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Abstract
Protein–protein interactions (PPIs) form a vast and intricate network of reactions
important for the regulation and execution of most biological processes [Rao+14].
PPIs occur when two proteins make direct physical contact via their surface residues
and form an interface, which is a non-uniform surface on a protein-protein com-
plex [GS10]. Even though a protein interface may occupy a large area, only a small
subset of its buried residues plays a crucial role in the binding free energy of the
complex [BT98; Jan95]. These energetically key residues are known as hot spots.
The experimental method to identify them is Alanine Scanning Mutagenesis (ASM)
where systematically each interface residue is mutated to Alanine and the conse-
quent change in binding energy ∆∆Gbinding between the wild type and the mutant
complex is measured. If (∆∆Gbinding) is larger than a certain threshold, typically
2 kcal/mol, the interface residue is defined as a hot spot or else it is considered a
null spot [MFR07; CW89; BT98]. The so-called hot spot residues are often enriched
in disease-associated mutations [Ten+09]. These mutations often cause disrupted or
erroneous protein interactions, resulting in phenotypic changes that might cause a
disease. Moreover, with the discovery of hot spots in protein-protein interfaces, it
has become possible to target a broader range of PPIs with small molecule drugs.
The identification of hot spots has helped researchers to identify molecules that in-
teract at these sites, thus interfering with PPIs and the downstream pathways they
mediate [Pet+16a; Pet+16b; Sco+16]. Therefore, predicting hot spots is crucial to
understand the effect of disease-associated mutations on PPIs and for drug discovery
[Mur+17]. As mentioned before, experimentally hot spots can be found out by using
ASM, but it is quite costly and tedious and this has led to the use of computational
methods to predict hot spot residues. Previous computational approaches included
molecular dynamics and knowledge based methods [GNS02; KB02; MK99; HMK02;
GF08; Bre+09]. However, such approaches were time-consuming and hence limited
in the number of hot spots predicted. This led to an increased use of machine learn-
ing (ML) based methods for hot spot prediction in recent years [DPM07; Den+13;
CKL09a; CKL09b; Ass+10]. Such ML approaches capitalize on the availability of ex-
perimental datasets containing protein-protein complex structures and ASM-derived
hotspot data. However, as it often happens with biological data repositories, such
hotspot datasets often contain noise [Mor+17; KC21]. If machine learning (ML) al-
gorithms are trained and predictions are made on this "noisy" data, the results will
not be accurate [GG19]. The earlier ML based approaches for hot spot prediction did
not take this issue into account. In this thesis, I describe the basic concepts and recent
advances of machine learning applications in finding the protein–protein interaction
hot spots. To reduce the effects of noise in hot spot prediction, I have proposed the
method RBHS (Robust Principal Component Analysis-(RPCA) based Prediction of
Protein-Protein Interaction Hot Spots)) in this thesis [Sit+21]. I use RPCA [Can+11]
followed by feature selection using Extreme Gradient Boosting (XGBoost) [CG16] on
the data matrix containing protein sequence and structure based features calculated
on the interface residues. I trained several popular machine learning classifiers on the
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benchmark dataset HB-34 [LLD18] and evaluated the performance of my proposed
method on the independent test set BID-18 [LLD18]. After extensive computational
experimentation and comparison with the existing state-of-the-art approaches to pre-
dict hot spots, I was able to show that my method is quite efficient in identifying hot
spot residues crucial for protein-protein interactions. Finally, I discuss the challenges
and future directions in the prediction of hot spots in this thesis.
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Zusammenfassung
Protein-Protein-Interaktionen (PPI) bilden ein umfangreiches und kompliziertes Netz
von Reaktionen, die für die Regulierung und Ausführung der meisten biologischen
Prozesse wichtig sind [Rao+14]. PPIs treten auf, wenn zwei Proteine über ihre Ober-
flächenreste in direkten physischen Kontakt treten und eine Grenzfläche bilden, d. h.
eine ungleichmäßige Oberfläche auf einem Protein-Protein-Komplex [GS10]. Obwohl
eine Proteinschnittstelle eine große Fläche einnehmen kann, spielt nur eine kleine Un-
tergruppe der darin enthaltenen Reste eine entscheidende Rolle für die freie Enthalpie
der Bindung des Komplexes [BT98; Jan95]. Diese Reste werden als Hot Spots beze-
ichnet. Die experimentelle Methode zu ihrer Identifizierung ist die Alanin-Scanning-
Mutagenese (ASM), bei der systematisch jeder schnittstellenrest zu Alanin mutiert
und die daraus resultierende Änderung der Bindungsenergie ∆∆Gbinding zwischen dem
Wildtyp und dem mutierten Komplex gemessen wird. Ist (∆∆Gbinding) größer als ein
bestimmter Schwellenwert, in der Regel 2 kcal/mol, wird der Schnittstellen rest als
Hot-Spot definiert, andernfalls wird er als Null-Spot [MFR07; CW89; BT98] be-
trachtet. Die so genannten Hot-Spot-Reste sind häufig mit krankheitsassoziierten
Mutationen beteiligt [Ten+09]. Diese Mutationen führen oft zu gestörten oder fehler-
haften Proteininteraktionen, was zu phänotypischen Veränderungen führt, die eine
Krankheit verursachen können. Mit der Entdeckung von Hot Spots in Protein-
Protein-Schnittstellen ist es außerdem möglich geworden, eine breitere Palette von
PPIs mit kleinen Molekülen zu beeinflussen. Die Identifizierung von Hot Spots hat
den Forschern geholfen, Moleküle zu identifizieren, die an diesen Stellen interagieren
und so die PPIs und die nachgeschalteten Stoffwechselwege stören [Pet+16a; Pet+16b;
Sco+16]. Daher ist die Vorhersage von Hot Spots von entscheidender Bedeutung
für das Verständnis der Auswirkungen von krankheitsassoziierten Mutationen auf
PPIs und für die Entwicklung von Medikamenten [Mur+17]. Wie bereits erwähnt,
können Hot Spots experimentell mit Hilfe von ASM ermittelt werden. Dies ist je-
doch recht kostspielig und langwierig, was zum Einsatz von Berechnungsmethoden
zur Vorhersage von Hot Spot-Resten führte. Zu den früheren Berechnungsmeth-
oden gehörten Molekulardynamik und wissensbasierte Methoden [MK99; HMK02;
GF08; Bre+09]. Solche Ansätze waren jedoch zeitaufwändig und daher in der An-
zahl der vorhergesagten Hot Spots begrenzt. Dies führte dazu, dass in den let-
zten Jahren verstärkt Methoden des maschinellen Lernens (ML) für die Hot-Spot-
Vorhersage eingesetzt wurden [DPM07; Den+13; CKL09a; CKL09b; Ass+10]. Solche
ML-Ansätze machen sich die Verfügbarkeit experimenteller Datensätze zunutze, die
Protein-Protein-Komplexstrukturen und von ASM abgeleitete Hotspot-Daten enthal-
ten. Wie bei biologischen Datenbeständen üblich, enthalten solche Hotspot-Datensätze
jedoch häufig Rauschen [Mor+17; KC21]. Wenn Algorithmen des maschinellen Ler-
nens (ML) auf diesen "verrauschten" Daten trainiert werden und Vorhersagen getroffen
werden, sind die Ergebnisse nicht genau [GG19]. Bei den früheren ML-basierten An-
sätzen zur Vorhersage von Hotspots wurde dieses Problem nicht berücksichtigt. In
dieser Arbeit beschreibe ich die grundlegenden Konzepte und die jüngsten Fortschritte
der Anwendungen des maschinellen Lernens bei der Suche nach den Protein-Protein-
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Interaktions-Hotspots. Um die Auswirkungen des Rauschens bei der Vorhersage von
Hot Spots zu reduzieren, habe ich in dieser Arbeit die Methode RBHS (Robust
Principal Component Analysis-(RPCA) based Prediction of Protein-Protein Inter-
action Hot Spots) vorgeschlagen [Sit+21]. Ich wende RPCA [Can+11], gefolgt von
einer Merkmalsauswahl mit Extreme Gradient Boosting (XGBoost) [CG16] auf die
Datenmatrix an, die Proteinsequenz- und strukturbasierte Merkmale enthält, die für
die Schnittstellenreste berechnet wurden. Ich habe mehrere gängige Klassifikatoren
für maschinelles Lernen auf dem Benchmark-Datensatz HB-34 [LLD18] trainiert und
die Leistung der von mir vorgeschlagenen Methode auf dem unabhängigen Testsatz
BID-18 [LLD18] bewertet. Nach ausgiebigen Experimenten und einem Vergleich mit
den bestehenden State-of-the-Art-Ansätzen zur Vorhersage von Hot Spots konnte
ich zeigen, dass meine Methode bei der Identifizierung von Hot Spot-Resten, die
für Protein-Protein-Interaktionen entscheidend sind, recht effizient ist. Abschließend
diskutiere ich in dieser Arbeit die Herausforderungen und zukünftigen Richtungen bei
der Vorhersage von Hot Spots.
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1 Introduction

1.1 Hot Spots and their relevance
Rarely do proteins operate alone [Les10]. To perform highly diverse biological func-
tions, from metabolism and signal transduction to cellular motility and synaptic trans-
mission along with other cell-cell interactions, proteins frequently interact with other
proteins and biomolecules [Sti97; Jan95]. This leads to an intricate network of inter-
actions, and the complete set of protein-protein interactions in a living organism is
known as the interactome. Thus, protein-protein interactions are very essential for
performing various biological processes including cell to cell interactions, metabolic
and developmental control [Rao+14].

Proteins-protein interactions (PPIs) take place on these particular regions of the
protein surface known as protein interfaces [GS10; DS15]. Interfaces are character-
ized by three regions known as core, rim and support. The interface core and rim
differ not only in their energetic contribution to the complex stability, but also in
terms of their physicochemical and evolutionary characteristics [DS15]. Interface core
residues become solvent inaccessible upon protein-protein interaction, whereas inter-
face rim residues remain partially solvent accessible [DS15; MFR07]. Interface core
residues tend to be evolutionarily more conserved and their side chains often display
less mobility upon binding, compared to rim residues. The support region is identified
in [Lev10] is formed by partially exposed residues in the unbound protein that become
buried when the complex is formed, and thus can facilitate protein-protein interac-
tions. Even though protein interfaces may be large, it turns out that few residues do
contribute significantly to the binding free energy of the complex (∆∆Gbinding) [BT98;
Jan95]. These key energetic residues are known as hot spots.

These structural details of interfaces are important when studying the role of dis-
ease associated mutation on protein-protein interactions because protein interfaces
are often enriched in disease-causing mutations compared to other protein surface
regions [DS15]. Mutations can disrupt a protein interface by modifying its physico-
chemical, structural, and energetic characteristics [DS15]. Moreover, disease-causing
mutations are expected to have a greater impact on protein structure, function, and
protein complex thermodynamics when occurring in hot spots [Ten+09].

Owing to the peculiar large and flat nature of protein interaction surfaces which are
often missing features such as pockets, grooves, or clefts that could act as potential
docking sites for small molecule inhibitors, protein-protein complexes could not be
used as drug targets for a long time. Even if the features are present, the structural
complexity of the interface poses challenges for modeling a new therapeutic molecule.
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The lack of natural small ligands, which could be an alternative starting point of
drug design, is another major obstacle [Pet+16a; WM07]. The discovery of hot spots
in PPI interfaces, made it possible to target a broader range of PPIs with small
molecule drugs. The identification of hot spots has enabled researchers to identify
molecules that interact at these sites, thus interfering with PPIs and the downstream
pathways they mediate [Pet+16a; Pet+16b; Sco+16]. Thus, predicting hot spots is
crucial to understand the effect of disease-associated mutations on PPIs and drug
discovery [Mur+17].

An example of this in cancer research is the protein complex between human murine
double minute 2 (MDM2) and human p53. p53 is a transcription factor that plays
a key role in cell cycle regulation, apoptosis, DNA repair, senescence, angiogenesis,
and innate immunity [VL02; Bro+09]. p53 is a potent tumor suppressor but in a
lot of human cancers, its antitumor activity is impaired due to the mutations within
the p53 gene [FI04]. In other human cancers, it does retain its wild-type status,
but its function of tumor suppression is compromised by a multitude of intracellular
mechanisms.

MDM2 in humans is the major inhibitor of p53. It binds to p53 directly that re-
sults in a repressed p53 transactivation activity, enhanced nuclear export of p53, and
degradation of p53 [Wu+93; FWL99; JO99]. Over expression of MDM2 in human
tumors indicates poor clinical prognosis or poor treatment response to existing cancer
treatments. Indeed, MDM2 is overexpressed in several cancer types [Mom+98]. In-
terfering with MDM2/p53 complex formation might improve the antitumor potency
of p53.

MDM2 and p53 interact via a hydrophobic surface groove in MDM2 and three key
hydrophobic residues in p53, Phe19, Trp23, and Leu26 [Cap+98; MWD00]. These
residues constitute the hot spots that the researchers targeted in an effort to find
molecules that can interrupt this particular interaction [Kus+96]. Though active
research is still in progress, several MDM2-p53 inhibitors have moved onto clinical
trials, showing decent results [Vu+13; Din+13; Zha+15; Sun+14; Wan+14]. Thus,
the PPIs, if druggable can be inhibited or stabilized by targeting the hotspot residues.

1.2 Methods for Hot Spot Prediction
In the past, hot spot prediction was done using experimental methods. Due to limi-
tations of experimental setups, quite a few computational approaches to predict hot
spots became extremely popular. These include knowledge-based methods, molecu-
lar simulation techniques, and machine learning methods. Detailed information about
these methods is provided in the next sections of this chapter.

1.2.1 Experimental Methods
The experimental method to identify hot spot residues is called Alanine Scanning Mu-
tagenesis (ASM). Experimental ASM involves the systemic point mutation of protein-
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protein interface residues to Alanine, which is then followed by expression and pu-
rification of mutants and measuring the change in ∆Gbinding (∆∆Gbinding=∆Gmutant−
∆Gwild-type) [BT98]. If (∆∆Gbinding) ≥ 2.0 kcal/mol, the interface residue is defined
as a hot spot, otherwise as a “null spot” [MFR07; CW89; BT98]. The disadvantage
with ASM experiments, however, is that they are time-consuming and labor-intensive.
Moreover, they are highly dependent on the used assays.

Figure 1.2.1: Examples of protein-protein interface hot spots. Alanine Scanning Mu-
tagenesis was carried out on the contact surfaces of four pairs of interact-
ing proteins. The resulting change in binding free energy ∆∆Gbinding is
shown by colour coding of interfacial amino acid residues. These colours
range from red (indicating the most disruptive changes) to green (hav-
ing little or no change). It can be seen from the figure that in each case
only a small set of residues make a major contribution to binding free
energy, i.e., the residues in red and these are the so-called hot spots.
VEGF, Vascular Endothelial Growth Factor; Z domain, a derivative of
a domain from Staphylococcus aureus protein A [WM07].

1.2.2 Computational methods
To overcome the problems pertaining to experimental procedures, in the last two
decades there has been a significant rise in the use of in silico methods for hot spot
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prediction. Some of these methods are knowledge-based computational methods, or
they employ molecular dynamic simulations [GNS02; KB02; MK99; HMK02; GF08;
Bre+09].

1.2.2.1 Molecular Dynamics based hot spot prediction

Molecular dynamics assumes that the motion of proteins can be simulated using
classical physics. Molecular dynamics simulations can offer a detailed analysis of
protein interfaces at the atomic level and estimate the changes in binding free en-
ergy (∆∆Gbinding). Although molecular simulation methods [MK99; HMK02; GF08;
Bre+09] might provide good predictive results, they are seldom applicable for large-
scale hot spot predictions due to their huge computational cost.

1.2.2.2 Knowledge-based methods

Knowledge-based approaches like FOLDEF [GNS02] and Robetta [KB02] predict hot
spots based on an estimate of the energetic contribution to binding for every interface
residue.

FOLDEF [GNS02] was built on the FoldX complex energy function. Similarly,
Robetta [KB02] uses a simple physical model. For both the methods, the predicted
changes in binding energies after mutating side chains to Alanine form the basis for hot
spot predictions [MZ12]. They do provide an alternative approach to predicting hot
spots with less computational cost than molecular dynamics approaches. However,
these are often still time-consuming and thus difficult to apply in high-throughput
mode.

1.2.2.3 Machine Learning based hot spot prediction

The limitations in these previous computational methods have led to a substantial
increase in the use of machine learning (ML) methods for the in silico prediction of
hot spot residues. Moreover, since machine learning techniques can use data to learn
without being externally programmed and there has been an increase in availability of
data and more powerful hardware and software resources, this has led to an increased
application of Machine Learning (ML) algorithms in every field including the task of
predicting protein-protein interaction hot spot residues.

The first step of using ML for hot spot identification is to encode the various
sequence and structure based features on the protein-protein interaction interface
residues by the large number of available bio-informatics tools. Thereafter, these fea-
tures are forwarded to a machine learning algorithm that learns to map such features
to hot-spots.
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1.3 State-of-the-art Machine Learning techniques for
hot spot prediction

Here, I would like to discuss several popular hot spot prediction methods based on
machine learning. To quantify the predictive power of my method, it is compared
with these methods in Section 5.3.

1. KFC (Knowledge-based FADE and Contacts) [DPM07] uses a rule-based model
called the KFC model that is a combination of two learned decision tree models.
A decision tree [Has+09] (Section 1) is a predictive model that defines a set of
Boolean tests or decisions to be taken at each step. The result of each test deter-
mines the next test to apply. The process continues until the path terminates,
where the model predicts the class label for a sample. The two decision tree
models in KFC are called K-FADE and K-CON trained on protein structure
based features. K-FADE uses the features, residue size, and radial distribution
of shape specificity and interface points calculated by Fast Atomic Density Eval-
uation (FADE) [MKT01], and K-CON uses the residue’s intermolecular atomic
contacts, hydrogen bonds, interface points, and chemical types.

2. The results of KFC were later on improved with two new models trained us-
ing a Support Vector Machine (SVM) [Guy+02; BGV92]. SVM is a widely
used machine learning method that establishes the optimal hyperplane in a
high-dimensional feature space to separate the data into two classes (hot spots
and null spots). A detailed description of SVM along with its mathematical
formulation is provided in Section 3.2.4.1. The two SVM models are KFC2a
and KFC2b [ZM11]. KFC2a comprises eight features that are primarily related
to solvent accessible surface area and local plasticity. KFC2b uses seven such
features (two of which are common with KFC2a).

3. The authors of [CKL09a] applied an SVM that initially incorporates 54 protein
structure and sequence based features. The method is called MINERVA (MINE
Residue VAlue). Out of these 54 features, feature selection [SIL07; GE03] is done
using a decision tree model to identify the best feature subset. Feature selection
will be explained in Section 2 of Chapter 3.

4. Pred HS-SVM [Den+13] is another method that uses SVM, and here energy
terms are used as input features of the SVM classifier. Their method considers
basic energy terms such as van der Waals, H-bond, electrostatic and desolvation
potentials, hydrogen bonds, and Coulomb electrostatics calculated from the
protein complex’s structure. The authors in [Xia+16] used 108 features based
on protein sequences and structure based information and selected two highest-
ranking features using a two-step feature selection method. The final prediction
model was constructed by using the support vector machine and was called
HEP.
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5. In APIS (A combined model based on Protrusion Index and Solvent accessibil-
ity) [CKL09b] carefully studied 62 protein sequence and structure based features
and then used the F1-Score to remove redundant features. F1-Score as defined
in Section 3.2.5 is a performance metric used to quantify the predictive per-
formance of a machine learning classifier. The APIS predictor uses an SVM
classifier to identify hot spots.

6. Another method called PCRPi (Presaging Critical Residues in Protein inter-
faces) [Ass+10] is based on the integration of three main sources of information,
namely, energetic, structural, and evolutionary determinants by using Bayesian
networks to combine them into a common probabilistic framework. PCRPi can
handle some of the missing protein data. This method has been developed as
a web server (called PCRPi-W) [SAF10] where users can enter a PDB code or
upload a complex, as well as select the type of Bayesian network architecture
(naïve or expert) [Pea88].

1.4 Developed method in this thesis: RBHS
All the machine learning based hot spot prediction methods mentioned above use
a data matrix that contains protein sequence- and structure-based features. More
information on the data matrix is given in Chapter 3. Such data matrices often contain
values that can be corrupted by errors or noise that are caused due to experimental
mistakes, computational tolerances and/or human errors [Can+11]. Such corruptions
adversely affect the predictive ability of the current machine learning based hot spot
prediction algorithms [GG19]. Predictive ability of an algorithm refers to its ability
to predict test samples for the test data on which it has not been trained. In other
words, predictive power is predicting correctly labels for test data that the model
has not seen before. Therefore, using an approach where the data matrix contains
reduced noise would be highly desirable.

In my method, namely, RBHS (Robust Principal Component Analysis-(RPCA)
Based prediction of protein-protein interaction Hot Spots) [Sit+21], this issue is ad-
dressed by pre-processing the data matrix using Robust Principal Component Anal-
ysis (RPCA) [Can+11]. RPCA is a variant of the traditional Principal Component
Analysis (PCA) [WEG87; Jol02] method, and it is particularly useful for data ma-
trices that may contain corrupted entries, such as the ones considered here. In refer-
ence [Can+11], the authors have showed that a noisy matrix D can be decomposed
into a low rank matrix A that contains reduced noise and a sparse matrix S, regardless
of the number of corrupted or missing entries (i.e. robustly). The low rank matrix
obtained after applying RPCA is then the new data matrix for the developed pipeline
in this thesis, RBHS, for identification of hot spots. After RPCA, feature selection is
performed on the new less noisy low rank matrix A using gradient boosting methods
and the selected features are passed on to a classifier that maps these features to hot
spots and null spots. I apply this method, to curated benchmark datasets HB-34 and
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BID-18 [LLD18]. Detailed information about these datasets will be provided in Sec-
tion 4.2. Various classifiers, like Support Vector Machines (SVM), Random Forests
(RF), Gradient Boosting Machines (GBM) and Extreme Gradient Boosting (XGB)
are used in this thesis and their performance is compared through a number of per-
formance metrics, such as, accuracy, sensitivity, precision, F1-score, and Matthews
Correlation Constant (MCC). The performance of the RBHS pipeline is also stud-
ied through ROC (Receiver Operating Characteristics) curves and Precision-Recall
curves. Hyperparameter tuning for the RPCA algorithm and the different classifiers
is performed to select the best performing algorithm parameters and model for each
of the classifier, respectively. Performance of the RPCA with different noise intensi-
ties is also studied. RBHS pipeline is compared with the unprocessed (raw) HB-34
and BID-18 data and with traditional PCA. After thorough experimentation, XGB
and F1-score were found to be the best performing classifier and performance metric,
respectively. The best performing model is named RBHS+XGB. The natural choice
for F1-score also stems from the fact that the datasets are imbalanced, the number
of null spot residues is much larger than the number of hot spot residues. F1-score
is a metric that takes this imbalance into account by calculating the harmonic mean
between precision and recall. RBHS+XGB was further compared with several state-
of-the-art approaches for PPI hot spot prediction and was found to outperform many
of them, as shown in Section 5.3.

1.5 Thesis Organization
The content of this thesis is organized as follows:

1. Chapter 2 describes in detail the biological relevance of the problem of prediction
of hot spots. It describes in detail the biology of hot spots residues, protein-
protein interactions, protein complexes and interfaces.

2. Chapter 3 gives a brief background of machine learning and the various terms
and terminologies associated with machine learning used for hot spot prediction.

3. In chapter 4, I give a detailed description of my pre-processing pipeline RBHS
and of all the machine learning methods I used for predicting hot spots. A work-
flow diagram for my method is added in this chapter for ease of understanding.
Next, it contains the computational details of all the algorithms used. It also
includes computational details of the experiments used for comparing RBHS
with other techniques.

4. Chapter 5 includes results of comparing RBHS with other pre-processing al-
gorithms, as well as comparing RBHS + Extreme Gradient Boosting classifier
with other state-of-the-art methods for predicting hot spots. Finally, this chap-
ter includes a detailed interpretation and analysis of all the results presented.

5. Chapter 6 draws conclusions from the method and results presented in this
thesis, and also outlines future perspectives of my work.
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1.6 List of publications
The method and results presented in Chapter 4 and Chapter 5 respectively of this
thesis have been published in the following paper:
Divya Sitani, Alejandro Giorgetti, Mercedes Alfonso-Prieto, and Paolo Carloni. "Ro-
bust principal component analysis-based prediction of protein-protein interaction hot
spots." Proteins: Structure, Function, and Bioinformatics 89, no. 6 (2021): 639-647,
doi: 10.1002/prot.26047.

The data and the codes developed for this thesis have been added to the following
GitHub repository:
https://github.com/Divya1205/RBHS_Sitani.

The conception of this work, data preparation, experiments, generation of results,
analysis of the results, and writing of the manuscript was done by me, Divya Sitani.
Prof. Dr. Alejandro Giorgetti, Dr. Mercedes Alfonso-Prieto and Prof. Dr. Paolo
Carloni helped to review the manuscript.
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2 Protein-protein interactions and
Hot Spots

2.1 Proteins
Proteins are among the most abundant organic molecules in living systems and are
very diverse in structure and function in comparison with the other classes of macro-
molecules. A single cell may contain thousands of different proteins, each with a
distinctive function. Proteins have diverse functions because all proteins are made
up of different arrangements of the same 21 amino acids. Even though, proteins
have different structures and different functions, they are all polymers of amino acids
arranged in a linear sequence and connected by peptide bonds (polypeptide chain).

Figure 2.1.1: Chemical composition of an amino acid [PDB].

Amino acids are the monomers that make up proteins. Each amino acid has the
same fundamental chemical structure that consists of a central carbon atom (Cα)
attached to an amino group (NH2), a carboxyl group (COOH) and a hydrogen atom.
There is another atom or group of atoms attached to the central carbon atom, the R
side chain and this side chain is the difference between the 21 amino acids.

The chemical nature of the amino acid within its protein is decided by the chemical
nature of the R group. Hydrophobic or apolar amino acids have carbon rich side chains
that do not interact well with water. Hydrophobic amino acids have the tendency of
adhering to one another in aqueous environment. They are Alanine (Ala), Leucine
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Figure 2.1.2: Structure of an amino acid [PDB].

(Leu), Phenylalanine (Phe), Valine (Val), Isoleucine (Ile), Methionine (Met), Pro-
line (Pro) and Tryptophan (Trp) [Ber+00a; PDB]. Hydrophilic or polar amino acids
interact well with water and are Serine (Ser), Threonine (Thr), Aspargine (Asn), Glu-
tamine (Glu), Cysteine (Cys), Tyrosine (Tyr) [Ber+00a; PDB]. The charged amino
acids interact with oppositely charged amino acids or hydrophilic amino acids and
are Arginine (Arg), Histidine (His), Lysine (Lys), Aspartic Acid (Asp) and Glutamic
Acid (Glu). The amino acid with no side chain is Glycine (Gly). Gly is hydrophobic
in nature [Ber+00a; PDB]. This is summarized in Fig. 2.1.3.

Each amino acid is attached to another amino acid by a covalent bond, known as the
peptide bond, that is formed by a condensation reaction. During protein synthesis,
the carboxyl group of the amino acid at the end of the growing polypeptide chain
reacts with amino group of an incoming amino acid to form a peptide bond by the
elimination of water. Thus, a protein chain is formed by numerous amino acids in
which the amino group of the first amino acid and the carboxyl group of the last amino
acid stay intact and the chain extends from the amino to the carboxyl terminus. This
chain is called a polypeptide chain or backbone, shown in Fig 2.1.4. Amino acids in
a polypeptide chain are devoid of a hydrogen atom at the amino terminal and an OH
group at the carboxyl terminal (with the exception of the ends). This is the reason
why amino acids are also called amino acid residues, i.e. what remains after loss of a
water molecule and formation of the peptide bond [Rye+16].

A protein is a polypeptide or polypeptides that have combined together and have
a distinct shape and a unique function. After protein synthesis (translation), most
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Figure 2.1.3: Classification of amino acids based upon the physicochemical properties
of the side chains of amino acids [PDB].

Figure 2.1.4: The linked series of carbon, nitrogen, and oxygen atoms make up the
protein backbone and the protein side chains are hanging from it [PDB].

proteins are modified. These are known as post-translational modifications. They
may undergo cleavage, phosphorylation, or may require the addition of other chemical
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groups. The protein is fully functional after these modifications [Rye+16].

2.1.1 Levels of protein structure
The shape of a protein is critical to its function. To understand how a protein gets its
final shape, it is important to understand the four levels of protein structure: primary,
secondary, tertiary and quaternary.

2.1.1.1 Primary Structure

The primary structure of a protein is the unique linear sequence of amino acids in
a polypeptide chain, and this sequence is determined by the gene that encodes the
protein. The sequence defines how the protein will fold and thereby also determines
the function of the protein. Any change in this gene sequence will result in a different
polypeptide chain, and in turn result in a change in protein structure and function.
For example, in the sickle cell anemia disease a single substitution in the amino acid
sequence of hemoglobin causes the normally biconcave or disc-shaped red blood cells
to assume a “sickle” shape, which clogs the arteries [PDB; MG15].

Figure 2.1.5: The primary structure of a protein is the linear sequence of amino acids,
as encoded by the DNA genetic code [PDB].

2.1.1.2 Secondary Structure

The next level of protein structure is the secondary structure, that are locally folded
structures that form within a polypeptide chain due to interactions between atoms of
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the backbone excluding the side chains or the R groups.The protein chains often fold
into two types of secondary structures: alpha (α) helices or beta (β) pleated sheets.
These structures are held in shape by hydrogen bonds between carbonyl oxygen atom
of one amino acid and amino hydrogen atom of another amino acid of the backbone.
In the α helix (Fig. 2.1.5), the hydrogen bond forms between every fourth amino acid

Figure 2.1.6: Secondary Structure: Alpha (α) helix [PDB].

and causes a twist in the amino acid chain, resulting into a helical structure. The
R groups of the amino acid stick outward from this α helix. In the β pleated sheets
(Fig. 2.1.6), multiple segments of a polypeptide chain line up next to each other and
result in a sheet like structure held together by hydrogen bonds. These bonds are
formed between carbonyl and amino groups of the backbone on adjacent β strands.
The R groups extend above and below the plane of the sheet. The strands of a β sheet
are either parallel (running in the same N- to C- terminal direction) or antiparallel
(running in opposite N- to C- terminal directions) [PDB; BTS02].

2.1.1.3 Tertiary Structure

The tertiary structure of a protein is the complete three-dimensional shape of the
polypeptide chain. This shape is caused by chemical interactions between various
amino acids and regions of the polypeptide. Primarily, the interactions among R
groups create the complex three-dimensional tertiary structure of a protein [PDB;
BTS02]. For example, soluble proteins mainly form globular shapes with hydrophobic
side chains sheltered inside, away from the surrounding water (Fig. 2.1.8), while
membrane-bound proteins form hydrophobic residues that are clustered together on
the outside, so that they can interact with the lipids in the membrane. In highly
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Figure 2.1.7: Secondary Structure: Beta (β) sheets [PDB].

charged proteins, charged amino acids on the surface allow proteins to interact with
molecules that have complementary charges [PDB]. The functions of many proteins
rely on their three-dimensional shapes. For example, hemoglobin forms a pocket to
hold heme, a small molecule with an iron atom in the center that binds oxygen [PDB].

2.1.1.4 Quaternary Structure

Two or more polypeptide chains (subunits) can assemble together to form one func-
tional molecule with several subunits. Quaternary structure is the number and ar-
rangement of these protein subunits with respect to one another. If the final protein
is made of two subunits, the protein is said to be a dimer. If there are three sub-
units together, the protein is called a trimer; four subunits make up a tetramer, and
so on and so forth. If the subunits are identical, the prefix “homo” is used, as in
“homodimer.” If the subunits are different, we use “hetero,” as in “heterodimer.” For
example, hemoglobin is a combination of four polypeptide subunits, two α and two β
subunits. One α and one β subunit come together to form a heterodimer, and two of
these heterodimers interact together to form one hemoglobin molecule (Fig. 2.1.9).

2.2 Protein-protein interactions
Proteins rarely act alone [Les10]. Instead, they interact with other proteins and bio-
molecules, which results in an intricate network of interactions. The complete set of
protein-protein interactions in a living organism is known as the interactome. Pro-
tein - protein interactions are very essential for performing various biological processes
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Figure 2.1.8: Tertiary Structure of a protein [PDB].

Figure 2.1.9: Hemoglobin molecule with its four polypeptide subunits. Heme is shown
in red [PDB].
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including cell to cell interactions, metabolism and developmental control, among oth-
ers [Rao+14].

