5.1) is now divided into four sets: previously added complete traces Acmpit, trace
prefixes A, trace infixes A;,y, and trace postfixes Ap,s. Like in the initial framework
(cf. Figure 5.1), the user selected trace respectively trace fragment, the (initial) process
tree, and the previously added traces and trace fragments are fed into a TFS-IPDA,
which is central to the framework. The TFS-IPDA returns an extended process tree A’
that supports o, ,, the previously added traces, and trace fragments. Finally, o, is
added to the corresponding set of previously added traces or trace fragments depending
on its interpretation [J. Definition 6.2 on page 160 formally dspecifies TFS-IPDAs.

next

158

6.1. Extended IPD Framework

Incremental Process Discovery Approach

v

Previously added

(1) full traces
Acmplt g]Lcmplt(A)
(2) trace prefixes
Apre g H‘pre (A)

(3) trace infixes
(4) trace postfixes
Apos g ILpus (A)

Simplified
event log —
Ls € M(A*) User
(=]

S {

(User-)selected

.
Trace pool full trace or
(full traces & trace fragment
trace to be added next
fragments) o, ELFUX
IsUX C A* & interpretation of o, _,
~ O € {emplt, pre,inf,pos}
Manually
created
traces &
trace
fragments (Initial) process tree
X CcA* AeP
= with 0penr ¢ Lo(A)
3 >
2 :
User CheRARRRAEERORAARRRRAAEARARBREEE

Updated added traces/
trace fragments

Configuration AL — A
= U
Parameters WiDth Al DC HfUELZI/t)}
03 S

Trace-

fragmer'bt- Extended process tree
supporting ANePp

Onext €]LD (A,)

Incremental Aemptt € Lempiz (A7)
]?"rocess Apre S Lpre(A)
Discovery Aing C Ling(A)
Algorithm Apos C Lpos(A)

(TFS-IPDA)

Figure 6.2: Input-output perspective of the proposed incremental process discovery
framework extended to support trace fragments

159

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

Definition 6.2 (Trace-Fragment-Supporting Incremental Process Discovery Algo-
rithm (TFS-IPDA))
The function

tfsIpda : P(A*) x P(A*) X P(A*) x P(A*) x A* x P —> P
is an TFS-IPDA if for any

e previously added

— complete traces Acmpit C A* with Acmpit C Lempit(A),
— trace prefives Apre € A* with Apre C Lpre(A),

— trace infizes Ainy C A* with Ajny C Ling(A),
— trace postfizes Apos C A* with Apos C Lipos(A),

o complete trace or trace fragment o,,, € A* to be added next with corresponding
interpretation O € {cmplt, pre, inf, pos}, and

o (initial) tree A € P
it holds that

e o, €lpg (tfs]pda(cmplt,Apre,Amf,Apos,Unm,A)),
Acmpit © Lempie (4fsIpda(Acmpit, Apre, Aing, Aposs T A));
Apre C Lpre(tfsfpda(Acmplt, Apre, Aing, Apos, O

Ainf

2

.
N

(thIpda cmplts ApT‘ea Az’nf» 005 T pewt s); and
L4 Apos g Je] (tfs[pda cmplts Aprea Ainf; 0055 T pent s)
(A (

If Acmplt g Lcmplt) \ ApTe g Lpre(A) \ Aznf g]Llnf A) \ Apos g Lpos(A)7
function tfslpda is undefined.

As stated at the beginning of this chapter, trace fragments are a frequent phenomenon
in real-life event data. In the extended framework depicted in Figure 6.2, for the sake
of simplicity, we represent a trace pool that contains both complete traces and trace
fragments. As in the initial framework (cf. Figure 5.1), an event log and manually-created
traces/trace fragments may fill the trace pool. However, the information if a trace is a
complete trace or a trace fragment is in most event logs not present. Thus, users must
utilize domain knowledge from the process under study to detect trace fragments from
event logs. Alternatively, users may apply fully automated techniques to detect and label
trace fragments; for instance, a classifier that can detect trace fragments is proposed
in [24].

The above approaches for obtaining trace fragments presume their existence within the
event log and merely focus on their detection. Although complete traces are available,
users may only require specific trace fragments from complete ones in some instances.
Thus, users do not incrementally add the complete trace but rather a fragment of a

160

6.2. Trace-Fragment-Supporting IPDA

complete one. For example, imagine a more extensive process consisting of various stages
that may even cross organizational boundaries. Starting from a rough initial process
model that covers the entire process, users can gradually discover the different process
stages consecutively to maintain an overview and to more easily incorporate the expertise
of the process participants of individual process stages into the process model to be
discovered. In such a scenario, users of incremental process discovery might extract
fragments from complete traces and add them to the pool of traces and trace fragments.
Finally, users might apply frequent pattern mining approaches to obtain trace fragments
from complete traces. For instance, in [249], an algorithm is proposed to discover frequent
subsequences from sequences that can be easily adapted to traces as considered in process
mining.

In summary, trace fragments may originate from various sources, respectively ap-
proaches. Trace fragments may be automatically or manually identified from event logs,
which usually do not label traces as complete, prefix, infix, or postfix. Further, incre-
mental process discovery users can manually create trace fragments when a particular
process behavior that should be incorporated into the process model but is not recorded
in the event data. Finally, frequent pattern mining approaches can be applied to discover
frequent trace fragments from complete traces.

6.2. Trace-Fragment-Supporting IPDA

This section introduces a specific TFS-IPDA that can be embedded in the extended
framework illustrated in Figure 6.2. The proposed TFS-IPDA builds upon the LCA-
IPDA, introduced in Section 5.3. In the remainder of this section, Section 6.2.1 presents
a running example. Subsequently, Section 6.2.2 presents the algorithm formally.

6.2.1. Running Example

This section presents a running example of the proposed TFS-IPDA. Figure 6.3 depicts
an input process tree A. As in the LCA-IPDA (cf. Algorithm 5.2), the tree is initially ex-
tended by artificial start and end activities, cf. the red highlighted elements in Figure 6.3.
In the following, we refer to the extended process tree as A.

Further, assume as input trace (fragment) o, to be added next, its interpretation O €
{cmplt, pre, inf, pos}, previously added complete traces Acpmpit, and previously added
trace fragments (i.e., Apre, Ainf, Apos). Below, we list these inputs. Like in Section 5.3,
we extend the traces and trace fragments with the artificial start and completion activities
correspondingly; for instance, we only extend trace postfixes by the end activity B but
not with the start activity. We highlight the extensions below using red font color.

o [= postfix
oo, . =f{aa fB) witho 6 &L, (\)
o Acppit = {mz(»,a,b,a,b, f,e,a,l)} with o1 € Lempie(A)

o Ape = {@z(b,d, c,e,a)} with o9 € Lpre(A)

161

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

o Ay = {a;;:<c, fra), o,=(b,d, c,e7a>} with o3, 04 € Lipns(A)

o A, = {(r,—,z(f,Cl,l)} with o5 € Lpos(A)

V5.1 Us.2 V5.3 Us.4

tree A provided as input

Figure 6.3: Input process tree A, which is extended by artificial start » and end B activ-
ities; extensions are highlighted in red

Next, an optimal postfix alignment is computed to reveal the deviations between trace
postfix o, , and tree A. Figure 6.4 depicts an optimal postfix alignment 7,,, indicating
a deviation in its second move, i.e., a log move on the second a activity.

1. 2. 33, 4. . 6. 7.
- _ a f > > | >
pos (/U3.47 (’U3‘57 (U2.27 (vlv (U.7 (U07
a) f) close) | close) | W) | close)

Figure 6.4: Optimal postfix alignment y,,s € T'92L(A, 0, .,) with one deviation-indicating

alignment move at index 2, i.e., a log move on activity a

Utilizing the information in v, (cf. Figure 6.4), we compute the corresponding subtree
of A causing the deviation. In this case, we compute the LCA from the tree vertices
corresponding to the two synchronous moves at position 1 and 3. Thus, lcap (vs.4,v35) =
v2.9. Vertex vy o represents the root vertex of the subtree, i.e., Ap(va.2), causing the first

162

6.2. Trace-Fragment-Supporting IPDA

(and only) deviation indicated in vpes, cf. Figure 6.4. Figure 6.5 visualizes the subtree.
As we can observe, subtree A;ca does not support the execution of activity a more than
once; however, o, contains two a activities that, according to 7,,s, should be executed
between executing vertex vs 4 and vs.s.

V3.3 V3.4 U35

Figure 6.5: Problematic subtree Arca = Ap(v2.2) causing the deviation indicated in vpes
(cf. Figure 6.4) between o, , and A

next

Similar to the LCA-IPDA (cf. Algorithm 5.2), we compute a corresponding log for sub-
tree Apca containing traces that Ajc4 must support. Below, we depict the corresponding
sublog Lyca for Apca.

Lica= [e,a,a,), derived from o,e.m.

) derived from o
), derived from s, 04
fra,e), derived from o3

derived from o

Consider the trace (e, a,a, f) shown above. As indicated, this trace is derived from
0,.. = f{a,a,f). Simply adding o,_, = (a,a, f) to the sublog L1ca results in an unnec-
essary imprecise subtree upon rediscovering Ajca using function discovery (cf. Defini-
tion 3.32). Function discovery would return a tree that contains activity e as an optional
activity. However, none of the traces and trace fragments provided as inputs require e
to be optional, cf. the input traces and trace fragments shown earlier. To this end, we
extend o, , = (a,a, f) by an e activity in the beginning, i.e., we add (e) o (a, a, f) to the
sublog Ljca. Similarly, when replaying the trace prefix oo = (»,d, ¢, e, a), only the last
two activities, i.e. (e,a), are replayed in subtree A;ca. Thus, we also extend for this
trace prefix the corresponding trace that is added to Lpca; we add (e, a, f) to Lrca.

Next, we invoke discovery on the constructed sublog L;ca. The obtained subtree
discovery(Lpca) € P replaces the subtree Ap(va2) in A. Figure 6.6 illustrates the
result, i.e., tree A with replaced subtree Apca. 2 Since 05 (cf. Figure 6.4) indicates
only one deviation, which we just resolved in A, we know that ¢,,,, € Lpos(A). Further,
altered process tree A (cf. Figure 6.6) still supports all previously added traces and trace

fragments.

next

?Depending on the concrete instantiation of the function discovery, other process trees than the one
depicted in Figure 6.6 are conceivable.

163

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

Finally, we remove the added vertices vg, vy, and vm from the tree depicted in Fig-
ure 6.6. Likewise, we remove the artificial start and end activities from previously added
traces and trace fragments, i.e., Am, Apre, Aing, Apos- In the subsequent section, we for-
mally introduce the proposed TFS-IPDA in detail.

Vo

discovery(Lpca)
Us.1 Us.2 V5.3 Us5.4

Figure 6.6: Process tree A after replacing A (ve.2) by discovery(Lpca)

6.2.2. Algorithm

Algorithm 6.1 presents the proposed TFS-IPDA. The essential structure of Algorithm 6.1
is very similar to the LCA-IPDA algorithm presented in Algorithm 5.2 (page 118). For
this reason, we highlight significant changes in Algorithm 6.1 compared to Algorithm 5.2.
In the following, we describe the changes in detail.

First, the input preprocessing phase is executed. Identical to Algorithm 5.2, the tree A is
extended by artificial start and end activities (line 1). In line 2, the only change compared
to Algorithm 5.2 is the consideration of the interpretation O of o, ,, to ensure adding it
in the corresponding set of traces/trace fragments. As before, we extend complete traces
by a start » and end activity B (line 3). Accordingly, we add the start activity » to each
trace prefix (line 4). Likewise, we add the end activity B to each trace postfix (line 5).
Note that we do not modify trace infixes since other activities can happen before and
after; thus, adding start or end activities is not feasible.

164

6.2. Trace-Fragment-Supporting IPDA

Algorithm 6.1: TFS-IPDA
IHPUt: Acmplt Cc A*) Apre c A* ’ Aznf Cc A*) Apos c A* y 0 € A*7

Oe {cmplt, pre, i'flf, pOS} , // interpretation of trace (fragment) o
AeT
Output: Ac 7T

next

begin
/* input preprocessing phase */
1 A + extend A by artificial » and B activities // cf. Figure 5.6 (page 119)
2 Ag + Agu {Uﬂmt} // adding o,., to corresponding Ap
3 Acmplt — {<>> [eNoaNe] <.> | o< Acmplt} // extend complete traces by start &
end activities
4 Ap.,-e — {<>> oo | o< Ap,,-e} // extend trace prefixes by a start activity
5 Apos — {0’ o <.> | (S Apos} // extend trace postfixes by an end activity
/* main phase */
6 let v € FEpt(A,UTLm) // calculate an optimal [J alignment -y
while deviation(y) do /] e & L(A)
14— ﬁrstDeviationMvIndex('y) // first deviation-indicating move index
Apca + subtree(A,~,1) // Definition 5.2 (page 122)
10 if Apoa # undefined then // subtree A;cs could be determined
11 Lica + computeSublogTFS (AyArca, A) // Mlgorithm 5.3 (page 124)
12 A + replace Apca C A by discovery(Lpca)
13 else // no subtree A;cs could be determined
14 L A + extend A according to Figure 6.7
15 let v e Flojpt(A,O'nm) // calculate an optimal alignment -~y
/* output postprocessing phase */
16 A < remove artificial » and W activities from A // added in line 1
17 A + apply process tree reduction rules to A // cf. [120, Chapter 5]
18 return A

In short, the preprocessing phase of the input consists only of slightly more lines since
different trace fragment types are handled individually compared to Algorithm 5.2, which
only considers complete traces. Otherwise, the input preprocessing phase are very alike
when comparing Algorithm 5.2 and Algorithm 6.1.

The main phase of the algorithm starts at line 6 until line 15. The first difference
compared to Algorithm 5.2 is that we calculate an optimal [J alignment in lines 6 and 15,
i.e., an alignment according to the interpretation of o _, € {emplt, pre,inf,pos}. Using
the optimal O alignment, we determine the subtree Aoy in line 9. Recall that subtree (cf.
Definition 5.2)) always returns a subtree Ay when invoked by Algorithm 5.2. However,

165

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

.................................... * © s

o = discovery ([(T,,,ﬂ,/ D

Figure 6.7: Extending tree A above its root node, cf. Algorithm 6.1 line 14; red highlighted
elements are added to A

when dealing with trace infixes in Algorithm 6.1, subtree might be undefined for specific
inputs. Thus, Algorithm 6.1 makes a case distinction depending on whether A;ca could
be determined, cf. lines 10 to 14.

If Apca is determined (line 10), we compute a sublog Lpca for the subtree Apca
(line 11). Subsequently, we replace subtree Apca by a rediscovered one from Lpca
(Line 12), analogously to Algorithm 5.2. In the other case, i.e., Apca could not be
determined (line 13), we modify tree A as illustrated in Figure 6.7. Note that this case
only applies if o, , is a trace infix, and A does not contain any of its activities, cf.
Definition 5.2. 3 In this case, we have no reference point in the tree A where the non-
fitting infix o, should take place in tree A. Therefore, we extend tree A at its root
vertex by a new vertex vy labeled with the parallel operator (cf. Figure 6.7). Further,
we add below the new root vertex vy a tree that allows optionally execution of the trace
infix o,,,. To this end, we utilize the function discovery that returns a tree A, with
s € Lempit(Ay). Thus, applying this extension rule to A, we can guarantee that the
extended process tree supports the trace infix o

newt °

The remaining parts of Algorithm 6.1 are similar to Algorithm 5.2. Thus, after resolving
the first block of deviations as indicated in +, again an optimal [J alignment is computed
(line 15) and, in case of further deviations, the loop (cf. line 7-line 15) is executed again.
Finally, after resolving all deviations between o, . and A, the output postprocessing
phase is executed, identical to Algorithm 5.2.

next

31f o,,,, is a trace inifx, 0, is not extended by the artificial start and end activities compared to
complete traces, prefix, and postfix traces, cf. lines 2 to 5. Thus, if no activity from o, is contained
in process tree A, the corresponding optimal infix alignment contains only log moves. Therefore,
function subtree cannot find a subtree since the optimal infix alignment contains no reference point

in the tree.

166

6.2. Trace-Fragment-Supporting IPDA

Sublog Calculation

This section covers the sublog calculation for the determined subtree Apca, cf. Algo-
rithm 6.1 line 11. Recall the running example with Apca = Ap(va2), cf. Figure 6.5
(page 163). The alignment ~y,,s (cf. Figure 6.4) contains a log move on activity a; thus,
subtree Apca = Aa(ve.2) should support the replay of two a activities. Note that we
show 7pes from Figure 6.4 also in the lower right of Figure 6.8. In the LCA-IPDA ap-
proach, introduced in Chapter 5, we iterate over the alignment, look for openings/closings
of the determined subtree and extract traces. Applying this approach to v,,s does not
immediately work because the alignment 7,,s does not contain an opening of Arca’s
root vertex vg, cf. Figure 6.8. In detail, y,0,’s first move is a synchronous move on
vertex vs 4 labeled a, which belongs to Apca. Thus, Apca’s root vertex vs o must have
been opened before, which is not contained in v,s. Assume that the missing opening
of Arca’s root vertex is negligible, we simply assume it was opened before. Applying
the trace extraction to vpes as for the LCA-IPDA, cf. extractSubTraces in Algorithm 5.4,
results in the trace (a,a, f). Thus, upon rediscovering Ay ca, activity e will be optional
because the trace (a,a, f) extracted from 7,,s does not contain an e activity. However,
when looking at all previously added traces and trace fragments, they do not require
activity e to be optional, cf. Section 6.2.1. Likewise, the trace postfix to be added next
0,.. = {a,a, f) does not require activity e to be optional in subtree Arca. Thus, when
adding trace {(a,a, f) to the sublog Ljca, which is used to rediscover subtree Apca,
the resulting process tree would be unnecessarily imprecise because activity e would be
optional due to trace (a,a, f) contained in the sublog Ljca used for rediscovery.

To avoid imprecise subtrees upon rediscovery, we must adapt the technique to extract
traces from an alignment. To this end, we extend alignment 7, into a complete align-
ment. Consider Figure 6.8 showing a complete alignment v € I'(A, ¢, _,) that is composed
of a prefix alignment 7, € I'yre(A, () aligning the empty sequence and the optimal
postfix alignment 7,0 € Fgg’; (A,0,,..). Note that vy, is not an optimal alignment. Fur-
ther, the complete alignment ym is not necessarily optimal. Considering the complete
alignment depicted in Figure 6.8. In general, when iterating over the extended align-
ment, i.e., a complete alignment, it is now guaranteed that we find to any opening/closing
of an inner vertex a corresponding closing/opening. We observe the opening of A LCA’s
root vertex in alignment move 12, which is part of the prefix alignment 7., and its clos-
ing in alignment move 17. Between the opening and closing of A;ca’s root vertex four
alignment moves are contained that we process from left to right. Move 13 represents
a visible model move on activity e. Usually, we we would ignore visible model moves.
However, this visible model move is not part of the optimal postfix alignment ,,s; thus,
we add activity e to the trace. From move 14 until 16 we proceed as usual; we add two
times an a and once a f activity to the trace. In alignment move 17, A;ca’s root vertex
is closed and never opened again. Thus, we finally return the extracted trace (e, a,a, f)
and add this one to the sublog Lj;ca. Recall the complete sublog Ljca depicted in
Section 6.2.1.

Subsequently, we present an adapted function computeSublog that builds upon
the idea of extending prefix/infix/postfix alignments as exemplified above. The adapted
function computeSublog™" S is invoked in Algorithm 6.1 line 11. Algorithm 6.2 specifies
computeSublog ™" S In essence, Algorithm 6.2 iterates over all traces and trace fragments,

TFS

167

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

Algorithm 6.2: computeSublog™ (called in Algorithm 6.1 line 11)

B W N

[«

10

11

12

13
14

15

16

17

input : A e P, // entire process tree
ArcaCAe P, // subtree causing deviation(s)
Acmplt7 // previously added complete traces and o, if it is complete trace
Ap’r‘e7 // previously added trace prefixes and o, if it is trace prefix
Amf, // previously added trace infixes and o, if it is trace infix
Apos - A* // previously added trace postfixes and o, if it is trace postfix
output: L;ca C M(A*) // sub-log for Trca
begin
Lica + H // initialize sublog for Apca
forall o € Acppir do
let v € FOpt(A, U) // calculate an optimal complete alignment
Lica < Lpca W extractSubTracesTF® (ALcA,'y, {1,..., |’y|})

// Algorithm 6.3

forall o € A, do
Y 4= Ypre © Ypos such that
1. Ypre € TN, 0)
2. Ypos € 1_‘pos (A7< >)
3. Ypre © Ypos € I'(A, 0)
I+ {1,...,i} such that (y(1),...,7({)) = Ypre
Lica < LpcaW extractSub TmcesTFS(TLcA, ~,1) // Algorithm 6.3

forall o € A;, 5 do
Y 4= Ypre © Vinf © Ypos Such that
1. Ypre S Fpre (A7 < >)
2. Yiny € I‘;f; (A, o)
3. Ypos € F;Zg; (A7 (>)
4. Ypre © Vinf © Vpos € F(A7 U)

I+ {i,...,i+ [Vins|} such that <~y(i),...,’y (i + |7mf|)> = Yinf

TFS(

Lica < LicaW extractSubTraces Troa,v,I) // Algorithm 6.3

forall o € A5 do

¥ 4 Ypre © Ypos such that
1. Ypre € Ipre (A,(>)
2. Ypos € TpE5(A, 0)

3. Ypre © Ypos € I'(A, 0)

I« {i,..., 7|} such that <’y(i), Y (|fy|)> = Ypos
TFS'(

| Lrca < LpcaWextractSubTraces Trea,, 1) // Algorithm 6.3

return Lo

168

6.2. Trace-Fragment-Supporting IPDA

complete alignment
’y e F(A’ O-nezt)

optimal postfix alignment
(cf. Figure 6.4)
Ypos € Tphe(A,0,,.,)

prefix alignment
’Vpre E Fpre (A'7 < >)

1 2 |... 11 12 17 18 19 20

> > | >

('U2.25 (Ula (U.a (U()a
close) | close) | B) | close)

> >

(v2.1, | (va2.2,
close) | open)

Arca Arca

opens closes

Figure 6.8: Extending the optimal postfix alignment 7,,s from the running example
shown in Figure 6.4 (page 162) into a complete alignment ~y

computes alignments, and extracts traces that the subtree A;c4 must support. Note that
for the extraction a slightly modified version of extractSubTraces is used; we refer to the
modified version as extractSubTraces™ > , which will be introduced afterwards. Four
sections can be distinguished in computeSublog ™" S of. Algorithm 6.2.

1. For complete traces, an optimal alignment is computed (line 3) and the modified
extraction function extractSubTraces ™ is called (line 4), returning the traces for
the sublog Lyca. Note that eztractSubTraces™” S takes one more argument, i.e.,
a set indicating the alignment moves in the complete alignment ~ that belong to
an optimal complete/prefix/infix/postfix alignment. Since we compute an optimal
complete alignment, we provide all indices as input, i.e., {1,...,|y|}.

2. For trace prefizes, an optimal prefix alignment 7. is computed that is extended
into a complete alignment with a postfix alignment 7,05 (line 6). Next, the indices
I={1,...,|Vpre|} constituting the optimal prefix alignment ,,. within the com-

TFS

plete alignment ~ are collected (line 7). Finally, extractSubTraces is invoked

(line 8).

3. For trace infizes, an optimal infix alignment ;,; is computed that is extended
into a complete alignment with a prefix alignment 7, before 7,5 and a postfix
alignment 7,05 after v;,¢ (line 10). Next, the indices constituting the optimal infix
alignment 7;,s within the complete alignment v are collected (line 11), ie., I =
{Iprel + 1, ., |vprel 4 [Ying|}- Finally, extractSubTraces TFS is invoked (line 12).

4. For trace postfizes, an optimal postfix alignment 7,5 is computed that is extended
into a complete alignment v with a prefix alignment 7,,. before v,,s (line 14).

169

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

For example, recall Figure 6.8. Next, the indices I = {|ypre|+1,...,[7|} con-
stituting the optimal postfix alignment v,,s; within the complete alignment ~ are
collected (line 15). In the example depicted in Figure 6.8, I = {14, ...,20}. Finally,
extractSubTraces ™™ is invoked (line 16).

In short, computeSublog™ s simply calculates an optimal complete alignment for com-

plete traces and extracts traces from the complete alignment for the sublog Lzca. Note
that if only complete traces are considered, computeSublogTFS (cf. Algorithm 5.3) re-
turns the same sublog as computeSublog (cf. Algorithm 6.2). For trace fragments, a
corresponding optimal prefix/infix/postfix alignment is calculated and extended into a
complete alignment, which is not necessarily optimal.

Computing first optimal prefix/infix/postfix alignments and subsequently extending
them into complete alignments is necessary to: 1) obtain complete running sequences of
the tree and 2) to ensure that if parts of the trace fragment fit the process tree, these
parts of the trace fragment are synchronized with the process tree. Simply calculating an
optimal complete alignment for a given trace fragment is not feasible, although require-
ment 1) would be satisfied, since it might be optimal to not synchronize any activity from
a given trace fragment with a process tree in certain cases; thus, the optimal complete
alignment contains no synchronous move. However, when computing a corresponding op-
timal prefix/infix/postfix alignment, synchronous moves would appear in certain cases.
For instance, consider the process tree depicted below, specifying that between start »
and completion M either nothing (7) or the sequence containing a,b, ¢, ..., z,y, z occurs.

— (», X(T, —>(a,b,c...,x,y,z)), I)

Consider the postfix (y,z,B). A corresponding optimal postfix alignment aligns the
activities y, z, and B with the process tree above; thus, an optimal postfix alignment
would not contain any deviation-indicating alignment move, i.e., no log and visible model
moves. In contrast, any optimal complete alignment for (y, z, ®), contains log moves on
activities y and z because it is cheaper (according to the standard cost function) to not
synchronize activities y and z as synchronizing these activities implies visible model moves
on activities a, b, c, ..., x. Thus, the model part of an optimal complete alignment would
execute the 7 instead of the sequence — (a,b,c...,z,y,z). Consequently, log moves on
activities y and z are present. Only one synchronous move on the artificial activity B is
present in an optimal complete alignment.

Subsequently, we present extractSubTraces T in Algorithm 6.3, which is invoked
in Algorithm 6.2 lines 4, 8, 12 and 16. Again, we highlight changes compared to
extractSubTraces, cf. Algorithm 5.4 (page 125). Overall, note that the differences between
extractSub Traces and extractSubTraces ™™ are minor. Two changes apply to the inputs.
First, the provided alignment - is not necessarily optimal, compared to Algorithm 5.4.
Second, extractSubTraces TFS requires next to the subtree Apca and the alignment v a
third input, i.e., a set I C {1, e |’y|} The elements of I represent the indices of the
alignment moves in v that belong to an optimal prefix/infix/postfix alignment in case
v is an extended alignment. For example, reconsider the extended alignment shown in
Figure 6.8. For this extended alignment, I = {14,...,20}.

Besides the changes in the inputs, the other change affects the condition specifying
how a trace ¢’ is constructed, which is eventually added to Lyca; consider line 18 in

170

6.2. Trace-Fragment-Supporting IPDA

Algorithm 6.3: extractSubTraces ™™ (called in Algorithm 6.2)

[~ N1 S V- I VI

~

10

11

12

13

14

15
16
17
18

19

20

21

22

23

24

input : Arca = (Vica, Ercas Xrca, Arcasrica,<pca) EA € P,
v e F(A,O’) s // (opt.) alignment ~ for some o € A* and a tree A

R =F TRl

// alignment move indices belonging to an optimal

complete/prefix/infix/postfix alignment for o and A (cf. Algorithm 5.3)

output: L;ca C M(A*)
begin

// sublog for Apca

Lica + H // initialize sub-log for Apca

forall 1 <i < |y| do

// iterate over alignment moves

o« <> // initialize trace eventually added to Ljca

if Vica = {TLCA} then // Case 1: Apcs contains only one vertex ryca
while model Vertex (7(@)) #rrca do

e

Ise

e

if logMv((i)) then

L o'+ oo <tmceLabel(7(i))> // add log moves

| i< i+l
f modelVertex (y(i)) = rpca then
o'+ oo <modelLabel(7(i))> // modelLabel (v(1)) = Apca(rroa)
1+ 1+1

if Vi <j <y (ﬂsynch(’y(j)) A ﬂz'nvModele(’y(j))) then

L o'+ oo <tmceLabel(*y(j)) ,...,traceLabel (7(|7\))>¢A

| Lrca < Lrca¥[o]

// add trace o’ to the sublog of Apca

// Case 2: Apca contains more than one vertex
f modelVertex (1)) = rLca A modelLabel ((i)) = open then
while modelVertez (v(i)) # rca V modelLabel (v(i)) # close do
if modelVertez (v(i)) € Vica A

(synch (v(1)) V (vz’sModele (v(@)) Ai ¢ I)) then
L o' +ado <m0delLabel(’y(i))>

else if traceLabel (y(i)) € A then
L o' +ad'o <tmceLabel(7(i))>

// traceLabel(y(i)) # >

1 1+1

Lica < Lpcaw [O’l] // add trace o’ to the sublog of Apca

return Lyca

171

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

Algorithm 6.3. We add the label of a model vertex to o’ if it is part of the subtree A;cx
and either a synchronous move or a visible model move that is outside of the extended
optimal prefix/infix/postfix alignment, i.e., ¢ ¢ I. In comparison, extractSubTraces (cf.
Algorithm 5.4) only adds the label of a model vertex to the trace ¢’ if its a sync move
on a model vertex that corresponds to the subtree A;,ca. The extended condition in
line 18 (Algorithm 6.3) Apart from the modified condition and the changes in the input,
extractSubTraces " (Algorithm 5.4) equals extractSubTraces (Algorithm 6.3).

Reconsider the extended alignment + depicted in Figure 6.8 (page 169) and the subtree
Arca shown in Figure 6.5 (page 163). When calling eztractSubTraces TS with v, ALca,
and I = {14,...,20}, we iterate over ~ until the 12. move, representing the opening
of Apca’s root vertex. Next, alignment move 13 is processed, which is a visible model
move on vertex vsg labeled e. Since alignment move 13 is not part of the optimal
postfix alignment, i.e., 13 ¢ I, we add e to ¢’; thus, ¢’ = (e) after processing alignment
move 13. All subsequent moves of v are part of the optimal postfix alignment and thus,
are processed identical to extractSubTraces (cf. Algorithm 5.4). Finally, the sequence
o' = {e,a,a, f) is returned.

6.3. Evaluation

This section presents an evaluation of the proposed TFS-IPDA. The goal of the evaluation
is to demonstrate that distinguishing trace fragments and complete traces may lead to
better process models. Therefore, we compare the LCA-IPDA (cf. Section 5.3) with the
TFS-IPDA as propsoed in this chapter.

6.3.1. Experimental Setup

We compare TFS-IPDA with LCA-IPDA. We use publicly available real-life event logs:
BPI Ch. 2020-Request for Payment [232], Road Traffic Fine Management [56], and Re-
ceipt Phase of an Environmental Permit Application Process [110]. Note that all event
logs used do not distinguish complete traces and trace fragments; all traces are assumed
to be complete. To obtain trace fragments, we applied the following steps.

1. We determine the total time span covered by the event log, i.e. the time from the
earliest to the latest event. Next, we remove all cases having events located in
the first or last 20% of the time span. By removing these cases, we aim to filter
incomplete traces. Note that real-life event logs often have data quality issues and
also contain trace fragments. We consider all remaining cases as complete.

2. We iterate over the remaining complete traces to change some of them into trace
fragments, i.e., we artificially create trace fragments. With probability % we alter a
complete trace into a trace fragment. With a unified likelihood of %, we apply one
of the following changes. Let # = maz {1, [20% average trace length] }.*

a) We remove the first = activities from the complete trace. As a result, we obtain
a trace postfix.

4Note that we denote the rounding of a number y € R to the nearest integer by |y] € N.

172

6.3. Fvaluation

b) We remove the last x activities from the complete trace. As a result, we obtain
a trace prefix.

¢) We remove the first x and last x activities from the complete trace. As a
result, we obtain a trace infix.

In case the above approach yields empty trace fragments, we ignore them. We calculate
fitness, precision, and the f-measure using the event log obtained after applying the first
step described above. We discover a process tree from the 1% most frequent variants.
This process tree serves as an initial model.

6.3.2. Results

Figure 6.9 reports the results for the three different event logs; per row we show the results
of one event log. The plots on the left show the results for LCA-IPDA, while the plots on
the right show the results for TFS-IPDA. Recall that LCA-IPDA considers all provided
traces as complete traces. Overall, we observe that TFS-IPDA outperforms LCA-IPDA
in many scenarios. Comparing the values for fitness, precision, and f-measure, most
times TEFS-IPDA scores higher than LCA-IPDA. Although these results were expected
to a certain degree, the results clearly demonstrate how much of a difference it makes to
distinguish between complete traces and trace fragments, i.e. LCA-IPDA compared to
TFS-IPDA.

As mentioned in earlier chapters, the goal of incremental process discovery is generally
only to include some behavior. Incorporating all behavior is often not desired since
almost all real-life event logs are affected by data quality issues. Thus, only comparing
the values upon adding the last trace (fragment) variant in Figure 6.9 is not decisive.
We observe that TFS-IPDA scores slightly lower in later stages for the event logs BPI
Ch. 2020 and the Receipt Phase of an Environmental Permit Application Process. For
instance, consider the slightly higher f-measure in Figure 6.9c compared to Figure 6.9d
after adding more than 100 trace (fragment) variants. Since many event logs exhibit
a Pareto distribution [214], i.e., a few trace variants cover large parts of the overall
observed process behavior, we find for all event logs that we quickly obtain process
models supporting more than 90% of the observed behavior. Thus, after adding a few of
the most frequent trace (fragment) variants, we reach high fitness values, cf. Figure 6.9.
Due to this phenomenon, we see that the f-measure, i.e., the harmonic mean of fitness and
precision, is mainly driven by precision. Thus, with some offset, the curves for f-measure
are almost identical to those for precision the higher the fitness value is.

6.3.3. Discussion & Threats to Validity

In the above presented results, we compute fitness, precision, and f-measure based on the
event log that we obtain after applying the first step as described in Section 6.3.1. We do
this because, to the best of our knowledge, there are currently no methods for computing
fitness and precision based on alignments for trace fragments. However, we provide a
different event log, the one obtained after applying the second step (cf. Section 6.3.1), to
the two discovery approaches. Thus, we eventually evaluate the process models obtained

173

Chapter 6. Supporting Trace Fragments in Incremental Process Discovery

1.0 —— Fitness
—— F-Measure
0.9 —— Precision

T T
250 300 350

T
200
Added trace (fragment) variants

0 50 100 150
(a) Road Traffic Fine Management log—LCA-
IPDA

1.0
0.8
0.6
Metric
0.4 - —— Fitness
—— F-Measure
—— Precision
0.2 =—

T T T T T T T
0 20 40 60 80 100 120 140

Added trace (fragment) variants

BPI Ch. 2020-Request for Payment log—
LCA-IPDA

1.0 4
0.8+
—— Fitness
0.6 4 —— F-Measure
—— Precision
0.4
0.2+

T T T T T T
0 20 40 60 80 100 120

Added trace (fragment) variants

(e) Receipt Phase of an Environmental Permit
Application Process—LCA-IPDA

—— Fitness
—— F-Measure
—— Precision

0.4

T T T T T T
0 50 100 150 200 250 300 350
Added trace (fragment) variants

(b) Road Traffic Fine Management log—TFS-
IPDA

1.0
0.8
0.6
Metric
0.4 - —— Fitness
—— F-Measure
—— Precision
0.2 =—

T T T T T T T
0 20 40 60 80 100 120 140

Added trace (fragment) variants

(d) BPI Ch. 2020-Request for Payment log—
TFS-IPDA

1.0
0.84
—— Fitness
0.6 4 —— F-Measure
—— Precision
0.4+
0.2+

T T T T T T
0 20 40 60 80 100 120

Added trace (fragment) variants

(f) Receipt Phase of an Environmental Permit
Application Process log—TFS-IPDA

Figure 6.9: Comparing LCA-IPDA (left column), which considers all provided traces as
complete, with TFS-IPDA (right column), which distinguishes between com-
plete traces and trace fragments (adapted from [185, Figure 8§])

174

6.4. Conclusion

only with an event log consisting solely complete traces. However, since we are evaluating
both algorithms this way, this is not of concern since both are treated the same.

Further, we make an initial effort to ensure the event log contains only complete traces,
cf. the first step in Section 6.3.1. However, the approach taken does not guarantee
that only complete traces remain. For instance, there migth exist cases spanning the
entire time range of the event log but represent actually trace fragments, i.e., before or
after events occurred for these cases that are not captured in the log. Without utilizing
domain knowledge about the underlying process, no automated technique can detect
truly complete traces. In short, there might be actual trace fragments in the event log,
which both techniques consider complete, although they are trace fragments. However,
since both algorithms are equally affected,

6.4. Conclusion

This chapter extended the previously introduced incremental process discovery framework
by trace fragments, cf. Figure 6.2. Trace fragments are a natural phenomenon in event
logs and are often considered a data quality issue [35]. Therefore, many process mining
techniques solely focus on complete traces. The extended IPD framework allows to utilize
trace fragments along with complete traces. Core to this extended framework is a trace-
fragment-supporting IPDA. We instantiated the framework by extending the previously
proposed LCA-TIPDA into a TFS-IPDA, cf. Section 6.2. We showed how large parts of the
LCA-IPDA could be easily adapted to support trace fragments. Further, the proposed
TFS-IPDA demonstrates how alignments for trace fragments—recall that we proposed
infix and postfix alignments in Chapter 4—can be employed within IPD.

From the user’s point of view, trace-fragment-supporting IPD offers new opportuni-
ties. For instance, it allows process experts to focus on specific process stages during the
discovery by considering only trace fragments covering a specific process stage. Thus,
trace-fragment-supporting IPD enhances the overall incremental discovery idea. While
IPD generally facilitates the gradual incorporation of complete traces, trace-fragment-
supporting IPD facilitates the gradual discovery of individual process stages. Especially
in complex processes, where various domain experts from different process stages are re-
quired to comprehensively cover the entire process, the focus on trace fragments covering
different phases can be advantageous for process discovery. The gradual discovery of
process stages from corresponding trace fragments means that not all experts are always
needed simultaneously. For instance, at the beginning, an initial model can describe
the rough arrangement of the entire process, whose individual process stages are then
discovered step by step in the process discovery phase.

175

Chapter 7.

Freezing Process Model Parts in
Incremental Process Discovery

This chapter is largely based on the following published work.

e D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Freezing
sub-models during incremental process discovery. In A. Ghose, J. Horkoff,
V. E. Silva Souza, J. Parsons, and J. Evermann, editors, Conceptual
Modeling, volume 13011 of Lecture Notes in Computer Science, pages
14-24. Springer, 2021. doi:10.1007/978-3-030-89022-3 2 [176]

So far, we focused within incremental process discovery on iteratively user-selected
process behavior, i.e., complete traces (cf. Chapter 5) and trace fragments (cf. Chapter 6).
Reconsider the simplistic IPD overview depicted in Figure 1.6 (page 14), which generally
considers domain knowledge as a further input besides user-selected process behavior and
the (initial) process model. Note that the incremental selection of the process behavior,
i.e., complete traces or trace fragments, has so far been the essential form of interaction
between algorithm and user.

This chapter extends the incremental process discovery framework introduced in Chap-
ter 5, cf. Figure 5.1 (page 110), by allowing users to freeze parts within the process model
provided as input. Freezing parts of the input process model restricts the IPDA to not
alter these frozen parts. We refer to IPDAs supporting process model freezing as freezing-
enabled. Thus, a freezing-enabled IPDA allows users to steer and restrict the process
discovery phase because the options regarding potential process model modifications of
the freezing-enabled IPDA are limited by the user.

Freezing subtrees within IPD allows users to influence the returned model. By freezing
subtrees, the options of an IPDA to modify the provided process tree are restricted.
Figure 7.1 provides an exemplary comparison between classic, non-freezing-enabled IPD
and freezing-enabled IPD. Note that the examples depicted in Figure 7.1 are general and
that the actual change in the process trees depends on the specific instantiation of the
IPDAs in use. Figure 7.1a lists the previously added traces A and the trace to be added
next o, .

Figure 7.1b shows the process tree A; that is provided to a classic, non-freezing-enabled
IPDA along with A and o The output tree Ay can be seen in Figure 7.1c. Comparing

next °

177

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

A1 and As, we observe that the choice operator was changed into a loop operator, cf.
vz in Ay (Figure 7.1b) and Ay (Figure 7.1c). Thus, tree Ay allows to execute activity
d infinite times. Further, the order of the vertex labeled d has been changed with the 7
labeled vertex, cf. vertices v4.1 and vy.5 in Figures 7.1b and 7.1c. Thus, tree As supports
0,., and the previously added traces contained in A.

Figure 7.1d shows the process tree Ay, identical to Figure 7.1b, with one frozen subtree
rooted at vertex vo 3 that is provided to a freezing-enabled IPDA along with A and the
trace to be added next o,_,. The output tree A} of a freezing-enabled IPDA is shown
in Figure 7.1e. As highlighted, the frozen subtree A;, =5 A (¢, x (7,d)) is contained in
A%, Since the freezing-enabled IPDA is not allowed to modify the frozen subtree, a new
subtree was added before the frozen one in A}, cf. the subtree rooted at vertex wvs 3.
This subtree allows the execution of activity d optionally. Thus, tree A} supports o, _,
and previously added traces contained in A. Further, tree A} supports the execution of
activity d at most twice.

Comparing the two obtained trees Ag and A}, we clearly see that freezing subtrees can
influence the resulting process tree. Tree A} is more precise than Ay with respect to the
traces AU{o,,,}. Tree A supports, for instance, traces like (a, b, d, ¢, d), (a, b, c,d,d), and
(a,b,d,d,d, c) that are all not part of the added traces, i.e., AU {0, ,}, cf. Figure 7.1a.
Further, A} does not contain a loop operator. On the contrary, Af is more complex
regarding the number of elements, i.e., vertices and edges, than tree As. Further note
that process tree A} contains duplicate labels, cf. vs2 and vyo (Figure 7.1e). In short,
this simple example shows that the option to freeze subtrees within IPD enables users to
steer and influence the process discovery phase positively.

The remainder of this chapter is organized as follows. Section 7.1 introduces the
extended framework that embeds a freezing-enabled IPDA. Subsequently, Section 7.2
presents a baseline freezing-enabled IPDA, instantiating the extended framework. Fur-
ther, Section 7.3 presents the freezing-enabled LCA-IPDA, which is the essential contri-
bution of this chapter. Section 7.4 presents an evaluation of the proposed freezing-enabled
IPDAs. Subsequently, Section 7.5 discusses an illustrative example to showcase the ad-
vantage of freezing submodels during IPD. Finally, Section 7.6 concludes this chapter.

178

A= {(a,b,c),(a,b,qd}, (a,b,d,c)} o, =l{abdd,c)

next

(a) Input: previously added traces A and trace to be added next o

next

V4.1 V4.2

(b) Input process tree Ai to a non-freezing- (c) Output process tree A2 of a non-freezing-
enabled IPDA enabled TPDA

(d) Input process tree A; to a freezing-enabled (e) Output process tree A5 of a freezing-
IPDA; highlighted subtree is considered enabled IPDA; highlighted subtree is con-
frozen sidered frozen

Figure 7.1: Exemplary comparison of classic, non-freezing-enabled IPD (as introduced
in Chapter 5), shown in Figures 7.1b and 7.1c, to freezing-enabled IPD (as
proposed in this chapter), shown in Figures 7.1d and 7.1e

179

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

7.1. Extended IPD Framework

This section formally introduces the extended framework, i.e., the freezing-enabled incre-
mental process discovery framework. In the interest of clarity, we focus only on complete
traces in this chapter. However, it should be noted that the presented framework and
the concrete instantiations can easily be adapted to support trace fragments. Therefore,
in the following, we will only occasionally give brief insights into what would need to be
adjusted accordingly in the case of trace fragments. In the remainder of this section, we
will introduce and formally define freezing-enabled IPD.

Incremental Process Discovery Approach

: Updated added traces
v Al:AU{O'nezt}

Previously added traces Configuration with A’ CL(A')
AC A Parameters
Simplified with A C L(A) o
event log
L* € M(AY) &
—] ing-
— User F;'ZZZI:;; Z Extended process tree
< > NePp
ﬁige pool 1. (Iisell')-)seggztsd tr:zce L Incremental with {opext} UA C L(A)
fLros © be adced nex Process ey
Onext € LU X . containing frozen
N Discovery . q
: Algorithm subtrees, if specified
. = Aiyo A TN
Manually (IPDA) ! .
created > :
traces T
X C A (Initial) process tree
= AeP
T with oyent ¢ L(A) and
® ACL(A)
-

Frozen subtrees

(optional input)

Ay A, TA
for n € Ny

T

User

Figure 7.2: Input-output perspective of the proposed incremental process discovery
framework extended to support submodel freezing

Figure 7.2 depicts the extended IPD framework that allows users to freeze submodels.

180

7.2. Naive Freezing-Enabled IPDA

Compared to the framework shown in Figure 5.1 (page 110), the extended framework
shown in Figure 7.2 allows users to optionally specify subtrees A;,,...,A;, T A of the
provided input process tree that should be frozen. Further, the IPDA is replaced by a
freezing-enabled IPDA. Finally, the output process tree A’ is guaranteed to contain the
frozen subtrees, ie., A;, ..., A; CA’ besides the guarantee that the previously added
traces and the trace to be added next are supported, i.e., {opest } UA C L(A’). Subse-
quently, we define a freezing-enabled IPDA.

Definition 7.1 (Freezing-Enabled Incremental Process Discovery Algorithm)
The function
felpda : P x P(P) x A* x P(A*) —» P
18 a freezing-enabled IPDA if for any
o (initial) tree A € P,
o frozen subtrees {A;,,..., N, } € P(P) with
—n €Ny
— Ay, A, CA

—V1<j<h<n(A, ZAi A Ay ZA;)

e traceo,,, € A", and

o previously added traces A € P(A*) with A C L(A)
it holds that

e AU{0,.} € L(felpda (A, {h,- o A0y},

o A A, C felpda (A, {Aiy, - N b0, A)

IFAZLA), I ke{l,...,n} (j £k A Ay, C A,C) or A,,...,A;, T A, function
felpda is undefined.

A)) and

AEIRIE)

7.2. Naive Freezing-Enabled IPDA

This section presents a naive freezing-enabled IPDA. The core idea of this naive apporach
is to simply apply a non-freezing-enabled IPDA, for instance, the LCA-IPDA proposed
in Section 5.3.2. If the resulting process tree misses frozen subtrees, these missing frozen
subtrees are reinserted into the output process tree. During reinsertion, no further se-
mantic analysis of the output process tree is performed. Further, the reinserted frozen
subtrees are inserted in such a way that they merely extend the existing language of the
output process tree, which is returned by the non-freezing-enabled IPDA.

Algorithm 7.1 presents a naive freezing-enabled IPDA according to Definition 7.1.
First, a non-freezing-enabled TPDA is applied (line 1). Next, we check in the returned
process tree A’ if all frozen subtrees specified in Tjrozen, are contained. Any frozen subtree
that is not contained in A’ is added to the set Tnissing (line 2). In case Tpyjssing 1S empty
(line 3), all frozen subtrees are contained in A’; further, since function ipda guarantees
that the returned tree A’ supports o, , and previously added traces A, we return A’
(line 4). Otherwise, i.e., some frozen subtrees are not contained in A’ (line 5), we add

181

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

Algorithm 7.1: Naive freezing-enabled IPDA

Input: A C A*, // previously added traces
0, €A%, // trace to be added next
AeT, // (initial) process tree)
Tfrozen = {Ai1 ey Azn} with Ai1 e ,Ai" CA (fOI‘ n > O) // optional (i.e.,
n > 0) frozen subtrees of A

Output: A' e T // with (1) AU{o,,,} CL(A) and (2) Ag,...,A, C A’
begin

1 AN ipda (A,UTMNA) // apply a non-freezing-enabled IPDA, cf.

Definition 5.1

Tmz‘ssing — {Afrozen ‘ Afrozen S Tf'r'ozen A Afrozen /@A/}
if Tmissing = (Z) then

4 L return A’ // A’ contains all frozen subtrees Ttrozen
5 else

/
6 return /\<A , x(Ail,T) se, X (Aij,7>> for {Ai,, ..., Ai;} = Thnissing

// extend A’ such that all frozen subtrees that are missing in A’ are

optionally executable in parallel to A’

all missing frozen subtrees Tnissing as optional subtrees in parallel to A’ and return
(page 182). Adding the missing frozen subtrees as optional subtrees in parallel to A’
only extends the language of the returned tree; thus, all traces supported by A’ are also
supported by the tree returned in line 6. Figure 7.3 visualizes the returned subtree that
contains the missing frozen subtree as optional subtrees in parallel to A’.

Figure 7.3: Adding missing frozen subtrees A;,, ..., A;, as optional subtrees in parallel to
A, cf. Algorithm 7.1 line 6

Subsequently, we present an example of the above presented naive freezing-enabled
IPDA specified in Algorithm 7.1. Reconsider the input process tree A; with the frozen
subtree Ap, (v23), depicted in Figure 7.1d (page 179). Further, consider the previously
added traces A and the trace to be added next o, , as specified in Figure 7.1a (page 179).

next

182

7.2. Naive Freezing-Enabled IPDA

When applying Algorithm 7.1 to these inputs, we could obtain in line 1 the tree Ag
depicted in Figure 7.1c (page 179).! Note that Ay does not contain the frozen subtree.
Thus, after executing line 2, the frozen subtree highlighted in Figure 7.1d, i.e., Ap, (v2.3),
is contained in Tinissing. Since Tpmissing is not empty, we extend the tree Ao, which we
obtained by applying ipda in line 1, as illustrated in Figure 7.3. Figure 7.4 illustrates the
resulting tree that is returned by Algorithm 7.1 (line 6).

o

V5.1 V5.2

Figure 7.4: Example output tree returned by Algorithm 7.1 for the input tree A; with
frozen subtree Ay, (ve.3), trace to be added next o, , (cf. Figure 7.1a), and
previously added traces A (cf. Figure 7.1a); the highlighted subtree corre-
sponds to the frozen subtree

The example tree shown in Figure 7.4 illustrates that the naive freezing-enabled IPDA
has significant limitations. Comparing the tree resulting from the naive approach, shown
in Figure 7.4, with the tree Ay, shown in Figure 7.1c, indicates that the naive approach
returns a less precise and more complex process tree—complexity in this case refers to
the size of the process tree. Again, both compared trees depend on certain algorithmic
instantiations, so both trees can only be seen as one example out of many. Tree As
depends on the used freezing-enabled IPDA used. Similarly, the tree shown in Figure 7.4
depends on the employed instantiation of the ipda function (cf. Algorithm 7.1 line 1),
i.e., a non-freezing-enabled IPDA.

In conclusion, the proposed naive freezing-enabled IPDA (Algorithm 7.1) demonstrates
that given a non-freezing-enabled IPDA, one can easily create a freezing-enabled IPDA
that conforms to Definition 7.1; recall that the function call of ipda is central in Algo-
rithm 7.1. However, the example process tree that is returned by the naive freezing-
enabled IPDA—the exact process tree depends on the concrete instantiation of function
ipda in Algorithm 7.1 line 1—shows that the naive approach has clear limitations, i.e., the

L As mentioned earlier, the output depends on the specific instantiation of the ipda function.

183

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

process tree may become large and imprecise compared to potential other process trees.
Therefore, in the following, we present the freezing-enabled LCA-IPDA that devotes more
significant effort to obtaining frozen subtrees rather than simply looking downstream to
see if frozen trees have been lost, as the proposed naive approach does.

7.3. Freezing-Enabled LCA-IPDA

This section introduces the freezing-enabled LCA-IPDA compared to the naive approach
shown before. Also, the advanced approach embeds a given non-freezing-enabled IPDA
similar to the naive approach presented in Section 7.2. However, instead of simply apply-
ing the non-freezing-enabled IPDA to the given process tree and reinserting missing frozen
subtrees after the incremental process discovery phase into the resulting process tree, the
advanced approach pursues another strategy. In essence, the advanced approach modifies
the inputs provided to the non-freezing-enabled IPDA as well as the output process tree.

7.3.1. Overview

This section provides a detailed overview of the proposed freezing-enabled LCA-IPDA.
Consider Figure 7.5 providing an overview of the proposed approach and its various com-
ponents. Central to the freezing-enabled LCA-IPDA is a non-freezing-enabled IPDA.
Further, the freezing-enabled LCA-IPDA comprises four components that modify the
inputs provided to the non-freezing-enabled IPDA and the output process tree returned
by the non-freezing-enabled IPDA. These four components are highlighted as black nu-
merated boxes in Figure 7.5. The four components, the modified inputs (i.e., A,7,,,
and K), the non-freezing-enabled IPDA, and the output process tree A’ returned by the
IPDA constitute the propsoed freezing-enabled LCA-IPDA.

Subsequently, we outline the four components that are central to the freezing-enabled
LCA-IPDA, cf. Figure 7.5.

e Component (1) replaces the frozen subtrees A;,,...,A; T A in the input process
tree A by a single leaf vertex with a unique label each. We refer to the modified
input process tree as A. Section 7.3.2 describes component (1) in detail.

e Component (2) replaces any full occurrences of the frozen subtrees in o, with the
unique label already used in component (1). We refer to the modified trace to be

added next as ,_,. Note that o, € L(A) iff o, € L(A). Section 7.3.3 describes
component (2) in detail.

e Component (3) is similar to component (2) and is applied to the traces that have
already been added, i.e., A. Executions of frozen subtrees in the previously added
traces are detected and replaced by the corresponding unique label. We refer to
the modified traces as A. Note that A CL(A) and A C L(A).

e Component (4) reinserts the frozen subtrees replaced by component (1) back into A,

We refer to the resulting process tree as A’ with {0, ,} U A € L(A’). Section 7.3.5
describes component (4) in detail.

