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The ultra-relativistic Euler equations for an ideal gas are described in terms of the pressure, 
the spatial part of the dimensionless four-velocity and the particle density. Radially symmetric 
solutions of these equations are studied in two and three space dimensions. Of particular interest 
in the solutions are the formation of shock waves and a pressure blow up. For the investigation 
of these phenomena we develop a one-dimensional scheme using radial symmetry and integral 
conservation laws. We compare the numerical results with solutions of multi-dimensional high-

order numerical schemes for general initial data in two space dimensions. The presented test cases 
and results may serve as interesting benchmark tests for multi-dimensional solvers.

1. Introduction

In this paper we focus on radially symmetric solutions of a special relativistic system which is much simpler than flows in general 
relativistic theory. Interestingly, even compared to the classical Euler equations of non-relativistic gas dynamics the equations we 
consider exhibit a simpler mathematical structure.

We are concerned with the ultra-relativistic equations for a perfect fluid in Minkowski space-time 𝐱 = (𝑥1, 𝑥2, 𝑥3), 𝑡 = 𝑥0, namely

3∑
𝛽=0

𝜕𝑇𝛼𝛽

𝜕𝑥𝛽

= 0 (1.1)

with 𝛼, 𝛽 ∈ {0, 1, 2, 3} and the energy-momentum tensor

𝑇𝛼𝛽 = −𝑝̃𝑔𝛼𝛽 + 4𝑝̃𝑢𝛼𝑢𝛽 (1.2)
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for the ideal ultra-relativistic gas. Here 𝑝̃ represents the pressure, 𝐮 ∈ℝ3 is the spatial part of the four-velocity vector (𝑢0, 𝑢1, 𝑢2, 𝑢3) =
(
√
1 + |𝐮|2, 𝐮). For the ideal ultra-relativistic gas the thermal energy dominates and thus the local energy density 𝑒 at rest is linked 

to the pressure 𝑝̃ by

𝑒 = 3𝑝̃. (1.3)

Note that (1.3) is universal for an ideal gas in the ultra-relativistic regime. We exemplarily refer to Lai [18], where a polytropic gas 
is considered in the relativistic case. For works using the Synge energy in the relativistic setting we refer to Ruggeri and Sugiyama 
[20] and references therein. In both cases the equations of state simplify to (1.3) in the ultra-relativistic limit. The flat Minkowski 
metric is given as

𝑔𝛼𝛽 =
⎧⎪⎨⎪⎩
+1, 𝛼 = 𝛽 = 0,
−1, 𝛼 = 𝛽 = 1,2,3,
0, 𝛼 ≠ 𝛽.

(1.4)

We note that the quantities 𝑢𝛼 , 𝑇𝛼𝛽 , 𝑔𝛼𝛽 and even 𝑥𝛼 are usually written as Lorentz-invariant tensors with upper indices instead of 
lower indices in order to make use of Einstein’s summation convention. But in the following calculations these upper indices could be 
mixed up with powers. Since we will not make use of the lowering and raising of Lorentz-tensor indices, our change of the notation 
will not lead to confusions. For the physical background we refer to Weinberg [21, Part I, pp 47-52], further details can be found in 
Kunik [13, Chapter 3.9] and for the corresponding classical Euler equations see Courant and Friedrichs [5]. For a general introduction 
to the mathematical theory of hyperbolic conservation laws see Bressan [3] and Dafermos [6]. An overview of radially symmetric 
solutions to conservation laws is given in the survey paper by Jenssen [12]. Previous results on the numerical treatment of the 
ultra-relativistic Euler equations are given in Abdelrahman et al. [2] proposing a front tracking scheme and for kinetic schemes we 
cite Kunik et al. [15–17]. For a recent treatment of the ultra-relativistic equations, especially in the context of symmetric hyperbolic 
systems, we refer to Freistühler [7], Ruggeri and Sugiyama [20] and the references therein. In Kunik et al. [14] the ultra-relativistic 
Euler equations are studied and a one-dimensional radially symmetric solver that can provide non-trivial reference solutions for 
genuinely three-dimensional calculations is developed. In the present paper we provide a one-dimensional radially symmetric solver 
called RadSymS which may provide benchmark tests for the validation of the corresponding two-dimensional solvers. Interestingly, 
the solver RadSymS can be obtained only by a modification of the routine “Euler” described in [14, Thm. 4.3, Def. 4.4]. This analogy 
was not clear a priori, and in order to keep our paper self-contained, we describe the complete construction of RadSymS. In this 
way we finally obtain a unified presentation of the multi-dimensional theory in the paper at hand. The outline of the remaining 
paper is as follows. In Section 2 we present the equations subject of study in this work. In Section 3 the one–dimensional scheme to 
compute the radially symmetric solutions is given. In Section 4 we first validate the one-dimensional scheme in case of self-similar 
solutions where we compare with solutions of an ODE system. We further present three additional radially symmetric benchmark 
problems without scale invariance. With these examples we verify that the one-dimensional solver can be used to validate genuinely 
multi-dimensional solvers. A conclusion is given in Section 5. For the readers convenience we also provide the eigenstructure of the 
system under consideration in Appendix B which, to the best of our knowledge, cannot be found in the literature.

2. Conservative formulations of the equations

In the following we introduce two kinds of conservative formulations of (1.1). First, the multi-dimensional form of the ultra-

relativistic Euler equations and second the conservative radially symmetric form. In both cases we consider either 𝑑 = 2 or 𝑑 = 3
space dimensions. Then the unknown quantities 𝑝 and 𝐮 = (𝑢1, … , 𝑢𝑑 ) ∈ ℝ𝑑 satisfying (1.1) depend on time 𝑡 ≥ 0 and position 
𝐱 = (𝑥1, … , 𝑥𝑑 ) ∈ℝ𝑑 .