The non-covalent interactions between the R side chains are the basis of protein
folding, protein assembly and also protein-protein interactions. These contacts take
place under various conditions, and they make multiple interactions and associations
within and between proteins. For example, protein structure is determined through
interactions between residue side-chains. In this instance, the interactions are perma-
nent because they typically last for the lifetime of a protein. However, non-covalent
residue–residue interactions can also be transient, like in receptor–ligand interaction
or in signal transduction. These interactions last for only short times. Thus, the
transient interactions form signaling pathways, whereas the permanent interactions
form a stable protein complex [Rao+14; OR03].

2.3 Protein-protein complexes
Nearly 80% of proteins operate in complexes [Rao+14]. A protein complex is a group
of polypeptide chains linked by non-covalent protein-protein interactions (PPIs). As
mentioned earlier, nearly all biological processes involve protein-protein interactions
and quite a lot of the processes require multiple protein-protein interactions to form
the quaternary structure of multimeric proteins, thus, forming the protein-protein
complexes. One particular protein can be involved in a variety of protein complexes.
The same complex can perform different functions depending on multiple factors like
the stage of cell cycle, the nutritional status of the cell, the cellular compartment,
etc. The understanding of protein-protein interactions at atomic detail requires the
knowledge of the three-dimensional structure of protein complexes and protein-protein
interfaces.

Proteins interact with each other through their interfaces. Protein–protein inter-
faces are non-uniform surfaces where two proteins make direct physical contact [GS10].
PPI occurs through interactions between residues on two opposite interfaces [DS15].
Interfaces consist of interacting residues that belong to two different chains, along
with residues in their spatial vicinity. Thus, interfaces consist of fragments of each of
the individual chains and some isolated residues (Fig. 2.3.1).

Mutations can disrupt a protein interface by modifying its physicochemical, struc-
tural, and energetic characteristics [DS15]. Moreover, disease-causing mutations are
expected to have a greater impact on protein structure, function, and protein com-
plex thermodynamics when occurring in interface residues [Ten+09]. Even though a
protein interface may occupy a large area, only a small subset of its buried residues
plays a crucial role in the binding free energy of the complex. These key energetic
residues are known as hot spots. The experimental method to identify hot spots is
Alanine Scanning Mutagenesis [Wel91].

Alanine (Ala) scanning is a widely used mutagenesis approach in which residues
in a target protein complex are systematically substituted for Ala at selected posi-
tions by site-directed mutagenesis. Ala is used as it is a non-bulky, chemically inert
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2.3 Protein-protein complexes

Figure 2.3.1: (A) represents the complex human Glutathione S-Transferase, PDB ID:
10GS, Chains A and B. The interface has been shown with surface rep-
resentation whereas the rest of the protein in ribbon representation. (B)
represents a few interface residues along with details of the respective
non-covalent residue interactions of the interface of Mouse Monoclonal
Antibody D1.3 (PDB ID: 1KIR, Chains A and B) [Kes+08].

17



2 Protein-protein interactions and Hot Spots

residue and its methyl functional group nevertheless mimics the secondary structure
preferences that many other amino acids possess. Substitution with Alanine residues
eliminates side-chain interactions without altering main-chain conformation or intro-
ducing any steric or electrostatic effects. Thus, it is often the preferred choice for
testing the contribution of specific side-chains while preserving the native protein
structure [MFR07; Wel91].

2.4 Protein-protein interaction hot spots
The application of Alanine Scanning Mutagenesis (ASM) to protein-protein interfaces
helped to discover a highly uneven distribution of energetic contributions of individual
residues across each interface, and that only a few key residues do contribute signif-
icantly to the binding free energy of protein–protein complexes: the so-called "hot
spots". Hot spots have been defined as those sites where Alanine mutations cause a
significant change in the binding free energy of at least 2.0 kcal/mol. In a nutshell,
experimental Alanine Scanning Mutagenesis identifies hot spots experimentally by
systematically mutating each interface residue to Alanine and measuring the change
in ∆Gbinding (∆∆Gbinding=∆Gmutant− ∆Gwild-type). If (∆∆Gbinding) ≥ 2.0 kcal/mol,
the interface residue is defined as a hot spot, otherwise as a “null spot” [MFR07;
CW89; BT98]. Energetic hot spots tend to be enriched in disease-causing mutations
compared to non-hot spots [DS15].

The discovery of hot spots in PPI interfaces, made it possible to target a broader
range of PPIs with small molecule drugs. Drug molecules interacting with these hot
spots may interfere with PPIs and the downstream pathways they influence [Pet+16b;
Sco+16].

Experimental ASM is expensive, time-consuming, and labor-intensive, so the avail-
able data on hot spots is limited [BT98]. Thus, there has been a major increase in the
use of in silico methods to identify hot spots. Some of these methods rely on energy
based scoring functions (like FOLDEF [GNS02] and Robetta [KB02]) or molecular
dynamic simulations [MK99; HMK02; GF08; Bre+09]. However, these approaches
are computationally expensive and therefore difficult to apply in a high-throughput
mode.

Machine Learning (ML) (subset of Artificial Intelligence (AI)) based methods have
been extensively used to identify hot spots in the past years. Machine learning has
been used in biology for a number of decades, but it has steadily grown in importance
to the point where it is used in nearly every field of biology. However, only in the past
few years has the field taken a more critical look at the available ML strategies and
begun to assess, which methods are most appropriate in different scenarios, or even
whether they are appropriate at all. The two major goals of using machine learning in
biology is to make accurate predictions for tasks where enough experimental data is
not available, and the second is to interpret the results of ML algorithms with respect
to the biological context of the problem at hand. A short review of machine learning
methods that are used for the prediction of hot spots is given in the next chapter.
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These methods were also used for the prediction of hot spots in this thesis.
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3 Basics of Machine Learning
Machine Learning is the field of study that gives a computer the ability to learn
without being explicitly programmed [Sam59; Mit17]. The aim is to develop methods
for computers to “learn" from available data. The learning process [Mit17] can then
be defined as a method through which a computer is able to learn to perform tasks, T
such that given experience, E relevant to T , improves its performance as measured by
a performance metric P . The experience E is mostly available in the form of a dataset
that contains typical input data, the task T could be one of classification, regression,
synthetic data generation or many others where the relation between E and T is
complex and cannot be analytically defined. Broadly, a machine learning method
involves learning of an adaptive model, which maps the available input data to a set
of output variables, for a given task [Mit17; Bis06]. The model is adaptive in nature
because the it learns through the experience. The learning algorithm is provided with
input data, which is also known as the training data, and it learns an adaptive model
based on the given task. This is known as the training phase. Once the model is
trained or learnt it can be used to do inference, i.e., perform the given task on new
data previously unseen by the model. This is known as the testing phase. The dataset
used during inference is known as the test dataset. Depending on the nature of the
input data and the given task, the learning process can be accomplished in a number of
ways, namely, supervised learning, unsupervised learning, and reinforcement learning.

3.1 Types of Machine Learning

Supervised Learning
In supervised learning, the learning algorithm is provided with training data that
includes the input data and the corresponding target output variable for the given
task. The model learns a pattern or mapping between the input and the target
variable. During testing, the target variables are withheld and inference is performed
on the test input data to generate the target output variables from the model. The
predicted target output variable is compared with the actual or ground truth output
variable that had been withheld to test the predictive power of the model [Bis06].

In a supervised learning setting, the dataset, both training and test, consists of
examples {(xi, yi)}N

i=1. Each xi is an input example and is called a feature vector.
Each feature vector is of dimension, D and each dimension j = 1, 2, ..., D contains
numerical information that is an individual measurable property or characteristic of
the observed phenomenon [Bis06]. There are N feature vectors because there are N
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examples, and these are concatenated to form a data matrix of size D×N . The target
output variable, yi, in most cases, is an element belonging to a finite set of integers or
a real value. Based upon the type of value of the output variable, supervised learning
is of two types:

1. Classification involves predicting a class label, i.e., a set of integers.

2. Regression involves predicting a numerical label, i.e., a real value.

Unsupervised Learning
Unsupervised learning allows learning of a model without any explicit target output
variables. The dataset only consists of input examples without any class labels. The
unlabeled dataset of input examples or feature vectors can be written as {xi}N

i=1. Thus,
there is no instructor or teacher and the algorithm must learn to make sense of the
data without any guide [GBC17]. The goal of an unsupervised learning algorithm is
to create a model that takes these feature vectors as input and identifies patterns or
groupings in the data or transforms x into another vector, which makes it easier to
learn for a specific task. Depending upon the application, unsupervised learning is of
three types:

1. Clustering involves finding groups in the unlabeled data based on their simi-
larities or differences.

2. Density Estimation involves summarizing the distribution of the data. Thus,
it assumes that sample data comes from a population that follows a probability
distribution based on a fixed set of parameters.

3. Dimensionality Reduction, where the output of the model is a feature vector
that has less number of features than the input feature vector x.

Straddling the boundary between supervised learning and unsupervised learning,
is an area of machine learning called semi-supervised learning [CSZ10; ZG09]. Semi-
supervised learning is concerned with learning a model where the number of labeled
data is small, but a large corpus of unlabeled data is available. This technique is
capable of generalizing to new unseen data, which is known as inductive learning,
and also to the unlabeled training (available) data, which is known as transductive
learning.

Reinforcement learning
Reinforcement learning is a type of machine learning where the machine“lives" in an
environment and the state of the environment is perceived as a vector of features by
the machine. The machine performs actions in every state and different actions bring
different rewards and the machine must learn to maximize the reward. The machine
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uses a feedback loop between learning and the experience. In many complex domains,
reinforcement learning is the only feasible way to train a program to perform at high
levels. For example, in game playing, it is very hard for a human to provide accu-
rate and consistent evaluations of large numbers of positions, which would be needed
to train a model directly from examples (experience). Instead, the program can be
told when it has won or lost, and it can use this information to learn a model that
provides reasonably accurate estimates of the probability of winning from any given
position [RP15]. Impressive recent results include the use of reinforcement learning
in Google’s AlphaGo in out-performing the world’s top Go player.

In this thesis, classification is the machine learning task that will be studied. In
the following section, the process of learning a model to classify given data and the
performance evaluation of the model, or classifier, is discussed in detail.

3.2 Classification
Supervised learning is the most common and frequently used type of machine learning.
Among various tasks classification is one of the most studied and in this thesis as well
the task of classification will be used extensively. The main steps for a classification
task in a supervised learning workflow are the following:

1. Data acquisition

2. Data preparation and preprocessing

3. Data splitting

4. Classification algorithms

5. Performance metrics

6. Testing the learned classifier

The various steps in the above workflow are discussed in detail next.

3.2.1 Data Acquisition
The process of gathering data depends on the domain of the problem or task we want
to solve. The data set can be collected from various sources such as a file, database
and many other similar sources. In general, studies combine data from more than one
database and filter the redundancies. Widely used databases of experimental verified
hot spots include the Alanine Scanning Energetics Database (ASEdb) [TB01], the
Binding Interface Database (BID) [Fis+03], the Protein-protein Interaction Ther-
modynamic (PINT) database [TB01] and the Structural database of Kinetics and
Energetic of Mutant Protein Interactions (SKEMPI) [TB01]. These databases are
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further explained in detail in Chapter 4. During data acquisition, each tool and tech-
nique is sensitive to numerical and human precision, and this introduces systemic and
gross errors or noise into the collected dataset. Thus, the collected data cannot be
used directly for performing classification as there might be missing data, extreme
values, unorganized text data or noisy data. Therefore, one must perform a data
preparation and preprocessing step before a classifier can be learnt.

3.2.2 Data Preparation and Preprocessing
In data preparation, feature vectors (input) and the target variable (output) are
identified as described in Section 3.1. For this task, tools and techniques pertaining to
the specific domain are used to encode features for the given samples in the database.
This generally leads to representation of data in the form of matrix of size D ×N ,
where D is the size of the encoded feature and N are the number of data samples.
This makes the dataset amenable to computational techniques. The dataset in its
current form may contain features with different numerical scales, missing data or
noisy data. A final dataset, that can be used by machine learning algorithms, is
prepared by preprocessing the dataset, i.e., the data matrix. Depending upon the
kind of errors present in the dataset, different preprocessing is required.

3.2.2.1 Missing Values

In some cases, some values are missing for some features in the dataset [Has+09].
This happens due to human errors where the person forgets to fill some values or
did not measure the value at all. The typical methods of dealing with missing value
problems include:

1. Removing the samples that have features with missing values. This is not a
very feasible idea if the dataset is not large enough.

2. Using imputation methods where the missing data is replaced with substituted
values. For example:

a) Imputation [LEA15]: It is the process of replacing the missing values
with a representative value from the dataset. Imputation can be single
or multiple in nature. Single imputation involves replacing the missing
value once with a representative value, such as the mean or median of
the feature value. Other techniques for single imputations are random
imputation, last observation carried forward (for time series) and the like.
Multiple imputation involves replacing the missing value multiple times by
generating plausible values by modeling the distribution of the features in
the observed data.

b) kNN (k-Nearest Neighbors): Fill data with a value from other exam-
ples or neighbors that are similar in respect to a certain distance metric.
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3.2.2.2 Feature Encoding

Some learning algorithms work with only numerical feature vectors. For example,
when some feature in the dataset is categorical, like colours or pets, we can transform
these variables into numerical values [Bur19]. Popular feature encoding techniques
are:

1. One Hot Encoding: Convert all unique values into lists of 0’s and 1’s where
the target value is 1 and the rest are 0’s. For example, when the color of a
green, red, and blue needs to represented, the feature for a green car would be
[1, 0, 0] and a red one would be [0, 1, 0].

2. Label Encoder: Convert labels into distinct numerical values. For example,
if your target variables are different animals, such as dog, cat, bird, these could
become 0, 1, and 2, respectively.

3.2.2.3 Feature Scaling

Feature scaling is the method of converting the different numerical scales of the various
features into a standard range. These methods are also known as feature normaliza-
tion. Feature scaling is commonly done when the values of different features in the
data matrix have different scales [Bur19]. The two most popular feature scaling meth-
ods are min-max normalization and mean-variance normalization or standardization.

Min-max normalization is the method of converting the range of values that a
numerical feature can take, into a standard range of values, typically in the interval
[−1, 1] or [0, 1]. The min-max scaled feature, x̄(j) can be written as:

x̄(j) = x(j) −min(j)

max(j) −min(j)
(3.2.1)

where min(j) and max(j) are the minimum and maximum value of the feature j in
the dataset, respectively.

In Standardization (or z-score normalization) [Bur19] the feature values are rescaled
so that they have the properties of a standard normal distribution with µ = 0 and
σ = 1 (Fig. 3.2.1). Here, µ is the mean or the average value of the feature, averaged
over all examples in the dataset and σ is the standard deviation from the mean.

x̄(j) = x(j) − µ

σ
(3.2.2)

3.2.2.4 Dimensionality Reduction

In many real-world machine learning problems, the number of features, D is large
compared to the number of available data samples N . Sometimes, many of these
features are correlated or redundant. Moreover, the higher the number of features,
the harder it gets to visualize the dataset and then analyze or process it. As the di-
mensionality increases, the computational cost also increases, usually exponentially.
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Figure 3.2.1: Standard Normal Distribution with µ = 0 and σ = 1.

This increase in difficulty of processing data with increase in the dimensions is known
as the curse of dimensionality [Bis06]. Dimensionality reduction is the process of
reducing the number of features under consideration, by obtaining a set of principal
or important features. It is used to transform data with a large number of features
(or dimensions) into a lower dimensional while preserving the different relationships
between the data points. For example, data points that are similar (for example, two
homologous protein sequences) should also be similar in their lower- dimensional form,
whereas dissimilar data points (for example, unrelated protein sequences) should re-
main dissimilar [NH19; Moo+19; Gre+22]. Dimensionality reduction techniques can
include both linear and non-linear transformations of the dataset [Gre+22]. Dimen-
sionality reduction techniques can be categorized in two major ways:

1. Feature Extraction: It reduces the number of features in a dataset by creating
new features from the existing ones and discarding the original features.This is
shown in Fig. 3.2.2a. The new set of features will have different values as
compared to the original feature values. The main aim is that fewer features will
be required to capture the same information. Commonly used feature extraction
techniques are principal component analysis (PCA) [WEG87; Jol02], Uniform
Manifold Approximation and Projection (UMAP) [MHM20] and t-distributed
Stochastic Neighbour Embedding (t-SNE) [VH08]. The technique to employ
is dependent on the problem being solved: PCA retains original relationships
between data points and is interpretable because each component is a linear
combination of features of the original dataset. The applications of PCA in
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(a) Feature Extraction (b) Feature Selection

Figure 3.2.2: Dimensionality Reduction Techniques

biological applications such as molecular dynamics trajectory analysis can be
found in [Ste+06]. t-SNE strongly preserves local relationships between data
points and is a flexible method that can reveal structure in complex datasets.
Applications for t-SNE include single-cell transcriptomics [KB19; Gre+22].
There are some extensions of PCA that were developed to overcome the limita-
tions of PCA. For example, by its very nature, PCA is sensitive to the presence
of outliers and therefore also to the presence of gross errors in the datasets. This
has led to attempts to define robust variants of PCA, and Robust principal com-
ponent analysis (RPCA) has been used for different approaches to alleviate the
limitations of PCA [Can+11]. Kernel PCA is an extension of PCA that allows
for the separability of nonlinear data by making use of kernels. The basic idea
behind it is to project the linearly inseparable data onto a higher dimensional
space, where it becomes linearly separable [Mik+98].

2. Feature Selection Feature selection is the process of selecting a subset of
relevant features from all the available features for use in model learning. In
contrast to feature extraction techniques, feature selection techniques do not
alter the original representation of the features, but merely select a subset of
them (Fig. 3.2.2b). Thus, they preserve the original semantics of the features,
hence, offering the advantage of interpretability by a domain expert [SIL07;
GE03]. In general, there are three types of feature selection methods:

a) Filter Methods apply a statistical measure to assign a score to each fea-
ture. The features are ranked by the score and then, depending upon the
score value, it is decided if a particular feature will be selected or removed
from the dataset. Afterward, this subset of features is presented as input
to the classification algorithm (Section 3.2.4). These methods are often
univariate. This means that each feature is considered separately, thereby
ignoring feature dependencies, which may cause worse classification perfor-
mance when compared to other feature selection techniques [SIL07]. Some
examples of filter methods include the Chi squared test, information gain
and correlation coefficient scores.

b) In wrapper methods, a subset of features is used to train a model. Based
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on the inferences drawn from the model performance at the previous step,
it is decided whether to add or remove features from the feature subset.
Thus, the feature selection problem is reduced to a search problem [SIL07].
Some common examples of wrapper methods are forward feature selection,
backward feature elimination, and recursive feature elimination.

i. Forward selection is an iterative method that starts with having no
feature in the model. In each iteration, the feature which improves
the model performance keeps getting added on each iteration, till an
addition of a new feature does not improve the performance of the
model [HG15].

ii. Backward elimination starts with all the features and removes the
least significant feature based on the p-value at each iteration. This is
repeated this until there is no further improvement on the removal of
features [KJ97].

iii. Recursive feature elimination is an example of backward feature elim-
ination, which works by searching for a subset of features by starting
with all features in the dataset and successfully removing features un-
til the desired number remains. This technique starts by using all the
features to train the model, ranking features by importance, discarding
the least important features, and re-fitting the model. This process is
repeated until a specified number of features remains. Features are
scored either using the provided machine learning model (e.g. some
algorithms like decision trees offer importance scores) or by using a
statistical method [Guy+02].

c) Embedded methods learn which features best contribute to the accuracy
of the model while the model is being created. The most common type of
embedded feature selection methods are regularization methods [SIL07].
Regularization methods also called penalization methods introduce addi-
tional constraints into the optimization function of a predictive algorithm
like a regression algorithm. Examples of regularization algorithms are the
LASSO (Least Absolute Shrinkage and Selection Operator) [Tib11], Elas-
tic Net [ZH05] and Ridge Regression [McD09].

An interesting thing to note here is that, with sufficient domain knowledge, one
can have a clear understanding of the task and make conclusions as to why the
model selects or removes certain features. In other words, why certain features
are more important than the others. Feature selection thus aids explainability
of the predictions generated by the machine learning algorithms.

3.2.3 Data Splitting
The preprocessed dataset is usually split into:
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1. Training set, which is the set of samples used for learning the parameters of
the model. This is generally 80 % of the total dataset.

2. Validation set, usually 10 % of total dataset. This dataset is used during
training to estimate the performance of the trained model. It acts as the test
set during training. The total data available for training includes the training
set and the validation set. Though the validation set is considered part of the
training data, but it is not used to specifically train the model. The trained
model is validated on the validation set and, if performance of the model is
not acceptable, then training is resumed. Thus, model hyperparameters, which
define the model itself, are tuned on this validation dataset. Mostly, k-fold cross
validation is used to split the total available data for training into training and
validation set. The total available training set is split into k evenly sized parti-
tions (common values being 5 or 10) to form k different training and validation
sets, and the performance is compared across each partition to select the best
hyperparameters that perform best across all partitions. K-fold cross validation
helps to prevent overfitting of the model on the training data. An overfitted
model will produce excellent results on training data, but will produce poor
results on unseen data [Gre+22].

3. Test set (usually 10 % of total data): Model’s final performance is evaluated
on this set. This dataset should not be used to tune the model. The test set
helps us to establish the quality of the learnt model and provides an insight into
the generalization capability of the model, i.e., how well the model performs on
similar data that it did not see during training. A test set should be independent
of the training and validation dataset to ensure unbiased evaluation of the model
during testing. If a data sample is present in both the training and test set, then
a model can learn an identity mapping and still have very good performance.
The test set is also called the ‘hold-out set’and is used to assess the performance
of the model on data not used for training or validation and gives an analysis of
the model’s expected real-world performance. The test set should be used only
once, at the very end of the study [Gre+22].

Thus, construction of the three datasets play a crucial role in the learning process.
They represent the experience, E that enables the model to learn the task, T that
improves the performance, P . Already having discussed how the experience for the
model can be created, the next section discusses how models can be learnt for the
task of classification.

3.2.4 Classification Algorithms
Machine learning algorithms are described as learning a target function (f) that best
maps input variables (X) to an output variable, (Y ) i.e. Y = f(X). This is a general
learning task called predictive modeling where one would like to make predictions in
the future (Y ) given new examples of input variables (X) and the aim is to make
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as many accurate predictions as possible. Here, X is the set of data points that are
represented by a vector of features and the output Y is often called labels or classes
or categories or targets. Class labels are often string values and must be mapped
to numeric values before being provided to an algorithm for modeling. This is often
referred to as label encoding, where a unique integer is assigned to each class label,
as mentioned in §3.2.2.2. For example, the labels can be 0 and 1, when there are two
classes, such as in hot spot prediction (Chapter 4).

Classification is defined as a process of assigning new observations into previously
defined classes. It is a predictive modeling problem where a class label is predicted
for a given example of input data. Furthermore, classification is a supervised learning
problem, which means that it requires a training dataset with examples of inputs
and their respective output labels to learn. As such, the training dataset must be
sufficiently representative of the classification problem and have sufficient examples
of each class label [Has+09]. Many different types of classification algorithms are
available for modeling a classification predictive modeling problem and as such, there
is no good theory on how to select which classification algorithm for a particular
problem. The practical way is generally to use controlled experiments to find out
which algorithms and their respective configurations result in the best performance
for a given classification task. The classifiers used in this thesis are discussed next.

3.2.4.1 Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm that is widely used for classification
problems [Bis06; Guy+02; BGV92]. The main idea of SVM is to find the optimal
separation boundary, or boundaries, between classes with the help of training data.
In SVMs, these boundaries are called hyperplanes, which are identified by locating
support vectors (or the instances that most essentially define classes) and their mar-
gins, which are the lines parallel to the hyperplane defined by the shortest distance
between a hyperplane and its support vectors. The main idea is that, with a high
enough number of dimensions, a hyperplane separating a particular class from others
can always be found, thereby delineating dataset member classes. When repeated
a sufficient number of times, enough hyperplanes can be generated to separate all
classes in n-dimensional space. Importantly, SVMs do not look just for any separat-
ing hyperplane, but for the maximum-margin hyperplane, i.e. the one that resides
equidistant from the respective class support vectors.

In feature space, when data is linearly separable, many separating hyperplanes can
be chosen to identify classes, with the following form,

f(x) = wT ⋅ x + b = 0. (3.2.3)

Here, W is a vector of weights, b is a scalar bias and X ∈ Rn. Finding the maximum-
margin hyperplane, or the hyperplane that resides equidistant from the support vec-
tors, is done by using a Lagrangian formulation and the Karush-Kuhn-Tucker condi-
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tions. The maximum-margin hyperplane can be expressed in the following form:

f(x) = b +
n

∑
i=1

αiyix(i) ⋅ x. (3.2.4)

where b and αi are learned parameters, n is the number of support vectors, i is a
support vector instance, yi is the class value of a particular training instance of vector
x(i) and x is a test point for which prediction needs to be made. In Equation 3.2.4
the dot product between x(i) and x is calculated. Thus, once the maximum-margin
hyperplane is identified and training is complete, only the support vectors are relevant
to the model, as they define the maximum-margin hyperplane; all the other training
instances can be ignored.

When data is not linearly-separable, the data is first transformed into a higher
dimensional space using kernel functions, and this space is then searched for the
hyperplane that can separate the samples. This is another quadratic optimization
problem, in which the hyperplane can now be expressed by:

f(x) = wT ⋅ ϕ(x) + b. (3.2.5)

Here, ϕ(x) is a kernel function.

3.2.4.2 Ensemble methods

Machine learning models can be fitted to data individually or combined in an en-
semble. An ensemble [Has+09] is a combination of simple individual models that
together create a more powerful new model. Boosting is a method for creating an
ensemble. It starts by fitting an initial model (e.g. a tree or linear regression) to the
data. Then a second model is built that focuses on accurately predicting the cases
where the first model performs poorly. The combination of these two models is ex-
pected to be better than either model alone. Then this process of boosting is repeated
many times. Each successive model attempts to correct for the shortcomings of the
combined boosted ensemble of all previous models. Examples of boosting algorithms
are Adaptive Boosting (ADABoost), Extreme Gradient Boosting (XGB), Gradient
Boosting Machines (GBM) [Has+09] among others.

Bagging [Has+09] is another ensemble method where the objective is to create
several subsets of data from training data by choosing samples randomly with re-
placement. Each collection of subset data is used to train their own model. Thus,
an ensemble of different models is obtained. The final output is based on majority
voting after combining the results of all models. The combination of results from
different classifiers is used, which is more robust than a single classifier. An example
of bagging ensemble algorithm is Random Forest.

In this thesis three ensemble models are used, namely, random forests, gradient
boosting machines, and extreme boosting machine.
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1. Random Forests (RFs) [Bre01] is a supervised learning algorithm used for
both classification and regression problems. Random forest is an ensemble learn-
ing method where a group of decision trees are combined to build a better model.
A decision tree [Has+09] builds iteratively by asking questions to partition data
at each step. A decision tree has three components: decision nodes, leaf or
terminal nodes and a root node, Fig. 3.2.3. The decision tree divides a train-
ing dataset into branches, which further segregate into other branches. This
sequence continues until a leaf node is attained. The leaf node cannot be seg-
regated further. The nodes in the decision tree represent features that are used
for predicting the outcome. Decision trees classify the examples by sorting them
down the tree from the root to some leaf/terminal node, with the leaf/terminal
node providing the classification of the example.

Figure 3.2.3: A schematic of a decision tree [Cha].

A random forest model, as shown in Fig. 3.2.4, is made up of these many small
decision trees (known as estimators), which each give their own predictions. The
random forest model then combines the predictions of the individual estimators
to give a more accurate prediction. Decision tree classifiers have the disadvan-
tage that they can easily overfit on the training data. Instead, the random forest
ensemble method allows it to generalize well to the test data, including data
with missing values. Random forests are also good at handling large datasets
with high dimensionality [Has+09].

2. Gradient Boosting Machine (GBM) [Fri01] is a type of machine learning
boosting algorithm. It relies on the intuition that the next model in the en-
semble, when combined with previous models, minimizes the overall prediction
error. Thus, the target labels for the next model are set to minimize the error
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Figure 3.2.4: A schematic of a random forest.

than the previous model. Predictions from the new model are close to the tar-
gets and will reduce the error. The name gradient boosting arises because target
outcomes for each case are set based on the gradient of the error with respect
to the prediction. Each new model takes a step in the direction that minimizes
the prediction error, in the space of possible predictions for each training case.
Gradient boosting involves three elements:

a) A loss function to be optimized, which depends on the type of problem
being solved and must be differentiable. Many standard loss functions
are supported by existing libraries, but they can also be defined by the
user. For example, a regression problem may use a squared error and a
classification problem may use logarithmic loss.

b) A weak learner to make predictions, i.e. a weak hypothesis whose perfor-
mance is at least slightly better than random chance. The idea is to use
the weak learning method several times to get a succession of hypotheses,
each one refocused on the examples that the previous ones found difficult
and misclassified [Val13]. Decision trees are used as the weak learner in
gradient boosting.

c) An additive model to add weak learners to minimize the loss function. Trees
are added one at a time, and existing trees in the model are not changed.
A gradient descent optimization procedure [Rud16] is used to minimize the
loss when adding trees. Traditionally, gradient descent is used to minimize
a set of parameters, such as the coefficients in a regression equation or
weights in a neural network. After calculating error or loss, the weights are
updated to minimize that error. To perform the gradient descent procedure
after calculating the loss, one adds a tree to the model that reduces the
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loss (i.e. the gradient is followed). This is done by parameterizing the tree,
then modifying the parameters of the tree and moving in the right direction
by reducing the loss. Generally, this approach is called functional gradient
descent or gradient descent with functions. The output of the new tree is
then added to the output of the existing sequence of trees to improve the
final output of the model. A fixed number of trees are added or training
stops once loss reaches an acceptable level or no longer improves on an
external validation dataset.

3. Extreme Gradient Boosting (XGB) [CG16] provides parallel tree boost-
ing (Fig. 3.2.5) and is the leading machine learning algorithm for regression,
classification, and ranking problems. XGB is a scalable and highly accurate
implementation of gradient boosting that pushes the limits of computing power
for boosted tree algorithms, being built largely for energizing machine learning
model performance and computational speed. With XGB, trees are built in par-
allel, instead of sequentially like GBM. It follows a level-wise strategy, scanning
across gradient values and using these partial sums to evaluate the quality of
splits at every possible split in the training set. It is a perfect combination of
software and hardware optimization techniques to yield superior results using
less computing resources in the shortest amount of time.

Figure 3.2.5: Evolution of XGB Algorithm from Decision Trees [MS].

3.2.5 Performance Metrics
The performance of classification predictive modeling algorithms are evaluated based
on certain statistical metrics. These performance metrics are used during all three
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phases of learning and testing, i.e., training, validation and testing. Some important
terms to note before understanding the performance metrics are: True Positives, TP,
False Positives, FP, True Negatives, TN , and False Negatives, FN The following
explanation is assuming a binary classification or a two class classification problem,
but it can be extended to a multi-class problem using one-vs-all predictions. A true
positive is an outcome where the model correctly predicts the sample is from a positive
class. Similarly, a true negative is an outcome where the model correctly predicts the
sample is from the negative class. A false positive is an outcome where the model
incorrectly predicts the sample to be from the positive class, and a false negative is
an outcome where the model incorrectly predicts the negative class. Using TP, FP,
TN , and FN a number of performance metrics can be defined [Bur19]:

1. Accuracy: Classification accuracy is defined as the number of correct predic-
tions divided by the total number of predictions,

Accuracy = TP + TN

TP + FP + FN + TN
. (3.2.6)

Accuracy is useful when the dataset is well-balanced but is not a good metric
choice for unbalanced datasets. When the dataset is imbalanced, the number
of samples in one class is much larger than the number of samples in the other
classes, accuracy cannot be considered a reliable measure anymore, because it
provides an overoptimistic estimation of the classifier ability on the majority
class.

2. Sensitivity: Sensitivity or Recall explains, out of the total number of positive
samples, how many positive samples was the classifier able to predict correctly.
It is a useful metric in cases where false negative is of higher concern than false
positive.

Sensitivity = TP

TP + FN
. (3.2.7)

3. Specificity: Specificity explains out of the total number of negative samples,
the number of samples that were predicted as negative by the classifier. It can
be written as

Specificity = TN

TN + FP
. (3.2.8)

4. Precision: Precision explains, out of the total predicted positive samples, how
many samples were actually positive. Precision is useful in the cases where false
positive is a higher concern than false negative.

Precision = TP

TP + FP
. (3.2.9)

5. F1-Score: For learning from imbalanced datasets, one needs to improve recall,
which as stated above provides information about a classifier’s performance with
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respect to false negatives, without hurting precision, which deals with false
positives. Unfortunately, trying to reach this goal can often be challenging,
since when increasing the true positives for the minority class, the number of
false positives can also increase, reducing precision. The problem is greatly
alleviated by using a metric that combines the trade-offs of both precision and
recall, namely the F1- score [CJ20]. F1-score is the harmonic mean of precision
and recall. The best value of F1 would be 1 (perfect precision and recall) and
worst would be 0.