184

7.8. Freezing-Enabled LCA-IPDA

,V UL S09I1)qNS U9Z0J oY) S)I9sUII () pue ‘seoer) pappe A[snoraaid o1y sjoeloxd (g)

poppe oq 0} 90rI) mﬁzmpom.noa (z) ‘v ur seexyqus uezoyj o) seoelder (1) ‘VAdI
-yndur o) Surdjipowr syueUOdWOD [RIYUD INOJ JO SISISUOD [YOTYM

Q\uﬁpskad\ \ML\MQO,Q%.NQ §8§9004)DIUULILIUT

NIV Ty
poyidads J1 ‘seaajqns
uezoJy Sururejuod o

(V)T 5 vn{¥" o} s
43V
9919 ssad0ad papua)xXy

(V)13 v unm
{muotny = v
seder) pappe pajrepdn

-

VadI pa1qoug-6uizaasg paouvapy

/.\
W15y
pue (V)7 2 * 0 uia
d>V
S99I1qNs U3ZOo.JaJ
paoerdax yim
9919 ssadoad (reryruy)

(vadr)
WYILI0S[Y
KI19A00S1(

Ss@d01q

Tejusuwia.ouy

Ry
1Xou pappe o9q 0}
adea) palos[as(-19s())

2 (V)T 5 yn {7 e} unm
FEN
9019 ssed00ad papua)xXy

(V)15 y unm
VoV
S90RI} pappe
Asnotasad pajoslorg

é\ékg

¢ 1TIU

0 1XoU

Ppaqreue-Surzesy-tou e jo syndino/s
VAT POIqRUa-SUIZOdI] PIOURAPR A} JO MOIAIOA() :G"), IS

ON 2 u 10§
VI tVety
(ndur reuorydo)

$991)qNS UBZOL]

V)15V
pue (V)T 3 **“o yym
d>V
9919 sseooad (rerjruy) a
Y OX
seorI)
poajeard
Arenueyn
H
X N7 5 40
Jxou pappe aq 09 <o WY DX NST
ade1) pajos[as(-19s()) 1ood adedy,
$ -~
.5“4 m
C YIW 31
Sof juaas
poyrdung

(V)15 v wm
YOV
sedrl) pappe A[snoiasig
A

185

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

A

i1

|close
V3.1 V3.2

(b) Process tree A; where the frozen sub-

(a) Process tree A; (identical to A; de- tree has been replaced by the high-
picted in Figure 7.1d on page 179) with lighted subtree, i.e., a sequence contain-
one highlighted frozen subtree A;; = ing two labels representing the opening
Ap, (v2.3) and closing of the frozen subtree A;,

Figure 7.6: Example of applying component (1) to the process tree A; with highlighted
frozen subtree

In brief, the freezing-enabled LCA-IPDA employs a non-freezing-enabled IPDA. There-
fore, the advanced approach modifies the inputs and output of the non-freezing-enabled
IPDA. In total, four components are comprised within the advanced approach. The
following sections provide a detailed introduction to these four components.

7.3.2. Component (1)—Replacing Frozen Subtrees

This section introduces component (1), which modifies the provided (initial) process tree
A, cf. Figure 7.5. In brief, component (1) replaces each frozen subtree A;,,...,A;, T A
in tree A by two unique labels, one representing the opening and one the closing of the
frozen subtree. Note that the replacement labels are not present in A nor the trace pool
LUL.

For example, consider A; with one frozen subtree A;, = Ax,(va3) depicted in Fig-
ure 7.6a. Component (1) replaces frozen subtree A;, by the subtree — (open’i1 close™n).
Figure 7.6b shows the resulting process tree Kl. Note that we assume that the replace-
ment labels open®ii and close™ are not included in any trace to be added in the future.
The two labels open™ii and close™ allow us to track when a frozen subtree is opened
and when it is closed again.

In the general case, we iteratively replace each frozen subtree A;; € {A;,,...,A; } for

n € Ny by a corresponding subtree — (openAiJ‘ , close™is). Recall that we require that
all frozen subtrees A;,,...,A;, do not overlap, i.e., they do not contain each other, cf.
Definition 7.1 on page 181. Hence, the order in which we replace the frozen subtrees is
irrelevant, as all frozen subtrees can be replaced accordingly by component (1).

186

7.8. Freezing-Enabled LCA-IPDA

7.3.3. Component (2)—Projecting Trace to be Added Next

This section introduces component (2), which modifies the trace to be added next o __,,
cf. Figure 7.5. Component (2) modifies the input trace o, such that occurrences of
the frozen subtrees are replaced by the corresponding labels, as already used by compo-
nent (1). In the following, component (2) is introduced using a running example. The
subsequent explanation details the functionality of component (2) in the general case.
Recall tree A; with one frozen subtree A;, = Ap,(v23), cf. Figure 7.6a (page 186).
Component (1) altered A into A, cf. Figure 7.6b. Further, recall o, , = (a,b,d,d,d,c)
(cf. Figure 7.1a). The goal of component (2) is to detect potential full executions of
the frozen subtree and replace these full executions accordingly in o,,,. To this end,
we compute an optimal alignment between o, and an abstraction tree that allows the
replay of the frozen subtree arbitrarily many times. Consider Figure 7.7 showing the
corresponding abstraction tree. The loop operator (cf. v;) allows to replay the frozen

subtree, which is highlighted in Figure 7.7, any number of times.

frozen subtree A;,

Figure 7.7: Abstraction tree AfPstc¥on for the frozen subtree A;; =5, A (c, % (7,d)) of
tree Ay (cf. Figure 7.6a)

3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

> > > > d > c > >

(v1, | (v2.1, | (v2.2, | (va2, | (va2, | (vs.2, (vs.1, | (v2.2, (v1,
open) T) open) | open) d) close) c) close) | close)

Figure 7.8: Optimal alignment for trace to be added next o, = (a,b,d,d,c) and ab-

straction tree Ag¢bstraction depicted in Figure 7.7

t

Figure 7.8 illustrates an optimal alignment for the abstraction tree shown in Figure 7.7
and trace to be added next o The alignment contains a complete execution of the

next *

frozen subtree, cf. alignment moves 5-8, 10, and 11. In alignment move 5 the frozen

187

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

5.
A
7,17

10. 11.

A

1. 12.

— i1
O-nezt - < a,

2.
b

3.‘4.

6.7.8.‘

9.
open d, close

)

o = {a,b, open™i d, close™) derived
from the optimal alignment depicted in Figure 7.8

)
Figure 7.9: Projected trace to be added next o

subtree is opened and in move 11 it is closed again. In between there exists no visible
model move on a vertex that belongs to the frozen subtree. Thus, we replace all labels
in o, that are replayed in a full execution of the frozen subtree, i.e., the first d and
the ¢ in o Figure 7.9 shows how we derive the output trace o, , from the computed
alignment shown in Figure 7.8. The first two moves represent log moves; thus, we adopt
the activity labels to o, ,. Recall that the alignment shown in Figure 7.8 contains a full
execution of the frozen subtree A;,, which is rooted at vertex vy o (in the abstraction tree,
cf. Figure 7.7). The frozen subtree is opened in the 5'" alignment move; thus, we add
the corresponding replacement label open®i1 to &, _,. Next, we ignore alignment move 7
since it is part of a full execution of the frozen subtree A; . However, the 9 alignment
move is a log move on d; thus, we add the d to &,_,. The 10*® alignment move is again
a synchronous move within the frozen subtree and is therefore ignored. Finally, the 11*®
alignment move closes the full execution of the frozen subtree. Below, we summarize the

input trace o, , and the output trace o, , of component (2).

next *

next next

O peat :<a’a ba da d; C>
Ene:l;t :<aa ba OpenAil P d7 ClOS@Ai1>
In the general case, i.e., n € Ny frozen subtrees A;,,...,A; are provided, we generate

one abstraction tree containing all frozen subtrees. Figure 7.10 depicts the abstraction
tree for the general case. This abstraction tree allows the replay of any frozen subtree
at any time arbitrarily often. As in the example presented above, the trace to be added
next o, is aligned with the abstraction tree. If a frozen subtree is fully replayed in
an alignment, we remove the replayed activity labels and add instead the opening and
closing of the frozen subtree, cf. the example shown in Figures 7.8 and 7.9. We refer to a
frozen subtree as fully replayed within an alignment if, between an opening and closing
of that frozen subtree, no visible model moves on leaf vertices belonging to that frozen
subtree exist. Note that there can be multiple openings and closings of the same frozen
subtree within an alignment; thus, both full and partial executions of the same frozen
subtree can occur in an alignment.

In the following, we formally present the extraction of the projected trace to be added
next o, ,. To this end, we specify the function belongsToFullEzecution in Definition 7.2.
Given an alignment € T'°Pt(Aabstraction 5) for the trace to be added next o, , and
the abstraction tree APstaction an alignment move index i € {1,...,|y|}, and the set of
frozen subtrees Tfrozen, the function returns true if the alignment move (i) is part of a
frozen subtree, i.e., either a model move or synchronous move on a leaf vertex belonging
to the frozen subtree, and the current execution of the frozen subtree is a full one, i.e.,
no visible model moves occur. In other words, the current alignment move is part of a
deviation-free execution of a frozen subtree.

next

188

7.8. Freezing-Enabled LCA-IPDA

Figure 7.10: General structure of the abstraction tree Astraction for n ¢ Ny frozen sub-
trees A;,,...,A;, T A; each frozen subtree in Astaction can be replayed
any number of times and in parallel with other frozen subtrees

Definition 7.2 (Function belongsToFullExecution)

The function belongsToFullEzecution : T°P* x N x P(P) — B takes
e an optimal alignment y € ToPt(Aabstraction 5
o an alignment move index i € {1,...,|v|} CN, and

e a set of n frozen subtrees Tirozen = {An:(Vil B i Ay Ty iy)y ey N =
(Vi Bi Si s Niv s T s <in)} € P(P) of tree A

and returns true if the alignment move (i) is part of a full exzecution of a frozen
subtree, i.e., no visible model move on a leaf vertex of the frozen subtree exists between
opening and closing. Below, we formally specify the function.

belongs ToFullExecution(y, 4, Tirozen) = true iff

31<m< n<m0delVerte$ (v(2)) € Vi, A

J1<j<i<k< |’y|<modelVertex(7(j)) =Py, N
modelLabel (v(j)) = open A modelVertez (v(k)) = r;,, A
modelLabel (y(k)) = close A VL€ {j,.. ,k}(

visModelMv ((1)) = modelVertez(v(l)) ¢ V;m>)

189

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

Algorithm 7.2: projectnest

Input: v € Fopt(Aabstraction’o.mm)’ // optimal alignment for the trace to be added

next o,,, € A* and abstraction process tree A@bstraction c p

Tfrozen: {Ah:(‘/’il) Eil) Eha)‘il) ’ril k) <i1)7 MR Ain:(‘/in7Ein7 Ein7 Ain,7rin7 <in)}

with Ai17 . ,Ai" CA // m >0 frozen subtrees of A
Output: 7, € A* // projected trace to be added next
begin
g ()
2 for 1 <] < |’y| do // iterate over alignment moves
3 if syncMv (v(j)) A (modelVertex (v() ¢ Vi, U---UV;, V
—|belongsToFullExecutz’on('y,i,Tfmzen)> then // add label from sync. move
if the sync. move does not involve a vertex from a frozen subtree or is
part of a not fully executed frozen subtree
4 L o < 0 o (modelLabel ((j)))
5 if invModelMv (v(j)) A 31 <k<n (modelVertem (v(4)) = rik> A
modelLabel ('y(])) = open A belongsToFullExecution(vy,, Tfrozen) then
// frozen subtree AL,\ is opened and is fully executed in subsequent moves
= add corresponding opening label to &
6 L o + oo (open’ix)
7 if inuModelMv (v(j)) A 31 <k <n (modelVertex (v(4)) = mk> A
modelLabel (’y(])) = close then // frozen subtree A;, is closed and was
fully executed = add corresponding closing label to o
8 L & < 7 o (close™i)
9 if logMv(v(i)) then
10 L & < o o (traceLabel (y(7)))
11 return ¢

Algorithm 7.2 specifies the projection function projectet that extracts projected trace
,., from a provided optimal alignment v € ['°Pt(Aabstraction 5 3 and the set of frozen
subtrees Tfrzen. The function iterates over the provided alignment « and iteratively
constructs the projected trace o. Four case distinctions are made by Algorithm 7.2, cf.
lines 3, 5, 7 and 9.

o If alignment move (i) is a synchronous move (line 3) whose executed leaf vertex is
not part of a frozen subtree or the executed leaf vertex is part of a not fully executed
frozen subtree (cf. Definition 7.2), we add the activity label to &, _, (line 4).

next

o If alignment move v(7) is an invisible model move representing the opening of a
frozen subtree and the frozen subtree is fully executed (cf. Definition 7.2), we add
the corresponding opening label to &, (line 6).

next

190

7.8. Freezing-Enabled LCA-IPDA

o If alignment move (i) is an invisible model move representing the closing of a
frozen subtree and the frozen subtree was fully executed (cf. Definition 7.2), we
add the corresponding closing label to &, (line 8).

next

e If alignment move 7(¢) is a log move (line 9), we add the corresponding activity
label to &, (line 10).

Alignment movements other than those specified above or which do not satisfy the above

conditions are ignored by Algorithm 7.2. Finally, it should be noted, that since optimal

alignments are generally not unique, the trace &, obtained by component (2) for a

xt
given set of frozen subtrees A;,,...,A; and trace o,, may not be unique. However,
€ L(A).

component (2) always guarantees that the returned trace o, , € L(A) iff o

next next

7.3.4. Component (3)—Projecting Previously Added Traces

This section introduces component (3), which modifies the previously added traces A,
cf. Figure 7.5 (page 185). Other than in component (2), which modfies the trace to be
added next o, ,, we know that traces contained in A fit the process tree A, i.e., A C L(A).
However, after modifying tree A into A (cf. component (1) introduced in Section 7.3.2),
traces contained in A do not fit A because A contains replacement labels for the replaced
frozen subtrees that are not contained in traces from A.?

Similar to component (2), component (3) computes optimal alignments for the traces
contained in A and A. Since all traces in A are supported by A, the optimal alignments
computed contain no deviations; hence, these optimal alignments are free of log and
visible model moves. Thus, when a frozen subtree’s root vertex is opened, we know this
frozen subtree is fully executed; there is no need to check this as in component (2). Below,
we summarize the central steps taken by component (3).

1. For each trace o € A, an optimal alignment, i.e., v € T'°P*(A, 0;), is computed.

2. The projected trace o is extracted from - by applying the projection function
project? introduced in Algorithm 7.3.

3. Projected previously added trace o is added to the set of projected previously added
traces, i.e., A.

Algorithm 7.3 specifies the function pmjectA that extracts the projected trace from
a given alignment, cf. the 2"d step of component (3). As input, function project® is
provided an optimal input for a previously added trace o € A and tree A; further, the
set of frozen subtrees Tfoze, is provided. After initializing the projected trace o (line 1),
project” iterates over the alignment moves of 7 (line 2). Three case distinctions are made
per alignment move, cf. lines 3, 5 and 7.

e If a synchronous move is reached containing a leaf vertex that is not part of a frozen
subtree (line 3), we add the corresponding label of that leaf vertex to o (line 4).

20nly in the case if no frozen subtrees (i,e, n = 0) are provided, component (1) does not alter the

provided tree; thus, A = A. In this particular case, traces contained in A also fit A.

191

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

If an invisible model move is reached representing the opening of a frozen subtree’s
root (line 5), we add the corresponding unique opening label of that frozen subtree
to & (line 6).

If an invisible model move is reached representing the closing of a frozen subtree’s
root (line 7), we add the corresponding unique closing label of that frozen subtree
to & (line 8).

In summary, Algorithm 7.3 specifying project® is similarly structured as Algorithm 7.2
specifying projectrest. Since all previously add traces A are supported by process tree
A, frozen subtrees are always fully executed if they occur. As a result, Algorithm 7.3 can
be seen as a simplified version of Algorithm 7.2.

Algorithm 7.3: project®

Input: v € FOpt(A,O'), // optimal alignment for a previously added trace o € A and

process tree A € P

Throzen={Ai;=(Vi,, Ei, ,Siy, iy i <iy)+ M=V, B Sy Niy s Ty <i) }

with A;,,..., A, CA // m >0 frozen subtrees of A
Output: o € A* // projected previously added trace
begin

o)
for 1 <j< |’}/| do // iterate over alignment moves
if syncMv (v(j)) A modelVertez (v(j)) ¢ Vi, U---UV;, then // add

label from sync. move if the sync. move does not involve a vertex from a

frozen subtree

L o < ¢ o (modelLabel (v(j)))
if invModelMv (v(j)) A 31<k<n (modelVertem (v(5)) = rik) A

modelLabel (’y(])) = open then // a frozen subtree is opened, add
corresponding opening label to o

L 7+ oo (open’ix)
if inuModelMv (v(j)) A 31 <k <n (modelVertex (v(4) = mk> A

modelLabel (’y(])) = close then // a frozen subtree is closed, add
corresponding closing label to o
L & < 7 o (close™i)

return o

For example, when applying component (3) to the running example, i.e., previously
added traces A = {(a, b,c), (a,b,c,d),{a,b,d, c)} and tree A; with frozen subtree A;, =
Ap, (v23) (cf. Figure 7.6a on page 186), we obtain the following projected previously
added traces.

192

e o, = (a,b,c) is projected to &1 = (a, b, open’i1 closeA”)
e 0y = {(a,b,c,d) is projected to o5 = (a, b, openi | closeA”)

7.8. Freezing-Enabled LCA-IPDA

e 03 = (a,b,d, c) is projected to G5 = (a, b, open™i1 closeA”)
As a result, A= {(a, b, open®is | close™n)} Since when replaying any trace from A onto
A4, the frozen subtree A;, is always executed last, i.e., no other leaf vertex is executed
afterwards. Further, while executing the frozen subtree A;,, no other subtree that is not
part of A;, is executed in parallel. Thus, all traces from A are projected to the same

trace, see A above.

7.3.5. Component (4)—Reinserting Frozen Subtrees

Reconsider the overview of the freezing-enabled LCA-IPDA shown in Figure 7.5 (page 185).
Components (1), (2), and (3) modify the inputs fed into a non-freezing-enabled IPDA.
This section introduces component (4), which modifies the output process tree A , which
is returned by the non-freezing-enabled IPDA, cf. Figure 7.5. Recall that K, which is
fed into the non-freezing-enabled IPDA, does not contain any frozen subtree; all frozen
subtrees have been replaced by component (1) (cf. Section 7.3.2). Thus, the resulting tree
A’ returned by the IPDA does not contain the frozen subtrees.®> Component (4) reinserts
the frozen subtrees into A’ such that the overall freezing-enabled LCA-IPDA adheres to
Definition 7.1 (page 181). Due to applying a non-freezing-enabled IPDA (cf. Figure 7.5),
replacement labels used to replace frozen subtrees might occur more than once in tree
returned by the IPDA. Therefore, component (4) must find appropriate positions within

A’ to reinsert the frozen subtrees.

Example

For example, reconsider the running example with Ay (cf. Figure 7.6b on page 186), A =
{(a,b, openAil,closeA”)} (cf. Section 7.3.4), and &, , = (a,b, open™i1 d, closeA”) (cf.

ot
Section 7.3.3). Figure 7.11 depicts a potential process tree /NX’l returned by the deployed

IPDA inside the freezing-enabled LCA-IPDA. Note that the following traces are in the
language, according to the definition of an IPDA (cf. Definition 5.1).

(6.} U ACL(A})

Recall that component (1) replaced the frozen subtree A;, in A; with — (open™i1,
close™n). However, the subtree — (open™i1, closeA"’l) is not contained in K’l, i.e., between
the leaf vertex vs 1 labeled open®it and vs 5 labeled close™1 anew subtree rooted at vertex
v3.2 labeled x has been added by the IPDA, cf. Figure 7.11. Therefore, component (4)
must calculate an appropriate position for reinserting frozen subtree A;,. To this end,
component (4) calculates an LCA from all vertices that are labeled with the corresponding
replacement labels open®1 and close®1. In the example tree /~\'1, vertex vs.1 labeled
open™i1 and vs 3 labeled close™ are used for determining the LCA.

leag, (v3.1,v3.3) = V2.3

3However, in rare cases, tree A’ returned by the IPDA (cf. Figure 7.5) may contain some of the frozen
subtrees, as the IPDA may have created the frozen subtrees through the changes applied to the tree.
Nevertheless, tree A’ still contains the replacement labels that must be replaced by the corresponding
frozen subtrees.

193

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

V4.1 V4.2

Figure 7.11: Potential process tree /N\/l returned by the IPDA embedded in the advanced
freezing-enabled IPDA (cf. Figure 7.5) for the running example

Next, we do a semantic analysis of the determined subtree AT\’ (v2.3) in which we deter-
1

mine how often vertices labeled open®i1 and vertices labeled close™ can be replayed. In
the determined subtree Az, (v2.3) (cf. Figure 7.11), exactly once a vertex labeled open’it
1

must be executed (i.e., v31) as well as exactly once a vertex labeled close™n (i.e., v3.3).
Further, no other vertices exist labeled with the corresponding replacement labels, and
neither can the vertices vz 1 and w33 be skipped. Thus, we reinsert the frozen subtree
A;, in parallel to the subtree AT\; (va.3). Figure 7.13 visualizes the intermediate process
tree obtained. Next, vertices representing the closing and opening of the reinserted frozen
subtree can be removed; vertices v4.1 and v4 3 can be removed as indicated in Figure 7.13.
Consequently, also vertex v3.; can be removed since it only contains a single child vertex,
i.e., v4.2, after removing vy 1 and vs3. Figure 7.13 depicts the finally returned tree A’
with: A;; T A" and {o,,} UA CL(A).

next

194

7.8. Freezing-Enabled LCA-IPDA

frozen subtree A;,

Figure 7.12: Intermediate process tree after reinserting frozen subtree A;, in parallel to
determined the subtree Az, (va.3) (cf. Figure 7.11); red crossed vertices and

corresponding edges are removed in a postprocessing step

V4.1 V4.2

frozen subtree A;,

Figure 7.13: Process tree A’ returned by component (4); crossed out elements shown in
the intermediate process tree (cf. Figure 7.12) have been removed

195

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

General Case

Following, we present the general case of component (4). To this end, we first intro-
duce the so-called Semantic Tree Analysis (STA). Afterwards, we present the algorithm
specifying component (4).

Semantic Tree Analysis (STA) The STA is an integral function used within com-
ponent (4). Given a process tree A € P and a label [€ A, the STA returns how often
vertices labeled [within A can/must be replayed. The STA makes a simplifying assump-
tion and only considers three fundamental cases: can an activity not occur at all, can an
activity occur once, and can an activity occur more than once, i.e. at least twice, in a
trace contained in the language of the process tree. These three fundamental cases can
be further combined. Five possible outcomes may result from the STA for a given tree
A and label [.

e {0} corresponds to zero. Potential vertices labeled with the provided label I can
never be executed. Hence, no vertex exists with the specified label 1.

e {1} corresponds to once. Exactly once, a leaf vertex labeled | must be executed in
any running sequence.

e {0,1} corresponds to at most once. At most, one leaf vertex labeled I may be
executed in any running sequence. Thus, the tree has running sequences that do
not contain any leaf vertex labeled [or exactly one leaf vertex labeled I.

e {0,00} corresponds to zero to many. Vertices labeled | may be executed arbitrarily
often, i.e., cases {0} and {1} apply and there exists at least one running sequence
that contains two leaf vertices labeled [. Note that these two leaf vertices labeled [
can be identical, for example, consider a leaf vertex enclosed in a loop construct.

e {1,00} corresponds to once to many. At least one vertex labeled with [must be
executed, i.e., case {0} does not apply, case {1} applies, and there exists at least
one running sequence that contains two leaf vertices labeled .

Subsequently, we introduce the helper function count (Definition 7.3). Eventually, we
formally define the STA (Definition 7.4) using Definition 7.3.

Definition 7.3 (count)
Let o € A* be a trace and | € A be an activity label.
Function count : A* x A — Ny returns the number of occurrences of l in o.

count(a, 1) = ’{z’|1§z’§ lo| A U(i):l}‘

4Recall that process trees represent sound WF-nets. Thus, any leaf vertex is executable in a process
tree, i.e., no dead vertices exist in a process tree.

196

7.8. Freezing-Enabled LCA-IPDA

Definition 7.4 (Semantic Tree Analysis (STA))
Let A € P be a process tree and | € A be an activity label.
Semantic tree analysis (STA) is a function

sta: P x A — {{0},{1},{0,1},{0,00}, {1, 00} }

that maps A and | to one of the five above-specified sets that indicate how often leaf
vertices labeled | can/must be executed within the given tree A.

{0} if Yo € L(A) (count(a,l) = 0)
{1} if Yo € L(A) (count(o,l) = 1)
{0,1} if Jo,0’ € L(A) (count(a,l) =
sta(A, 1) = Vo € L(A) (count(o,1) < 1)
{1,00} if Ugii(r/l\) count(o,l) =1 A Jo € L(A) (count(c,l) > 1)

0 A count(o’,l)=1) A

{0,00} if rrii(r/l\) count(o,1) =0 A Jo € L(A) (count(c,1) > 1)
[AS

The STA will be used within component (4) to determine how often vertices that are
labeled with replacement labels of frozen subtrees can/must be executed. For example,
reconsider process tree A; depicted in Figure 7.11 (page 194). Applying STA on this
subtree for the two replacement labels of frozen subtree A;, results in:

e sta(Ay, opentin) = {1}
o sta(Ay, close™n) = {1}

Thus, all traces supported by /~X1 contain exactly once open®i1 and close™ each. Since
the frozen subtree A;, is opened once and closed once in any trace, we derive that the
frozen subtree must always be executed once.

In the general case, however, we might obtain different results for the opening and
closing replacement labels of a frozen subtree when applying sta. For example, the
STA might return that the label representing the opening of a frozen subtree can be
potentially executed multiple times (i.e., case {1,000} or {0, 00}), however, STA finds that
the corresponding closing label must be executed exactly once. In this case, although we
can potentially open the frozen subtree multiple times, we can and must close it exactly
once. Hence, we can derive that the frozen subtree must always be executed once since we
can close it only once. In this case, the multiple options for opening the frozen subtree,
i.e., executing a leaf vertex labeled with the corresponding replacement label indicating
the opening, are to be understood as different states in the model in which the frozen
subtree can be opened, but ultimately it is only opened once. To derive such conclusions,
we therefore introduce the operator

s {{0},{1},{0,1},{0, 00}, {1,00} } x {{0},{1},{0,1},{0,00}, {1,00}} —
{{0},{1}.{0, 1}, {0, 00}, {1, 00} }

197

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

that maps the outcome of two sta results to one. Note that the operator U is specifically
defined for the usage of combining the results of an opening and closing replacement
label of an individual frozen subtree. Thus, when a frozen subtree is opened, it is also
closed again, i.e., a leaf vertex is executed, labeled with the corresponding replacement
label indicating its opening, followed by the execution of a leaf vertex labeled with the
corresponding replacement label indicating its closing. Table 7.1 (page 198) specifies the
L operator, which takes into account the fact that every tree that is opened must also be
closed again.

Table 7.1.: Definition of the U operator for two results obtained from function sta (cf.
Definition 7.4), i.e., defining sta(Aq,11)Usta(As,) for arbitrary trees A1, Ay €
P and labels 1,1, € A

{0y {1} {0,1} {0,00} {1 00}

N
{0y | {0y {0y {0}y {0} {0}
{1y {0y {1y {1} {1} {1}
{0,13 | {0} {1} {o0,1} {o,1} {1}
{0,00} | {0} {1} {0,1} {0,00} {1,00}
{Loo} [{0} {1} {1} {l,00} {1,00}

Figure 7.14: Example tree K; that contains twice a replacement label for opening but
only once for closing a frozen subtree A;,

For example, consider the exemplary tree AN’2 depicted in Figure 7.14 that contains
replacement labels for a frozen subtree A;,. Applying STA for this tree and the open-
ing/closing labels (i.e., open®1 and close™) yields the following information.

o sta(As, openin) = {0, 00}
o sta(Ay, close™n) = {1}

Since the vertex vy 3 must always be executed, i.e., the frozen subtree A;, is always closed,
and we can optionally execute both vertices (i.e., v31 and vz 3) representing the opening

198

7.8. Freezing-Enabled LCA-IPDA

of A;,, we can conclude that the frozen subtree A;, must be always executed once.

{0,00} U {1} = {1} (according to Table 7.1)

Algorithmic Description of Component (4) Consider Algorithm 7.4 specifying all
relevant steps. As input, component (4) (Algorithm 7.4) is provided the tree N, frozen
subtrees Trozen, the trace to be added next o, and the previously added traces A.
Algorithm 7.4 gradually reinserts each frozen subtree into A As specified in line 1,
variable j represents the index of the frozen subtree, which is about to be reinserted
into A/ next. First, the partly projected trace to be added next 5:,\;}""7[\” is calculated

(line 2) by applying Algorithm 7.2 using the so far processed frozen subtrees A;,, ..., A;;.

Similarly, the partly projected previously added traces AbiAy are computed (line 3).

Next, the LCA is computed from all vertices that are labeled with the replacement labels
of the currently considered frozen subtree Aij.‘r’ Assuming that the LCA vertex vyca is
defined, we compute the subtree A. rooted at vpca (line 6). The subtree A. represents
a candidate that we are using for reinserting the frozen subtree. For example, recall the
running example discussed at the beginning of this section, cf. v9 3 in Figure 7.11.
Having determined the reinsertion subtree candidate A., next, we enter a loop (line 8)

VR v) A, ‘
that ends upon the partly projected trace 7,..; ’ and previously added traces Azl

fit tree A’. First, we do a STA of subtree candidate A, (line 9). As a result, we obtain
the information how often the frozen subtree A;, must/can be replayed in A. According
to the value S (line 9), we apply the corresponding case illustrated in Figure 7.15 (Fig-
ure 7.15). The shown cases specify reinsertion rules for the frozen subtree A;, giving the
reinsertion candidate A.. Figure 7.15a depicts the initial case, i.e., the determined tree
candidate A, with root vertex r. and a potential parent vertex of r.. Subsequently, we
briefly describe the five reinsertion rules.

e Case {0}—Figure 7.15b

In this case, the entire tree A’ does not allow the execution of the frozen subtree.

Thus, neither partly propjected previously added traces A1 nor &i\ﬁAJ
require the frozen subtree A;;. However, since Definition 7.1 requires that any
frozen subtree is also part of the final tree, we must add frozen subtree A;; to A
We add a new root node labeled x and the frozen subtree A;; as an option next
to the tree A’. In this way, the language of A’ is not changed, and the overall tree
only allows for additional behavior specified in frozen subtree A;;.

e Case {1}—Figure 7.15c
In this case, the frozen subtree A;; must always be executed exactly once. Thus,

5Note that although component (1) (cf. Section 7.3.2) adds only one vertex labeled openAii and one
vertex labeled close™s to the tree when replacing the frozen subtrees, the invoked non-freezing-
enabled IPDA (cf. Figure 7.5 page 185) can return a tree A’ that contains more than these two
vertices added by component (1) that are labeled with the replacement labels of frozen subtree A
Hence, the LCA calculation in Algorithm 7.4 line 4 uses a set of vertices as input.

199

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

Algorithm 7.4: Component (4)

Input: /NV = (?’,E’,i’j’,?’, 2/) eP, // tree returned by the
non-freezing-enabled IPDA, cf. Figure 7.5

Tfrozen: {Ai1 sy Azn} with Ail, C. ,Ain C A, // m >0 frozen subtrees of A

O e € A*, // trace to be added next

AC A // previously added traces

Output: A' e P // A with {o,,,}UACL(A') and Asp,...,As,

begin

1 for 1 < i1<n do // iterate over frozen subtrees A; ,...,A; C A’
. VI v . . .
2 let &t ’ bet the partly projected trace after replacing full executions

of frozen subtrees Ai1 e 7Aij in O ont // apply Algorithm 7.2 for a part

of frozen subtrees, i.e., Aj,..., Ay
3 let A%1M bet the set of partly projected previously added traces after
replacing full executions of frozen subtrees A;,,..., A;; in all traces o € A
// apply Algorithm 7.3 for a part of frozen subtrees, i.e., A;,...,A;

Y A Ay
4 vLca < lea ({U e V' | N(v) € {open™ii, close J}}) // calculate the
LCA from all vertices labeled with the replacement labels of Ai/

if vpoa is undefined then
6 L A« apply case {0} as illustrated in Figure 7.15b // reinsert frozen

subtree A;, into A

7 Ao+ AK/(ULCA) // A C A’ is the first insert candidate at which we try
to reinsert the frozen subtree 1\1'/
. AN ~A o ~
8 while {5,177} u At 2 L(AY) do

S sta(Ac, OpETLAiJ') U St(l(AC, ClOseAij) // determine how often frozen
subtree A,j can be replayed in A. by utilizing semantic tree analysis,

cf. Definition 7.4 and Table 7.1 (pages 197 and 198)

10 AN apply case S as illustrated in Figure 7.15 // reinsert frozen
subtree A;; into A
11 A’ + remove vertices labeled openA"J‘ or close™i and connected edges
Ay ey A _ ~
12 if {0 J}u AMiAy ¢ LAY then
13 A’ < undo changes applied in lines 10 and 11
14 Ao+ Ax, (parent(rc)) // try next higher subtree as insertion

candidate; 7. denotes the root vertex of A,

15 A’ + apply reduction rules to A’
16 return A’

200

7.8. Freezing-Enabled LCA-IPDA

we add the frozen subtree in parallel to the insertion candidate A, and connect the
new vertex labeled A to the old parent of ..

e Case {0,1}—Figure 7.15d
In this case, the frozen subtree A;; can be executed at most once. Thus, we add
the frozen subtree parallel to the insertion candidate A. as an optional subtree and
connect the new vertex labeled A to the old parent of ..

e Case {0,00}—Figure 7.15e

In this case, the frozen subtree A;; must be executable any number of times. Thus,
we add the frozen subtree in parallel to the insertion candidate A. within a loop
construct and connect the new vertex labeled A to the old parent of r.. Note that
the first subtree of a loop vertex must always be executed while the second subtree
can be optionally executed, cf. Definition 3.29 (page 68). Thus, the loop construct
shown allows the frozen subtree A;; to be replayed any number of times, including
skipping.

e Case {1,00}—Figure 7.15f
In this case, the frozen subtree must be executable any number of times; however,
it may not be skipped. The reinsertion rule resembles the one from case {0, 00}
with one difference, i.e., the order below the added loop vertex between the frozen
subtree A;; and the leaf vertex labeled 7 is changed. Thus, frozen subtree A;; must
be executed at least once.

After applying the corresponding reinsertion rule from Figure 7.15 in Algorithm 7.4
line 10, we check if the partly projected traces and trace fit process tree , which contains
the frozen subtree A;;.

Finally, we briefly elaborate on the termination of component (4), i.e., Algorithm 7.4.
In detail, the while loop (lines 8 to 14) continues until the partly projected previously

added traces A1, and the partly projected trace 52\63 A are supported by A
Eventually, the while loop (lines 8 to 14) might reach the root of A’, i.e., A, = A’. At
this point at the latest the while loop terminates because in this last iteration the frozen
subtree A;; is placed in parallel to the entire process tree A’, cf. reinsertion rules for cases
{1}, {0,1}, {0,00}, and {1,000} shown in Figures 7.15¢ to 7.15f.5 Inserting the frozen
subtree A;; in parallel to the entire process tree A always works since it can be executed
in parallel any time while executing A However, reinserting the frozen subtree A;;
parallel to the entire tree A might lead to an imprecise overall tree. Thus, Algorithm 7.4
always tries to reinsert the frozen subtree A;, as low as possible in the tree hierarchy of

A by starting at the subtree rooted at vyca (line 4).

SNote that case {0} was already covered before the while loop in line 6.

201

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

parent vertex of r,.
Te ; J

(a) Initial situation: the subtree candidate
A E A’, determined by Algorithm 7.4 in
line 7, with root vertex r.

old parent of r,

Te

&

insertion candidate frozen subtree

(c) Case {1}

old parent of r,

T ®

Ac
insertion candidate N
3
frozen subtree

(e) Case {0,000}

| |

| |

| |

| |

| |

| | ‘j
| |

1 e O | frozen subtree
I I

I A c I

|) |

7\/

Te
: A, g
insertion candidate
<A
frozen subtree
(d) Case {0,1}
old parent of r,
e
. A, v
insertion candidate N
PR

J

frozen subtree

(f) Case {1,000}

Figure 7.15: Overview of the four different cases that can occur as a result of the STA (cf.
Definition 7.4) in Algorithm 7.4 line 9; note that in all figures the depicted
parent vertex of r., with label o € ®, does not exist if A, = A’

202

7.4. FEvaluation

7.4. Evaluation

This section presents an experimental evaluation of the proposed freezing approach. Focus
of the evaluation is to demonstrate that the proposed freezing extension may lead to better
process models regarding the F-measure. Below, Section 7.4.1 presents the experimental
setup. Subsequently, Section 7.4.2 presents the results while Section 7.4.3 discusses the
results and lists threats to validity.

7.4.1. Experimental Setup

We compare the LCA-IPDA presented in Section 5.3.2 with the freezing-enabled LCA-
IPDA presented in Section 7.3. We use publicly available event logs. To counteract
ordering effects, we sort the trace variants per event log according to frequency, starting
with the most frequent variant. We use the IM to discover an initial model from the most
frequent trace variant. To ensure equal conditions at the beginning for both approaches.
Subsequently, we iteratively add each trace variant from the log using the LCA-IPDA
and the freezing enabled LCA-IPDA. For the latter one, we additionally make use of the
freezing option. To decide on the subtree(s) that should be frozen, we apply a brute-force
approach in each iteration, as described below. For clarification, we denote

e the tree obtained after adding the i-th trace variant when applying the LCA-IPDA
as A’(wFreezing and
i)

e the tree obtained after adding the i-th trace variant when applying the freezing-
enabled LCA-IPDA as Af*¢*"9,

Below, we describe the steps executed in iteration i + 1 for both approaches.

1. First, we apply the LCA-IPDA using tree A7 the previously added trace
variants, and the trace variant to be added in this iteration. For the resulting tree

Preezt . i
AT we calculate the F-measure using the entire event log.

2. Next, we apply the freezing-enabled LCA-IPDA using tree A7*“*" for each subtree,
which we freeze, of A{mezmg that is rooted at an inner vertex. Thus, if A{mezmg
contains n inner vertices, we execute the freezing-enabled LCA-IPDA n times. Each
time we freeze one individual subtree that is rooted at an inner vertex. As a

result, we obtain n trees, denoted as A'Z_efzmg A 7A{ffzmg . Additionally, we also

compute the tree with no subtree frozen, denoted as A{ffzmg .” For each resulting
tree, we compute the F-measure using the entire event log.

- ,
3. We compare the F-measure values of the process trees A/*"! . A9 and
freezing,n+1 . noFreezing
Al with the F-measure of tree A;[) .
, - . .
e If no tree from A{ffzmg , A{ffzmg U ,A{ffzmg """ has a higher F-measure value

than A?_ffmw'”g , we continue the next iteration of the freezing-enabled LCA-
IPDA with the tree yielding the highest F-measure.

"Note that if no tree is frozen, the freezing-enabled LCA-IPDA is identical to the LCA-IPDA.

203

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

e If one of the trees A{ffzmg L, tree{ffzmg " has a higher F-measure than
tree A1 we know that freezing a subtree is advantageous. Next, we
collect all trees from A{:_efzmg o, tree{ffzmg '™ that have a higher F-measure

than AY["****9. Further, we collect the corresponding subtrees that were
frozen. Using the determined set of frozen subtrees, which were frozen in tree
Afe¢#9 and lead to a higher F-measure, we apply again the freezing-enabled
LCA-IPDA for every combination of subtrees, i.e., the power set of subtrees.
With this step we want to test whether the freezing of several subtrees, which
individually already deliver better results compared to Af_ffreezmg , can further
improve the result. Assume m distinct combinations exists that each include
at least two subtrees; eventually, we yield n 4+ m + 1 trees A{ffzmg) A{ffzmg !

)

co AT A{ffZi”g’”+l7 co AJeEme M Rinally, we continue with the
tree that leads the highest F-measure, which serves as an input in iteration
1+ 2.

Since the described brute force approach is highly computationally intensive, we ter-
minate the experiments after one week of computing time for each event log.

7.4.2. Results

Figures 7.16 and 7.17 show the obtained results for four different event logs: BPI Ch. 2020
travel permits event log [232], BPI Ch. 2012 event log [228], road traffic fine management
log [56], and the hospital billing event log [133]. Each plot contains two lines; the green line
represents the LCA-IPDA (cf. Section 5.3.2), while the blue line represents the freezing-
enabled LCA-IPDA (cf. Section 7.3). Each dot represents a data point, i.e., an iteration
within IPDA. Recall that each experiment was conducted for one week. Thus, the x-axes
of the depicted plots do not end at 100% of processed variants. Note that some dots
corresponding to the blue line, representing the freezing-enabled LCA-IPDA, are colored
red. A red dot indicates that this tree was obtained by the freezing-capable LCA-IPDA
with one or more frozen subtrees in the input tree.

Overall, we observe that the blue line is most of the time above the green one; thus,
freezing-enabled LCA-IPDA is outperforming LCA-IPDA most of the time. Further, we
observe that freezing is often applied. Note that if, for one approach, the following data
point is at the same y-value as the previous one, the input tree equals the output tree
since the trace variant added in this iteration already fits the tree. Hence, no freezing
is applied since the algorithm must not alter the input tree. For example, this pattern
can be seen in Figure 7.16b in the area from 4% to 10% of processed variants for both
approaches. Considering these patterns and their interpretation, it can be stated that
freezing is frequently used. Further, we can see that when freezing is applied, the F-
measure value is significantly higher compared to LCA-IPDA, which does not apply to
freeze. In conclusion, the conducted experiments showcase that freezing subtrees within
IPD can lead to process models with higher F-measures.

Figures 7.18 and 7.19 compare the number of vertices of the incrementally discovered
process trees for the two approaches. For three event logs (cf. Figures 7.18b, 7.19a
and 7.19b), we observe that the freezing-enabled LCA-IPDA discovers larger process

204

7.4. Evaluation

? -@ - freezing-enabled LCA-IPDA
0.95 I -@- LCA-IPDA
ﬂ ® Subtree was frozen
I
i
1
0.90 1 : : ’.
1 1
Ll
e Kat
7 1 ot
8 0854 11 I} l‘
= o he
w 1
T
H :
0.80 -
1 I
- 1 \
I [1
: :-\- t I—# |
0.75 L ! ! T
1]
LIi1Z1212 1))
T T T T T T T T
0 5 10 15 20 25 30 35
% of processed variants
(a) Road traffic fine management event log [56]
—-®- freezing-enabled LCA-IPDA
0.95 ®
h 1’ -®- LCA-IPDA
@ \ @ Subtree was frozen

-’

F-measure
o
[<e]
o
1

o

o]

(4]
1

T T T T T T

% of processed variants

(b) Hospital billing event log [133]

Figure 7.16: Comparing the F-measure of the incrementally discovered process models
using the LCA-IPDA and the freezing-enabled LCA-IPDA; both approaches
start from the same initial model and add the trace variants in identical
order (part 1/2)

models compared to the ones discovered by the LCA-IPDA. The tree size often changes,
especially in the iterations where freezing is applied. While this difference is minor
in Figures 7.19a and 7.19b, the differences between the models are significant for the
event log depicted in Figure 7.18b. When inspecting individual models, we observe that

205

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

0.90
-@- freezing-enabled LCA-IPDA
° 0.88 1 -@- LCA-IPDA
5 AN @ Subtree was frozen
20861 oo W@
g)
\
W 0.84 1 ¥ \.-.-.-.-l-.-l.ﬂ (F = 3 T)
® pEe00gpeee0
\
0.821 »eed

T T T

0.00 025 050 075 1.00 1.25 1.50 1.75 2.00
% of processed variants

(a) BPI Ch. 2020 travel permits event log [232]

200909
0.55 oo * g3
S \.....,.oomoom-ooé
£ 0.50 - 4 9005606 meeeEONR8e000®
%) 1
S 0451 3 i
£ ..l —@&- freezing-enabled LCA-IPDA
L 0.40 ‘f -@®- LCA-IPDA
’ ‘f @® Subtree was frozen
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7

% of processed variants

(b) BPI Ch. 2012 event log [228]

Figure 7.17: Comparing the F-measure of the incrementally discovered process models
using the LCA-IPDA and the freezing-enabled LCA-IPDA; both approaches
start from the same initial model and add the trace variants in identical
order (part 2/2)

the models discovered by the freezing-enabled LCA-IPDA contain more duplicate labels
than the models discovered by the LCA-IPDA. This increased number of duplicate labels
explains the corresponding increase in the F-measure, cf. Figures 7.16b, 7.17a and 7.17b).
Interestingly, for the road traffic fine management log, cf. Figure 7.18a, we observe that
the freezing-enabled LCA-IPDA discovers smaller process models than the LCA-IPDA in
later stages. At the same time, these smaller models also have higher F-measure values,
cf. Figures 7.16a and 7.18a. In short, freezing submodels during IPD can lead to better
process models regarding the F-measure but also impacts the tree size; recall that in
three out of four reported logs, the tree size is larger when applying freezing compared
to when not applying freezing.

206

7.4. Evaluation

number of vertices

number of vertices

Figure 7.18:

in process tree

in process tree

60

(42
(=]
1

~
o
1

wW
(=]
1

20 A

10 1

-@&- freezing-enabled LCA-IPDA
-@&- LCA-IPDA
® Subtree was frozen

T T T

T T T
0 5 10 15 20 25 30 35
% of processed variants

(a) Road traffic fine management event log [56]

. fyareew)
-®- freezing-enabled LCA-IPDA

100 A -®- LCA"PDA

50

® Subtree was frozen

T T

0 2 4 6 8 10
% of processed variants

(b) Hospital billing event log [133]

Comparing the number of vertices of the incrementally discovered process
models using the LCA-IPDA and the freezing-enabled LCA-IPDA; both ap-
proaches start from the same initial model and add the trace variants in
identical order (part 1/2)

207

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

20000
2 100 4 ’4.“-.‘
(] /
22 goA et0e _ . opo00e
g @ J,-. @
538 60 4 el®e
E g B0 @-0-0 -@- freezing-enabled LCA-IPDA
Ec 40 1 ,’3‘ -@- LCA-IPDA
= e @ Subtree was frozen
20 1 T .-."'l T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
% of processed variants
(a) BPI Ch. 2020 travel permits event log [232]
» 297 -e- freezing-enabled LCA-IPDA o
[e N I
,% 8 &- LCA-IPDA 90
o401 © Subtree was frozen "I!
SO
°8 j 2222228222222
85,] 22822800006
Ec
(=
od
T ‘ T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
% of processed variants
(b) BPI Ch. 2012 event log [228]
Figure 7.19: Comparing the number of vertices of the incrementally discovered process

models using the LCA-IPDA and the freezing-enabled LCA-IPDA; both ap-
proaches start from the same initial model and add the trace variants in
identical order (part 2/2)

208

7.5. Illustrative Example

7.4.3. Discussion & Threats to Validity

A shortcoming of the above-described experiments is the high computational effort for
the applied brute force approach to determine whether and, if so, which subtrees should
be frozen. For example, for the logs shown in Figure 7.17, only very few variants are
processed. The significance of the results is therefore limited.

Nevertheless, the results generally indicate that freezing subtrees can improve the re-
sulting process trees concerning the F-measure. However, the applied brute force ap-
proach is not feasible for real-life applications as it is too computationally expensive.
Thus, the chosen experimental setup can be considered an ideal situation in which all
options are considered when deciding, i.e., if and if so, which subtrees should be frozen.
Finally, freezing might not always be applied to obtain higher F-measures. Users might
also use freezing to prevent the LCA-IPDA from altering certain parts in the model.

7.5. Illustrative Example

This section, presents a concrete example to showcase the effect of freezing in the context
of IPD besides the quantitative evaluation presented in the previous section. For the
example, we use the road traffic fine management event log [56] that we used already in
the example of the previous chapter, cf. Figure 6.1 on page 157.

CF Create Fine RRAP Receive Result Appeal from Prefecture
SF Send Fine NRAO Notify Result Appeal to Offender

IFN Insert Fine Notification SAP Send Appeal to Prefecture

IDAP Insert Date Appeal to Prefecture P Payment

- AP Add Penalty Al Appeal to Judge

(a) Overview activity abbreviations

A= {<CF, SF,IFN,IDAP,SAP, AP, RRAP, NRAO, AJ),
(CF,SF,IFN,IDAP,SAP, RRAP, AP, NRAO, AJ),
(CF, SF,IFN,IDAP,SAP, AP, RRAP, NRAO, AJ, P)}

o = (CF,SF,IFN, AP, P, P)

next

(b) Previously added traces A an trace to be added next o

next

Figure 7.20: Contextual information for the illustrative example using the road traffic
fine management log [56]

Figure 7.21 presents various information about the example. Figure 7.20a lists the
activity labels, their corresponding color coding, and their abbreviations. Figure 7.20b
shows the previously added traces A and trace o, , that is about to be incrementally
added. The initial process tree that we use for IPD is depicted in Figure 7.21a. Note

209

Chapter 7. Freezing Process Model Parts in Incremental Process Discovery

(c) Process tree A3 returned by the advanced freezing-enabled LCA-IPDA

Figure 7.21: Discovered process models using a non-freezing-enabled (i.e., LCA-IPDA, cf.
Section 5.3.2) and freezing-enabled IPDA (i.e., freezing-enabled LCA-IPDA,
cf. Section 7.3) using the traces as specified in Figure 7.20

that this tree supports all traces specified in A. However, the tree does not support o,_,
because the tree does not allow to execute activity P twice, and activities IFN, IDAP,
SAP, and RRAP must always be executed, although these are not presented in o, .

Figure 7.21b shows tree Ay obtained when invoking the LCA-IPDA (cf. Section 5.3.2).

210

7.6. Conclusion

Note that the LCA-IPDA is not freezing-enabled. Therefore, the LCA-IPDA ignores that
the highlighted subtree in A; is to be considered as frozen (cf. Figure 7.21a). We observe
that Ao does not contain the frozen subtree from A;. Thus, if a user wanted to preserve
this subtree during IPD, the user must undo the last iteration or manually edit As.

In contrast, Figure 7.21c shows process tree Az obtained when invoking the freezing-
enabled LCA-IPDA (cf. Section 7.3). As guaranteed by the freezing-enabled LCA-IPDA,
the frozen subtree A (AP7 — (IDAP,SAP, RRAP)) from A, is preserved in Az. More-
over, tree A3 is more precise than As and might, therefore, be favored. Tree A5 allows to
skip activities IDAP, SAP, RRAP, NRAO, AJ, and P simultaneously. In A5, the choice be-
tween executing AP or the subtree containing activities AP, IDAP, SAP, RRAP, NRAO,
and AJ must be made. Thus, Ay allows for much more behavior, which is not part
of AU{o,,,}, than As. In summary, this example illustrates how freezing submodels
can improve precision. Besides improving precision, freezing allows users to steer the
incremental discovery by restricting the potential solution space.

7.6. Conclusion

This chapter extended the IPD framework introduced in Section 5.1, cf. Figure 5.1
(page 110). Freezing subtrees within IPD offers unique opportunities for users to steer
the process discovery. While the IPD framework and the extensions introduced in Sec-
tions 5.1 and 6.2 focus on the process behavior, i.e., the event data, as the central input
through which users control or influence the process discovery, the freezing extension
offers a different dimension of influence possibilities by users. In short, the freezing ex-
tension allows freezing of subtrees in the input process model that are not altered by the
freezing-enabled IPDA when adding a new trace o, to the input model. Thus, freezing
allows users to influence the process model returned by the freezing-enabled IPDA.

The proposed freezing extension offers several directions for future work. For example,
a recommendation system could suggest to users which parts of the tree discovered so
far are worth preserving and should therefore be frozen. Further, other definitions of
freezing-enabled IPDAs are conceivable. At the moment (cf. Definition 7.1 on page 181),
trace o,,, is guaranteed to fit the eventually returned process tree. If a frozen subtree
causes deviations between the current process tree and o, _,, the tree parts outside the
frozen subtree are modified to support the trace. In such a case, however, one could
alternatively involve users and provide them the feedback that a frozen subtree causes a
deviation between the selected trace o and the entire tree. Next, it would be up to
the users to decide whether:

next

1. the tree should remain frozen and the problem should be solved outside the frozen

tree (as presented in this chapter,

the tree should be defrosted to allow its manipulation,

3. only deviations between trace o, , and the tree that do not affect the frozen subtree
are resolved.

o

The third option, however, implies that ¢, is only partly supported by the resulting tree.

In short, freezing subtrees within IPD opens various opportunities for future research.

211

Part III.

Facilitating Interaction with
Event Data

213

Chapter 8.

Defining & Visualizing Variants

This chapter is largely based on the following published work.

e D. Schuster, F. Zerbato, S. J. van Zelst, and W. M. P. van der Aalst.
Defining and visualizing process execution variants from partially ordered
event data. Information Sciences, 657:119958, 2024.
doi:10.1016/4.ins.2023.119958 [188]

e D. Schuster, L. Schade, S. J. van Zelst, and W. M. P. van der Aalst.
Visualizing trace variants from partially ordered event data. In
J. Munoz-Gama and X. Lu, editors, Process Mining Workshops, volume
433 of Lecture Notes in Business Information Processing, pages 34—46.
Springer, 2022. doi:10.1007/978-3-030-98581-3_ 3 [183]

Event logs generally include many process executions, i.e., individual cases, each con-
taining several events describing the execution of activities. To handle these large volumes
of event data, process execution variants (hereinafter referred to simply as variants) are
key abstractions widely used within process mining techniques and practices. Recall that
variants are also an essential abstraction in (incremental) process discovery. Variants
describe process executions whose activities share identical order relations. Thus, a one-
to-many relationship between variants and individual process executions exists, i.e., one
variant may summarize various cases.

Analyzing variants allows process analysts to comprehend differences among process
executions based on their control flow or performance [203]. Further, analysts can fil-
ter event data based on variants satisfying specific conditions [236], for instance, control
flow constraints over activities. During exploratory event data analysis, variant visual-
izations aid in understanding the occurrence and order of frequent activity patterns and
the level of process structuredness [252]. Such insights help analysts to make informed
decisions about the analyses performed on a specific event log [207]. In short, variants
and corresponding visualizations are essential for successfully applying process mining.