F1 − Score = 2TP
2TP + FP + FN . (3.2.10)

6. Matthews Correlation Constant (MCC): Another metric for working with
imbalanced classes is Matthews Correlation Constant (MCC) [CJ20]. It ranges
in the interval 1 to +1, with extreme values –1 and +1 attained in case of
perfect misclassification and perfect classification, respectively, while MCC=0
means that the classifier is no better than a random flip of a fair coin. MCC
takes into account all four values TP, FP, TN , and FN and a high value (close
to 1) means that both classes are predicted well, even if one class is dispropor-
tionately under or over-represented.

MCC = TP ×TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

. (3.2.11)

3.2.6 Evaluation
Model evaluation or testing is done at two specific points of the learning procedure,
one during validation (Section 3.2.3) and the second during testing. This evaluation
is performed on the basis of one or more performance metrics defined in Section 3.2.5.
After learning the hyperparameters and tuning of the model is complete, one retrains
the model with the selected hyperparameters and tests it on the test dataset, where
the model should be able to predict the labels of the dataset. On the basis of the
criteria defined using the performance metrics, the performance of the model on the
test set decides whether the learnt model was satisfactory or a new model that is
more suitable for the given data should be learnt or the performance metrics should
be changed, or the task is complex and requires more data.

This chapter discussed the basic steps involved for a machine learning based clas-
sification workflow. Data acquisition and preprocessing is discussed. The importance
of the training, validation and test datasets was elaborated. A number of basic clas-
sifier models and the performance metrics that help to estimate the performance of
the learnt model were discussed. Details on when to use which performance metrics
are also provided. In the next chapter, I give a detailed explanation of my method
to predict hot spot residues. The next chapter also contains all the computational
details of my method that can help to reproduce the method.
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The ability of machine learning techniques to use data to learn without the need for
external programming (Chapter 3), combined with an increase in data availability
and more powerful hardware and software resources, has led to an increase in the
popularity of machine learning (ML) algorithms in every field, including the prediction
of the hot spot residues for protein-protein interactions.

The machine learning (ML) based hot spot prediction methods mentioned in the
Introduction (Chapter 1) use a data matrix that contains protein sequence- and
structure-based features. Such data matrices often contain values that can be cor-
rupted by errors or noise that are caused due to experimental mistakes, computa-
tional issues and/or human blunders [Mor+17; Can+11; KC21]. As expected, this
adversely affects the predictive power of the machine learning algorithms. The ex-
isting machine learning based hot spot prediction algorithms do not take this issue
into account. However, machine learning algorithms are sensitive to noise in the
data [GG19]. Noise in the data can result in poor prediction results and greatly
decreased classification accuracy. Consequently, it becomes important to deal with
the issue of noise in the data before applying any machine learning algorithms to the
data. Hence, it is imperative to use an approach for ML based hot spot prediction
where the data matrix contains reduced noise (an ideal scenario would be noiseless
data matrix).

In my method, namely RBHS (Robust Principal Component Analysis-(RPCA)
Based Prediction of Protein-Protein Interaction Hot Spots) [Sit+21], I address this
issue of noisy data matrix by pre-processing it using Robust Principal Component
Analysis (RPCA) [Can+11]. RPCA is a variant of Principal Component Analysis
(PCA) [WEG87; Jol02] method (Section 3.2.2.4). RPCA works by decomposing a
noisy matrix D into two components, namely, a low rank component, A, and a sparse
component, S, irrespective of the number of corrupted entries (i.e., robustly).

The low rank matrix A obtained after applying RPCA to the original data matrix
is then the new data matrix for the pipeline of identification of hot spots. In this
chapter, I talk about RBHS and the machine learning methods I used along with
RBHS to predict hot spot residues. In particular, information regarding databases,
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datasets, features, the proposed method RBHS is discussed in detail. To address
the issue of noise in protein-protein interaction hot spot data, I propose the RBHS
workflow in detail along with all its computational details.

4.1 Databases
A prerequisite for using machine learning (ML) based methods for any problem is
that these methods require well-curated datasets, as talked about in detail in Chap-
ter 3. Experimental hot spots have been cataloged in many databases. In general,
for machine learning based hot spot prediction approaches, researchers combine data
from multiple such databases, filter the redundancies and split the data into training,
validation and test sets.

I derived the data matrices for my method as in reference [LLD18]. The authors
of [LLD18] created two datasets, HB-34 and BID-18 from existing protein databases
namely Alanine Scanning Energetics database (ASEdb) [TB01], the Binding Inter-
face Database (BID) [Fis+03], Structural Kinetic and Energetic Database of Mutant
Protein Interactions (SKEMPI) [MF12] and Protein–protein Interactions Thermody-
namic Database (PINT) [KG06].

4.1.1 ASedb
Alanine Scanning Energetics database (ASEdb) [TB01] is one of the earliest protein
interface databases. ASEdb is a searchable relational database containing current
Alanine scanning data that can be updated as new data is published. ASEdb con-
tains Alanine-scanning mutational analyses of interfaces for which changes in binding
energy have been measured. In addition, solvent accessible surface areas (ASA) have
been calculated for each mutant side chain. The program NACCESS [HT93] was
used to calculate ASA for ASEdb calculation with default parameters. ASA has been
explained in detail in Section 4.3.2. In cases where the protein-protein complex struc-
ture was available, surface areas were calculated both for the separated proteins and
for the complex.

4.1.2 BID
Along with ASEdb, BID [Fis+03] is also one of the earliest available PPI database.
BID uses a data mining approach for searching literature for detailed information
about residues involved in protein interfaces and organizing the information into a
user-friendly database. This database is continuously augmented by mining of the
scientific literature for protein interaction descriptions, as well as wild-type and mu-
tational binding energies. Based on a relational database model, the BID has six
tables: Protein Info, Protein Pair, Residue a, Residue b, Interact and Reference. The
information about a protein is referenced against its GenBank [Ben+12] gene identi-
fication number, which synchronizes the information in the BID with GenBank using
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the gene ID as a common key. The Protein Pair table describes the interaction. The
two residue tables, Residue a and Residue b, include information about the residues
involved in binding. The Interact table stores the type and strength of the protein-
protein interactions. The Reference table contains the source reference and the ID to
its PubMed citation as a link to the primary data.

4.1.3 SKEMPI
A more exhaustive database for protein interface hot spots is Structural Kinetic and
Energetic Database of Mutant Protein Interactions (SKEMPI) [MF12]. It contains the
changes in the binding energies, entropy, enthalpy, and rate constants upon mutation.
SKEMPI contains the most diverse data about experimental hotspots that was first
presented in 2012 [MF12] and later updated in 2019 to SKEMPI 2.0 [Jan+19].

4.1.4 PINT
Protein–protein Interactions Thermodynamic Database (PINT) [KG06] contains the
data of several thermodynamic parameters along with sequence and structural in-
formation about protein-protein interactions, experimental conditions and literature
information. Each entry contains numerical data for the free energy change, disso-
ciation constant, association constant, enthalpy change, heat capacity change etc.
of the interacting proteins upon binding. This data is important for understanding
the mechanism of protein–protein interactions. PINT also includes the name and
source of the proteins involved in binding, their SWISS-PROT [Boe+03] and Protein
Data Bank (PDB) [Ber+00b] codes, secondary structure, and solvent accessibility
of residues at mutant positions, experimental conditions, such as buffers, ions and
additives, measuring methods, and other literature information.

4.2 Datasets
HB-34 and BID-18 were created by the authors of reference [LLD18] from existing
protein databases namely, Alanine Scanning Energetics database (ASEdb) [TB01],
the Binding Interface Database (BID) [Fis+03], Structural Kinetic and Energetic
Database of Mutant Protein Interactions (SKEMPI) [MF12], and Protein–protein
Interactions Thermodynamic Database (PINT) [KG06].

4.2.1 HB-34 and BID-18
For the construction of HB-34 dataset, alanine-mutation data was extracted from four
databases, Alanine Scanning Energetics (ASEdb) [TB01], SKEMPI database [MF12],
Ab+data [Ass+10], and Alexov_sDB [PLA15]. Then, the proteins present in the BID
dataset [Fis+03] were excluded, and the redundant proteins were also removed. This
resulted in the creation of a benchmark of 34 protein complexes (HB-34) with 313
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interface residues. The dataset HB-34, with columns containing PDB ID, residue
ID and the label indicating whether the residue is hot spot (label=1) or null spot
(label=0), is presented in Table 7.1.1 in the chapter supplementary information 1.

An independent test dataset, namely BID-18, was constructed by selecting com-
plexes from the BID database that are non-homologous to the complexes in the train-
ing dataset (HB-34). BID-18 consists of 18 protein complexes and 126 interface
residues. The dataset BID-18 has columns containing PDB ID, residue ID and the
label indicating whether the residue is hot spot (label=1) or null spot (label=0) and
is presented in Table 7.2.1 in the chapter supplementary information. The authors
in reference [LLD18] mentioned that the HB-34 and BID-18 datasets are completely
independent.

However, I also analyzed both the datasets using the CD-HIT-2D web server [Hua+10].
The FASTA sequences of both the datasets given as input to the web server are pro-
vided in Section 7.13 and Section 7.14 of the Supplementary information. I tried to
identify sequences that were similar, keeping a stringent criterion as follows:

1. the sequence identity should be larger than 40% and

2. the coverage should be larger than 20% of the whole sequence.

Except for coagulation factor VIIA, no protein with the above characteristics could be
identified. However, VIIA forms a complex with the soluble tissue factor (PDB code
1DAN) in the BID-18 dataset, and with the peptide exosite inhibitor E-76 (PDB code
1DVA) in the HB-34 dataset. It is important to note that the two protein partners are
not evolutionarily related (sequence identity lower than 20% and sequence coverage
below 20%). Consequently, it was expected that the results of my work will not be
affected by the presence of the coagulation factor VIIA protein in common between
the two datasets, HB-34 and BID-18.

As mentioned before, residues in HB-34 dataset were used to construct the training
data matrix and residues in BID-18 were used to construct the test data matrix for
my pipeline. It is important to note that HB-34 consists of 34 protein complexes with
313 interface residues, out of which 133 are hot spots and 180 are null spots. BID-18
consists of 18 protein complexes and 126 interface residues. Out of 126 residues in
BID-18, 39 are hot spots and 87 are null spots. These are summarized in Table 4.2.1.

1These tables are long and hence have been included in the Supplementary information, instead of
this chapter.
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Dataset No. of
Protein

Complexes

No. of
Interface
Residues

No. of Hot
Spots

No. of Null
Spots

HB-34 34 313 133 180
BID-18 18 126 39 87

Table 4.2.1: Details of the two datasets, HB-34 and BID-18.

The next step in the pipeline for using ML for hot spot identification is to encode
various sequence and structure based features for protein-protein interaction interface
residues by using existing bio-informatics tools and software.

4.3 Encoding the residues as features
Many protein structure and sequence based features or attributes are collected using
a number of bioinformatics tools to represent protein-protein interaction interface
residues for machine learning methods of hot spot prediction. These features are:

1. Sequence based features.

2. Structure based features.

Each of them is discussed in detail next and is also summarized in Table 4.3.1.

4.3.1 Sequence based features
Protein sequence features include physicochemical properties of amino acids, evolu-
tionary information in terms of evolutionary conservation score and position-specific
scoring matrix (PSSM) and other similar descriptors that encode the sequence infor-
mation of the residues.

Hot spots are evolutionarily more conserved than other residues, and this informa-
tion is incorporated as sequence based features in machine learning based hot spot
prediction methods. The calculation of evolutionary conservation scores is done using
multiple sequence alignments and phylogenetic trees [Ash+10]. Another commonly
used sequence feature is Position-specific scoring matrices (PSSMs) that can be ob-
tained from NCBI non-redundant databases via PSI-BLAST [Alt+97]. The features
I use for my hot spot prediction method also comprise these sequence features, as
explained below.

4.3.1.1 Physicochemical features

The physicochemical properties of amino acids in my dataset are calculated from
the AAIndex [Kaw+07] database because it is an important resource for studying
the physicochemical and biochemical properties of amino acids and their roles in

40



4.3 Encoding the residues as features

protein structure, function, and evolution. It has been invaluably used to analyze
protein sequences and generate features from these sequences, that can be used to
train algorithms and models for various bioinformatics applications. The database
is freely available online and can be also be downloaded as a file. Each entry in
the AAIndex database represents a specific index which is a particular property and
consists of a unique identifier, a short description of the index, and a set of nu-
merical values assigned to the 20 standard amino acids. The values typically range
from positive to negative, representing the extent of a particular property possessed
by each amino acid. Five physicochemical features (hydrophobicity, hydrophilicity,
polarity, polarizability, average accessible surface area) obtained from the AAIndex
database [Kaw+07] and one more physicochemical property (propensity) [JT97] have
been used in my work:

1. Normalized consensus hydrophobicity is a measure used in biophysics stud-
ies to calculate the relative hydrophobicity of amino acids in a protein se-
quence [Mal+08]. The Eisenberg scale [Eis+84] in the AAIndex database was
used in this thesis to calculate normalized consensus hydrophobicity. It is based
on the principle that hydrophobic amino acids tend to be buried inside the
protein’s core, away from the surrounding water molecules, while hydrophilic
amino acids are exposed to the solvent. The scale is typically normalized to
a reference amino acid, which is assigned a value of zero, and other amino
acids are ranked based on their relative hydrophobicity compared to the ref-
erence [Mal+08; Eis+84]. These values are derived from experimental data
and/or theoretical calculations, taking into account various factors such as sol-
vent accessibility, side chain interactions, and protein folding.

2. Hopp-Woods hydrophilicity scale [HW81], is a scale that estimates the hy-
drophilicity of amino acids based on their propensity or tendency to be located
on the surface of proteins and exposed to water. This scale was originally
developed by William Hopp and Harold Woods in 1981 to predict regions of
proteins that are likely to be antigenic. However, it is also used in bioinfor-
matics to check for hydrophilicity of amino acids in the protein sequence. The
Hopp-Woods scale assigns numerical values to each amino acid based on their
hydrophilic properties, with positive values indicating hydrophilic amino acids
and negative values indicating hydrophobic amino acids.

3. Polarity is calculated using the Grantham polarity index [Gra74], which is a
widely used index in the AAIndex database to quantify the polarity of amino
acids. This index is based on the idea that certain amino acids have polar
or charged side chains, while others have nonpolar side chains, and this index
assigns numerical values to the 20 amino acids based on their relative polarity.
The values are derived from the differences in chemical properties, like charge
distribution and dipole moment, between the amino acids. In, this index, higher
values indicate greater polarity.
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4. Polarizability parameter developed by [CC82] is used to calculate the polariz-
ability of amino acids in my work, and it represents the average polarizability
of the side chains for each amino acid. Higher values indicate greater polar-
izability of the side chain, implying a higher susceptibility to polarizable in-
teractions. This index specifically focuses on the polarizability of amino acid
side chains, rather than the polarizability of the entire amino acid or individual
atoms within the side chains. This index from the AAIndex database used to
quantify the polarizability characteristics of amino acid side chains is quite use-
ful in understanding intermolecular interactions, ligand binding, protein-protein
interactions, and other aspects of protein structure and function [CC82].

5. The accessibility to the solvent is measured from the accessible surface area
of each residue in the protein complex [Jan+78]. The authors in [Jan+78]
calculated an average accessible surface area scale according to which residues
are classed as buried if their average accessible surface area is smaller than 20
Angstrom, exposed if it is larger than 60 Angstrom and intermediate if A is
between 20 and 60 Angstrom. This scale is present in AAIndex database, and
it was also used as a physicochemical property in my pipeline to predict hot
spot interface residues.

6. Residue interface propensity is used to understand which amino acid residues
have a higher tendency to be present at the interfaces as compared to other
amino acids in a protein complex. According to [JT96] the residues with higher
tendency to be present at the interface were often involved in important protein
interactions, such as hydrogen bonding, hydrophobic contacts, or salt bridges.
In my work I used the natural logarithmic of residue interface propensities as
mentioned in [JT97] and the higher the logarithmic propensity, the more likely
a residue is to occur in a protein-protein interface.

These features are reported in Table 7.5.1 for residues in HB-34 and Table 7.6.1 for
residues in BID-18 1 .

4.3.1.2 Position-Specific Score Matrix based features

Twenty position-specific score matrix (PSSM) profiles, calculated using PSI-BLAST [Alt+97].
Position-Specific Score Matrix (PSSM) based features are used in bioinformatics to
represent the evolutionary and conservation information of residues in protein se-
quences. PSSMs are constructed from multiple sequence alignments of homologous
sequences in the BLAST database [Alt+97], and the score for each position in the
position specific scoring matrix indicates how likely it is for an amino acid residue to
be present at that position based on evolutionary conservation, where positive scores
indicate high likelihood, negative scores indicate low frequency. PSSM-based features
are useful for distinguishing between conserved and variable regions in proteins. These

1These tables are long and hence have been included in the Supplementary information instead of
this chapter.
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features are reported in Table 7.7.1 for residues in HB-34 and Table 7.8.1 for residues
in BID-18.

4.3.1.3 Block substitution matrix based features

Twenty block substitution matrix based features, computed using Blosum62 [HH92].
Blosum62 is a substitution matrix used for sequence alignment to calculate the rela-
tive frequencies of amino acids and their substitution probabilities, and 62 indicates
that 62 % level of sequence similarity is taken into account. A block substitution
matrix is generated by comparing a set of aligned homologous sequences, and the
matrix captures substitution patterns across the entire sequence alignment. For each
residue pair in the matrix, a score is assigned based on their observed substitution
frequency. Positive scores indicate a high probability of substitution, while negative
scores indicate low substitution likelihood. These features are reported in Table 7.3.1
for residues in HB-34 and Table 7.4.1 for residues in BID-18.

4.3.2 Structure based features
As explained in Section 2.1.1.3, the tertiary structure of a protein is the folding ar-
rangement of the amino acids in three dimensions. The structural information is help-
ful to understand the function of proteins and the effect of disease associated muta-
tions at the molecular level. Now, with the release of AlphaFold- Multimer [Eva+21],
the ease of finding in silico structures for protein complexes has significantly increased.
Thus, the available structural information of proteins complexes in the form of struc-
tural features can be incorporated into the data matrix for better hot spot prediction
rather than using only sequence-based features. The structure based features I used
for RBHS are:

4.3.2.1 Solvent accessible area features

One commonly used structural feature of residues is the solvent Accessible Surface
Area (ASA) that is defined as the locus of the center of the virtual solvent molecule
as it rolls over the surface of the protein [LLD18]. Five solvent accessible area features
[RS94a] computed using Dictionary of Protein Secondary Structure (DSSP) [Joo+10]
were used in this thesis. MASA that is the solvent accessible surface area for a
monomer, and CASA that is the solvent accessible area for the protein complex are
calculated first, and then the following values are calculated on them:

∆ASA =MASA −CASA (4.3.1)

SBr =
ASA

MASA
(4.3.2)

Here, SBr is the relative surface burial.

RASA = MASA

Nominal Maximum Area (4.3.3)
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Here, RASA is relative accessible surface area and Nominal maximum area values
have been mentioned in [RS94b] for all the amino acids.

∆RASA = (RASA in molecule) − (RASA in complex) (4.3.4)

Now, MASA, ∆ASA, SBr, RASA and ∆RASA values are used as features in my
work. These features are reported in Table 7.9.1 for residues in HB-34 and Table 7.10.1
for residues in BID-18.

4.3.2.2 Solvent Exposure features

Seven solvent exposure features, computed using hsexpo [Ham05] are used in this
thesis. From [Ham05], Half-sphere exposure (HSE) is an excellent measure of solvent
exposure of an amino acid residue in a complex and HSE separates a residue sphere
into two half-spheres: HSE-up corresponds to the upper sphere in the direction of the
chain side of the residue, while HSE-down points to the lower sphere in the direction
of the opposite side [Son+08]. Now, seven exposure features are calculated using the
software hsexpo [Ham05] are:

1. HSEAU : the number of Cα atoms in the upper sphere.

2. HSEAD: number of Cα atoms in the lower sphere.

3. HSEBU : the number of Cβ atoms in the upper sphere.

4. HSEBD: the number of Cβ atoms in the lower half sphere.

5. Coordination number (CN): the number of Cα atoms within a sphere around
the Cα atom of a residue.

6. Residue depth (RD): atom depth is defined as the distance between a given
atom and the nearest point on the solvent accessible surface. Residue depth is
the average atom depth of a residue’s atoms.

7. RDα: the atom depth of a residue’s Cα atom.

The analysis of solvent exposure features is useful for understanding protein structure
and function, as solvent-exposed residues are more likely to be involved in interac-
tions with other molecules, such as ligand binding, protein-protein interactions, or
interactions with water molecules. These features are reported in Table 7.11.1 for
residues in HB-34 and Table 7.12.1 for residues in BID-18. These tables are long and
hence have been included in the Supplementary information instead of this chapter.

After combining all the structure and sequence based features described above,
there is a total of 58 features in the data matrix. The resulting training data matrix
is of size 58×313 because there are 58 features and 313 residues in HB-34. The testing
data matrix is of size 58 × 126 because there are 126 residues in BID-18 dataset.
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Feature
Characteristic

No. of features Feature names Tool/Database

Sequence based features
Physicochemical 6 Hydrophobicity,

hydrophilicity,
polarity,

polarizibility,
propensities and

average accessible
surface area

AAIndex
database [Kaw+07],

propensities
using [JT97;

JT96]

Position-Specific
Score Matrix

(PSSM)

20 Sequence
alignment scores

with respect to 20
target frequencies
for each position

in the query
protein.

PSI-
BLAST [Alt+97]

Block substitution
matrix

20 Alignment score
matrix after

comparison of
sequences with

pairwise identity
no more than

62%.

Blosum62 [HH92]

Structure based features
Solvent Accessible

Surface
Area(ASA)

5 ASA (monomer),
Delta ASA,

Relative ASA
(RASA), Delta

RASA

DSSP [Joo+10]

Solvent exposure
features

7 HSEBD, HSEAU,
HSEAD, HSEBU,
CN, RD, and RDa

hsexpo [Ham05]

Table 4.3.1: The sequence and structure based features used in both the datasets. A
total of 58 features are used, which includes 46 sequence based features
and 12 structure based features.
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4.4 Workflow
Hot spot prediction is done using these data matrices as inputs to the machine learning
classifiers. For better understanding, I have described the steps of the method in a
workflow. Fig. 4.4.1 illustrates the proposed workflow, and it involves the following
steps,

Step 1: Pre-processing the data using RBHS.

Step 2: Training and validation of suitable machine learning models.

Step 3: Applying the models on test data and predicting the output labels.

In the subsequent sections, each of these steps are described in detail.

Test data 
matrix

Applying tuned 
classifiers to test data

Predicting test labels

Calculating 
performance metrics 
for comparison with 

other methods

Training 
Classification 

Algorithms

Hyperparameter 
optimization
(5-fold cross 
validation)

Train data 
matrix

Step 2

Step 3

Feature 
Selection 
(XGBoost)

RPCA
D = A + S

Mean Variance 
Normalization

A

Step 1 (RBHS) 

Training Dataset
HB-34

 Test Dataset
BID-18

Structural 
features

Sequence 
features

Figure 4.4.1: Workflow illustrating the steps of my approach for hot spot prediction.

4.4.1 Step 1: RBHS
RBHS is a novel pre-processing pipeline for recovering a data matrix with reduced
noise from a noisy data matrix and then performing feature selection on the reduced
noise matrix. The RBHS pipeline for data pre-processing is composed of the following
steps:

1. Normalization: In the first step, the data matrices (mathematical notation:
D) that have been constructed from the training dataset (HB-34) and from
the testing dataset (BID-18) respectively (called training data matrix and test
data matrix for the rest of this thesis) are normalized. Normalization is usually
done on a data matrix because in most cases the values of different features
in the data matrix have different scales. This results in inaccurate predictions
made by the classifier. In my data matrices (described in Sections 4.2 and 4.3)
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it can be seen from Tables 7.3.1, 7.4.1, 7.5.1, 7.6.1, 7.7.1, 7.8.1, 7.9.1, 7.10.1,
7.11.1, 7.12.1 that different features have different numerical ranges or scales.
For example, the maximum and minimum value of the Blosum62 features lie
between −4 and 11 and are integers, for both the datasets, HB-34 and BID-18,
but the hydrophilicity feature, for both datasets, has its maximum and minimum
value as −3.4 and 3 respectively and are represented by real numbers. Thus,
it becomes important to normalize features to the same scale before further
processing. I tested various normalization techniques, as explained in Scikit-
Learn [Ped+c]. Finally, I used mean variance normalization (Section 3.2.2) on
the training and test data matrices because it gave the best results among the
different techniques that I tested.

2. RPCA: Next, I apply Robust Principal Component Analysis (RPCA) to both
normalized training and normalized test data matrices and recover the corre-
sponding matrices A that contain reduced noise. Biological data often contains
noise, which may lead to inaccuracies in the prediction of the machine learning
classifiers. I used RPCA for pre-processing the data because it splits the data
matrix D, which may have corrupted entries, into a low-rank matrix A contain-
ing reduced noise and a sparse matrix S, (D = A + S) [Can+11]. Consider a
matrix of size m × n with m < n. Here, m is the number of rows and n is the
number of columns in the matrix. Then the matrix is a full rank matrix when
all m rows are linearly independent. Now, a set of vectors is called linearly
independent if no vector in the set can be expressed as a linear combination of
the other vectors in the set and consequently the rank of the matrix will be m.
On the other hand, when m > n, the matrix is full rank when all n columns are
linearly independent and the rank of the matrix is the number of columns that
is n. The matrix that does not have full rank is a low rank matrix [Str06]. In
other words, all columns or rows are not linearly independent. A sparse matrix
is a matrix in which most of the entries or elements are zero [Str06]. In my
thesis, the non-zero elements of the sparse matrix correspond to the putative
corrupted or noisy entries. There are several mathematical approaches to solve
RPCA [BZ14] in literature. In my method, I use the Principal Component
Pursuit (PCP) method as described in [Can+11]. My codes to solve RPCA is
in [Sit23].
To calculate A and S, the following optimization problem is formulated:

minA,S∥A∥∗ + λ∥S∥1
subject to D= A + S

(4.4.1)

Here, ∥.∥∗ is the nuclear norm of the matrix A. The nuclear norm of a matrix
is the sum of the singular values of the matrix. The l1-norm of the matrix S,
written as ∥S∥1, is the sum of the absolute values of the entries of the matrix.
λ is a regularization parameter. The value of λ was determined experimentally
to obtain the best values of performance metrics (Section 3.2.5).The details to
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solve Equation 4.4.1 can be found in reference [Ara+14] and Section 4.5.1.1. The
authors in [Can+11] show mathematically that the low rank matrix A that is
recovered from D using RCPA contains reduced noise and the matrix S is sparse.
Moreover, without loss of any information, S can be assumed to contain noise
and can be discarded. The results of applying RPCA to the data matrix D of the
training set HB-34 has been shown in Fig. 5.1.1 in Section 5.1, and it can be seen
from the figure that D contains entries corrupted by noise, and these appear
as random, spike-like elements in the matrix. A is the matrix with reduced
noise obtained from D after applying RPCA to it. S is the sparse matrix that
contains noise and can be safely discarded without loss of information. Finally,
A can be used as the new data matrix for both training and test sets.

3. Feature Selection: Feature selection has been explained in detail in Section 2
of Chapter 3. Briefly, feature selection is the process of selecting the most
important features to input to machine learning algorithms. It is done to reduce
the number of input variables by eliminating redundant or correlated features
and thus, the data matrix now contains the most relevant set of features as
input to machine learning models.
I performed feature selection on training and test matrices A, to obtain reduced
training and test matrices A′. To perform feature selection, feature importance
for all the features can be calculated using various techniques. In my work, the
feature importance of all the features in the training and test matrices A were
calculated using the SciKit-learn library in reference [Ped+b] and the Extreme
Gradient Boosting (XGB) algorithm [CG16]. I selected those features in both
training and test A matrices, whose feature importance is above an empirically
calculated threshold. The details to calculate this threshold are provided in
Section 4.5.1.2 of this chapter. Feature selection helps to identify the effective
feature subspace for building the prediction models, and for RBHS two new
data matrices A′ are obtained. The matrix, A′ that is a reduced matrix, has 51
features, instead of the original 58 for both training and test data.

4.4.2 Step 2: Training and validation

The next step is the training and validation of classification algorithms on the
training data set matrix A′ obtained from RBHS. I trained several popular ma-
chine learning classifiers including Support Vector Machines (SVM) [Guy+02;
BGV92], Gradient Boosting Machines (GBM) [Fri01], Extreme Gradient Boost-
ing (XGB) [CG16], and Random Forests [Bre01] on the training data matrix
A′. Details about these classifiers are in Section 3.2.4.
Next, I used 5-fold cross validation for hyperparameter tuning of the trained
classifiers using Scikit-learn [Ped+11a; Ped+a]. More information about vali-
dation is provided in Section 3.2.3. In 5-fold cross validation, the training data
is divided into five subsets. One of the five subsets is used as the validation
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set, and the other four are combined to form a training set. This method is
repeated five times. Hence, every data sample is in the validation set exactly
once and in the training set four times. During the 5-fold cross validation, I
used F1-score as the scoring parameter to assess the efficacy of the classifier
model. The F1-Score calculated in each of the five times is averaged over all
5 iterations. Cross-validation is extremely beneficial because not only does it
help to find hyperparameters for classification algorithms, but it also helps to
reduce overfitting on the training set. This is because the dataset is split into
multiple folds or subsets, and the algorithm is trained each time on a different
fold. This helps to make the model more generalizable to any dataset.

4.4.3 Step 3: Testing

I applied the validated models on A′ to calculate labels for the interface residues
in the test set, BID-18. As explained before, hot spot prediction is a binary
classification problem where if the label=1, the residue is classified as a hot
spot and if the label=0, it is a null spot. The computationally predicted hot
and null spot labels are compared with the experimentally annotated labels and
several performance metrics are calculated. A detailed description of each of
these metrics and why and when they are used is described in Section 3.2.5.
It is important to note that TP are the number of true positives which means
that the predicted hot spot residues are also known experimentally to be hot
spots, FP are the false positives which means that predicted hot spot residues
are experimentally identified as null spots, TN are the true negatives i.e., the
predicted null spots are experimental null spots as well and FN are the false
negatives, which means predicted null spots are experimental hot spots. For
brevity, the performance metrics are again defined here as follows:

Recall = TP
TP + FN

Specificity = TN
TN + FP

Accuracy = TP +TN
TP + FP + FN +TN

Precision = TP
TP + FP

F1 − Score = 2TP
2TP + FP + FN
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MCC = TP ×TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Here, MCC is the Mathew’s, Correlation Coefficient. In the next chapter, various
methods are compared using these performance metrics.

4.5 Computational details
In this section, the computational details of RBHS and the computational details of
the machine learning algorithms used with RBHS have been described. The proposed
method RBHS was coded in MATLAB and Jupyter notebook. All the experiments
were performed on MATLAB R2019a and Jupyter Notebook (Python 3.6) running on
a MacBook Pro with the following specifications: MacBookPro (13-inch, 2017, two
Thunderbolt 3 Ports) Processor: 2.3 GHz Dual-Core Intel Core i5 Memory: 8 GB
2133 MHz LPDDR3 Hard disk: 512 GB SSD

The main libraries I imported in Jupyter notebooks are: Scikit-Learn [Ped+11a],
numpy [Har+20], pandas [McK+10], matlab.engine, xgboost [CG16], and matplotlib [Hun07].
I used Scikit-learn [Ped+11a] because it is a comprehensive library for machine learn-
ing in Python. It has efficient tools for machine learning and statistical modeling
that help to perform tasks like classification, regression, clustering, and dimension-
ality reduction using a consistent interface in Python. I ran my Matlab codes for
RPCA from my jupyter notebooks (Python) with the help of the MATLAB Engine
API for Python. It allows integrating MATLAB functionality directly with a Python
application, creating an interface to run a MATLAB file from Python code.

NumPy [Har+20] is a library for Python that provides support for large, multi-
dimensional arrays and matrices and a huge collection of mathematical functions to
operate on these arrays. Pandas is a software library written for the programming
language Python to perform data manipulation and analysis. I employed Extreme
gradient boosting by using XGBoost [CG16] that is an open-source software library
that provides a regularizing gradient boosting framework for various languages like
C++, Java, Python, R, Julia, Perl, and Scala. It works on various operating systems
like Linux, Windows, and macOS. I used Matplotlib [Hun07] to make plots, graphs
and for data visualization.

Various parameters for different steps in the workflow (shown in Fig. 4.4.1), that I
used to predict hot spots, are mentioned below.

4.5.1 RBHS
4.5.1.1 RPCA

As mentioned before, RPCA can be solved by a technique called Principal Component
Pursuit(PCP). PCP has two variables that need to be calculated, A and S. Here I use
the method of alternating minimization, i.e., solve for A keeping S constant and then

50



4.5 Computational details

solve for S keeping A constant. This alternation is done for a number of iterations
till the desired accuracy in the estimates of A and S is reached. At each iteration k,
the solution for S is the soft-thresholding algorithm [Sel] and A is the singular value
thresholding algorithm also known as nuclear norm minimization [CCS10; Can+11].
Calculation of A is the more computation intensive part, as it requires calculation of
the Singular Value Decomposition (SVD) [Str19] at each iteration. The decomposition
performance of the RPCA is evaluated on the basis of the final classification accuracy
of an SVM. RPCA algorithm required two hyperparameters: the first is λ as can be
seen from Equation 4.4.1 and the second is the number of iterations k. For each of
these hyperparameters, a range of values was given to the algorithm and the value
of lambda and k at which an SVM model achieved the highest value of evaluation
metrics like accuracy, F1-score etc. during training was chosen. For λ, a wide range
of values from 1 × 10−6, 1 × 10−5, ..., 0.1, 0.2,...,0.8, 0.9, 1 × 105, 1 × 106 was used. The
values of number of iterations that were used for hyperparameter tuning were: 10,
20, 30, 40, 50, 100, 200. Finally, the best value of λ turned out to be 0.3 and the best
value of the number of iterations was 30.

Hyperparameter Final Value
λ 0.3

iterations, k 30

Table 4.5.1: Values of the hyperparameters used for Robust Principal Component
Analysis (RPCA). For further details on the method, I refer the reader
to section 4.4.1.

4.5.1.2 Feature Selection

As mentioned in 4.4 to perform feature selection on the low rank matrix A obtained
from RPCA, I select those features in both training and test A matrices, whose
feature importance is above an empirically calculated threshold. To determine this
threshold, I observed whether the performance of the XGB classifier in terms of its
accuracy increases or decreases with the number of selected features. Then the value
of feature importance, at which the maximum value of accuracy is observed, is set
as the threshold for feature selection. All the features that are above this threshold
are kept, and those that have feature importance below this threshold are discarded.
The plot of accuracy values versus the threshold values can be seen in Fig. 4.5.1.

After observing the plot, it can be concluded that the optimal value of the threshold
is 0.008. The accuracy-threshold curve is rough, and other threshold values may also
lead to accurate results as well.

4.5.2 Training and Validation
I perform 5-fold cross validation values of hyperparameters for each classification
algorithm:
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(a)

Figure 4.5.1: Accuracy vs threshold values plot for feature selection using Extreme
Gradient Boosting (XGB). It can be seen that the highest value of
accuracy of the XGB classifier is at the threshold value 0.008. All

features with feature importance less than 0.008 are discarded from the
data matrix, and only those features are selected whose feature

importance is more than or equal to 0.08.

4.5.2.1 SVM

For support vector machines (SVM) [Guy+02; BGV92] I experimented with four
different SVM kernels, namely, linear, sigmoid, polynomial, and radial basis function
(rbf). SVM separates the data into different categories by finding the best hyperplane
and maximizing the distance between points (Section 3.2.4.1). But when the data
is not linearly separable, a kernel function is used. The kernel function is just a
mathematical function that converts a low-dimensional input space into a higher-
dimensional space. This is done by mapping the data into a new feature space. In
this space, the data will be linearly separable and SVM can find the hyperplane that
separates the data into different classes. Some of the commonly used kernel functions
are the linear kernel, the polynomial kernel, the RBF kernel, and the sigmoid kernel.
The range of values that I used for hyperparameters for the kernels are tabulated in
Table 4.5.2. It is important to note that if no range of a particular hyperparameter
will be passed in the grid search, then the default value of that hyperparameter as
specified by Scikit-learn [Ped+11a] is used by the model.
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Kernel gamma C degree
Polynomial 1 × 10−5, 1 × 10−4,

1 × 10−3, 1 × 10−2,
1 × 10−1, 1

1 × 10−3, 1 × 10−2,
1 × 10−1, 1, 1 × 101,

25, 50, 1 × 102,
500, 1 × 103, 1500,

2000

2 - 15

RBF 1 × 10−5, 1 × 10−4,
1 × 10−3, 1 × 10−2,

1 × 10−1, 1

1 × 10−3, 1 × 10−2,
1 × 10−1, 1, 1 × 101,

25, 50, 1 × 102,
500, 1 × 103, 1500,

2000

-

Sigmoid 1 × 10−4, 1 × 10−3,
1× 10−2, 1× 10−1, 1

1 × 10−3, 1 × 10−2,
1 × 10−1, 1, 1 × 101,

25, 50, 1 × 102,
500, 1 × 103, 1500,

2000

-

Linear - 1 × 10−3, 1 × 10−2,
1 × 10−1, 1, 1 × 101,

25, 50, 1 × 102,
500, 1 × 103, 1500,

2000

-

Table 4.5.2: Hyperparameter ranges for hyperparameter tuning using grid search for
different SVM kernels.
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After hyperparameter tuning, the best performing SVM model had a polynomial
kernel with a degree of 3, gamma of 0.01 and C of 500 (Table 4.5.3).

Hyperparameter Final Value
Kernel Polynomial
degree 3
gamma 0.01

C 500

Table 4.5.3: Values of the hyperparameters obtained from grid search using 5-fold
cross validation for a support vector machine (SVM) classifier. The best
results during 5-fold cross validation were obtained when SVM was used
with a polynomial kernel of degree=3, with the value of C=500 and
gamma=0.01. It is important to note that if no range of a particular
hyperparameter will be passed in the grid search, then the default value
of that hyperparameter as specified by Scikit-learn [Ped+11a] is used by
the model.

4.5.2.2 GBM

Boosting is a sequential technique which works on the principle of ensembles. It
combines a set of weak learners and delivers improved prediction accuracy. At each
particular iteration, a new weak learner model is trained with respect to the error
of the whole ensemble learnt so far. For more details, please refer to Section 3.2.4.2.
A thorough grid search for best values of hyperparameters for GBM classifier was
performed using 5-fold cross validation on the training data. The performance metric
that was used to quantify which combination of hyperparameters gives the best results
is the negative Mean Squared Error (negMSE). The Mean Squared Error (MSE) takes
the difference between the actual values and those predicted by the model and find
the mean of the squares. negMSE will return a negated version of the calculated
MSE. The hyperparameters of a GBM [Fri01] used in Scikit-learn for cross validation
are explained below.

1. min_samples_split: It defines the minimum number of samples which are re-
quired in a node to be considered for splitting. It is used to control overfitting
of the GBM model. Lower values can result in overfitting of the model to the
data, and too high values can lead to underfitting. The range of values I passed
to a GBM classifier for cross validation are : 2, 3, 4.

2. min_samples_leaf: It defines the minimum samples required in a terminal node
or leaf. It is also used to control the overfitting of the model on the training
data. The range of values I passed to a GBM classifier for 5-fold cross validation
are : 1, 2, 3, ....., 57, 58, 59.
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3. max_depth: This is the maximum depth of a tree and is used to control over-
fitting, in the sense that a higher depth will allow the model to learn relations
very specific to a particular sample. The range of values I passed to the GBM
classifier : 1, 2, 3, ...7, 8, 9, 10.

4. max_features: This is the number of features to consider while searching for the
best split. As a thumb-rule, the square root of the total number of features works
great, but one should check up to 30-40% of the total number of features. Higher
values can lead to overfitting. The range of values for this hyperparameter that
I passed to the model are: 1, 2, 3, 4, 5, ..., 12.

Hyperparameter Values
min_samples_split 2, 3, 4
min_samples_leaf 1, 2, ..., 58, 59

max_depth 1, 2, ..., 9, 10
max_features 1, 2, ..., 11, 12
n_estimators 10, 20, 30, ..., 1980, 1990, 2000
learning rate 0.2
subsample 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95

Table 4.5.4: Hyperparameter ranges for hyperparameter tuning using grid search for
GBM.

5. n_estimators:The number of sequential trees to be modeled. Though GBM is
fairly robust at higher number of trees, it can still overfit. Hence, it needs to
be fine-tuned. The range of values used for grid search were: 10, 20, 30, 40, ....,
1980, 1990, 2000.

6. learning rate: This determines the impact of each tree on the final outcome.
GBM works by starting with an initial estimate, which is updated using the
output of each tree. The learning parameter controls the magnitude of this
change in the estimates. Lower values are generally preferred as they make the
model robust to the specific characteristics of the tree and thus allowing it to
generalize properly. However, lower values would require higher number of trees
to model all the relations and the process will be computationally expensive.
So, I chose the value of learning rate as 0.2 because it was low but not very low
to make my algorithm computationally expensive.

7. subsample: The fraction of observations to be selected for each tree. Selection
is done by random sampling. The values of subsample rate passed to grid search
were: 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95.
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The range of values for each of the hyperparameter used for tuning are summarized
in Table 4.5.4. After the grid search, the best value of hyperparameters obtained for
GBM classifier are tabulated in Table 4.5.5.

Hyperparameter Final Value
min_samples_split 2
min_samples_leaf 31

max_depth 1
max_features 7
n_estimators 1500

subsample 0.9

Table 4.5.5: Values of the hyperparameters obtained from grid search using 5-fold
cross validation for Gradient Boosting Machine (GBM) classifier.

4.5.2.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGB) [CG16] (Section 3.2.4.2) is a scalable and advanced
implementation of gradient boosting that pushes the limits of computing power for
boosted tree algorithms, being built largely for improving machine learning model’s
performance and computational speed. With XGB, trees are built in parallel, instead
of sequentially like GBM. After a thorough grid search using 5-fold cross validation
on the training data, the best values of hyperparameters for XGB classifier were
calculated and these hyperparameters of XGB are explained as follows:

Hyperparameter Values
min_child_weight 1, 3, 4, 5, 6, 8, 10, 12

max_depth 3, 4, 5, 6, 9
gamma 0.1, 0.2, 0.3, 0.4, 0.5

subsample 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 1
colsample_bytree 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 1

Table 4.5.6: Hyperparameter ranges for hyperparameter tuning using grid search for
XGB.

1. min_child_weight: Defines the minimum sum of weights of all observations
required in a child. This is similar to min_child_leaf in GBM, but not exactly.
This refers to the minimum sum of weights of observations, while GBM has
the minimum number of observations. This hyperparameter is used to control
overfitting. Higher values prevent a model from learning relations that might be
highly specific to the particular sample selected for a tree. But very high values
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can lead to underfitting; hence, it should be tuned using cross validation. The
values of this hyperparameter I used for grid search are: 1, 3, 4, 5, 6, 8,10,12.

2. max_depth: The maximum depth of a tree in XGB is the same as GBM, and
it is used to control overfitting, as higher depth will allow the model to learn
relations very specific to a particular sample. The values of this hyperparameter
I used for grid search are: 3, 4, 5, 6, 9.

3. gamma: A node is split only when the resulting split gives a positive decrease
in the loss function. Gamma specifies the minimum loss decrease required to
make a split. The values of this hyperparameter I used for grid search are: 0,
0.1, 0.2, 0.3, 0.4, 0.5.

4. subsample: It is the same as the subsample of a GBM. It denotes the fraction of
observations to be used as random samples for each tree. Lower values prevent
overfitting, but very small values can lead to underfitting. The values of this
hyperparameter I used for grid search are: 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 1.

5. colsample_bytree: This is similar to the hyperparameter max_features used in
GBM. It denotes the fraction of features that will be used to train each tree.
The values of this hyperparameter I used for grid search are: 0.6, 0.7, 0.75, 0.8,
0.85, 0.9, 1.

The search ranges for each hyperparameter of the XGB classifier is summarized in
Table 4.5.6. After the grid search, the best value of hyperparameters obtained for
XGB classifier are tabulated in Table 4.5.7.

Hyperparameter Final Value
min_child_weight 1

max_depth 3
gamma 0

subsample 1
colsample_bytree 1

Table 4.5.7: Values of the hyperparameters obtained from grid search using 5-fold
cross validation for Extreme Gradient Boost (XGB) classifier.

4.5.2.4 Random Forest

Random Forest (RF) [Bre01] is an ensemble algorithm that combines multiple decision
trees to make predictions for a classification problem. I performed a thorough grid
search using cross validation to find out the best set of hyperparameters for the
random forest model. The various random Forest hyperparameters I fine-tuned are:
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Hyperparameter Values
min_depth 3, 5, 8, 13, 20, 25, 30, 35, 40

min_sample_split 2, 3, ..., 11, 12
min_samples_leaf 2, 3, 4, 5, 10, 15, 20, 26

n_estimators 100, 150, 200, 250, 300, 350
max_features 2, 7, 14

Table 4.5.8: Hyperparameter ranges for hyperparameter tuning using grid search for
Random Forest.

1. max_depth: The max_depth of a tree in a Random Forest is defined as the
longest path between the root node and the leaf node. A higher value can result
in overfitting of the model. The range of values I passed for max_depth are: 3,
5, 8, 13, 20, 25, 30, 35, 40.

2. min_sample_split: This is a hyperparameter that tells the decision tree in a
random forest the minimum required number of observations in any given node
in order to split it. By increasing the value of the min_sample_split, one can re-
duce the number of splits that happen in the decision tree and therefore prevent
the model from overfitting. The range of values I used for this hyperparameter
are: 2, 3, 4, 5, ..., 7, 10, 11, 12.

3. min_samples_leaf: This Random Forest hyperparameter specifies the minimum
number of samples that should be present in the leaf node after splitting a node.
This hyperparameter also helps prevent overfitting as its value increases. The
range of values I used for this hyperparameter are: 2, 3, 4, 5, 10, 15, 20, 26.

4. n_estimators: A Random Forest algorithm is a grouping of trees. The hy-
perparameter n_estimators is the number of decision trees considered. More
trees should be able to produce a more generalized result, but by choosing more
trees, the time complexity of the Random Forest model also increases. Hence,
an optimum value of this hyperparameter should be considered. I passed the
following range of values of this hyperparameter: 100, 150, 200, 250, 300, 350
to RF model for grid search.

5. max_features: This is the number of maximum features provided to each tree
in a random forest. It is a good convention to consider the default value of this
parameter, which is set to the square root of the number of features present in
the dataset. The ideal number of max_features generally tend to lie close to
this value. The range of values I used for this hyperparameter are: 2, 7, 14.

The range of hyperparameters used during hypertuning is summarized in Table 4.5.8.
After performing grid search using 5-fold cross validation, the best hyperparameters
for Random Forest classifier are provided in Table 4.5.9. I performed a grid search
with the range of values of the hyperparameters I mentioned above for each of the
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4.5 Computational details

Hyperparameter Final Value
max_depth 13

min_sample_split 4
min_samples_leaf 3

n_estimators 200
max_features 14

Table 4.5.9: Values of the hyperparameters obtained from grid search using 5-fold
cross validation for Random Forest (RF) classifier.

classifiers I used for my work, using 5-fold cross validation on the training data matrix.
I used the best values of hyperparameters for each classifier and with the help of these
validated classifiers, I predicted hot spots on the independent test set. An important
point to note here is that, if the hyperparameter values are within a certain limit
of the best values obtained with the help of cross-validation, the results will not get
affected drastically. In fact, the prediction results will still be fairly close to the results
calculated with the best values of classifier hyperparameters.

Another important point to note is that if no range of a particular hyperparameter
will be passed during grid search, then the default value of that hyperparameter as
mentioned in Scikit-learn [Ped+11a] is used by the model.

I have provided all the data that was used for my method to predict hot spots in
the Supplementary Information (Chapter 7). The data tables could not be included
in this chapter because they were lengthy. The codes for the implementation of my
method for hot spot prediction can be found at [Sit23].

The next chapter compares the results of using RBHS along with the classifiers
described earlier with PCA and original data. It also compares the performance
of various classifiers with each other when used with RBHS, to see which classifier
performs best for the task of hot spot prediction. Finally, the comparison of my
method with the state-of-the-art methods for hot spot prediction is also shown in the
next chapter.
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5 Results
In the previous chapter, the algorithmic and computational details of my method
RBHS, to predict hot spots have been described. In this chapter, to show the efficacy
of RBHS, preliminary, intermediate and final results obtained from using RBHS along
with various classifiers will be presented in detail.

5.1 RPCA
A workflow depicting the steps of my approach to predict hot spots can be seen
in (Fig. 4.4.1) in Section 4.4. In step 1 of the workflow (Fig. 4.4.1), the original
noisy data matrix, D, that contains the sequence and structure based features of
interface residues, is first normalized. Then it is decomposed using Robust Principal
Component Analysis (RPCA) [Can+11] to obtain a noise-reduced low rank matrix
A. The results of applying RPCA to the residues in HB-34 training set is shown in
Fig. 5.1.1.

(a)

Figure 5.1.1: RPCA is applied to the data matrix D of the training set HB-34. D
contains entries corrupted by noise, and these appear as random,

spike-like elements in the matrix. A is the matrix with reduced noise
obtained from D after applying RPCA to D. S is the sparse matrix

that contains noise and can be safely discarded without loss of
information.

From Fig. 5.1.1, it can be seen that the original data matrix D is corrupted by
noise, which can be seen from the figure as random, spike-like elements in D. This
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noise is inherent to the data matrix and is caused by human and/or computational
errors in the process of calculating structure and sequence based features for various
residues in the dataset. The low rank matrix A that is recovered from D using RCPA
is seen to have reduced noise. Moreover, it can be seen that the matrix S is sparse.
Therefore, S can be assumed to contain noise and can be discarded.

Hence, it can be assumed that the data matrices obtained from the HB-34 [LLD18]
and BID-18 [LLD18] datasets after applying RPCA do in fact contain reduced noise.

5.2 Comparing RBHS with PCA and Original Data

The first step to see the effectiveness of my pre-processing pipeline RBHS to pre-
dict hot spots is to see how well RBHS (applied to the original data) works when
compared to the feature extraction algorithm, Principal Component Analysis (PCA)
(applied to the same data) and when compared to the original data without any
pre-processing.Thus, three matrices are used:

1. The original data matrix D. This data matrix contains the original features
calculated on the residues of HB-34 and BID-18 without any pre-processing
done on it. The details of these features are in Section 4.3.

2. The matrix that has been obtained after applying Principal Component Analysis
(PCA) to the data matrix D.

3. The reduced matrix A′ (calculated in Section 4.4) that is obtained after per-
forming my approach RBHS [Sit+21] on the original data matrix D.

5.2.1 PCA applied to HB-34

PCA was implemented using the Scikit-learn library [Ped+d]. For the representation
of PCA, the principal components explaining 95% variance were chosen. For doing
this, a plot showing different percentage of explained variances versus the principal
components on the training data set matrix was made, as shown in Fig. 5.2.1. The
step plot represents the cumulative variance explained by a particular number of
principal components on the x-axis. It can be seen from the plot, after the 7 principal
components, the explained variance becomes constant. Thus, the first 7 principal
components can be selected because they explain 95% variance of the data. The rest
of the components can be safely discarded because they do not explain significant
variance in the data. The resulting data matrix contained 7 features after applying
PCA to the original data matrix [WEG87; Jol02].
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(a)

Figure 5.2.1: The x-axis represents the principal component index. The y-axis
represents the explained variance percentage. Each bar indicates how
much variance a particular component captures itself. The step plot

represents the cumulative variance explained by a particular number of
principal components on the x-axis.

Next, I plot the first two principal components of residues in HB-34 dataset to learn
more about the data. As described in Section 3.2.2.4, one of PCA’s main drawback
is that it tends to be highly affected by outliers in the data. The assumption when
using PCA is that the principal components, with the highest variance, will be the
most useful in predicting if a residue belongs to one of two classes, namely, hot spots
and null spots. The principal component with the highest variance would be the best
feature that would allow separating the residues into hot spots and null spots. As can
be seen from Fig. 5.2.2, PCA fails to separate the two classes. Hence, PCA does not
provide meaningful class information when there is noise in the data, as is the case
with the data used in this thesis.
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(a)

Figure 5.2.2: The first two principal components after the PCA transformation of
original data matrix D of residues in HB-34. The data points denoted
in purple belong to the null spot class, and data points in yellow are

the hot spots.

Next, I show the performance of various classifiers mentioned in Section 4.4.2,
during training and validation on the dataset HB-34. This is Step 2 of the workflow
(Fig. 4.4.1).

5.2.2 Performance of classifiers on the training data
Classification algorithms including Support Vector Machines (SVM) [Guy+02; BGV92],
Gradient Boosting Machines (GBM) [Fri01], Extreme Gradient Boosting (XGB) [CG16]
and Random Forests (RF) [Bre01] are now trained and validated on all the three train-
ing data matrices. This includes the original data matrix D that contains structure
and sequence based features of residues in HB-34, the data matrix obtained after
applying PCA to D, and the matrix obtained after applying RBHS to D. To an-
alyze the performance of these classifiers, performance metrics that include recall
(Equation 3.2.7), specificity (Equation 3.2.8), accuracy (Equation 3.2.6), precision
(Equation 3.2.9), Mathew’s Correlation Constant (MCC) (Equation 3.2.10), and the
F1-score (Equation 3.2.11) as described in Section 4.4.3 are used.

It is important to note that both the datasets used in this thesis, HB-34 [LLD18]
(Table 7.1.1) and BID-18 [LLD18] (Table 7.2.1), have imbalanced classes. Imbalanced
classes in hot spot prediction means, that the number of hot spots are fewer than the
number of null spots. HB-34 has 133 hot spots and 180 null spots, and BID-18 has 39
hot spots and 87 null spots. This imbalance will cause the classification algorithm to
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Method Recall Specificity Accuracy Precision F1-Score MCC
Original Data+ SVM 0.59 0.80 0.71 0.69 0.63 0.40

PCA+SVM 0.36 0.89 0.67 0.72 0.48 0.30
RBHS+SVM 0.67 0.74 0.71 0.66 0.66 0.41

Original Data+GBM 0.65 0.78 0.72 0.69 0.66 0.43
PCA+GBM 0.58 0.71 0.65 0.60 0.59 0.29

RBHS+GBM 0.67 0.73 0.71 0.65 0.66 0.40
Original Data+XGB 0.57 0.74 0.67 0.62 0.59 0.32

PCA+XGB 0.61 0.71 0.67 0.61 0.60 0.31
RBHS+XGB 0.56 0.76 0.68 0.64 0.59 0.33

Original Data+RF 0.51 0.79 0.67 0.65 0.57 0.31
PCA+RF 0.53 0.74 0.67 0.57 0.52 0.24

RBHS+RF 0.56 0.78 0.68 0.65 0.60 0.34

Table 5.2.1: Performance comparison of various methods on the training dataset HB-
34. These values are computed in Step 2 of our workflow in Fig. 4.4.1.

be biased towards predicting a residue as a null spot because there are more null spots
than hot spots. To solve this problem of imbalanced classes, the metric F1-score is
considered for the analysis and interpretation of the results shown in the tables below.
A detailed description on which performance metric is useful in which case is provided
in Section 3.2.5. From that discussion, it can be followed that for learning from
imbalanced datasets one needs to improve recall/sensitivity (Equation 3.2.7), which
provides information about a classifier’s performance with respect to false negatives,
without hurting the precision (Equation 3.2.9), which deals with false positives.

For practical purposes, achieving this goal can be quite challenging. This is because
when increasing the true positives for the minority class (in this case the class of hot
spots), the number of false positives can also increase, which will result in a reduced
value of precision (Chapter 3). F1-score is a metric that combines the trade-offs of
both precision and recall because it is the harmonic mean of precision and recall.
Its highest value is 1 (when there is perfect precision and recall) and lowest value is
0. Consequently, to deal with the issue of imbalanced classes, F1-score was used as
the scoring parameter for tuning the hyperparameters during training and validation
steps (Section 4.5.2) and also to assess the performance of my method for hot spot
prediction.

Table 5.2.1 shows the performance of the popular machine learning classifiers as
mentioned earlier upon implementing 5-fold cross validation on the training dataset
HB-34. Using RBHS with SVM and GBM classifiers and Original Data with GBM,
gives the highest value of F1-score (0.66) while PCA+SVM and PCA+RF gives the
lowest value i.e., 0.48 and 0.52, respectively.
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5.2.3 Performance of classifiers on the test data
Next, the trained models were applied to the testing data BID-18 to predict test class
labels (Table 5.2.2). As can be observed, the best value of F1-score on the test set
is obtained by RBHS+XGB (0.66) and RBHS+SVM (0.64), while the lowest value is
attained by Original Data+GBM (0.47) and PCA+GBM (0.46). So, RBHS performs
better than PCA and Original data, regardless of the classifier being used.

Method Recall Specificity Accuracy Precision F1-Score MCC
Original Data+ SVM 0.79 0.66 0.70 0.51 0.62 0.42

PCA+SVM 0.59 0.67 0.71 0.44 0.51 0.24
RBHS+SVM 0.80 0.69 0.72 0.53 0.64 0.45

Original Data+GBM 0.54 0.66 0.62 0.41 0.47 0.18
PCA+GBM 0.54 0.64 0.61 0.40 0.46 0.17

RBHS+GBM 0.69 0.76 0.74 0.56 0.62 0.43
Original Data+XGB 0.54 0.78 0.71 0.53 0.53 0.32

PCA+XGB 0.59 0.67 0.64 0.44 0.51 0.24
RBHS+XGB 0.72 0.79 0.77 0.61 0.66 0.49

Original Data+RF 0.54 0.80 0.72 0.55 0.54 0.34
PCA+RF 0.56 0.76 0.70 0.51 0.54 0.31

RBHS+RF 0.67 0.78 0.75 0.58 0.62 0.43

Table 5.2.2: Performance of different methods on the test dataset BID-18. These
values are computed in Step 3 of our workflow in Fig. 4.4.1.

Now, the results of training are compared with the results of testing. There is
a significant increase in F1-scores of RBHS+XGB and RBHS+RF during testing
whereas, for RBHS+SVM, the F1-score does not change and gets slightly decreased
for RBHS+GBM in Table 5.2.2. Hence, it can be concluded that there is no overfitting
on the training data when using RBHS. On the other hand, F1-scores of classifiers
applied to the original data during testing (Table 5.2.2) are overall lower than F1-
scores of classifiers applied to the original data during the training (Table 1). Mostly,
this is caused by the overfitting of the classifiers on the original training data during
training. A similar observation can be made from Tables 5.2.1 and 5.2.2 for PCA,
except for PCA+SVM, where there is a slight increase of 0.03 during testing. It can
be seen from Fig. 5.1.1 that the matrix D contains a significant amount of noise,
and thus the PCA algorithm generates a noisy representation of D. As mentioned
before, PCA is sensitive to noise in the data, and classifiers that are trained on these
noisy representations usually do not perform well. Similarly, classifiers using data
representations based on the original matrix D tend to overfit on the noisy training
data and, thus, give poor predictions on the test data [Can+11]. In contrast, in my
method, I use the matrix A′ that contains reduced noise and that has been obtained
from the noisy matrix D using RBHS (Section 4.4). Therefore, my model does not
overfit on the training data and works well during both training and testing.
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5.2.4 Receiver Operating Characteristic and Precision-Recall
Curve

Figure 5.2.3: ROC (Receiver Operating Characteristic) Curves to compare the per-
formance of all the methods on the independent test set BID-18 along
with the AUC (Area under the curve) values for each method.
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Figure 5.2.4: Precision-Recall Curves of different methods applied on the independent
test set. The F1-Score values for each method are also reported.

Next, I calculated the receiver operating characteristic (ROC) curve along with the
Area Under the ROC curve (AUROC), Fig. 5.2.3, because this measures the discrimi-
native power of the algorithm, which in this case is the ability of the algorithm to cor-
rectly differentiate hot spots residues from null spots. I also plot the Precision-Recall
curves, Fig. 5.2.4, because they are more informative in case of imbalanced classes in
the datasets [SR15]. The next step is to find the best classifier from all the classifiers
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I used with RBHS during training and testing, with the help of Table 5.2.2, the ROC
curves (Fig. 5.2.3), and from the Precision-Recall curves (Fig. 5.2.4). We can see from
Table 5.2.2 and the precision-recall curves that RBHS+SVM applied to the residues
in the test set BID-18 performs best for recall with a value of, 0.8 and RBHS+XGB
performs best for precision and achieves a precision value of 0.61. RBHS+XGB also
performs best for other metrics like F1-score (0.66), accuracy (0.77), and MCC (0.49).
It performs second best for specificity (0.79), after Original Data+RF (0.80). Hence,
it can be concluded that RBHS when used along with Extreme Gradient Boosting
(XGB) classifier shows a reliable performance in identifying hot spots. Therefore, for
comparing my hot spot prediction approach with the other state-of-the-art methods
mentioned in Chapter 1, I use Extreme Gradient Boosting (XGB) classifier.

5.3 Comparison of RBHS+XGB with state-of-the-art
methods

To test the predictive power of the proposed method, the performance of RBHS+XGB
is compared with other state-of-the-art hot spot prediction techniques that are HEP [Xia+16],
PredHS-SVM [Den+13], KFC2a and KFC2b [ZM11], PCRPi [Ass+10; SAF10], MIN-
ERVA [CKL09a], APIS [CKL09b], KFC [DPM07], Robetta [KB02], and FOLDEF [GNS02]
on the independent test set BID-18 (Table 5.3.1). More details on the these techniques
have been given in Chapter 1.

Method Recall Specificity Accuracy Precision F1-Score MCC
PredHS-SVM 0.79 0.93 0.83 0.59 0.68 0.57

HEP 0.60 0.76 0.79 0.84 0.70 0.56
RBHS+XGB 0.72 0.79 0.77 0.61 0.66 0.49

KFC2a 0.55 0.73 0.73 0.74 0.63 0.44
KFC2b 0.64 0.87 0.77 0.55 0.60 0.44

MINERVA 0.65 0.90 0.76 0.44 0.52 0.38
APIS 0.57 0.76 0.75 0.72 0.64 0.45

Robetta 0.52 0.88 0.72 0.33 0.41 0.25
FOLDEF 0.48 0.88 0.69 0.26 0.34 0.17
PCRPi 0.51 0.75 0.69 0.39 0.44 0.25
KFC 0.48 0.85 0.69 0.31 0.38 0.19

Table 5.3.1: Comparison of proposed approach (RBHS) when used with XGB classi-
fier (known as RBHS+XGB), with other state-of-the-art methods for hot
spot prediction. For each performance metric, the top scoring method is
highlighted in blue, the second one in green and the third one in yellow.

Comparing the performance of my method with the state-of-the-art methods is
not an easy task because there is a lack of defined training and test sets used by
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the existing approaches. Different methods are trained on different sets of residues,
or their trained models are not available in most cases, or sometimes it is difficult
to obtain the methods. Moreover, the website provided by the authors is no longer
accessible.

Yet, to compare my method to the state-of-the-art (SOTA) methods for hot spot
identification, I have used the predictions made by these SOTA methods on the
dataset BID-18 as specified by [LLD18]. As can be seen from Table 5.3.1, my method
(RBHS+XGB) turns out to be in the top three after HEP [KB19] and PredHS-
SVM [Fri01] based on the F1-score value. Moreover, it also performs second best
in case of Recall (sensitivity) values and third best in terms of Accuracy and MCC
values.

F1-Score is the best indicator for the predictive power of the methods with im-
balance datasets, as has been described earlier in this chapter. Hot spot datasets
HB-34 and BID-18 are also imbalanced. Hence, the results in Table 5.3.1 establish
unambiguously the predictive power of my method for hot spot prediction.

5.4 Results for different thresholds in feature selection
The empirically calculated threshold for feature selection in the experiments for this
thesis, step 1 of the workflow in Fig. 4.4.1, is 0.008 (Section 4.5.1.2). Here, I performed
additional experiments, to show that a slight variation in the threshold does not
change the final results dramatically. In particular, I varied the threshold slightly
and studied the effects of another threshold value, i.e. 0.009. The F1-score of using
RBHS with various classifiers, decreases by 0.05 or less on using 0.009 as the threshold
instead of 0.008, as can be seen from Table 5.4.1. This suggests that modifying the
threshold by a small extent does not affect the results dramatically. But choosing
cutoff values larger than 0.016, which result in lower accuracies, decreases significantly
the performance of the RBHS+XGB method, as can be seen from Table 5.4.2.

Next, the effects of using different threshold values for feature selection (Step 1c
of the workflow, Fig. 4.4.1) along with the method RBHS+XGB are reported in
Table 5.4.2. It can be concluded that, for the method RBHS+XGB, varying the
threshold for feature selection slightly still produces good results for the prediction of
hot spots. However, any dramatic change in the threshold might result in inaccurate
prediction of hot spot residues.