Variants are primarily defined for traces as formally introduced in Definition 3.20 on
page 61), i.e., sequentially-aligned respectively totally-ordered activities that are consid-

215

Chapter 8. Defining & Visualizing Variants

ACti‘T’itiES I ; Totally-ordered B
: (sequence-based),
composed of I time-point-based EEEE
; process activities EEEEEE

Lo o describ
i describe the escribe . L oA >
0«0 L eoution of order Partlally-ordered, <w;->
: time-point-based

Process relations of o
process activities

executions i
generate relate to
event data i

|

Partially-ordered, time-point and time-
interval-based process activities

Process £

— contains - executions/ — n:1 — Variants — Jhigh-level B ”‘;

Cases variant d m e,

Event log S =
group process executions corresponding é

with identical order low-level — A 5

relations between the variants Rl B ¥ e

contained activities

CRR _DC RiT 3 C A
O — e—t o— 4 .

Figure 8.1: Overview of key process mining concepts, the relationship of variants to these
concepts, and a differentiation of the variants proposed in this chapter from
existing variant definitions (partly adapted from [188, Figure 1])

ered to be atomic [211].} Two traces that correspond to the same simplified trace (cf.
Definition 3.21 on page 61), i.e., their sequences of activity labels is identical, corre-
spond to the same variant. Thus, variants for totally-ordered, time-point-based events
are sequences of activity labels. Figure 8.1 shows in the top right a widely used variant
visualization consisting of totally-ordered, time-point-based activities represented as a se-
quence of colored chevrons, which can be found in diverse process mining tools [26, 234].

In this chapter, we assume event logs as defined in Definition 3.18 on page 60. Thus,
individual events describing the execution of an activity might have duration information;
thus, events either represent a time point or time interval. Note that in the previous
chapters of Part II, we assumed simplified event logs as specified in Definition 3.22 on
page 61. In this chapter, we use the term parallel in the context of activity executions.
We call two events parallel if their execution somehow overlaps in time.

In literature, the terms parallel and concurrent are distinguished. “A system is said to
be concurrent if it can support two or more actions in progress at the same time. A system
is said to be parallel if it can support two or more actions executing simultaneously.” [37,

1Recall that traces order events merely on the timestamp and if needed uses the event id as a second
order criteria, cf. Definition 3.20 (page 61). Possibly available information about the end of the
execution of an activity, i.e., the duration of an activity, is ignored.

216

p. 3] The key difference is the term in progress. Multiple actions can be in progress at
the same time but this does not imply they are also executed simultaneously. Note that
the definition of parallel is consistent with the interpretation taken in this thesis, i.e., two
activities are being considered parallel if their execution overlaps in time. Further, this
thesis does not distinguish if an activity is in progress or actually executed.

Recall the event log shown in Table 3.1 (page 59); events 8247 and 8248 overlap in
their execution if considering the timestamp and the duration.? Formally, two events
e1,es € € overlap if the following condition is met.

{zlef <z<ef+el} N{z]eh<z<eh+es} # 0

Recall that e!,e? € R>q (cf. Definition 3.17 on page 60) for any event e € £. Moreover,
recall that if the duration of an event is greater than zero, i.e., e > 0, we consider the
timestamp e? as the activity’s execution start time point. We consider two events parallel
if they overlap in time, as described above. Since each event describes the execution of
an activity, we will also refer to parallel events as parallel activities in the following.

Parallel activities are a common phenomenon in event logs and, hence, in real-life
processes. However, variants based on totally-ordered activities lack the expressiveness
to capture parallel activities adequately. For instance, different activities within a process
execution having identical timestamps must be sequentialized®. When process mining
tools and algorithms enforce sequentialization, it can lead to inaccurate conclusions by
analysts who may not be aware of the imposed order. Such imposed order relations can
result in flawed analysis and decision-making.

In [219], variants consisting of partially ordered, time-point-based activities were pro-
posed; Figure 8.1 shows the corresponding chevron-based visualization of two example
variants. These variants can capture parallel activities; however, they consider activities
time-point-based, i.e., atomic. Consequently, these variants lack expressiveness regard-
ing activities’ execution durations, i.e., these variants ignore duration information as, for
example, present in the event log excerpt depicted in Table 3.1 (page 59). Additionally,
the authors introduce time granularity modification in the context of event data and
variants [219].

This chapter considers partially ordered event data with heterogeneous temporal in-
formation about the executed activities. The term heterogeneous temporal information
refers to activities that are either atomic, representing a time point [108], or spanning a
time interval [109]. Recall the event log shown in Table 3.1 (page 59). For instance, the
first event with ID 8245 has a timestamp but no duration information; thus, event 8245
represents a time point. In contrast, the event with ID 8246 has a timestamp and dura-
tion information; thus, it represents a time interval from 17.06.21 08:32:23 until 18.06.21
12:01:11 (corresponds to the stated duration of 1d, 3h, 28m, and 48s). We focus on both
point-based and interval-based activity executions since the level of detail in recording
activities can vary; heterogeneous temporal information is a regular phenomenon in event

2If an event contains duration information, we interpret the timestamp as the start of the activity’s
execution. Thus, such events e having a duration greater zero describe the time interval from e’ to
et + e,

3 Activities’ timestamps are usually used as a first-order criterion. If this is insufficient because two events
within a case have identical timestamps, a second-order criterion is needed. Recall the definition of
traces Definition 3.20 (page 61) that uses the event ID as a second-order criterion.

217

Chapter 8. Defining & Visualizing Variants

data capturing actual processes [57, 228, 229]. We propose two definitions and visualiza-
tions for variants that comprise partially ordered time-point and interval-based activities.
We refer to the proposed variants as high-level and low-level variants. Both definitions
address different abstraction levels and thus complement each other.

In addition to defining high-level and low-level variants, we address changes in time
granularity and their effects on these variants in this chapter. Defining an appropriate
time granularity is critical to gaining valuable insights when analyzing event data from
real-world processes. Most event data contain timestamps that are expressed in seconds
or even milliseconds. While analyzing some processes requires this temporal precision,
using these precise timestamps can be detrimental when analyzing other processes. For
example, for specific processes, it may not matter whether one activity occurred a few
seconds before another or vice versa; instead, process analysts are interested in whether
these activities were performed on the same day and, therefore, want to consider these
activities as parallel because they set the temporal bottom granularity as days.

The subsequent sections are organized as follows. Section 8.1 introduces to the two
proposed variants, i.e., high- and low-level variants, and highlights the connection between
them. Subsequently, Section 8.2 formally introduces high-level variants, while Section 8.3
introduces low-level variants. Section 8.4 elaborates on the computation of the proposed
variants. In Section 8.5, we discuss the impact of time granularity changes to the proposed
variants, i.e., how do the proposed variants change when we switching to a coarser time
granularity. Section 8.6 presents an evaluation consisting of automated experiments that
focus on computational aspects and a user study focusing on usefulness and ease of use
of the proposed variants Finally, Section 8.7 concludes this chapter.

8.1. Overview

This section provides an overview on high-level and low-level variants. Consider Fig-
ure 8.2 showing an comprehensive overview of cases, low-level, and high-level variants.
Figure 8.2c depicts four cases C1, ..., Cs. Each case comprises events representing a time
point as well as event representing a time interval. Note that the cases shown in Fig-
ure 8.2c have a lower granularity of days, meaning that each time point or time interval
is mapped to full days. Consider C; shown in Figure 8.2c. Case C corresponds to the
events with case ID 134 in the event log excerpt shown in Table 3.1 (page 59).*

Figure 8.2b shows two low-level variants. It is important to note that the x-axis
provides no time information. Therefore, the length of the elements cannot be used to
infer the duration of activities. Additionally, recall that the variants proposed in this
chapter focus on the ordering relationships among activities. The first low-level variant
covers (5 and Cy. Note that low-level variants are generally composed of circles and
horizontally aligned bars. Each element represents an activity; circles represent time-
point-based activities, while bars represent time-interval-based activities. For example,
low-level variant 1 indicates that activity CRR is executed first, followed by activity DC.
Next, activities RIP and RIT start simultaneously; however, activity RIP’s execution
completes while RIT is still being executed. Next, activity CA is executed, followed

4From the timestamps of the events with case ID 134, only the year, month and day information is
taken into account in Figure 8.2c.

218

8.1. Overview

SRA

(a) Variant level: High-level variant that comprises the behavior described by the two low-level
variants (Figure 8.2b) and thus the four cases C1,...,Cy (Figure 8.2c)

Low-level
variant 2

(covers Cs RIP SRA
L] e e————
and Cy) CRR DC RIT DC CA PIDM
¢ G CGENEEEENEED ¢ G e o

Low-level
variant 1

(covers Cy RIP SRA
L] G
and C3) CRR DC RIT DC CA PI DM
O GEINED GEENNNNNNED ¢ G [] []

(b) Variant level: Low-level variants whose described process behavior comprises the cases in
Figure 8.2¢; Section 8.3 formally introduces low-level variants

Case Oy Il RIP } SRA
CRR DC
RIT DC CA PIDM
e H t | o | o e
RIP SRA
Case C3
CRR: DC . RIT ;:DC -t ga oBI DM
LA 1 0 1 ¢ r 1 @ ©
Case Cy RIP SRA
CRR DC DC Y
A i RIT i e | CA ! I.l D.I\I
Case C; RIP SRA
CRR DC DC ,
2 I RIT | A [CA] l-;l D‘l\l

time

16.06 18.06 20.06 22.06 24.06 26.06 28.06 30.06 02.07 04.07 06.07 08.07 10.07

(c) Case level: Visualization of four cases; each case consists of activities either representing a
time point, represented by e, or time interval, represented by —]

Figure 8.2: Example of four cases and corresponding high- and low-level variants from a
mortgage application process (partly adapted from [188, Figure 3])

219

Chapter 8. Defining & Visualizing Variants

by activity CA. While activity CA is still being executed, the execution of activity SRA
starts. Next, the execution of activity CA is completed. While SRA is still being executed,
activities LTV and PI are executed in parallel. Afterwards, the execution of SRA is
completed, and eventually, activity DM is executed. In summary, low-level variants
indicate the different relations among activities that represent time-points as well as
time-intervals. Further, low-level variants distinguish different relations between time-
intervals that are overlapping, similar to Allen’s interval algebra [11], which generally
defines potential relations for intervals.

Figure 8.2a shows a high-level variant. As with low-level variants, it is impossible to
infer the duration of the activities from high-level variants, i.e., the x-axis is not to be
understood as a time axis. High-level variants address a higher level of abstraction than
low-level variants. High-level variants are visualized employing chevrons, cf. Figure 8.2a.
When the executions of activities overlap, the chevrons representing those activities are
aligned vertically. Activities whose executions do not overlap are aligned horizontally.
The visualized high-level variant covers all for cases C1, . .., Cy (cf. Figure 8.2¢). Thus, the
single high-level variant also covers the two low-level variants. The illustrated high-level
variant indicates that all cases start with activity CRR followed by DC. Subsequently,
activities RIP and RIT are executed in parallel, followed by activity DC. Next, activity
SRA is executed. In parallel to SRA, activity CA is first executed, followed by activities
LTV and PI, both executed in parallel to SRA. Eventually, activity DM is executed.
Compared to the two low-level variants, the high-level variant does not indicate, for
example, the exact relation between activities RIP and RIT; both activities are shown
in parallel, cf. Figure 8.2a. In contrast, from the two low-level variants we observe,
for example, that the execution of activity RIT in all four cases C1,...,Cy exceeds the
execution of activity RIP. In short, high-level variants provide a greater abstraction in
terms of order relationships between activities compared to low-level variants.

Generally, a one-to-many relation between high-level and low-level variants exists, as
exemplified in Figure 8.1. Further, a-one-to-many relation between variants and cases
exists. Both proposed variants, i.e., low-level and high-level ones, generalize existing vari-
ant definitions, i.e., variants for totally-ordered time-point-based activities as well as for
partially-ordered time-point-based activities as shown in Figure 8.1. If an event log con-
tains only events that represent time points, and for each case, all associated events can be
sequentially aligned based on their timestamps alone, then both high-level and low-level
variants for that event log correspond to the variants for totally-ordered time-point-based
activities shown in Figure 8.1.° Similarly, if an event log includes only cases consisting
of time-point-based activities that may be parallel, i.e., partially ordered. For such logs,
the visualization of variants assuming partially ordered time-point-based activities (cf.
Figure 8.1) equals the visualization of corresponding high-level variants. Further, the vi-
sualization of low-level variants contains the identical information as the visualization of
variants for partially ordered time-point-based activities (cf. Figure 8.1). In conclusion,

5The visualization of high-level variants for such an event log is identical to variants assuming totally
ordered time point-based activities. The visualization of low-level variants for such an event log
would of course not be identical to those for totally-ordered time-point-based activities, because low-
level variants use circles and bars instead of chevrons, but the information contained in the low-level
variant visualization is identical to the chevron-based visualization of variants for totally-ordered
time-point-based activities.

220

8.2. High-Level Variants

the proposed high-level and low-level variants and corresponding visualizations generalize
existing variant definitions and visualizations, which focus on time-point-based activities.

8.2. High-Level Variants

Following, Section 8.2.1 defines the high-level case view that is a labeled partially or-
dered set over the elements contained in a case. The high-level case view is utilized in
Section 8.2.2 that introduces the calculation and visualization of high-level variants.

8.2.1. High-Level Case View

As exemplified in Figure 8.2, high-level variants consider two activities in parallel if their
execution somehow overlaps in time, i.e., the exact overlap is irrelevant, for example,
compared to low-level variants. If the executions of two activities do not overlap in time,
these activities are considered sequentially ordered.

For example, recall case C;. Figure 8.3a illustrates the contained activities on a time-
axis. Figure 8.3b illustrates the high-level case view, i.e., a partially ordered set over
the events from C;. Whenever two events overlap in time, these events are unrelated to
each other in the high-level case view. For instance, activities SRA, LTV, and PI are all
unrelated to each other, cf. Figure 8.3b. Below we define the high-level case view.

Definition 8.1 (High-level case view)
Let C C & be a case. The high-level case view of C is a labeled, strict partially
ordered set over the events in C, i.e., (C, <L 3 \) with

o e <fley iff el + e‘li < el for arbitrary e;,es € C
e X={e"|ecC}CA
o \e)=¢" foree C
Assume an event log L containing multiple cases. Two cases are covered by the same

high-level variant if their high-level case views, i.e., labeled ordered sets, are isomorphic,
cf. Definition 3.7 on page 51.

Definition 8.2 (High-level variant)

Let Cy,...,C, € C be arbitrary cases. Let (Cp,<TE %1, \1),...,(Cny <HE 3, 0,)

be correspondingly high-level case views (cf. Definition 8.1). We say that cases

Cq,...,C, belong to one high-level variant iff

(C1, =T S, A1) 2. 2 (Cry <HE S0, An).

Recall the four cases Ci,...,Cy shown in Figure 8.2c. The high-level case views of
these four cases are all isomorphic to each other. Thus, these cases belong to the same
high-level variant, cf. Definition 8.2.

221

Chapter 8. Defining & Visualizing Variants

SRA

CRR DC DC 5
¢« | RIT]| . [CA]].I D.M

time

(a) Case C: as shown in Figure 8.2¢

; SRA

' it -
RIT—>DC—;CA—¢PI—>DM
. A Y TR

/ :

CRR — DC — RIP

(b) Graph representation of (C1, <% ¥, \); each node represents an event and is labeled ac-
cording to the activity label, solid arcs represent the transitive reduction, and solid together
with dotted arcs represent the transitive closure

Figure 8.3: Case C] and its corresponding high-level case view (partly adapted from [188,
Figure 4])

8.2.2. Calculation & Visualization of High-Level Variants

In this section, a visualization for high-level variants is proposed and a corresponding
layout algorithm is presented. The input to the visualization algorithm is a high-level
case view, i.e., a labeled ordered set according to Definition 8.1. The visualization ap-
proach returns a chevron-based visualization as shown in Figure 8.2a (page 219). We
selected chevrons to represent activities because of their widespread use in process min-
ing. Though alternative geometric shapes to chevrons are possible.

Subsequently, we define sequential and parallel partitions for labeled ordered sets.
These partitions are necessary for calculating the variants. For a sequential partition
holds that elements of two different subsets are related to each other.

222

8.2. High-Level Variants

Definition 8.3 (Sequential partition of a labeled ordered set)

Let (X,<,3,\) be an arbitrary labeled ordered set.* Further, let X1,...,X, be a
partition of set X.° We refer to the ordered sets (X1,<1, %1, A1)+« (X, <9, Sy An)
as a sequential partition if the following conditions are satisfied.

en>1
o V 1<i<j<n VzeX; Va'eX; (z<a')

o V 1<i<n Vz,r'€X; (3: < & x<1:1:’)

%Recall that the symbol < represents an arbitrary order.
*Thus, (1) X1,...,Xn C X, (2) X1U---UX, = X, and (3) V 1<i<j<m(X; € X; A X; Z X;).

Analogous to sequential partitions for labeled ordered sets, we define parallel partitions.
For a parallel partition, it holds that elements of two different subsets are unrelated.

Definition 8.4 (Parallel partition of a labeled ordered set)

Let (X,<,%,\) be an arbitrary labeled ordered set. Further, let X;,...,X, be a
partition of set X. We refer to the ordered sets (X1,<1,51, A1), .-, (Xn, <ns Zny An)
as a parallel partition if the following conditions are satisfied.

oen>1

o V 1<i<j<n VzeX,; Va'eX; (ﬁ (xdx’) A = (m’qm))

o V 1<i<n Vz,7'€X; (x < r & x<la:’)

Next, we define the notion of mazimality for sequential and parallel partitions of labeled
ordered sets. Given a sequential or parallel partition (X7,<1, X1, A1), .., (Xn, <, 2y An)
of a labeled ordered set (X, <, X, A). The sequential/parallel partition (X1,<1, 21, A1), ...,
(X, <n, 2, An) is called mazimal iff there exists no m > n such that (X1,<1, %1, A1), ...,
(Xons 9m, Xy Am) 18 & sequential /parallel partition, too.

Subsequently, we present formal properties of parallel and sequential partitions. Fi-
nally, we derive that the proposed recursive partitioning of labeled ordered sets is deter-
ministic, i.e., there are no order effects.

Lemma 8.2.1 (Sequential and parallel partitions cannot coexist). Let (X, <, %,) be an
arbitrary labeled strictly partially ordered set a sequential and a parallel partition cannot
coexist, i.e., at most one of the two exists.

Proof. We proof Lemma 8.2.1 by contradiction. Let (X, <, X, \) be an arbitrary labeled
strictly partially ordered set with a sequential partition (X1, <1,%1,A1),...,(Xn,<n
, Xny Ap) with n > 1. Assume there also exists a parallel partition (X7, <1,Z1, M), ..,
(X],, <L, 20 A) with m > 1. For 1 < j < m and 1 <4 < n, assume that for an
arbitrary x; € X it holds that 1 € X J’ and x; € X;. Since a sequential partition exists,

223

Chapter 8. Defining & Visualizing Variants

we know that:
Vo GXZ‘+1U-~-UXn($1 < $2)

and
Ves € Xy U---UX,;_1 (1‘3 <ZZ?1).

Since a parallel partition exists, all x5, z3 as above-specified are contained in X j' Hence,
{frluXxiU-- UX; UXU-- U X, C X5
Since
Vasz € XqU. . .UX;_1 Voo € X; U . UX,, (23 <22 A 23 <2 A = < 22)
it follows from Definition 8.4 that

X;=X;U---UX, =X.

Hence,

vk e {1,...,mp\ {j} (X1 =0)
because X1, ..., X/, is a partition of X. This contradicts the assumption that there exists
a parallel partition with m > 1. The other direction of this proof is symmetrical. O

Lemma 8.2.2 (Uniqueness of maximal sequential partitions). Let (X,=<,%,\) be an
arbitrary labeled strictly partially ordered set. If a maximal sequential partition (X1, <1
y 21, A1), (X, <y 2y An) with no> 1 exists, this sequential partition is unique.

Proof. We proof Lemma 8.2.2 by contradiction. Let (X, <,X,\) be an arbitrary la-
beled strictly partially ordered set. Assume this set has two maximal sequential par-
titions (X1, <1,21, A1)+, (Xn, <ns Zn, An) and (X1, <1, Z0 M), (X, <0, 20 An)
with n > 1 that are not identical. Hence,

N<i<nvi<j<n(Xi# X))

In particular, X; # X/. Hence,
Jo € X; U X! <(x€Xi A xgzxg) v <I¢Xi A xeX,f)> .

Assume z € X; A z ¢ X/ holds. Note that the other case is symmetric. Hence,
reX{U---UX,_JUX/ U---UUX, =X\ X].
In the following we make a case distinction.

1. Assume z € X{U---U X/ ;. According to Definition 8.3 V2’ € X; (z < 2/).
2. Assume z € X/, ; U---UX/,. According to Definition 8.3 V2’ € X; (z/ <).

Since x € X; it follows in both above-described cases that x < x. This contradicts our
assumption that (X, <, X, \) is an arbitrary labeled strictly partially ordered set because
irreflexibility is not satisfied. O

224

8.2. High-Level Variants

Finally, we show that maximal parallel partitions are unique.

Lemma 8.2.3 (Uniqueness of maximal parallel partitions). Let (X, <,3,A) be an ar-
bitrary labeled strictly partially ordered set. If a mazimal parallel partition (Xi,~<1
J 21, A1), (X, <y 2y An) with no> 1 exists, this parallel partition is unique.

Proof. Note that when representing (X, <, ¥, \) as a graph, a maximal parallel partition
corresponds to its connected components. The set of connected components of a graph
is unique by definition. O

From Lemmas 8.2.2 and 8.2.3 we know that maximal partitions, both sequential and
parallel, are unique. Moreover, Lemma 8.2.1 states that at most either a sequential or
parallel partition exists. Recall that we exclude trivial partitions that contain only one
set by requesting n > 1, cf. Definitions 8.3 and 8.4. In the following, we always assume
maximum partitions when referring to sequential or parallel partitions.

The layout approach for high-level variants recursively partitions a given high-level
case view by applying sequential and parallel partitions (cf. Definitions 8.3 and 8.4).
The given high-level case view is recursively partitioned until no partition can be found
anymore. Each partition of size n results in a set of n chevrons. Further, the partition
type indicates the positioning of chevrons. Parallel partitions result in vertically aligned
chevrons, while sequential partitions result in horizontally aligned chevrons. Through
the recursive partitioning, a hierarchical structure emerges, i.e., a tree structure.

Consider Figure 8.4 showing the recursive layout approach for the high-level variant
depicted in Figure 8.3a covering the four cases C1, ..., Cy. First, a sequential partitioning
of size n = 6 is found, cf. top left in Figure 8.4. Thus, we draw six chevrons horizontally
aligned and add the activity labels to the chevrons, cf. intermediate high-level variant
visualization (I) in Figure 8.4. If a chevron contains only one activity label, we color
that chevron to provide better distinguishability between activities. Next, we recursively
try to find a parallel partitioning in all sets containing more than one element.® We
find a parallel partition of size two in the set containing activities RIT and RIP; more-
over, we find a parallel partition of size two in the set containing activities SRA, CA,
LTV, and PI. Both parallel partitions result in two vertically aligned chevrons each, cf.
visualization (II) in Figure 8.4. At this recursion level, only one subset with cardinality
greater one remains, i.e., the subset containing activities CA, LTV and PI. This subset
can be sequentially partitioned into two subsets. Intermediate visualization (III) shows
the corresponding two sequentially aligned chevrons. Finally, a parallel partition is found
in the last recursion level in the subset containing activities LTV and PI. The final high-
level variant visualization is depicted in the lower right, cf. variant visualization IV in
Figure 8.4. Figure 8.5 depicts the corresponding tree structure based on the recursive
partitioning by applying sequential, visualized in Figure 8.5 by symbol =, and parallel
partitions, visualized by symbol {.

In short, a given high-level case view is recursively partitioned by alternately applying
sequential and parallel partitioning. The recursion stops as soon as no more partitioning
can be applied. Each partitioning of size n leads to n chevrons, which are horizontally
aligned if it is a sequential partitioning or vertically if it is a parallel partitioning.

6Note that after finding a maximal sequential partition, we cannot find a further sequential partition
in one of the subsets because this would imply that the original sequential partition is not maximal.

225

Chapter 8. Defining €& Visualizing Variants

Intermediate high-level variant visualization (I)

CA
RIP LTV N % RIT g LTV ,
CRR RIP ' S PV

SRA

Intermediate high-level variant visualization (IT)

SRa

P e) iy
oRR B - D
o e g

Intermediate high-level variant visualization (III)

LTV

***** --_

Q
8
=
=]
<

Final high-level variant visualization (VI)

I o BB
RIT

Figure 8.4: Recursive partitioning of (Cj, <% %)), horizontal red dashed lines sym-
bolize parallel partitions and vertical ones sequential partitions (on the left
side); the right side shows the corresponding (intermediate) variant visualiza-
tion after each recursion level (partly adapted from [188, Figure 5|)

226

8.2. High-Level Variants

Figure 8.5: Final tree structure of the high-level variant calculated in Figure 8.4; symbol
= represents a sequential partition and {} a parallel partition

8.2.3. Limitations of the High-level Variant Visualization

In the shown example, cf. Figure 8.4, parallel and sequential partitions are recursively
applied until all activities end up in singletons. However, in the general case, this does
not hold, i.e., subsets with more than one activity may exist for which no further partition
(cf. Definitions 8.3 and 8.4) can be found. For example, consider the case Cy depicted in
Figure 8.6a. Note that case C5 is not part of the running example, cf. Figure 8.1. The
corresponding high-level case view of C5 is shown in Figure 8.6b. Note that Cj5 is similar
to Cy (cf. Figure 8.3 on page 222); therefore, their high-level case views are similar. In
summary, the second DC activity represents a time interval overlapping the execution of
activity CA, compared to C; (Figure 8.3 on page 222).

Figure 8.7 illustrates the recursive calculation of the high-level variant visualization.
In the first recursion level, a parallel partition for the subset containing activities RIT
and RIP is found; however, we cannot find a partition for the subset containing activities
CA, DC, PI, LTV, and SRA. Thus, the recursion stops for this subset. After applying the
parallel partition in the second recursion level, only singletons and the subset for which
we cannot find any partition remain. Thus, the layout algorithm stops. The high-level
variant visualization shown in the lower right is eventually returned. The gray chevron
with the activity labels DC, CA, SRA, LTV, and PI indicates that these activities happen
in a not further specified order. Figure 8.8 shows the corresponding tree representation of
the constructed high-level variant visualization. Note that we use the symbol || to indicate
that activities below can occur in any order, i.e., no order is specified. Further, note that
the order of subtrees below nodes labeled {} is irrelevant because parallel partitions do
not impose any sequential order; thus, the order of subtrees does not matter. Similarly,
the order of the activities below a node labeled || does not matter because || indicates
that these activities can be executed in any order respectively in an unspecified order.

227

Chapter 8. Defining & Visualizing Variants

RIP . DC | SRA |
[1 [1
CRR DC | RIT | CA PI DM
[[—] [] []

time

Bt . TH

T TAN
CRR — DC RIP — A@PI —é DM

(b) Graph representation of (Cs, <7% £, \)

Figure 8.6: Case Cy and its corresponding high-level case view

228

8.2. High-Level Variants

Intermediate high-level variant visualization (I)

CA

77777 DC
/ m

RIP DC = LTV R PI

>< SRA

CA — PI
Final high-level variant visualization (II)
CA
DC
;
SRA

Figure 8.7: The left side shows the recursive partitioning of (Cs, <", %, \) where hor-
izontal red dashed lines symbolize parallel partitions and vertical ones sym-
bolize sequential partitions, while the right side shows after each recursion
level the corresponding (intermediate) variant visualization

Figure 8.8: Final tree structure of the high-level variant calculated in Figure 8.7; symbol
|| indicates that activities can happen in any order (i.e., no partition could be
applied to the corresponding activities)

229

Chapter 8. Defining & Visualizing Variants

CRR DC [RIT , DC PI DM
[] []

time

(a) Case Cg visualized on a time axis; compared to case Cs (Figure 8.6a) activities CA and DC
are swapped

% SRA

. RIT — CA LTV
PI

%é DM

5N

CRR — DC — RIP — DC

g s T

(b) Graph representation of (Cs, <%, £, \)

Figure 8.9: Case Cg and its corresponding high-level case view; compared to C5 (cf. Fig-
ure 8.9 on page 230), only CA and the second occurrence of DC are swapped

Consider case Cg depicted in Figure 8.9a (page 230) and its corresponding high-level
case view shown in Figure 8.9b (page 230). Compared to case Cj (cf. Figure 8.6a),
activities CA and DC are swapped. When applying the layout algorithm to the high-
level case view of Cg, we yield the same variant visualization as for case Cj, cf. the variant
visualization in the bottom right of Figure 8.7. Thus, although the high-level case views
of case Cy and Cjy differ, cf. Figures 8.6b and 8.9b, the corresponding visualization does
not. However, we deliberately designed the high-level variant visualization in the manner
presented to provide the most comprehensive and compact visualization possible that
does not require any graph-like structures.

Given that two cases can have non-isomorphic high-level case views, for example, cases
Cs and Cg, and at the same time having an identical high-level variant visualization
implies that the definition of high-level variants can have two appearances.

1. Recall Definition 8.2 (page 221) specifying that two cases belong to the same high-
level variant if their high-level case views are isomorphic. Applying this definition,
a high-level variant visualization may actually cover multiple variants according to
Definition 8.2 in certain scenarios.

230

8.83. Low-Level Variants

2. Alternatively, we can refer to high-level variants as all cases that have the same
visualization. Since we can represent each high-level variant visualization in a tree
structure, consider Figure 8.8, we can specify that cases whose tree structure of
the high-level variant visualization is isomorphic belong to the same variant. Note
that the order of subtrees below inner nodes labeled || or {} is irrelevant.” Only for
subtrees of a node labeled =, which indicates a sequential partitioning, the order
of the subtrees matters.

In the remainder of this chapter, we consider the second definition of high-level variants,
i.e., two cases are covered by the same high-level variant if their visualization equals
respectively the corresponding tree structures of their visualizations are isomorphic, recall
that the order of subtrees below nodes labeled || or {f does not matter.

8.3. Low-Level Variants

Following, Section 8.3.1 defines the low-level case view that is a labeled partially or-
dered set over the elements contained in a case. The low-level case view is utilized in
Section 8.3.2 that introduces the calculation and visualization of low-level variants.

8.3.1. Low-Level Case View

As exemplified in Figure 8.1 (page 216), low-level variants provide a more detailed view
on ordering relations among activities compared to high-level variants. Low-level variants
aim to categorize the overlap of activity executions rather than simplistically considering
any form of overlap of two activity executions as parallel.

For example, recall case (. Figure 8.10a illustrates the contained activities on a
time-axis. Figure 8.10b illustrates the low-level case view of Cy, that is, a partially or-
dered set over the events that are split into two elements if their duration is greater than
zero. For example, the first activity in time, i.e., C RR, contains no duration information
respectively the duration value is zero; thus, the activity is represented as a point in
Figure 8.10a. Thus, the low-level case view contains only the element (CRR,H). In con-
trast, the second event in time, i.e., the execution of DC', contains duration information.
Thus, the we split this event into two elements, i.e., (DC,») and (DC, W), and put these
elements in relation to all other elements. For instance, Figure 8.10b shows that after
the completion of the first DC, activities RIP and RIT are started simultaneously, i.e.,
(RIP,») and (RIT,») are unrelated to each other.

In general, for events e with duration information, we create two elements that represent
the start (e, ») and completion (e, ®). For events e having no duration information, we
create only one element representing its completion (e, ®). Below, we formally define the
low-level case view.

"Recall that the symbol { indicates a parallel partition; thus, the order of subtrees does not matter.
Similarly, this applies to the symbol || that represents that no partition could be applied, and thus,
the activities below can occur in any order. To fix the issue of potential different subtree orderings,
one can enforce a lexicographical order for subtrees below nodes labeled { or ||.

231

Chapter 8. Defining & Visualizing Variants

Definition 8.5 (Low-level case view)

Let C C & be a case. WedeﬁneCN':{(e B)lecC A ed>0}U{el)leeC}.

The low-level case view of case C is a labeled, strict partially ordered set over the
set C i.e., (C <EL S N) such that for arbitrary (eq,z1), (e2, T2) € C it holds that
(61,1‘1) %LL (62,1‘2) Zﬁ

eci<el if ry=p ANz2a=»

eci<ebted if ;y=» ANxy=1

el tel<el ifxi=M A x3=0

el tel<ebted if =M A =0

SRA
CRRDC RIT] DC A RN
time
(a) Case C; as shown in Figure 8.2¢c
(RIP») — (RIP.M) 2'(LTV m
(CRR®) (DC») — (D(" (RIT > T D'C D) —> (CAm) —> SRA ») CA " - — (PI " (SRA m (DM ")

(b) Graph representation of (C1, <%, %,)\); each node represents either a full event, the start,
or the end of an event and is labeled according to the activity label, solid arcs represent the
transitive reduction, and solid together with dotted arcs represent the transitive closure

Figure 8.10: Case C; and its corresponding low-level case view

232

8.83. Low-Level Variants

Analogously to high-level variants, a low-level variant covers all cases whose low-level
case views are isomorphic. Below, Definition 8.6 formalizes low-level variants.

Definition 8.6 (Low-level variant)

Let Cq,...,C, € C be arbitrary cases. Let (51, <HL S, M), ., (én, <HL 50)

be correspondingly low-level case views (cf. Definition 8.5). We say that cases C1,...,Cp
belong to one low-level variant iff (5’1, <HL S 0) ... (511, <HL 50 An)-

8.3.2. Calculation & Visualization of Low-Level Variants

This section introduces a visualization for low-level variants and presents a corresponding
layout algorithm. The input to the visualization approach is a low-level case view, i.e.,
a labeled ordered set according to Definition 8.5. The visualization approach returns a
circle and bar-based visualizations as exemplified in Figure 8.2b (page 219).

As for visualizing high-level variants, we utilize sequential and parallel partitioning as
specified in Definitions 8.3 and 8.4 (page 223). Consider Figure 8.11a showing the low-
level case view (C1, <% % \) of Cy. As indicated, we find a sequential partition of size
13. As a result, two subsets remain that contain more than one element. In both subsets,
we find a parallel partition of size two. After the second recursion level we stop since all
subsets contain only one element. The obtained tree structure allows to place dots for
each element, cf. Figure 8.11b. Sequential partitions indicate the horizontal alignment of
these points, while parallel partitions indicate their vertical alignment.

Next, elements that correspond to the same activity are connected, cf. Figure 8.11c.
Note that some elements remain alone, i.e., elements representing the execution of an
activity with no duration information. For instance, element (CRR,M) is not connected
with another element as the underlying event contains no duration information and thus
no element (CRR,») exists. After connecting elements, cf. Figure 8.11¢, we change the
labels of circles and bars to the activity name. As a final step, the gap width in which no
activity is performed is reduced, cf. Figure 8.11d. For instance, compare the gap between
CRR and DC in Figures 8.11c and 8.11d.

The resulting low-level variant visualization shown in Figure 8.11d contains much more
information than the high-level variant covering case C, cf. Figure 8.2a. For instance,
low-level variants distinguish between time-point-based activities, visualized as circles,
and time-interval-based activities, visualized as bars. Further, the low-level variant shows,
for example, that activities RIP and RIT start simultaneously; however, RIP ends while
RIT is still being executed. As for high-level variants, the bars’ length does not allow
for concluding timing duration information. For example, although the bar representing
CA is longer than the bar representing SRA, the conclusion cannot be made that the
execution of activity CA is shorter than that of SRA. In short, low-level variants focus
purely on ordering relationships among activities as high-level variants. However, low-
level variants can visualize more ordering relations between activities being executed in
parallel than high-level variants.

Finally, note that the proposed visualization of low-level variants is not affected by
any scenario in which neither a sequential nor parallel partition can be applied during
recursive partitioning. Since all elements in the low-level case view represent time points,

233

Chapter 8. Defining €& Visualizing Variants

i i ‘
: 1 1
‘ SRAS) - (CAM) —S (L) > (SRaM) -ﬁ (DM m

‘ ‘ ;
‘ ‘ A
(CrR.m) 41-) (C») -.-) (DC.W) = (RIT.») ~—— (RIT.) = (DC, " —.-) (CA ») -l)

‘ (CRR,m) H (DC,») H (DC,m) ‘ (RIP»>) ‘ (RIP,M) H (RIT, M) H (DC,m) H (CA») H (SRA,») H (CA,m) ‘ wrv.m) (SRA.m) || (DM, m)
(RIT,») (P1,H)
(RIP») || (RIT,») (pr,m) || (LTV, W)

(a) Recursive partitioning of low-level case view (C1,~<%%, %, \) where horizontal red dashed
lines symbolize parallel partitions and vertical ones sequential partitions

(RIP,»)(RIP,H) (SRA,») (SRA, W)
° ° [(]
(CRR,H)(DC,s) (DC,W)(RIT,») (RIT,H)(DC,c) (CA,») (CA,E) (PLE) (DM,m)
° ° ° ° ° ° ° ° ° °

(b) 1% step: Placing start and end nodes according to the above-calculated partitioning

RIP SRA
L] CE—
CRR DC RIT DC CA PI DM
[] G I [] I ® ®

(c) 274 gtep: Connecting nodes representing the start and completion of activities

RIP SRA
D ————————
CRR © DC RIT DC CA PI DM
¢ GENNED GGEEENNNNNNED ¢ GEEEEEENNNND ° []

(d) 3" visualization step: Reduction of the gap width in which no activity is performed

Figure 8.11: Low-level variant visualization for C; (partly adapted from [188, Figure 6])

234

8.4. Computing High- & Low-Level Variants

there can always either a parallel or sequential partition be applied. In comparison,
recall that elements of the high-level case view may represent time intervals or time
points. Thus, the recursion might only stop for high-level variants before not all elements
end up in singletons.

8.4. Computing High- & Low-Level Variants

This section briefly outlines the implementation of the high-level and low-level variant
computation. Recall that the core of both variant types is the recursive partitioning
as exemplified in Figures 8.4 and 8.11a, and the grouping of cases to variants. In the
implementation of high- and low-level variants, we reduce the problem of computing
maximal sequential and parallel partitions (cf. Definitions 8.3 and 8.4) to the well-known
problem of computing components of a graph [103].

As introduced in Sections 8.2.2 and 8.3.2, we first create the high-/low-level case view
(cf. Definitions 8.1 and 8.5), i.e., a partially ordered set. In the remainder of this sec-
tion, we refer to the graph representing the high-level/low-level case view simply as case
view graph. Next to the case view graph, we create the corresponding unrelated graph.
The unrelated graph contains the same nodes as the corresponding case view graph but
only connects any two nodes that are unrelated in the corresponding case view. For
instance, Figure 8.12a depicts the high-level case view graph, and Figure 8.12b depicts
the corresponding unrelated graph. Note that any two elements that are not connected
in the case view graph are connected in the corresponding unrelated graph; for example,
activities RIT and RIP are unrelated in the high-level case view and thus connected in
the corresponding unrelated graph, cf. Figure 8.12b.

Subsequently, we look for components in the case view graph and in the unrelated
graph. If the case view graph contains more than one component, we found a parallel
partition (cf. Definition 8.4) in the corresponding case view. Analogously, if we find
more than one component in the unrelated graph, we found a sequential partition (cf.
Definition 8.3) in the case view. In the example depicted in Figure 8.12), the case view
graph contains a single component but the unrelated graph contains more than one
component; thus, we found a sequence partition. Afterwards, we recursively continue on
the partitions found as exemplified in Figure 8.4. Since either a parallel or a sequential
partition can be found in general, only one of the two graphs contains more than one
component. In short, computing maximal parallel and sequential partitions is reduced
to finding components in a graph, which can be solved in linear time [103].

Recall Definitions 8.1 and 8.5 specifying high-/low-level case views. Note that these
definitions are defined over individual cases. Thus, we specified in Definitions 8.2 and 8.6
that cases having isomorphic high-/low-level case views are covered by the same high-
/low-level variant. Thus, the problem could be reduced to a graph isomorphism problem.
However, when computing the visualization of variants, we obtain a tree structure. We
can utilize this tree structure and apply tree isomorphism instead of graph isomorphism
to detect if two cases belong to the same high-/low-level variant. Note that checking
whether two trees are isomorphic can be done in polynomial time [42].

235

Chapter 8. Defining & Visualizing Variants

715

| RIT — DC
'CRR = DC — RIP

(a) High-level case view graph (identical to the example depicted in Figure 8.3) containing one
component highlighted by a red dashed box

,,,,,,,,,,,

SRA |
| |
| LTV -
/o
RIT| [DC| [CA__ PI (DM
(CRR| [DC| |RIP:

,,,,,

(b) Unrelated graph that corresponds to the high-level case view graph shown above in Fig-
ure 8.12a and contains six components highlighted by red dashed boxes

Figure 8.12: Example of a high-level case view graph and corresponding unrelated graph
(partly adapted from [188, Figure 11])

8.5. Time Granularity Modifier

Gaining valuable insights from event data is essential for making informed decisions.
The right level of temporal abstraction of the event data being analyzed is critical to
reach such insights. Setting the right level of temporal abstraction may reveal patterns
and trends in the event data, which might remain hidden if the temporal abstraction is
not set appropriately. Note that most information systems use discrete time domains
with seconds or even milliseconds as the smallest time unit. According to [10], this
smallest time unit is referred to as the bottom granularity. Analyzing event data at
the millisecond level may lead to incorrect conclusions depending on analysis objectives.

236

8.5. Time Granularity Modifier

Recall the example event log describing a mortgage application process, cf. Table 3.1.
Since the individual process executions span several days, the analysis at the level of
milliseconds appears too fine-grained. Sometimes, whether a particular activity was
initiated a few minutes before or after another activity is irrelevant. It may not provide
any relevant information or could even be misleading. For example, the exact timing
of whether activity "Request information from requester" was executed a few minutes
before "Request information from a third party" is irrelevant. Instead, knowing that
both activities were executed on the same day and, therefore, parallel from a control
flow perspective is adequate. Thus, analysts are interested in variants indicating such
parallelism.

As exemplified above, a low bottom granularity may not add value to the process
analysis and may lead to wrong conclusions. Furthermore, the timestamps recorded for
the events of an event log might also be inaccurate, i.e., they do not accurately reflect
reality. For example, reconsider the mortgage application process. Assume a process
participant makes several decisions over a period of time and records these decisions all
at once in an information system. Furthermore, assume that the information system
cannot track when the decision-making process begins. As a result, the timestamps for
the activity "decision made" do not accurately reflect the actual time the decisions were
made; instead, they indicate the entry of the decision into the system. Additionally,
since there is no record of the start time for the "decision made" activity, there is no
information available on its duration.

The above examples demonstrate the importance of adjusting temporal granularity
during process mining analyses. Also in [219], introducing variants for partially-ordered,
time-point-based activities, the authors recognized the importance of adjusting time gran-
ularity. We define the adjustment of the time granularity as a function called Time
Granularity Modifier (TGM) that modifies timestamps.®

Definition 8.7 (Time granularity modifier (TGM))
The function fTEM : Rt — RY is called a TGM iff

th,tg S RZO <t1 <ty = fTGM(tl) < fTGM(tQ) A\

b=ty = fT9Y(0) = 1Y (1)),

Figure 8.13 shows different time granularity modifiers applied to case C;. For instance,
when applying the time granularity modifier days, the timestamps’ hours, minutes, and
seconds information are ignored. Thus, the bottom granularity is hours. As a result, the
two start timestamps of the activity RIT and RIP become identical. In comparison, RIP
starts before RIT when looking at Cy m (Figure 8.13). The third granularity modifier sets
the bottom granularity to calendar weeks. For example, as a result, the first execution of
activity DC falls into a single calendar week. Thus, activity DC’s start and completion
timestamps are equal, so DC is considered atomic. In comparison, the first execution of
activity DC represented an interval using the before-introduced time granularity modifier.
The same applies to activity CA. In conclusion, time granularity modifiers change the

8Recall that we define timestamps as real numbers, cf. Definition 3.18.

237

Chapter 8. Defining & Visualizing Variants

Bottom Granularity: Hours (H)

=
—
O RIP SRA
] —{ l—
@ CRR DC T bC PI DM
8 8 [RIT } § CA i A
time
16.06 18.06 20.06 22.06 24.06 26.06 28.06 30.06 02.07 04.07 06.07 08.07 10.07
Bottom Granularity: Days (D)
Q»
—
) RIP SRA
o P P
® CRR DC T bcC PI DM
8 8 [RIT } 8 CA 8 A
time
16.06 18.06 20.06 22.06 24.06 26.06 28.06 30.06 02.07 04.07 06.07 08.07 10.07
Bottom Granularity: Calendar Weeks (CW)
CRR
X
DC bc PI
% 1 X X
5 RIP SRA
O | | { }
?
& , RIT . Ca DM
© ! ! ! x time
CW 24 CW 25 CW 26 CW 27

16.06 18.06 20.06 22.06 24.06 26.06 28.06 30.06 02.07 04.07 06.07 08.07 10.07

Figure 8.13: Different time granularity modifiers applied to case C (figure partly adapted
from [188, Figure 8])

timestamps of the different activities of a case and hence might change the order relations
among them. These modified order relations ultimately affect the variants describing
these cases.

Depending on the chosen bottom granularity, we obtain different variants for the same
case. We exemplify the effect of different TGMs on the variant describing case Cj.
Figure 8.14 depicts cases C1,z and C; p, which are represented by the same high-level
variant. When switching the bottom granularity to calendar weeks, i.e., Ci cw, the
corresponding high-level variant changes, cf. Figure 8.14. Visually speaking, we observe
that with coarser bottom granularity, more activities tend to become parallel. As a result,
the variants increase vertically and decrease horizontally in size.

Figure 8.15 (page 240) depicts the low-level variants for C; when applying different
TGMs. Each bottom granularity results in a different low-level variant for C;. Between

238

8.5. Time Granularity Modifier

Bottom Granularity: Hours (H) and Days (D)

SRA

Bottom granularity: Calendar Weeks (CW)

DC
A

b
Rip

Figure 8.14: High-level variants for case C; per TGM; the first high-level variant covers
C1 g and Cq,p while the second variant covers Cy cw (partly adapted from
[188, Figure 9|)

Q
el E

the low-level variant covering Cj x and Ci p, the only difference is that the start of
activities RIP and RIT is in parallel for C; p, whereas RIP starts before RIT for C; g.
For instance, the low-level variant for the bottom granularity days indicates that activities
RIP and RIT start on the same day; however, RIT ends at least one day later than
RIP.? We observe that many activities happen in parallel for the bottom granularity of
calendar weeks. Overall, we observe similar behavior of the low-level variants compared
to high-level variants when moving to coarser bottom granularities, i.e., activities tend
to be executed more in parallel for coarser bottom granularities. However, these are not
unexpected observations.

9Recall that variants are intended to visualize order relations among activities. Thus, we cannot derive
any further temporal information regarding how longer RIT is executed compared to RIP than one
unit of the bottom granularity, i.e., one day in the given example.

239

Chapter 8. Defining & Visualizing Variants

LTV
°
RIP SRA
a—— —
CRR: DC RIT DC CA PI DM
o cnmmmm eEssss——— ¢ cEEEEE——— ° °
LTV
°
RIP SRA
am— ———
CRR: DC RIT DC CA PI DM
¢ s cEEEEE——, ¢ CEEEE———— ° °

PI

°

- DC LTV

))

CRR: RIP = CA DM
o mmmmm o °
DC RIT SRA
e ammms =

Figure 8.15: Low-level variants for case C; per TGM; the first low-level variant covers
C4 m, the second variant Cy.p, and the third one Ci cw (partly adapted
from [188, Figure 10])

8.6. Evaluation

8.6. Evaluation

This section presents an evaluation of the proposed high- and -low-level variants. The
evaluation is split into two parts. Section 8.6.1 presents automated experiments that
primarily focus on demonstrating the applicability regarding computational effort to real-
life event logs. Further, the automated experiments focus on how variants change upon
applying different TGMs, as exemplified in Section 8.5. Section 8.6.2 presents a user
study that evaluates how high-level variants support process analysts in real-life analysis
tasks compared to existing variant visualizations. Main focus of the user study is the
evaluation of the usefulness and effectiveness of the proposed high-level variants.

8.6.1. Automated Experiments

In this section, we present the automated experiments conducted. The main objective
of these experiments is to demonstrate that the proposed variants can be computed on
real-life event logs within a reasonable time, thus showing their practical applicability.
Additionally, the automated experiments provide insights into the number of variants
and their dimensions regarding height and width for different time granularity modifiers.

Experimental Setup

Table 8.1 overviews the real-life event logs used. All logs exhibit partially ordered event
data'®, i.e., there exist cases containing events with identical timestamps or events rep-
resenting time intervals overlap with intervals specified by other events. The BPI Ch. 18
contains only time-point-based activities (cf. Table 8.1), while the remaining logs contain
activities with heterogeneous temporal information. For these event logs, we compute
high-level and low-level variants as presented in Sections 8.2 to 8.4.

Table 8.1.: Overview of the event logs used for the automated experiments

. * Bottom
Event log #Cases Timestamps granularity
Hospital Billing [133] 100,000 start & completion seconds

BPI Challenge 2012 (BPI Ch. 12) [228] 13,087 start & completion milliseconds
BPI Challenge 2017 (BPI Ch. 17) [229] 31,509 start & completion milliseconds
BPI Challenge 2018 (BPI Ch. 18) [233] 150,370 completion milliseconds
* Having a timestamp for the start & completion of an activity’s execution is identical to having

duration information, as exemplified in the event log depicted in Table 3.1 (page 59) and defined in
Definition 3.18 (page 60).

241

Chapter 8. Defining & Visualizing Variants

Table 8.2.: Total number of variants for different logs and time granularities; the num-
ber in parentheses below indicates the proportion of variants that contain
parallel process behavior, i.e., at least one parallel partition is found in the
corresponding high-/low-level case view (adapted from [188, Table 3])

Event log Variant type Time granularity

ms S m h d mo.
. . 667 1,071 1,048 1,182 1,389
Ig{slffltal high-level - (93.9%) (97.4%) (98.1%) (98.4%) (99.0%)
illing
685 1,308 1,331 1516 1,773
low-level - (93.9%) (97.1%) (97.9%) (98.2%) (98.9%)

. 3830 3,766 4,594 5220 5241 4,080
BPI Ch. 12 Digh-level (98.8%) (99.6%) (100%) (100%) (100%) (100%)

3,855 3,947 5,737 5,702 5,257 4,080
low-level (98.9%) (99.7%) (100%) (100%) (100%) (100%)

' 5937 8481 9665 8516 9454 6,551
BPI Ch. 17 Digh-level (88.9%) (100%) (100%) (100%) (100%) (100%)

5946 9,137 10,088 8995 9752 6,551
low-level (88.9%) (100%) (100%) (100%) (100%) (100%)

. 30,122 33,407 35,396 29,313 20476 28294
BPI CL. 18 Digh-level (100%) (100%) (100%) (100%) (100%) (100%)

30,122 33,407 35396 29,313 29476 28,294
low-level (100%) (100%) (100%) (100%) (100%) (100%)

Results

Table 8.2 shows the number of high-level and low-level variants for different event logs and
time granularities. Note that the high-level and low-level variants are identical for BPI
Ch. 18, which only consists of time-point-based activities. This observation is expected
because high-level variants are identical to low-level variants regarding the information
value they contain if an event log contains solely time-point-based activities. For the other
logs, there are often more low-level variants than high-level variants—as discussed in
Section 8.1, a one-to-many relation exists between high-level and low-level variants. The
numbers in parentheses (cf. Table 8.2) indicate the share of variants that indicate parallel
activities. We observe that the coarser the time granularity, the more variants indicate
parallel process behavior. Overall, we observe that many variants indicate parallel process

10We used the event abstraction technique from [131] on the Hospital Billing event log to obtain ac-
tivities with start and completion timestamps, i.e., activities with duration information according
to Definition 3.17.

242

8.6. Evaluation

—e—Hospital Billing —#—BPI Ch. 12 BPI Ch. 17 —e=BPI Ch. 18 —e— Hospital Billing —e—BPI Ch. 12 BPI Ch. 17 —e=BPI Ch. 18

0,5 05

0,45 0,45
w 04 w 04
Q Q
® 0,35 ® 035
o [$]
S 03 S 03
{=4 1=
5 0,25 5 025
€ c
_g 02 ./.__—\._s. g 0.2 ./_&.
© ©
> 0,15 2015
o o
< 01 < 01

0,05 0,05

0 >~ 0 o—
ms s ms h days month ms s ms h days month
Time granularity Time granularity
(a) High-level variants (b) Low-level variants

Figure 8.16: Ratio between high-level /low-level variants and cases across different bottom
granularities for different event logs

behavior, i.e., all values are clearly above 90% for all logs and time granularities.

Figure 8.16 plots the ration between variants and cases, i.e., the number of variants
divided by the number of cases. Figure 8.16a is showing the results for high-level variants,
while Figure 8.16b is showing the results for low-level variants. The underlying data is
taken from Table 8.2. We observe that, for example, the hospital billing event log contains
a large number of variants that are infrequent, i.e., each variant describes only a few cases.
As a result, the ratio across all time granularities is near zero. In contrast, the other
three event logs contain variants that summarize larger quantities of the cases contained
in these logs. Moreover, we observe that changing the bottom granularity impacts the
depicted ratio. In short, a change of the bottom granularity does not necessarily lead to
a reduction in the number of variants obtained.

Table 8.3 displays the time in seconds taken to calculate high-level and low-level vari-
ants from the provided event logs per time granularity modifier. The time taken to
calculate high-level variants is significantly longer than that taken for low-level variants
across all logs. The longer calculation time for high-level variants in comparison to low-
level variants originates from the more involved recursion. When calculating low-level
variants, at most two recursion levels are executed since all elements are atomic, cf.
Section 8.3. One of the following scenarios applies.

e Every element is parallel. Hence, a parallel partition is found and the recursive
partitioning stops.

e All elements are sequentially ordered. Hence, a sequential partition is found and
the recursive partitioning stops.

e Some elements are sequentially ordered; thus, a sequential partition is found. Re-
cursively, parallel partitions are found for all non-singleton subsets.