5.5 Adding artificial noise to the data
Although the results presented in this thesis are based on the training matrix con-
structed by computing 58 features from HB-34 dataset, I performed additional tests
using other training matrices to see how the addition of noise affects the predictions
made by RBHS+XGB. The noise is generated by artificially introducing Gaussian
noise (with zero mean and either 1 or 10 standard deviation). This noise is randomly
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threshold Method Recall Specificity Accuracy Precision F1-Score MCC
0.08 RBHS+SVM 0.80 0.69 0.72 0.53 0.64 0.45
0.09 RBHS+SVM 0.72 0.71 0.71 0.53 0.61 0.40
0.08 RBHS+GBM 0.69 0.76 0.74 0.56 0.62 0.43
0.09 RBHS+GBM 0.62 0.79 0.65 0.57 0.59 0.40
0.08 RBHS+XGB 0.72 0.79 0.77 0.61 0.66 0.49
0.09 RBHS+XGB 0.72 0.77 0.75 0.58 0.64 0.46
0.08 RBHS+RF 0.67 0.78 0.75 0.58 0.62 0.43
0.09 RBHS+RF 0.62 0.79 0.65 0.57 0.59 0.40

Table 5.4.1: Testing the effects of different threshold values for feature selection (Step
1c of the workflow (Fig. 4.4.1) using Extreme Gradient Boosting (XGB)
algorithm. The results of using RBHS with different feature selection
thresholds with various classifiers (Step 2 of the workflow, Section 4.4.2)
are reported here.

threshold Recall Specificity Accuracy Precision F1-Score MCC
0.0080 0.72 0.79 0.77 0.61 0.66 0.49
0.0090 0.72 0.77 0.75 0.58 0.64 0.46
0.0120 0.62 0.77 0.72 0.55 0.58 0.37
0.0130 0.62 0.81 0.75 0.60 0.61 0.43
0.0145 0.70 0.79 0.76 0.6 0.64 0.47
0.0158 0.72 0.77 0.75 0.58 0.64 0.46
0.0167 0.67 0.75 0.72 0.54 0.60 0.40
0.0175 0.56 0.80 0.73 0.56 0.56 0.37
0.0186 0.62 0.75 0.71 0.52 0.56 0.35
0.0200 0.62 0.71 0.68 0.49 0.55 0.31
0.0217 0.59 0.71 0.67 0.48 0.53 0.29
0.0230 0.51 0.82 0.72 0.56 0.53 0.34
0.0248 0.51 0.80 0.71 0.54 0.53 0.32
0.0259 0.49 0.70 0.63 0.42 0.45 0.18
0.0289 0.44 0.76 0.66 0.45 0.44 0.20
0.0340 0.59 0.64 0.63 0.43 0.49 0.43
0.0420 0.67 0.72 0.71 0.52 0.58 0.37
0.0600 0.59 0.75 0.70 0.51 0.55 0.33

Table 5.4.2: Testing the effects of different threshold values for feature selection (Step
1c of the workflow, Fig. 4.4.1) using Extreme Gradient Boosting (XGB).
The results of using RBHS+XGB with different thresholds are reported
here.

added to the data matrix, corrupting an increasing number of entries from 1 to 50%
as shown in Table 5.5.1. These tests showed that RBHS+XGB is capable to predict
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hotspots for 50% corrupted entries when using Gaussian noise of standard deviation
of 1 and up to 20 % corrupted entries when using a standard deviation of the added
Gaussian noise of 10 as shown in Table 5.5.1. It can be concluded, that RBHS+XGB
performs significantly well in case of noisy data matrices as well.

Matrix No. Std. dev. of noise % Corrupted entries in the data Accuracy F1-Score
0+ - 0.59 Original Matrix 0.77 0.66

1 1 1 0.74 0.58
2 1 5 0.71 0.56
3 1 10 0.68 0.56
4 1 20 0.67 0.55
5 1 50 0.63 0.53
6 10 1 0.72 0.58
7 10 5 0.68 0.57
8 10 10 0.54 0.55
9 10 20 0.47 0.51
10 10 50 0.66 0.045

Table 5.5.1: Testing the effects of using different training data matrices with artificial
Gaussian noise (with zero mean and standard deviation either 1 or 10)
randomly added over a different number of entries. The results of using
RBHS+XGB with corrupted values ranging from 1 to 50 % are reported
here.

5.6 Discussion
In this work, I showed that Robust Principal Component Analysis (RPCA) was able to
decompose the original noisy data matrix (containing protein sequence and structure
based features calculated for interface residues) into a less noisy low rank matrix and
a sparse matrix (Fig. 5.1.1). With my pre-processing pipeline, RBHS, I obtained a
data matrix with reduced features. The original data matrix consisted of 58 features,
while the reduced matrix had 13 features. This reduced matrix is used to train and
validate various popular machine learning classifiers using 5-fold cross validation.

Using these validated classifiers on the test data, I compared the performance of
my pipeline RBHS with the performance of popular pre-processing algorithm Princi-
pal Component Analysis (PCA) and also with original data that has not been pre-
processed. From Tables 5.2.1 and 5.2.2, I am able to show that RBHS works better
for pre-processing the data than PCA. Moreover, in Tables 5.2.1 and 5.2.2, I show
that when there is no pre-processing done on the data, the classifiers perform less effi-
ciently than using RBHS on the data. Thus, RBHS is a good pre-processing pipeline
for hot spot data.

Finally, Table 5.2.2 and Fig. 5.2.3 and Fig. 5.2.4 show that RBHS when used along
with Extreme Gradient Boosting (XGB) classifier gives the best results for various
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performance metrics. Thus, I use RBHS+XGB for comparing my method with the
state-of-the-art methods for machine learning based hot spot prediction. The values
of the performance metrics in Table 5.3.1 unambiguously indicate that my method,
RBHS+XGB, works well for identifying protein-protein interaction hot spots when
compared to state-of-the-art methods for hot spot prediction. Moreover, the other
methods use the noisy data for training and validating their models and the testing
is also done on noisy data. They do not take care of this noise that is inherent to
the data. Hence, predictions made on noisy data have limited accuracy. In my work,
presented in this thesis, I perform RPCA on the data to reduce noise.

To further show that my method works well on noisy data matrices, I have arti-
ficially added noise to the data, as can be seen in Table 5.5.1. RBHS+XGB, still
performs fairly well in predicting hot spots because RPCA in the RBHS pipeline is
able to reduce noise in the data before performing any training and testing on the
data.

The accuracy-threshold curve in Fig. 4.5.1 is rough, and thus it is important to see
if threshold values, other than 0.008, that has been used for feature selection in this
thesis, work well or not. From Table 5.4.1 and Table 5.4.2 it can be seen that if the
threshold is modified by a small extent, the results will not be dramatically impacted.
Thus, it can be concluded that using a threshold, slightly different from the one used
in this thesis, will still yield reliable results.
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6 Conclusion
Hot spots are the residues on the protein-protein interaction interface that play a
crucial role in the binding free energy of the complex (∆∆Gbinding) [BT98; Jan95].
The analysis of protein-protein interaction hot spots is of utmost importance from
a pharmacological perspective because hot spot residues often undergo mutations in
a variety of diseases [Ten+09; Pet+16a]. Moreover, with the identification of hot
spots, it has become easier to target a broad range of protein-protein complexes with
small molecule drugs [Pet+16b; Sco+16; Mur+17]. Thus, continual research and
development in the methods available for inferring hot spots is important.

In this direction, a variety of experimental and computational approaches have
been developed to identify hot spot residues. The experimental method to identify
hot spot residues namely, Alanine Scanning Mutagenesis (ASM) involves the sys-
temic point mutation of binding interface residues to Alanine, and measuring the
consequent change in ∆Gbinding (∆∆Gbinding=∆Gmutant− ∆Gwild-type) [BT98]. Then
if (∆∆Gbinding) ≥ 2.0 kcal/mol, the interface residue is called a hot spot or else a
“null spot” [MFR07; CW89; BT98]. Owing to high experimental costs and being
labor-intensive, ASM is limited in the number of hot spots identified.

The computational approaches earlier used to identify hot spots were either knowl-
edge based methods, or they used molecular dynamic simulations [GNS02; KB02;
MK99; HMK02; GF08; Bre+09]. The disadvantage with these experiments is that
they are not suitable for a high-throughput prediction of hot spots. At the same time,
there has been an unprecedented increase in the use of Machine Learning (ML) meth-
ods to solve various biological problems pertaining to protein-protein interactions.
This resulted in a prolific use of ML methods for the problem of hot spot prediction
as well [Li+22; RBM22].

In computational methods, one major issue that limits accuracy of prediction, is
presence of noise [Mor+17; KC21]. Such noise in the data can be ascribed to both
computational and/or human errors. This can severely affect the correctness of pre-
dictions made by machine learning algorithms trained on this noisy data [GG19].
Therefore, it becomes imperative to find methods which take this issue into account.
So far, the state-of-the-art machine learning based hot spot prediction methods have
not addressed this issue. The machine learning algorithms they use are trained on
noisy data and also the predictions are made on noisy data matrices as well. Another
issue with some of the existing state-of-the-art methods [Mor+17] that use ML for
predicting hot spots is that they use their training data to make final predictions.
They divide their entire available data into 70% training and 30% testing. They do
show intermediate test results. Eventually, instead of reporting their results on the
30% test data, they report their final results on the entire dataset available to them.
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6 Conclusion

In the field of machine learning, that is inappropriate because testing a classifier on
the whole or even a part of the data that it has been trained on will always give high
values of performance metrics. Thus, earlier, there was a lack of clearly established
training and test sets for hot spot prediction problem. In this thesis, I address both
these issues. I present a novel machine learning based pre-processing technique for
hot spot prediction, called Robust principal component analysis Based prediction
of protein-protein interaction Hot Spots (RBHS) and report the final results on an
independent test set not used for training.

In RBHS, I recover a training and a test data matrix with reduced noise from a
corrupted training and test data matrix, respectively, by using Robust Principal Com-
ponent Analysis (RPCA) [Zha+15]. Next, I remove redundant features using feature
selection from the less noisy data matrices. The resulting training matrix is then
used to train and validate several popular machines learning classification algorithms,
including Support Vector Machines (SVM), Gradient Boosting Machines (GBM), Ex-
treme Gradient Boosting (XGB), and Random Forests (RF) (Table 5.2.1). These
trained classifiers are then used to make prediction of whether the interface residue is
a hot spot or a null spot on the test data matrix (Table 5.2.2). An important point to
note here is that I have not used any part of the residues in the test set to train the
classifiers, and they are tested on never-before-seen data for better “generalization".
Generalization refers to how well a classifier is trained to classify or make predictions
on unseen data.

For my thesis I used two datasets, HB-34 [LLD18] (Table 7.1.1) and BID-18 [LLD18]
(Table 7.2.1), for training and testing respectively. To verify that there was no over-
lap between the two sets, I analyzed both the datasets using the CD-HIT-2D web
server [Hua+10] and tried to identify sequences that were similar, keeping a stringent
criterion as follows: the sequence identity should be larger than 40% and the cover-
age larger than 20% of the whole sequence. The test set BID-18 turned out to be
independent to the training set HB-34. So, in my work, I used HB-34 for training
and validation purposes and BID-18 as an independent test set.

From extensive experimentation, I was able to show that RBHS, when used with
Extreme Gradient Boosting (XGB) classifier [CG16], gives better performance for hot
spot prediction than other classifiers. I also showed that the data matrices obtained
from the HB-34 [LLD18] and BID-18 [LLD18] datasets after applying RPCA did in
fact contain reduced noise. My method when applied to the independent test set
BID-18 was able to predict 77% of the known hot spots of the complexes investigated
in Table 7.2.1 correctly, and these results can be verified from Table 5.2.2.

Comparing the performance of my method with the published state-of-the-art meth-
ods is difficult because of the following reasons:

1. There is a lack of clear training and test sets used by the methods. Different
methods are trained on different sets of residues.

2. Their trained models are not available in most cases.

3. Sometimes the difficulty of obtaining the methods themselves. This is because
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some databases are no longer available. In the sense that either the website
provided by the authors is no longer accessible or sometimes the webpage is
down.

Still, to compare my method to the state-of-the-art machine learning based methods
for hot spot identification, I used the results of predictions made by these methods
on the dataset BID-18 as mentioned in [LLD18]. As can be seen from Table 5.3.1, my
proposed method gives good values of various performance metrics used for measuring
the classification performance of a method, indicating the effectiveness of my method
for the problem of predicting hot spots.

An interesting extension of my method for predicting protein-protein interaction
hot spots would be to predict hot spot interface residues for protein-nucleic acid
complexes. Another application area of using my pipeline would be to predict multiple
Post Translational Modification (PTM) types and sites [Yan+23]. In both these
applications, the first step would be to calculate protein structure and sequence based
features and then employ my pipeline to remove noise from the subsequent data
matrices and then make the predictions.

Now, with the release of tools like AlphaFold-Multimer [Eva+21], the ease of gener-
ating in silico structures for protein complexes has significantly increased. Moreover,
CM2D3 [Bot+23] is a workflow to generate protein-protein complex models. Indeed,
AlphaFold-Multimer is one of the tools included in the CM2D3 workflow [Eva+21;
Bot+23]. Thus, my method can be further extended by including CM2D3 workflow
in the pipeline, from which sequence and structure-based features could be calcu-
lated in order to predict hotspots or PTM sites. This readily available structural
and sequence based information of the protein complexes would further enable my
method to make predictions for any protein bioinformatics problem that requires such
information [CHW17].

My method can further be improved by using semi-supervised learning [CSZ09]
(Chapter 3). One of the challenges of hot spot prediction using machine learning is
the limited availability of experimental information on the energetic contribution of
protein-protein interaction interface residues to the binding free energy of the complex.
In other words, there is a limited number of ground truth interface residues that have
been identified as hot spots or null spots. Ground truth labels for datasets are mostly
annotated manually by a group of researchers and then later compared using different
techniques to set target labels for the dataset. In hot spot prediction problem, the
labeled residues are those that are identified with the help of experimental methods
like ASM. Labeled data is important for a supervised machine learning method to
make predictions. The existing approaches to use ML to predict hot spots are based
on supervised learning [DPM07; Den+13; CKL09a; CKL09b; Ass+10].

In supervised learning, an algorithm is trained on input data that has been labeled
for a specific output. The algorithm is trained to detect the underlying patterns and
relationships between the input data and the output labels, enabling the algorithm
to yield accurate labeling results when presented with never-before-seen data. Thus,
insufficient labeled data makes it difficult to establish the relations between the input
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6 Conclusion

and output.
In semi-supervised learning, the algorithm is trained on a dataset that contains

both labeled and unlabeled data. Thus, a semi-supervised learning approach uses
small amount of labeled data and large amounts of unlabeled data. This would
decrease the cost and effort associated with experimentally annotating residues as
hot spots or null spots using ASM. So, in SSL, the classifier is first trained on the
labeled data, and then it is used to make predictions on the unlabeled data and also
the probabilities for those predictions are generated. Now all the labels for predictions
made with greater than a certain experimentally defined threshold of probability are
now added to the existing training set. The classifier is then trained on this new
training set and predictions are again made on the unlabeled data. This process is
repeated until no more label predictions greater than threshold probability exist, or
no unlabeled data remains.

In my thesis, as mentioned before, I have used classification algorithms, including
Support vector machines, Random forests, Gradient Boosting machines and Extreme
gradient boosting for training and predicting hot spots in a supervised fashion. Ver-
sions of these classification algorithms that employ semi supervised learning for mak-
ing predictions are available [BD98; Lei+09; Mal+08] and can be added to my pipeline
to make use of the unlabeled interface residues and further improve my method.

In conclusion, my method, namely, Robust principal component analysis Based
prediction of protein-protein interaction Hot Spots (RBHS), is a reliable method for
predicting protein-protein interaction hot spot residues. Moreover, the work that
I have presented in this thesis is an important step towards solving the issue of
noise often present in biological data repositories, predicting not just protein-protein
interaction hot spot residues, but also protein-nucleic acid hot spots, and finally
defining independent training and testing sets that contain no overlap.
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7 Supplementary Information

7.1 HB-34 Dataset
The interface residues in the dataset HB-34 are reported here. This table includes
the PDB ID of the complex, the ID of the residue and label that denotes whether the
residue is a hot spot or a null spot. Label=1, indicates the residue is a hot spot and
label=0, indicates the residue is a null spot.

Table 7.1.1: Interface residues for HB-34 dataset.
S.No. PDB Residue ID Label

1 1DFJI 202 0
2 1DFJI 257 0
3 1DFJI 259 1
4 1DFJI 283 0
5 1DFJI 285 0
6 1DFJI 314 0
7 1DFJI 316 0
8 1DFJI 340 0
9 1DFJI 397 0

10 1DFJI 430 1
11 1DFJI 431 1
12 1DFJI 433 1
13 1DFJI 453 0
14 1DFJI 455 0
15 2PCCA 197 1
16 2PCCA 290 1
17 1JTGA 110 1
18 1JCKB 23 1
19 1JCKB 60 0
20 1JCKB 90 1
21 1JCKB 91 1
22 1JCKB 103 0
23 1JCKB 176 1
24 1JCKB 210 1
25 1JCKA 90 1

Continued on next page
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7 Supplementary Information

Table 7.1.1 – continued from previous page
S.No. PDB Residue ID Label

26 1DANH 20 1
27 1EAWA 217 1
28 1C08B 32 1
29 1C08B 33 1
30 1C08B 53 1
31 1C08B 98 1
32 1C08A 31 1
33 1C08A 32 1
34 1C08A 96 1
35 1DANT 15 0
36 1DANT 17 0
37 1DANT 18 0
38 1DANT 20 1
39 1DANT 22 0
40 1DANT 24 0
41 1DANT 37 0
42 1DANT 41 0
43 1DANT 42 0
44 1DANT 43 0
45 1DANT 44 0
46 1DANT 45 0
47 1DANT 46 0
48 1DANT 47 0
49 1DANT 48 0
50 1DANT 51 0
51 1DANT 58 1
52 1DANT 60 1
53 1DANT 61 0
54 1DANT 62 0
55 1DANT 72 0
56 1DANT 76 0
57 1DANT 78 0
58 1A22B 243 1
59 1A22B 270 0
60 1A22B 274 0
61 1A22B 275 0
62 1A22B 280 0
63 1A22B 298 0
64 1A22B 301 0
65 1A22B 302 0
66 1A22B 303 0

Continued on next page
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7.1 HB-34 Dataset

Table 7.1.1 – continued from previous page
S.No. PDB Residue ID Label

67 1A22B 304 1
68 1A22B 305 0
69 1A22B 306 1
70 1A22B 320 0
71 1A22B 321 0
72 1A22B 324 0
73 1A22B 326 0
74 1A22B 327 0
75 1A22B 365 1
76 1A22B 366 0
77 1A22B 367 0
78 1A22B 369 1
79 1A22B 371 0
80 1A22B 417 0
81 1A22B 419 0
82 1IARB 13 1
83 1IARB 39 1
84 1IARB 41 1
85 1IARB 67 1
86 1IARB 69 1
87 1IARB 72 1
88 1IARB 74 1
89 1IARB 127 1
90 1IARB 183 1
91 1GC1C 23 0
92 1GC1C 25 0
93 1GC1C 27 0
94 1GC1C 29 0
95 1GC1C 32 0
96 1GC1C 33 0
97 1GC1C 35 0
98 1GC1C 40 0
99 1GC1C 42 0

100 1GC1C 44 0
101 1GC1C 45 0
102 1GC1C 52 0
103 1GC1C 59 0
104 1GC1C 60 0
105 1GC1C 63 0
106 1GC1C 64 0
107 1GC1C 85 0

Continued on next page
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7 Supplementary Information

Table 7.1.1 – continued from previous page
S.No. PDB Residue ID Label

108 1A22A 18 0
109 1A22A 21 0
110 1A22A 22 0
111 1A22A 25 0
112 1A22A 26 0
113 1A22A 42 0
114 1A22A 45 0
115 1A22A 46 0
116 1A22A 51 0
117 1A22A 56 0
118 1A22A 62 0
119 1A22A 63 0
120 1A22A 65 0
121 1A22A 164 0
122 1A22A 167 0
123 1A22A 171 0
124 1A22A 172 1
125 1A22A 175 1
126 1A22A 176 0
127 1A22A 178 1
128 1A22A 179 0
129 1A22A 183 0
130 1JRHH 32 0
131 1JRHH 52 1
132 1JRHH 53 1
133 1JRHH 54 1
134 1JRHH 55 1
135 1JRHH 56 0
136 1JRHH 58 0
137 1JRHH 60 0
138 1JRHH 100 0
139 1JRHH 104 0
140 1JRHH 107 0
141 1JRHL 27 0
142 1JRHL 30 0
143 1JRHL 50 1
144 1JRHL 91 0
145 1JRHL 92 1
146 1JRHL 93 0
147 1JRHL 94 0
148 1JTGB 49 1

Continued on next page
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7.1 HB-34 Dataset

Table 7.1.1 – continued from previous page
S.No. PDB Residue ID Label

149 1JTGB 74 1
150 1JTGB 142 1
151 1AK4C 485 1
152 1AK4C 486 1
153 1AK4C 487 1
154 1AK4C 489 1
155 1AK4C 490 1
156 1AK4C 493 1
157 2O3BB 24 1
158 2O3BB 74 1
159 2O3BB 76 1
160 1DANL 39 0
161 1DANL 42 0
162 1DANL 69 0
163 1DANL 73 0
164 1DANL 77 0
165 1DANL 88 0
166 1DANL 92 0
167 1DANL 93 0
168 1DANL 94 0
169 1EMVB 75 1
170 1EMVB 86 1
171 3HFMY 15 0
172 3HFMY 20 1
173 3HFMY 21 0
174 3HFMY 63 0
175 3HFMY 73 0
176 3HFMY 75 0
177 3HFMY 89 0
178 3HFMY 96 1
179 3HFMY 97 1
180 3HFMY 98 0
181 3HFMY 100 0
182 3HFMY 101 1
183 1IARA 5 0
184 1IARA 6 0
185 1IARA 8 0
186 1IARA 13 0
187 1IARA 78 0
188 1IARA 81 0
189 1IARA 84 0

Continued on next page
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7 Supplementary Information

Table 7.1.1 – continued from previous page
S.No. PDB Residue ID Label

190 1IARA 85 0
191 1IARA 88 1
192 1H9DB 104 1
193 2J0TD 2 1
194 2J0TD 68 1
195 1A4YB 5 1
196 1A4YB 8 0
197 1A4YB 12 0
198 1A4YB 13 0
199 1A4YB 31 0
200 1A4YB 32 0
201 1A4YB 68 0
202 1A4YB 84 0
203 1A4YB 89 0
204 1A4YB 108 0
205 1A4YB 114 0
206 1DVFB 32 0
207 1DVFB 52 1
208 1DVFB 54 1
209 1DVFB 56 0
210 1DVFB 58 0
211 1DVFB 98 1
212 1DVFB 100 1
213 1DVFB 101 1
214 1NMBH 99 1
215 1DVFD 30 0
216 1DVFD 33 0
217 1DVFD 52 0
218 1DVFD 97 1
219 1DVFD 98 1
220 1DVFD 102 1
221 1BRSA 27 1
222 1BRSA 54 0
223 1BRSA 58 1
224 1BRSA 59 1
225 1BRSA 60 0
226 1BRSA 73 1
227 1BRSA 87 1
228 1BRSA 102 1
229 1DVFA 49 0
230 1DVFA 50 0

Continued on next page
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7.1 HB-34 Dataset

Table 7.1.1 – continued from previous page
S.No. PDB Residue ID Label

231 1DVFA 92 0
232 1KTZB 27 1
233 1KTZB 30 1
234 1KTZB 32 0
235 1KTZB 49 0
236 1KTZB 50 1
237 1KTZB 52 0
238 1KTZB 55 0
239 1KTZB 77 0
240 1KTZB 118 0
241 1KTZB 119 0
242 1JRHI 47 1
243 1JRHI 49 1
244 1JRHI 52 1
245 1JRHI 53 1
246 1JRHI 54 0
247 1JRHI 55 0
248 1JRHI 82 1
249 1JRHI 84 0
250 1JRHI 98 0
251 1BRSD 29 1
252 1BRSD 35 1
253 1BRSD 39 1
254 1BRSD 42 0
255 2JELP 70 1
256 1BXIA 27 0
257 1BXIA 28 0
258 1BXIA 29 0
259 1BXIA 33 1
260 1BXIA 34 1
261 1BXIA 37 0
262 1BXIA 38 0
263 1BXIA 41 1
264 1BXIA 46 0
265 1BXIA 48 0
266 1BXIA 50 1
267 1BXIA 51 1
268 1BXIA 53 0
269 1BXIA 54 1
270 1BXIA 55 1
271 1KTZA 94 1

Continued on next page
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7 Supplementary Information

Table 7.1.1 – continued from previous page
S.No. PDB Residue ID Label

272 2WPTA 37 1
273 2WPTA 41 1
274 2WPTA 50 1
275 2WPTA 56 1
276 1XD3B 8 1
277 1FFWB 214 1
278 1TM1I 58 1
279 1TM1I 60 1
280 1TM1I 61 1
281 1TM1I 65 1
282 1TM1I 67 1
283 1CBWD 11 0
284 1CBWD 15 1
285 1CBWD 17 0
286 1CBWD 19 0
287 1CBWD 34 0
288 1CBWD 39 0
289 1FCCC 25 0
290 1FCCC 27 1
291 1FCCC 28 0
292 1FCCC 31 1
293 1FCCC 35 1
294 1FCCC 40 0
295 1FCCC 43 1
296 1CHOI 17 1
297 1CHOI 18 1
298 1CHOI 19 1
299 1CHOI 20 1
300 1CHOI 21 1
301 1FC2C 147 0
302 1FC2C 150 1
303 1FC2C 154 0
304 1F47A 5 0
305 1F47A 6 0
306 1F47A 7 0
307 1F47A 8 1
308 1F47A 11 1
309 1F47A 12 1
310 1F47A 14 0
311 1F47A 15 0
312 1DN2E 10 1

Continued on next page
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7.2 BID-18 Dataset

Table 7.1.1 – continued from previous page
S.No. PDB Residue ID Label

313 1DN2E 11 1

7.2 BID-18 Dataset
The interface residues in the dataset BID-18 are reported here. This table includes
the PDB ID of the complex, the ID of the residue and label that denotes whether the
residue is a hot spot or a null spot. Label=1, indicates the residue is a hot spot and
label=0, indicates the residue is a null spot.

Table 7.2.1: Interface residues for BID-18 dataset.
S.No. PDB Residue ID Label

1 1CDLA 12 0
2 1CDLA 19 0
3 1CDLA 92 1
4 1CDLE 799 0
5 1CDLE 800 1
6 1CDLE 802 0
7 1CDLE 804 1
8 1CDLE 808 0
9 1CDLE 810 1

10 1CDLE 811 0
11 1CDLE 812 1
12 1CDLE 813 1
13 1DVAH 38 0
14 1DVAH 65 0
15 1DVAH 67 0
16 1DVAH 70 0
17 1DVAH 73 0
18 1DVAH 74 0
19 1DVAH 75 0
20 1DVAH 76 1
21 1DVAH 80 0
22 1DVAH 82 0
23 1DVAH 144 0
24 1DVAH 153 0
25 1DVAX 1 0

Continued on next page
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7 Supplementary Information

Table 7.2.1 – continued from previous page
S.No. PDB Residue ID Label

26 1DVAX 2 1
27 1DVAX 5 0
28 1DVAX 7 0
29 1DVAX 8 0
30 1DVAX 9 0
31 1DVAX 11 1
32 1DVAX 12 1
33 1DVAX 14 0
34 1DVAX 15 1
35 1DVAX 16 0
36 1DX5N 24 0
37 1DX5N 34 0
38 1DX5N 36 0
39 1DX5N 37 0
40 1DX5N 38 0
41 1DX5N 39 0
42 1DX5N 65 0
43 1DX5N 67 1
44 1DX5N 74 0
45 1DX5N 75 0
46 1DX5N 76 1
47 1DX5N 80 1
48 1DX5N 81 0
49 1DX5N 82 0
50 1DX5N 84 0
51 1DX5N 110 0
52 1DX5N 235 0
53 1EBPA 93 1
54 1EBPA 150 1
55 1EBPA 151 0
56 1EBPA 205 1
57 1EBPC 9 0
58 1EBPC 10 0
59 1EBPC 11 0
60 1EBPC 12 0
61 1EBPC 13 1
62 1ES7A 26 0
63 1ES7A 31 1
64 1ES7A 49 0
65 1ES7A 50 0
66 1FAKT 15 0

Continued on next page
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7.2 BID-18 Dataset

Table 7.2.1 – continued from previous page
S.No. PDB Residue ID Label

67 1FAKT 17 0
68 1FAKT 18 0
69 1FAKT 20 1
70 1FAKT 22 0
71 1FAKT 24 0
72 1FAKT 37 0
73 1FAKT 41 0
74 1FAKT 42 0
75 1FAKT 44 0
76 1FAKT 47 0
77 1FAKT 48 0
78 1FAKT 50 0
79 1FAKT 58 1
80 1FAKT 94 0
81 1FAKT 128 0
82 1FAKT 133 0
83 1FAKT 135 0
84 1FAKT 140 0
85 1FAKT 203 0
86 1FAKT 207 0
87 1FE8A 963 0
88 1FE8A 987 0
89 1FE8A 990 0
90 1FE8A 1023 0
91 1FOEB 41 0
92 1FOEB 54 1
93 1G3IA 438 1
94 1G3IA 439 1
95 1G3IA 441 1
96 1G3IA 442 1
97 1G3IA 443 1
98 1G3IA 444 1
99 1GL4A 403 0

100 1GL4A 427 1
101 1GL4A 429 1
102 1GL4A 431 1
103 1GL4A 440 0
104 1GL4A 616 1
105 1GL4A 620 1
106 1IHBB 101 0
107 1IHBB 133 0

Continued on next page
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7 Supplementary Information

Table 7.2.1 – continued from previous page
S.No. PDB Residue ID Label

108 1IHBB 135 0
109 1IHBB 136 0
110 1JATA 55 1
111 1JATB 8 1
112 1JPPB 345 1
113 1JPPB 354 0
114 1JPPB 383 1
115 1JPPB 386 0
116 1JPPB 435 0
117 1JPPB 469 0
118 1JPPB 470 0
119 1MQ8B 206 1
120 1NFIF 181 1
121 1NFIF 215 0
122 1NUNA 76 0
123 1NUNA 78 0
124 1NUNA 155 0
125 1UB4C 453 0
126 2HHBB 35 0

7.3 Blosum62 features for HB-34
This table includes the Block substitution matrix (Blosum62) features calculated for
the residues in HB-34 dataset. These letters here indicate the Amino Acid Type.
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7.3 Blosum62 features for HB-34
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7.3 Blosum62 features for HB-34
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7.4 Blosum62 features for BID-18

7.4 Blosum62 features for BID-18
This table includes the Block substitution matrix(Blosum62) features calculated for
the residues in BID-18 dataset. These letters here indicate the Amino Acid Type.
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7.4 Blosum62 features for BID-18
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7.5 Physicochemical features for HB-34

7.5 Physicochemical features for HB-34
This table includes the six physicochemical features calculated from the AAIndex
database for the residues in HB-34 dataset except for propensities which were calcu-
lated from [JT97; JT96]. AASA is Average Accessible Surface area.