243

Chapter 8. Defining & Visualizing Variants

Table 8.3.: Calculation time (seconds) of high-/low-level variants for different logs and
time granularities (adapted from [188, Table 4])

Time granularity

Event log Variant type

ms S m h days mo.
T S
prov el moomoomoomoom o
e U et A A SR (S R
o B mmomom o w

In contrast, events in high-level variants may represent time points or time intervals. As
a result, the high-level case view can have more complex patterns than the low-level case
view. These more complex patterns lead to more recursion levels when calculating the
partitions, for example, consider Figure 8.4 (page 226).

When time granularity is coarser, computation time usually increases, as shown in Ta-
ble 8.3. The time it takes to compute variants depends on two factors. First, the more
variants there are, the longer it takes to compute them all. Second, the coarser the time
granularity, the longer it takes to compute a single variant. The second point is a result
of the implementation. Upon applying a time granularity modifier, all timestamps in an
event log are modified when the corresponding events are used for any calculation. This
means that the entire event log does not have to be recreated with changed time stamps,
but instead, time stamps are adjusted on the fly as required. For example, if the bottom
granularity is set to hours, the values for milliseconds, seconds, and minutes in the times-
tamps of the currently considered events are set to zero. The values reported in Table 8.3
include these on-the-fly timestamp adjustments. The coarser the time granularity, the
more values must be set to zero, resulting in increased calculation times.

Table 8.4 reports the average dimensions, i.e., width and height, of the variants per
event log and time granularity. As expected, both high-level and low-level variants in-
crease in height and decrease in width when changing to coarser time granularities. Fur-
thermore, Table 8.4 shows that high-level variants’ average height is greater or equal than
low-level variants’ height.

Finally, we present the share of high-level variants that contain non-singleton partitions
as discussed in Section 8.2.3. As expected, we do not observe this phenomenon for BPI
Ch. 18 since this log contains only atomic activities; thus, patterns, as exemplified
in Section 8.2.3, cannot occur. For the other logs, we find that, in general, only a
small number of variants is affected by the phenomenon that when sequence and parallel
partitions are applied recursively, non-singletons remain.

244

8.6. Evaluation

Table 8.4.: Average width and height (rounded to integers), i.e., the number of chevron-
s/bars respectively dots, of high-level and low-level variants for different logs
and time granularities (adapted from [188, Table 5])

Dimension Event log E/arlant Time granularity
ype ms S m h d mo
. . high-level - 6 6 5 5 3
Hospital Billing (/2% (0~ 0 8 7 6 4
high-level 20 18 13 10 6 2
width BPT Ch. 12 low-level 36 33 22 10 6 2
BPI Ch. 17 high-level 19 13 9 6 5 2
' low-level 23 15 10 7 5 2
high-level 58 52 36 29 25 9
BPT Ch. 18 low-level 58 52 36 29 25 9
. s high-level - 3 3 4 4 5
Hospital Billing lowlevel - 9 3 3 4 5
high-level 3 4 6 8 10 19
height BPT Ch. 12 low-level 3 4 5 7 10 19
& BPI Ch. 17 high-level 3 5 5 8 8 15
' low-level 2 3 4 7 8 15
high-level 3 4 6 8 10 21
BPICh 18 fdevel 3 4 6 8 10 21

Table 8.5.: Share of high-level variants that contain non-singleton partitions, cf. Sec-
tion 8.2.3 (adapted from [188, Table 6])

Time granularity

Event log

ms S m h d mo.
Hospital Billing - 13% 4% 3% 2% 3%
BPI Ch. 12 0% 0% 14% 1% 0% 0%
BPI Ch. 17 7% 17% 14% 13% 10% 0%
BPI Ch. 18 0% 0% 0% 0% 0% 0%

8.6.2. User Study

This section presents a user study, assessing how high-level variants support users in event
data analysis tasks compared to existing variant visualizations, cf. Figure 8.1. The user
study compares the usefulness and ease of use [53] of the proposed high-level variant
visualization with existing visualizations. Moreover, we collected open feedback from
study participants on high-level variants’ positive and negative aspects. The remainder
of this section is organized as follows. Section 8.6.2 describes the design of the study, and

245

Chapter 8. Defining & Visualizing Variants

Section 8.6.2 presents the findings. Finally, Section 8.6.2 provides a discussion.

Study Design

The conducted user study compares three variant visualizations: (A) variant visualization
for totally ordered time-point-based activities, (B) variant visualization for partially or-
dered time-point-based activities [219], and (C) variant visualization for partially ordered
time-point- and time-interval-based activities, i.e., high-level variants.

Figure 8.17 shows the tree variant visualizations considered in this study; Figures 8.17a
to 8.17c visualize all the same event log, i.e., a small sample from a real-life event log to
ensure realistic activity patterns. We intentionally kept the event log used small because
we found during piloting the study design that participants find even a small number
of variants challenging, especially in the variant visualization (A), cf. Figure 8.17. Note
that we randomized the activity labels per visualization. Thereby, it is difficult to detect
for study participants that all three visualizations show the same process behavior. Since
variant visualizations (A) and (B) assume activities to be atomic, we split the the start
and potential completion of an activity into two events. For example, the activity label
“E+s” represents the start of an activity E and the label “E+c” its completion.

In the following, we present the procedure of the user study, which was carried out in
the form of an online questionnaire.

1. The demographic questions ask for participant information as well as an assessment
of process mining experience.

2. A brief video tutorial introduces the three considered visualizations (A), (B), and
(C), cf. Figure 8.17 to ensure participants have all necessary information to solve
the subsequent tasks.

3. A comprehension € familiarization task checks whether the participants understand
the three visualizations. Further, this first task allows participants to familiarize
with the kinds of questions asked subsequently. Moreover, we use the results of
this task to filter participants who show a poor understanding of the three visual-
izations. The task was not recognizable to the participants as a comprehension &
familiarization task, but was simply presented as a regular task.

4. Task (1) “Extracting Patterns from Variant Visualizations” contains control-flow-
related questions about the visualized activities.
QOverall, this tasks comprises five data analysis questions per visualization, i.e., 15
questions in total

5. Task (2) “Identifying Variants based on Patterns”is about identifying variants that
contain activity patterns described in natural language.
Owverall, this task comprises five data analysis questions per visualization, i.e., 15
questions in total

6. Perceived usefulness and ease of use questions about the three visualizations.

7. Open questions collect qualitative feedback about variant visualization (C), i.e.,
high-level variants (cf. Section 8.2).

246

8.6. FEvaluation

EDEDED 2+ v+ s+ EDIDIDNDIDID

EDzc v+ s+ EDIDNIDIDIDNDEDEDOID < T+ TN
EDze v s+ EDIDNDIDIDND BT ¢+« 20 T+ ZRNmay

GD v+e zse S+c D NDMDIND D TR «+< 202 T+ DI

B A D NN N)i o) Lrs HLrc)L« SRLRERPX e)Gr)L+c §

G0 v+e 2ee s+c DD NDNDND M ITIIIED (< T+) Iy

ED) vee zec sec T NDNDNDIINND IO - T 7 TN
EDEDED 7+ v+< s+ ED DD NDNDID LRI < T+ S
EDEDED 2+ v+« s+ ED DD D NDID I BN «- T 7+ T
EDEDED 7+ v+« s+ ED DD NDNDUD NI < T T+ DB
EDEDED v+ 2+ s+ EDADRDNDIDUDIDNDIL < Iy - D
EDEDIED v 2+ s EDNDIDIDNDID O - TN T I

(a) Visualization (A) assuming time-point-based activities; chevrons represent atomic events
where ‘+s’ represents the start and ‘+c’ the completion of an activity

-E-E‘
s e oo IEDEED S o HDEDEDED D

(b) Visualization (B) assuming partially ordered time-point-based activities; chevrons represent
atomic events where ‘+s’ represents the start and ‘4+c’ the completion of an activity

(¢) Visualization (C) assuming partially ordered time-point-based and time-interval-based ac-
tivities, i.e., the proposed high-level variants

Figure 8.17: Variant visualizations describing the same event log; activity labels are ran-
domly changed per visualization (partly adapted from [188, Figure 14])

247

Chapter 8. Defining & Visualizing Variants

Within a task, we use the same event log for all visualizations, i.e., subsets of real-life
event logs. We used letters to label activities in the log to mitigate the influence of
potential domain knowledge that study participants might have. We also applied label
randomization such that the questions per visualization differ, cf. Figure 8.17, and ran-
domized the answer options across different questions. In this way, we aimed to reduce
the learning effect and ensure fairness between the three visualizations since we always
asked for the same patterns. After each task, we also asked participants to indicate the
perceived task difficulty per visualization to estimate how much effort the task required.
Regarding usefulness and ease of use, we designed the questionnaire following the vali-
dated question items presented in [53]. Finally, we asked participants to provide open
feedback on visualization (C), and list positive and negative aspects.

The questions posed in tasks (1) and (2) represent realistic process mining analysis
tasks. Task (1) represents an event data exploration task. Study participants are shown
variant visualizations and a list of activity patterns described in natural language. Par-
ticipants had to consider the provided variant visualization to identify true statements,
i.e., statements describing patterns that occurred in one of the visualized variants. Task
(2) represents an event data filtering task. Study participants are shown variant visual-
izations and activity patterns described in natural language. Participants had to select
variants containing the provided activity patterns.

Each task consists of five questions; we ask the same five questions per variant visu-
alization, resulting in 15 questions per task. We use the same event log per task, i.e.,
tasks (1) and (2). However, as described above, we randomly change activity labels per
variant visualization, cf. Figure 8.17. Thereby, it was tough for participants to detect
that we used the same event data for each variant visualization. Although we derived
the event data from a real-life event log, we intentionally chose individual letters for
activity names to mitigate the influence of potential domain knowledge some study par-
ticipants might have. We randomized the answer options to ensure fairness between the
three visualizations and reduce the learning effect, as we always asked for the same pat-
terns. Additionally, participants were asked to indicate the perceived task difficulty per
visualization to estimate how much effort the task required.

At the end of the questionnaire, i.e., after tasks (1) and (2), we asked questions concern-
ing usefulness and ease of use for all three visualizations. We used the validated question
items that were presented in [53]. Finally, participants could provide open feedback,
including positive and negative aspects, regarding visualization (C).

We conducted the user study as an online questionnaire during the summer of 2022.
We invited computer and data science students from the Business Process Intelligence
and Advanced Process Mining courses offered at RWTH Aachen University. Thus, in-
vited students had a fundamental understanding of process mining. Moreover, we invited
process mining researchers and industry professionals. A total of 58 participants com-
pleted the questionnaire. Seven participants indicating low comprehension of the three
variant visualizations were filtered based on the comprehension and familiarization task
results. Of the 51 remaining participants, 32 are bachelor/master students, 15 are Ph.D.
students, two are postdoc/professors, and one is working in the industry. All participants
had expertise in process mining according to their self-rating, with an average reported
expertise of 4.1 out of 6. None of the participants reported having no expertise.

248

8.6. FEvaluation

Findings

0% 20% 40% 60% 80% 100%

Visualization (A) [N
Visualization (B) I —
Visualization (C) |

(a) Task 1
0% 20% 40% 60% 80% 100%

Visualization (A) I ——
Visualization (B) I —
Visualization (C) |

(b) Task 2

- correct
- wrong

unanswerable (because the visualization does not allow me)

[unanswerable (not able to understand the visualization/task)

(c¢) Legend

Figure 8.18: Average distribution of accurate responses based on the questions per visu-
alization for tasks (1) and (2); participants tend to answer most questions
correctly when they use variant visualization (C), i.e., high-level variants
(partly adapted from [188, Figure 15])

Figure 8.18 shows the distribution of correctly answered questions per task and visu-
alization. Note that each question in tasks (1) and (2) contained correct and incorrect
answer options. Overall, participants made fewer errors when using visualization (C)
than with (B) and (A). We also note that, on average, across all five questions, about
10% of the study participants stated that visualization (A) did not allow them to answer
the questions posed, especially for questions related to activities performed in parallel.

Figure 8.19 shows task difficulty for each visualization as perceived by the study par-
ticipants. Recall that we ask the same questions per variant visualization; however, study
participants were unaware since we randomized the activity labels. When the study par-
ticipants were using variant visualization (C), they perceived the task difficulty as lowest
compared to (B) and (A). Figure 8.20 shows the participants’ confidence in providing the
correct answer. Like the perceived task difficulty (cf. Figure 8.19), participants have the

249

Chapter 8. Defining & Visualizing Variants

-, Variant Visualization () o “ — m extremely difficult
é Variant Visualization (B) - | -_— m difficult
7 Variant Visualization (C) 1 — SopeWiaiciiticult
. A T neutral
Variant Visualization (A)] |
o) ‘ somewhat easy
<) e
E Variant Visualization (B) |] m casy
Variant Visualization (C) | I M extremely easy

Figure 8.19: Perceived task difficulty per visualization and task (adapted from [188, Fig-

ure 16])

~ Variant Visualization (A) - ;] H extremely not confident
% Variant Visualization (B) | EEE—— B not confident

. . . hat not fi t
P Variant Visualization (C) e — SR IO D S

. sualizati - neutral
- Variant Visualization (A) | ‘ I e Gl
é Variant Visualization (B) ‘ I m confident
7 Variant Visualization (C) ‘ | B extremely confident

Figure 8.20: Perceived confidence of having given the correct answer per task and visu-
alization

highest confidence when using variant visualization (C). In particular, the proportion of
participants who state that they are “extremely confident” is significantly higher.
Figures 8.21 and 8.22 show the usefulness and ease of use of the visualizations [53].
The results indicate that variant visualization (C) received the highest scores for both
usefulness and ease of use, followed by (B) and finally (A). In particular, visualization
(C) scored significantly better in usefulness and ease of use than the other visualizations,
as evidenced by the percentage of respondents who rated it as “extremely likely.”
Finally, we provide the results from the open feedback. Below, we summarize the
most frequently mentioned positive aspects related to (C) from 49 responses. The study
participants indicate that visualization (C) is easy to interpret and presents variants
compactly. Furthermore, participants reported that visualization (C) enables them to
identify parallelism within variants easily and made them noticeably faster at completing
the posed tasks than the other visualizations. We have received 47 responses regarding
negative aspects. Participants noted that high-level variants might be too abstract in
some scenarios where information on the exact overlap of activities is required. Moreover,
they mentioned that visualization (C) does not allow for distinguishing between atomic
or interval-based activities. We find the two negative aspects mentioned interesting,
as the proposed low-level variants (cf. Section 8.3) address them; recall that low-level
variants were not part of this user study. Finally, participants reported concerns about the
vertical size of the variants, which can become considerably large in case many activities
are executed in parallel. These concerns are justified, as we have seen, for example, in
the automated experiments, that variants can grow significantly vertically if the bottom
granularity increases, cf. Table 8.4. Based on the conducted user study, the proposed
variant visualization (C) is more useful and easier to use for process analysts in event

250

8.6. FEvaluation

data analysis tasks when compared to existing variant visualizations, especially in the
presence of parallel activities. Moreover, visualization (C) leads to users drawing fewer
incorrect conclusions.

Ease of Use
M extremely likely ® quite likely slightly likely ™ neutral
slightly unlikely ® quite unlikely H extremely unlikely

a1 I
Q2

Q3
Q4
Qs
Q6
a1
Q2
Q3
Q4
Qs
Q6
a1
Q2
Q3
Q4
Qs
Q6

Variant Visualization (C) Variant Visualization (B) Variant Visualization (A)

Q1 Learning to operate the visualization would be easy for me.

Q2 I would find it easy to get the visualization do what I want it to do.

Q3 My interaction with the visualization would be clear and understandable.
Q4 T would find the visualization to be flexible to interact with.

Q5 It would be easy for me to become skillful at using the visualization.

Q6 I would find the visualization easy to use.

Figure 8.21: Perceived ease of use of the three variant visualizations for solving the posed
tasks (partly adapted from [188, Figure 17])

251

Chapter 8. Defining €& Visualizing Variants

Usefulness
M extremely likely W quite likely slightly likely M neutral
slightly unlikely ® quite unlikely H extremely unlikely

I

Q1 |

Q2 | =
Q3
Q4 =
Q5
Q6
Q1
Q2
Q3
Q4
Q5
Q6
Q1
Q2
Q3
Q4
Q5
Q6

Variant Visualization (C) Variant Visualization (B) Variant Visualization (A)

I

Q1 Learning to operate the visualization would be easy for me.

Q2 I would find it easy to get the visualization do what I want it to do.

Q3 My interaction with the visualization would be clear and understandable.
Q4 T would find the visualization to be flexible to interact with.

Q5 It would be easy for me to become skillful at using the visualization.

Q6 I would find the visualization easy to use.

Figure 8.22: Perceived usefulness of the three variant visualizations for solving the posed
tasks (partly adapted from [188, Figure 17])

Discussion & Threats to validity

We asked participants to complete the questionnaire in one go. The study was unsu-
pervised; thus, we could not supervise the participants to assess if they worked on the
questionnaire without interruption. As a result, some participants may not have com-
pleted the entire questionnaire in one go and may not have remembered all the details

252

8.7. Conclusion

when answering the questions on usefulness and ease of use located at the end of the
questionnaire. However, study participants took a similar amount of time to complete
the questionnaire as the participants in the pilot, indicating limited risk.

We acknowledge that our sample primarily consists of bachelor’s, master’s, and Ph.D.
students, which may limit the generalizability of our findings. Although research suggests
students can replace experts in user studies [89, 197], generalizations from the question-
naire population to process mining experts are limited. In addition, due to the small
number of study participants, the proposed study does not claim statistical significance.
Thus, further studies are needed to generalize our findings to a broader group of subjects.
Still, since the core contribution of this chapter is the definition and visualization of novel
types of variants, we consider the limitations concerning generalization less critical.

The study aimed to compare high-level variant visualizations with existing ones. How-
ever, it did not assess other contributions mentioned in the chapter, such as the low-level
variants and the temporal granularity modifiers. We deliberately chose to exclude low-
level variants from this user study based on the results of our pilot. While piloting the
study, we discovered that answering the questions required significant time and concen-
tration, taking about one to two hours to complete the questionnaire. To properly test
low-level variants, participants should have answered questions requiring at least a similar
amount of time. Given that the study was designed as a voluntary online survey, there
was a high risk that participants would manifest tiredness after some time or might drop
out or not participate. Thus, conducting a separate study evaluating low-level variants
is more advisable to mitigate these risks.

As elaborated above, this user study did not consider the time granularity modifiers
for reasons similar to those of the low-level variants. Moreover, to properly test the use-
fulness of time granularity modifiers, we require participants who understand the process
captured in the log and can decide which modifier to apply based on this knowledge. In
this scenario, there are more suitable instruments than an unsupervised questionnaire.
Instead, an observational study with expert analysts might provide more insight into how
analysts use various time granularity modifiers during analysis and what variants they
consider valuable for achieving specific objectives.

8.7. Conclusion

This chapter proposed two complementary variant definitions and corresponding visual-
izations, i.e., high-level and low-level variants. The proposed variant definitions assume
partially ordered event data with heterogeneous temporal information, cf. Definition 3.17.
As the names indicate, high-level variants allow to explore process behavior from an event
log at a higher level of abstraction compared to low-level variants. Recall that a one-
to-many relationship between high-level and low-level variants exists, i.e., one high-level
variant may comprise multiple low-level variants. Moreover, we discussed the importance
of finding the right level of temporal abstraction. We introduced temporal granularity
modifier and showcased their impact on the proposed variants. The conducted automated
experiments show that the proposed variants and corresponding visualizations are com-
putable in a reasonable amount of time on real-life event logs. The conducted user study
revealed high scores for usefulness and ease of use for the proposed high-level variants

253

Chapter 8. Defining & Visualizing Variants

compared to existing variant visualizations when partially ordered event data is analyzed.

In the context of incremental process discovery, variants are central. Especially for the
practical realization of IPD, variant visualizations are essential, as they allow users to
comprehend, assess, and eventually select process behavior from an event log. However,
although we mainly motivate the proposed variants in the context of IPD, they are of
general relevance for various other process mining tasks. Particularly in view of the fact
that partially ordered event data still receives far less attention than totally ordered event
data within process mining research, these variant visualizations represent a significant
contribution to this field [123].

254

Chapter 9.

Query Language for Variants

This chapter is largely based on the following published work.

e D. Schuster, M. Martini, S. J. van Zelst, and W. M. P. van der Aalst.
Control-flow-based querying of process executions from partially ordered
event data. In J. Troya, B. Medjahed, M. Piattini, L. Yao, P. Ferndndez,
and A. Ruiz-Cortés, editors, Service-Oriented Computing, volume 13740 of
Lecture Notes in Computer Science, pages 19-35. Springer, 2022.
doi:10.1007/978-3-031-20984-0_ 2 [181]

In the previous chapter, we presented variants for partially ordered event data. Al-
though variants are a fundamental abstraction in process mining to handle large amounts
of event data, the number of variants for a given log may be too large to explore all variants
manually using visualizations. Therefore, there is a clear motivation for query language
support for the proposed variants, i.e., in general, partially ordered event data. While
various query languages allow querying of event data [155, 156, 157, 243|, specifically
supporting partially ordered event data is missing.

Querying variants is of crucial importance for various process mining applications and
tasks. In the context of this thesis, the incremental selection of process behavior during
incremental process discovery is central. Supporting users in this selection task with
suitable tools, such as a query language, is essential for implementing and adapting
incremental process discovery. Also, apart from incremental process discovery, a query
language for partially ordered event data is of great importance. For example, consider
comparative process mining [215]. Comparing multiple event logs is a common task when
applying process mining. Techniques like process cubes [34, 210] rely on techniques, such
as query languages, to split event data. All in all, querying variants is a critical task
closely related to incremental process discovery but also crucial for various other process
mining approaches.

This chapter proposes a textual query language for partially ordered event data, as con-
sidered in Chapter 8. Thus, as already in the previous chapter, we assume an event log as
specified in Definition 3.18 (page 60) and exemplified in Table 3.1 (page 59). This chapter
thus makes a contribution to the process mining area of process querying, which gener-
ally comprises techniques for querying any kind of process mining artifacts [156]. The
proposed query language allows the specification of six essential control flow constraints,

255

Chapter 9. Query Language for Variants

which can be further restricted via cardinality constraints and arbitrarily combined via
Boolean operators. The language design is based on standardized terms for control flow
patterns in process mining. We formally specify the language’s syntax and semantics to
facilitate reuse in other tools. In the context of incremental process discovery, where the
gradual selection of process behavior that is incorporated into a process model is central,
a query language designed explicitly for querying based on control flow constraints is a
valuable asset.

This chapter’s remainder is organized as follows. First, Section 9.1 briefly elaborates
on related work in the area of query languages in the field of process mining. Section 9.2
introduces the query language by defining its syntax and semantics. Subsequently, Sec-
tion 9.4 presents an evaluation focusing on performance when evaluating queries. Finally,
Section 9.5 concludes this chapter and outlines future work regarding potential exten-
sions/continuations regarding query languages for partially ordered event data.

9.1. Related Work

In [157], Polyvyanyy et al. present a process querying framework that allows for comparing
and organizing process querying techniques. Process querying techniques mainly differ
in the input, for example, techniques assume event logs as input [21, 247]), while others
assume process model repositories as input [20, 136]). Besides differences in the input,
the specific capabilities and goals of the specific query methods, of course, differ. Various
reviews of process querying techniques exist [155, 156, 157, 243|. Most identified process
querying techniques focus on querying process models from process model repositories. In
this chapter, we focus on querying event data; thus, we concentrate on process querying
techniques operating on event logs in the following.

Celonis PQL [241] is a textual query language that supports event data and process
models as input. It is a multi-purpose query language, i.e., it provides various query
options. However, the language does not consider event data explicitly as partially or-
dered.! In [21], the authors present a query language that operates on a single graph
that connects all events from an event log based on user-defined correlations among the
events. This query language allows partitioning events according to specified constraints
and querying paths that start and end with events meeting specific requirements. Com-
pared to the query language proposed in this chapter, the event log is not transformed
into a graph structure; instead, we operate on individual cases, respectively, variants
composed of partially ordered event data, cf. Definition 3.18.

A natural language interface for querying event data is presented in [112]. This nat-
ural language interface uses a graph-based approach similar to the previously described
approach [21]. The interface allows for the specification of queries such as "Who was
involved in processing case X7" and "For which cases is the case attribute Y greater than
77" However, control flow constraints for partially ordered event data are not supported
compared to the query language proposed in this chapter. In [158], the authors propose
an LTL-based query language to query cases consisting of totally ordered activities. In
[247], an approach to query case fragments that involve a selected activity is proposed.

IPlease note that Celonis PQL is a closed-source query language subject to continuous development.

256

9.2. Query Language

The technique is intended to assist process designers by providing case fragments show-
ing how each activity is executed in different cases. However, this approach also assumes
cases comprising totally ordered activities.

In short, process querying is a research field within process mining. Various methods
exist, most of them are designed for querying models from a process model repository [155,
156, 157, 243|. Considering querying techniques that operate on event data, most assume
totally ordered event data. Thus, the query language proposed in this chapter differs in
three main points from related work.

1. The proposed query language focuses on cases containing partially ordered activi-
ties.

2. The proposed query language focuses on cases rather than event data as a whole
or individual events, i.e., executing a query returns cases satisfying the specified
constraints.

3. The proposed query language focuses specifically on control flow patterns, i.e., it
offers extensive options for specifying control flow patterns.

9.2. Query Language

This section introduces the proposed query language. Section 9.2.1 introduces its syntax,
while Section 9.2.2 defines its semantics. Section 9.2.3 covers the query evaluation.

9.2.1. Syntax

((’DC’ isC =2) OR ((’DC’ isC =1) AND (°CRR’ isDF ’DC’))) AND

(NOT(’DC’ isDF ’DM’))

AND
OR NOT
(°DC’ isC =2) AND (°DC’> isDF ’DM’)
(’DC’ isC =1) (’CRR’ isDF ’DC’)

Figure 9.1: Example of a query and its Boolean tree structure; leaves in the tree represent
individual query leaves as exemplified in Table 9.1) that are combined via
Boolean operators (partly adapted from [181, Figure 2]|)

257

Chapter 9. Query Language for Variants

Here, we introduce the syntax of the proposed query language, which comprises six
operators allowing to specify control flow constraints: three unary operators and three
binary operators. Table 9.1 lists these six operators. Next to each operator, Table 9.1
presents exemplary queries and presents their semantics in natural language. The query
examples show that cardinality constraints can be attached to each operator. We refer
to a query as leaf query if the query contains only one operator. All queries @1, ..., Qs
shown in Table 9.1 are leaf queries. Leaf queries can be arbitrarily combined using
Boolean operators. For instance, Figure 9.1 shows a query composed of four leaf queries.
Subsequently, Definition 9.1 formally specifies a query, i.e., the syntax of the query lan-
guage.

Definition 9.1 (Query Syntax)

Let ly,...,ln—1,l, € A be activity labels, k € No, O € {<,>,=}, o € {¢sDF, isEF,
1sP}, e € {4sC, 1S, ©sE}, and A\ € {ALL, ANY}. We denote the universe of queries
by Q and recursively define a query QQ € Q below.

Leaf queries with an unary operator

-Q=""e

- Q=" e [k

- Q=A% 1°}e

- Q=400 ,—1°} e Tk
Leaf queries with a binary operator

- Q="’0"l,"’

- Q=""0"l,’ Ok

- Q=A% 1}0 "’

- Q=407 l,1}?0 %, Ok

— Q=00 AL . .., N1}’

- Q=" AL’ ..., %, 1}’ Ok
Composed query using Boolean operators

- IfQ1,...,Qun € Q are m queries and B € {AND, OR}, then
Q= (Q:M.. MQ,,) is a query

- If Q1 € Q is a query, then Q = NOT(Q1) is a query

Note that ANY and ALL sets are only allowed on one side of a binary operator according
to Definition 9.1.

258

9.2. Query Language

Table 9.1.: Overview of the control flow constraints (partly adapted from [181, Table 2])

Type Syntax

Example

Nr. Query Description of semantics
Q1 YA’ isC activity A is contained in the case
activity A is contained at least 6 times
isContained Q- 'A? isC > 6 in the case
isC B
(isC) activity A and B are both contained
Q3 ALL{’A’,’B*} isC > 6 at least 6 times each in the case
Q4 A’ isS there exists a start activity A(®
exactly one start activity of the case
isStart s 'A% isS = 1 is an A activity(2)
(iss) . .
o case starts with exactly one A activity
§ Qs ANY{’A?,’B°} isS = 1 or/and with exactly one B activity(a)
=
Q7 ’A’ isE there exists an end activity A(®)
at least two end activities of the case
isEnd Qs JA’ isE > 2 are an A activity(?)
isE B
(isE) case ends with at least one A and one
Qo ALL{’A’,’B’} isE B activity(®)
a B activity directly follows each A
Q10 ’A’ isDF ’B’ activity in the case
. case contains exactly one A activity
isDirectly o) A’ isDF °B’ = 1 that is directly followed by B
Followed il
(isDF) every A activity is directly followed
Q12> ’A’ isDF ALL{’B”,°C’} by a B and C activity
after each A activity in the case a B
Q13 A’ isEF °B’ activity eventually follows
. case contains at least one A activity
isEventually) A’ isEF °B’ > 1 that is eventually followed by B
z Followed il s =
E (isEF) all A and B activities are eventually
< ()15 ALL{’A’,’B’} isEF °C’ followed by a C activity
each A activity in the case is in par-
Q16 ')A’ isP ’B? allel to some B activity
case contains at most four A activities
isParallel Q17 'A% isP ’B’ < 4 that are in parallel to some B activity
(isP) case contains at most two A activities
(Q1s ’A’ isP ANY{’B’,’C’} < 2 that are parallel to a B or C activity

(@) Case may contain arbitrary further start respectively end activities.

259

Chapter 9. Query Language for Variants

9.2.2. Semantics

This section formally specifies the semantics of the proposed query language. First, we
introduce notation conventions regarding existential quantification. Subsequently, we
define the semantics for each control flow operator.

Let £ € N and X be an arbitrary set. We write:

e 37Fzy, ... 2, € X (...) to denote that there exist ezactly k pairwise distinct
elements in set X satisfying a given formula (cf. Equation (9.1)),

o 3Zkg ... a2 € X(...) to denote that there exist at least k pairwise distinct ele-
ments in set X satisfying a given formula (cf. Equation (9.2)), and

o I5kg, ... 7 € X(...) to denote that there exist at most k pairwise distinct
elements in set X satisfying a given formula (cf. Equation (9.3)).

Equations (9.1) to (9.3) formally define the three existential quantifiers introduced above.
Iy, oy € X VI<i<k (P(x;)) =
1, ..., € X(v1§i<j§k (w; # ;) A VI<i<k (P(x;) A

Vo € X\{z1,..., 21} (ﬁP(xi))) (9.1)

e, a € X VI<i<k (P(z;)) =
31, ..., Tk 6X<V1§i<j§k (zi # 25) A V1<i<k (P(xi))) (9-2)

FFaq,. oy € X VI<i<k (P(x;)) =
Je, ...k eX(Vlgigk (P(z:)) A Vo€ X\{z1,..., 24} (ﬁP(:ci))) (9.3)

Note that variables x1, ...,z in Equation (9.3) must not be assigned different elements
from the set X. Equation (9.3) specifies that at most k distinct elements in X exist
satisfying P(...). Below, we formally define the semantics of queries.

Definition 9.2 (Query Semantics)
Let C C C be a case with corresponding high-level case view (C,<TE 3 X)), and
li,...,l, € A be activity labels. Further let k € Ny and O € {<,>,=}. We recur-
sively define the function

eval : @ xC — B

that returns true iff case C satisfies the specified control flow constraints in Q.
Unary operators (i.e., isC,1sS, and isE)
— If Q = ’ly’ isC Uk, then eval (Q,C) &
Jkey, ... exeC VI<i<k <e§ = ll>

— If Q = ’ly’ isS Uk, then eval (Q,C) &

260

9.2. Query Language

Okey,...,exeC V1<i<k (egzll A PeeC (€<HL e)>

If Q = 1y’ isE [k, then eval (Q,C) <
Fkey, ..., eneC V1<i<k (eg =1, A feeC (ei <HL ’é))

Binary operators (i.e., isDF, isEF, and tsP)

If Q = ’ly7 isDF ’ly’, then eval (Q,C) &
YeeC (el =, = JeeT (’él =1l A e<R’é>>

If Q = ’ly7 isDF ’ly’ Uk, then eval (Q,C) <
E“:lkelv .. .76k€C V].SZS]{} (ei = ll A 3@’60 (’é‘l _ 12 A €i<Rg)>

If Q@ = ’ly7 isDF ANY{’ly’, ..., 1, }, then eval (Q,C) <

VeeC <el =l = JeC (e<R’é A (Vi = @-)))

If Q = 1y’ isDF ANY{’l3’, ..., "L, } Ok, then eval (Q,C) &

Fkey, ... eeC VI<i<k <e§ =1, A JeeC (ei <HL G A W (zﬂ - Q)))
IfQ = ’ly7 ©sDF ALL{’l3’, ..., °l, } Ok, then eval (Q,C) <

EIDkel, ...epeC VlSiSk(eé =0 A

352,...,€n60 /\ (ei ‘<HL gj A\ ’éé :h))

Jj=2

IfQ = ’l1’ isEF ’ly’, then eval (Q,C) <
VeeC (el:ll = JeeC (éizlz A e <fE 5))

If Q = 1y’ <EF ’ly’ Ok, then eval (Q,C) &
ke, ..., exeC VI<i<k (eé =1, A JeeC (gl — 1, A e <HL E))

IfQ = ’ly’ isEF ANY{’ly’, ..., 1, "}, then eval (Q,C) &
YeeC (el =, = JeeC (e <HLe A Vi, e = 11))

IfQ = 1y <sEF ANY{’ly’, ..., ", } Ok, then eval (Q,C) <

HDkel, o epeC VIi<k (eﬁ =1; AN JdeeC <€i <HLE A V;}:2gl = lj>>

261

Chapter 9. Query Language for Variants

— IfQ = ’ly’ 4sEF ALL{’ly’,...,°l, } Ok, then eval (Q,C) &

Fey, ... eneC VI<i<k|e =1 A

=

n

Bs,...,&C |\ (ei <HLE A& :zj)

j=2

— IfQ = ’ly’ isP ’ly’, then eval (Q,C) &
VeeC(el:ll N agec(gIZZQ AedE A 57<e)>

— IfQ = ’ly’ isP ’ly’ Ok, then eval (Q,C) &
key, ... epeC V1<i<k (eg_zl A JeeC (afzzz A e AT A 'é%ei))

— IfQ = ’ly7 isP ANY{’ly’, ..., l, "}, then eval (Q,C) &
VecC (el:ll = 3560(6745 AEAe A \/;?_Q’él:zj)>

— IfQ = ’ly’ isP ANY{’ly’, ..., °l,’} Ok, then eval (Q,C) &
ke, ... eneC \ﬂgigk(eg — I A HEEC(ei KENETAe; AV, = g))

— IfQ = ’ly’ isP ALL{’ly’, ..., °l, "} Ok, then eval (Q,C) &

ke, ... eneC VI<i<k|e =1 A

Hgg, o0 C ,gneC

—.

(ei-,é/éij /\gjﬁei /\gé': j)

j=2

Boolean operators (i.e., AND, OR, and NOT)
Let Q1,...,Q, € Q be arbitrary queries.

— If Q = V0T (Q+), then eval (Q,C) & —eval (Ql, C)

— IfQ = (Q1 0R ... OR Qy), then eval (Q,C) &
eval (Q1,C) V---V eval (Qn,C)

Q= (Qi AND ... AND Qn), then eval (Q,C) &
eval (Q1,C)N--- A eval (Qn,C)

Definition 9.2 does not cover all queries constructible using the syntax specified in
Definition 9.1. However, we can rewrite any query into a logically equivalent one covered
by Definition 9.1. If the condition below holds, we refer to two queries @Q1,Q2 € Q as

262

9.2. Query Language

logically equivalent queries, denoted Q1 = Q3.
vC eC (eval(Ql, C) & eval(Q2, C))

Subsequently, we list query rewriting rules that transform a given query into a logical
equivalent query. Note that not all potential queries containing ANY or ALL sets can be
transformed into a logically equivalent formula not containing ANY or ALL sets.

— e =%e>1

— ANY{’ly?,...,%l,°Ye = (’l;7e) OR...OR (’l,’e)

— ALL{’l;’,...,’l,>}Ye = (’ly’e) AND...AND (’[,’e)

— ANY{’l;7,...,°l,>Ye Ok = (°l;°e0k) OR...OR (’l,’e k)

— ALL{’l,’,...,’l,"Ye Ok = (’l;’e (Ok) AND...AND (’l,’e [Jk)

— ANY{ly, .1 2Y0%l,? = Cly?o’l,?) OR...OR (l,_y%0°l,”)

— ALL{?ly7, ..l ?Y00l,? = (Pl37071,7) AND...AND (l,_170°l,7)

— ANY{?ly?, ... ,%l,—1°}?,’Ok = (?1y0°1,°0k) OR...0R (°l,_1°0°(,’k)

— ALL{Ly?, .. 71 Y00l Ok = (°1y?021,°C0k) AND ... AND
Cly_ 201, °0k)

— 211?0ALL{?ly?, ... ,%],?} = (°l1?0°l3?) AND...AND (’l1°0°l,?)

According to Definition 9.2, the following queries are not logically equivalent. Hence,
the operators ANY and ALL are not to be considered syntactic sugar.?

— 1 70ANY{ ls?, ..., 71, Y # (Pl1707157) OR...OR (?l170°0,7)
— 30 0ANYLls?, ..., 21 Ok 2 (17015’ 0k) OR...O0R (?l170°1,° Ok)
— 3190ALL{ 1y, ..., 1y} Ok # Cly?0°ly? Ok) AND...AND (l;°0°l,’ CJk)

For example, consider query (Q1g in Table 9.1. The query states that there exist at
most two A activities that are in parallel to B or C activities. Thus, a case containing
four A activities, two parallel to an arbitrary number (greater than zero) of B activities,
and two parallel to C activities, does not fulfill query @15. However, the described
trace fulfills the query @ = (?A” isP °B’> < 2) OR(’A’ isP ’C’ < 2); hence, F18 =
YA’ isP ANY{’B’,’C’} <2# Q.

2The term syntactic sugar was coined in [118] and refers to elements that extend a language’s syntax to
ease specifying certain constructs. However, these syntax extensions do not change the expressiveness
and functionality of the language.

263

Chapter 9. Query Language for Variants

9.2.3. Query Evaluation

As exemplified in Figure 9.1, queries represent trees. Leaf vertices represent leaf queries
that can be evaluated individually. Inner vertices and the root vertex represent Boolean
operators. Thus, we can evaluate queries in a bottom-up fashion. First, the query leaves
are evaluated for a given tree, i.e., a query. As a result, each leaf vertex can be assigned
a Boolean value. Then, bottom-up, the given Boolean operators are applied recursively.

A complete evaluation is unnecessary for many queries to determine if a given case
satisfies the specified constraints. For example, suppose one leaf vertex evaluates to false,
and this leaf vertex’s parent is a logical AND. In that case, its siblings must not be
evaluated because its parent, representing a logical AND, can be immediately assigned
the Boolean value false. Reconsider the query shown in Figure 9.1 and the case depicted
in Figure 8.3b (page 222). The query comprises four query leaves. However, when
evaluated in the correct order, only two queries are left to evaluate the entire query for
the given case. Following a depth-first traversing strategy, the query leaf (°DC’> isC =2)
is evaluated first, satisfying the given case. Thus, we do not need to evaluate the right
subtree of the OR, i.e., query leaves (°DC’ isC =1) and (’CRR’ isDF ’DC’). Finally, the
query leave (°DC’> isDF ’DM’) is evaluated. In short, we can evaluate the entire query
by evaluating only two leaves. Furthermore, the order in which leaf queries are evaluated
matters.

9.3. Illustrative Example

This section presents an illustrative example query. We use the BPI CH. 2012 event log,
which contains partially ordered event data. Below, we depict an exemplary query.

"W_Completeren aanvraag’ isP ALL {’A_ACCEPTED’, ’'O_SELECTED’,
"A_FINALIZED’, ’'O_CREATED’, ’'O_SENT’} AND
"A_ACCEPTED’ isDF ALL{’'A_FINALIZED’, ’'O_SELECTED’} AND
"A_FINALIZED’ isP ’'O_SELECTED’ AND
ALL{’'A_FINALIZED’, ’"O_SELECTED’} isDF ’'O_CREATED’ AND
"O_CREATED’ isDF ’O_SENT’;

Upon executing the above-specified query on the given event log, 1,167 out of 3,830
high-level variants satisfy the specified constraints. Figure 9.2 visualizes a few variants
that satisfy the query. As specified in the query, all variants start with activity ‘A_SUB-
MITTED’. Furthermore, all variants contain an activity "W _Completeren aanvraag’ that
is in parallel to the activities A ACCEPTED’, ’O_SELECTED’, A _FINALIZED’,
'O _CREATED’, and 'O_SENT". Finally, all further constraints specified in the exam-
ple query are satisfied by the variants visualized in Figure 9.2. Besides specifying the
start activity, the example query describes the activity pattern we see in the large middle
chevron, which all variants contain.

264

9.3. Illustrative Example

€6 woroag ur pajuesaxd L1enb a1y AJstyes qer) [Rgg| Sof 1esd gT10g YD Idd oYl Wwolj syuerrea jo 3d1eoxy g6 9IS

[CEREINBENN

- “ansiniva v (REITTTLEEN
- Q3LdIIV Y

IN3IS 'O

d3zIvNid v

J3ILVAILDY V

d3iNIo3a o

“8NSATLYVd Y

IN3IS O = a31diddv v

d3zIvNid v

Q3ITIIONYD O -
QDYDY —

Q3IZNVNHV

a3ld3iddv v

d3ZINVYNH Vv

Aa3TIIdDNVD 0

“8NSATLYVd Y

d3ildidov v

IN3S O

= Q31d3DOVV

INIS O

d3zIvNi4d v

265

Chapter 9. Query Language for Variants

9.4. Evaluation

This section presents an evaluation of the proposed query language for partially ordered
event data. The focus of this evaluation is on performance aspects. Section 9.4.1 presents
the experimental setup. Next, Section 9.4.2 presents the results. Finally, Section 9.4.3
discusses the conducted experiments and elaborates threats to validity.

9.4.1. Experimental Setup

We use four real-life event logs, which are listed in Table 9.2. For each log, we auto-
matically generated queries and then selected 1,000 queries that were not satisfied by
all or by no case in the corresponding log. With this approach, we attempted to filter
out trivial queries. We evaluated the performance-related statistics based on the 1,000
selected queries for each log.

Table 9.2.: Statistics about the event logs used

#Isomorphic high-

Event Log 7 Cases level case views(®
BPI Challenge 2012 [228] 13,087 3,830
BPI Challenge 2017 [229] 31,509 5,937
BPI Challenge 2020, Prepaid Travel Cost log [232] 2,099 213
Road Traffic Fine Management (RTFM) [56] 150, 370 350

(2) Based on Definition 8.1 (page 221) using the lowest available bottom granularity.

9.4.2. Results

Each query is evaluated for all cases from the corresponding event log. However, not
all leaf queries must be evaluated, as described in Section 9.2.3. Therefore, the number
of leaves evaluated may vary when evaluating the same query for different cases. Thus,
the case determines how many leaves of a given query must be evaluated. Figure 9.3
depicts the query evaluation runtime (in seconds) per event log for the median number
of leaf nodes evaluated. Each plot summarizes 1,000 data points, that is, 1,000 queries
evaluated on all cases from the corresponding log. A linear trend of increasing runtime
is observed across all four event logs as the number of query leaves evaluated increases.

Figure 9.4 shows how queries are distributed according to their evaluation time. In
addition, we can observe the ratio of leaves evaluated at the median. As before, each
plot in the figure describes 1,000 queries. As in Figure 9.3, we derive that the number
of evaluated leaf queries is the primary factor contributing to an increase in evaluation
time, this trend is consistent across the different logs.

Finally, Figure 9.5 demonstrates the effect of early termination, i.e., not all leaf queries
of a query are evaluated if not needed, as introduced in Section 9.2.3. Note that early
termination was always used in the previous plots, i.e., Figure 9.3 and Figure 9.4. We

266

9.4. Evaluation

T T

2 3

T

4

T

5

T

6

T

7

Median Number of Leaves Evaluated

(b) BPI Challenge 2017

0.175
0.10 4 ‘
0.150
W 0.081 ' i
kel
S ' € 0.125
w} (] S
7 $ @
~ 2]
> 0:06 ‘ £ 51004
[}
£ M IS
£ E
5 € 0.0751
& 0.04 4
0.050
0.02 4
0.025
. 4.0 5.0 6.0 1
Median Number of Leaves Evaluated
(a) BPI Challenge 2012
0.012
0.004 - ﬁ 0.0101
) ' 3
2 H S 0.008
S 0.003]
() Q
u k)
° © 0.0064
£ E
‘€ 0.002 A €
& & 0.004
0.001 1 0.002 4 %

St

¢

T T T T T T T

1 2 3 4 5 6 7
Median Number of Leaves Evaluated

(c) BPI Challenge 2020

30

4.0

5.0

6.0

Medlan Number of Leaves Evaluated

(d) RTFM

Figure 9.3: Query evaluation time; since the queries are applied to all cases, they are or-
dered by the median number of leaves evaluated per case (adapted from [181,

Figure 5|)

notice from the plots depicted in Figure 9.5 that early termination significantly impacts
the evaluation time of the queries across all event logs. In conclusion, the results shown
in this section indicate that the time required to evaluate queries increases linearly with

the number of leaves evaluated.

267

Chapter 9. Query Language for Variants

200+

150

Count

1001

50

0.02

Median Number of
Leaves Evaluated

1.0 Em 40
20 B85S0
3 3.0 @ 60

0.04
Runtime (seconds)

(a) BPI Challenge 2012

0.06 0.08 0.10

1751

150 -

125

100 -

Count

75 A

50

25 A

Median Number of
Leaves Evaluated

iy R s)
B 6
==y

/2
/|3
== 4

T
0.001

0.002

0.003
Runtime (seconds)

(c¢) BPI Challenge 2020

0.004

1754

150 4

125

1004

Count

754

504

254

— Median Number of

0.025 0.050 0.075 0.100 0.125 0.150 0.175

Leaves Evaluated
1 EmsS
2 mEme
/|3 mmv7
= 4

Runtime (seconds)

(b) BPI Challenge 2017

175 A

150 -

125 A

100 4

Count

75

50

25 A

0.002

Median Number of
Leaves Evaluated
310 E=3 40
/20 BEW SO
3 3.0 mm 6.0
0.004 0.006 0.008 0.010 0.012
Runtime (seconds)
(d) RTFM

Figure 9.4: Query evaluation time distribution (adapted from [181, Figure 6])

9.4.3. Discussion & Threats to Validity

A potential threat to validity is the automatic query generation. Recall that we sample
1,000 queries from a large pool of automatically generated queries that at least evaluate
for one case of a given event log to true. Thus, there is a high chance that many queries
contain obvious activity constraints that are not satisfied by any case from a given event
log. Thus, only a few query leaves might be evaluated to determine the overall result for
a given case. Further, there is the threat that these automatically generated queries do
not reflect queries that process analysts would specify in real-world scenarios. However,

268

9.4. Evaluation

70

Il No Early stopping

Il No Early stopping
[Early stopping

[Early stopping

Count

0.05 0.10 0.15 0.20
Runtime (seconds)

(a) BPI Challenge 2012

0.05 0.10 0.15 0.20 0.25
Runtime (seconds)

(b) BPI Challenge 2017

EEE No Early stopping I No Early stopping
80 4 [Early stopping

100 - [Early stopping

60

Count

40 A

Count

20

0.002 0.004 0.006 0.008
Runtime (seconds)

(c) BPI Challenge 2020

0.005 0.010 0.015
Runtime (seconds)

(d) RTFM

Figure 9.5: Impact of early termination on the query evaluation time (adapted from [181,
Figure 7])

queries written by process analysts may also be heavily dependent on a particular event
log and analysis task or question, making it difficult to generalize any potential results.

269

Chapter 9. Query Language for Variants

9.5. Conclusion

This chapter proposed a novel query language allowing query cases and variants contain-
ing partially ordered event data with heterogeneous temporal information. The proposed
query language builds upon the high-level case view specified in Definition 8.1 (page 221).
In the context of IPD, being able to query variants from an event log is critical to facili-
tate the user in incrementally selecting process behavior that is being incorporated into
a process model.

The proposed query language could be extended to include operators to query cases
based on their low-level case view, cf. Section 8.3.1 (page 231). Further, the query
language could be extended to cover further aspects other than control flow constraints;
for example, temporal constraints or resource constraints could be covered by the query
language. Finally, the design of a visual query language using graphical elements similar
the presented variant visualizations (cf. Sections 8.2.2 and 8.3.2) could be an interesting
extension of the textual query language presented in this chapter.

270

Part IV.

Realization & Application

271

Chapter 10.

Tool Support: Cortado

This chapter is largely based on the following publications.
e D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Cortado: A
dedicated process mining tool for interactive process discovery. SoftwareX,
22:101373, 2023. doi:10.1016/j.s0ftx.2023.101373 [186]

e D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Cortado—an
interactive tool for data-driven process discovery and modeling. In
D. Buchs and J. Carmona, editors, Application and Theory of Petri Nets
and Concurrency, volume 12734 of Lecture Notes in Computer Science,
pages 465-475. Springer, 2021. doi:10.1007/978-3-030-76983-3 23 [178§]

Section 10.3.2 Adding Behavior to a Process Model is partly based on the fol-
lowing publication.

e D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Sub-model
freezing during incremental process discovery in cortado. In Proceedings of
the ICPM Doctoral Consortium and Demo Track 2021, pages 43—44.
CEUR Workshop Proceedings, 2021. URL
https://ceur-ws.org/Vol-3098/demo_207.pdf [177]

Section 10.2.4 Variant Frequent Pattern Mining is largely based on the following
publication.

e M. Martini, D. Schuster, and W. M. P. van der Aalst. Mining frequent
infix patterns from concurrency-aware process execution variants.
Proceedings of the VLDB Endowment, 16(10):2666—2678, 2023.
doi:10.14778/3603581.3603603 [143]

Section 10.4.3 Model-Based Performance Analysis is largely based on the follow-
ing publication.

e D. Schuster, L. Schade, S. J. van Zelst, and W. M. P. van der Aalst.
Temporal performance analysis for block-structured process models in
Cortado. In J. de Weerdt and A. Polyvyanyy, editors, Intelligent
Information Systems, volume 452 of Lecture Notes in Business Information
Processing, pages 110-119. Springer, 2022.
doi:10.1007/978-3-031-07481-3 13 [182]

273

10

Chapter 10. Tool Support: Cortado

This chapter introduces the open-source software tool Cortado, which is a dedicated
tool for incremental process discovery.! Cortado is an example of how the various algo-
rithms and approaches proposed in this thesis can be seamlessly integrated into a com-
prehensive tool for incremental process discovery. This chapter’s remainder is organized
as follows. Section 10.1 provides an introduction to Cortado and presents its central func-
tionalities and opportunities. In the subsequent sections, diverse functionality aspects are
presented in detail as outlined in Figure 10.1. Section 10.2 introduces Cortado’s various
features for handling variants, which are an essential means of interaction within IPD.
Next, Section 10.3 introduces Cortado’s IPD functionality that comprises the algorithms
proposed in Part II Incremental Process Discovery of this thesis. Section 10.4 presents the
performance analysis features of Cortado. Section 10.5 lists the data exchange formats
Cortado supports. Furthermore, Section 10.6 sketches Cortado’s software architecture.
Finally, Section 10.7 concludes this chapter.

Variant Explorer

Export (Section 10.2.1)
o XES
e PTML Variant Querying
e PNML (Section 10.2.2)
e BPMN Supported Data V:ariant Han- Variant Modeler
Exchange Formats dling Features (Section 10.2.3)
(Section 10.5) (Section 10.2) -
Import
o XES Variant Frequent
¢ PTML e Pattern Mining
(Section 10.2.4)
Variant Se-
Cortado’s e (JUENb1AlIZATION
Features (Section 1025)
L\ \ N
Model- Visualizing &
Independent Per- Editing Pro-
formance Analysis cess Models

(Section 10.4.2) Performance Incremental (Section 10.3.1)

'* Analysis Features Process Discovery 4|
Model-Based Per- (Eexiion 104 (Eegiion 10:5)) freezing-enabled
formance Analysis TFS-IPDA

(Section 10.4.3) (Section 10.3.2)

Figure 10.1: Overview of the most important features of Cortado and the structure of
the following sections, which present the individual feature areas in detail

LCortado’s source code can be found online at https://github.com/cortado-tool/cortado.

274

https://github.com/cortado-tool/cortado

10.1. Overview

10.1. Overview

Files Settings Editors

A v < > ©

A_SUBMITTED A _PARTLYSUBMITTED A _PREACCEPTED A_ACCEPTED A

>
O_SELECTED A_FINALIZED

Variant Explorer Activity Overview
S M o Activity

Process Tree Editor

Sub-
Variants

Standard View

3
]
<
9
=
§
E
2
5
&

Conformance View

Figure 10.2: Screenshot of Cortado showing the process model editor at the top, the
variant explorer in the lower left, and the activity overview table in the
lower right (displayed variants originate from the BPI Ch. 2012 log [228])

This section introduces Cortado’s central functionality. Figure 10.3 (page 277) divides
Cortado’s functionalities into four areas: (1) event data & variant handling, (2) confor-
mance checking, (3) performance analysis, and (4) incremental process discovery. Feature
areas (1) and (4) are visibly larger in Figure 10.3 because these are the core of Cortado.
Figure 10.2 provides a first screenshot of Cortado showing the default User Interface (UT),
consisting of the following components: the process model editor located in the upper
part, the variant explorer in the lower left, and the activity overview table in the lower
right.

Starting with an event log, Cortado detects high- and low-level variants shown in the
variant explorer. The variant explorer is a central component of Cortado’s UI and allows
users to explore the variants of an imported event log easily. As depicted in Figure 10.3,
the variant explorer comprises various features such as variant querying, time granularity
modification, and variant sequentialization rules. Further, users can add variants and

275

10

10

Chapter 10. Tool Support: Cortado

fragments to the variant explorer by either modeling them, extracting fragments from
complete variants, or invoking frequent pattern mining for variants.

During incremental process discovery, users gradually select variants or fragments from
the variant explorer that the IPDA algorithm implemented in Cortado incorporates into
the provided process model. Users can import an initial process model or discover one
from selected full variants invoking a conventional process discovery algorithm. Further,
Cortado features a freezing-enabled IPDA; thus, model parts can be optionally frozen
as indicated in Figure 10.3. The discovered process model can viewed and edited in the
process model editor anytime, providing maximal flexibility to users.

Besides the variant explorer and incremental process discovery, Cortado features con-
formance checking and temporal performance analysis. Conformance checking diagnostics
provide valuable insights to the user about which variants are supported by the current
process model; thus, conformance checking is essential within IPD. Temporal perfor-
mance analysis allows linking the incrementally discovered model with the event log by
calculating performance indicators.

While Figure 10.3 provides an overview of Cortado’s functionality focusing on the
interplay between the different functional areas, Figure 10.1 (page 274) provides a more
structured overview of Cortado’s features that are divided into four areas.

o Variant handling features are presented in Section 10.2. As variants are a crucial
point of interaction within IPD, extensive support for handling variants is essential
to realize an IPD software tool successfully. Cortado provides a variant explorer
that allows users to assess high-level and low-level variants (cf. Chapter 8) of an
imported event log. To handle large amounts of variants, the proposed query lan-
guage (cf. Chapter 9) is implemented to enable querying variants. Cortado also
features a variant modeler to manually incorporate process behavior not observed
in the event log. Moreover, Cortado features frequent pattern mining for variants
to identify frequent variant fragments that users might want to add to a process
model incrementally (Section 10.2.4). Lastly, Cortado offers variant sequentializa-
tion rules that allow the modification of variants based on domain knowledge before
incrementally adding them to a process model (Section 10.2.5).

e Incremental process discovery capabilities of Cortado are presented in Section 10.3.
In short, Cortado implements a freezing-enabled TFS-IPDA. Thus, Cortado fea-
tures all aspects of incremental process discovery as presented in Part II. Further,
we also present Cortado’s process model editor (Section 10.3.1).

o Performance analysis features of Cortado are presented in Section 10.4. The imple-
mented performance analysis features can be further divided into model-independent
and model-based. Model-independent performance analysis projects performance
statistics onto variants in the variant explorer. In contrast, model-based perfor-
mance analysis requires a process model as input besides an event log and project
performance indicators onto a process model.

e Supported data exchange formats for process models and event logs are briefly
discussed in Section 10.5.

276

10.1. Overview

Event Data & Variant 51;
. 2
Handling ® (3)
[LI
-
o gt User (5)
Detection of high-
Event . eyl & low-level

Log variants

Conformance Performance
Checking Analysis

Diagnostics
projected onto the

Diagnostics
projected onto the
process model or

the variants

process model or
the variants

t t

Calculate conformance & temporal
performance diagnostics

!

Incremental Process Discovery

v

Explore & filter via variant querying
Adjust time granularity

Modify variants using sequentialization
rules

Extract fragments from detected variants
(prefixes/infixes/suffixes)

Model variants and variant fragments
(prefixes/infixes/suffixes)

Mine frequent patterns, i.e., variant
fragments & add them to the explorer

Variant Explorer

Visualizes detected variants from
the nt log

Visualizes user racted & user-
modeled variant fragments

Add penalty

) Cooeroe ST odroe | sy e

Appealtojud. Add penalty

Send Appeal t.

!

Conventional
process discovery

Process Model Editor Tmport

model under Optional
user-selected

frozen process
model parts

construction; supports block-
structured process models as
BPMN or process tree model

Manual editing of .
oo

the process model -

User

User-selected
[LI variants/variant
fragments

Incremental process
discovery—extend the
model’s behavior by user-
selected variants/variant
fragments that are not yet
covered by the model;
frozen model parts are not

Process model Gl M|

Extended process

model

Figure 10.3: Overview of Cortado’s central features and usage procedures within Cortado
(partly adapted from [186, Figure 2])

277

10

10

Chapter 10. Tool Support: Cortado

10.2. Variant Handling

This section introduces the variant handling features of Cortado in detail. Starting
from the variant explorer (Section 10.2.1), this section introduces variant querying (Sec-
tion 10.2.2), the variant modeler (Section 10.2.3), frequent pattern mining functionality
for variants (Section 10.2.4), and variant sequentialization techniques (Section 10.2.5).

10.2.1. Variant Explorer

Files Settings Editors
Variant Explorer
H e 2 conformance check add variant(s) to model discover initial model
Sub-

No. Info X Variant
Variants

Standard Vi

Performance View

.

z
]
s
g
5
E
8
g
s
(8]

W_Completeren aanvraag

W_Completeren aanvraag

0 (1.4%)

Figure 10.4: Full screen variant explorer showing high-level variants of the imported BPI
Ch. 2012 [228] event log

The variant explorer is a central component in Cortado’s Ul, cf. Figure 10.2. Upon
starting Cortado, the variant explorer is located in the lower left by default. The variant
explorer shows high-level variants from an imported event log. The activity overview
table right to the variant explorer lists the various activities, assigns a unique color to
each activity, and provides basic statistics, for instance, how often an activity occurs in
the imported event log and if an activity is a start or end activity. Figure 10.4 shows
the variant explorer in full-screen mode. Variants are displayed in a tabular manner,
and each variant is enumerated; on the screenshot shown in Figure 10.4, four high-level
variants are visible. Next to the enumeration, each variant can be selected. For instance,

278

10.2. Variant Handling

the first variant is selected (cf. the circle icon containing a check mark left of the first
high-level variant in Figure 10.4) while the three other ones are not (cf. the circle icons
left of the second, third, and fourth high-level variant in Figure 10.4). Further, each
variant is associated with a green check mark or a red cross mark. These icons indicate
if the variant is supported by the currently loaded process model.?

Sub-Variants for 100 (Cluster 1)X

Standard View

W _Validate..

=
&2
s
8
€
=]
E
2
@
o

A. A. O. O. Q. A. A. O. W_Call incomplete fi.. A..
[] L

W_Complete application W _Validat.. At W _Validate applicati..

bnformance View

Figure 10.5: Variant explorer, which in this case displays the only low-level variant for
a selected high-level variant that contains a chevron for which no other
partitions could be found (cf. Section 8.2.3)

In the column sub-variants, a number for each displayed variant is shown. These num-
bers indicate the number of corresponding low-level variants per high-level variant. Re-
call a one-to-many relation generally exists between high-level and low-level variants, cf.
Chapter 8. When clicking on the number of low-level variants, a tab with the correspond-
ing low-level variants opens. Figure 10.5 shows a low-level variant for a corresponding
high-level variant from the event log [229]. In the depicted case, the high-level variant
contains exactly one low-level variant. Further note that the high-level variant contains
a chevron for which no further partition could be found, i.e., the gray one holding six ac-
tivities. Recall Section 8.2.3, explaining this phenomenon for high-level variants in detail.
The low-level variant below can visualize all relations among the activities representing
time intervals and time points.

The primary focus on high-level variants in the variant explorer stems from the fact that
Cortado is primarily an interactive process discovery tool. The detail level of low-level
variants is too high, so low-level variants’ information often cannot be represented directly
in process models. For instance, process model formalisms do not distinguish between
activities being executed instantly, i.e., representing a time point, and activities being
executed over time, i.e., representing a time interval. If separate entities in the process
model represent the start and completion of activities, for example, two transitions in
a Petri net represent the start and completion of an activity, low-level variants may be
interesting for incremental process discovery. However, Cortado currently only considers
low-level variants as a more detailed view of high-level variants.

2Note that the used process model is not visible in Figure 10.4.

279

10

10

Chapter 10. Tool Support: Cortado

Variant Explorer
Sub-

No. Info) Variant (73
Variants

Standard View

v Cluster 1 -
(2 of 73 variants | 12 of 100 traces)

Performance View

3
2
s
@
&
=]
E
e
=
<1
Q

v Cluster 2 1A~
(3 of 73 variants | 12 of 100 traces)

1 1

Figure 10.6: Variant explorer showing clusters using agglomerative clustering (max. edit
distance: 3) on a BPI Ch. 2017 log [229] sample

Variant Clustering

To cope with vast amounts of variants, Cortado offers clustering techniques for high-level
variants. Two approaches are implemented in Cortado: label vector clustering and ag-
glomerative edit distance clustering. The label vector clustering technique assumes a user-
defined number of clusters. The high-level variants are transformed into vectors where
each entry represents the occurrence of an activity label in the high-level variant. Next,
these vector representations are used to construct clusters using the k-means clustering
algorithm implemented in the machine learning library scikit-learn [84]. Agglomerative
edit distance clustering uses the tree representation of high-level variants. Recall that
each high-level variant can be represented as a tree; for example, consider Figure 8.4 on
page 226. Cortado uses agglomerative clustering implemented in the machine learning
library scikit-learn [84] to create the clusters. In this context, users must specify the
maximum edit distance of the variants within a cluster. Figure 10.6 shows Cortado’s
variant explorer with applied clustering. In the screenshot, agglomerative clustering is
applied to a sample of the event log BPT Ch. 2017 [229]. The first shown cluster consists
of two high-level variants, while the second cluster contains three. In short, clustering
high-level variants facilitates handling large amounts of variants.

280

10.2. Variant Handling

‘Variant Explorer

e

Sub-
Variants

Variant (8

H
s
B nfo
k=]
|
(2]

Performance View
@

(a) Variant explorer in fragment selection mode; by clicking on chevrons, users can extract indi-
vidual fragments (an infix in this case) from variants which are then displayed as fragments
in the explorer together with complete variants

‘Variant Explorer

e

Sub-

) Variant (2
Variants

Standard View

Performance View

E
&2
s

]

2

=

5]

E
=]

=

S
(&)

(b) Variant explorer displaying the extracted variant fragment (cf. Figure 10.7a) along with other
variants in a shared pool of complete variants derived from the imported event log

Figure 10.7: Extracting variant fragments from complete variants in Cortado

Variant Fragment Extraction

Variant fragments are essential for incremental process discovery with fragments, cf.
Chapter 6. To this end, Cortado allows to extract fragments from variants as exemplified
in Figure 10.7. Figure 10.7a shows the variant explorer in fragment selection mode. This
mode allows users to select fragments from a complete variant. In the depicted example,
the large chevron is completely selected along with the two preceding activities. Note
that Cortado only allows users to cut connected fragments. The selected fragment (cf.
Figure 10.7a) can be added to the overall pool of variants. Upon extracting, the fragment
is displayed in the variant explorer, i.e., a shared pool of variants originating from the
imported event log and user-extracted variant fragments, cf. Figure 10.7b.

281

10

10

Chapter 10. Tool Support: Cortado

Variant Explorer

7]

Sub- B
Info R ELET
Variants

Standard View

Performance View

*W_Completeren aanvraag’ {
. *, "O_SELECTED', 'O_CREATED', °

z
g
H
Yy
=
§
E
g
£
s
(&}

"O_SELECTED"

— Y Execute Query Remove query filter Delete variants by query ~

Figure 10.8: Variant explorer showing only variants satisfying the specified query

10.2.2. Variant Querying

Most event logs contain many variants, where the visual approach of the variant explorer
reaches its limits, as it is challenging for users to find variants from a pool of thousands.
To this end, Cortado implements the query language proposed in Chapter 9. The query
language allows users to specify control-flow constraints that variants must satisfy. Fig-
ure 10.8 shows the variant explorer with an executed user-specified query executed on
the imported event log; thus, all visible variants satisfy the specified query.

The query shown in Figure 10.8 specifies that activity ‘W __Completeren aanvraag’
is parallel to: ‘A ACCEPTED’, ‘A FINALIZED’, ‘O_SELECTED’, ‘O _CREATED’,
and ‘O_ SENT’. Moreover, there exists activities ‘A FINALIZED’ and ‘O SELECTED’,
as well as ‘A ACCEPTED’ and ‘A FINALIZED’ in parallel each. All variants visible
in Figure 10.8 satisfy the provided query. In detail, the large chevron in the middle of
these variants that contains activity ‘W __Completeren aanvraag’ in parallel to a sequence
of various other activities is the reason why these variants satisfy the specified query.

282

10.2. Variant Handling

Files Settings Editors

» » » » =] °®

A_ACCEPTED A_ACTIVATED A_APPROVED A_FINALIZED A_PARTLYSUB.. A _PREACCEPTED

VNNECI RISy A SUBMITTED O_CANCELLED O_CREATED O_DECLINED O_SELECTED O_SENT
W_Afhandele. W _Beoordele.. RUR&IHIEE S 'W_Nabellen.. W_Valideren..

X
g
-
5

A_ACTIVATED » O CANCELLED
A_APPROVED NCEM]

W_Beoordelen fraude

Figure 10.9: Screenshot of Cortado’s variant modeler showing a variant prefix

10.2.3. Variant Modeler

During incremental process discovery, users may want to incorporate process behavior
that has not been recorded in the event data. This is where Cortado’s variant modeler
comes in (cf. Figure 10.9), enabling users to model variants and variant fragments. In
the screenshot of the variant modeler, users can access all activities from the imported
event log, which are represented as chevrons at the top of the screen. The modeled
variant fragment in the screenshot is a prefix since the variant ends with three gray dots
that indicate that there may be further, unspecified process behavior. Once users have
finished modeling their variants/variant fragments, they can add them to the pool, where
they will be displayed and can be used within incremental process discovery.

10.2.4. Variant Frequent Pattern Mining

Next to manual variant fragment extraction (cf. Section 10.2.1) and variant/variant frag-
ment modeling (cf. Section 10.2.3), Cortado features frequent pattern mining for vari-
ants. Figure 10.10 depicts a screenshot of the frequent pattern miner. On the left, diverse
settings can be specified and on the right, the frequent variant patterns, i.e., variant
fragments comprising variant prefixes, infixes, and suffixes, are displayed similar like in
the variant explorer. For each frequent variant fragment, we can calculate conformance
checking statistics, cf. red and green colored icons.? Further, we see per frequent pattern,
its support value and whether it is closed or maximal.

The frequent variant pattern approach implemented in Cortado exploits the inherent
tree structure of variants; for instance, recall Figure 8.4 on page 226. Therefore, we can
reduce the problem of finding frequent patterns in variants to frequent subtree mining
over labeled rooted ordered trees [159]. Cortado implements three algorithms to mine

3To determine if a process model supports a given variant fragment, we compute all potential sequen-
tializations of the given variant fragment and use alignments for trace fragments as introduced in
Chapter 4.

1A frequent pattern is closed if there does not exist a super-pattern with the same support. A frequent
pattern is maximal if there exists no super pattern that is frequent, too.

283

10

10

Chapter 10. Tool Support: Cortado

conformance check

Support Counting Strategy: . .
Fitting Support Type Variant
Trace Transaction v Tl [V

Algorithm:

Valid Tree Miner === A PARTLYSUB..

Maximum Size: @ 3,429 v v LLLE A SUBMITTED VANPGRS0

20

Variant Minerx

GOSUEYINIEE A PARTLYSUB. A PREACCEPTED
Support:
25 O _CREATED O SENT

0% 25% W_Completeren aanvraag

L

3000 of 11,998 3.25 eee A_ACCEPTED

A_FINALIZED

O_SELECTED
B rold Loops A FINALIZED
3,29 eoe O_CREATED (L)
O _SELECTED

B Mine prefixes and suffixes

A FINALIZED

O_CREATED O_SENT
O_SELECTED

Figure 10.10: Screenshot of Cortado’s frequent pattern mining feature

frequent patterns that are eligible in the settings section on the left, cf. Figure 10.10.
The default algorithm is the Valid Tree Miner [143]. This algorithm mines frequent
infix subtrees that preserve sequential completeness, i.e., no activity within a sequence
construct is skipped. Besides the algorithm, users must specify the support counting
strategy. Two dimensions exist: root occurrence vs. transaction and trace vs. variant,
resulting in four support counting strategies. Further, users must set a maximum pattern
size and a support threshold.

Upon mining frequent variant patterns, users can explore and filter them based on size,
support, closed/maximal properties, fragment type, and activities contained. Moreover,
users can add frequent variant patterns, i.e., variant fragments, to the pool of variants and
variant fragments. Once these variant fragments are added to the pool, they are displayed
along with other variants and variant fragments as exemplified in Figure 10.7b. Therefore,
all functions of the variant explorer are also available for these variant fragments.

10.2.5. Variant Sequentialization

The variant sequentialization feature allows users to ingest domain knowledge into vari-
ants. Recall the conceptual overview of domain knowledge utilization in the context of
process discovery shown in Figure 2.1 (page 20). Variant sequentialization is an event
data preprocessing feature that utilizes a priori domain knowledge to modify variants.
Recall time granularity modification for variants as discussed in Section 8.5 (page 236
ff.). In short, moving to a coarser bottom granularity generally leads to more parallel
behavior in variants; less sequentially oriented activities remain. The reasons for ad-
justing the bottom granularity lie in the questions that process analysts try to answer.

284

10.2. Variant Handling

Whether an activity starts a few seconds before another may be irrelevant for analyzing
many processes. It may even be a hindrance, as these few seconds between activities
would cause the variant to show a sequential alignment between these activities, which
are only a few seconds apart. Instead, a process analyst, for example, is more interested
in analyzing the process daily, i.e., activities performed on the same day are considered
parallel.

Variant Explorer

e

Inf Sub- T
nfo ariant (4659 TR
Variants Milliseconds

Standard View

Seconds
A_ACCEPTED Minutes
A_FINALIZED

A_PARTLYSUB..
A_PREACCEPTED O CANCELLED Viexith w
O_SENT

H
]
>
8
H
E
2
5
&

Conformance View

A _PARTLYSUB..
A PREACCEPTED

W_Completer..
A_SUBMITTED W_Completer..

W_Afhandele..

Figure 10.11: Variant explorer showing variants when the bottom granularity is set to
hours instead of milliseconds (default bottom granularity) for the event log
BPI Ch. 2012 [22§]

As introduced in Section 8.5, Time Granularity Modifiers (TGMs) can be applied to
modify the bottom granularity. Figure 10.11 depicts a screenshot of the variant explorer
showing variants where the bottom granularity was set to hours instead of milliseconds,
cf. Figure 10.4 (page 278). As exemplified in Figure 10.11 and discussed in Section 8.5,
coarser bottom granularities generally lead to more parallel activities. Moreover, adjust-
ing the temporal granularity might be necessary to adequately answer questions about the
process being analyzed in many scenarios. Nevertheless, when switching to coarser time
granularity, sequential dependencies between activities worth preserving may be lost, and
these activities may become parallel. Therefore, Cortado offers the variant sequentializer
functionality that allows the application of sequentialization rules consisting of source and
target patterns. For instance, consider Figure 10.12 showing the source/target pattern
modeler. In the example, the source pattern specifies that activities A ACCEPTED
and A FINALIZED are in parallel. Moreover, further activities might be in parallel, as
indicated by the chevron labeled with three dots. The source pattern specifies that A -
ACCEPTED should occur before A FINALIZED. Potential other activities, indicated
by the chevron labeled with three dots, are executed in parallel to the sequence consisting
of A ACCEPTED and A FINALIZED. Upon applying this sequentialization rule, all
variants in the variant pool are checked for occurences of the source pattern. If the source

285

10

10

Chapter 10. Tool Support: Cortado

pattern occurs, the corresponding occurrence in the variant/variant fragment is replaced
by the target pattern. For instance, recall the variants shown in Figure 10.11. The first
shown variant contains the source pattern specified in Figure 10.12 while the second vari-
ant does not. After applying the sequentialization rule consisting of the source/target
pattern shown in Figure 10.12, the first variant changes as depicted in Figure 10.13.

Source Pattern

“« I+ = W remove selected chevron(s) remove current variant

— A ACCEPTED A ACTIVATED A FINALIZED
A PARTLYSUB. A PREACCEPTED) A REGISTERED O_CANCELLED
O DECLINED O SENT W Afhandele. W _Beoordele-.

W _Nabellen..

A_ACCEPTED

A_FINALIZED

Target Pattern

€| > + s A < remove current variant

A _ACCEPTED A FINALIZED

Figure 10.12: Screenshot of Cortado’s sequentializer functionality showing the source/-
target pattern modeler

In summary, Cortado’s variant sequentialization feature enables the incorporation of
domain knowledge into variants that are eventually used in IPD. Variant sequentialization
can be used to restore or create sequential order between activities running in parallel.
Especially in combination with the option to change the time granularity (especially the
change to coarse time granularity), variant sequentialization can be a helpful feature.

286

10.3. Incremental Process Discovery

O_CREATED
A_PARTLYSUB.. O_SELECTED
A_PREACCEPTED O_SENT O_CANCELLED

A_SUBMITTED A _ACCEPTED A _FINALIZED
W_Completeren aanvraag

Performance View

A PARTLYSUB..

H
L
=
8
e
&
E
2
-
5
(5]

A PREACCEPTED

W_Completer..
A_SUBMITTED W_Completer..

W_Afhandele..

Figure 10.13: The two variants shown in Figure 10.11 after applying the source/target
pattern rule shown in Figure 10.12; the specified source/target pattern rule
applies to the first variant but not to the second one because the second
one does not contain the source pattern, cf. Figure 10.11

10.3. Incremental Process Discovery

This section introduces the incremental process discovery features of Cortado. Sec-
tion 10.3.1 introduces Cortado’s process tree editor and BPMN visualizer. Subsequently,
Section 10.3.2 introduces the IPD features of Cortado from a user’s perspective.

10.3.1. Visualizing & Editing Process Models

The process model editor is an integral component of Cortado’s UI. Upon starting Cor-
tado, the process model editor is by default located in the upper part, cf. Figure 10.2
(page 275). The core concept of Cortado is that users focus on a central process tree,
which is presented in the process tree editor. The editor allows users to manipulate the
tree at any time, cf. Figure 10.14a. Alternatively to the process tree editor, Cortado
allows visualizing the process tree as a BPMN model, cf. Figure 10.14b. Moreover, recall
freezing-enabled IPD, cf. Chapter 7. Users can freeze or unfreeze subtrees within the
process tree editor and the BPMN visualizer. For instance, the right subtree of the pro-
cess tree shown in Figure 10.14a is currently frozen. The process model editor indicates
frozen subtrees with blue-colored vertices.

10.3.2. Adding Behavior to a Process Model

Cortado implements the LCA-IPDA proposed in Chapter 5 along with the extension for
trace/variant fragments (cf. Chapter 6) and the extension to freeze subtrees (cf. Chap-
ter 7) in an integrative fashion. From a users perspective, incremental process discovery
boils down to selecting variants/variant fragments from the variant explorer and press-
ing the corresponding button for adding unsupported, selected process behavior to the
model.

287

10

10

Chapter 10. Tool Support: Cortado

> o 0 m <« A B X M

t | PALACCEPTED | FA'ACTIVAT (un)freeze entire subtree to prevent them from being changed when | | | A PARTLYSUBMITT. ..
adding variants

A PREACCEPTED | A REGISTERED | [AWSUEENY (Ami=b) [oN@.\\[@=NiZvmN O CREATED QgeNs/Zell\[Sv@l O SELECTED
O_SENT W_Afhandelen leads | W _Beoordelen frau... W _Completeren aa... W_Nabellen incom...

W_Valideren aanvr...

Process Tree Editor

->
A_PARTLYSUBMITTED A_PREACCEPTED A A

AACCEPTED. | OSENT | [olSiai) ((5 - ACANCELLED | | O_CANCELLED | | ()

'W_Completeren aanvr: A_FINALIZED O_CREATED 'W_Nabellen offertes

Q E pert M

(a) Process tree editor showing a process tree with frozen subtree (indicated by the blue colored
nodes)

clear selection (un)freeze subtrees

ACCEPTED + A_ACCEPTED A_CANCELLED

O_SENT O_CANCELLED

O_SELECTED X W_Nabellen offertes

BPMN Editor 3

X W_Completeren aanvra... X

A_FINALIZED O_CREATED

(b) BPMN visualizer showing the process tree depicted in Figure 10.14a

Figure 10.14: Cortado’s process tree editor and BPMN visualizier

Recall that the IPDAs proposed in Part II require an initial process tree. In Cortado,
users have three opportunities to obtain an initial tree. First, an initial model saved
as a process tree can be imported into Cortado.” Second, users can manually create
an initial process tree using the editor, cf. Section 10.3.1. Third, users can discover an
initial process tree from selected variants using the Inductive Miner algorithm, i.e., a

5Section 10.5 presents data exchange formats including process model exchange formats supported by
Cortado.

288

10.3. Incremental Process Discovery

conventional process discovery algorithm.®

Upon having a process tree available, users can utilize the incremental process discovery
feature in Cortado. To this end, users select variants/variant fragments from the variant
explorer. For instance, the two variants in Figure 10.4 (page 278) are selected by a user.
Note that the first variant is supported by the current process model (indicated by the
green check mark icon left to the variant); however, the second variant is not (indicated
by the red icon). Upon clicking the button labeled with the plus icon, Cortado’s IPDA
is invoked, and the process model is updated. Variants/variant fragments selected and
supported by the current process model are considered previously added process behavior.
Thus, according to the IPD framework, these variants remain supported by the resulting
process model. Variants/variant fragments selected but not supported by the current
process model are considered process behavior to be added next. Furthermore, users can
additionally freeze subtrees in the process tree before invoking the IPDA, as exemplified
in Figure 10.14.

Recall the formal specifications of the IPDAs presented in Part 11, cf. Figures 5.1, 6.2
and 7.2 on pages 110, 159 and 180. All proposed frameworks and IPDAs assume traces
consisting of totally ordered activities, i.e., sequences of activities (cf. Definition 3.20 on
page 61). However, Cortado uses high-level variants consisting of partially ordered ac-
tivities. To this end, Cortado generates in its backend all potential sequentializations of
the selected variants/variant fragments to obtain traces/trace fragments. For example,
consider Figure 10.15 showing two high-level variants and a specification of their corre-
sponding set of all potential sequentializations each. The first depicted variant results in
16 sequentializations, cf. Figure 10.15a. Note that when calculating sequentializations,
all potential sequential orderings of activities parallel to others are considered. Thus, the
16 sequentializations result from two options to order activities RIP and RIT, two to
order LTV and PI, and four options to place SRA; hence, 2 x 2 x4 = 16. Similarly, the
second variant is sequentialized, cf. Figure 10.15b. Note that Cortado treats the chevron
containing the activities CA, DC, LTV, PI, and SRA as if all these activities were in
parallel. Thus, the second variant (cf. Figure 10.15b) yields 240 sequentializations in
total.

The described sequentializations are performed in the backend of Cortado. Subse-
quently, all generated sequentializations are added incrementally to the process model.
From the user’s point of view, these intermediate executions of the IPDA are not visible;
after all sequentializations have been incrementally added, the process model is updated
in the process model editor. Suppose the user has selected multiple variants in the variant
explorer that the current process model does not support. In that case, each of these
variants will be sequentialized, their sequentialized traces will be incrementally added by
the IPDA, and finally, Cortado updates the process model in the process model editor.

SNote that variant fragments are not supported for initial process model discovery because the Inductive
Miner, as well as most other conventional process discovery approaches, do not support variant
fragments.

289

10

Chapter 10. Tool Support: Cortado

SRA

{(CRR,DC)} o {(RIP, RIT), (RIT, RIP)} o {(DC)} o
({«cA, LTV, PI),(CA, PI,LTV)} o {{SRA)}) o {(DM)} =

{ o1=(CRR, DC, RIP, RIT, DC, SRA, CA, LTV, PI, DM)
(CRR, DC, RIP, RIT, DC, CA, SRA, LTV, PI, DM)
(CRR, DC, RIP, RIT, DC, CA, LTV, SRA, PI, DM)
(CRR, DC, RIP, RIT, DC, CA, LTV, PI, SRA, DM)

o5 = (CRR, DC, RIP, RIT, DC, SRA, CA, PI, LTV, DM)

— (CRR, DC, RIP, RIT, DC, CA, SRA, PI, LTV, DM)
— (CRR, DC, RIP, RIT, DC, CA, PI, SRA, LTV, DM)
(CRR, DC, RIP, RIT, DC, CA, PI, LTV, SRA, DM)

o9 = (CRR, DC, RIT, RIP, DC, SRA, CA, LTV, PI, DM)

010 = (CRR, DC, RIT, RIP, DC, CA, SRA, LTV, PI, DM)

o11)

o12

Q9 9
0
I

(CRR, DC, RIT, RIP, DC, CA, LTV, SRA, PI, DM),
(CRR, DC, RIT, RIP, DC, CA, LTV, PI, SRA, DM),
(CRR, DC, RIT, RIP, DC, SRA, CA, PI, LTV, DM),
(CRR, DC, RIT, RIP, DC, CA, SRA, PI, LTV, DM)
015 = (CRR, DC, RIT, RIP, DC, CA, PI, SRA, LTV, DM)
016 = (CRR, DC, RIT, RIP, DC, CA, PI, LTV, SRA, DM) }

(a) Specifying all potential 16 sequentializations derived from the depicted high-level variant (cf.
Figure 8.4 on page 226); the variant’s corresponding tree structure is depicted in Figure 8.5
on page 227

CA

‘ DC

Lrv
SRA

{(CRR,DC)} o {(RIP, RIT), (RIT, RIP)} o {(DC)} o
((CA) o (DC) o (LTV) o (PI) o (SRA)) o {(DM)}

(b) Specifying all 2% 5! = 240 potential sequentializations (2 options for arranging RIP and RIT
combined with 5! options to arrange the activities CA, DC, LTV, PI, and SRA) derived from
the high-level variant (cf. Figure 8.7 on page 229); the variant’s corresponding tree structure
is depicted in Figure 8.8 on page 229

Figure 10.15: Examples for the generation of all potential sequentializations of high-level
variants

290

10.4. Temporal Performance Analysis

10.4. Temporal Performance Analysis

Analyzing the temporal performance of processes is crucial for many practical applica-
tions, such as bottleneck identification within processes. This section presents Cortado’s
temporal performance analysis features that can be classified into model-independent
(Section 10.4.2) and model dependent performance analysis (Section 10.4.3). Both ap-
proaches implemented in Cortado advance the state-of-the-art of temporal performance
analysis.

10.4.1. Overview

Performance analysis is about gaining temporal knowledge about the process under con-
sideration. For this purpose, the timestamps, which are an essential part of event data,
are analyzed. Performance aspects are critical in process mining analysis as temporal op-
timizations of processes, for example, reduced cycle times and bottleneck detection, are of
great importance to process owners. Generally, two types of performance analysis can be
distinguished: model-based and model-independent performance analysis. Figure 10.16
provides a high-level overview of these two types.

Temporal performance inisghts, for
instance, process execution statistics
such as cycle times, waiting/service

times for individual activities
A

Model-Independent
Performance Analysis
deriving temproal performance in-
sights solely from the event log

Event Log Modelqu,sed Performance An.alysis Process
= — Enriching a process model with — " dl
= temporal performance insights rode

~
Enhanced process model
with time perspective

Figure 10.16: Overview of two types of performance analysis, i.e., model-independent and
model-based temporal performance analysis

Model-independent performance analysis purely uses the recorded process behavior
from the event log to provide temporal performance insights. Such insights comprise
statistics on: process execution cycle times, execution time of individual activities, wait-
ing, and idle times. To this end, standard statistical methods are often used. Moreover,
timeline charts, cf. [211, Figure 9.12 and 9.13] and [78, Figure 11.16], and similar plot
types are often used to visualize temporal behavior of individual process executions.

291

10

10

Chapter 10. Tool Support: Cortado

Model-based performance analysis enhances process models with performance statistics
derived from the event log. Enriching process models with performance indicators is also
referred to as time perspective [55]. Note that we have focused primarily on the control
flow perspective so far. In order to provide performance statistics for a given process
model, the recorded process executions from the event log must be aligned with the
model, i.e., the process executions recorded in the event log must be replayed on the
process model. Thus, model-based performance analysis techniques are tightly coupled
with conformance checking techniques, especially with alignments [226]. Once process
executions from the event log are linked with activities in the model, the process model
can be enriched with performance indicators, for instance, showing which activities in
the process model have high cycle times. In [6], the author describes how we can derive
from alignments model-based temporal performance insights, i.e., enriching a model with
temporal statistics.

10.4.2. Model-Independent Performance Analysis

Variant Explorer Variant Performance

A_PREACCEPTED A_DECLINED
RTLYSUB.) J }) W_Completer.
W_Afhandele.. W_Completer..
A_DECLINED
RTLYSUB.. AfPREACCEPTED W _Completer.. ,
W_Completer..
3d, 9h, 39m
A_CANCELLED
RILYSUB.) JA_PREACCEPTED) })} T
W_Completer..
1w, 3d, 5h

) A_PREACCEPTED))) A VGIGLALoN
W_Afhandele.. W,

TR

Color Map

Service Time Wiaiting Time

Standard View

Performance View

2
L
S
i
5]
E
2
-
5
3]

Figure 10.17: Performance view of the variant explorer; service and waiting time infor-
mation is projected onto chevrons

Cortado offers model-independent performance analysis for variants. As presented be-
fore, variants are an essential concept within Cortado. Model-independent performance
analysis allows projecting performance statistics onto variants independently of a process
model. Recall that variants, as visualized in Cortado, do not contain temporal informa-
tion; the variant visualization solely focuses on ordering relations among activities. For
example, recall the variant shown in Figure 10.15a on page 290. Although the chevrons

292

10.4. Temporal Performance Analysis

representing activities RIP and RIT have equal widths, this does not imply that their
execution time is identical.

Variants primarily show ordering information between activities. To additionally visu-
alize temporal information, Cortado uses a color projection. Consider Figure 10.17 that
shows a screenshot of Cortado’s variant explorer in performance view. In the screenshot,
Cortado projects service times onto chevrons representing activities, i.e., chevrons with
process activity labels, using a blue color scale. Further, Cortado adds empty chevrons
between any two chevrons to indicate waiting times as shown in Figure 10.17. Between
two chevrons representing activities, the red color scale indicates the waiting time between
these activities. Note that the statistical measures, i.e., minimum, maximum, mean, and
standard deviation, can be chosen freely by users. Further, users can select variants or
parts, i.e., any (nested) chevron, to see detailed performance statistics for the selection.

10.4.3. Model-Based Performance Analysis

This section on model-based performance analysis is largely based on [182]. Next to
model-independent performance analysis that solely considers the event data, model-
based performance analysis requires a process model, tries to replay the recorded process
behavior from the event log on the model, and eventually derives from the replay perfor-
mance statistics for the model. Compared to existing model-based performance analysis
approaches [6, 7], the approach implemented in Cortado focuses solely on process trees.
Focusing on process trees makes it possible to calculate individual performance indicators
for each subtree.

Defining Performance Indicators

This section introduces four Performance Indicators (PIs) for process trees. Consider
Figure 10.18 presenting an example to illustrate the four PIs. Figure 10.18a depicts the
process tree Ag.

Figure 10.18b illustrates a case at the top and shows below the four PIs for each subtree
including the entire tree Ag. Subsequently, we present and exemplify the four Pls.

e The Service Time (ST) specifies how long an individual activity is executed. For
subtrees that contain several leaf vertices, i.e., several activities, the service time
indicates the union of the service times of their leaf vertices. The ST of a leaf vertex
corresponds to the recorded time of the aligned activity from the case. Note that
leaf vertices labeled 7 are executed instantly and thus do not cause any ST. For
example, the ST of the subtree A4 is three time units because the first activity a
from the given case is replayed on leaf vertex vy 1.

e The Waiting Time (WT) indicates how much time has passed between the earliest
possible execution of a subtree and the actual execution according to the temporal
information from the case. The WT of the entire process tree is always zero, as it is
instantly activated when the first activity from the case is executed. Likewise, leaf
vertices labeled 7 are assumed to be executed instantly and thus do not cause any
WT. The WT of an inner vertex refers to the time that passes from its activation
to the activation of its first executed leaf node. For example, the waiting time of

293

10

Chapter 10. Tool Support: Cortado

,,,,,,,,,,,,,

L,Q,)4,'1,,A L,,li4,'2,,1 I L,I,}4,'3,,1 L,’l,]4,‘4,,1
(a) Process tree Ag; for simplicity, we label each subtree A1.1 = A (vi1), ..., Aaa = Dag(vaa)
a b C C e
- |l e E
d d b
— — -
Ay
Ago [—
Ays [— [—
Asg [—— —]
As 5 [E—— Emr——]
Ay 4 s
ST 4 > []
T 3.1 [————
Aso [o] s——
[CT]| Asa ﬁ : — ——
Ay ————————————r e e e
A1.2 [...... —
Ap | ———rrr e e ————————————————— w———]
10 |IIII|IIII|IIII|IIllllllllllllllllllllll)
0 5 10 15 20 25 30 35 time
(b) Cycle time (CT), service time (ST), , and idle time (IT) based on a fitting

case for process tree Ao (partly adapted from [182, Figure 4])

Figure 10.18: Example of Pls for a given process tree and case

294

10.4. Temporal Performance Analysis

subtree A1 o is seven since after the closing of the previous subtree A; ; at time 28,
subtree A; o is opened at time 35.

e The Idle Time (IT) indicates for subtrees the time between activation and closing
during which no leaf vertex is executed. Note that leaf vertices’ IT always equals
zero, as the execution of leaf vertices is non-interruptible. For example, the IT of
the subtree A3 1 is three because three time units pass after the execution of the
leaf vertex vs.1 and before the execution of the next vertex v4o.

e The Cycle Time (CT) is the sum of a subtree’s ST, WT, and IT. For leaf vertices,
the cycle time corresponds to the sum of WT and ST because leaf vertices’ IT is
always zero. As an example, the CT of subtree A3 is equal to ten, i.e., an overall
ST of seven plus an IT of three.

In summary, four PIs can be calculated for a process tree and any of its subtrees, as
exemplified in Figure 10.18.

Calculating Performance Indicators

This section elaborates on Cortado’s implementation for calculating the above-presented
PIs for a given process tree and case. First, Cortado converts the given process tree into a
WF-net.” Next, each visible transition of the WF-net is split into two, i.e., one transition
representing the start, the other the completion of the respective activity. Figure 10.19
is illustrating the described splitting of visible transitions. Figure 10.19a depicts a visible
transition ¢; labeled a that has n input places, i.e., p1,...,pn, and m output places, i.e.,
Py, ..., D), When splitting ¢, two transitions ¢; ; representing the start of activity a and
t1,c representing the completion of a are obtained, cf. Figure 10.19b. The input places
of t; are the input places of t; 5, while the output places of ¢; are the output places of
t1,c. Further, a new place py is added to connect ¢; , and #1 .. The described splitting
is applied to any visible transition. Figure 10.20 depicts the WF-net with split visible
transitions representing process tree Ag (cf. Figure 10.18a). We also color-code parts of
the WF-net that represent specific subtrees of Ay, cf. Figure 10.18a.

Likewise, any activity in a case is split into two, such that all events represent time
points. Recall the case depicted at the top of Figure 10.18b. The split trace considered
for temporal performance analysis is depicted below. Note that the fourth and third
last activities, i.e., (e, ») and (a,»), could also occur in reverse order since both happen
concurrently; however, for the sake of calculating PIs the order is irrelevant.

<(a’3 ’)? (a7 .)7 (b7 ')7 (b? .)? (C7 >)7 (d7 >)7 (C? .)7 (d’ .)? (C7 >)7 (C? .)7 (d’ ’)? (d’ .)?
(e,%), (a,»), (c, W), (o, W))

Next, optimal alignments for the traces, which represent the cases from the imported
event log sequentialized, are calculated. These alignments allow us to replay the traces on
the model. During replay, we monitor the timing of the execution of each transition based

"Recall Table 3.2 on page 67 showing the conversion of process trees into WF-nets.

295

10

Chapter 10. Tool Support: Cortado

no.
T
Yy

(a) Before splitting: a visible (b) After splitting: visible transition ¢; (Figure 10.19a) is
transition with n input places split into two transitions ¢1,s and ti,c; further a new
and m output places place po is added to connect t1,s and ;¢

Figure 10.19: Hlustration of splitting visible transitions into two in a WF-net (partly
adapted from [182, Figure 6])

10

Figure 10.20: WF-net Ny representing process tree Ag (cf. Figure 10.18a) with split visible
transitions; each subtree down to individual leaf vertices of A is highlighted
in color

296

10.4. Temporal Performance Analysis

on the timing information from the trace. Finally, the timing information associated with
the transitions allows us to calculate the defined Pls.

The reliability of model-based performance analysis depends on how well the used
process tree represents reality [211]. Thus, if there is little similarity between the traces
and the model, the significance of performance analysis is low because many temporal
information from the trace cannot be used for calculating PIs of the process model.
Furthermore, since there can be multiple optimal alignments for a given combination of a
trace and a process model, and only one optimal alignment is used for each combination,
the significance of the performance may be affected.®

Table 10.1.: Overview of calculable PIs per alignment combination representing the start
and completion of an activity (partly adapted from [182, Table 2])

Alignment move . . PI
. . Designation
combination WT ST IT CT
h o
Sync FOROUS move ol start Perfect activity instance v v v v
& completion
Synchronous move on st.art Partial start v B v 7
& model move on completion
Model move on start & syn-
chronous move on comple- Partial complete vb - e oy

tion

Model move on start & com- Missing activity instance as
pletion per model

Log moves on start & com- Missing activity instance as
pletion per log

a A partial start cannot be used for the IT of the currently considered activity instance since activities
are atomic, i.e., their execution cannot be interrupted. However, the information on the start can be
potentially used to determine the IT for subtrees containing the respective activity, i.e., the synchronous
move on the activity’s start could be the end of an idle time period.

b A partial complete cannot be used for calculating the WT of the actual activity instance. However,
the completion information can be used to determine the WT for a subsequently executed activity and
subtrees containing this subsequently executed activity.

¢ A partial complete cannot be used for the IT of the currently considered activity instance since activities
are atomic, i.e., their execution cannot be interrupted. However, the information on the complete can be
potentially used to determine the IT for subtrees containing the respective activity, i.e., the synchronous
move on the activity’s complete could be the start of an idle time period.

d A partial complete cannot be used for the CT of the considered activity; however, the completion
information can be potentially used to determine the CT for subtrees containing the considered activity.

8Note that the described issue of multiple optimal alignments may also apply to traces that completely
fit the given process model. However, only in case a process model contains an activity multiple
times, there might be a chance that the calculated Pls are to a certain degree random, i.e., depending
on the optimal alignment used in case multiple optimal ones exist.

297

10

10

Chapter 10. Tool Support: Cortado

Note that the trace used in the example shown in Figure 10.18 (page 294) is fully
supported by process tree Ag. However, it is generally possible to also incorporate non-
fitting traces for model-based performance analysis, i.e., traces that cannot be entirely
replayed on a process model, cf. [6, Chapter 9]. Cortado implements the ideas presented
in [6] and adapts them to the calculation of PIs for process trees. Table 10.1 shows an
overview of five alignment move combinations representing the replay of an individual
activity split into start and completion from a given trace. If an activity’s start and
completion are aligned via a synchronous move, we refer to it as a perfect instance.
Perfect instances can be used for calculating all four PIs. If we observe only a synchronous
move on the start but a model move on an activity’s completion, we refer to it as a partial
start. For partial starts, we can compute WTs and ITs because we know when an activity
started; however, partial starts cannot be used to calculate STs and CTs. Analogously, if
we observe a synchronous move on the completion but a model move on an activity’s start,
we refer to this as a partial complete. A partial complete may be used in certain situations
for determining WTs, I'Ts, and CTs of subtrees containing the respective activity. For
instance, if the partial complete, i.e., the synchronous move on an activity’s completion,
is the last activity of a subtree, we know that this subtree has a cycle time until the time
point of the completion of the activity. Finally, suppose we have two model moves or two
log moves on both the start and completion of an activity. In that case, we cannot derive
any temporal information from these alignment moves to calculate Pls.

Although non-fitting cases can be used for performance analysis, they might lead to
unreliable PI values. Figure 10.21 presents an example of a non-fitting case (cf. Fig-
ure 10.21a); its sequentialization with split activities is not supported by WF-net Ny (cf.
Figure 10.20 on page 296). Figure 10.21b shows three optimal alignments for the trace
shown in Figure 10.21a and Ny. Note that the shown alignments are incomplete; for
the sake of simplicity, invisible model moves are not displayed. Below each synchronous
and log move, the time information derived from the provided case is displayed (cf. Fig-
ure 10.21a).” The first alignment contains a perfect activity instance for activity a and
e. Moreover, the alignment contains a partial start and a partial complete for activity b.
Note that the partial start and the partial completion of the activity b relate to different
transition pairs in Ny or leaf vertices in Ag. Thus, the temporal information of activity
b from the case is split into two different instances of activity b in Ny, i.e., transitions
ts.s/ts c representing subtree A4 2 labeled b and transitions t19 /%19 s representing subtree
Ao 4 labeled b. For calculating the ST of the entire tree, only the two perfect instances
can be utilized (cf. Table 10.1). Hence, the CT of tree Ag using the first alignment is
calculated as follows (5 — 0) + (21 — 19) = 7. The second depicted alignment contains
three perfect activity instances of activities a, ¢, and e. Computing the CT of Ay results
in (5—0)+(8—7)4 (21 — 19) = 8. Likewise, the third alignment contains three perfect
activity instances; however, for the activities a, b, and e. Computing the CT of Ay using
the third alignment results in (5 — 0) + (21 — 6) = 20.!° In conclusion, each depicted
alignment leads to a different CT for Ag. The example demonstrates that non-fitting
traces may lead to unreliable performance analysis results.

9Note that model moves originate from missing behavior not recorded in the event data; thus, no
temporal information for model moves exists.

10Note that the time intervals of the two perfect activity instances of b and e overlap; thus, we calculate
the ST of Ag as follows (5 — 0) + (maz{20,21} — min{6,19}) = (5 — 0) + (21 — 6) = 20.

298

10.4. Temporal Performance Analysis

— H =
[]
L 1
Case:lllllllllllllllllllllllll)

0 5 10 15 20 time
Trace with split activities: ((a,»), (a, W), (b,»), (c,»), (c, W), (c,»), (b, M), (c, W))

(a) A non-fitting case and its sequential representation, used for alignment calculation

Perfect activity Perfect activity instance
instance of a of e
4 4 4
(a,») | (a, M) (b, M) | (e, W)
tSA,s t;’),c t18,c tl.‘Lc
(b, W)
[0 [5 [6 | 7] \ [8 [19 [20 T 21]

ST of Ay derived from the above-shown alignment: (5 —0)+ (21 —-19) =7

Perfect activity Perfect activity instance Perfect activity instance
instance of a of ¢ of e
4 4 4 4 4
(a,») | (a, M) > (c,) (e,») | (b,M) (e, M)
(a,») | (a, M) CAJN (c. W) :m (e;») | (b,H) | (c W)
t10,c t18,c
Lo [5] | - [8 - [9 [- [21]

|
ST of Ay derived from the above-shown alignment: (5 —0) + (8 —7) + (21 —19) =8

Perfect activity instance
of e
Perfect activity

. Perfect activity instance of b
instance of a

I !
(a,») | (e,)
(a,») ‘ (e, ®)

t19,c
[0 [5] \ [6 [7 1 8 [19] 20 | 21]

ST of Ag derived from the above-shown alignment: (5 — 0) + (21 — 6) = 20

(b) Three optimal alignments for the above trace (cf. Figure 10.21a) and WF-net Ny (cf. Fig-
ure 10.20); for simplicity, invisible model moves are not displayed in the above alignments

Figure 10.21: Example of unreliable performance analysis results when using a non-fitting
trace, i.e., the ST of Ay depends on the optimal alignment used

299

10

10

Chapter 10. Tool Support: Cortado

Presenting Performance Indicators

This section introduces Cortado’s approach to make the various Pls calculated for a
process tree and cases accessible for users. The variant explorer (cf, Section 10.2.1) is
the starting point for applying model-based performance analysis. Users can select which
variants, and thus, the corresponding cases from the event log summarized by the chosen
variants, are considered for model-based performance analysis.

Process Tree Editor

A SUBMITTED A_PARTLYSUBMITTED A A W_Completeren aanvraag
X W_Completeren aanvra...

T W_Afhandelen leads
Variant Explorer Model Performance
Color Map

Model
Sub- SR service_time .
Projection Variant (3830
Variants (max)

-]

@ [CRCOE- S A SUBMITTED , A _PARTLYSUB..)] k

* o | ECE IS

) . sumvarrep)) » psivsu.)

1h, 8m, 20s

Standard View

Performance View

Conformance View

Figure 10.22: Projecting the maximal ST onto the process tree using selected variants

Figure 10.22 shows a screenshot where variants four and five are selected for model-
based performance analysis. The color map indicates the max service time (setting not
visible on the depicted screenshot); each vertex of the process tree shown in the editor
at the top is colored accordingly. Since the event log imported contains event data with
heterogeneous temporal information, the ST cannot be computed for all activities. Upon
hovering over vertices in the tree, more temporal performance statistics are shown, cf.
Figure 10.22. Note that the projected PI, as well as the statistical measure (i.e., min, max,
mean, and standard deviation), can be freely configured by users. Moreover, Cortado
offers detailed views on various performance statistics; Figure 10.23 shows statistics for
the entire process tree shown in Figure 10.22. Next to the overall performance, including
all selected variants, users can explore the different PIs summarized for each variant. The
detailed statistics view is available for any subtree besides the entire tree.

300

10.5. Supported Data Exchange Formats

Model Performance

Selection

- ('A_SUBMITTED' T) W_Completeren aanvraag
Overall Performance

Variant No. 4

Figure 10.23: Detailed information on various Pls for the entire subtree

10.5. Supported Data Exchange Formats

Cortado supports standardized data exchange formats that make it easy to use Cortado
in combination with other process mining tools. The XES standard [1, 2| specifies an
XML schema for storing and exchanging event data. XES is a widely used standard in
the process mining field; for instance, the widely used and extended open-source process
mining tool ProM [234] supports XES. Cortado allows the import of event logs provided
as XML files that adhere to the XML schema defined by the XES standard. Thus,
other process mining tools can be easily used, for instance, to pre-process the event data
eventually imported into Cortado.

Since the IPDA implemented in Cortado assumes process trees (cf. Part II), Cortado
supports the PTML file format that allows storing and exchanging process trees. For
instance, the open-source process mining library PM4Py [27] or the open-source process
mining tool ProM [234] support PNML, too. Discovered/modeled process trees can be
exported in three different formats: as process trees (PTML files), Petri nets (PNML
files [32, 244]), and BPMN files [48]. In short, Cortado supports widely used data formats,
which facilitates the integration of further process mining tools.

Although Cortado was primarily developed for incremental process discovery, as pro-
posed in this thesis, users can also use Cortado’s rich set of functionalities for various
other process mining use cases. Figure 10.24 illustrates exemplary application scenarios
of Cortado. Note that any input artifact may also originate from other process mining
tools. Likewise, any output artifact may be used in a subsequently used process mining
tool. Thus, Cortado can be easily integrated into process mining toolchains.

The central application use case is incremental process discovery as illustrated in Fig-
ure 10.24a. An event log is imported into Cortado, and a user (incrementally) discovers

301

10

Chapter 10. Tool Support: Cortado

Input
Event Log

(a) (Incremental) process discovery

Input
Event Log
S
L
—
Input
Process Model
-y

Output
Altered

process model
-y

(b) Process model refinement

(@f6) 4 #:Ys [o)

L\ \ |

Output
Process Model
-y

(c) Process modeling

Diagnostics & Insights

e General insights into the recorded

Input Cortado process behavior, e.g., derived from
EVeIi Log W\ exploring the variants
= e Frequent pattern mining
e Model-independent performance statis-
.......... 08
(e) Event data diagnostics
Input
Event Log
5 ..

Cortado

L\ \ \

10

Input
Process Model
-y

Diagnostics & Insights

e Model-based performance statistics
e Conformance checking statistics

(f) Event data and process model diagnostics

Figure 10.24: Selection of possible application scenarios for Cortado

302

10.6. Software Architecture € Distribution

a process model from the data and potential domain knowledge.!! The output process
model, for example, exported as a BPMN or PNML file, can be used in subsequent pro-
cess mining tools. The process model refinement application scenario (cf. Figure 10.24b)
can also be categorized as incremental process discovery with the difference that in this
scenario, an initial process model is imported into Cortado. This process model can be
enhanced by new functionality using Cortado’s IPD approach. Besides discovering and
refining a process model, Cortado can also be used as a classic process model editor, cf.
application scenario process modeling illustrated in Figure 10.24c. Note that it is also
possible to import a model first and manually edit it in this application scenario.

Besides exporting process models, cf. Figures 10.24a to 10.24c, Cortado can also be
used as an event data manipulation tool. For example, users might use the query language
(cf. Section 10.2.2) to filter the event log and export the filtered log for use in other tools.
Moreover, users can also use the variant editor (cf. Section 10.2.3) to add behavior to the
imported event log.

Cortado can also derive insights into the provided artifacts. In the event data diagnos-
tics scenario (cf. Figure 10.24e), an event log is imported and analyzed using Cortado.
For example, users browse through the variant explorer to understand the process behav-
ior recorded in the event log. Users might also use the model-independent performance
analysis functionality of Cortado, cf. Section 10.4.2. Besides solely analyzing the event
log (cf. Figure 10.24e), users might also additionally consider a process model besides the
imported event log, cf. the application scenario depicted in Figure 10.24f. Such derived
diagnostics and insights (cf. Figures 10.24e and 10.24f) can already be used to make in-
formed decisions about the process under study. Moreover, with these insights, users can
decide which further analyses, possibly with other process mining tools, are necessary or
promising to analyze the process under study further.

In conclusion, Cortado is a process mining tool with rich and unique functionalities. It
supports import and export options, making integrating with other process mining tools
easy. Combining Cortado with other tools is also often necessary because Cortado was
not developed to holistically support existing process mining techniques and algorithms.
Instead, it was explicitly developed for incremental process discovery, and all the func-
tionalities it contains are designed with incremental process discovery in mind or serve
some form of incremental process discovery.

10.6. Software Architecture & Distribution

This section delves into the architecture and implementation details of Cortado, focusing
on its core components, which comprise the cortado-core Python library, the backend,
and the frontend, i.e., the UL Figure 10.25 illustrates Cortado’s architecture.