Table 7.5.1: Physicochemical features for HB-34 dataset.
S.No. Hydrophobicity Hydrophilicity Polarity Polarizability Propensities AASA

1 -0.62 3 12.3 0.15 -0.13 68.2
2 0.37 -3.4 5.4 0.41 0.83 34.7
3 0.37 -3.4 5.4 0.41 0.83 34.7
4 -0.62 3 12.3 0.15 -0.13 68.2
5 -0.26 0.3 9.2 0.06 -0.33 42
6 0.37 -3.4 5.4 0.41 0.83 34.7
7 -1.1 3 11.3 0.22 -0.36 103
8 -0.62 3 12.3 0.15 -0.13 68.2
9 -0.62 3 12.3 0.15 -0.13 68.2

10 0.02 -2.3 6.2 0.3 0.66 55.2
11 -0.72 3 13 0.11 -0.38 60.6
12 0.02 -2.3 6.2 0.3 0.66 55.2
13 -1.76 3 10.5 0.29 0.27 94.7
14 0.73 -1.8 5.2 0.19 0.44 22.8
15 0.54 -1.5 5.9 0.14 0.27 23.7
16 -0.62 3 12.3 0.15 -0.13 68.2
17 -0.62 3 12.3 0.15 -0.13 68.2
18 -0.64 2 11.6 0.13 0.12 60.1
19 -0.64 2 11.6 0.13 0.12 60.1
20 0.02 -2.3 6.2 0.3 0.66 55.2
21 0.54 -1.5 5.9 0.14 0.27 23.7
22 -1.1 3 11.3 0.22 -0.36 103
23 0.61 -2.5 5.2 0.29 0.82 25.5
24 -0.69 0.2 10.5 0.18 -0.11 68.7
25 0.02 -2.3 6.2 0.3 0.66 55.2
26 -1.1 3 11.3 0.22 -0.36 103
27 -0.72 3 13 0.11 -0.38 60.6
28 -0.72 3 13 0.11 -0.38 60.6
29 0.02 -2.3 6.2 0.3 0.66 55.2
30 0.02 -2.3 6.2 0.3 0.66 55.2
31 0.37 -3.4 5.4 0.41 0.83 34.7
32 -0.64 2 11.6 0.13 0.12 60.1
33 -0.64 2 11.6 0.13 0.12 60.1
34 0.02 -2.3 6.2 0.3 0.66 55.2
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35 -1.1 3 11.3 0.22 -0.36 103
36 -0.18 -0.4 8.6 0.11 -0.18 45
37 -0.64 2 11.6 0.13 0.12 60.1
38 -1.1 3 11.3 0.22 -0.36 103
39 0.73 -1.8 5.2 0.19 0.44 22.8
40 -0.62 3 12.3 0.15 -0.13 68.2
41 -0.69 0.2 10.5 0.18 -0.11 68.7
42 -1.1 3 11.3 0.22 -0.36 103
43 -0.26 0.3 9.2 0.06 -0.33 42
44 0.16 0 9 0 -0.07 24.5
45 -0.72 3 13 0.11 -0.38 60.6
46 0.37 -3.4 5.4 0.41 0.83 34.7
47 -1.1 3 11.3 0.22 -0.36 103
48 -0.26 0.3 9.2 0.06 -0.33 42
49 -1.1 3 11.3 0.22 -0.36 103
50 0.02 -2.3 6.2 0.3 0.66 55.2
51 -0.72 3 13 0.11 -0.38 60.6
52 -0.18 -0.4 8.6 0.11 -0.18 45
53 -0.72 3 13 0.11 -0.38 60.6
54 -0.62 3 12.3 0.15 -0.13 68.2
55 0.53 -1.8 4.9 0.19 0.4 27.6
56 0.61 -2.5 5.2 0.29 0.82 25.5
57 0.02 -2.3 6.2 0.3 0.66 55.2
58 -1.76 3 10.5 0.29 0.27 94.7
59 -1.76 3 10.5 0.29 0.27 94.7
60 -0.69 0.2 10.5 0.18 -0.11 68.7
61 -0.62 3 12.3 0.15 -0.13 68.2
62 0.37 -3.4 5.4 0.41 0.83 34.7
63 -0.26 0.3 9.2 0.06 -0.33 42
64 -0.18 -0.4 8.6 0.11 -0.18 45
65 -0.26 0.3 9.2 0.06 -0.33 42
66 0.73 -1.8 5.2 0.19 0.44 22.8
67 0.37 -3.4 5.4 0.41 0.83 34.7
68 0.73 -1.8 5.2 0.19 0.44 22.8
69 -0.07 0 8 0.13 -0.25 51.5
70 -0.62 3 12.3 0.15 -0.13 68.2
71 -1.1 3 11.3 0.22 -0.36 103
72 -0.26 0.3 9.2 0.06 -0.33 42
73 -0.72 3 13 0.11 -0.38 60.6
74 -0.62 3 12.3 0.15 -0.13 68.2
75 0.73 -1.8 5.2 0.19 0.44 22.8
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76 -0.69 0.2 10.5 0.18 -0.11 68.7
77 -1.1 3 11.3 0.22 -0.36 103
78 0.37 -3.4 5.4 0.41 0.83 34.7
79 0.54 -1.5 5.9 0.14 0.27 23.7
80 -1.76 3 10.5 0.29 0.27 94.7
81 -0.26 0.3 9.2 0.06 -0.33 42
82 0.02 -2.3 6.2 0.3 0.66 55.2
83 0.53 -1.8 4.9 0.19 0.4 27.6
84 0.61 -2.5 5.2 0.29 0.82 25.5
85 -0.72 3 13 0.11 -0.38 60.6
86 0.54 -1.5 5.9 0.14 0.27 23.7
87 -0.72 3 13 0.11 -0.38 60.6
88 0.02 -2.3 6.2 0.3 0.66 55.2
89 0.02 -2.3 6.2 0.3 0.66 55.2
90 0.02 -2.3 6.2 0.3 0.66 55.2
91 -0.26 0.3 9.2 0.06 -0.33 42
92 -0.69 0.2 10.5 0.18 -0.11 68.7
93 -0.4 -0.5 10.4 0.23 0.41 50.7
94 -1.1 3 11.3 0.22 -0.36 103
95 -0.64 2 11.6 0.13 0.12 60.1
96 -0.69 0.2 10.5 0.18 -0.11 68.7
97 -1.1 3 11.3 0.22 -0.36 103
98 -0.69 0.2 10.5 0.18 -0.11 68.7
99 -0.26 0.3 9.2 0.06 -0.33 42

100 0.53 -1.8 4.9 0.19 0.4 27.6
101 -0.18 -0.4 8.6 0.11 -0.18 45
102 -0.64 2 11.6 0.13 0.12 60.1
103 -1.76 3 10.5 0.29 0.27 94.7
104 -0.26 0.3 9.2 0.06 -0.33 42
105 -0.72 3 13 0.11 -0.38 60.6
106 -0.69 0.2 10.5 0.18 -0.11 68.7
107 -0.62 3 12.3 0.15 -0.13 68.2
108 -0.4 -0.5 10.4 0.23 0.41 50.7
109 -0.4 -0.5 10.4 0.23 0.41 50.7
110 -0.69 0.2 10.5 0.18 -0.11 68.7
111 0.61 -2.5 5.2 0.29 0.82 25.5
112 -0.72 3 13 0.11 -0.38 60.6
113 0.02 -2.3 6.2 0.3 0.66 55.2
114 0.53 -1.8 4.9 0.19 0.4 27.6
115 -0.69 0.2 10.5 0.18 -0.11 68.7
116 -0.26 0.3 9.2 0.06 -0.33 42
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117 -0.62 3 12.3 0.15 -0.13 68.2
118 -0.26 0.3 9.2 0.06 -0.33 42
119 -0.64 2 11.6 0.13 0.12 60.1
120 -0.62 3 12.3 0.15 -0.13 68.2
121 0.02 -2.3 6.2 0.3 0.66 55.2
122 -1.76 3 10.5 0.29 0.27 94.7
123 -0.72 3 13 0.11 -0.38 60.6
124 -1.1 3 11.3 0.22 -0.36 103
125 -0.18 -0.4 8.6 0.11 -0.18 45
126 0.61 -2.5 5.2 0.29 0.82 25.5
127 -1.76 3 10.5 0.29 0.27 94.7
128 0.73 -1.8 5.2 0.19 0.44 22.8
129 -1.76 3 10.5 0.29 0.27 94.7
130 0.02 -2.3 6.2 0.3 0.66 55.2
131 0.37 -3.4 5.4 0.41 0.83 34.7
132 0.37 -3.4 5.4 0.41 0.83 34.7
133 -0.72 3 13 0.11 -0.38 60.6
134 -0.72 3 13 0.11 -0.38 60.6
135 -0.72 3 13 0.11 -0.38 60.6
136 0.02 -2.3 6.2 0.3 0.66 55.2
137 -0.64 2 11.6 0.13 0.12 60.1
138 0.16 0 9 0 -0.07 24.5
139 0.16 0 9 0 -0.07 24.5
140 -0.18 -0.4 8.6 0.11 -0.18 45
141 -0.62 3 12.3 0.15 -0.13 68.2
142 0.02 -2.3 6.2 0.3 0.66 55.2
143 0.16 0 9 0 -0.07 24.5
144 0.02 -2.3 6.2 0.3 0.66 55.2
145 0.37 -3.4 5.4 0.41 0.83 34.7
146 -0.26 0.3 9.2 0.06 -0.33 42
147 -0.18 -0.4 8.6 0.11 -0.18 45
148 -0.72 3 13 0.11 -0.38 60.6
149 -1.1 3 11.3 0.22 -0.36 103
150 0.61 -2.5 5.2 0.29 0.82 25.5
151 -0.07 0 8 0.13 -0.25 51.5
152 0.54 -1.5 5.9 0.14 0.27 23.7
153 -0.4 -0.5 10.4 0.23 0.41 50.7
154 0.16 0 9 0 -0.07 24.5
155 -0.07 0 8 0.13 -0.25 51.5
156 -0.07 0 8 0.13 -0.25 51.5
157 -0.62 3 12.3 0.15 -0.13 68.2
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158 -0.69 0.2 10.5 0.18 -0.11 68.7
159 0.37 -3.4 5.4 0.41 0.83 34.7
160 0.53 -1.8 4.9 0.19 0.4 27.6
161 0.73 -1.8 5.2 0.19 0.44 22.8
162 0.73 -1.8 5.2 0.19 0.44 22.8
163 0.53 -1.8 4.9 0.19 0.4 27.6
164 -0.62 3 12.3 0.15 -0.13 68.2
165 -0.69 0.2 10.5 0.18 -0.11 68.7
166 0.54 -1.5 5.9 0.14 0.27 23.7
167 -0.64 2 11.6 0.13 0.12 60.1
168 -0.62 3 12.3 0.15 -0.13 68.2
169 -0.64 2 11.6 0.13 0.12 60.1
170 0.61 -2.5 5.2 0.29 0.82 25.5
171 -0.4 -0.5 10.4 0.23 0.41 50.7
172 0.02 -2.3 6.2 0.3 0.66 55.2
173 -1.76 3 10.5 0.29 0.27 94.7
174 0.37 -3.4 5.4 0.41 0.83 34.7
175 -1.76 3 10.5 0.29 0.27 94.7
176 0.53 -1.8 4.9 0.19 0.4 27.6
177 -0.18 -0.4 8.6 0.11 -0.18 45
178 -1.1 3 11.3 0.22 -0.36 103
179 -1.1 3 11.3 0.22 -0.36 103
180 0.73 -1.8 5.2 0.19 0.44 22.8
181 -0.26 0.3 9.2 0.06 -0.33 42
182 -0.72 3 13 0.11 -0.38 60.6
183 0.73 -1.8 5.2 0.19 0.44 22.8
184 -0.18 -0.4 8.6 0.11 -0.18 45
185 -0.69 0.2 10.5 0.18 -0.11 68.7
186 -0.18 -0.4 8.6 0.11 -0.18 45
187 -0.69 0.2 10.5 0.18 -0.11 68.7
188 -1.76 3 10.5 0.29 0.27 94.7
189 -1.1 3 11.3 0.22 -0.36 103
190 -1.76 3 10.5 0.29 0.27 94.7
191 -1.76 3 10.5 0.29 0.27 94.7
192 -0.64 2 11.6 0.13 0.12 60.1
193 -0.18 -0.4 8.6 0.11 -0.18 45
194 -0.26 0.3 9.2 0.06 -0.33 42
195 -1.76 3 10.5 0.29 0.27 94.7
196 -0.4 -0.5 10.4 0.23 0.41 50.7
197 -0.69 0.2 10.5 0.18 -0.11 68.7
198 -0.4 -0.5 10.4 0.23 0.41 50.7
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199 -1.76 3 10.5 0.29 0.27 94.7
200 -1.76 3 10.5 0.29 0.27 94.7
201 -0.64 2 11.6 0.13 0.12 60.1
202 -0.4 -0.5 10.4 0.23 0.41 50.7
203 0.37 -3.4 5.4 0.41 0.83 34.7
204 -0.62 3 12.3 0.15 -0.13 68.2
205 -0.4 -0.5 10.4 0.23 0.41 50.7
206 0.02 -2.3 6.2 0.3 0.66 55.2
207 0.37 -3.4 5.4 0.41 0.83 34.7
208 -0.72 3 13 0.11 -0.38 60.6
209 -0.64 2 11.6 0.13 0.12 60.1
210 -0.72 3 13 0.11 -0.38 60.6
211 -0.62 3 12.3 0.15 -0.13 68.2
212 -0.72 3 13 0.11 -0.38 60.6
213 0.02 -2.3 6.2 0.3 0.66 55.2
214 0.02 -2.3 6.2 0.3 0.66 55.2
215 -1.1 3 11.3 0.22 -0.36 103
216 -0.4 -0.5 10.4 0.23 0.41 50.7
217 -0.72 3 13 0.11 -0.38 60.6
218 0.73 -1.8 5.2 0.19 0.44 22.8
219 0.02 -2.3 6.2 0.3 0.66 55.2
220 0.02 -2.3 6.2 0.3 0.66 55.2
221 -1.1 3 11.3 0.22 -0.36 103
222 -0.72 3 13 0.11 -0.38 60.6
223 -0.64 2 11.6 0.13 0.12 60.1
224 -1.76 3 10.5 0.29 0.27 94.7
225 -0.62 3 12.3 0.15 -0.13 68.2
226 -0.62 3 12.3 0.15 -0.13 68.2
227 -1.76 3 10.5 0.29 0.27 94.7
228 -0.4 -0.5 10.4 0.23 0.41 50.7
229 0.02 -2.3 6.2 0.3 0.66 55.2
230 0.02 -2.3 6.2 0.3 0.66 55.2
231 0.37 -3.4 5.4 0.41 0.83 34.7
232 0.53 -1.8 4.9 0.19 0.4 27.6
233 0.61 -2.5 5.2 0.29 0.82 25.5
234 -0.72 3 13 0.11 -0.38 60.6
235 -0.26 0.3 9.2 0.06 -0.33 42
236 0.73 -1.8 5.2 0.19 0.44 22.8
237 -0.26 0.3 9.2 0.06 -0.33 42
238 -0.62 3 12.3 0.15 -0.13 68.2
239 0.54 -1.5 5.9 0.14 0.27 23.7
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240 -0.72 3 13 0.11 -0.38 60.6
241 -0.62 3 12.3 0.15 -0.13 68.2
242 -1.1 3 11.3 0.22 -0.36 103
243 0.02 -2.3 6.2 0.3 0.66 55.2
244 -1.1 3 11.3 0.22 -0.36 103
245 -0.64 2 11.6 0.13 0.12 60.1
246 -0.26 0.3 9.2 0.06 -0.33 42
247 -0.62 3 12.3 0.15 -0.13 68.2
248 0.37 -3.4 5.4 0.41 0.83 34.7
249 -1.76 3 10.5 0.29 0.27 94.7
250 -1.1 3 11.3 0.22 -0.36 103
251 0.02 -2.3 6.2 0.3 0.66 55.2
252 -0.72 3 13 0.11 -0.38 60.6
253 -0.72 3 13 0.11 -0.38 60.6
254 -0.18 -0.4 8.6 0.11 -0.18 45
255 -0.62 3 12.3 0.15 -0.13 68.2
256 -0.18 -0.4 8.6 0.11 -0.18 45
257 -0.26 0.3 9.2 0.06 -0.33 42
258 -0.26 0.3 9.2 0.06 -0.33 42
259 0.53 -1.8 4.9 0.19 0.4 27.6
260 0.54 -1.5 5.9 0.14 0.27 23.7
261 0.54 -1.5 5.9 0.14 0.27 23.7
262 -0.18 -0.4 8.6 0.11 -0.18 45
263 -0.62 3 12.3 0.15 -0.13 68.2
264 -0.4 -0.5 10.4 0.23 0.41 50.7
265 -0.26 0.3 9.2 0.06 -0.33 42
266 -0.26 0.3 9.2 0.06 -0.33 42
267 -0.72 3 13 0.11 -0.38 60.6
268 0.73 -1.8 5.2 0.19 0.44 22.8
269 0.02 -2.3 6.2 0.3 0.66 55.2
270 0.02 -2.3 6.2 0.3 0.66 55.2
271 -1.76 3 10.5 0.29 0.27 94.7
272 0.54 -1.5 5.9 0.14 0.27 23.7
273 -0.62 3 12.3 0.15 -0.13 68.2
274 -0.26 0.3 9.2 0.06 -0.33 42
275 -0.07 0 8 0.13 -0.25 51.5
276 0.53 -1.8 4.9 0.19 0.4 27.6
277 0.61 -2.5 5.2 0.29 0.82 25.5
278 -0.18 -0.4 8.6 0.11 -0.18 45
279 -0.62 3 12.3 0.15 -0.13 68.2
280 0.02 -2.3 6.2 0.3 0.66 55.2
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281 -1.76 3 10.5 0.29 0.27 94.7
282 -1.76 3 10.5 0.29 0.27 94.7
283 -0.18 -0.4 8.6 0.11 -0.18 45
284 -1.1 3 11.3 0.22 -0.36 103
285 -1.76 3 10.5 0.29 0.27 94.7
286 0.73 -1.8 5.2 0.19 0.44 22.8
287 0.54 -1.5 5.9 0.14 0.27 23.7
288 -1.76 3 10.5 0.29 0.27 94.7
289 -0.18 -0.4 8.6 0.11 -0.18 45
290 -0.62 3 12.3 0.15 -0.13 68.2
291 -1.1 3 11.3 0.22 -0.36 103
292 -1.1 3 11.3 0.22 -0.36 103
293 -0.64 2 11.6 0.13 0.12 60.1
294 -0.72 3 13 0.11 -0.38 60.6
295 0.37 -3.4 5.4 0.41 0.83 34.7
296 -0.18 -0.4 8.6 0.11 -0.18 45
297 0.53 -1.8 4.9 0.19 0.4 27.6
298 -0.62 3 12.3 0.15 -0.13 68.2
299 0.02 -2.3 6.2 0.3 0.66 55.2
300 -1.76 3 10.5 0.29 0.27 94.7
301 -0.64 2 11.6 0.13 0.12 60.1
302 0.73 -1.8 5.2 0.19 0.44 22.8
303 -1.1 3 11.3 0.22 -0.36 103
304 0.02 -2.3 6.2 0.3 0.66 55.2
305 0.53 -1.8 4.9 0.19 0.4 27.6
306 -0.72 3 13 0.11 -0.38 60.6
307 0.73 -1.8 5.2 0.19 0.44 22.8
308 0.61 -2.5 5.2 0.29 0.82 25.5
309 0.53 -1.8 4.9 0.19 0.4 27.6
310 -1.1 3 11.3 0.22 -0.36 103
311 -0.69 0.2 10.5 0.18 -0.11 68.7
312 0.54 -1.5 5.9 0.14 0.27 23.7
313 0.37 -3.4 5.4 0.41 0.83 34.7

7.6 Physicochemical features for BID-18
This table includes the six physicochemical features calculated from the AAIndex
database for the residues in BID-18 dataset except propensities which were calculated
from [JT97; JT96]. AASA is Average Accessible Surface area.
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Table 7.6.1: Physicochemical features for BID-18 dataset.
S.No. Hydrophobicity Hydrophilicity Polarity Polarizability Propensities AASA

314 0.61 -2.5 5.2 0.29 0.82 25.5
315 0.61 -2.5 5.2 0.29 0.82 25.5
316 0.61 -2.5 5.2 0.29 0.82 25.5
317 -1.1 3 11.3 0.22 -0.36 103
318 0.37 -3.4 5.4 0.41 0.83 34.7
319 -1.1 3 11.3 0.22 -0.36 103
320 0.16 0 9 0 -0.07 24.5
321 -1.76 3 10.5 0.29 0.27 94.7
322 0.73 -1.8 5.2 0.19 0.44 22.8
323 0.16 0 9 0 -0.07 24.5
324 -1.76 3 10.5 0.29 0.27 94.7
325 0.53 -1.8 4.9 0.19 0.4 27.6
326 0.16 0 9 0 -0.07 24.5
327 0.73 -1.8 5.2 0.19 0.44 22.8
328 0.54 -1.5 5.9 0.14 0.27 23.7
329 -0.62 3 12.3 0.15 -0.13 68.2
330 0.53 -1.8 4.9 0.19 0.4 27.6
331 -0.26 0.3 9.2 0.06 -0.33 42
332 -0.62 3 12.3 0.15 -0.13 68.2
333 -0.4 -0.5 10.4 0.23 0.41 50.7
334 -0.62 3 12.3 0.15 -0.13 68.2
335 -0.26 0.3 9.2 0.06 -0.33 42
336 0.53 -1.8 4.9 0.19 0.4 27.6
337 0.53 -1.8 4.9 0.19 0.4 27.6
338 0.25 -0.5 8.1 0.05 -0.17 27.8
339 0.53 -1.8 4.9 0.19 0.4 27.6
340 -0.72 3 13 0.11 -0.38 60.6
341 -1.76 3 10.5 0.29 0.27 94.7
342 0.54 -1.5 5.9 0.14 0.27 23.7
343 -0.72 3 13 0.11 -0.38 60.6
344 0.37 -3.4 5.4 0.41 0.83 34.7
345 0.02 -2.3 6.2 0.3 0.66 55.2
346 -0.69 0.2 10.5 0.18 -0.11 68.7
347 0.61 -2.5 5.2 0.29 0.82 25.5
348 0.54 -1.5 5.9 0.14 0.27 23.7
349 0.73 -1.8 5.2 0.19 0.44 22.8
350 0.61 -2.5 5.2 0.29 0.82 25.5
351 -1.1 3 11.3 0.22 -0.36 103
352 -0.07 0 8 0.13 -0.25 51.5
353 -0.69 0.2 10.5 0.18 -0.11 68.7
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354 -0.62 3 12.3 0.15 -0.13 68.2
355 0.53 -1.8 4.9 0.19 0.4 27.6
356 -1.76 3 10.5 0.29 0.27 94.7
357 -0.18 -0.4 8.6 0.11 -0.18 45
358 -1.76 3 10.5 0.29 0.27 94.7
359 0.02 -2.3 6.2 0.3 0.66 55.2
360 -0.62 3 12.3 0.15 -0.13 68.2
361 -1.1 3 11.3 0.22 -0.36 103
362 0.73 -1.8 5.2 0.19 0.44 22.8
363 0.26 -1.3 5.7 0.22 0.66 33.5
364 -1.1 3 11.3 0.22 -0.36 103
365 -1.1 3 11.3 0.22 -0.36 103
366 0.61 -2.5 5.2 0.29 0.82 25.5
367 0.26 -1.3 5.7 0.22 0.66 33.5
368 -0.18 -0.4 8.6 0.11 -0.18 45
369 0.61 -2.5 5.2 0.29 0.82 25.5
370 0.16 0 9 0 -0.07 24.5
371 -0.07 0 8 0.13 -0.25 51.5
372 0.53 -1.8 4.9 0.19 0.4 27.6
373 -0.18 -0.4 8.6 0.11 -0.18 45
374 0.37 -3.4 5.4 0.41 0.83 34.7
375 0.54 -1.5 5.9 0.14 0.27 23.7
376 0.37 -3.4 5.4 0.41 0.83 34.7
377 0.61 -2.5 5.2 0.29 0.82 25.5
378 -0.07 0 8 0.13 -0.25 51.5
379 -1.1 3 11.3 0.22 -0.36 103
380 -0.18 -0.4 8.6 0.11 -0.18 45
381 -0.64 2 11.6 0.13 0.12 60.1
382 -1.1 3 11.3 0.22 -0.36 103
383 0.73 -1.8 5.2 0.19 0.44 22.8
384 -0.62 3 12.3 0.15 -0.13 68.2
385 -0.69 0.2 10.5 0.18 -0.11 68.7
386 -1.1 3 11.3 0.22 -0.36 103
387 -0.26 0.3 9.2 0.06 -0.33 42
388 -0.72 3 13 0.11 -0.38 60.6
389 -0.26 0.3 9.2 0.06 -0.33 42
390 -1.1 3 11.3 0.22 -0.36 103
391 0.61 -2.5 5.2 0.29 0.82 25.5
392 -0.72 3 13 0.11 -0.38 60.6
393 0.02 -2.3 6.2 0.3 0.66 55.2
394 -0.62 3 12.3 0.15 -0.13 68.2

Continued on next page
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7.6 Physicochemical features for BID-18

Table 7.6.1 – continued from previous page
S.No. Hydrophobicity Hydrophilicity Polarity Polarizability Propensities AASA

395 0.53 -1.8 4.9 0.19 0.4 27.6
396 -1.76 3 10.5 0.29 0.27 94.7
397 0.61 -2.5 5.2 0.29 0.82 25.5
398 -0.18 -0.4 8.6 0.11 -0.18 45
399 0.54 -1.5 5.9 0.14 0.27 23.7
400 -1.76 3 10.5 0.29 0.27 94.7
401 -0.62 3 12.3 0.15 -0.13 68.2
402 -0.4 -0.5 10.4 0.23 0.41 50.7
403 -0.4 -0.5 10.4 0.23 0.41 50.7
404 -0.26 0.3 9.2 0.06 -0.33 42
405 0.16 0 9 0 -0.07 24.5
406 -0.72 3 13 0.11 -0.38 60.6
407 0.53 -1.8 4.9 0.19 0.4 27.6
408 -1.76 3 10.5 0.29 0.27 94.7
409 0.61 -2.5 5.2 0.29 0.82 25.5
410 0.73 -1.8 5.2 0.19 0.44 22.8
411 0.53 -1.8 4.9 0.19 0.4 27.6
412 -1.76 3 10.5 0.29 0.27 94.7
413 -0.72 3 13 0.11 -0.38 60.6
414 -0.4 -0.5 10.4 0.23 0.41 50.7
415 0.02 -2.3 6.2 0.3 0.66 55.2
416 0.02 -2.3 6.2 0.3 0.66 55.2
417 -0.62 3 12.3 0.15 -0.13 68.2
418 -1.76 3 10.5 0.29 0.27 94.7
419 -0.64 2 11.6 0.13 0.12 60.1
420 -1.76 3 10.5 0.29 0.27 94.7
421 -0.4 -0.5 10.4 0.23 0.41 50.7
422 -1.1 3 11.3 0.22 -0.36 103
423 -0.62 3 12.3 0.15 -0.13 68.2
424 0.61 -2.5 5.2 0.29 0.82 25.5
425 -1.1 3 11.3 0.22 -0.36 103
426 -1.1 3 11.3 0.22 -0.36 103
427 0.37 -3.4 5.4 0.41 0.83 34.7
428 -1.76 3 10.5 0.29 0.27 94.7
429 -1.1 3 11.3 0.22 -0.36 103
430 -1.76 3 10.5 0.29 0.27 94.7
431 -0.4 -0.5 10.4 0.23 0.41 50.7
432 -0.18 -0.4 8.6 0.11 -0.18 45
433 0.02 -2.3 6.2 0.3 0.66 55.2
434 0.04 -1 5.5 0.13 0.43 15.5
435 -0.72 3 13 0.11 -0.38 60.6

Continued on next page
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7 Supplementary Information

Table 7.6.1 – continued from previous page
S.No. Hydrophobicity Hydrophilicity Polarity Polarizability Propensities AASA

436 -1.76 3 10.5 0.29 0.27 94.7
437 -1.76 3 10.5 0.29 0.27 94.7
438 0.61 -2.5 5.2 0.29 0.82 25.5
439 0.02 -2.3 6.2 0.3 0.66 55.2

7.7 PSSM for residues in HB-34
This table includes the twenty position specific scoring matrix (PSSM) based features
calculated for the residues in HB-34 dataset.
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7.7 PSSM for residues in HB-34
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7 Supplementary Information
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7.7 PSSM for residues in HB-34
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7 Supplementary Information
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7.7 PSSM for residues in HB-34
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7.7 PSSM for residues in HB-34
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7.7 PSSM for residues in HB-34
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7.7 PSSM for residues in HB-34
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7.8 PSSM for BID-18 residues

7.8 PSSM for BID-18 residues
This table includes the twenty position specific scoring matrix (PSSM) based features
calculated for the residues in BID-18 dataset.
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7.9 ASA features for HB-34
This table includes the solvent accessible surface area (ASA) features for the residues
in HB-34 dataset. SBr is relative surface burial, RASA is relative ASA.

Table 7.9.1: ASA features for HB-34 dataset.
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

1 51 30 0.59 0.26 0.15
2 39 33 0.85 0.17 0.15
3 42 36 0.86 0.19 0.16
4 58 30 0.52 0.3 0.15
5 3 3 1 0.02 0.02
6 71 54 0.76 0.31 0.24
7 96 52 0.54 0.47 0.25
8 50 7 0.14 0.26 0.04
9 54 32 0.59 0.28 0.16

10 121 117 0.97 0.55 0.53
11 130 98 0.75 0.8 0.6
12 183 176 0.96 0.82 0.79
13 168 36 0.21 0.68 0.15
14 41 32 0.78 0.24 0.19
15 38 36 0.95 0.27 0.25
16 161 70 0.43 0.83 0.36
17 116 102 0.88 0.6 0.53
18 69 58 0.84 0.44 0.37
19 75 53 0.71 0.48 0.34
20 33 26 0.79 0.15 0.12
21 87 67 0.77 0.61 0.47
22 45 38 0.84 0.22 0.19
23 145 45 0.31 0.74 0.23
24 20 12 0.6 0.1 0.06
25 0 0 0 0 0
26 161 0 0 0.79 0
27 75 5 0.07 0.46 0.03
28 35 27 0.77 0.21 0.17
29 78 78 1 0.35 0.35
30 153 112 0.73 0.69 0.5
31 116 94 0.81 0.51 0.41
32 70 54 0.77 0.45 0.34
33 35 35 1 0.22 0.22
34 125 121 0.97 0.56 0.55
35 110 3 0.03 0.54 0.01

Continued on next page

137



7 Supplementary Information

Table 7.9.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

36 109 74 0.68 0.77 0.52
37 155 154 0.99 0.99 0.98
38 123 107 0.87 0.6 0.52
39 28 24 0.86 0.17 0.14
40 74 16 0.22 0.38 0.08
41 32 29 0.91 0.16 0.15
42 157 54 0.34 0.77 0.26
43 113 34 0.3 0.87 0.26
44 29 11 0.38 0.35 0.13
45 152 60 0.39 0.93 0.37
46 97 67 0.69 0.43 0.3
47 87 45 0.52 0.42 0.22
48 45 29 0.64 0.35 0.22
49 36 25 0.69 0.18 0.12
50 160 46 0.29 0.72 0.21
51 53 45 0.85 0.33 0.28
52 18 16 0.89 0.13 0.11
53 107 82 0.77 0.66 0.5
54 17 3 0.18 0.09 0.02
55 80 53 0.66 0.49 0.32
56 63 63 1 0.32 0.32
57 94 30 0.32 0.42 0.14
58 34 31 0.91 0.14 0.13
59 43 1 0.02 0.17 0
60 193 29 0.15 0.97 0.15
61 128 25 0.2 0.66 0.13
62 99 4 0.04 0.44 0.02
63 72 26 0.36 0.55 0.2
64 15 12 0.8 0.11 0.08
65 36 31 0.86 0.28 0.24
66 21 19 0.9 0.12 0.11
67 161 154 0.96 0.71 0.68
68 34 13 0.38 0.2 0.08
69 34 34 1 0.25 0.25
70 103 49 0.48 0.53 0.25
71 71 19 0.27 0.35 0.09
72 12 12 1 0.09 0.09
73 30 23 0.77 0.18 0.14
74 111 75 0.68 0.57 0.39
75 57 28 0.49 0.34 0.17
76 140 36 0.26 0.71 0.18
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Table 7.9.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

77 159 65 0.41 0.78 0.32
78 90 89 0.99 0.4 0.39
79 70 40 0.57 0.49 0.28
80 105 44 0.42 0.42 0.18
81 41 31 0.76 0.32 0.24
82 2 0 0 0.01 0
83 34 13 0.38 0.21 0.08
84 125 105 0.84 0.63 0.53
85 107 95 0.89 0.66 0.58
86 50 50 1 0.35 0.35
87 29 23 0.79 0.18 0.14
88 16 0 0 0.07 0
89 133 122 0.92 0.6 0.55
90 61 49 0.8 0.27 0.22
91 46 3 0.07 0.35 0.02
92 68 27 0.4 0.34 0.14
93 66 39 0.59 0.36 0.21
94 27 27 1 0.13 0.13
95 114 17 0.15 0.73 0.11
96 107 32 0.3 0.54 0.16
97 114 88 0.77 0.56 0.43
98 120 101 0.84 0.61 0.51
99 90 80 0.89 0.69 0.62

100 33 30 0.91 0.2 0.18
101 57 24 0.42 0.4 0.17
102 68 28 0.41 0.43 0.18
103 120 62 0.52 0.48 0.25
104 92 53 0.58 0.71 0.41
105 100 46 0.46 0.61 0.28
106 126 34 0.27 0.64 0.17
107 16 4 0.25 0.08 0.02
108 96 73 0.76 0.52 0.4
109 30 29 0.97 0.16 0.16
110 65 16 0.25 0.33 0.08
111 76 49 0.64 0.39 0.25
112 75 1 0.01 0.46 0.01
113 124 87 0.7 0.56 0.39
114 65 65 1 0.4 0.4
115 161 84 0.52 0.81 0.42
116 13 12 0.92 0.1 0.09
117 67 25 0.37 0.35 0.13
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Table 7.9.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