The Python library cortado-core is based on the general-purpose process mining li-
brary PM4Py [27].12 Cortado-core implements the IPDAs introduced in Part II. Further,

HNote that we do not illustrate domain knowledge in Figure 10.24 because no standardized data ex-
change formats exist to store and share domain knowledge. Domain knowledge is often only available
implicitly.

12The source code of cortado-core can be found online at https://github.com/cortado-tool/
cortado-core.

303

10

https://github.com/cortado-tool/cortado-core
https://github.com/cortado-tool/cortado-core

10

Chapter 10. Tool Support: Cortado

Backend Frontend
* Programming language: Python * Programming languages:
HTML, CSS, JavaScript,
* Main frameworks/libraries used TypeScript
(excerpt): FastAPI, Uvicorn, PM4Py,
PylInstaller * Main frameworks/libraries used
(excerpt): Electron, Angular, D3.js,
* Description: Makes the functionality GoldenLayout
of cortado-core and other libraries
available to the frontend * Description: User interface of Cortado
HTTP Protocol
M

Cortado-Core
(Python Library)

* Programming language: Python

* Main frameworks/libraries used
(excerpt): NumPy, PM4Py,
ANTLR

* Description: Implements various
algorithms offered within Cortado

Figure 10.25: Hlustration of Cortado’s software architecture consisting of a Python-
based backend and a web technology-based frontend (figure partly adapted
from [186, Figure 1])

cortado-core implements alignments for trace fragments as introduced in Chapter 4, a
detection algorithm for high-level and low-level variants as introduced in Chapter 8, the
query language as introduced in Chapter 9, algorithms for temporal performance analysis
and many other functionalities. Outsourcing these various algorithms to a separate li-
brary was done intentionally to make the algorithms themselves easily accessible without
embedding them in a complete software system, ultimately facilitating reuse, adaptation,
and modification in research and other software tools. In short, cortado-core is a com-
prehensive software library that implements all the algorithms offered by the Cortado
software tool.

The backend of Cortado is also written in Python and bundles various functions from
cortado-core and PM4Py to make them accessible to the frontend. The backend uses the
FastAPI framework!® to build an application programming interface for the frontend.
Further, Pylnstaller bundles the backend into a single distributable package, including
cortado-core and all their dependencies. Cortado’s backend and frontend communicate
via the HT'TP protocol.

Cortado’s frontend, referring to the UI that was described in detail in previous sections,

Bhttps://github.com/tiangolo/fastapi

304

https://github.com/tiangolo/fastapi

10.7. Conclusion

is realized using web technologies. Angular'* is the central framework on which Cortado’s
fronted is built. Furthermore, Cortado’s frontend employs GoldenLayout'® as a layout
manager. Finally, to bundle the frontend and backend, the Electron framework'® is
utilized to generate standalone executable desktop applications. Cortado is available as
a standalone desktop application for all major operating systems, i.e., Windows, macOS,
and Linux.!”

10.7. Conclusion

Cortado is a software tool for process mining specifically designed to enable incremental
process discovery. In addition, it integrates the various contributions presented in this
thesis into a single tool, demonstrating how the individual contributions proposed in the
thesis work together towards the goal of incremental process discovery. Moreover, the
source code for Cortado and its underlying software library, cortado-core, are open-source,
which makes it possible to reuse and extend them.

Four functional areas can be distinguished in Cortado; recall Figure 10.3. Event data
and especially variant handling, the first area, are central to the concept of Cortado. Users
continuously interact with the visualized variants, for example, by selecting variants to
conduct IPD or model-based performance analysis. Cortado offers various auxiliary func-
tions for handling variants, such as frequent pattern mining, clustering, and querying.
IPD is the second central functional area that implements the various approaches pre-
sented in Part II. Moreover, Cortado features conformance checking functionality as well
as performance analysis.

Mhttps://github.com/angular/angular
Bhttps://github.com/golden-layout/golden-1layout

6https://www.electronjs.org/

17Builds of Cortado are available online at https://github.com/cortado-tool/cortado.

305

10

https://github.com/angular/angular
https://github.com/golden-layout/golden-layout
https://www.electronjs.org/
https://github.com/cortado-tool/cortado

10

Chapter 11.
Case Study

This chapter is largely based on the following publication.

e D. Schuster, E. Benevento, D. Aloini, and W. M. P. van der Aalst.
Analyzing healthcare processes with incremental process discovery:
Practical insights from a real-world application. Journal of Healthcare
Informatics Research, 2024. doi:10.1007/s41666-024-00165-6 [187]

This chapter presents a case study on applying Cortado in a real-life scenario. The
subject of this case study is the healthcare sector, which is constantly striving to im-
prove the quality of care and become more cost-effective at the same time. The health-
care sector’s ongoing digitization, facilitated by technologies such as electronic health
records [102, 107], is creating opportunities for process mining to be applied in health-
care processes [135].

Various studies have shown that process mining can be effectively utilized to analyze
healthcare processes [146, 22, 23]. However, healthcare processes often have character-
istic properties that need to be considered [160, 194]. Munoz et al. [146] highlight two
considerable challenges. First, individual process executions, respectively, cases often
have a high variability since healthcare processes are inherently complex, i.e., knowledge-
intensive [64]. Since individual cases often represent patients, there is a high variability
in cases due to differences in patient characteristics, responses to treatments, and the
expertise of healthcare professionals involved [160]. Furthermore, several possible treat-
ment pathways exist for a given medical condition [146]. As a result, most cases are often
unique regarding the executed activities and their ordering. Second, event data quality is
a significant challenge in healthcare, such as missing or incorrectly recorded events that
are often caused by data entry or collection errors [135, 146, 137, 94, 239]. Moreover,
the timestamps of recorded events are often imprecise. These event data quality issues
can originate from excessive workload of healthcare staff, inadequate training, and ex-
tensive manual recording of performed activities [22, 93, 12|. The two challenges, i.e.,
high case variability and event data quality issues, may negatively impact process mining
techniques’ success when applied for analyzing healthcare processes [146].

Subsequently, Section 11.1 discusses related work on process mining in healthcare.
Section 11.2 outlines the conducted case study. Afterward, Section 11.3 introduces the
case study’s analysis objectives and approach, followed by Section 11.4 presenting its

307

11

https://doi.org/10.1007/s41666-024-00165-6

11

Chapter 11. Case Study

implementation and the obtained results. Section 11.5 discusses the conducted case
study. Finally, Section 11.6 concludes this chapter.

11.1. Related Work

Analyzing processes in the healthcare sector using process mining techniques is receiving
growing interest; multiple studies and literature reviews underscore the usefulness and
opportunities of process mining in healthcare [52, 58, 146, 164]. For example, process
mining techniques are used in healthcare to discover accurate patient flows [75], analyze
process performance [193], assess compliance with clinical guidelines [245], and predict
patient outcomes [145]. Below, we focus on related work on applying interactive process
mining techniques in the healthcare sector.

Research highlights interactive process mining techniques utilizing event data and do-
main knowledge have been explored in healthcare [93]. However, despite the potential
benefits of interactive process mining techniques, more evidence is needed to demonstrate
the superiority of interactive approaches over automated and conventional approaches.
To the best of our knowledge, there have been few samples where interactive process min-
ing techniques have been practically and advantageously applied in complex real-world
settings, such as healthcare.

Martin et al. [140] propose an interactive event data cleaning technique that involves
three steps: data-based data quality assessment, discovery-based data quality assessment,
and data cleaning heuristics. The proposed technique was evaluated in the context of
a case study using an outpatient clinic’s appointment system. The proposed technique
allows users to guide event data cleaning by exploiting their domain knowledge. However,
the proposed technique focuses solely on data cleaning, and it requires process stakehold-
ers and analysts with enough experience in controlling interactive data cleaning.

An approach for using process mining over an interactive pattern recognition framework
to support the iterative design of clinical pathways [54] for chronic diseases is proposed in
[94]. In [22], the effectiveness of the interactive process discovery tool ProDiGy [74, 71|
in modeling healthcare processes from event data is showcased. We refer to Chapter 2
for a detailed introduction to ProDiGy. Consequently, Cortado, which is applied in this
case study, and its incremental process discovery approach is not directly comparable to
existing interactive approaches applied in healthcare, cf. [22, 23, 74].

11.2. Overview

This section provides an overall overview of the conducted case study; specific analysis
objectives and the concrete approach taken are presented subsequently in Section 11.2.
The case study investigates the use of incremental process discovery to obtain a process
model from a knowledge-intensive healthcare process. This case study analyzes an event
log documenting the treatment of lung cancer patients given to hospitalized patients
over a year. Each case details a patient’s treatment, and activities represent individual
procedures. Overall, lung cancer treatment is complex and requires the collaboration of
various healthcare specialists. Each lung cancer patient undergoes diagnostic activities to

308

11.2. Overview

Information
Systems
XX

&8
=l
S

Healthcare Process
(Lung Cancer

Event
Log

——] Event Data Extraction
& Initial Preparation

Event Data Processing &
Exploration

f Interactive Process Discovery \
Incremental Process Evaluation &
Discovery Analysis
* Gradual discovery of a * Process model assessment

* Event data filtering

¢ Event abstraction

* Querying, manipulating,
selecting process execution
variants

process model based on
user-selected process
execution variants that are
not yet supported by the
process model

* Conformance checking

¢ Reconciliation with
healthcare experts

* Manual process model
editing

Patient Treatment) »‘E
=)-):))
B=BBce-np

Incremental

1) User-selected

(Extended) <>(_()

variants Process J
2) Initial/previous Discover Lrocess
<><_O) Y Model O_>D
l process model Algorithm
S-0 |
t

Domain Process /\ﬁjf@j
\ Experts Analysts([<> ([«]) J

Figure 11.1: General approach of the conducted case study; starting from an event log
describing the treatments of lung cancer patients, we interactively and incre-
mentally discover a process model that summarizes the complex and highly
individual sequence of the different treatment steps (adapted from [187, Fig-
ure 1)

confirm the diagnosis and assess the extent of the disease, followed by surgery and follow-
up activities. Due to the complexity of lung cancer disease and the various treatments
available, many unique and ad-hoc care pathways exist.

This case study was conducted in close collaboration with the hospital staff, including
the head of the thoracic surgery department, an oncologist, a ward doctor, and a nurse
from the pneumology department. All participants in the case study are specialized in
caring for lung cancer patients.

Figure 11.1 depicts the overall approach used in this case study. Besides the event
data extraction and initial preparation step, the outlined blue box represents the primary
approach. We use Cortado to gradually discover a process model representing lung cancer
treatments from the provided event log. In each iteration, domain experts and process
analysts selectively choose individual variants to be added to the process model. Since
the process model is incrementally discovered and intermediate models are displayed,
domain experts can better understand and comprehend how the final process models

309

11

11

Chapter 11. Case Study

emerged from event data.

11.3. Analysis Objectives & Approach

Our main objective in this case study is to use Cortado to discover interactively a com-
prehensive process model for the complex lung cancer treatment procedure. Furthermore,
we intend to blend the invaluable expertise of physicians with the event data describing
patient treatments that have been extracted. In short, our goal is to develop a reliable
process model that closely aligns with the physicians’ perspective on the existing proce-
dure and treatment options while also considering the vast number of recorded patient
treatments reflected by the event data.

The case study consists of two phases: event data extraction and initial preparation,
and interactive process discovery, as shown in Figure 11.1. Below, we detail these phases.

1. In the event data extraction € preprocessing phase event data is extracted from
various hospital information systems and an event log is constructed. Thus, this
phase involves merging event data, removing redundant or inconsistent information,
and producing a single, coherent event log. We rely on established techniques in
this phases [3, 59, 160, 236].

2. The interactive process discovery phase is essential within this case study. In this
phase, interactive variant exploration, incremental process discovery, and analysis
of the process model take place. We exclusively use Cortado during this phase. Ex-
ploiting domain knowledge is integral to the interactive discovery phase and crucial
for reliable results. Furthermore, this phase is cyclically executed as required, and
each cycle comprises three sub-phases, as indicated in Figure 11.1.

a) The event data processing & exploration subphase aims to explore, organize,
and sort variants for the subsequent incremental process discovery phase. Cor-
tado’s functionalities, like variant visualizations (cf. Section 10.2.1) and vari-
ant querying (cf. Section 10.2.2), support users in this phase. In addition, this
phase involves variant filtering and variant editing based on domain knowledge.
For instance, the variant sequentialization feature introduced in Section 10.2.5
is applied in this subphase. Overall, process analysts take advantage of the
domain knowledge from healthcare experts and incorporate this knowledge
upon filtering, manipulating, and selecting variants for the subsequent stage
of incremental process discovery.

b) In the incremental process discovery subphase, the process model specifying
lung cancer patient treatment is enhanced. The variants selected in the pre-
vious subphase are incorporated into the model by the IPDA implemented
in Cortado. Moreover, in this subphase, users can apply techniques such as
freezing submodels (cf. Chapter 7) to guide the IPD. Additionally, users can
manually modify parts of the process model based on their expertise.

¢) In the evaluation & analysis subphase, users assess the incrementally extended
process model resulting from the previous subphase. For example, the con-
formance checking functionalities offered in Cortado determine how well the

310

11.4. Analysis Results

process model aligns with the provided event data and domain knowledge.
Thereby, potential gaps or inconsistencies can be identified, which may affect
the completeness of the process model and trigger further iterations of the
interactive process discovery phase. As a result, users may decide to execute
a further iteration of the overall interactive process discovery approach, cf.
Figure 11.1.

11.4. Analysis Results

This section describes the steps taken in the previously mentioned phases and subphases.
Section 11.4.1 describes the event data extraction and preparation phase, while Sec-
tion 11.4.2 presents actions performed within the subsequent interactive process discovery
phase.

11.4.1. Event Data Extraction & Initial Preparation

The event data subject to this study was extracted from two hospital information sys-
tems: the Electronic Medical Record (EMR) and the Radiology Information System
(RIS). The Electronic Medical Record (EMR) is an information system that records all
inpatient medical events in the hospital, including a patient’s medical history, diagnoses,
and treatments. Besides, the RIS is a specialized system for managing and organizing
information related to radiology activities. The initial event log includes data from 998
patients, each of whom we consider a case. Furthermore, the log contains 45 distinct ac-
tivities and about 40,000 events. Table 11.1 shows an excerpt of the event log constructed.
All events contained are single-timestamped. Moreover, the bottom granularity is coarse,
i.e., all events have days as bottom granularity.

We conducted initial event data cleaning to resolve quality issues, including the follow-
ing steps.

o Qutliers and incomplete cases remouval: Eight cases were removed due to incorrect
activity time records and missing relevant attribute values.

o Elimination of less significant activities: We have excluded activities that are not
directly related to lung cancer treatment, such as eye lens surgery and bone excision.
These activities were excluded due to the patient’s comorbidity.

e Fuvent abstraction: The event log contains many activities that we hierarchically
categorized into different abstraction levels. The initial event log contains 45 dif-
ferent activity labels; all light blue highlighted activities depicted in Figure 11.2
correspond to these 45 activities. We hierarchically organize the various activities
to achieve our analysis goals, as shown in Figure 11.2. The hierarchical structure al-
lows us to generalize specific activities. For example, we relabeled activities related
to laboratory tests such as glucose, potassium, and creatinine into a more gen-
eral activity called “Lab test” because these low-level activities were considered too
fine-grained for the process model we wanted to determine. The event abstraction
approach mentioned above reduced the number of activity labels from 45 to 19, cf.

311

11

11

Chapter 11. Case Study

Table 11.1.: Excerpt of the extracted event data covering the treatment of lung cancer
patients (adapted from [187, Table 1])

Case ID Activity Label Activity Category Timestamp
25480 General Physical Examination (GPE) - 15/05/2017
25480 Creatinine (Cre) Examination 15/05/2017
25480 Calcium (Cal) Examination 15/05/2017
25480 Glucose (Glu) Examination 15/05/2017
25480 Magnesium (Mag) Examination 15/05/2017
25480 Chest X-ray (ChX) Examination 15/05/2017
25480 Spirometry (Spi) Examination 25/05/2017
25480 General Physical Examination (GPE) - 01/06/2017
47777 General Physical Examination (GPE) - 17/07/2017
47777 CT Chest (CTC) Examination 25/07/2017
47777 Calcium (Cal) Examination 25/07,/2017
47777 Glucose (Glu) Examination 25/07/2017
47777 Magnesium (Mag) Examination 25/07,/2017
47777 Creatinine (Cre) Examination 25/07/2017
47777 Liver Biopsy (LiB) Examination 25/07,/2017
47777 Electrocardiogram (Elc) Examination 18,/08/2017
47777 Spirometry (Spi) Examination 18/08/2017
47777 Excision of lung and bronchus (ELB) Surgery 01/09/2017
47777 Computer aided surgery (CAS) Surgery 01,/09/2017
47777 Other non-operative procedure (ONOP) Treatment 10/09/2017
47777 Other non-operative procedure (ONOP) Treatment 10/09/2017
47777 General Physical Examination (GPE) - 15/09/2017
47777 Calcium (Cal) Examination 15/09/2017
47777 Glucose (Glu) Examination 15/09/2017
47777 Magnesium (Mag) Examination 15/09/2017
47777 Creatinine (Cre) Examination 15/09/2017
40036 General Physical Examination (GPE) - 01/07/2017

40036 Calcium (Cal) Examination 01/07/2017

red highlighted activities in Figure 11.2. Together with the medical professionals,
these 19 activities were identified as the optimal level of abstraction.

The preprocessing described above yielded an event log with over 14,000 events, 990
patient cases, and 19 types of activities. As anticipated and explained at the beginning
of this chapter, there is a high level of heterogeneity in the process, with 934 different
variants out of 990 cases. These factors complicate process discovery and analysis, as
each patient’s treatment is almost unique regarding the ordering of performed activities.

312

11.4. Analysis Results

11

([o @mS1g ‘2.87] woxy
pordepe) soA1100[qO SISATRTIR 91[) 10] [0AS] UOTIORIISCR 1DLI0D 1) S POYIIUOPT U dARTY PAI UT POUI[INO SITJIATIOR PUR
‘moryezI[e1dads e oIk SOIIATIOR SN[YIBP MO SAIIAIIOR 'a°T ‘SAIYIAIIDR PajoRIjsqe Juasaldal anyq yrep ur payySysy
SOI}IATIOR ‘BJRD JUOAS POYORIIXD 1} WOIJ 9)eUISLIO 9N[q IS Ul POJYSIYSIY SOI}AIIOR (AYDIRISN AJTAIIOR MIIAIIA()

313

AL |

£ Aydeusnuios
sdoiq ednald — 594D 159YD — upjs — poskyL [snioydsoyd —
Adoasooeuoy| Asdoiq -] 0BT Aydeudnuis ESEE
|eanajdsues) || apou ydwAy | UM quin] pav — un] : W =
uoleqniul snyouo.q pue Aydeadnups
anpesado-uon [||8unj jo uoisioxa [| GSCRIGIERT] | oy S 3N — sealg — suoq — asoon)y
wa3sAs Aydeudnuis
Adessyroipey | oneydwA| Asdoiq |eryouoig—| Aiypwouds IPuy pesH — Sun — -owo} — wnpje) —
uo suonesado Apoq |e10]
SEEEETEL Jlem 1s3yd weiSolp.aed ueas auIpaN
onnadesay] uo uopesado] Adoosoyououg Asdoig —on3(3 unoseln e auuneasy —
10 [eAowaY ! | P! | IPAN
aunpadoud NOILYNINYXI NOILYNINVYXT
Asagins JILSONOSVIA
annesado — JILSONSVIa JILSONSVIa
aple JaIndwo;
-uou l_3Y30 e 9 JNISVANI WALEIR LY JAISVANI-NON
1
uoneulwexa
ANINWLYIYL A43I0¥NS NOILYNINYXI

|leaisAyd jesauan)
[| |

SAILINLLOY

11

Chapter 11. Case Study

11.4.2. Interactive Process Discovery

This section presents the actions performed during three main subphases of the Interactive
Process Discovery phase, cf. Figure 11.1, and the corresponding results.

Event Data Exploration & Processing

Using variant querying (cf. Section 10.2.2), we explored the diverse variants to investigate
their activity relations. Moreover, we removed variant outliers that could not be detected
in the previous phase, i.e., the event data extraction & preprocessing phase, cf. Figure 11.1.
We identified truncated and incomplete traces resulting from errors in data entry or
extraction. Removing these variants allowed us to reduce the event data’s complexity
partly.

We investigated variants based on their frequency and the activities they contained.
During our analysis, we observed that the two most frequent variants, with 11 and 9
cases, respectively, consisted of only one repeated activity. We also found that 0.4% of
all variants had a maximum of three activities, while 0.2% had up to six activities of
only two types. The hospital team identified these variants as problematic since they do
not reflect the actual execution of the process, i.e., the lung cancer treatment. Instead,
these variants result from poor data quality; hence, we filtered them. The hospitalization
process typically involves a series of tests, treatments, visits, and, if necessary, surgery.
Therefore, cases where a patient is hospitalized for only one or two examinations are not
plausible and indicate missing data. Overall, most of the outliers we observed are most
likely due to registration errors or non-registration by hospital staff.

Sub-

Info 3 Variant ¥ query filter
Variants

Bio.. Ge..

Figure 11.3: Cortado’s variant explorer showing a variant that indicates an inconsistent
ordering of activities, i.e., “Biopsy” (i.e., the first activity of the visual-
ized variant) is executed before “CT scan”, i.e., yellow highlighted activities
(adapted from [187, Figure 7])

We have also identified and removed incorrect variants that do not comply with clin-
ical guidelines and medical expertise. For example, during the diagnostic phase of lung
cancer treatment, non-invasive diagnostic exams, such as X-rays and CT scans, must be
performed before invasive diagnostic procedures like bronchoscopy or biopsy occur. How-
ever, we found some variants in the event log where this relationship was not respected.
One example is shown in Figure Figure 11.3, where a biopsy is performed before a non-
invasive diagnostic procedure, i.e., a CT scan. These incorrect variants could be due to
registration errors or delayed registration of the performed activities in the information
systems. As these behaviors can affect the reliability of the results and subsequent process
analysis, we decided to filter such variants.

314

11.4. Analysis Results

Excision of Lung and Bronchus

Operations on Lymphatic System
Removal of Therapeutic Appliances

X-ray

(a) Source pattern

Excision of Lung and Bronchus

Removal of Therapeutic Appliances

(b) Target pattern

Operations on Lymphatic System

Sub- x
Info Variant ¥ query filter
Variants

Excision of Lu..

General physi.. Lab Test General physi.. Lab Test Biopsy Lab Test
Removal of Th..
Lab Test
X-ray

(c) Example of a variant containing the specified source pattern (cf. Figure 11.4a

Variant ¥ query fitter
nts

Excision of Lu..

General physi.. Lab Test General physi.. X-ray Removal of Th.. Lab Test Non-Operativ..

Lab Test

(d) Example of a modified variant where the source pattern (cf. Figure 11.4a) is replaced by the
target pattern (cf. Figure 11.4b)

Figure 11.4: Example of a source/target pattern pair for sequentializing variants and its
application to a variant (adapted from [187, Figure §])

We used Cortado’s variant sequentialization functionality (cf. Section 10.2.5) to inte-
grate domain knowledge into imprecise variants. These variants contained several activ-
ities that were performed in parallel but should follow a specific execution order as per
the guidelines and understanding of the medical staff. For example, during the surgery
phase of lung cancer treatment, the patient usually undergoes instrumental examinations
to assess their operability, followed by surgery, an X-ray, and, if necessary, removal of
the therapeutic device. These activities should occur sequentially. However, due to the
coarse bottom granularity of days, we see these activities executed in parallel since every
event has the same timestamp.

Figure 11.4 depicts an example of such sequentialization. The variant depicted in Fig-

315

11

11

Chapter 11. Case Study

ure 11.4c displays that removing the therapy device could be performed before its in-
stallation during the surgery, as both activities are parallel. Thus, using this variant for
process discovery results in an imprecise process model, allowing for incorrect behavior.
We alter these variants using the variant sequentialization functionality in Cortado (cf.
Section 10.2.5) and the domain experts’ knowledge. Figure 11.4a shows the described
source pattern, while Figure 11.4b shows the corresponding target pattern. When ap-
plying this sequentialization rule, consisting of the above-mentioned source and target
pattern, to the variant shown in Figure 11.4c, we obtain the sequentialized one depicted
in Figure 11.4d. In addition to this example, we applied many more sequentialization
rules we designed with the medical experts to mitigate the limitations of the coarse bot-
tom granularity of the event data.

Incremental Process Discovery

After filtering and refining variants, we gradually discover a normative model for the
treatment of lung cancer patients that captures the wide variety of patient trajectories
recorded. Therefore, we apply Cortado’s incremental discovery approach. We resolved
any inaccuracies in intermediate process models during each iteration, i.e., after adding
few selected variants, by editing the model manually together with the medical experts
if needed. Thus, we blend process discovery with process modeling by using Cortado.
When necessary, we revisited the event data processing € exploration phase to further
refine the variants, cf. Figure 11.1.

Figure 11.5 depicts the initial model, which only describes variants without diagnostic
activities in the initial phase. Note that these particular variants represent the most
frequent variants. Thus, the initial model describes the journey of hospitalized patients
undergoing diagnostic procedures outside the hospital, either in outpatient settings or
private healthcare facilities. The initial process model can be divided into three process
stages.

1. The diagnostic stage includes only the general physical examination, which describes
the initial visit with the physician.

2. The surgery stage involves the following activities: Fzxcision of Lung and Bronchus,
Operations on Lymphatic System, Computer Aided Surgery, Lab Test, X-ray, and
Removal of Therapeutic Appliances.

3. The final stage, referred to as follow-up, includes activities such as Other Non-
Operative Procedures, Non-Operative Intubation, and further Lab Test activities.

Building upon the initial model, we started to incorporate variants encompassing di-
agnostic activities and involved one surgical procedure per variant in the model. The
addition of these variants enabled us to gain insights into the impact of diagnostic tests
on the overall process and at which point these changes occur. We manually applied the
following changes to the model to improve its comprehensibility and reliability. We in-
serted a loop for diagnostic and follow-up activities to account for various patients having
potentially multiple examinations. Besides, we put the activities general physical exam-
ination and lab test in parallel with the diagnostic and surgical activities since general
physical examination and lab test are essential activities that may be executed repeatedly

316

11.4. Analysis Results

11

317

(|6 @31 ‘287| woy peydepe) syuerrea juenboy 9sow GT oY) SUIqLISIP NINJH Ul Pozifensia [opour sseooxd Teryruy :G 1T oIS

]

11

Chapter 11. Case Study

during treatment. Next, we added the remaining intricate variants, encompassing diag-
nostic activities and various surgical procedures. Figure 11.6 depicts the intermediate
process model obtained. The model has a sequential relation between the activities of
the diagnostic phase and those of the surgical phase. In contrast, the follow-up phase
involves diverse activities that can be repeated multiple times, depending on the patient’s
health condition and reaction to the surgery.

Before incrementally adding the remaining variants related to non-surgical hospitalized
patients, we froze all submodels concerning the surgical phase in the model. We applied
freezing to ensure no changes in the surgical phase while continuing with the incremental
process discovery. Figure 11.7 depicts the finally obtained process model that we derived
from the provided event log and the healthcare experts’ domain knowledge. The resulting
model describes all suitable variants of the event log and shows that:

e the diagnostic and surgical phases are more structured, as recommended by the
clinical guidelines,

e the follow-up phase relies on the experience of the physicians and the condition of
the patients, and

e a patient may receive several treatments during the entire treatment period.

Evaluation & Analysis

During the incremental process discovery phase, we constantly assessed the degree of
conformance between the discovered model and the event log in Cortado. Especially
after we applied manual changes to the model to ensure these changes did not remove
already incorporated variants from the process model. Over time, we eventually reached
full fitness, indicating a high level of conformance to the incrementally processed event
log. Recall that we modified the given event log in various iterations; for example, we
applied event abstraction and transformed various variants by applying sequentialization
rules.

We organized a follow-up meeting with the entire medical team after completing mul-
tiple iterations of the interactive process discovery phase (cf. Figure 11.1). The meeting
lasted for two hours and took place online via video conference. Its purpose was to obtain
feedback from medical experts regarding the new interactive process discovery approach
enabled by Cortado and the output process model obtained. During the meeting, we
presented and discussed Cortado’s capabilities in interactive data exploration/manipula-
tion and incremental process discovery and showed two process models: one produced by
Cortado (cf. Figure 11.7), and one produced by an automated process mining technique,
i.e., the Inductive Miner [122] (cf. Figure 11.8), which is commonly used in healthcare
[135]. As input for the IM, we used the event log obtained at the end of the Event Data
Processing and Exploration phase to make the qualitative comparison of process mod-
els fairer. The model discovered by the IM places the main activities in parallel, which
results in a loss of sequentiality between the central process stages: diagnosis, surgery,
and follow-up. Since the IM cannot discover process models with duplicate labels com-
pared to Cortado, the model discovered by the IM is imprecise. A lack of sequencing

318

11.4. Analysis Results

of key activities leads to unrealistic process behavior, including incorrect positioning of
non-invasive and invasive diagnostic tests.

The medical team found Cortado’s interactive data exploration and manipulation help-
ful. Two members mentioned how difficult it can be to work with large amounts of patient
data that often have quality issues. Extracting valuable insights from such data with-
out dedicated tools can be challenging. Thus, they found it invaluable to use Cortado
to explore the event data, identify patient journeys, and filter the event logs to obtain
reliable and valuable information. Also, the incremental process discovery approach was
considered as a positive aspect. A healthcare professional said that "[...] what is even
more value-added is to be able to incrementally model the process and decide what to in-
clude, freeze or modify in the map [...], exploiting our knowledge". To summarize, team
members emphasized the crucial role of medical experts’ active participation in filling
data gaps and providing insights to enhance the model’s quality. However, during the
follow-up meeting, a critical point was raised about using interactive data exploration and
incremental process discovery functionality. It has been emphasized that prior knowledge
of process mining concepts and modeling languages is essential to fully utilizing Cortado’s
features. Alternatively, having the assistance of an experienced process analyst would en-
sure that Cortado’s capabilities are fully employed. For instance, a team member pointed
out: "[...] Iknow neither Petri nets nor decision trees, and I would not be able to conduct
the analysis alone [...]".

Regarding the process models, the medical team found the one discovered gradually
with Cortado to be more accurate and consistent with the guidelines. However, it is
more complex in terms of the number of elements due to duplicate labels. The model
produced by the IM was deemed illogical. For instance, one team member even expressed
uncertainty regarding the interpretation of the model, saying "Is this the process for lung
cancer patients?"), and presented incorrect process behavior allowed by the model. Over-
all, the follow-up meeting provided helpful insights into the medical team’s perspectives
on the incremental approach enabled by Cortado.

319

11

Chapter 11. Case Study

Figure 11.6: Intermediate process model visualized in BPMN depicting treatment options for lung cancer patients undergoing
surgical treatment; the model illustrates the sequential relationship between diagnostic and surgical phases, while
highlighting the diverse activities involved in the follow-up phase, which may be repeated based on individual
patient reactions and health conditions (adapted from [187, Figure 10])

320

11

11.4. Analysis Results

11

321

([11 omS1g ‘287] woy
poydepe) spoqer ageorjdnp syroddns opejro)) ur yoeoidde y(J]) 9UIS [9POW O} JO SAUOURIC JUSIOPIP UM
SUOT}OUIISIP 958D O3BUWI UBD J1 9SNBID(C PaINIONIIS A[Ied[o pue 9s10a1d oI10W ST [opoul SIY} ‘Q 1T 9In31,] 03 poreduod
‘opeIo)) SUIST Poure)qo syuam}esl) yusljed 190ued Juny 10j suoljdo SnoLIeA 9} S9qLIISIP ey} [opowt ss0001d [eurq :/ T 9INSI]

[—

X X

=

X X >—()

11

Chapter 11.

Case Study

W{)

r
L

£
|
T L

X X
X X X @—‘
-

Figure 11.8: Process model visualized in BPMN discovered by the conventional process
discovery algorithm Inductive Miner [122]; note that almost every activity
is any times executable, resulting in an imprecise model (adapted from [187,

Figure 12])

322

11.5. Discussion

11.5. Discussion

This section discusses the presented case study, points out the lessons learned (cf. Sec-
tion 11.5.1), derives practical implications (cf. Section 11.5.2), and indicates limitations
and potential future research directions (cf. Section 11.5.3). In short, this case study
indicates that the usual obstacles encountered in healthcare, such as a large variety of
variants and event data quality issues, can be mitigated by using interactive process
discovery techniques.

11.5.1. Lessons Learned

Below, we present three lessons learned from the presented case study.

Incorporating Domain Experts

Involving domain experts in any data-driven process modeling project is essential. Do-
main experts can add valuable information not found in event logs. Utilizing the domain
experts’ knowledge improves the finally obtained process models. In addition, the in-
volvement of experts plays a crucial role in detecting and ultimately resolving event
data quality issues. Assume, for instance, the scenario highlighted in this case study
where clinical guidelines prescribe a specific sequence of examinations. However, domain
experts can intervene and resolve this issue if the order of these examinations is not
identifiable in the event data due to the lack of temporal information. It is essential
to note that this is not an anomaly in the process but highlights a challenge related to
the event data quality. In such situations, domain expertise becomes indispensable and
highlights the general need for process mining techniques to allow the incorporation of
domain knowledge. In short, this case study contributes to the open problem of utilizing
domain knowledge [19] in process mining by showcasing a concrete application of Cortado
to discover a healthcare process from event data and domain knowledge.

Blending of Event Data Processing & Process Discovery

Event data exploration and manipulation is integral to the process discovery phase and
cannot be entirely automated. In the case study, many data quality issues became ap-
parent during the event data processing and exploration phase. Some of these issues were
easily recognizable, such as partial traces of only one activity. However, others required
domain knowledge, such as traces with activity sequences that do not comply with med-
ical guidelines. In this context, Cortado’s strong focus on variants helps domain experts
better understand the behavior recorded in an event log. As stated in [78], technical
experts usually think about a process on a case-by-case basis rather than holistically.
Therefore, the use of variant visualizations that summarize cases is of great benefit in
communicating with domain experts and fosters them to apply their domain knowledge,
for instance, by the variant sequentialization functionality (cf. Section 10.2.5).

Further, we learned that data exploration, process discovery, and analysis could not
be performed sequentially, as often happens in traditional process mining methodolo-
gies [236, 160]. Sometimes, it becomes necessary to revisit and repeat intermediate steps

323

11

11

Chapter 11. Case Study

to improve or correct any inconsistencies in the event data. In our case study, while in-
crementally discovering the process model, we faced additional data issues that required
revisiting the previous phase to carry out the wvariant sequentialization task.

Incremental Process Discovery

Finally, it is essential to note that while incremental process discovery may seem more
time-consuming than automated process discovery, IPD has been demonstrated in this
case study to be more effective in producing accurate process models. Particularly when
faced with event data quality issues, IPD allows, due to its incremental fashion, to switch
between event data preparation and discovery. Thus, event data quality issues, often
only partially visible initially, can be resolved during discovery. In contrast, automated
discovery techniques often produce illogical and unreliable process models, as revealed in
the follow-up meeting with the medical team. In addition, these models require further
manual modifications, making the task laborious and time-consuming.

Using interactive and incremental discovery techniques requires fundamental process
analysis and modeling knowledge to exploit their potential. The same, of course, also
applies to automated discovery techniques. However, since IPD generally offers users
more options, we consider it to be advanced in terms of user knowledge needed compared
to automated process discovery. This challenge confirms the findings by [141], where
the authors identify poor analytical skills from people as a critical challenge in applying
process mining in organizations. Further, in [78], the authors identify the need for more
process model formalism skills of domain experts as a challenge. The team involved in the
study, but also medical teams in general, do not have the necessary expertise. Therefore,
supporting the medical team with process analysts and providing the medical team with
brief training was essential. The incremental approach made it easier for medical staff
to understand the process model because it evolved gradually as more variations were
added. As a result, incremental changes are more accessible to domain experts in the
process model. These changes also provide a foundation for discussion, as only a few
parts of the process model change in each iteration.

11.5.2. Practical Implications

This case study demonstrates how Cortado, providing an incremental and interactive
approach to process discovery, can help domain experts model healthcare processes effec-
tively despite challenges posed by high process variability and poor event data quality.
Specifically, Cortado enables users to quickly identify the variants that should be incorpo-
rated into a process model, eliminate incorrect ones, and obtain comprehensible process
models to make informed decisions. The findings presented are of significant interest to
healthcare managers and practitioners who seek to improve processes using data-driven
approaches.

11.5.3. Limitations & Future Work

Although this study yielded encouraging outcomes, it is crucial to consider certain lim-
itations. The case study’s findings are context-specific and may not be generalizable to

324

11.6. Conclusion

other healthcare settings and domains besides healthcare. Furthermore, the results were
only validated through a single follow-up meeting with a small group of medical experts.
While this meeting offered valuable feedback on the discovered models, a more compre-
hensive validation approach would be required to ensure the strength and reliability of
the incremental discovery approach. A structured user study involving a broader, more
diverse group of healthcare professionals would be needed to address these limitations
and further develop the IPD approach developed in Cortado. Such a user study would
allow us to quantitatively evaluate the interactive approach, gain additional insights, and
investigate potential challenges.

11.6. Conclusion

In this case study, we showcased the usefulness of Cortado for analyzing a knowledge-
intensive healthcare process. We used a real-life dataset from an Italian hospital docu-
menting the treatment of lung cancer patients. We demonstrated how to use Cortado’s
functionalities to obtain a process model that is valuable to medical experts. Unlike
other interactive and traditional process discovery techniques [23, 211], Cortado integrates
event data exploration, processing, and manipulation with the process discovery/model-
ing phase, resulting in a more streamlined and integrated process discovery approach. In
short, this case study showcased one solution regarding more effective approaches to dis-
covering/modeling healthcare processes [146] by providing evidence on the effectiveness
of applying incremental process discovery in healthcare.

325

11

11

Part V.

Closure

327

Chapter 12.

Conclusion

Process discovery—the central topic of this thesis—is a central research field within pro-
cess mining. Several process discovery algorithms exist. Most can be classified as con-
ventional, assuming event data as input and automatically discovering a process model.
Thus, the actual process discovery phase is an automated black box from a user’s per-
spective. In contrast to conventional fully-automated discovery approaches, incremental
process discovery allows users to utilize and integrate their knowledge and expertise about
the process under consideration during the process discovery phase besides event data.
IPD allows users to assess and manipulate the intermediate incrementally discovered
process models and, through interaction, control the further process discovery phase.

Recall that there is not a single most-suited process model for a given event log but
rather a multitude of possible models that all describe the event log to a certain degree.
Selecting the best process model from this multitude depends on many factors, especially
the user’s requirements regarding the purpose of the process model. For what is the
process model used? For example, should it only contain the most important or frequently
recorded process executions? Should it be combined with normative process behavior
not included in the event log? Should it exclude particular process behavior? Should it
exclusively describe the behavior in the event log, or should it also generalize and allow
for behavior that does not occur in the event log? Since traditional process discovery
is fully automated, obtaining a process model that meets a user’s requirements can be
challenging. If a discovered model does not meet the requirements, users must discover an
entirely new process model from scratch. Therefore, users must understand the various
process discovery algorithms to select a suitable one that leads to the desired process
model. Furthermore, users must understand the possibly diverse parameter settings of an
applied process discovery algorithm to discover the targeted process model. IPD provides
a unique approach to process discovery by enabling users to discover process models
gradually. Thereby, IPD allows users to control and monitor the process discovery phase.
Furthermore, the incremental discovery of a process model allows users to understand
better where specific control flow patterns in the process model originate. In short, IPD,
as proposed in this thesis, marks a novel approach to process discovery.

The remainder of this section is structured as follows. Section 12.1 summarizes the
central contributions of this thesis. Subsequently, Section 12.2 discusses limitations and
remaining challenges related to the contributions of this thesis. Finally, Section 12.3
outlines future work opportunities that build upon the proposed contributions.

329

12

12

Chapter 12. Conclusion

12.1. Contributions

This section summarizes the four substantial contributions of this thesis: the review
of domain-knowledge-utilizing process discovery (Section 12.1.1), IPD (Section 12.1.2),
variants for partially ordered event data (Section 12.1.3), and Cortado (Section 12.1.4).

12.1.1. Review of Domain-Knowledge-Utilizing Process
Discovery

Conventional process discovery approaches are commonly used in process mining, with
various techniques available [15, 60, 235]. However, there are also a few non-conventional
approaches to process discovery, which, from the user’s point of view, can differ signifi-
cantly more than conventional approaches, for example, concerning the interaction and
required inputs. Since IPD is classified as a non-conventional approach, we presented
a literature review on non-conventional process discovery approaches (cf. Chapter 2).
We propose a taxonomy to classify non-conventional approaches based on several distin-
guishing features in this context. Due to the general nature of the taxonomy, we see the
literature review as a central contribution, as the taxonomy can also be applied to future
non-conventional discovery approaches. In addition, the literature review has revealed
various challenges that exceed those addressed in this thesis. The review identified only
twelve discovery approaches that can be considered non-conventional compared to many
conventional process discovery approaches. IPD, as proposed in this thesis, was identified
as a research gap on which hardly any research existed.

12.1.2. Incremental Process Discovery

This thesis proposed an incremental process discovery framework (cf. Chapter 5) that
allows users to gradually discover a process model from event data by selecting the pro-
cess behavior to be incorporated. Incrementally selecting process behavior that an IPDA
subsequently incorporates into a process model is one central form of interaction within
IPD. As such, the proposed IPD idea breaks with prevailing conventional process discov-
ery, which operates fully automated and, therefore, does not allow for any form of user
interaction. The overall framework, introduced in Chapter 5, is enhanced with support
for incomplete process behavior, cf. Chapter 6. The extension of the IPD framework to
support incomplete behavior is a practical application example for the infix and postfix
alignments proposed in Chapter 4. For example, in the case of processes that span large
parts of an organization or even several organizations, process execution fragments can
be a helpful means of discovering a process model not only gradually but also by process
stage. Finally, the IPD framework is enhanced with support for freezing, cf. Chapter 7.
The freezing option in the context of IPD allows users to influence the IPDA by limiting
the potential outputs. Freezing can be applied to any subtree of a given process tree.
Upon conducting an IPD iteration, the frozen subtrees remain unchanged, i.e., the uti-
lized IPDA is not allowed to alter frozen subtrees. Thus, submodel freezing represents a
further novel form of user interaction with a process discovery algorithm. In short, an
extensive IPD framework with two major extensions was proposed in this thesis.

330

12.2. Limitations & Remaining Challenges

12.1.3. Variants for Partially Ordered Event Data

Interacting with recorded process behavior is paramount within IPD. To enable users
to incrementally select process behavior in the context of IPD, the event data must be
adequately presented. To this end, this thesis proposed novel definitions for variants and
corresponding visualizations in Chapter 8. Existing variant definitions and visualizations
assume time-point-based events that are either totally or partially ordered. In compar-
ison, we assume partially ordered event data with heterogeneous temporal information,
i.e., time-point-based and time-interval-based events. Moreover, we proposed a textual
query language for partially ordered event data, cf. Chapter 9. The query language al-
lows to define control flow structures among activities that are assumed to be partially
ordered.

12.1.4. Cortado

The comprehensive software tool Cortado (cf. Chapter 10), developed in the context of
this thesis, demonstrates how IPD can be realized such that process analysts and pro-
cess mining practitioners can apply it. Cortado features all approaches and algorithms
proposed in this thesis. Thus, Cortado illustrates how the different contributions of this
thesis are interrelated and interact in the larger context of IPD and serve a common goal.
Cortado is open-source, which allows for reuse, customization, and further development.
Moreover, we conducted a case study to evaluate Cortado and, thus, the various con-
tributions of this work as a whole. Within the case study, we analyzed the treatment
process of lung cancer patients. The results of the study showed that Cortado and IPD
can be successfully applied in industrial contexts and have significant value compared to
conventional process discovery approaches.

12.2. Limitations & Remaining Challenges

This section examines and discusses some of the limitations and challenges associated
with the proposed contributions.

12.2.1. Nondeterminism of the LCA-IPDA

The LCA-TPDA proposed in Chapter 5 and extended in the two subsequent chapters by
freezing and trace fragment support (cf. Chapters 6 and 7) utilizes alignments. Generally,
there might exist more than one optimal alignment for a given trace and process tree;
moreover, the optimal alignment returned by a search algorithm is usually random.' Since
LCA-IPDA uses an optimal alignment to calculate the subtree that needs to be changed
in the provided process tree, a different optimal alignment can lead to a different subtree
and eventually to a different final process tree. Thus, even when using the same initial
process model, the same previously added traces, and the same trace to be added next,
different process models might be returned when executing LCA-IPDA multiple times.

INote that computing all optimal alignments is possible [6, Section 4.6], however, it is exhaustive and
may not even possible to compute for large model trace combinations due to limited memory, cf. |6,
Section 10.2].

331

12

12

Chapter 12. Conclusion

Note that the guarantees of the LCA-IPDA hold, i.e., both the previously added traces
and the trace to be added next are supported by the returned process tree. However,
non-determinism in an algorithm, i.e. the same input may lead to different outputs
in different executions, can be confusing for users, especially if they do not know the
algorithmic details of the implemented IPDA.

12.2.2. Representational Bias

The IPDAs proposed in this thesis all discover process trees. The process tree formal-
ism is crucial for the proposed IPDAs because they exploit the hierarchical structure of
process trees to narrow down subtrees that must be altered. However, process trees are
a subclass of sound WF-nets and are not as expressive as sound WF-nets, referred to
as representational bias [206, 227]. A well-known control flow pattern that cannot be
directly modeled using process trees is a long-term dependency.? In short, a long-term
dependency describes control flow constraints where a choice at a branch within a model
influences a choice at a subsequent branch. In short, IPDAs supporting larger subclasses
of sound WF-nets other than process trees is a remaining challenge.

12.2.3. Support for Partially Ordered Event Data

Most existing process mining techniques assume totally ordered events per case [211, 218].
Partial-order-based process mining algorithms and approaches are still small in number
compared to overall process mining [123]. In Part III, we propose novel variant defini-
tions and visualizations as well as a corresponding query language for partially ordered
event data. However, the proposed IPDAs (cf. Part II) assume totally ordered event
data. By calculating all sequentializations for high-level variants in Cortado, high-level
variants become compatible with the implemented IPDA. Since most process discover al-
gorithms, such as the Inductive Miner [122], which we use within the IPDA implemented
in Cortado, can detect parallelism if most or all orderings are present in the provided
traces, the applied sequentialization is feasible. However, a more sophisticated way would
be to assume partially ordered event data natively also within the IPD framework and
corresponding IPDAs. However, native support for partially ordered event data within
IPD requires several changes and adaptions; for instance, alignments as introduced in
Section 3.5 and Chapter 4 could not be used; alignments for partially ordered event data
must be employed, for instance, [127]. Further, the mechanism to detect subtrees and
compute sublogs must be adapted to be compatible with partially ordered alignments.
Finally, the conventional process discovery algorithm utilized within the LCA-IPDA must
also support partially ordered event data.

2However, it should be noted that such long-term dependencies can also be modeled in process trees
using duplicate labels. However, depending on the situation, this approach can lead to huge process
trees compared to sound WF-net, which can model long-term dependencies much simpler using fewer
elements.

332

12.8. Future Research Directions

12.2.4. Lack of Thorough User Evaluation

This thesis proposed Cortado—a significant contribution of this thesis—that combines
the various algorithmic approaches proposed in this thesis into a comprehensive tool for
process analysts. A dedicated user study has been performed for the proposed variant vi-
sualizations focused on ease of use and usefulness, cf. Chapter 8. For an overall evaluation
of Cortado, we have conducted a case study utilizing Cortado to analyze a process from
the healthcare domain. However, the obtained results from the case study are limited re-
garding generalizability. Thus, more systematic evaluations are needed to quantify better
the value added of Cortado and IPD in general. Therefore, Cortado and its functionality
should be considered as one comprehensive tool that is evaluated accordingly, for exam-
ple, using controlled experiments focusing on tasks that require various functionalities of
Cortado with a large number of participants to obtain reliable results.

12.2.5. Incorporating Low-Level Variants

Chapter 8 introduced high-level and low-level variants. Although both variant types
have been implemented in Cortado, only high-level variants are supported for IPD. Low-
level variants are only perceived as a detailed view on individual high-level variants in
Cortado, cf. Section 10.2.1. Thus, users cannot select individual low-level variants for
using them within IPD; only high-level variants can be used. The main reason that low-
level variants are not supported for IPD is the fact that process trees cannot represent
the level of detail that can be expressed using low-level variants. However, for some
processes, the abstraction level of low-level variants might be the intended one, so IPD
should also be supported for low-level variants.

12.3. Future Research Directions

The proposed contributions in this thesis offer various new opportunities for future re-
search. The limitations and remaining challenges discussed above in Section 12.2 provide
promising avenues for further research. This section discusses further exemplary opportu-
nities that do not directly originate from the abovementioned limitations and challenges.

12.3.1. Beyond Adding Individual Traces in IPD

IPD as specified in the introduced framework, cf. Chapter 5, allows to gradually incor-
porate individual traces to an existing model. However, selecting individual traces might
become tedious and impractical for users. Therefore, Cortado allows several variants to
be selected at once and added to a model in one iteration from a user’s perspective. How-
ever, Cortado executes internally several iterations of the implemented IPDA, i.e., traces
derived from the selected variants are added individually.? Adding traces individually is
computational complex because, for example, sublogs must be calculated many times, cf.
Chapter 5. Moreover, ordering effects might occur, cf. Section 5.6. Thus, the proposed

3Recall that Cortado first computes all potential sequentializations for any selected variant. Next, each
variant’s sequentializations, i.e., traces, are added to the process model incrementally.

333

12

12

Chapter 12. Conclusion

IPD framework (cf. Figure 5.1 on page 110) should be extended to allow adding more
than one trace in a single iteration.

Thinking one step further, artifacts other than variants or traces could be considered
as a medium to select process behavior that should be incorporated into a process model
using IPD. An example of such alternative artifacts could be DECLARE constraints [151]
that allow specifying certain dependencies among activities. Such constraints could be an
additional input to the proposed IPD framework and would provide users another form
of incorporating their domain knowledge during process discovery. Another example are
local process models [198, 199, 201]. Local process models are represented in established
process model formalisms like Petri nets or process trees. However, local process models
do not capture the process from start to end; instead, they describe frequent patterns
of the overall process model. An interesting direction for future work on IPD would
be to investigate to which extent such local process models could be used to extend
a given process model. Thus, users can select both variants/traces and local process
models. Since local process models summarize incomplete parts of the overall process
from different cases, their use in IPD could provide added value.

12.3.2. Incremental Process Reduction

IPD, as proposed in this thesis, is concerned with adding process behavior to an existing
model. Further, the selected trace to be added next is always guaranteed to fit the
resulting model. However, incrementally adding process behavior to a model might also
end in imprecise process models, i.e., further process behavior is supported by the process
model over time that has never been selected. An important direction for future work
is to investigate techniques to remove selected process behavior supported by a process
model. For instance, a framework for incremental process reduction could be designed
similarly to the IPD framework proposed in Chapter 5. As input a process tree A, a
trace to be removed 0 emove € L(A), and traces to be kept A C LL(A) are provided to an
incremental process reduction algorithm. The algorithm returns a process tree A’ that
does not support trace oremove ¢ L(A’) but still supports traces contained in A C L(A").

12.3.3. Enhanced Interaction & Assistance

The central interaction between users and an IPDA lies in the incremental selection of
process behavior and, optionally, the freezing of subtrees. However, further interaction
between users and IPDAs is conceivable. For instance, an IPDA could involve users
more by providing different solutions to alter the process model such that the new model
supports the selected process behavior and users decide which solution is taken. In
addition, IPD could benefit from assistance techniques to facilitate decision-making on the
part of users. For example, users might be interested in recommendations on which traces
to add to a given model; for instance, recommendations can be made based on the level
of conformity between a variant and the current model. In this context, recommendation
systems could indicate suitable subtrees for freezing to users.

334

12.8. Future Research Directions

12.3.4. Incremental Discovery Beyond Control Flow

Process discovery, as considered in process mining, primarily focuses on learning control
flow structures [15, 16, 60, 235]. This observation applies to process mining generally
and is not limited to IPD. However, process model formalisms like BPMN also offer
elements to model organizational aspects and data/information exchange. Especially in
the context of IPDA, where users are assumed to be involved in the process discovery
phase, incorporating additional perspectives to the process model based on event data and
domain knowledge is a clear opportunity to enhance the prevailing control-flow-oriented
process discovery. The central question is how IPD can combine event data and process
experts’ knowledge to discover process models that unite different perspectives.

12.3.5. Supporting Object-Centric Event Data

Moving from traditional event data to object-centric event data [213], also referred to as
multi-dimensional event data [83], is an approaching topic within process mining. Object-
centric event logs do not contain case identifiers compared to the event logs assumed in
this thesis. Thus, individual process executions do not exist within object-centric event
logs. Events are instead through individual objects they are interacting with connected.
Hence, identifying individual process executions and variants, central for IPD as proposed
in this thesis, is already not trivial, and various approaches are possible [5]. Due to the
increased complexity of the event data, process models can also become significantly
more complex. Moreover, few process discovery approaches exist for object-centric event
data [217]. Therefore, transferring the ideas of incremental process discovery, as proposed
in this thesis, is an exciting research opportunity.

335

12

12

References

[1]

2]

3]

4]

5]

[6]

7]

8]

19]

[10]

IEEE standard for eXtensible Event Stream (XES) for achieving interoperabil-
ity in event logs and event streams. I[FEE Std 1849-2016, pages 1-50, 2016.
doi:10.1109/TEEESTD.2016.7740858.

G. Acampora, A. Vitiello, B. Di Stefano, W. M. P. van der Aalst, C. W. Giinther,
and H. M. W. Verbeek. IEEE 1849: The XES standard: The second IEEE standard
sponsored by IEEE computational intelligence society [society briefs]. IEEE Com-
putational Intelligence Magazine, 12(2):4-8, 2017. doi:10.1109/MCI.2017.2670420.

R. Accorsi and J. Lebherz. A practitioner’s view on process mining adoption, event
log engineering and data challenges. In W. M. P. van der Aalst and J. Carmona,
editors, Process Mining Handbook, volume 448 of Lecture Notes in Business Infor-
mation Processing, pages 212-240. Springer, 2022. doi:10.1007,/978-3-031-08848-
3.7

J. N. Adams, G. Park, S. Levich, D. Schuster, and W. M. P. van der Aalst. A
framework for extracting and encoding features from object-centric event data. In
J. Troya, B. Medjahed, M. Piattini, L. Yao, P. Fernandez, and A. Ruiz-Cortés,
editors, Service-Oriented Computing, volume 13740 of Lecture Notes in Computer
Science, pages 36-53. Springer, 2022. doi:10.1007/978-3-031-20984-0 3.

J. N. Adams, D. Schuster, S. Schmitz, G. Schuh, and W. M. P. van der Aalst.
Defining cases and variants for object-centric event data. In 2022 4th Inter-
national Conference on Process Mining (ICPM), pages 128-135. IEEE, 2022.
doi:10.1109/ICPM57379.2022.9980730.

A. Adriansyah. Aligning observed and modeled behavior. Ph.D. thesis, Eindhoven
University of Technology, Department of Mathematics and Computer Science, 2014.

A. Adriansyah, B. F. van Dongen, D. A. M. Piessens, M. T. Wynn, and M. Adams.
Robust performance analysis on yawl process models with advanced constructs.
Journal of Information Technology Theory and Application (JITTA), 12(3):5-26,
2011. URL https://aisel.aisnet.org/jitta/voll2/iss3/2.

A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and W. M. P.
van der Aalst. Measuring precision of modeled behavior. Information Systems and
e-Business Management, 13(1):37-67, 2015. doi:10.1007/s10257-014-0234-7.

A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed
graph. SIAM Journal on Computing, 1(2):131-137, 1972. doi:10.1137,/0201008.

W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization of Time-
Oriented Data. Springer, 2011. doi:10.1007,/978-0-85729-079-3.

337

https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.1109/MCI.2017.2670420
https://doi.org/10.1007/978-3-031-08848-3_7
https://doi.org/10.1007/978-3-031-08848-3_7
https://doi.org/10.1007/978-3-031-20984-0_3
https://doi.org/10.1109/ICPM57379.2022.9980730
https://aisel.aisnet.org/jitta/vol12/iss3/2
https://doi.org/10.1007/s10257-014-0234-7
https://doi.org/10.1137/0201008
https://doi.org/10.1007/978-0-85729-079-3

References

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

338

J. F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832-843, 1983. doi:10.1145/182.358434.

R. Andrews, C. van Dun, M. T. Wynn, W. Kratsch, M. Roglinger, and A. ter Hof-
stede. Quality-informed semi-automated event log generation for process mining.
Decision Support Systems, 132:113265, 2020. doi:10.1016/j.dss.2020.113265.

A. Armas-Cervantes, N. van Beest, M. La Rosa, M. Dumas, and S. Raboczi. In-
cremental and interactive business process model repair in apromore. Proceed-
ings of the BPM Demo Track and BPM Dissertation Award, 1920, 2017. URL
https://ceur-ws.org/Vol-1920/BPM_2017_paper_206.pdf.

A. Armas-Cervantes, N. R. T. P. van Beest, M. La Rosa, M. Dumas, and L. Garcia-
Banuelos. Interactive and incremental business process model repair. In H. Panetto,
C. Debruyne, W. Gaaloul, M. Papazoglou, A. Paschke, C. A. Ardagna, and
R. Meersman, editors, On the Move to Meaningful Internet Systems. OTM 2017
Conferences, volume 10573 of Lecture Notes in Computer Science, pages 53-74.
Springer, 2017. doi:10.1007/978-3-319-69462-7 5.

A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi, A. Marrella, M. Me-
cella, and A. Soo. Automated discovery of process models from event logs: Review
and benchmark. IEEE Transactions on Knowledge and Data Engineering, 31(4):
686-705, 2019. doi:10.1109/TKDE.2018.2841877.

A. Augusto, J. Carmona, and H. M. W. Verbeek. Advanced process discovery
techniques. In W. M. P. van der Aalst and J. Carmona, editors, Process Mining
Handbook, volume 448 of Lecture Notes in Business Information Processing, pages
76-107. Springer, 2022. doi:10.1007/978-3-031-08848-3 3.

P. Badakhshan, B. Wurm, T. Grisold, J. Geyer-Klingeberg, J. Mendling, and J. vom
Brocke. Creating business value with process mining. The Journal of Strategic
Information Systems, 31(4):101745, 2022. doi:10.1016/j.jsis.2022.101745.

J. Barwise. An introduction to first-order logic. In HANDBOOK OF MATHEMAT-
ICAL LOGIC, volume 90 of Studies in Logic and the Foundations of Mathematics,
pages 5—46. Elsevier, 1977. doi:10.1016,/S0049-237X(08)71097-8.

I. Beerepoot, C. Di Ciccio, H. A. Reijers, S. Rinderle-Ma, W. Bandara, A. Burattin,
D. Calvanese, T. Chen, I. Cohen, B. Depaire, G. Di Federico, M. Dumas, C. van
Dun, T. Fehrer, D. A. Fischer, A. Gal, M. Indulska, V. Isahagian, C. Klinkmdiller,
W. Kratsch, H. Leopold, A. van Looy, H. Lopez, S. Lukumbuzya, J. Mendling,
L. Meyers, L. Moder, M. Montali, V. Muthusamy, M. Reichert, Y. Rizk, M. Rose-
mann, M. Roglinger, S. Sadiq, R. Seiger, T. Slaats, M. Simkus, I. A. Someh, B. We-
ber, I. Weber, M. Weske, and F. Zerbato. The biggest business process manage-
ment problems to solve before we die. Computers in Industry, 146:103837, 2023.
doi:10.1016/j.compind.2022.103837.

C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying business processes with
bp-ql. Information Systems, 33(6):477-507, 2008. doi:10.1016/j.is.2008.02.005.

https://doi.org/10.1145/182.358434
https://doi.org/10.1016/j.dss.2020.113265
https://ceur-ws.org/Vol-1920/BPM_2017_paper_206.pdf
https://doi.org/10.1007/978-3-319-69462-7_5
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1007/978-3-031-08848-3_3
https://doi.org/10.1016/j.jsis.2022.101745
https://doi.org/10.1016/S0049-237X(08)71097-8
https://doi.org/10.1016/j.compind.2022.103837
https://doi.org/10.1016/j.is.2008.02.005

References

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

S.-M.-R. Beheshti, B. Benatallah, H. R. Motahari-Nezhad, and S. Sakr. A query
language for analyzing business processes execution. In S. Rinderle-Ma, F. Toumani,
and K. Wolf, editors, Business Process Management, volume 6896 of Lecture Notes
in Computer Science, pages 281-297. Springer, 2011. doi:10.1007/978-3-642-23059-
2 22,

E. Benevento, P. M. Dixit, M. F. Sani, D. Aloini, and W. M. P. van der Aalst.
Evaluating the effectiveness of interactive process discovery in healthcare: A case
study. In C. Di Francescomarino, R. Dijkman, and U. Zdun, editors, Business Pro-
cess Management Workshops, volume 362 of Lecture Notes in Business Information
Processing, pages 508-519. Springer, 2019. doi:10.1007/978-3-030-37453-2 41.

E. Benevento, D. Aloini, and W. M. P. van der Aalst. How can interactive process
discovery address data quality issues in real business settings? evidence from a
case study in healthcare. Journal of Biomedical Informatics, 130:104083, 2022.
doi:10.1016/j.jbi.2022.104083.

G. Bernard and P. Andritsos. Truncated trace classifier. removal of incom-
plete traces from event logs. In S. Nurcan, I. Reinhartz-Berger, P. Soffer, and
J. Zdravkovic, editors, Enterprise, Business-Process and Information Systems Mod-
eling, volume 387 of Lecture Notes in Business Information Processing, pages 150—
165. Springer, 2020. doi:10.1007/978-3-030-49418-6 _10.

A. Berti and W. M. P. van der Aalst. A novel token-based replay technique to speed
up conformance checking and process enhancement. In M. Koutny, F. Kordon, and
L. Pomello, editors, Transactions on Petri Nets and Other Models of Concurrency
XV, volume 12530 of Lecture Notes in Computer Science, pages 1-26. Springer,
2021. doi:10.1007,/978-3-662-63079-2 1.

A. Berti, C.-Y. Li, D. Schuster, and S. J. van Zelst. The process mining toolkit
(PMTK): Enabling advanced process mining in an integrated fashion. In Proceed-
ings of the ICPM Doctoral Consortium and Demo Track 2021, pages 43—44. CEUR
Workshop Proceedings, 2021. URL https://ceur-ws.org/Vol-3098/demo_206.
pdf.

A. Berti, S. J. van Zelst, and D. Schuster. PM4Py: A process mining library for
Python. Software Impacts, 17:100556, 2023. doi:10.1016/j.simpa.2023.100556.

A. Berti, H. Kourani, H. Hafke, C.-Y. Li, and D. Schuster. Evaluating large lan-
guage models in process mining: Capabilities, benchmarks, and evaluation strate-
gies. In H. van der Aa, D. Bork, R. Schmidt, and A. Sturm, editors, Enterprise,
Business-Process and Information Systems Modeling, volume 511 of Lecture Notes
in Business Information Processing, pages 13-21. Springer, 2024. doi:10.1007/978-
3-031-61007-3 _ 2.

A. Berti, D. Schuster, and W. M. P. van der Aalst. Abstractions, scenarios, and
prompt definitions for process mining with LLMs: A case study. In J. de Weerdt
and L. Pufahl, editors, Business Process Management Workshops, volume 492 of

339

https://doi.org/10.1007/978-3-642-23059-2_22
https://doi.org/10.1007/978-3-642-23059-2_22
https://doi.org/10.1007/978-3-030-37453-2_41
https://doi.org/10.1016/j.jbi.2022.104083
https://doi.org/10.1007/978-3-030-49418-6_10
https://doi.org/10.1007/978-3-662-63079-2_1
https://ceur-ws.org/Vol-3098/demo_206.pdf
https://ceur-ws.org/Vol-3098/demo_206.pdf
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1007/978-3-031-61007-3_2
https://doi.org/10.1007/978-3-031-61007-3_2

References

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

340

Lecture Notes in Business Information Processing, pages 427-439. Springer, 2024.
doi:10.1007/978-3-031-50974-2 32.

P. Bertoli, C. Di Francescomarino, M. Dragoni, and C. Ghidini. Reasoning-
based techniques for dealing with incomplete business process execution traces. In
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopou-
los, D. Tygar, M. Y. Vardi, G. Weikum, M. Baldoni, C. Baroglio, G. Boella,
and R. Micalizio, editors, AI*IA 2013: Advances in Artificial Intelligence, vol-
ume 8249 of Lecture Notes in Computer Science, pages 469-480. Springer, 2013.
doi:10.1007/978-3-319-03524-6 _ 40.

F. Bezerra, J. Wainer, and W. M. P. van der Aalst. Anomaly detection using process
mining. In T. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P. Soffer, and
R. Ukor, editors, Enterprise, Business-Process and Information Systems Modeling,
volume 29 of Lecture Notes in Business Information Processing, pages 149-161.
Springer, 2009. doi:10.1007/978-3-642-01862-6 13.

J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer, L. Petrucci,
R. Post, C. Stehno, and M. Weber. The petri net markup language: Concepts,
technology, and tools. In G. Goos, J. Hartmanis, J. van Leeuwen, W. M. P. van
der Aalst, and E. Best, editors, Applications and Theory of Petri Nets 2003, vol-
ume 2679 of Lecture Notes in Computer Science, pages 483-505. Springer, 2003.
doi:10.1007/3-540-44919-1 31.

A. Bogarin, R. Cerezo, and C. Romero. A survey on educational process mining.
WIREs Data Mining and Knowledge Discovery, 8(1), 2018. doi:10.1002/widm.1230.

A. Bolt and W. M. P. van der Aalst. Multidimensional process mining using process
cubes. In K. Gaaloul, R. Schmidt, S. Nurcan, S. Guerreiro, and Q. Ma, editors,
Enterprise, Business-Process and Information Systems Modeling, volume 214 of
Lecture Notes in Business Information Processing, pages 102-116. Springer, 2015.
doi:10.1007/978-3-319-19237-6 7.

R. P. J. C. Bose, R. S. Mans, and W. M. P. van der Aalst. Wanna improve process
mining results? In 2018 IEEE Symposium on Computational Intelligence and Data
Mining (CIDM), pages 127-134. IEEE, 2013. doi:10.1109/CIDM.2013.6597227.

A. Bottrighi, L. Canensi, G. Leonardi, S. Montani, and P. Terenziani. Trace re-

trieval for business process operational support. Expert Systems with Applications,
55:212-221, 2016. doi:10.1016/j.eswa.2015.12.002.

C. Breshears. The art of concurrency: A thread monkey’s guide to writing parallel
applications. Theory in practice. O’Reilly, 1. ed. edition, 2009.

J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. On the role of
fitness, precision, generalization and simplicity in process discovery. In D. Hutchi-
son, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,

https://doi.org/10.1007/978-3-031-50974-2_32
https://doi.org/10.1007/978-3-319-03524-6_40
https://doi.org/10.1007/978-3-642-01862-6_13
https://doi.org/10.1007/3-540-44919-1_31
https://doi.org/10.1002/widm.1230
https://doi.org/10.1007/978-3-319-19237-6_7
https://doi.org/10.1109/CIDM.2013.6597227
https://doi.org/10.1016/j.eswa.2015.12.002

References

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

M. Y. Vardi, G. Weikum, R. Meersman, H. Panetto, T. Dillon, S. Rinderle-Ma,
P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, and I. F. Cruz, editors,
On the Move to Meaningful Internet Systems: OTM 2012, volume 7565 of Lecture
Notes in Computer Science, pages 305-322. Springer, 2012. do0i:10.1007/978-3-642-
33606-5_19.

J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. A genetic
algorithm for discovering process trees. In 2012 IEEE Congress on Evolutionary
Computation, pages 1-8. IEEE, 2012. doi:10.1109/CEC.2012.6256458.

J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. Quality di-
mensions in process discovery: The importance of fitness, precision, generalization
and simplicity. International Journal of Cooperative Information Systems, 23(01):
1440001, 2014. doi:10.1142/S0218843014400012.

A. Burattin. Streaming process discovery and conformance checking. In S. Sakr and
A.Y. Zomaya, editors, Encyclopedia of Big Data Technologies, pages 1-8. Springer,
2018. doi:10.1007/978-3-319-63962-8 103-1.

D. M. Campbell and D. Radford. Tree isomorphism algorithms:
Speed vs. clarity. Mathematics Magazine, — 64(4):252-261, 1991.
doi:10.1080,/0025570X.1991.11977616.

L. Canensi, G. Leonardi, S. Montani, and P. Terenziani. Multi-level interactive
medical process mining. In A. ten Teije, C. Popow, J. H. Holmes, and L. Sacchi,
editors, Artificial Intelligence in Medicine, volume 10259 of Lecture Notes in Com-
puter Science, pages 256-260. Springer, 2017. doi:10.1007/978-3-319-59758-4 28.

J. Carmona and R. Gavalda. Online techniques for dealing with concept drift in pro-
cess mining. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, J. Hollmén, F. Klawonn,
and A. Tucker, editors, Advances in Intelligent Data Analysis XI, volume 7619 of
Lecture Notes in Computer Science, pages 90-102. Springer, 2012. doi:10.1007 /978~
3-642-34156-4 10.

J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich. Conformance Checking.
Springer, 2018. doi:10.1007/978-3-319-99414-7.

J. Carmona, B. F. van Dongen, and M. Weidlich. Conformance checking: Founda-
tions, milestones and challenges. In W. M. P. van der Aalst and J. Carmona, editors,
Process Mining Handbook, volume 448 of Lecture Notes in Business Information
Processing, pages 155-190. Springer, 2022. doi:10.1007,/978-3-031-08848-3 5.

J. A. Carrasco-Ochoa, J. F. Martinez-Trinidad, J. H. Sossa-Azuela, J. A. Olvera
Lopez, and F. Famili, editors. Pattern Recognition. Lecture Notes in Computer
Science. Springer, 2015. doi:10.1007/978-3-319-19264-2.

M. Chinosi and A. Trombetta. BPMN: An introduction to the standard. Computer
Standards & Interfaces, 34(1):124-134, 2012. doi:10.1016/j.cs1.2011.06.002.

341

https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1109/CEC.2012.6256458
https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1007/978-3-319-63962-8_103-1
https://doi.org/10.1080/0025570X.1991.11977616
https://doi.org/10.1007/978-3-319-59758-4_28
https://doi.org/10.1007/978-3-642-34156-4_10
https://doi.org/10.1007/978-3-642-34156-4_10
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-031-08848-3_5
https://doi.org/10.1007/978-3-319-19264-2
https://doi.org/10.1016/j.csi.2011.06.002

References

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

342

A. C. Choueiri, D. M. V. Sato, E. E. Scalabrin, and E. A. P. Santos. An
extended model for remaining time prediction in manufacturing systems us-
ing process mining. Journal of Manufacturing Systems, 56:188-201, 2020.
doi:10.1016/j.jmsy.2020.06.003.

P. Ciancarini, A. Fantechi, and R. Gorrieri, editors. Formal Methods for Open
Object-Based Distributed Systems. Springer, 1999. doi:10.1007/978-0-387-35562-7.

D. Dakic, D. Stefanovic, T. Lolic, D. Narandzic, and N. Simeunovic. Event log
extraction for the purpose of process mining: A systematic literature review. In
G. Prostean, J. J. Lavios Villahoz, L. Brancu, and G. Bakacsi, editors, Innovation in
Sustainable Management and Entrepreneurship, Springer Proceedings in Business
and Economics, pages 299-312. Springer, 2020. doi:10.1007/978-3-030-44711-3 _22.

M. R. Dallagassa, C. dos Santos Garcia, E. E. Scalabrin, S. O. Ioshii, and D. R.
Carvalho. Opportunities and challenges for applying process mining in healthcare:
a systematic mapping study. Journal of Ambient Intelligence and Humanized Com-
puting, 13(1):165-182, 2022. doi:10.1007/s12652-021-02894-7.

F. D. Davis. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13(3):319-340, 1989. doi:10.2307,/249008.

L. de Bleser, R. Depreitere, K. de Waele, K. Vanhaecht, J. Vlayen, and W. Ser-
meus. Defining pathways. Journal of Nursing Management, 14(7):553-563, 2006.
doi:10.1111/j.1365-2934.2006.00702.x.

M. de Leoni. Foundations of process enhancement. In W. M. P. van der Aalst and
J. Carmona, editors, Process Mining Handbook, volume 448 of Lecture Notes in
Business Information Processing, pages 243-273. Springer, 2022. doi:10.1007/978-
3-031-08848-3 8.

M. de Leoni and F. Mannhardt. Road traffic fine management process - event
log. 4TU.Centre for Research Data, 2015. URL https://doi.org/10.4121/uuid:
270£d440-1057-4£fb9-89a9-b699b47990£5.

H. de Oliveira, V. Augusto, B. Jouaneton, L. Lamarsalle, M. Prodel, and X. Xie.
Optimal process mining of timed event logs. Information Sciences, 528:58-78, 2020.
doi:10.1016/j.ins.2020.04.020.

E. de Roock and N. Martin. Process mining in healthcare - an updated perspec-
tive on the state of the art. Journal of Biomedical Informatics, 127:103995, 2022.
doi:10.1016/j.jbi.2022.103995.

J. de Weerdt and M. T. Wynn. Foundations of process event data. In W. M. P.
van der Aalst and J. Carmona, editors, Process Mining Handbook, volume 448 of
Lecture Notes in Business Information Processing, pages 193-211. Springer, 2022.
doi:10.1007/978-3-031-08848-3 6.

https://doi.org/10.1016/j.jmsy.2020.06.003
https://doi.org/10.1007/978-0-387-35562-7
https://doi.org/10.1007/978-3-030-44711-3_22
https://doi.org/10.1007/s12652-021-02894-7
https://doi.org/10.2307/249008
https://doi.org/10.1111/j.1365-2934.2006.00702.x
https://doi.org/10.1007/978-3-031-08848-3_8
https://doi.org/10.1007/978-3-031-08848-3_8
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.1016/j.ins.2020.04.020
https://doi.org/10.1016/j.jbi.2022.103995
https://doi.org/10.1007/978-3-031-08848-3_6

References

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

J. de Weerdt, M. de Backer, J. Vanthienen, and B. Baesens. A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Information Systems, 37(7):654-676, 2012. doi:10.1016/j.is.2012.02.004.

J. de Weerdt, A. Schupp, Vanderloock, and B. Baesens. Process min-
ing for the multi-faceted analysis of business processes—a case study in a
financial services organization. Computers in Industry, 64(1):57-67, 2013.
doi:10.1016/j.compind.2012.09.010.

N. Deo. Graph theory with applications to engineering and computer science.
Prentice-Hall series in automatic computation. Prentice-Hall, 1974.

J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge tracts
in theoretical computer science. Cambridge University Press, 1 edition, 1995.
doi:10.1017/CB0O9780511526558.

C. Di Ciccio, A. Marrella, and A. Russo. Knowledge-intensive processes: Charac-
teristics, requirements and analysis of contemporary approaches. Journal on Data
Semantics, 4(1):29-57, 2015. doi:10.1007/s13740-014-0038-4.

C. Di Francescomarino and C. Ghidini. Predictive process monitoring. In W. M. P.
van der Aalst and J. Carmona, editors, Process Mining Handbook, volume 448 of
Lecture Notes in Business Information Processing, pages 320-346. Springer, 2022.
doi:10.1007/978-3-031-08848-3 10.

K. Diba, K. Batoulis, M. Weidlich, and M. Weske. Extraction, correlation, and
abstraction of event data for process mining. WIREs Data Mining and Knowledge
Discovery, 10(3), 2020. do0i:10.1002/widm.1346.

R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis of business
process models in bpmn. Information and Software Technology, 50(12):1281-1294,
2008. doi:10.1016/j.infsof.2008.02.006.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269-271, 1959. doi:10.1007/BF01386390.

P. M. Dixit. Interactive Process Mining. Dissertation, Technische Universiteit Eind-
hoven., 2019. URL https://research.tue.nl/files/127274756/20190619_
Dixit.pdf.

P. M. Dixit, J. C. A. M. Buijs, W. M. P. van der Aalst, B. F. A. Hompes, and J. Bu-
urman. Using domain knowledge to enhance process mining results. In P. Ceravolo
and S. Rinderle-Ma, editors, Data-Driven Process Discovery and Analysis, volume

244 of Lecture Notes in Business Information Processing, pages 76—104. Springer,
2017. doi:10.1007,/978-3-319-53435-0 4.

P. M. Dixit, J. C. A. M. Buijs, and W. M. P. van der Aalst. Prodigy:
Human-in-the-loop process discovery. In 12th International Conference on Re-
search Challenges in Information Science (RCIS), pages 1-12. IEEE, 2018.
doi:10.1109/RCIS.2018.8406657.

343

https://doi.org/10.1016/j.is.2012.02.004
https://doi.org/10.1016/j.compind.2012.09.010
https://doi.org/10.1017/CBO9780511526558
https://doi.org/10.1007/s13740-014-0038-4
https://doi.org/10.1007/978-3-031-08848-3_10
https://doi.org/10.1002/widm.1346
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1007/BF01386390
https://research.tue.nl/files/127274756/20190619_Dixit.pdf
https://research.tue.nl/files/127274756/20190619_Dixit.pdf
https://doi.org/10.1007/978-3-319-53435-0_4
https://doi.org/10.1109/RCIS.2018.8406657

References

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

344

P. M. Dixit, J. C. A. M. Buijs, H. M. W. Verbeek, and W. M. P. van der Aalst. Fast
incremental conformance analysis for interactive process discovery. In W. Abramow-
icz and A. Paschke, editors, Business Information Systems, volume 320 of Lec-

ture Notes in Business Information Processing, pages 163-175. Springer, 2018.
doi:10.1007/978-3-319-93931-5 12.

P. M. Dixit, S. Suriadi, R. Andrews, M. T. Wynn, A. H. M. ter Hofstede, J. C.
A. M. Buijs, and W. M. P. van der Aalst. Detection and interactive repair of
event ordering imperfection in process logs. In J. Krogstie and H. A. Reijers,
editors, Advanced Information Systems Engineering, volume 10816 of Lecture Notes
in Computer Science, pages 274-290. Springer, 2018. doi:10.1007/978-3-319-91563-
0 _17.

P. M. Dixit, H. M. W. Verbeek, J. C. A. M. Buijs, and W. M. P. van der Aalst.
Interactive data-driven process model construction. In J. C. Trujillo, K. C. Davis,
X. Du, Z. Li, T. W. Ling, G. Li, and M. L. Lee, editors, Conceptual Modeling,
volume 11157 of Lecture Notes in Computer Science, pages 251-265. Springer, 2018.
doi:10.1007/978-3-030-00847-5 19.

D. Duma and R. Aringhieri. Mining the patient flow through an emergency depart-
ment to deal with overcrowding. In P. Cappanera, J. Li, A. Matta, E. Sahin, N. J.
Vandaele, and F. Visintin, editors, Health Care Systems Engineering, volume 210
of Springer Proceedings in Mathematics € Statistics, pages 49-59. Springer, 2017.
doi:10.1007/978-3-319-66146-9 5.

M. Dumas, W. M. P. van der Aalst, and A. ter Hofstede, editors. Process-aware in-
formation systems: Bridging people and software through process technology. Wiley-
Interscience, 2005. doi:10.1002/0471741442.

M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business
Process Management. Springer, 2013. doi:10.1007/978-3-642-33143-5.

M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business
Process Management. Springer, 2 edition, 2018. doi:10.1007/978-3-662-56509-4.

S. Dunzer, M. Stierle, M. Matzner, and S. Baier. Conformance checking: A state-
of-the-art literature review. In S. Betz, editor, Proceedings of the 11th International
Conference on Subject-Oriented Business Process Management - S-BPM ONE 19,
pages 1-10. ACM, 2019. doi:10.1145/3329007.3329014.

R. Dybowski, K. B. Laskey, J. W. Myers, and S. Parsons. Introduction to the
special issue on the fusion of domain knowledge with data for decision support.
The Journal of Machine Learning Research, 4:293-294, 2003. URL https://wuw.
jmlr.org/papers/volume4/dybowskiO3a/dybowskiO3a.pdf.

G. Engels, A. Forster, R. Heckel, and S. Thone. Process modeling using uml.
In M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede, editors,
Process-Aware Information Systems, pages 83-117. John Wiley & Sons, Inc, 2005.
doi:10.1002/0471741442.ch5.

https://doi.org/10.1007/978-3-319-93931-5_12
https://doi.org/10.1007/978-3-319-91563-0_17
https://doi.org/10.1007/978-3-319-91563-0_17
https://doi.org/10.1007/978-3-030-00847-5_19
https://doi.org/10.1007/978-3-319-66146-9_5
https://doi.org/10.1002/0471741442
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1145/3329007.3329014
https://www.jmlr.org/papers/volume4/dybowski03a/dybowski03a.pdf
https://www.jmlr.org/papers/volume4/dybowski03a/dybowski03a.pdf
https://doi.org/10.1002/0471741442.ch5

References

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

[90]

[91]

M. ER, N. Arsad, H. M. Astuti, R. P. Kusumawardani, and R. A. Utami. Anal-
ysis of production planning in a global manufacturing company with process
mining. Journal of Enterprise Information Management, 31(2):317-337, 2018.
doi:10.1108/JEIM-01-2017-0003.

S. Esser and D. Fahland. Multi-dimensional event data in graph databases. Journal
on Data Semantics, 10(1-2):109-141, 2021. doi:10.1007/s13740-021-00122-1.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12(85):2825-2830, 2011. URL
http://jmlr.org/papers/vi2/pedregosalla.html.

D. Fahland and W. M. P. van der Aalst. Repairing process models to reflect reality.
In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,
D. Tygar, M. Y. Vardi, G. Weikum, A. Barros, A. Gal, and E. Kindler, editors,
Business Process Management, volume 7481 of Lecture Notes in Computer Science,
pages 229-245. Springer, 2012. doi:10.1007/978-3-642-32885-5 19.

D. Fahland and W. M. P. van der Aalst. Model repair — aligning process models
to reality. Information Systems, 47:220-243, 2015. doi:10.1016/j.is.2013.12.007.

D. Fahland, D. Liibke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zu-
gal. Declarative versus imperative process modeling languages: The issue of un-
derstandability. In T. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt,
P. Soffer, and R. Ukor, editors, Enterprise, Business-Process and Information Sys-

tems Modeling, volume 29 of Lecture Notes in Business Information Processing,
pages 353-366. Springer, 2009. doi:10.1007/978-3-642-01862-6 29.

D. Fahland, J. Mendling, H. A. Reijers, B. Weber, M. Weidlich, and S. Zugal.
Declarative versus imperative process modeling languages: The issue of maintain-
ability. In S. Rinderle-Ma, S. Sadiq, and F. Leymann, editors, Business Process
Management Workshops, volume 43 of Lecture Notes in Business Information Pro-
cessing, pages 477-488. Springer, 2010. doi:10.1007/978-3-642-12186-9 45.

D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Miinch, A. Jedlitschka, and
M. Oivo. Empirical software engineering experts on the use of students and pro-
fessionals in experiments. Empirical Software Engineering, 23(1):452-489, 2018.
doi:10.1007/s10664-017-9523-3.

S. Ferilli. Incremental declarative process mining with woman. In 2020 IEEE
Conference on Evolving and Adaptive Intelligent Systems (EAIS), pages 1-8. IEEE,
2020. doi:10.1109/EATIS48028.2020.9122700.

S. Ferilli and F. Esposito. A logic framework for incremental learning of process
models. Fundamenta Informaticae, 128:413-443, 2013. doi:10.3233 /FI1-2013-951.

345

https://doi.org/10.1108/JEIM-01-2017-0003
https://doi.org/10.1007/s13740-021-00122-1
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1007/978-3-642-32885-5_19
https://doi.org/10.1016/j.is.2013.12.007
https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.1007/978-3-642-12186-9_45
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1109/EAIS48028.2020.9122700
https://doi.org/10.3233/FI-2013-951

References

[92]

193]

[94]

[95]

[96]

97]

98]

[99]

[100]

346

S. Ferilli, D. Redavid, and F. Esposito. Logic-based incremental process mining.
In A. Bifet, M. May, B. Zadrozny, R. Gavalda, D. Pedreschi, F. Bonchi, J. Car-
doso, and M. Spiliopoulou, editors, Machine Learning and Knowledge Discovery
in Databases, volume 9286 of Lecture Notes in Computer Science, pages 218-221.
Springer, 2015. doi:10.1007/978-3-319-23461-8 17.

C. Fernandez-Llatas, editor. Interactive Process Mining in Healthcare. Health
Informatics. Springer, 2021. do0i:10.1007/978-3-030-53993-1.

C. Fernandez-Llatas, J. L. Bayo, A. Martinez-Romero, J. M. Benedi, and
V. Traver. Interactive pattern recognition in cardiovascular disease manage-
ment. a process mining approach. In 2016 IEEE-EMBS International Confer-
ence on Biomedical and Health Informatics (BHI), pages 348-351. IEEE, 2016.
doi:10.1109/BHI.2016.7455906.

F. Friedrich, J. Mendling, and F. Puhlmann. Process model generation from natural
language text. In R. King, editor, Active Flow and Combustion Control 2018,
volume 141 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design,
pages 482-496. Springer, 2019. do0i:10.1007,/978-3-642-21640-4 _36.

A. Ghose, G. Koliadis, and A. Chueng. Process discovery from model and text
artefacts. In 2007 IEEE Congress on Services (Services 2007), pages 167-174.
IEEE, 2007. doi:10.1109/SERVICES.2007.52.

A. Gianluigi Greco and L. P. Guzzo. Process discovery via precedence constraints.
In Luc De Raedt, Christian Bessiere, Didier Dubois, Patrick Doherty, Paolo Fras-
coni, Fredrik Heintz, and Peter Lucas, editors, Frontiers of Artificial Intelligence
and Applications, volume 242, pages 366-371. I0S Press, 2012. doi:10.3233/978-1-
61499-098-7-366.

S. Goedertier, D. Martens, B. Baesens, R. Haesen, and J. Vanthienen. Process min-
ing as first-order classification learning on logs with negative events. In D. Hutchi-
son, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, A. ter Hofstede, B. Benatallah, and H.-y. Paik, edi-
tors, Business Process Management Workshops, volume 4928 of Lecture Notes in
Computer Science, pages 42-53. Springer, 2008. doi:10.1007/978-3-540-78238-4 6.

G. Greco, A. Guzzo, F. Lupia, and L. Pontieri. Process discovery under precedence
constraints. ACM Transactions on Knowledge Discovery from Data, 9(4):1-39,
2015. doi:10.1145/2710020.

M. Hammori, J. Herbst, and N. Kleiner. Interactive workflow mining. In T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, J. Desel, B. Pernici, and M. Weske, editors, Business Process Manage-
ment, volume 3080 of Lecture Notes in Computer Science, pages 211-226. Springer,
2004. doi:10.1007/978-3-540-25970-1 14.

https://doi.org/10.1007/978-3-319-23461-8_17
https://doi.org/10.1007/978-3-030-53993-1
https://doi.org/10.1109/BHI.2016.7455906
https://doi.org/10.1007/978-3-642-21640-4_36
https://doi.org/10.1109/SERVICES.2007.52
https://doi.org/10.3233/978-1-61499-098-7-366
https://doi.org/10.3233/978-1-61499-098-7-366
https://doi.org/10.1007/978-3-540-78238-4_6
https://doi.org/10.1145/2710020
https://doi.org/10.1007/978-3-540-25970-1_14

References

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEFEE Transactions on Systems Science and Cybernetics,
4(2):100-107, 1968. doi:10.1109/tssc.1968.300136.

K. Héayrinen, K. Saranto, and P. Nykinen. Definition, structure, content,
use and impacts of electronic health records: a review of the research lit-
erature. International Journal of Medical Informatics, 77(5):291-304, 2008.
doi:10.1016/j.ijmedinf.2007.09.001.

J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for
graph manipulation. Communications of the ACM, 16(6):372-378, 1973.
doi:10.1145/362248.362272.

D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,
D. Tygar, M. Y. Vardi, G. Weikum, M. Li, B. Boehm, and L. J. Osterweil, edi-
tors. Unifying the Software Process Spectrum. Lecture Notes in Computer Science.
Springer, 2006. doi:10.1007/11608035.

Jane Webster and Richard T. Watson. Analyzing the past to prepare for the
future: Writing a literature review. MIS Quarterly, 26(2):xiii—xxiii, 2002. URL
http://www. jstor.org/stable/4132319.

M. Jans, M. Alles, and M. Vasarhelyi. The case for process mining in auditing:
Sources of value added and areas of application. International Journal of Accounting
Information Systems, 14(1):1-20, 2013. doi:10.1016/j.accinf.2012.06.015.

A. Janssen, J. Kay, S. Talic, M. Pusic, R. J. Birnbaum, R. Cavalcanti, D. Gasevic,
and T. Shaw. Electronic health records that support health professional reflective
practice: a missed opportunity in digital health. Journal of Healthcare Informatics
Research, 6(4):375-384, 2022. doi:10.1007/s41666-022-00123-0.

C.S. Jensen and R. T. Snodgrass. Time instant. In L. LIU and M. T. OZSU, editors,
Encyclopedia of Database Systems, page 3112. Springer, 2009. doi:10.1007/978-0-
387-39940-9 1516.

C S. Jensen and R. T. Snodgrass. Time interval. In L. LIU and M. T.
OZSU, editors, Encyclopedia of Database Systems, pages 3112-3113. Springer, 2009.
doi:10.1007/978-0-387-39940-9 1423.

Joos Buijs. Receipt phase of an environmental permit application process event
log. 4TU.Centre for Research Data, 2014. URL https://doi.org/10.4121/uuid:
a07386a5-7be3-4367-9535-70bc9e77dbe6b.

E. Kindler, V. Rubin, and W. Schéfer. Incremental workflow mining based on
document versioning information. In D. Hutchison, T. Kanade, J. Kittler, J. M.
Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Li,
B. Boehm, and L. J. Osterweil, editors, Unifying the Software Process Spectrum,

347

https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1016/j.ijmedinf.2007.09.001
https://doi.org/10.1145/362248.362272
https://doi.org/10.1007/11608035
http://www.jstor.org/stable/4132319
https://doi.org/10.1016/j.accinf.2012.06.015
https://doi.org/10.1007/s41666-022-00123-0
https://doi.org/10.1007/978-0-387-39940-9_1516
https://doi.org/10.1007/978-0-387-39940-9_1516
https://doi.org/10.1007/978-0-387-39940-9_1423
https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6

References

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

348

volume 3840 of Lecture Notes in Computer Science, pages 287—-301. Springer, 2006.
doi:10.1007/11608035 25.

M. Kobeissi, N. Assy, W. Gaaloul, B. Defude, and B. Haidar. An intent-based
natural language interface for querying process execution data. In 2021 3rd In-
ternational Conference on Process Mining (ICPM), pages 152-159. IEEE, 2021.
doi:10.1109/ICPM53251.2021.9576850.

A. Koschmider, T. Hornung, and A. Oberweis. Recommendation-based editor for
business process modeling. Data & Knowledge Engineering, 70(6):483-503, 2011.
doi:10.1016/j.datak.2011.02.002.

H. Kourani, D. Schuster, and W. M. P. van der Aalst. Scalable discovery
of partially ordered workflow models with formal guarantees. In 2023 5th In-
ternational Conference on Process Mining (ICPM), pages 89-96. IEEE, 2023.
doi:10.1109/ICPM60904.2023.10271941.

H. Kourani, A. Berti, D. Schuster, and W. M. P. van der Aalst. Process modeling
with large language models. In H. van der Aa, D. Bork, R. Schmidt, and A. Sturm,
editors, Enterprise, Business-Process and Information Systems Modeling, volume

511 of Lecture Notes in Business Information Processing, pages 229-244. Springer,
2024. doi:10.1007/978-3-031-61007-3 _18.

M. La Rosa, M. Dumas, R. Uba, and R. Dijkman. Merging business process models.
In R. Meersman, T. Dillon, and P. Herrero, editors, On the Move to Meaningful
Internet Systems: OTM 2010, volume 6426 of Lecture Notes in Computer Science,
pages 96-113. Springer, 2010. doi:10.1007/978-3-642-16934-2 10.

M. La Rosa, H. A. Reijers, W. M. P. van der Aalst, R. M. Dijkman,
J. Mendling, M. Dumas, and L. Garcia-Banuelos. Apromore: An advanced pro-
cess model repository. Expert Systems with Applications, 38(6):7029-7040, 2011.
doi:10.1016/j.eswa.2010.12.012.

P. J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6
(4):308-320, 1964. doi:10.1093/comjnl/6.4.308.

S. J. J. Leemans. Automated process discovery. In S. Sakr and A. Y. Zomaya,
editors, Encyclopedia of Big Data Technologies, pages 121-130. Springer, 2019.
doi:10.1007/978-3-319-77525-8 88.

S. J. J. Leemans. Robust Process Mining with Guarantees, volume 440 of Lecture
Notes in Business Information Processing. Springer, 2022. doi:10.1007/978-3-030-
96655-3.

S. J. J. Leemans and H. Leopold, editors. Process Mining Workshops. Lecture Notes
in Business Information Processing. Springer, 2021. doi:10.1007/978-3-030-72693-5.

S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering block-
structured process models from event logs - a constructive approach. In Application
and Theory of Petri Nets and Concurrency, volume 7927, pages 311-329. Springer,
2013. doi:10.1007/978-3-642-38697-8 17.

https://doi.org/10.1007/11608035_25
https://doi.org/10.1109/ICPM53251.2021.9576850
https://doi.org/10.1016/j.datak.2011.02.002
https://doi.org/10.1109/ICPM60904.2023.10271941
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-642-16934-2_10
https://doi.org/10.1016/j.eswa.2010.12.012
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1007/978-3-319-77525-8_88
https://doi.org/10.1007/978-3-030-96655-3
https://doi.org/10.1007/978-3-030-96655-3
https://doi.org/10.1007/978-3-030-72693-5
https://doi.org/10.1007/978-3-642-38697-8_17

References

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

S. J. J. Leemans, S. J. van Zelst, and X. Lu. Partial-order-based process min-
ing: a survey and outlook. Knowledge and Information Systems, 65(1):1-29, 2023.
doi:10.1007/s10115-022-01777-3.

V. 1. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet physics doklady, 10(8):707-710, 1966.

N. Lohmann, H. M. W. Verbeek, and R. Dijkman. Petri net transformations for
business processes — a survey. In K. Jensen and W. M. P. van der Aalst, editors,
Transactions on Petri Nets and Other Models of Concurrency II, volume 5460 of
Lecture Notes in Computer Science, pages 46-63. Springer, 2009. doi:10.1007/978-
3-642-00899-3 3.

G. Lomidze, D. Schuster, C.-Y. Li, and S. J. van Zelst. Enhanced transformation of
BPMN models with cancellation features. In J. P. A. Almeida, D. Karastoyanova,
G. Guizzardi, M. Montali, F. M. Maggi, and C. M. Fonseca, editors, Enterprise
Design, Operations, and Computing, volume 13585 of Lecture Notes in Computer
Science, pages 128-144. Springer, 2022. doi:10.1007/978-3-031-17604-3 8.

X. Lu, D. Fahland, and W. M. P. van der Aalst. Conformance checking based on
partially ordered event data. In F. Fournier and J. Mendling, editors, Business Pro-
cess Management Workshops, volume 202 of Lecture Notes in Business Information
Processing, pages 75—88. Springer, 2015. doi:10.1007/978-3-319-15895-2 7.

X. Lu, D. Fahland, F. J. H. M. van den Biggelaar, and W. M. P. van der Aalst. Han-
dling duplicated tasks in process discovery by refining event labels. In M. La Rosa,
P. Loos, and O. Pastor, editors, Business Process Management, volume 9850 of
Lecture Notes in Computer Science, pages 90-107. Springer, 2016. doi:10.1007/978-
3-319-45348-4_ 6.

X. Lu, D. Fahland, R. Andrews, S. Suriadi, M. T. Wynn, A. H. M. ter Hofstede,
and W. M. P. van der Aalst. Semi-supervised log pattern detection and exploration
using event concurrence and contextual information. In H. Panetto, C. Debruyne,
W. Gaaloul, M. Papazoglou, A. Paschke, C. A. Ardagna, and R. Meersman, edi-
tors, On the Move to Meaningful Internet Systems. OTM 2017 Conferences, vol-
ume 10573 of Lecture Notes in Computer Science, pages 154-174. Springer, 2017.
doi:10.1007/978-3-319-69462-7 11.

F. M. Maggi, A. J. Mooij, and W. M. P. van der Aalst. User-guided dis-
covery of declarative process models. In 2011 IEEE Symposium on Compu-
tational Intelligence and Data Mining (CIDM), pages 192-199. IEEE, 2011.
doi:10.1109/CIDM.2011.5949297.

F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, and P. J. Tous-
saint. From low-level events to activities - a pattern-based approach. In M. La Rosa,
P. Loos, and O. Pastor, editors, Business Process Management, volume 9850 of Lec-
ture Notes in Computer Science, pages 125-141. Springer, 2016. doi:10.1007/978-
3-319-45348-4_ 8.

349

https://doi.org/10.1007/s10115-022-01777-3
https://doi.org/10.1007/978-3-642-00899-3_3
https://doi.org/10.1007/978-3-642-00899-3_3
https://doi.org/10.1007/978-3-031-17604-3_8
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1007/978-3-319-45348-4_6
https://doi.org/10.1007/978-3-319-45348-4_6
https://doi.org/10.1007/978-3-319-69462-7_11
https://doi.org/10.1109/CIDM.2011.5949297
https://doi.org/10.1007/978-3-319-45348-4_8
https://doi.org/10.1007/978-3-319-45348-4_8

References

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

350

F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, and P. J.
Toussaint. Guided process discovery — a pattern-based approach. Information
Systems, 76:1-18, 2018. doi:10.1016/j.is.2018.01.0009.

Mannhardt, Felix. Hospital billing - event log. 4TU.Centre
for Research Data, 2012. URL https://doi.org/10.4121/uuid:
76c46b83-c930-4798-a1c9-4be94dfeb741.

R. S. Mans, M. H. Schonenberg, M. Song, W. M. P. van der Aalst, and P. J. M.
Bakker. Application of process mining in healthcare — a case study in a dutch
hospital. In A. Fred, J. Filipe, and H. Gamboa, editors, Biomedical Engineering
Systems and Technologies, volume 25 of Communications in Computer and Infor-
mation Science, pages 425-438. Springer, 2009. doi:10.1007/978-3-540-92219-3 32.

R. S. Mans, W. M. P. van der Aalst, and R. J. B. Vanwersch. Process Mining in
Healthcare. Springer, 2015. doi:10.1007/978-3-319-16071-9.

I. Markovic, A. Costa Pereira, D. de Francisco, and H. Mufioz. Querying in busi-
ness process modeling. In E. Di Nitto and M. Ripeanu, editors, Service-Oriented
Computing - ICSOC 2007 Workshops, volume 4907 of Lecture Notes in Computer
Science, pages 234-245. Springer, 2009. doi:10.1007/978-3-540-93851-4 23.

N. Martin. Using indoor location system data to enhance the quality of health-
care event logs: Opportunities and challenges. In F. Daniel, Q. Z. Sheng, and
H. Motahari, editors, Business Process Management Workshops, volume 342 of
Lecture Notes in Business Information Processing, pages 226-238. Springer, 2019.
doi:10.1007/978-3-030-11641-5 18.

N. Martin, B. Depaire, and Caris. The use of process mining in a business pro-
cess simulation context: Overview and challenges. In 2014 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), pages 381-388. IEEE, 2014.
doi:10.1109/CIDM.2014.7008693.

N. Martin, B. Depaire, and Caris. The use of process mining in business pro-
cess simulation model construction: Structuring the field. Business & Information
Systems Engineering, 58(1):73-87, 2016. doi:10.1007/s12599-015-0410-4.

N. Martin, A. Martinez-Millana, B. Valdivieso, and C. Fernéndez-Llatas. Inter-
active data cleaning for process mining: A case study of an outpatient clinic’s
appointment system. In C. Di Francescomarino, R. Dijkman, and U. Zdun, ed-
itors, Business Process Management Workshops, volume 362 of Lecture Notes in
Business Information Processing, pages 532-544. Springer, 2019. doi:10.1007/978-
3-030-37453-2 _ 43.

N. Martin, D. A. Fischer, G. D. Kerpedzhiev, K. Goel, S. J. J. Leemans,
M. Roglinger, W. M. P. van der Aalst, M. Dumas, M. La Rosa, and M. T. Wynn.
Opportunities and challenges for process mining in organizations: Results of a
Delphi study. Business & Information Systems Engineering, 63(5):511-527, 2021.
doi:10.1007/s12599-021-00720-0.

https://doi.org/10.1016/j.is.2018.01.009
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.1007/978-3-540-92219-3_32
https://doi.org/10.1007/978-3-319-16071-9
https://doi.org/10.1007/978-3-540-93851-4_23
https://doi.org/10.1007/978-3-030-11641-5_18
https://doi.org/10.1109/CIDM.2014.7008693
https://doi.org/10.1007/s12599-015-0410-4
https://doi.org/10.1007/978-3-030-37453-2_43
https://doi.org/10.1007/978-3-030-37453-2_43
https://doi.org/10.1007/s12599-021-00720-0

References

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

N. Martin, N. Wittig, and J. Munoz-Gama. Using process mining in healthcare. In
W. M. P. van der Aalst and J. Carmona, editors, Process Mining Handbook, volume
448 of Lecture Notes in Business Information Processing, pages 416-444. Springer,
2022. doi:10.1007/978-3-031-08848-3 _14.

M. Martini, D. Schuster, and W. M. P. van der Aalst. Mining frequent infix pat-
terns from concurrency-aware process execution variants. Proceedings of the VLDB
Endowment, 16(10):2666—-2678, 2023. doi:10.14778/3603581.3603603.

J. Mendling, B. F. van Dongen, and G. Neumann. Detection and prediction of
errors in epcs of the sap reference model. Data & Knowledge Engineering, 64(1):
312-329, 2008. doi:10.1016/j.datak.2007.06.019.

O. Metsker, S. Kesarev, E. Bolgova, K. Golubev, A. Karsakov, A. Yakovlev, and
S. Kovalchuk. Modelling and analysis of complex patient-treatment process using
graphminer toolbox. In J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, R. Lam,
V. V. Krzhizhanovskaya, M. H. Lees, J. J. Dongarra, and P. M. Sloot, editors,
Computational Science — ICCS 2019, volume 11540 of Lecture Notes in Computer
Science, pages 674-680. Springer, 2019. doi:10.1007/978-3-030-22750-0 _65.

J. Munoz-Gama, N. Martin, C. Fernandez-Llatas, O. A. Johnson, M. Sepulveda,
E. Helm, V. Galvez-Yanjari, E. Rojas, A. Martinez-Millana, D. Aloini, I. A. Aman-
tea, R. Andrews, M. Arias, 1. Beerepoot, E. Benevento, A. Burattin, D. Ca-
purro, J. Carmona, M. Comuzzi, B. Dalmas, R. de La Fuente, C. Di Francesco-
marino, C. Di Ciccio, R. Gatta, C. Ghidini, F. Gonzalez-Lopez, G. Ibanez-Sanchez,
H. B. Klasky, A. Prima Kurniati, X. Lu, F. Mannhardt, R. Mans, M. Marcos,
R. Medeiros de Carvalho, M. Pegoraro, S. K. Poon, L. Pufahl, H. A. Reijers,
S. Remy, S. Rinderle-Ma, L. Sacchi, F. Seoane, M. Song, A. Stefanini, E. Sulis,
A. H. M. ter Hofstede, P. J. Toussaint, V. Traver, Z. Valero-Ramon, I. de van
Weerd, W. M. P. van der Aalst, R. J. B. Vanwersch, M. Weske, M. T. Wynn, and
F. Zerbato. Process mining for healthcare: Characteristics and challenges. Journal
of Biomedical Informatics, 127:103994, 2022. do0i:10.1016/j.jbi.2022.103994.

R. C. Nickerson, U. Varshney, and J. Muntermann. A method for taxonomy devel-
opment and its application in information systems. Furopean Journal of Informa-
tion Systems, 22(3):336-359, 2013. doi:10.1057 /ejis.2012.26.

G. Park and W. M. P. van der Aalst. Action-oriented process mining: bridging
the gap between insights and actions. Progress in Artificial Intelligence, 2022.
doi:10.1007/s13748-022-00281-7.

G. Park, D. Schuster, and W. M. P. van der Aalst. Pattern-based ac-
tion engine: Generating process management actions using temporal pat-
terns of process-centric problems. Computers in Industry, 153:104020, 2023.
doi:10.1016/j.compind.2023.104020.

M. Park, M. Song, T. H. Baek, S. Son, S. J. Ha, and S. W. Cho. Workload and
delay analysis in manufacturing process using process mining. In J. Bae, S. Suriadi,
and L. Wen, editors, Asia Pacific Business Process Management, volume 219 of

351

https://doi.org/10.1007/978-3-031-08848-3_14
https://doi.org/10.14778/3603581.3603603
https://doi.org/10.1016/j.datak.2007.06.019
https://doi.org/10.1007/978-3-030-22750-0_65
https://doi.org/10.1016/j.jbi.2022.103994
https://doi.org/10.1057/ejis.2012.26
https://doi.org/10.1007/s13748-022-00281-7
https://doi.org/10.1016/j.compind.2023.104020

References

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

352

Lecture Notes in Business Information Processing, pages 138-151. Springer, 2015.
doi:10.1007/978-3-319-19509-4 11.

M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. Declare: Full sup-
port for loosely-structured processes. In 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007), page 287. IEEE, 2007.
doi:10.1109/EDOC.2007.14.

J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223-252, 1977.
doi:10.1145/356698.356702.

P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A. Reijers. Im-
perative versus declarative process modeling languages: An empirical investigation.
In F. Daniel, K. Barkaoui, and S. Dustdar, editors, Business Process Management
Workshops, volume 99 of Lecture Notes in Business Information Processing, pages
383-394. Springer, 2012. doi:10.1007/978-3-642-28108-2 37.

G. Polanci¢ and B. Cegnar. Complexity metrics for process models — a sys-
tematic literature review. Computer Standards & Interfaces, 51:104-117, 2017.
doi:10.1016/j.csi.2016.12.003.

A. Polyvyanyy. Business process querying. In S. Sakr and A. Y. Zomaya, editors,
Encyclopedia of Big Data Technologies, pages 1-9. Springer, 2019. doi:10.1007/978-
3-319-77525-8 108.

A. Polyvyanyy. Process Querying Methods. Springer, 2022. doi:10.1007/978-3-030-
92875-9.

A. Polyvyanyy, C. Ouyang, A. Barros, and W. M. P. van der Aalst. Process
querying: Enabling business intelligence through query-based process analytics.
Decision Support Systems, 100:41-56, 2017. doi:10.1016/j.dss.2017.04.011.

M. Réim, C. Di Ciccio, F. M. Maggi, M. Mecella, and J. Mendling. Log-based
understanding of business processes through temporal logic query checking. In
R. Meersman, H. Panetto, T. Dillon, M. Missikoff, L. Liu, O. Pastor, A. Cuzzocrea,
and T. Sellis, editors, On the Move to Meaningful Internet Systems: OTM 201/
Conferences, volume 8841 of Lecture Notes in Computer Science, pages 75-92.
Springer, 2014. doi:10.1007/978-3-662-45563-0 5.

T. Ramraj and R. Prabhakar. Frequent subgraph mining algorithms — a survey.
Procedia Computer Science, 47:197-204, 2015. doi:10.1016/j.procs.2015.03.198.

A. Rebuge and D. R. Ferreira. Business process analysis in healthcare environments:
A methodology based on process mining. Information Systems, 37(2):99-116, 2012.
doi:10.1016/j.is.2011.01.003.