118 100 77 0.77 0.77 0.59
119 61 39 0.64 0.39 0.25
120 144 32 0.22 0.74 0.16
121 32 29 0.91 0.14 0.13
122 61 39 0.64 0.25 0.16
123 77 71 0.92 0.47 0.44
124 39 31 0.79 0.19 0.15
125 56 49 0.88 0.39 0.35
126 6 6 1 0.03 0.03
127 104 64 0.62 0.42 0.26
128 21 21 1 0.12 0.12
129 103 2 0.02 0.42 0.01
130 199 76 0.38 0.9 0.34
131 19 19 1 0.08 0.08
132 63 26 0.41 0.28 0.11
133 89 12 0.13 0.55 0.07
134 65 0 0 0.4 0
135 77 18 0.23 0.47 0.11
136 116 89 0.77 0.52 0.4
137 22 0 0 0.14 0
138 62 58 0.94 0.33 0.31
139 6 4 0.67 0.07 0.05
140 24 0 0 0.17 0
141 93 50 0.54 0.48 0.26
142 130 79 0.61 0.59 0.36
143 16 0 0 0.19 0
144 71 69 0.97 0.32 0.31
145 116 115 0.99 0.51 0.51
146 66 55 0.83 0.51 0.42
147 103 87 0.84 0.73 0.61
148 167 157 0.94 1.02 0.96
149 26 24 0.92 0.13 0.12
150 161 146 0.91 0.82 0.74
151 90 37 0.41 0.66 0.27
152 90 34 0.38 0.63 0.24
153 152 69 0.45 0.83 0.38
154 72 56 0.78 0.86 0.67
155 122 122 1 0.9 0.9
156 124 36 0.29 0.91 0.26
157 108 108 1 0.56 0.56
158 72 23 0.32 0.36 0.12
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Table 7.9.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

159 136 99 0.73 0.6 0.44
160 128 115 0.9 0.78 0.7
161 83 8 0.1 0.49 0.05
162 80 72 0.9 0.47 0.43
163 92 1 0.01 0.56 0.01
164 86 69 0.8 0.44 0.36
165 85 37 0.44 0.43 0.19
166 130 109 0.84 0.92 0.77
167 71 34 0.48 0.45 0.22
168 167 73 0.44 0.86 0.38
169 25 25 1 0.16 0.16
170 102 101 0.99 0.52 0.51
171 40 15 0.38 0.22 0.08
172 75 75 1 0.34 0.34
173 161 126 0.78 0.65 0.51
174 35 21 0.6 0.15 0.09
175 155 71 0.46 0.63 0.29
176 67 61 0.91 0.41 0.37
177 51 15 0.29 0.36 0.11
178 50 50 1 0.24 0.24
179 100 82 0.82 0.49 0.4
180 7 2 0.29 0.04 0.01
181 40 40 1 0.31 0.31
182 100 99 0.99 0.61 0.61
183 109 72 0.66 0.64 0.43
184 32 19 0.59 0.23 0.13
185 71 19 0.27 0.36 0.1
186 10 8 0.8 0.07 0.06
187 59 15 0.25 0.3 0.08
188 128 61 0.48 0.52 0.25
189 53 10 0.19 0.26 0.05
190 102 96 0.94 0.41 0.39
191 160 133 0.83 0.65 0.54
192 91 89 0.98 0.58 0.57
193 144 144 1 1.01 1.01
194 97 87 0.9 0.75 0.67
195 142 102 0.72 0.57 0.41
196 109 25 0.23 0.59 0.14
197 45 29 0.64 0.23 0.15
198 11 5 0.45 0.06 0.03
199 180 146 0.81 0.73 0.59
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Table 7.9.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

200 192 75 0.39 0.77 0.3
201 105 12 0.11 0.67 0.08
202 101 72 0.71 0.55 0.39
203 181 96 0.53 0.8 0.42
204 84 52 0.62 0.43 0.27
205 85 62 0.73 0.46 0.34
206 62 32 0.52 0.28 0.14
207 80 71 0.89 0.35 0.31
208 119 78 0.66 0.73 0.48
209 97 56 0.58 0.62 0.36
210 72 51 0.71 0.44 0.31
211 28 28 1 0.14 0.14
212 112 69 0.62 0.69 0.42
213 182 155 0.85 0.82 0.7
214 143 67 0.47 0.64 0.3
215 101 5 0.05 0.49 0.02
216 62 31 0.5 0.34 0.17
217 19 0 0 0.14 0
218 85 49 0.58 0.5 0.29
219 208 198 0.95 0.94 0.89
220 90 0 0 0.41 0
221 73 56 0.77 0.36 0.27
222 37 0 0 0.23 0
223 29 2 0.07 0.18 0.01
224 214 170 0.79 0.86 0.69
225 153 77 0.5 0.79 0.4
226 16 10 0.63 0.08 0.05
227 3 3 1 0.01 0.01
228 108 108 1 0.59 0.59
229 112 89 0.79 0.5 0.4
230 117 57 0.49 0.53 0.26
231 108 76 0.7 0.48 0.33
232 47 40 0.85 0.29 0.24
233 62 50 0.81 0.31 0.25
234 84 40 0.48 0.52 0.25
235 109 33 0.3 0.84 0.25
236 76 59 0.78 0.45 0.35
237 31 31 1 0.24 0.24
238 169 48 0.28 0.87 0.25
239 2 1 0.5 0.01 0.01
240 89 20 0.22 0.55 0.12
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Table 7.9.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

241 83 58 0.7 0.43 0.3
242 37 36 0.97 0.18 0.18
243 129 123 0.95 0.58 0.55
244 136 110 0.81 0.66 0.54
245 125 125 1 0.8 0.8
246 45 22 0.49 0.35 0.17
247 172 76 0.44 0.89 0.39
248 84 51 0.61 0.37 0.22
249 41 24 0.59 0.17 0.1
250 174 72 0.41 0.85 0.35
251 163 100 0.61 0.73 0.45
252 135 132 0.98 0.83 0.81
253 92 90 0.98 0.56 0.55
254 71 42 0.59 0.5 0.3
255 40 40 1 0.21 0.21
256 38 16 0.42 0.27 0.11
257 110 5 0.05 0.85 0.04
258 41 8 0.2 0.32 0.06
259 30 29 0.97 0.18 0.18
260 80 58 0.73 0.56 0.41
261 13 13 1 0.09 0.09
262 52 23 0.44 0.37 0.16
263 65 41 0.63 0.34 0.21
264 28 0 0 0.15 0
265 42 7 0.17 0.32 0.05
266 38 38 1 0.29 0.29
267 74 44 0.59 0.45 0.27
268 11 11 1 0.07 0.07
269 98 96 0.98 0.44 0.43
270 176 102 0.58 0.79 0.46
271 229 96 0.42 0.92 0.39
272 18 18 1 0.13 0.13
273 58 45 0.78 0.3 0.23
274 36 36 1 0.28 0.28
275 30 1 0.03 0.22 0.01
276 173 160 0.92 1.05 0.98
277 179 155 0.87 0.91 0.79
278 82 81 0.99 0.58 0.57
279 74 70 0.95 0.38 0.36
280 159 106 0.67 0.72 0.48
281 23 1 0.04 0.09 0

Continued on next page

143



7 Supplementary Information

Table 7.9.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

282 25 7 0.28 0.1 0.03
283 70 42 0.6 0.49 0.3
284 184 180 0.98 0.9 0.88
285 210 199 0.95 0.85 0.8
286 114 69 0.61 0.67 0.41
287 60 26 0.43 0.42 0.18
288 171 70 0.41 0.69 0.28
289 56 31 0.55 0.39 0.22
290 70 69 0.99 0.36 0.36
291 158 152 0.96 0.77 0.74
292 78 75 0.96 0.38 0.37
293 112 82 0.73 0.71 0.52
294 124 42 0.34 0.76 0.26
295 64 56 0.88 0.28 0.25
296 97 73 0.75 0.68 0.51
297 168 167 0.99 1.02 1.02
298 77 56 0.73 0.4 0.29
299 141 122 0.87 0.64 0.55
300 190 100 0.53 0.77 0.4
301 99 55 0.56 0.63 0.35
302 26 26 1 0.15 0.15
303 121 58 0.48 0.59 0.28
304 180 109 0.61 0.81 0.49
305 121 94 0.78 0.74 0.57
306 76 19 0.25 0.47 0.12
307 92 83 0.9 0.54 0.49
308 110 93 0.85 0.56 0.47
309 82 65 0.79 0.5 0.4
310 147 0 0 0.72 0
311 137 64 0.47 0.69 0.32
312 81 81 1 0.57 0.57
313 192 138 0.72 0.85 0.61

7.10 ASA features for BID-18
This table includes the solvent accessible surface area (ASA) features for the residues
in BID-18 dataset. SBr is relative surface burial, RASA is relative ASA.
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Table 7.10.1: ASA features for BID-18 dataset.
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

1 52 24 0.46 0.26 0.12
2 50 49 0.98 0.25 0.25
3 43 42 0.98 0.22 0.21
4 163 96 0.59 0.8 0.47
5 190 188 0.99 0.84 0.83
6 146 107 0.73 0.71 0.52
7 29 29 1 0.35 0.35
8 125 90 0.72 0.5 0.36
9 109 100 0.92 0.64 0.59

10 40 6 0.15 0.48 0.07
11 172 144 0.84 0.69 0.58
12 148 138 0.93 0.9 0.84
13 66 66 1 0.79 0.79
14 37 27 0.73 0.22 0.16
15 24 24 1 0.17 0.17
16 27 12 0.44 0.14 0.06
17 58 57 0.98 0.35 0.35
18 80 30 0.38 0.62 0.23
19 119 9 0.08 0.61 0.05
20 145 64 0.44 0.79 0.35
21 38 21 0.55 0.2 0.11
22 84 50 0.6 0.65 0.38
23 30 22 0.73 0.18 0.13
24 53 42 0.79 0.32 0.26
25 80 30 0.38 0.75 0.28
26 113 96 0.85 0.69 0.59
27 43 13 0.3 0.26 0.08
28 221 146 0.66 0.89 0.59
29 32 21 0.66 0.23 0.15
30 98 80 0.82 0.6 0.49
31 136 90 0.66 0.6 0.4
32 100 100 1 0.45 0.45
33 126 11 0.09 0.64 0.06
34 118 91 0.77 0.6 0.46
35 70 18 0.26 0.49 0.13
36 108 25 0.23 0.64 0.15
37 24 13 0.54 0.12 0.07
38 97 25 0.26 0.75 0.19
39 73 54 0.74 0.54 0.4
40 132 123 0.93 0.67 0.62
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Table 7.10.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

41 84 10 0.12 0.43 0.05
42 36 20 0.56 0.22 0.12
43 18 17 0.94 0.07 0.07
44 96 49 0.51 0.68 0.35
45 134 34 0.25 0.54 0.14
46 104 95 0.91 0.47 0.43
47 5 3 0.6 0.03 0.02
48 87 45 0.52 0.42 0.22
49 73 69 0.95 0.43 0.41
50 110 54 0.49 0.59 0.29
51 152 60 0.39 0.74 0.29
52 33 25 0.76 0.16 0.12
53 141 90 0.64 0.72 0.46
54 95 95 1 0.51 0.51
55 62 36 0.58 0.44 0.25
56 14 12 0.86 0.07 0.06
57 21 16 0.76 0.25 0.19
58 139 40 0.29 1.02e+14 0.29
59 165 74 0.45 1.01e+14 0.45
60 99 78 0.79 0.7 0.55
61 150 132 0.88 0.66 0.58
62 78 65 0.83 0.55 0.46
63 88 78 0.89 0.39 0.34
64 122 112 0.92 0.62 0.57
65 89 89 1 0.65 0.65
66 91 3 0.03 0.44 0.01
67 73 42 0.58 0.51 0.3
68 13 11 0.85 0.08 0.07
69 87 75 0.86 0.42 0.37
70 40 33 0.83 0.24 0.2
71 72 19 0.26 0.37 0.1
72 31 29 0.94 0.16 0.15
73 130 21 0.16 0.63 0.1
74 116 43 0.37 0.89 0.33
75 148 62 0.42 0.91 0.38
76 39 19 0.49 0.3 0.15
77 46 29 0.63 0.22 0.14
78 135 96 0.71 0.69 0.49
79 59 51 0.86 0.36 0.31
80 85 82 0.96 0.38 0.37
81 79 7 0.09 0.41 0.04
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Table 7.10.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

82 51 44 0.86 0.31 0.27
83 138 69 0.5 0.56 0.28
84 72 32 0.44 0.37 0.16
85 81 59 0.73 0.57 0.42
86 66 37 0.56 0.46 0.26
87 202 128 0.63 0.81 0.52
88 125 82 0.66 0.64 0.42
89 66 66 1 0.36 0.36
90 156 92 0.59 0.85 0.5
91 74 60 0.81 0.57 0.46
92 12 12 1 0.14 0.14
93 92 70 0.76 0.56 0.43
94 82 46 0.56 0.5 0.28
95 213 138 0.65 0.86 0.56
96 162 125 0.77 0.82 0.63
97 106 100 0.94 0.63 0.59
98 220 206 0.94 1.34e+14 1.25e+14
99 125 78 0.62 0.5 0.31

100 83 59 0.71 0.51 0.36
101 79 77 0.97 0.43 0.42
102 101 98 0.97 0.45 0.44
103 120 102 0.85 0.54 0.46
104 137 35 0.26 0.71 0.18
105 111 93 0.84 0.45 0.38
106 109 13 0.12 0.69 0.08
107 156 112 0.72 0.63 0.45
108 139 120 0.86 0.76 0.65
109 180 39 0.22 0.88 0.19
110 38 33 0.87 0.2 0.17
111 130 126 0.97 0.66 0.64
112 83 30 0.36 0.4 0.15
113 23 16 0.7 0.11 0.08
114 96 52 0.54 0.42 0.23
115 87 76 0.87 0.35 0.31
116 13 10 0.77 0.06 0.05
117 95 23 0.24 0.38 0.09
118 46 34 0.74 0.25 0.18
119 4 4 1 0.03 0.03
120 148 137 0.93 0.67 0.62
121 99 87 0.88 0.73 0.64
122 123 120 0.98 0.75 0.74
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Table 7.10.1 – continued from previous page
S.No. ASA(monomer) ∆ ASA SBr RASA ∆ RASA

123 80 74 0.93 0.32 0.3
124 106 41 0.39 0.43 0.17
125 128 79 0.62 0.65 0.4
126 66 41 0.62 0.3 0.18

7.11 Solvent Exposure features for HB-34
This table includes the seven solvent exposure based features calculated for the
residues in HB-34 dataset. Here, HSEBD is the number of Cβ atoms in the lower
half sphere, HSEAU is number of Cα atoms in the upper sphere, HSEAD is the num-
ber of Cα atoms in the lower sphere, HSEBU is the number of Cβ atoms in the upper
sphere, CN is the coordination number, RD is the residue depth and RDa is the Cα

atom depth.

Table 7.11.1: Solvent exposure features for HB-34.
S.No. HSEBD HSEAU HSEAD HSEBU CN RD RDa

1 22 21 24 23 45 2.9 3.74
2 20 23 23 26 46 2.94 4.56
3 23 22 27 26 49 3.52 4.28
4 14 10 29 25 39 3.02 3.59
5 22 25 23 26 48 6.18 6.45
6 23 24 25 26 49 3.78 5.46
7 24 23 24 23 47 2.61 3.49
8 13 16 24 27 40 2.5 2.73
9 14 17 23 26 40 2.69 2.91

10 21 21 24 24 45 3.46 4.35
11 23 21 24 22 45 2.06 2.72
12 23 24 28 29 52 2.48 2
13 10 5 27 22 32 2.1 2.31
14 19 19 20 20 39 2.33 2
15 13 12 36 35 48 5.66 5.41
16 12 14 23 25 37 1.76 2
17 31 27 29 25 56 2.66 3.22
18 29 28 28 27 56 2.17 2
19 20 17 17 14 34 1.82 2
20 26 26 29 29 55 3.24 4.83
21 27 26 26 25 52 2.23 2.82
22 23 24 18 19 42 3.83 4.41
23 17 24 18 25 42 1.93 2.37
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24 29 27 22 20 49 2.31 2.37
25 31 29 25 23 54 5.21 5.44
26 7 0 32 25 32 2.15 2
27 23 27 9 13 36 2.27 2
28 24 22 26 24 48 2.76 2.86
29 25 22 31 28 53 6.46 6
30 20 17 23 20 40 2.62 3.18
31 25 24 24 23 48 6.7 6.77
32 20 21 26 27 47 2.93 2.58
33 26 24 31 29 55 5.88 5.85
34 25 23 19 17 42 6.71 6.43
35 15 11 27 23 38 2.78 2.74
36 18 21 30 33 51 2.95 3.38
37 26 28 27 29 55 5.71 6.08
38 23 24 30 31 54 5.08 5.11
39 16 16 34 34 50 5.19 5.84
40 7 13 28 34 41 2.41 2.71
41 24 22 29 27 51 6.65 7.01
42 7 11 20 24 31 1.99 2.47
43 4 8 17 21 25 1.85 2.31
44 16 11 18 13 29 2.4 2
45 17 19 16 18 35 1.77 2.36
46 24 21 20 17 41 4.28 2.66
47 16 15 26 25 41 2.45 2
48 22 24 18 20 42 4.27 4.85
49 24 20 26 22 46 3.02 2.93
50 7 12 18 23 30 1.96 2.69
51 19 22 27 30 49 5.66 5.28
52 28 28 23 23 51 5.06 5.22
53 21 20 26 25 46 1.99 2
54 26 16 29 19 45 3.03 2.99
55 10 8 28 26 36 3.36 3.94
56 20 14 35 29 49 5.54 6.42
57 11 11 18 18 29 2.57 2.86
58 27 30 24 27 54 7.27 5.84
59 16 18 23 25 41 2.95 4.27
60 1 12 13 24 25 1.79 2
61 5 8 17 20 25 1.91 2.47
62 13 15 10 12 25 1.98 2.33
63 7 15 10 18 25 1.89 2.48
64 24 27 19 22 46 4.63 4.1
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65 15 16 26 27 42 3.83 3.87
66 29 31 18 20 49 4.19 3.78
67 22 22 25 25 47 3.11 2.7
68 22 21 26 25 47 2.99 2.69
69 24 21 24 21 45 5.24 5.88
70 14 19 19 24 38 1.86 2.31
71 23 18 24 19 42 2.6 2.55
72 21 21 28 28 49 4.83 5.21
73 26 29 21 24 50 5.84 6.42
74 17 13 32 28 45 2.08 2.62
75 21 24 18 21 42 2.5 2.81
76 7 10 22 25 32 1.79 2
77 11 9 26 24 35 2.07 2.11
78 23 23 25 25 48 5.88 5.82
79 20 22 27 29 49 3.37 3.74
80 26 19 31 24 50 2.39 2.2
81 30 28 21 19 49 2.69 2.34
82 29 26 24 21 50 7.32 6.53
83 16 18 17 19 35 2.84 2.97
84 25 21 13 9 34 3.45 2
85 17 16 23 22 39 3.96 3.16
86 25 27 26 28 53 7.49 8.42
87 24 25 19 20 44 5.12 4.69
88 33 33 15 15 48 4.88 4.13
89 29 23 24 18 47 5.05 3.91
90 32 27 12 7 39 4 2.79
91 22 26 15 19 41 2.25 2.67
92 14 17 30 33 47 2.37 2.6
93 24 25 31 32 56 4.33 6.15
94 21 22 29 30 51 4.32 5.27
95 12 6 19 13 25 1.84 2
96 12 16 19 23 35 2.46 2.61
97 27 28 21 22 49 6.04 5.98
98 32 28 25 21 53 4.97 5.33
99 16 22 23 29 45 4.34 5.11

100 24 22 30 28 52 3.17 3.47
101 33 33 26 26 59 5.72 4.96
102 12 19 15 22 34 1.92 2.58
103 20 26 21 27 47 2.23 2.71
104 11 14 22 25 36 2.42 2
105 13 11 24 22 35 1.97 2
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106 14 5 23 14 28 2.19 2
107 17 13 28 24 41 2.32 2.26
108 14 18 24 28 42 2.42 3.19
109 25 27 22 24 49 5.68 6.36
110 13 8 31 26 39 2.53 3.02
111 18 17 27 26 44 2.98 3.96
112 15 9 31 25 40 1.86 2
113 11 15 19 23 34 2.35 2.8
114 23 22 18 17 40 5.12 4.91
115 15 16 20 21 36 1.95 2.44
116 22 27 14 19 41 3.44 2.94
117 23 27 21 25 48 2.03 2.36
118 18 21 21 24 42 2.37 2
119 12 18 20 26 38 3.36 4.53
120 7 3 24 20 27 1.83 2
121 25 24 29 28 53 5.81 6.3
122 25 22 29 26 51 5.39 7.95
123 28 28 28 28 56 8.25 8.62
124 31 23 36 28 59 4.86 6.11
125 27 27 33 33 60 7.1 6.59
126 29 24 30 25 54 6.44 7.36
127 23 27 24 28 51 3.17 4.21
128 25 19 30 24 49 3.16 3.15
129 17 10 24 17 34 1.83 2
130 6 4 22 20 26 1.82 2
131 24 28 26 30 54 6.67 6.33
132 22 20 31 29 51 6 6.62
133 14 16 24 26 40 5.12 5.96
134 13 19 14 20 33 2.58 2.99
135 6 3 23 20 26 1.86 2
136 15 10 20 15 30 2.07 2
137 24 15 26 17 41 2.17 2
138 29 28 20 19 48 3.32 5.12
139 5 10 17 22 27 1.81 2
140 27 24 25 22 49 5.25 5.25
141 13 8 24 19 32 2.31 2
142 15 9 31 25 40 2.18 2
143 10 14 28 32 42 1.85 2
144 30 29 28 27 57 4.65 5.8
145 24 26 25 27 51 4.32 5.69
146 19 17 30 28 47 2.31 2.87
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147 23 27 24 28 51 2.83 3.46
148 33 33 24 24 57 4.99 4.95
149 27 24 27 24 51 5.3 4.89
150 23 27 20 24 47 3.96 2.68
151 7 8 17 18 25 1.98 2
152 16 16 15 15 31 1.84 2.16
153 17 17 25 25 42 1.96 2.75
154 30 31 22 23 53 1.61 2
155 34 30 23 19 53 2.95 2.72
156 10 8 16 14 24 1.89 2
157 22 22 25 25 47 2.52 2
158 9 13 12 16 25 2.06 2.62
159 3 0 16 13 16 1.67 2
160 21 14 21 14 35 2.43 2
161 15 7 21 13 28 1.96 2
162 23 22 25 24 47 3.24 3.19
163 10 5 27 22 32 2.34 2.18
164 19 17 24 22 41 3.62 5.41
165 19 19 12 12 31 1.9 2.23
166 12 22 20 30 42 4.26 4.32
167 13 12 24 23 36 2.3 3.09
168 7 10 31 34 41 2.18 2.88
169 24 27 23 26 50 5.25 5.55
170 32 30 30 28 60 7.36 7.5
171 20 16 28 24 44 2.63 2.72
172 28 30 15 17 45 3.67 2
173 19 19 18 18 37 2.01 2
174 25 25 22 22 47 3.56 5.17
175 10 9 22 21 31 2.01 2
176 25 21 22 18 43 2.21 2
177 10 15 24 29 39 2.33 2.72
178 27 27 27 27 54 3.98 3.79
179 26 23 27 24 50 2.75 2.7
180 23 23 22 22 45 3.44 4.09
181 30 27 22 19 49 2.74 2
182 21 19 18 16 37 3.09 3.28
183 19 19 19 19 38 2.72 2.64
184 20 22 20 22 42 3.16 3.51
185 16 14 27 25 41 1.97 2
186 25 23 19 17 42 5.48 5.24
187 19 12 26 19 38 2.74 3.72
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188 14 8 29 23 37 3.01 3.81
189 20 17 28 25 45 3.53 4.26
190 28 21 27 20 48 6.11 6.25
191 20 15 32 27 47 4.82 7.32
192 22 20 30 28 50 3.24 3.91
193 29 29 27 27 56 30.73 30.7
194 24 35 19 30 54 27.56 28.1
195 21 19 16 14 35 2.14 2
196 17 10 21 14 31 2.23 2
197 23 21 23 21 44 4.61 5.28
198 29 28 24 23 52 5.98 5.5
199 21 18 21 18 39 2.03 2
200 19 14 22 17 36 2.01 2.29
201 15 14 17 16 31 1.89 2
202 17 17 26 26 43 2.16 2
203 10 12 20 22 32 2 2.8
204 18 17 17 16 34 1.79 2
205 22 18 32 28 50 3.66 3.83
206 25 20 27 22 47 3.49 4.44
207 18 21 22 25 43 5.67 5.68
208 19 16 22 19 38 2.36 2
209 14 11 25 22 36 2.29 2
210 19 12 27 20 39 2.43 2.29
211 24 27 22 25 49 8.63 7.91
212 19 21 28 30 49 6.37 6.88
213 25 22 28 25 50 8.72 8.77
214 22 22 25 25 47 4.71 5.11
215 5 12 22 29 34 2.27 2.79
216 22 20 33 31 53 7.09 7
217 11 13 25 27 38 3.75 4.62
218 25 24 31 30 55 6.28 5.56
219 29 29 23 23 52 5.72 6.6
220 22 20 21 19 41 5.88 4.81
221 22 25 17 20 42 3.97 3.57
222 21 14 21 14 35 3.83 3.73
223 19 24 14 19 38 3.53 4.28
224 20 13 19 12 32 3.05 2.54
225 15 15 11 11 26 2.38 2
226 23 27 24 28 51 8.16 8.94
227 28 28 22 22 50 8.51 8.92
228 19 25 17 23 42 5.41 5.2
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229 17 23 24 30 47 4.21 6.3
230 11 15 27 31 42 2.56 3.37
231 26 23 21 18 44 2.89 3.76
232 17 17 30 30 47 3.54 4.33
233 23 22 24 23 46 4.91 6.97
234 4 14 21 31 35 2.86 3.2
235 7 7 27 27 34 2.27 2
236 21 21 22 22 43 4.79 4.76
237 27 25 21 19 46 6.33 6.64
238 10 8 21 19 29 1.83 2
239 16 15 37 36 52 4.84 4.83
240 11 14 24 27 38 2.1 2.69
241 14 25 20 31 45 2.55 2.54
242 20 15 27 22 42 3.53 2
243 21 22 18 19 40 2.74 2.65
244 22 19 28 25 47 3.09 3.8
245 28 23 27 22 50 4.42 4.3
246 19 20 25 26 45 2.4 2
247 12 15 20 23 35 1.77 2.31
248 19 15 31 27 46 3.46 5.73
249 14 12 34 32 46 3.7 5.24
250 9 12 24 27 36 1.91 2.33
251 17 12 18 13 30 2.44 2
252 24 21 24 21 45 7.15 7.48
253 32 27 28 23 55 7.83 7.32
254 25 23 25 23 48 2.97 2.41
255 21 23 19 21 42 5.11 5.09
256 22 16 11 5 27 2.29 2
257 0 0 20 20 20 1.9 2
258 4 3 23 22 26 2.34 2
259 28 25 16 13 41 4.84 3.88
260 18 22 23 27 45 2.5 3.01
261 33 31 21 19 52 5.65 5.68
262 13 13 26 26 39 2.84 3.45
263 16 17 21 22 38 2.26 2.67
264 28 25 11 8 36 2.44 2.74
265 13 14 16 17 30 2.24 2
266 25 29 19 23 48 5.74 5.77
267 13 16 26 29 42 3.64 4.71
268 30 35 21 26 56 6.88 6.74
269 28 28 22 22 50 5.35 3.77
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270 16 13 23 20 36 2.37 2
271 10 16 16 22 32 2.85 4.69
272 30 29 22 21 51 5.66 5.48
273 16 16 20 20 36 2.58 2.58
274 26 29 20 23 49 5.7 5.78
275 23 23 13 13 36 2.22 2.76
276 27 28 20 21 48 7.12 6.91
277 26 25 20 19 45 5.04 4.5
278 30 31 33 34 64 6.77 7.42
279 25 29 33 37 62 6.38 7.83
280 24 25 21 22 46 4.78 7.24
281 17 17 18 18 35 4.82 5.42
282 24 22 27 25 49 6.44 6.97
283 17 21 18 22 39 2.87 2.5
284 39 33 31 25 64 6.94 6.62
285 32 26 33 27 59 3.12 3.95
286 22 22 29 29 51 2.4 2.7
287 24 25 24 25 49 2.38 3.17
288 15 8 25 18 33 2.23 2
289 14 13 27 26 40 2.23 2.54
290 21 28 24 31 52 5.16 5.71
291 23 24 27 28 51 2.37 2.64
292 26 32 21 27 53 4.13 4.86
293 14 14 16 16 30 1.92 2
294 8 12 22 26 34 1.87 2.72
295 27 30 13 16 43 3.31 2.33
296 29 27 31 29 58 3.27 2.88
297 39 34 28 23 62 6.4 6.6
298 23 26 32 35 58 3.97 5.15
299 30 28 30 28 58 3.48 4.77
300 17 12 32 27 44 2.29 2
301 8 10 25 27 35 2.1 2.65
302 23 20 22 19 42 4.96 5.07
303 14 18 19 23 37 2.16 2
304 13 14 14 15 28 2.54 2.67
305 28 23 13 8 36 3.62 3.17
306 5 3 28 26 31 2.26 2
307 20 29 10 19 39 4.31 4.5
308 24 20 12 8 32 2.45 2.72
309 16 18 14 16 32 2.77 3.09
310 12 5 12 5 17 1.89 2
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311 18 15 7 4 22 1.92 2
312 24 23 13 12 36 4.63 5.15
313 18 20 12 14 32 2.21 2

7.12 Solvent Exposure features for BID-18
This table includes the seven solvent exposure based features calculated for the
residues in BID-18 dataset. Here, HSEBD is the number of Cβ atoms in the lower half
sphere, HSEAU is number of Cα atoms in the upper sphere, HSEAD is the number
of Cα atoms in the lower sphere, HSEBU is the number of Cβ atoms in the upper
sphere, CN is the coordination number, RD is the residue depth and RDa is the Cα

atom depth.