A. J. Rembert, A. Omokpo, P. Mazzoleni, and R. T. Goodwin. Process discovery
using prior knowledge. In S. Basu, C. Pautasso, L. Zhang, and X. Fu, editors,
Service-Oriented Computing, pages 328-342. Springer, 2013. doi:10.1007/978-3-
642-45005-1_23.

https://doi.org/10.1007/978-3-319-19509-4_11
https://doi.org/10.1109/EDOC.2007.14
https://doi.org/10.1145/356698.356702
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1016/j.csi.2016.12.003
https://doi.org/10.1007/978-3-319-77525-8_108
https://doi.org/10.1007/978-3-319-77525-8_108
https://doi.org/10.1007/978-3-030-92875-9
https://doi.org/10.1007/978-3-030-92875-9
https://doi.org/10.1016/j.dss.2017.04.011
https://doi.org/10.1007/978-3-662-45563-0_5
https://doi.org/10.1016/j.procs.2015.03.198
https://doi.org/10.1016/j.is.2011.01.003
https://doi.org/10.1007/978-3-642-45005-1_23
https://doi.org/10.1007/978-3-642-45005-1_23

References

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

K. Revoredo. On the use of domain knowledge for process model repair. Software
and Systems Modeling, 2022. doi:10.1007/s10270-022-01067-0.

J. Ribeiro, J. Carmona, M. Misir, and M. Sebag. A recommender system for
process discovery. In S. Sadiq, P. Soffer, and H. Vdlzer, editors, Business Process
Management, volume 8659 of Lecture Notes in Computer Science, pages 67-83.
Springer, 2014. doi:10.1007/978-3-319-10172-9 5.

E. Rojas, J. Munoz-Gama, M. Sepulveda, and D. Capurro. Process mining in
healthcare: A literature review. Journal of Biomedical Informatics, 61:224-236,
2016. doi:10.1016/j.jbi.2016.04.007.

A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes
based on monitoring real behavior. Information Systems, 33(1):64-95, 2008.
doi:10.1016/j.is.2007.07.001.

A. Rozinat, I. de Jong, C. W. Giinther, and W. M. P. van der Aalst. Process
mining applied to the test process of wafer scanners in asml. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(4):474-479,
2009. doi:10.1109/TSMCC.2009.2014169.

V. Rubin, C. W. Giinther, W. M. P. van der Aalst, E. Kindler, B. F. van Dongen,
and W. Schéfer. Process mining framework for software processes. In D. Hutchi-
son, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. P. Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, Q. Wang, D. Pfahl, and D. M. Raffo, editors, Software Process
Dynamics and Agility, volume 4470 of Lecture Notes in Computer Science, pages
169-181. Springer, 2007. doi:10.1007/978-3-540-72426-1 15.

K. Salimifard and M. Wright. Petri net-based modelling of workflow systems:
An overview. FEuropean Journal of Operational Research, 134(3):664-676, 2001.
doi:10.1016,/S0377-2217(00)00292-7.

M. F. Sani, S. J. van Zelst, and W. M. P. van der Aalst. Improving process
discovery results by filtering outliers using conditional behavioural probabilities. In
E. Teniente and M. Weidlich, editors, Business Process Management Workshops,
volume 308 of Lecture Notes in Business Information Processing, pages 216—229.
Springer, 2018. doi:10.1007/978-3-319-74030-0 16.

M. F. Sani, A. Berti, S. J. van Zelst, and W. M. P. van der Aalst. Filtering toolkit:
Interactively filter event logs to improve the quality of discovered models. In B. De-
paire, J. de Smedt, M. Dumas, D. Fahland, A. Kumar, H. Leopold, M. Reichert,
S. Rinderle-Ma, S. Schulte, S. Seidel, and W. M. P. van der Aalst, editors, BPM
2019 Dissertation Award, Doctoral Consortium, and Demonstration Track, CEUR
Workshop Proceedings, pages 134-138. CEUR Workshop Proceedings, 2019. URL
https://ceur-ws.org/Vol-2420/paperDT4.pdf.

A.-W. Scheer, O. Thomas, and O. Adam. Process modeling using event-driven
process chains. In M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede,

353

https://doi.org/10.1007/s10270-022-01067-0
https://doi.org/10.1007/978-3-319-10172-9_5
https://doi.org/10.1016/j.jbi.2016.04.007
https://doi.org/10.1016/j.is.2007.07.001
https://doi.org/10.1109/TSMCC.2009.2014169
https://doi.org/10.1007/978-3-540-72426-1_15
https://doi.org/10.1016/S0377-2217(00)00292-7
https://doi.org/10.1007/978-3-319-74030-0_16
https://ceur-ws.org/Vol-2420/paperDT4.pdf

References

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

354

editors, Process-Aware Information Systems, pages 119-145. John Wiley & Sons,
Inc, 2005. doi:10.1002/0471741442.ch6.

D. Schuster and G. J. Kolhof. Scalable online conformance checking using incremen-
tal prefix-alignment computation. In H. Hacid, F. Outay, H.-y. Paik, A. Alloum,
M. Petrocchi, M. R. Bouadjenek, A. Beheshti, X. Liu, and A. Maaradji, editors,
Service-Oriented Computing — ICSOC 2020 Workshops, volume 12632 of Lecture
Notes in Computer Science, pages 379-394. Springer, 2021. doi:10.1007/978-3-030-
76352-7 36.

D. Schuster and S. J. van Zelst. Online process monitoring using incremental state-
space expansion: An exact algorithm. In D. Fahland, C. Ghidini, J. Becker, and
M. Dumas, editors, Business Process Management, volume 12168 of Lecture Notes
in Computer Science, pages 147-164. Springer, 2020. doi:10.1007/978-3-030-58666-
9 9.

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Incremental discovery
of hierarchical process models. In F. Dalpiaz, J. Zdravkovic, and P. Loucopoulos,
editors, Research Challenges in Information Science, volume 385 of Lecture Notes in
Business Information Processing, pages 417-433. Springer, 2020. doi:10.1007/978-
3-030-50316-1 25.

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Alignment approximation
for process trees. In S. J. J. Leemans and H. Leopold, editors, Process Mining
Workshops, volume 406 of Lecture Notes in Business Information Processing, pages
247-259. Springer, 2021. doi:10.1007/978-3-030-72693-5 19.

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Freezing sub-models
during incremental process discovery. In A. Ghose, J. Horkoff, V. E. Silva Souza,
J. Parsons, and J. Evermann, editors, Conceptual Modeling, volume 13011 of Lecture
Notes in Computer Science, pages 14-24. Springer, 2021. doi:10.1007/978-3-030-
89022-3 2.

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Sub-model freezing during
incremental process discovery in cortado. In Proceedings of the ICPM Doctoral
Consortium and Demo Track 2021, pages 43-44. CEUR Workshop Proceedings,
2021. URL https://ceur-ws.org/Vol-3098/demo_207.pdf.

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Cortado—an inter-
active tool for data-driven process discovery and modeling. In D. Buchs and
J. Carmona, editors, Application and Theory of Petri Nets and Concurrency, vol-
ume 12734 of Lecture Notes in Computer Science, pages 465-475. Springer, 2021.
doi:10.1007/978-3-030-76983-3 23.

D. Schuster, E. Domnitsch, S. J. van Zelst, and W. M. P. van der Aalst. A
generic trace ordering framework for incremental process discovery. In T. Bouadi,
E. Fromont, and E. Hiillermeier, editors, Advances in Intelligent Data Analysis
XX, volume 13205 of Lecture Notes in Computer Science, pages 264—277. Springer,
2022. doi:10.1007/978-3-031-01333-1_21.

https://doi.org/10.1002/0471741442.ch6
https://doi.org/10.1007/978-3-030-76352-7_36
https://doi.org/10.1007/978-3-030-76352-7_36
https://doi.org/10.1007/978-3-030-58666-9_9
https://doi.org/10.1007/978-3-030-58666-9_9
https://doi.org/10.1007/978-3-030-50316-1_25
https://doi.org/10.1007/978-3-030-50316-1_25
https://doi.org/10.1007/978-3-030-72693-5_19
https://doi.org/10.1007/978-3-030-89022-3_2
https://doi.org/10.1007/978-3-030-89022-3_2
https://ceur-ws.org/Vol-3098/demo_207.pdf
https://doi.org/10.1007/978-3-030-76983-3_23
https://doi.org/10.1007/978-3-031-01333-1_21

References

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

188

[189)]

D. Schuster, N. Focking, S. J. van Zelst, and W. M. P. van der Aalst. Conformance
checking for trace fragments using infix and postfix alignments. In M. Sellami,
P. Ceravolo, H. A. Reijers, W. Gaaloul, and H. Panetto, editors, Cooperative In-
formation Systems, volume 13591 of Lecture Notes in Computer Science, pages
299-310. Springer, 2022. doi:10.1007/978-3-031-17834-4 18.

D. Schuster, M. Martini, S. J. van Zelst, and W. M. P. van der Aalst. Control-
flow-based querying of process executions from partially ordered event data. In
J. Troya, B. Medjahed, M. Piattini, L. Yao, P. Fernandez, and A. Ruiz-Cortés,
editors, Service-Oriented Computing, volume 13740 of Lecture Notes in Computer
Science, pages 19-35. Springer, 2022. doi:10.1007/978-3-031-20984-0 2.

D. Schuster, L. Schade, S. J. van Zelst, and W. M. P. van der Aalst. Temporal per-
formance analysis for block-structured process models in Cortado. In J. de Weerdt
and A. Polyvyanyy, editors, Intelligent Information Systems, volume 452 of Lec-
ture Notes in Business Information Processing, pages 110-119. Springer, 2022.
doi:10.1007/978-3-031-07481-3 13.

D. Schuster, L. Schade, S. J. van Zelst, and W. M. P. van der Aalst. Visualizing trace
variants from partially ordered event data. In J. Munoz-Gama and X. Lu, editors,
Process Mining Workshops, volume 433 of Lecture Notes in Business Information
Processing, pages 34—46. Springer, 2022. doi:10.1007/978-3-030-98581-3 3.

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Utilizing domain knowledge
in data-driven process discovery: A literature review. Computers in Industry, 137:
103612, 2022. doi:10.1016/j.compind.2022.103612.

D. Schuster, N. Focking, S. J. van Zelst, and W. M. P. van der Aalst. Incremental
discovery of process models using trace fragments. In C. Di Francescomarino,
A. Burattin, C. Janiesch, and S. Sadiq, editors, Business Process Management,
volume 14159 of Lecture Notes in Computer Science, pages 55—73. Springer, 2023.
doi:10.1007/978-3-031-41620-0 4.

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Cortado: A dedicated
process mining tool for interactive process discovery. SoftwareX, 22:101373, 2023.
doi:10.1016/j.s0ftx.2023.101373.

D. Schuster, E. Benevento, D. Aloini, and W. M. P. van der Aalst. Analyz-
ing healthcare processes with incremental process discovery: Practical insights
from a real-world application. Journal of Healthcare Informatics Research, 2024.
doi:10.1007/s41666-024-00165-6.

D. Schuster, F. Zerbato, S. J. van Zelst, and W. M. P. van der Aalst. Defining and
visualizing process execution variants from partially ordered event data. Informa-
tion Sciences, 657:119958, 2024. doi:10.1016/j.ins.2023.119958.

E. Serral, D. Schuster, and Y. Bertrand. Supporting users in the continuous evo-
lution of automated routines in their smart spaces. In A. Marrella and B. Weber,
editors, Business Process Management Workshops, volume 436 of Lecture Notes in

355

https://doi.org/10.1007/978-3-031-17834-4_18
https://doi.org/10.1007/978-3-031-20984-0_2
https://doi.org/10.1007/978-3-031-07481-3_13
https://doi.org/10.1007/978-3-030-98581-3_3
https://doi.org/10.1016/j.compind.2022.103612
https://doi.org/10.1007/978-3-031-41620-0_4
https://doi.org/10.1016/j.softx.2023.101373
https://doi.org/10.1007/s41666-024-00165-6
https://doi.org/10.1016/j.ins.2023.119958

References

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

356

Business Information Processing, pages 391-402. Springer, 2022. doi:10.1007/978-
3-030-94343-1 _30.

S. Shaikh, M. F. Sani, and Jans M. Janssenswillen G. Kalenkova A. Maggi F.M. Pro-
cess model simplification based on probabilities in process tree. CEUR Workshop
Proceedings, 3098, 2021. URL https://ceur-ws.org/Vol-3098/demo_210.pdf.

R. Shraga, A. Gal, D. Schumacher, A. Senderovich, and M. Weidlich. Process
discovery with context-aware process trees. Information Systems, 106:101533, 2022.
doi:10.1016/j.is.2020.101533.

T. Slaats, S. Debois, and C. O. Back. Weighing the pros and cons: Process discovery
with negative examples. In A. Polyvyanyy, M. T. Wynn, A. van Looy, and M. Re-
ichert, editors, Business Process Management, volume 12875 of Lecture Notes in
Computer Science, pages 47-64. Springer, 2021. doi:10.1007/978-3-030-85469-0 6.

A. Stefanini, D. Aloini, E. Benevento, R. Dulmin, and V. Mininno. Performance
analysis in emergency departments: a data-driven approach. Measuring Business
Ezcellence, 22(2):130-145, 2018. doi:10.1108/MBE-07-2017-0040.

A. Stefanini, D. Aloini, E. Benevento, R. Dulmin, and V. Mininno. A process
mining methodology for modeling unstructured processes. Knowledge and Process
Management, 27(4):294-310, 2020. doi:10.1002,/kpm.1649.

V. Stein Dani, H. Leopold, J. M. E. M. van der Werf, X. Lu, I. Beerepoot, J. J.
Koorn, and H. A. Reijers. Towards understanding the role of the human in event log
extraction. In A. Marrella and B. Weber, editors, Business Process Management
Workshops, volume 436 of Lecture Notes in Business Information Processing, pages

86-98. Springer, 2022. doi:10.1007/978-3-030-94343-1 7.

Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Robust pro-
cess discovery with artificial negative events. Journal of Machine Learning Research,
10(44):1305-1340, 2009. URL http://jmlr.org/papers/v10/goedertier09a.
html.

M. Svahnberg, A. Aurum, and C. Wohlin. Using students as subjects - an em-
pirical evaluation. In D. Rombach, S. Elbaum, and J. Miinch, editors, Pro-
ceedings of the Second ACM-IEEE international symposium on Empirical soft-
ware engineering and measurement - ESEM 08, pages 288-290. ACM, 2008.
doi:10.1145/1414004.1414055.

N. Tax, N. Sidorova, R. Haakma, and W. M. P. van der Aalst. Mining local
process models. Journal of Innovation in Digital Ecosystems, 3(2):183-196, 2016.
doi:10.1016/j.jides.2016.11.001.

N. Tax, N. Sidorova, W. M. P. van der Aalst, and R. Haakma. Heuristic ap-
proaches for generating local process models through log projections. In 2016 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 1-8. IEEE, 2016.
doi:10.1109/SSCI.2016.7849948.

https://doi.org/10.1007/978-3-030-94343-1_30
https://doi.org/10.1007/978-3-030-94343-1_30
https://ceur-ws.org/Vol-3098/demo_210.pdf
https://doi.org/10.1016/j.is.2020.101533
https://doi.org/10.1007/978-3-030-85469-0_6
https://doi.org/10.1108/MBE-07-2017-0040
https://doi.org/10.1002/kpm.1649
https://doi.org/10.1007/978-3-030-94343-1_7
http://jmlr.org/papers/v10/goedertier09a.html
http://jmlr.org/papers/v10/goedertier09a.html
https://doi.org/10.1145/1414004.1414055
https://doi.org/10.1016/j.jides.2016.11.001
https://doi.org/10.1109/SSCI.2016.7849948

References

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

208

[209]

[210]

[211]

N. Tax, I. Verenich, M. La Rosa, and M. Dumas. Predictive business process mon-
itoring with Istm neural networks. In E. Dubois and K. Pohl, editors, Advanced
Information Systems Engineering, volume 10253 of Lecture Notes in Computer Sci-
ence, pages 477-492. Springer, 2017. doi:10.1007/978-3-319-59536-8 30.

N. Tax, B. Dalmas, N. Sidorova, W. M. P. van der Aalst, and S. Norre. Interest-
driven discovery of local process models. Information Systems, 77:105-117, 2018.
doi:10.1016/j.i.2018.04.006.

N. Tax, X. Lu, N. Sidorova, D. Fahland, and W. M. P. van der Aalst. The impreci-
sions of precision measures in process mining. Information Processing Letters, 135:
1-8, 2018. doi:10.1016/j.ipl.2018.01.013.

F. Taymouri, M. La Rosa, M. Dumas, and F. M. Maggi. Business process variant
analysis: Survey and classification. Knowledge-Based Systems, 211:106557, 2021.
doi:10.1016/j.knosys.2020.106557.

W. M. P. van der Aalst. The application of Petri nets to workflow man-
agement. Journal of Circuits, Systems and Computers, 08(01):21-66, 1998.
doi:10.1142/50218126698000043.

W. M. P. van der Aalst. Formalization and verification of event-driven
process chains. Information and Software Technology, 41(10):639-650, 1999.
doi:10.1016/50950-5849(99)00016-6.

W. M. P. van der Aalst. On the representational bias in process mining. In 2011
IEEE 20th International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 2-7. IEEE, 2011. doi:10.1109/WETICE.2011.64.

W. M. P. van der Aalst. Process mining: discovering and improving spaghetti and
lasagna processes. In 2011 IEEE Symposium on Computational Intelligence and
Data Mining (CIDM), pages 1-7. IEEE, 2011. doi:10.1109/CIDM.2011.6129461.

W. M. P. van der Aalst. Process mining. Communications of the ACM, 55(8):
76-83, 2012. doi:10.1145/2240236.2240257.

W. M. P. van der Aalst. Process mining: Overview and opportunities.
ACM Transactions on Management Information Systems, 3(2):1-17, 2012.
doi:10.1145/2229156.2229157.

W. M. P. van der Aalst. Process cubes: Slicing, dicing, rolling up and drilling down
event data for process mining. In M. Song, M. T. Wynn, and J. Liu, editors, Asia
Pacific Business Process Management, volume 159 of Lecture Notes in Business
Information Processing, pages 1-22. Springer, 2013. doi:10.1007/978-3-319-02922-
1 1.

W. M. P. van der Aalst. Process Mining: Data Science in Action. Springer, 2016.
doi:10.1007/978-3-662-49851-4.

357

https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1016/j.is.2018.04.006
https://doi.org/10.1016/j.ipl.2018.01.013
https://doi.org/10.1016/j.knosys.2020.106557
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1016/S0950-5849(99)00016-6
https://doi.org/10.1109/WETICE.2011.64
https://doi.org/10.1109/CIDM.2011.6129461
https://doi.org/10.1145/2240236.2240257
https://doi.org/10.1145/2229156.2229157
https://doi.org/10.1007/978-3-319-02922-1_1
https://doi.org/10.1007/978-3-319-02922-1_1
https://doi.org/10.1007/978-3-662-49851-4

References

[212]

213

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

358

W. M. P. van der Aalst. A practitioner’s guide to process mining: Limitations
of the directly-follows graph. Procedia Computer Science, 164:321-328, 2019.
doi:10.1016/j.procs.2019.12.189.

W. M. P. van der Aalst. Object-centric process mining: Dealing with divergence
and convergence in event data. In P. C. Olveczky and G. Salaiin, editors, Software
Engineering and Formal Methods, volume 11724 of Lecture Notes in Computer
Science, pages 3-25. Springer, 2019. doi:10.1007/978-3-030-30446-1 1.

W. M. P. van der Aalst. On the pareto principle in process mining, task mining,
and robotic process automation. In Proceedings of the 9th International Conference
on Data Science, Technology and Applications, pages 5-12. SCITEPRESS - Science
and Technology Publications, 2020. doi:10.5220/0009979200050012.

W. M. P. van der Aalst. Process mining: A 360 degree overview. In W. M. P.
van der Aalst and J. Carmona, editors, Process Mining Handbook, volume 448

of Lecture Notes in Business Information Processing, pages 3-34. Springer, 2022.
doi:10.1007/978-3-031-08848-3 1.

W. M. P. van der Aalst. Foundations of process discovery. In W. M. P. van der Aalst
and J. Carmona, editors, Process Mining Handbook, volume 448 of Lecture Notes
in Business Information Processing, pages 37—75. Springer, 2022. doi:10.1007/978-
3-031-08848-3 2.

W. M. P. van der Aalst and A. Berti. Discovering object-centric Petri nets. Fun-
damenta Informaticae, 175(1-4):1-40, 2020. doi:10.3233/FI-2020-1946.

W. M. P. van der Aalst and J. Carmona, editors. Process Mining Handbook. Lecture
Notes in Business Information Processing. Springer, 2022. doi:10.1007/978-3-031-
08848-3.

W. M. P. van der Aalst and L. Santos. May I take your order? In A. Marrella
and B. Weber, editors, Business Process Management Workshops, volume 436 of
Lecture Notes in Business Information Processing, pages 99-110. Springer, 2022.
doi:10.1007/978-3-030-94343-1 8.

W. M. P. van der Aalst and A. ter Hofstede. YAWL: yet another workflow language.
Information Systems, 30(4):245-275, 2005. doi:10.1016/j.i5.2004.02.002.

W. M. P. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. P. Bar-
ros. Workflow patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.
doi:10.1023/A:1022883727209.

W. M. P. van der Aalst, K. M. van Hee, J. M. E. M. van der Werf, and M. Verdonk.
Auditing 2.0: Using process mining to support tomorrow’s auditor. Computer, 43
(3):90-93, 2010. doi:10.1109/MC.2010.61.

W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen. Causal nets: A mod-
eling language tailored towards process discovery. In J.-P. Katoen and B. Konig,
editors, CONCUR 2011 — Concurrency Theory, volume 6901 of Lecture Notes in
Computer Science, pages 28-42. Springer, 2011. doi:10.1007/978-3-642-23217-6 3.

https://doi.org/10.1016/j.procs.2019.12.189
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.5220/0009979200050012
https://doi.org/10.1007/978-3-031-08848-3_1
https://doi.org/10.1007/978-3-031-08848-3_2
https://doi.org/10.1007/978-3-031-08848-3_2
https://doi.org/10.3233/FI-2020-1946
https://doi.org/10.1007/978-3-031-08848-3
https://doi.org/10.1007/978-3-031-08848-3
https://doi.org/10.1007/978-3-030-94343-1_8
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1109/MC.2010.61
https://doi.org/10.1007/978-3-642-23217-6_3

References

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede, N. Sidorova,
H. M. W. Verbeek, M. Voorhoeve, and M. T. Wynn. Soundness of workflow nets:
classification, decidability, and analysis. Formal Aspects of Computing, 23(3):333—
363, 2011. doi:10.1007/s00165-010-0161-4.

W. M. P. van der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri, T. Baier,
T. Blickle, J. C. Bose, P. van den Brand, R. Brandtjen, J. C. A. M. Buijs, A. Bu-
rattin, J. Carmona, M. Castellanos, J. Claes, J. Cook, N. Costantini, F. Curbera,
E. Damiani, M. de Leoni, P. Delias, B. F. van Dongen, M. Dumas, S. Dustdar,
D. Fahland, D. R. Ferreira, W. Gaaloul, F. van Geffen, S. Goel, C. W. Giinther,
A. Guzzo, P. Harmon, A. ter Hofstede, J. Hoogland, J. E. Ingvaldsen, K. Kato,
R. Kuhn, A. Kumar, M. La Rosa, F. Maggi, D. Malerba, R. S. Mans, A. Manuel,
M. McCreesh, P. Mello, J. Mendling, M. Montali, H. R. Motahari-Nezhad, M. zur
Muehlen, J. Munoz-Gama, L. Pontieri, J. Ribeiro, A. Rozinat, H. Seguel Pérez,
R. Seguel Pérez, M. Sepilveda, J. Sinur, P. Soffer, M. Song, A. Sperduti, G. Stilo,
C. Stoel, K. Swenson, M. Talamo, W. Tan, C. Turner, J. Vanthienen, G. Varva-
ressos, H. M. W. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. Weber, M. Weidlich,
T. Weijters, L. Wen, M. Westergaard, and M. T. Wynn. Process mining manifesto.
In F. Daniel, K. Barkaoui, and S. Dustdar, editors, Business Process Management
Workshops, volume 99 of Lecture Notes in Business Information Processing, pages
169-194. Springer, 2012. doi:10.1007/978-3-642-28108-2 19.

W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen. Replaying history on
process models for conformance checking and performance analysis. WIRFEs Data
Mining and Knowledge Discovery, 2(2):182-192, 2012. doi:10.1002/widm.1045.

W. M. P. van der Aalst, J. C. A. M. Buijs, and B. F. van Dongen. Towards
improving the representational bias of process mining. In K. Aberer, E. Damiani,
and T. Dillon, editors, Data-Driven Process Discovery and Analysis, volume 116

of Lecture Notes in Business Information Processing, pages 39—-54. Springer, 2012.
doi:10.1007/978-3-642-34044-4 3.

B. F. van Dongen. BPI challenge 2012 - event log. 4TU.Centre
for Research Data, 2012. URL https://doi.org/10.4121/uuid:
3926db30-£712-4394-aebc-75976070e91f.

B. F. van Dongen. BPI challenge 2017 - event log. 4TU.Centre
for Research Data, 2017. URL https://doi.org/10.4121/uuid:
5£3067df-f10b-45da-b98b-86ae4c7a310b.

B. F. van Dongen. Efficiently computing alignments. In M. Weske, M. Mon-
tali, I. Weber, and J. vom Brocke, editors, Business Process Management, vol-
ume 11080 of Lecture Notes in Computer Science, pages 197-214. Springer, 2018.
doi:10.1007/978-3-319-98648-7 12.

B. F. van Dongen. BPI challenge 2019 - event log. 4TU.Centre
for Research Data, 2020. URL https://doi.org/10.4121/uuid:
d06aff4b-79f0-45e6-8ec8-e19730c248f1.

359

https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1002/widm.1045
https://doi.org/10.1007/978-3-642-34044-4_3
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.1007/978-3-319-98648-7_12
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1

References

[232]

[233)]

[234]

[235]

[236]

[237]

238

[239]

[240]

[241]

360

B. F. van Dongen. BPI challenge 2020 - event log. 4TU.Centre
for Research Data, 2020. URL https://doi.org/10.4121/uuid:
52fb97d4-4588-43c9-9d04-3604d4613b51.

B. F. van Dongen and F. Borchert. BPI challenge 2018 — event log.
4TU.Centre for Research Data, 2018. URL https://doi.org/10.4121/uuid:
3301445f-95e8-4ff0-98a4-901£1£204972.

B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters,
and W. M. P. van der Aalst. The ProM framework: A new era in process mining
tool support. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, G. Ciardo, and P. Darondeau,
editors, Applications and Theory of Petri Nets 2005, volume 3536 of Lecture Notes
in Computer Science, pages 444-454. Springer, 2005. doi:10.1007,/11494744 25.

B. F. van Dongen, A. K. Alves de Medeiros, and L. Wen. Process mining: Overview
and outlook of Petri net discovery algorithms. In K. Jensen and W. M. P. van der
Aalst, editors, Transactions on Petri Nets and Other Models of Concurrency II,
volume 5460 of Lecture Notes in Computer Science, pages 225—242. Springer, 2009.
doi:10.1007/978-3-642-00899-3 13.

M. L. van Eck, X. Lu, S. J. J. Leemans, and W. M. P. van der Aalst. PM?2: A process
mining project methodology. In J. Zdravkovic, M. Kirikova, and P. Johannesson,
editors, Advanced Information Systems Engineering, volume 9097 of Lecture Notes
in Computer Science, pages 297-313. Springer, 2015. doi:10.1007/978-3-319-19069-
3 _19.

S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, and W. M. P. van der
Aalst. Online conformance checking: relating event streams to process models
using prefix-alignments. International Journal of Data Science and Analytics, 8(3):
269-284, 2019. doi:10.1007/s41060-017-0078-6.

S. J. van Zelst, F. Mannhardt, M. de Leoni, and A. Koschmider. Event abstraction
in process mining: literature review and taxonomy. Granular Computing, 6(3):
719-736, 2021. doi:10.1007/341066-020-00226-2.

L. Vanbrabant, N. Martin, K. Ramaekers, and K. Braekers. Quality of
input data in emergency department simulations: Framework and assess-
ment techniques. Simulation Modelling Practice and Theory, 91:83-101, 2019.
doi:10.1016/j.simpat.2018.12.002.

B. Vazquez-Barreiros, M. Mucientes, and M. Lama. Enhancing discovered
processes with duplicate tasks. Information Sciences, 373:369-387, 2016.
doi:10.1016/j.ins.2016.09.008.

T. Vogelgesang, J. Ambrosy, D. Becher, R. Seilbeck, J. Geyer-Klingeberg, and
M. Klenk. Celonis pql: A query language for process mining. In A. Polyvyanyy,
editor, Process Querying Methods, pages 377-408. Springer, 2022. doi:10.1007/978-
3-030-92875-9 13.

https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/978-3-642-00899-3_13
https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/s41060-017-0078-6
https://doi.org/10.1007/s41066-020-00226-2
https://doi.org/10.1016/j.simpat.2018.12.002
https://doi.org/10.1016/j.ins.2016.09.008
https://doi.org/10.1007/978-3-030-92875-9_13
https://doi.org/10.1007/978-3-030-92875-9_13

References

[242]

[243]

[244]

[245]

[246]

[247]

248

[249]

[250]

[251]

[252]

J. vom Brocke, A. Simons, B. Niehaves, B. Niehaves, K. Reimer, R. Plattfaut, and
A. Cleven. Reconstructing the giant: On the importance of rigour in documenting
the literature search process. In ECIS 2009 Proceedings. AIS Electronic Library
(AISeL), 2009. URL https://aisel.aisnet.org/ecis2009/161.

J. Wang, T. Jin, R. K. Wong, and L. Wen. Querying business process model
repositories. World Wide Web, 17(3):427-454, 2014. doi:10.1007/s11280-013-0210-

Z.

M. Weber and E. Kindler. The petri net markup language. In G. Goos, J. Hart-
manis, J. van Leeuwen, H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors,
Petri Net Technology for Communication-Based Systems, volume 2472 of Lecture
Notes in Computer Science, pages 124—144. Springer, 2003. doi:10.1007/978-3-540-
40022-6 7.

H. Xu, J. Pang, X. Yang, L. Ma, H. Mao, and D. Zhao. Applying clinical guidelines
to conformance checking for diagnosis and treatment: a case study of ischemic
stroke. In 2020 IEEFE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 2125-2130. IEEE, 2020. doi:10.1109/BIBM49941.2020.9313532.

B. N. Yahya, H. Bae, S.-o. Sul, and J.-Z. Wu. Process discovery by synthesiz-
ing activity proximity and user’s domain knowledge. In M. Song, M. T. Wynn,
and J. Liu, editors, Asia Pacific Business Process Management, volume 159 of
Lecture Notes in Business Information Processing, pages 92—-105. Springer, 2013.
doi:10.1007/978-3-319-02922-1 7.

K. Yongsiriwit, N. N. Chan, and W. Gaaloul. Log-based process fragment querying
to support process design. In 2015 /8th Hawaii International Conference on System
Sciences, pages 4109-4119. IEEE, 2015. doi:10.1109/HICSS.2015.493.

1. Yiirek, D. Birant, and K. U. Birant. Interactive process miner: a new approach for
process mining. Turkish Journal of Electrical Engineering and Computer Sciences,
26(3):1314-1328, 2018. doi:10.3906/elk-1708-112.

M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine
Learning, 42:31-60, 2001. doi:10.1023/A:1007652502315.

R. Zaman, M. Hassani, and B. F. van Dongen. Efficient memory utilization in con-
formance checking of process event streams. In J. Hong, M. Bures, J. W. Park, and
T. Cerny, editors, Proceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing, pages 437-440. ACM, 2022. doi:10.1145/3477314.3507217.

R. Zaman, M. Hassani, and B. F. van Dongen. Conformance checking of process
event streams with constraints on data retention. Information Systems, 117:102228,
2023. doi:10.1016/j.i5.2023.102228.

F. Zerbato, P. Soffer, and B. Weber. Initial insights into exploratory process mining
practices. In A. Polyvyanyy, M. T. Wynn, A. van Looy, and M. Reichert, editors,

361

https://aisel.aisnet.org/ecis2009/161
https://doi.org/10.1007/s11280-013-0210-z
https://doi.org/10.1007/s11280-013-0210-z
https://doi.org/10.1007/978-3-540-40022-6_7
https://doi.org/10.1007/978-3-540-40022-6_7
https://doi.org/10.1109/BIBM49941.2020.9313532
https://doi.org/10.1007/978-3-319-02922-1_7
https://doi.org/10.1109/HICSS.2015.493
https://doi.org/10.3906/elk-1708-112
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1145/3477314.3507217
https://doi.org/10.1016/j.is.2023.102228

References

253

[254]

362

Business Process Management Forum, volume 427 of Lecture Notes in Business In-
formation Processing, pages 145-161. Springer, 2021. doi:10.1007/978-3-030-85440-
9 9.

Z. Zhang, R. Hildebrant, F. Asgarinejad, N. Venkatasubramanian, and S. Ren.
Improving process discovery results by filtering out outliers from event logs with
hidden markov models. In 2021 IEEFE 23rd Conference on Business Informatics
(CBI), pages 171-180. IEEE, 2021. doi:10.1109/CBI52690.2021.00028.

L. Zimmermann, F. Zerbato, and B. Weber. Process mining challenges perceived
by analysts: An interview study. In A. Augusto, A. Gill, D. Bork, S. Nurcan,
I. Reinhartz-Berger, and R. Schmidt, editors, Enterprise, Business-Process and In-
formation Systems Modeling, volume 450 of Lecture Notes in Business Information
Processing, pages 3-17. Springer, 2022. doi:10.1007/978-3-031-07475-2 1.

https://doi.org/10.1007/978-3-030-85440-9_9
https://doi.org/10.1007/978-3-030-85440-9_9
https://doi.org/10.1109/CBI52690.2021.00028
https://doi.org/10.1007/978-3-031-07475-2_1

List of Publications

Publications authored by Daniel Schuster that are related to this thesis

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Utilizing domain knowledge
in data-driven process discovery: A literature review. Computers in Industry, 137:
103612, 2022. doi:10.1016/j.compind.2022.103612

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Cortado: A dedicated
process mining tool for interactive process discovery. SoftwareX, 22:101373, 2023.
d0i:10.1016//j.s0ftx.2023.101373

D. Schuster, F. Zerbato, S. J. van Zelst, and W. M. P. van der Aalst. Defining and
visualizing process execution variants from partially ordered event data. Informa-
tion Sciences, 657:119958, 2024. doi:10.1016/j.ins.2023.119958

D. Schuster, E. Benevento, D. Aloini, and W. M. P. van der Aalst. Analyz-
ing healthcare processes with incremental process discovery: Practical insights
from a real-world application. Journal of Healthcare Informatics Research, 2024.
doi:10.1007/s41666-024-00165-6

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Cortado—an inter-
active tool for data-driven process discovery and modeling. In D. Buchs and
J. Carmona, editors, Application and Theory of Petri Nets and Concurrency, vol-
ume 12734 of Lecture Notes in Computer Science, pages 465—475. Springer, 2021.
doi:10.1007/978-3-030-76983-3 23

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Incremental discovery
of hierarchical process models. In F. Dalpiaz, J. Zdravkovic, and P. Loucopoulos,
editors, Research Challenges in Information Science, volume 385 of Lecture Notes in
Business Information Processing, pages 417-433. Springer, 2020. doi:10.1007/978-
3-030-50316-1_ 25

D. Schuster, N. Fécking, S. J. van Zelst, and W. M. P. van der Aalst. Incremen-
tal discovery of process models using trace fragments. In C. Di Francescomarino,
A. Burattin, C. Janiesch, and S. Sadiq, editors, Business Process Management,
volume 14159 of Lecture Notes in Computer Science, pages 55—73. Springer, 2023.
doi:10.1007/978-3-031-41620-0 4

D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Freezing sub-models during
incremental process discovery. In A. Ghose, J. Horkoff, V. E. Silva Souza, J. Parsons,
and J. Evermann, editors, Conceptual Modeling, volume 13011 of Lecture Notes in
Computer Science, pages 14-24. Springer, 2021. doi:10.1007/978-3-030-89022-3 2

363

https://doi.org/10.1016/j.compind.2022.103612
https://doi.org/10.1016/j.softx.2023.101373
https://doi.org/10.1016/j.ins.2023.119958
https://doi.org/10.1007/s41666-024-00165-6
https://doi.org/10.1007/978-3-030-76983-3_23
https://doi.org/10.1007/978-3-030-50316-1_25
https://doi.org/10.1007/978-3-030-50316-1_25
https://doi.org/10.1007/978-3-031-41620-0_4
https://doi.org/10.1007/978-3-030-89022-3_2

References

e D. Schuster, M. Martini, S. J. van Zelst, and W. M. P. van der Aalst. Control-
flow-based querying of process executions from partially ordered event data. In
J. Troya, B. Medjahed, M. Piattini, L. Yao, P. Fernandez, and A. Ruiz-Cortés,
editors, Service-Oriented Computing, volume 13740 of Lecture Notes in Computer
Science, pages 19-35. Springer, 2022. doi:10.1007/978-3-031-20984-0 2

e D. Schuster, N. Fécking, S. J. van Zelst, and W. M. P. van der Aalst. Conformance
checking for trace fragments using infix and postfix alignments. In M. Sellami,
P. Ceravolo, H. A. Reijers, W. Gaaloul, and H. Panetto, editors, Cooperative In-
formation Systems, volume 13591 of Lecture Notes in Computer Science, pages
299-310. Springer, 2022. doi:10.1007/978-3-031-17834-4 18

e D. Schuster, E. Domnitsch, S. J. van Zelst, and W. M. P. van der Aalst. A
generic trace ordering framework for incremental process discovery. In T. Bouadi,
E. Fromont, and E. Hiillermeier, editors, Advances in Intelligent Data Analysis XX,
volume 13205 of Lecture Notes in Computer Science, pages 264—277. Springer, 2022.
doi:10.1007/978-3-031-01333-1 21

e M. Martini, D. Schuster, and W. M. P. van der Aalst. Mining frequent infix pat-
terns from concurrency-aware process execution variants. Proceedings of the VLDB
Endowment, 16(10):2666—2678, 2023. doi:10.14778,/3603581.3603603

e D. Schuster, L. Schade, S. J. van Zelst, and W. M. P. van der Aalst. Visualizing trace
variants from partially ordered event data. In J. Munoz-Gama and X. Lu, editors,
Process Mining Workshops, volume 433 of Lecture Notes in Business Information

Processing, pages 34—46. Springer, 2022. doi:10.1007/978-3-030-98581-3 3

e D. Schuster, L. Schade, S. J. van Zelst, and W. M. P. van der Aalst. Temporal per-

formance analysis for block-structured process models in Cortado. In J. de Weerdt
and A. Polyvyanyy, editors, Intelligent Information Systems, volume 452 of Lec-
ture Notes in Business Information Processing, pages 110-119. Springer, 2022.
doi:10.1007/978-3-031-07481-3 13

e D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst. Alignment approximation

for process trees. In S. J. J. Leemans and H. Leopold, editors, Process Mining
Workshops, volume 406 of Lecture Notes in Business Information Processing, pages
247-259. Springer, 2021. doi:10.1007,/978-3-030-72693-5 19

Further publications authored by Daniel Schuster

364

e A. Berti, S. J. van Zelst, and D. Schuster. PM4Py: A process mining library for

Python. Software Impacts, 17:100556, 2023. doi:10.1016/j.simpa.2023.100556

e G. Park, D. Schuster, and W. M. P. van der Aalst. Pattern-based ac-

tion engine: Generating process management actions using temporal pat-
terns of process-centric problems. Computers in Industry, 153:104020, 2023.
d0i:10.1016 /j.compind.2023.104020

https://doi.org/10.1007/978-3-031-20984-0_2
https://doi.org/10.1007/978-3-031-17834-4_18
https://doi.org/10.1007/978-3-031-01333-1_21
https://doi.org/10.14778/3603581.3603603
https://doi.org/10.1007/978-3-030-98581-3_3
https://doi.org/10.1007/978-3-031-07481-3_13
https://doi.org/10.1007/978-3-030-72693-5_19
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1016/j.compind.2023.104020

References

D. Schuster and S. J. van Zelst. Online process monitoring using incremental state-
space expansion: An exact algorithm. In D. Fahland, C. Ghidini, J. Becker, and
M. Dumas, editors, Business Process Management, volume 12168 of Lecture Notes
in Computer Science, pages 147-164. Springer, 2020. doi:10.1007,/978-3-030-58666-
99

D. Schuster and G. J. Kolhof. Scalable online conformance checking using incremen-
tal prefix-alignment computation. In H. Hacid, F. Outay, H.-y. Paik, A. Alloum,
M. Petrocchi, M. R. Bouadjenek, A. Beheshti, X. Liu, and A. Maaradji, editors,
Service-Oriented Computing — ICSOC 2020 Workshops, volume 12632 of Lecture
Notes in Computer Science, pages 379-394. Springer, 2021. doi:10.1007/978-3-030-
76352-7 36

J. N. Adams, D. Schuster, S. Schmitz, G. Schuh, and W. M. P. van der Aalst.
Defining cases and variants for object-centric event data. In 2022 jth Inter-
national Conference on Process Mining (ICPM), pages 128-135. IEEE, 2022.
doi:10.1109/ICPM57379.2022.9980730

G. Lomidze, D. Schuster, C.-Y. Li, and S. J. van Zelst. Enhanced transformation of
BPMN models with cancellation features. In J. P. A. Almeida, D. Karastoyanova,
G. Guizzardi, M. Montali, F. M. Maggi, and C. M. Fonseca, editors, Enterprise
Design, Operations, and Computing, volume 13585 of Lecture Notes in Computer
Science, pages 128-144. Springer, 2022. doi:10.1007/978-3-031-17604-3 8

H. Kourani, D. Schuster, and W. M. P. van der Aalst. Scalable discovery of
partially ordered workflow models with formal guarantees. In 2028 5th In-
ternational Conference on Process Mining (ICPM), pages 89-96. IEEE, 2023.
doi:10.1109/ICPM60904.2023.10271941

A. Berti, D. Schuster, and W. M. P. van der Aalst. Abstractions, scenarios, and
prompt definitions for process mining with LLMs: A case study. In J. de Weerdt
and L. Pufahl, editors, Business Process Management Workshops, volume 492 of
Lecture Notes in Business Information Processing, pages 427-439. Springer, 2024.
doi:10.1007/978-3-031-50974-2 32

H. Kourani, A. Berti, D. Schuster, and W. M. P. van der Aalst. Process modeling
with large language models. In H. van der Aa, D. Bork, R. Schmidt, and A. Sturm,
editors, Enterprise, Business-Process and Information Systems Modeling, volume
511 of Lecture Notes in Business Information Processing, pages 229-244. Springer,
2024. doi:10.1007/978-3-031-61007-3 18

A. Berti, H. Kourani, H. Héfke, C.-Y. Li, and D. Schuster. Evaluating large lan-
guage models in process mining: Capabilities, benchmarks, and evaluation strate-
gies. In H. van der Aa, D. Bork, R. Schmidt, and A. Sturm, editors, Enterprise,
Business-Process and Information Systems Modeling, volume 511 of Lecture Notes
in Business Information Processing, pages 13-21. Springer, 2024. doi:10.1007/978-
3-031-61007-3_2

365

https://doi.org/10.1007/978-3-030-58666-9_9
https://doi.org/10.1007/978-3-030-58666-9_9
https://doi.org/10.1007/978-3-030-76352-7_36
https://doi.org/10.1007/978-3-030-76352-7_36
https://doi.org/10.1109/ICPM57379.2022.9980730
https://doi.org/10.1007/978-3-031-17604-3_8
https://doi.org/10.1109/ICPM60904.2023.10271941
https://doi.org/10.1007/978-3-031-50974-2_32
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-61007-3_2
https://doi.org/10.1007/978-3-031-61007-3_2

References

366

e E. Serral, D. Schuster, and Y. Bertrand. Supporting users in the continuous evo-

lution of automated routines in their smart spaces. In A. Marrella and B. Weber,
editors, Business Process Management Workshops, volume 436 of Lecture Notes in
Business Information Processing, pages 391-402. Springer, 2022. doi:10.1007/978-
3-030-94343-1 30

J. N. Adams, G. Park, S. Levich, D. Schuster, and W. M. P. van der Aalst. A
framework for extracting and encoding features from object-centric event data. In
J. Troya, B. Medjahed, M. Piattini, L. Yao, P. Fernandez, and A. Ruiz-Cortés,
editors, Service-Oriented Computing, volume 13740 of Lecture Notes in Computer
Science, pages 36-53. Springer, 2022. doi:10.1007/978-3-031-20984-0 3

A. Berti, C.-Y. Li, D. Schuster, and S. J. van Zelst. The process mining toolkit
(PMTK): Enabling advanced process mining in an integrated fashion. In Proceed-
ings of the ICPM Doctoral Consortium and Demo Track 2021, pages 43—44. CEUR,
Workshop Proceedings, 2021. URL https://ceur-ws.org/Vol-3098/demo_206.
pdf

https://doi.org/10.1007/978-3-030-94343-1_30
https://doi.org/10.1007/978-3-030-94343-1_30
https://doi.org/10.1007/978-3-031-20984-0_3
https://ceur-ws.org/Vol-3098/demo_206.pdf
https://ceur-ws.org/Vol-3098/demo_206.pdf

Acknowledgment

This thesis would not have been possible without the efforts of so many people. Therefore,
I want to thank everyone who has supported me along the way.

First, I want to thank the committee, consisting of Wil van der Aalst (15* Reviewer),
Boudewijn van Dongen (2°¢ Reviewer), Gerhard Lakemeyer (Chairperson), and Horst
Lichter (Examiner), for participating in my defense and the evaluation of my Ph.D.
thesis with summa cum laude. I am honored to receive your recognition of the originality
and quality of my research.

I especially want to thank Wil for his commitment, guidance, and support throughout
my entire Ph.D. journey. Your dedication to process mining is genuinely inspiring. I
appreciate that you always had an open ear to discuss new ideas, cared about the tiniest
definitions and theorems in every paper we co-authored, and supported me wherever
possible. Thank you, Wil.

I would also like to thank my daily supervisor, Sebastiaan J. (Bas) van Zelst, for all
the guidance and cooperation throughout my PhD. As Wil, you were always eager to
discuss ideas, co-authored most of my papers, and supported me in my journey. Thanks,
Bas. Many thanks also to Boudewijn, the second reviewer of my Ph.D. thesis.

I want to thank all my further close co-authors with whom I have collaborated over
the past years. Many, many thanks to you: Niklas Adams, Davide Aloini, Elisabetta
Benevento, Alessandro Berti, Yannis Bertrand, Emanuel Domnitsch, Niklas Focking,
Hannes Héfke, Gero Kolhof, Humam Kourani, Chiao-Yun Li, Giorgi Lomidze, Michael
Martini, Gyunam Park, Lukas Schade, Estefania Serral Asensio, and Francesca Zerbato.

I want to thank all the Bachelor’s and Master’s students I have supervised over the
years who contributed to incremental process discovery with their theses. I would also like
to thank all student assistants who contributed to the development of Cortado. Without
your efforts, Cortado would not be at its current level. Thanks to: Ahmad Arslan, Lars
Dietrich, Emanuel Domnitsch, Niklas Focking, Edgar Holzmann, Gero Kolhof, Giorgi
Lomidze, Michael Martini, Minh-Nghia Phan, Lukas Schade, Ariba Siddiqui, and Weiran
Yang. In this context, I would also like to thank the Software Campus program, which
supported the development of Cortado with 100,000 euros from the Federal Ministry of
Education and Research.

I would like to thank all my colleagues and friends at Fraunhofer FIT and the Chair of
Process & Data Science at RWTH Aachen University for a fantastic and unforgettable
time as a doctoral student. I have had many remarkable, enjoyable, fun, and exciting
experiences with you and made true friends over the years. I will miss you all and always
remember our countless moments together.

Last but not least, I would like to thank my family and friends for all their love,
understanding, and support throughout my Ph.D. journey.

Thank you all!

367

Curriculum Vitae

Education

e Master of Science (M. Sc.), Management, Business and Economics
RWTH Aachen University
Oct 2018 - Feb 2024

e Master of Science (M. Sc.), Computer Science
RWTH Aachen University
Oct 2016 - Jun 2019

e Bachelor of Science (B. Sc.), Computer Science
RWTH Aachen University
Oct 2012 - Feb 2016

Experience

e Fraunhofer Institute for Applied Information Technology FIT
Dept. Data Science & Artificial Intelligence — Process Mining Research Group
Aug 2019 - Jul 2024

— Research Group Lead
Apr 2023 - Jul 2024

— Research Associate
Aug 2019 - Mar 2023

e Ph.D. candidate at RWTH Aachen University
Chair of Process and Data Science
Aug 2019 - Jul 2024

e Student Assistant at RWTH Aachen University
Chair of Information Management in Mechanical Engineering
Oct 2017 - Jul 2019

e Internship at Porsche AG
May 2017 - Sep 2017

e Student Assistant at RWTH Aachen University
Chair of Information Management in Mechanical Engineering
Sep 2016 - Apr 2017

e Internship at T-Systems International
Mar 2016 - Aug 2016

369

	List of Acronyms
	List of Mathematical Notations
	Opening & Fundamentals
	Introduction
	Process Mining
	Process Models
	Process Discovery
	Conventional Process Discovery
	Non-Conventional Process Discovery

	Research Goals & Contributions
	Thesis Outline

	Literature Review
	Distinguishing Features
	Defining Distinguishing Features
	Overview of the Distinguishing Features
	Dependencies Among Characteristics and Features

	Methodology & Design
	Identified Approaches
	Overview
	Analysis & Discussion

	Challenges & Opportunities
	Challenge 1—Blending Explicit Domain Knowledge & User Feedback
	Challenge 2—Advanced User Interaction
	Challenge 3—Various Modes of Interactivity
	Challenge 4—Scalable Conformance Checking
	Challenge 5—Minimizing Representational Bias
	Challenge 6—Event Data & Process Model Visualizations
	Challenge 7—Domain Knowledge Specification
	Challenge 8—Event Data & Domain Knowledge Fusion
	Challenge 9—Software Support
	Challenge 10—Discovery Beyond Control-Flow

	Conclusion

	Preliminaries
	Basic Mathematical Concepts
	Sets & Relations
	Functions
	Multisets
	Ordered Sets
	Sequences
	Graphs & Trees

	Event Data & Event Logs
	Process Models
	Petri Nets
	Process Trees

	Conformance Checking Overview
	Alignments
	Alignments for Petri nets
	Alignments for Process Trees
	Computing Alignments

	Alignments for Trace Fragments
	Overview
	Defining Prefix, Infix & Postfix Alignments
	Computing Infix & Postfix Alignments
	Baseline Approach
	Extended Baseline Approach Using Subsequent Filtering
	Process-Tree-Based Approach

	Evaluation
	Experimental Setup
	Results
	Discussion & Threats to Validity

	Conclusion

	Incremental Process Discovery
	Incremental Process Discovery Framework
	Introduction to the Framework
	Input-Output Perspective
	Motivation & Opportunities

	Naive IPDA
	Lowest Common Ancestor IPDA
	Running Example
	Algorithm
	Summary & Termination
	LCA Lowering

	Evaluation
	Experimental Setup
	Results
	Discussion & Threats to Validity

	Illustrative Example
	Trace Ordering Effects
	Framework for Recommending Trace Orderings
	Sample Instantiations of Strategy Components
	Evaluation

	Conclusion

	Supporting Trace Fragments in Incremental Process Discovery
	Extended IPD Framework
	Trace-Fragment-Supporting IPDA
	Running Example
	Algorithm

	Evaluation
	Experimental Setup
	Results
	Discussion & Threats to Validity

	Conclusion

	Freezing Process Model Parts in Incremental Process Discovery
	Extended IPD Framework
	Naive Freezing-Enabled IPDA
	Freezing-Enabled LCA-IPDA
	Overview
	Component (1)—Replacing Frozen Subtrees
	Component (2)—Projecting Trace to be Added Next
	Component (3)—Projecting Previously Added Traces
	Component (4)—Reinserting Frozen Subtrees

	Evaluation
	Experimental Setup
	Results
	Discussion & Threats to Validity

	Illustrative Example
	Conclusion

	Facilitating Interaction with Event Data
	Defining & Visualizing Variants
	Overview
	High-Level Variants
	High-Level Case View
	Calculation & Visualization of High-Level Variants
	Limitations of the High-level Variant Visualization

	Low-Level Variants
	Low-Level Case View
	Calculation & Visualization of Low-Level Variants

	Computing High- & Low-Level Variants
	Time Granularity Modifier
	Evaluation
	Automated Experiments
	User Study

	Conclusion

	Query Language for Variants
	Related Work
	Query Language
	Syntax
	Semantics
	Query Evaluation

	Illustrative Example
	Evaluation
	Experimental Setup
	Results
	Discussion & Threats to Validity

	Conclusion

	Realization & Application
	Tool Support: Cortado
	Overview
	Variant Handling
	Variant Explorer
	Variant Querying
	Variant Modeler
	Variant Frequent Pattern Mining
	Variant Sequentialization

	Incremental Process Discovery
	Visualizing & Editing Process Models
	Adding Behavior to a Process Model

	Temporal Performance Analysis
	Overview
	Model-Independent Performance Analysis
	Model-Based Performance Analysis

	Supported Data Exchange Formats
	Software Architecture & Distribution
	Conclusion

	Case Study
	Related Work
	Overview
	Analysis Objectives & Approach
	Analysis Results
	Event Data Extraction & Initial Preparation
	Interactive Process Discovery

	Discussion
	Lessons Learned
	Practical Implications
	Limitations & Future Work

	Conclusion

	Closure
	Conclusion
	Contributions
	Review of Domain-Knowledge-Utilizing Process Discovery
	Incremental Process Discovery
	Variants for Partially Ordered Event Data
	Cortado

	Limitations & Remaining Challenges
	Nondeterminism of the LCA-IPDA
	Representational Bias
	Support for Partially Ordered Event Data
	Lack of Thorough User Evaluation
	Incorporating Low-Level Variants

	Future Research Directions
	Beyond Adding Individual Traces in IPD
	Incremental Process Reduction
	Enhanced Interaction & Assistance
	Incremental Discovery Beyond Control Flow
	Supporting Object-Centric Event Data

	References
	List of Publications
	Acknowledgment
	Curriculum Vitae