Table 7.12.1: Solvent exposure features for BID-18.
S.No. HSEBD HSEAU HSEAD HSEBU CN RD RDa

1 16 18 21 23 39 3.33 4.53
2 30 28 20 18 48 5.47 3.97
3 29 32 18 21 50 4.37 3.13
4 20 19 22 21 41 2.38 2
5 22 30 19 27 49 4.99 5.43
6 20 17 20 17 37 2.88 2.79
7 19 23 26 30 49 5.63 6
8 26 20 29 23 49 2.51 2
9 26 26 25 25 51 2.47 2.85

10 20 15 24 19 39 2.31 2
11 23 20 20 17 40 2.05 2
12 30 24 16 10 40 2.45 2
13 15 21 16 22 37 3.21 3.18
14 12 19 11 18 30 2.09 2.32
15 15 11 23 19 34 1.86 2.28
16 32 32 23 23 55 4.51 4.67
17 17 20 27 30 47 4.95 4.63
18 30 27 27 24 54 4.99 4.96
19 18 24 21 27 45 2.62 3.12
20 12 12 30 30 42 2.29 2.81
21 8 12 12 16 24 1.78 2.27
22 5 6 23 24 29 1.71 2
23 24 21 11 8 32 1.92 2
24 30 26 31 27 57 3.96 2

Continued on next page

156



7.12 Solvent Exposure features for BID-18

Table 7.12.1 – continued from previous page
S.No. HSEBD HSEAU HSEAD HSEBU CN RD RDa

25 13 0 0 18 31 1.83 2
26 26 19 17 10 36 2.28 2
27 20 17 9 6 26 1.86 2
28 11 10 17 16 27 1.82 2
29 19 23 11 15 34 2.14 2.33
30 20 14 16 10 30 2.35 2
31 17 11 23 17 34 2.53 2
32 30 31 11 12 42 4.88 3.9
33 10 1 27 18 28 1.79 2
34 25 18 13 6 31 2.39 2
35 12 15 9 12 24 1.91 2.25
36 6 10 27 31 37 1.92 2
37 26 28 25 27 53 3.81 4.95
38 16 20 18 22 38 2.01 2.54
39 11 8 26 23 34 1.83 2.29
40 12 8 26 22 34 2.78 2.92
41 27 27 17 17 44 2.82 3.59
42 11 3 13 5 16 1.86 2
43 12 12 6 6 18 1.95 2
44 25 24 17 16 41 3.66 3.51
45 24 20 30 26 50 3.24 3.03
46 34 36 23 25 59 5.24 5.39
47 29 27 25 23 52 3.11 2.39
48 12 20 22 30 42 2.22 2
49 10 9 30 29 39 2.82 2.63
50 11 18 19 26 37 1.94 2
51 21 17 17 13 34 2.37 2
52 31 30 23 22 53 6.08 6.75
53 16 14 24 22 38 2.17 2
54 21 16 23 18 39 4.6 4.94
55 14 21 19 26 40 2.15 2.7
56 30 32 11 13 43 3.08 2.09
57 11 11 14 14 25 2.1 2
58 4 9 16 21 25 1.96 2
59 7 16 15 24 31 2.25 2.42
60 14 19 12 17 31 1.91 2.53
61 22 22 15 15 37 2.52 2.64
62 26 23 12 9 35 3.17 2.95
63 16 16 17 17 33 2.32 2
64 30 30 28 28 58 3.16 2.34
65 36 33 30 27 63 4.66 4.73
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66 19 14 28 23 42 2.16 2
67 20 22 29 31 51 2.79 3.06
68 28 30 29 31 59 6.17 6.27
69 22 24 30 32 54 5.53 5.74
70 19 17 34 32 51 4.52 4.82
71 7 11 28 32 39 2.64 3.02
72 21 22 28 29 50 4.52 5.64
73 4 7 22 25 29 1.91 2
74 5 9 16 20 25 1.96 2.49
75 17 19 18 20 37 1.87 2.4
76 22 23 20 21 43 3.86 4.55
77 27 23 26 22 49 3.03 2.74
78 16 16 25 25 41 2.43 2.32
79 18 21 28 31 49 6.49 6.99
80 19 21 15 17 36 3.28 3.67
81 12 9 24 21 33 2.5 2.77
82 35 27 28 20 55 5.21 5.56
83 13 12 17 16 29 2.16 2.71
84 18 19 12 13 31 2.36 2.52
85 21 20 23 22 43 2.34 2
86 16 21 15 20 36 1.87 2.24
87 9 16 22 29 38 1.98 2.23
88 26 22 29 25 51 2.22 2
89 28 28 25 25 53 5.6 5.11
90 15 0 0 17 32 1.97 2.44
91 18 24 14 20 38 2.19 2.37
92 24 22 25 23 47 5.61 5.24
93 16 16 9 9 25 2.04 2.56
94 8 20 11 23 31 2.33 2.7
95 18 21 23 26 44 2.52 2.98
96 22 27 19 24 46 3.31 4.71
97 19 21 26 28 47 2.6 3.18
98 30 0 0 18 48 2.27 2
99 22 22 28 28 50 2.55 2.98

100 19 13 28 22 41 3.42 4.22
101 20 20 31 31 51 6.69 6.26
102 23 22 36 35 58 4.32 5.31
103 26 26 35 35 61 6.96 8.48
104 21 15 14 8 29 1.78 2
105 23 23 29 29 52 5.09 7.09
106 7 8 19 20 27 1.86 2
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107 15 19 23 27 42 3.74 5.47
108 13 20 19 26 39 3.04 3.42
109 11 7 27 23 34 2.1 2
110 21 20 26 25 46 3.62 4.29
111 20 22 22 24 44 3.55 3.84
112 20 20 29 29 49 152.78 150.77
113 17 25 16 24 41 146.64 145.12
114 23 17 28 22 45 154.71 152.41
115 21 21 29 29 50 153.52 150.83
116 21 25 21 25 46 144.65 143.68
117 24 17 34 27 51 155.84 154.52
118 29 19 33 23 52 151.34 151.12
119 26 27 27 28 54 5.93 6.27
120 17 22 18 23 40 2.14 2
121 23 24 23 24 47 2.77 3.01
122 25 39 16 30 55 2.73 2.41
123 28 25 21 18 46 4.37 3.16
124 15 18 27 30 45 2.4 3.02
125 3 2 8 7 10 2.16 2
126 20 21 27 28 48 3.38 4.63

7.13 FASTA Sequence information of residues in
HB-34

FASTA format [LP85] is a text-based format for representing either nucleotide se-
quences or peptide sequences, where base pairs or amino acids are represented using
single-letter codes. A sequence in FASTA format begins with a single-line description
that is followed by lines of sequence data. The description line is distinguished from
the sequence data by a greater-than (">") symbol as the first symbol in the line.

>1DFJ|Chain I|RIBONUCLEASE INHIBITOR|Sus scrofa(9823)
XMNLDIHCEQLSDARWTELLPLLQQYEVVRLDDCGLTEEHCKDIGSALRANP
SLTELCLRTNELGDAGVHLVLQGLQSPTCKIQKLSLQNCSLTEAGCGVLPSTL
RSLPTLRELHLSDNPLGDAGLRLLCEGLLDPQCHLEKLQLEYCRLTAASCEPL
ASVLRATRALKELTVSNNDIGEAGARVLGQGLADSACQLETLRLENCGLTPA
NCKDLCGIVASQASLRELDLGSNGLGDAGIAELCPGLLSPASRLKTLWLWEC
DITASGCRDLCRVLQAKETLKELSLAGNKLGDEGARLLCESLLQPGCQLESL
WVKSCSLTAACCQHVSLMLTQNKHLLELQLSSNKLGDSGIQELCQALSQPGT
TLRVLCLGDCEVTNSGCSSLASLLLANRSLRELDLSNNCVGDPGVLQLLGSLE
QPGCALEQLVLYDTYWTEEVEDRLQALEGSKPGLRVIS
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>2PCC|Chains A,C|CYTOCHROME C PEROXIDASE|Saccharomyces
cerevisiae(4932)
MITTPLVHVASVEKGRSYEDFQKVYNAIALKLREDDEYDNYIGYGPVLVRLA
WHISGTWDKHDNTGGSYGGTYRFKKEFNDPSNAGLQNGFKFLEPIHKEFPW
ISSGDLFSLGGVTAVQEMQGPKIPWRCGRVDTPEDTTPDNGRLPDADKDAG
YVRTFFQRLNMNDREVVALMGAHALGKTHLKNSGYEGPWGAANNVFTNEF
YLNLLNEDWKLEKNDANNEQWDSKSGYMMLPTDYSLIQDPKYLSIVKEYAN
DQDKFFKDFSKAFEKLLENGITFPKDAPSPFIFKTLEEQGL

>1JTG|Chains A,C|BETA-LACTAMASE TEM|Escherichia coli(562)
HPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLC
GAVLSRIDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITM
SDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTT
MPVAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIA
DKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIK
HW

>1JCK|Chains B,D|STAPHYLOCOCCAL ENTEROTOXIN C3|
>Staphylococcus aureus(1280)
ESQPDPMPDDLHKSSEFTGTMGNMKYLYDDHYVSATKVKSVDKFLAHDLIY
NINDKKLNNYDKVKTELLNEDLANKYKDEVVDVYGSNYYVNCYFSSKDNVG
KVTSGKTCMYGGITKHEGNHFDNGNLQNVLIRVYENKRNTISFEVQTDKKS
VTAQELDIKARNFLINKKNLYEFNSSPYETGYIKFIESNGNTFWYDMMPAPG
DKFDQSKYLMIYKDNKMVDSKSVKIEVHLTTKNG

>1JCK|Chains A,C|14.3.D T CELL ANTIGEN RECEPTOR|
>Mus musculus(10090)
AVTQSPRNKVAVTGGKVTLSCQQTNNHNNMYWYRQDTGHGLRLIHYSYGA
GSTEKGDIPDGYKASRPSQEQFSLILELATPSQTSVYFCASGGGRGSYAEQFF
GPGTRLTVLEDLRQVTPPKVSLFEPSKAEIANKQKATLVCLARGFFPDHVEL
SWWVNGKEVHSGVSTDPQAYKESNYSYCLSSRLRVSATFWHNPRNHFRCQV
QFHGLSEEDKWPEGSPKPVTQNISAEAWGRAD

>1DAN|Chain H|BLOOD COAGULATION FACTOR VIIA heavy chain|Homo
sapiens(9606)
IVGGKVCPKGECPWQVLLLVNGAQLCGGTLINTIWVVSAAHCFDKIKNWRN
LIAVLGEHDLSEHDGDEQSRRVAQVIIPSTYVPGTTNHDIALLRLHQPVVLTD
HVVPLCLPERTFSERTLAFVRFSLVSGWGQLLDRGATALELMVLNVPRLMT
QDCLQQSRKVGDSPNITEYMFCAGYSDGSKDSCKGDSGGPHATHYRGTWYL
TGIVSWGQGCATVGHFGVYTRVSQYIEWLQKLMRSEPRPGVLLRAPFP

>1EAW|Chains A,C|SUPPRESSOR OF TUMORIGENICITY 14|HOMO
SAPIENS(9606)
VVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYIDDRGFR
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YSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELE
KPAEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRV
INQTTCENLLPQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAG
VVSWGDGCAQRNKPGVYTRLPLFRDWIKENTGV

>1C08|Chain B|ANTI-HEN EGG WHITE LYSOZYME ANTIBODY
(HYHEL-10)|Mus musculus(10090)
DVQLQESGPSLVKPSQTLSLTCSVTGDSITSDYWSWIRKFPGNRLEYMGYVS
YSGSTYYNPSLKSRISITRDTSKNQYYLDLNSVTTEDTATYYCANWDGDYWG
QGTLVTVSAA

>1C08|Chain A|ANTI-HEN EGG WHITE LYSOZYME ANTIBODY
(HYHEL-10)|Mus musculus(10090)
DIVLTQSPATLSVTPGNSVSLSCRASQSIGNNLHWYQQKSHESPRLLIKYASQSI
SGIPSRFSGSGSGTDFTLSINSVETEDFGMYFCQQSNSWPYTFGGGTKLEIK

>1DAN|Chain T|SOLUBLE TISSUE FACTOR|Homo sapiens (9606)
NTVAAYNLTWKSTNFKTILEWEPKPVNQVYTVQISTKSGDWKSKCFYTTDT
ECDLTDEIVKDVKQTYLARVFSYPAGNVE

>1A22|Chain B|GROWTH HORMONE RECEPTOR|Homo sapiens (9606)
FSGSEATAAILSRAPWSLQSVNPGLKTNSSKEPKFTKCRSPERETFSCHWTDE
VHHGTKNLGPIQLFYTRRNTQEWTQEWKECPDYVSAGENSCYFNSSFTSIWI
PYCIKLTSNGGTVDEKCFSVDEIVQPDPPIALNWTLLNVSLTGIHADIQVRWE
APRNADIQKGWMVLEYELQYKEVNETKWKMMDPILTTSVPVYSLKVDKEY
EVRVRSKQRNSGNYGEFSEVLYVTLPQMSQ

>1IAR|Chain B|PROTEIN (INTERLEUKIN-4 RECEPTOR ALPHA
CHAIN)|Homo sapiens(9606)
FKVLQEPTCVSDYMSISTCEWKMNGPTNCSTELRLLYQLVFLLSEAHTCIPEN
NGGAGCVCHLLMDDVVSADNYTLDLWAGQQLLWKGSFKPSEHVKPRAPGN
LTVHTNVSDTLLLTWSNPYPPDNYLYNHLTYAVNIWSENDPADFRIYNVTYL
EPSLRIAASTLKSGISYRARVRAWAQAYNTTWSEWSPSTKWHNSYREPFEQH

>1GC1|Chain C|CD4|Homo sapiens(9606)
KKVVLGKKGDTVELTCTASQKKSIQFHWKNSNQIKILGNQGSFLTKGPSKLN
DRADSRRSLWDQGNFPLIIKNLKIEDSDTYICEVEDQKEEVQLLVFGLTANSD
THLLQGQSLTLTLESPPGSSPSVQCRSPRGKNIQGGKTLSVSQLELQDSGTWT
CTVLQNQKKVEFKIDIVVLAFQKASNT

>1A22|Chain A|GROWTH HORMONE|Homo sapiens(9606)
FPTIPLSRLFDNAMLRAHRLHQLAFDTYQEFEEAYIPKEQKYSFLQNPQTSLC
FSESIPTPSNREETQQKSNLELLRISLLLIQSWLEPVQFLRSVFANSLVYGASDS
NVYDLLKDLEERIQTLMGRLEDGSPRTGQIFKQTYSKFDTNSHNDDALLKNY
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GLLYCFRKDMDKVETFLRIVQCRSVEGSCGF

>1JRH|Chain H|ANTIBODY A6|Mus musculus(10090)
AVKLQESGPGILKPSQTLSLTCSFSGFSLTTYGMGVGWIRQSSGKGLEWLAH
IWWDDDKYYNPSLKSRLTISKDTSRNQVFLKITSVATADTATYYCARRAPFY
GNHAMDYWGQGTTVTVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGY
FPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSPRPSETVTCNVA
HPASSTKVDKKI

>1JRH|Chain L|ANTIBODY A6|Mus musculus(10090)
SVEMTQSPSSFSVSLGDRVTITCKASEDIYNRLAWYQQKPGNAPRLLISGATS
LETEVPSRFSGSGSGKDYTLSITSLQTEDVATYYCQQYWSTWTFGGGTKLEI
KRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNG
VLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFN
RNEC

>1JTG|Chains B,D|BETA-LACTAMASE INHIBITORY PROTEIN|Streptomyces
clavuligerus(1901)
AGVMTGAKFTQIQFGMTRQQVLDIAGAENCETGGSFGDSIHCRGHAAGDYY
AYATFGFTSAAADAKVDSKSQEKLLAPSAPTLTLAKFNQVTVGMTRAQVLA
TVGQGSCTTWSEYYPAYPSTAGVTLSLSCFDVDGYSSTGFYRGSAHLWFTD
GVLQGKRQWDLV

>1AK4|Chains C,D|HIV-1 CAPSID|Human immunodeficiency virus 1(11676)
PIVQNLQGQMVHQAISPRTLNAWVKVVEEKAFSPEVIPMFSALSEGATPQDL
NTMLNTVGGHQAAMQMLKETINEEAAEWDRLHPVHAGPIAPGQMREPRGS
DIAGTTSTLQEQIGWMTHNPPIPVGEIYKRWIILGLNKIVRMY

>2O3B|Chain B|Sugar-non-specific nuclease inhibitor|Nostoc sp.(103690)
GSTKTNSEILEQLKQASDGLLFMSESEYPFEVFLWEGSAPPVTHEIVLQQTGH
GQDAPFKVVDIDSFFSRATTPQDWYEDEENAVVAKFQKLLEVIKSNLKNPQV
YRLGEVELDVYVIGETPAGNLAGISTKVVET

>1DAN|Chain L|BLOOD COAGULATION FACTOR VIIA light chain|Homo
sapiens(9606)
ANAFLEELRPGSLERECKEEQCSFEEAREIFKDAERTKLFWISYSDGDQCASS
PCQNGGSCKDQLQSYICFCLPAFEGRNCETHKDDQLICVNENGGCEQYCSDH
TGTKRSCRCHEGYSLLADGVSCTPTVEYPCGKIPILEKRNASKPQGR

>1EMV|Chain B|COLICIN E9|Escherichia coli(562)
MESKRNKPGKATGKGKPVGDKWLDDAGKDSGAPIPDRIADKLRDKEFKSF
DDFRKAVWEEVSKDPELSKNLNPSNKSSVSKGYSPFTPKNQQVGGRKVYEL
HHDKPISQGGEVYDMDNIRVTTPKRHIDIHRGK
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>3HFM|Chain Y|HEN EGG WHITE LYSOZYME|Gallus gallus (9031)
KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGS
TDYGILQINSRWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVSDGN
GMNAWVAWRNRCKGTDVQAWIRGCRL

>1IAR1|Chain A|PROTEIN (INTERLEUKIN-4)|Homo sapiens (9606)
HKCDITLQEIIKTLNSLTEQKTLCTELTVTDIFAASKNTTEKETFCRAATVLR
QFYSHHEKDTRCLGATAQQFHRHKQLIRFLKRLDRNLWGLAGLNSCPVKEA
NQSTLENFLERLKTIMREKYSKCSS

>1H9D|Chains B,D|CORE-BINDING FACTOR CBF-BETA|HOMO SAPI-
ENS(9606)
PRVVPDQRSKFENEEFFRKLSRECEIKYTGFRDRPHEERQARFQNACRDGRS
EIAFVATGTNLSLQFFPASWQGEQRQTPSREYVDLEREAGKVYLKAPMILNG
VCVIWKGWIDLQRLDGMGCLEFDEERAQQE

>2J0T|Chains D,E,F|METALLOPROTEINASE INHIBITOR 1|HOMO
SAPIENS(9606)
CTCVPPHPQTAFCNSDLVIRAKFVGTPEVNQTTLYQRYEIKMTKMYKGFQA
LGDAADIRFVYTPAMESVCGYFHRSHNRSEEFLIAGKLQDGLLHITTCSFVAP
WNSLSLAQRRGFTKTYTVGCEE

>1A4Y|Chains B,E|ANGIOGENIN|Homo sapiens(9606)
QDNSRYTHFLTQHYDAKPQGRDDRYCESIMRRRGLTSPCKDINTFIHGNKRS
IKAICENKNGNPHRENLRISKSSFQVTTCKLHGGSPWPPCQYRATAGFRNVV
VACENGLPVHLDQSIFRRP

>1DVF|Chain B|FV D1.3|Mus musculus(10090)
QVQLQESGPGLVAPSQSLSITCTVSGFSLTGYGVNWVRQPPGKGLEWLGMI
WGDGNTDYNSALKSRLSISKDNSKSQVFLKMNSLHTDDTARYYCARERDYR
LDYWGQGTTLTVSS

>1NMB|Chain H|FAB NC10|Mus musculus(10090)
QVQLQQPGAELVKPGASVRMSCKASGYTFTNYNMYWVKQSPGQGLEWIGI
FYPGNGDTSYNQKFKDKATLTADKSSNTAYMQLSSLTSEDSAVYYCARSGGS
YRYDGGFDYWGQGTTLTVSS

>1DVF|Chain D|FV E5.2|Mus musculus(10090)
QVQLQQSGTELVKSGASVKLSCTASGFNIKDTHMNWVKQRPEQGLEWIGRI
DPANGNIQYDPKFRGKATITADTSSNTAYLQLSSLTSEDTAVYYCATKVIYY
QGRGAMDYWGQGTTLTVS

>1BRS|Chains A,B,C|BARNASE|Bacillus amyloliquefaciens(1390)
AQVINTFDGVADYLQTYHKLPDNYITKSEAQALGWVASKGNLADVAPGKSI
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GGDIFSNREGKLPGKSGRTWREADINYTSGFRNSDRILYSSDWLIYKTTDHY
QTFTKIR

>1DVF|Chain A|FV D1.3|Mus musculus (10090)
DIVLTQSPASLSASVGETVTITCRASGNIHNYLAWYQQKQGKSPQLLVYYTTT
LADGVPSRFSGSGSGTQYSLKINSLQPEDFGSYYCQHFWSTPRTFGGGTKLEI
KR

>1KTZ|Chain B|TGF-beta Type II Receptor|Homo sapiens(9606)
VTDNNGAVKFPQLCKFCDVRFSTCDNQKSCMSNCSITSICEKPQEVCVAVWR
KNDENITLETVCHDPKLPYHDFILEDAASPKCIMKEKKKPGETFFMCSCSSDE
CNDNIIFSEEYNTSNPD

>1JRH|Chain I|INTERFERON-GAMMA RECEPTOR ALPHA CHAIN|Homo
sapiens(9606)
EMGTADLGPSSVPTPTNVTIESYNMNPIVYWEYQIMPQVPVFTVEVKNYGV
KNSEWIDACINISHHYCNISDHVGDPSNSLWVRVKARVGQKESAYAKSEEFA
VSRDG

>1BRS|Chains D,E,F|BARSTAR|Bacillus amyloliquefaciens(1390)
KKAVINGEQIRSISDLHQTLKKELALPEYYGENLDALWDALTGWVEYPLVLE
WRQFEQSKQLTENGAESVLQVFREAKAEGADITIILS

>2JEL|Chain P|HISTIDINE-CONTAINING PROTEIN|Escherichia coli
(562)
MFQQEVTITAPNGLHTRPAAQFVKEAKGFTSEITVTSNGKSASAKSLFKLQT
LGLTQGTVVTISAEGEDEQKAVEHLVKLMAELE

>1BXI|Chain A|PROTEIN (COLICIN E9 IMMUNITY PROTEIN)|Escherichia
coli(562)
MELKASISDYTEAEFLQLVTTICNADTSSEEELVKLVTHFEEMTEHPSGSDLIY
YPKEGDDDSPSGIVNTVQQWRAANGKSGFKQG

>1KTZ|Chain A|TRANSFORMING GROWTH FACTOR BETA 3|Homo
sapiens(9606)
ALDTNYCFRNLEENCCVRPLYIDFRQDLGWKWVHEPKGYYANFCSGPCPY
LRSADTTHSTVLGLYNTLNPEASASPCCVPQDLEPLTILYYVGRTPKVEQLSN
MVVKSCKCS

>2WPT|Chain A|COLICIN-E2 IMMUNITY PROTEIN|ESCHERICHIA
COLI (562)
MELKHSISDYTEAEFLEFVKKIARAEGATECDDNKLVREFERLTEHPDGSDLI
YYPRDDREDSPEGIVKEIKEWRAANGKSGFKQG
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>1XD3|Chains B,D|UBC protein|Homo sapiens(9606)
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDG
RTLSDYNIQKESTLHLVLRLRG

>1FFW|Chains B,D|CHEMOTAXIS PROTEIN CHEA|Escherichia coli(562)
RQLALEAKGETPSAVTRLSVVAKSEPQDEQSRSQSARRIILSRLKAGEVDLLE
EELGHLTTLTDVVKGADSLSAILPGDIAEDDITAVLCFVIEADQITFETVEVSP
KISTPPVLKLAAEQAPTGRVEREKTTR

>1TM1|Chain I|chymotrypsin inhibitor 2|Hordeum vulgare subsp. vul-
gare(112509)
MKTEWPELVGKSVEEAKKVILQDKPAAQIIVLPVGTIVTMEYRIDRVRLFVD
RLDNIAQVPRVG

>1CBW|Chains D,I|BPTI|Bos taurus (9913)
RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDC
MRTCGGA

>1FCC|Chains C,D|STREPTOCOCCAL PROTEIN G| >(C2 FRAG-
MENT) Streptococcus(1301)
TTYKLVINGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATK
TFTVTE

>1CHO|Chain I|TURKEY OVOMUCOID THIRD DOMAIN (OMTKY3)|Meleagris
gallopavo(9103)
LAAVSVDCSEYPKPACTLEYRPLCGSDNKTYGNKCNFCNAVVESNGTLTLSH
FGKC

>1FC2|Chain C|FRAGMENT B OF PROTEIN A COMPLEX|Staphylococcus
aureus subsp. aureus (93061)
ADNKFNKEQQNAFYEILHLPNLNEEQRNGFIQSLKDDPSQSANLLAEAKKLN
DAQXXK

>1F47|Chain A|CELL DIVISION PROTEIN FTSZ|Escherichia coli(562)
KEPDYLDIPAFLRKQAD

>1DN2|Chains E,F|ENGINEERED PEPTIDE|null
DCAWHLGELVWCTX
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7.14 FASTA sequences for residues in BID-18
>1CDL|Chains A,B,C,D|CALMODULIN|Homo sapiens(9606)
ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMI
NEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAA
ELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTA

>1CDL|Chains E,F,G,H|CALCIUM/CALMODULIN-DEPENDENT PRO-
TEIN KINASE TYPE II ALPHA CHAIN|
ARRKWQKTGHAVRAIGRLSS

>1DVA|Chains H,I|DES-GLA FACTOR VIIA (HEAVY CHAIN)|Homo
sapiens(9606)
IVGGKVCPKGECPWQVLLLVNGAQLCGGTLINTIWVVSAAHCFDKIKNWRN
LIAVLGEHDLSEHDGDEQSRRVAQVIIPSTYVPGTTNHDIALLRLHQPVVLTD
HVVPLCLPERTFSERTLAFVRFSLVSGWGQLLDRGATALELMVLNVPRLMT
QDCLQQSRKVGDSPNITEYMFCAGYSDGSKDSCKGDSGGPHATHYRGTWYL
TGIVSWGQGCATVGHFGVYTRVSQYIEWLQKLMRSEPRPGVLLRAPFP

>1DVA|Chains X,Y|PEPTIDE E-76|null XALCDDPRVDRWYCQFVEGX
>1DX5|Chains M,N,O,P|Thrombin heavy chain|Homo sapiens(9606) IV

EGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLLYPPWDKN
FIENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWRENLDRDIALMKLKK
PVAFSDYIHPVCLPDRETAASLLQAGYKGRVTGWGNLKETWTANVGKGQP
SVLQVVNLPIVERPVCKDSTRIRITDNMFCAGYKPDEGKRGDACEGDSGGPF
VMKSPFNNRWYQMGIVSWGEGCDRDGKYGFYTHVFRLKKWIQKVIDQFGE

>1EBP|Chains A,B|EPO RECEPTOR|Homo sapiens(9606) KFESKAAL
LAARGPEELLCFTERLEDLVCFWEEAASAGVGPGNYSFSYQLEDEPWKLCR
LHQAPTARGAVRFWCSLPTADTSSFVPLELRVTAASGAPRYHRVIHINEVVL
LDAPVGLVARLADESGHVVLRWLPPPETPMTSHIRYEVDVSAGNGAGSVQR
VEILEGRTECVLSNLRGRTRYTFAVRARMAEPSFGGFWSAWSEPVSLLT

>1EBP|Chains C,D|EPO MIMETICS PEPTIDE 1|
GGTYSCHFGPLTWVCKPQGG

>1ES7|Chains A,C|BONE MORPHOGENETIC PROTEIN-2|Homo sapi-
ens(9606)
MAQAKHKQRKRLKSSCKRHPLYVDFSDVGWNDWIVAPPGYHAFYCHGECP
FPLADHLNSTNHAIVQTLVNSVNSKIPKACCVPTELSAISMLYLDENEKVVLK
NYQDMVVEGCGCR

>1FAK|Chain T|PROTEIN (SOLUBLE TISSUE FACTOR)|Homo sapi-
ens(9606)
NTVAAYNLTWKSTNFKTILEWEPKPVNQVYTVQISTKSGDWKSKCFYTTDT
ECDLTDEIVKDVKQTYLARVFSYPAGNVESTGSAGEPLYENSPEFTPYLETN
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LGQPTIQSFEQVGTKVNVTVEDERTLVRRNNTFLSLRDVFGKDLIYTLYYWK
SSSSGKKTAKTNTNEFLIDVDKGENYCFSVQAVIPSRTVNRKSTDSPVECM

>1FE8|Chains A,B,C|VON WILLEBRAND FACTOR|Homo sapiens(9606)
GSHMAPDCSQPLDVILLLDGSSSFPASYFDEMKSFAKAFISKANIGPRLTQVSV
LQYGSITTIDVPWNVVPEKAHLLSLVDVMQREGGPSQIGDALGFAVRYLTSE
MHGARPGASKAVVILVTDVSVDSVDAAADAARSNRVTVFPIGIGDRYDAAQL
RILAGPAGDSNVVKLQRIEDLPTMVTLGNSFLHKLCSG

>1FOE|Chains B,D,F,H|RAS-RELATED C3 BOTULINUM TOXIN SUB-
STRATE|Homo sapiens(9606)
MQAIKCVVVGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVMVDGKPV
NLGLWDTAGQEDYDRLRPLSYPQTDVFLICFSLVSPASFENVRAKWYPEVRH
HCPNTPIILVGTKLDLRDDKDTIEKLKEKKLTPITYPQGLAMAKEIGAVKYLE
CSALTQRGLKTVFDEAIRAVL

>1G3I|Chains G,H,I,J,K,L,M,N,O,P,Q,R|ATP-DEPENDENT PROTEASE
HSLV|Haemophilus influenzae(727)
TTIVSVRRNGQVVVGGDGQVSLGNTVMKGNARKVRRLYNGKVLAGFAGGT
ADAFTLFELFERKLEMHQGHLLKSAVELAKDWRTDRALRKLEAMLIVADEK
ESLIITGIGDVVQPEEDQILAIGSGGNYALSAARALVENTELSAHEIVEKSLRIA
GDICVFTNTNFTIEELPN

>1GL4|Chain A|NIDOGEN-1|MUS MUSCULUS(10090)
APLAQQTCANNRHQCSVHAECRDYATGFCCRCVANYTGNGRQCVAEGSPQ
RVNGKVKGRIFVGSSQVPVVFENTDLHSYVVMNHGRSYTAISTIPETVGYSLL
PLAPIGGIIGWMFAVEQDGFKNGFSITGGEFTRQAEVTFLGHPGKLVLKQQF
SGIDEHGHLTISTELEGRVPQIPYGASVHIEPYTELYHYSSSVITSSSTREYTVM
EPDQDGAAPSHTHIYQWRQTITFQECAHDDARPALPSTQQLSVDSVFVLYNK
EERILRYALSNSIGPVRDGSPDA

>1IHB|Chains A,B|CYCLIN-DEPENDENT KINASE 6 INHIBITOR|Homo
sapiens(9606)
MAEPWGNELASAAARGDLEQLTSLLQNNVNVNAQNGFGRTALQVMKLGNP
EIARRLLLRGANPDLKDRTGFAVIHDAARAGFLDTLQTLLEFQADVNIEDNE
GNLPLHLAAKEGHLRVVEFLVKHTASNVGHRNHKGDTACDLARLYGRNEVV
SLMQANGAG

>1JAT|Chain A|Ubiquitin-Conjugating Enzyme E2-17.5 KDA|Saccharomyces
cerevisiae(4932)
GSAASLPKRIIKETEKLVSDPVPGITAEPHDDNLRYFQVTIEGPEQSPYEDGIF
ELELYLPDDYPMEAPKVRFLTKIYHPNIDRLGRICLDVLKTNWSPALQIRTVL
LSIQALLASPNPNDPLANDVAEDWIKNEQGAKAKAREWTKLYAKKKPE
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>1JAT|Chain B|Ubiquitin-Conjugating Enzyme Variant Mms2|Saccharomyces
cerevisiae(4932)
HMSKVPRNFRLLEELEKGEKGFGPESCSYGLADSDDITMTKWNGTILGPPHS
NHENRIYSLSIDCGPNYPDSPPKVTFISKINLPCVNPTTGEVQTDFHTLRDWK
RAYTMETLLLDLRKEMATPANKKLRQPKEGETF

>1JPP|Chains A,B|BETA-CATENIN|Mus musculus(10090)
HAVVNLINYQDDAELATRAIPELTKLLNDEDQVVVNKAAVMVHQLSKKEAS
RHAIMRSPQMVSAIVRTMQNTNDVETARCTAGTLHNLSHHREGLLAIFKSGG
IPALVKMLGSPVDSVLFYAITTLHNLLLHQEGAKMAVRLAGGLQKMVALLNK
TNVKFLAITTDCLQILAYGNQESKLIILASGGPQALVNIMRTYTYEKLLWTTS
RVLKVLSVCSSNKPAIVEAGGMQALGLHLTDPSQRLVQNCLWTLRNLSDAAT
KQEGMEGLLGTLVQLLGSDDINVVTCAAGILSNLTCNNYKNKMMVCQVGGI
EALVRTVLRAGDREDITEPAICALRHLTSRHQEAEMAQNAVRLHYGLPVVVK
LLHPPSHWPLIKATVGLIRNLALCPANHAPLREQGAIPRLVQLLVRAHQDTQ
RRTSMGGTQQQFVEGVRMEEIVEGCTGALHILARDVHNRIVIRGLNTIPLFV
QLLYSPIENIQRVAAGVLCELAQDKEAAEAIEAEGATAPLTELLHSRNEGVAT
YAAAVLFRMSEDKPQDYK

>1MQ8|Chains B,D|Integrin alpha-L|Homo sapiens (9606)
VDLVFLFDGSMSLQPDEFQKILDFMKDVMKKCSNTSYQFAAVQFSTSYKTEF
DFSDYVKRKDPDALLKHVKHMLLLTNTFGAINYVATEVFREELGARPDATK
VLIIITDGEATDSGNIDAAKDIIRYIIGIGKHFQTKESQETLHKFASKPASEFVKI
LDTFEKLKDLCTELQKKI

>1NFI|Chains E,F|I-KAPPA-B-ALPHA|Homo sapiens (9606)
LTEDGDSFLHLAIIHEEKALTMEVIRQVKGDLAFLNFQNNLQQTPLHLAVITN
QPEIAEALLGAGCDPELRDFRGNTPLHLACEQGCLASVGVLTQSCTTPHLHSI
LKATNYNGHTCLHLASIHGYLGIVELLVSLGADVNAQEPCNGRTALHLAVDL
QNPDLVSLLLKCGADVNRVTYQGYSPYQLTWGRPSTRIQQQLGQLTLENLQ
MLPE

>1NUN|Chain A|Fibroblast growth factor-10|Homo sapiens(9606) GRH
VRSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIG
VVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQ
HNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS

>1UB4|Chain C|MazE protein|Escherichia coli(562)
GPHMIHSSVKRWGNSPAVRIPATLMQALNLNIDDEVKIDLVDGKLIIEPVRKE
PVFTLAELVNDITPENLHENIDWGEPKDKEVW

>2HHB|Chains B,D|HEMOGLOBIN (DEOXY) (BETA CHAIN)|Homo
sapiens(9606)
VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTP
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DAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPE
NFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
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