Putting 𝛼 = 0 in (1.1) gives the conservation of energy

𝜕

𝜕𝑡

(
3𝑝̃+ 4𝑝̃|𝐮|2)+ 𝑑∑

𝑘=1

𝜕

𝜕𝑥𝑘

(
4𝑝̃𝑢𝑘

√
1 + |𝐮|2) = 0, (2.1)

whereas for 𝛼 = 𝑗 = 1, … , 𝑑 we obtain the conservation of momentum

𝜕

𝜕𝑡

(
4𝑝̃𝑢𝑗

√
1 + |𝐮|2)+

𝑑∑
𝑘=1

𝜕

𝜕𝑥𝑘

(
𝑝̃𝛿𝑗𝑘 + 4𝑝̃𝑢𝑗𝑢𝑘

)
= 0, 𝑗 = 1,… , 𝑑. (2.2)

In this paper, we study radially symmetric solutions and construct corresponding schemes to solve the ultra-relativistic Euler equations 
(2.1), (2.2) in two and three space dimensions. Here we focus on the case 𝑑 = 2, since a detailed treatment of the case 𝑑 = 3 is presented 
in [14, Sec. 2, Eqn. (2.5)]. For completeness we give a summary of the radially symmetric equations for 𝑑 = 2, 3 in (4.1) in the present 
paper.

Assume for a moment a smooth solution 𝑝̃, 𝐮 of the ultra-relativistic Euler equations (2.1), (2.2). We put 𝑟 = |𝐱| for 𝑟 > 0 and look 
for radially symmetric solutions

𝑢(𝑡, 𝑟)
2

𝑝 = 𝑝(𝑡, 𝑟) = 𝑝̃(𝑡,𝐱) > 0 , 𝐮(𝑡,𝐱) =
𝑟

𝐱. (2.3)
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Here the quantity 𝐮(𝑡, 𝐱) ∈ℝ2 is completely determined by a new real-valued quantity 𝑢(𝑡, 𝑟) depending on 𝑡 > 0, 𝑟 > 0. For continuity 
we have the boundary condition

lim
𝑟↘0

𝑢(𝑡, 𝑟) = 0, 𝑡 > 0. (2.4)

Note that 𝐧 = 1
𝑟
𝐱 is the outer normal vector field of the circle 𝜕𝑅 bounding the ball

𝑅 = {𝐱 ∈ℝ2 ∶ |𝐱| ≤𝑅}

of radius 𝑅 > 0 and that |𝐮|2 = 𝑢2 as well as 𝑢 = 𝐮 ⋅ 𝐧. Therefore, it is natural to apply the Gaussian divergence theorem for the 
integration of the divergence term in (2.1) over 𝑅 to make use of the radial symmetry of the solutions. We obtain with (2.3) for any 
fixed 𝑅 > 0

2𝜋 𝜕

𝜕𝑡

𝑅

∫
0

(
3𝑝(𝑡, 𝑟) + 4𝑝(𝑡, 𝑟)𝑢2(𝑡, 𝑟)

)
𝑟𝑑𝑟+ ∫

𝜕𝑅

4𝑝𝑢
√
1 + 𝑢2 𝑑𝑠 = 0.

The contour integral with the differential length 𝑑𝑠 on the right-hand side is constant. Hence we have

𝜕

𝜕𝑡

𝑅

∫
0

(
3𝑝(𝑡, 𝑟) + 4𝑝(𝑡, 𝑟)𝑢2(𝑡, 𝑟)

)
𝑟𝑑𝑟+ 4𝑝(𝑡,𝑅)𝑢(𝑡,𝑅)𝑅

√
1 + 𝑢2(𝑡,𝑅) = 0. (2.5)

This idea does not work for the momentum equation (2.2), because (2.3) would give zero after integration over 𝑅 . Here we integrate 
(2.2) for 𝑗 = 2 over the upper half-ball

+
𝑅
= {𝐱 = (𝑥1, 𝑥2) ∈ℝ2 ∶ 𝑥2 ≥ 0},

use the Gaussian divergence theorem and polar coordinates

𝑥1 = 𝑟 cos𝜑, 𝑥2 = 𝑟 sin𝜑

with 0 < 𝑟 <𝑅 and 0 < 𝜑 < 𝜋 and obtain with (2.3)

2 𝜕

𝜕𝑡

𝑅

∫
0

4𝑝(𝑡, 𝑟)𝑢(𝑡, 𝑟)𝑟
√
1 + 𝑢2(𝑡, 𝑟)𝑑𝑟+ 2𝑅

(
4𝑝(𝑡,𝑅)𝑢2(𝑡,𝑅) + 𝑝(𝑡,𝑅)

)
− 2

𝑅

∫
0

𝑝(𝑡, 𝑟)𝑑𝑟 = 0. (2.6)

Now we differentiate the Eqns. (2.5), (2.6) with respect to 𝑅 > 0. Afterwards we replace 𝑅 by the better suited variable 𝑥 > 0.

We put 𝑝 = 𝑝(𝑡, 𝑥), 𝑢 = 𝑢(𝑡, 𝑥) for abbreviation and have the 2 by 2 system

⎧⎪⎨⎪⎩
𝜕

𝜕𝑡

(
𝑥𝑝(3 + 4𝑢2)

)
+ 𝜕

𝜕𝑥

(
4𝑥𝑝𝑢

√
1 + 𝑢2

)
= 0,

𝜕

𝜕𝑡

(
4𝑥𝑝𝑢

√
1 + 𝑢2

)
+ 𝜕

𝜕𝑥

(
𝑥𝑝(1 + 4𝑢2)

)
= 𝑝.

(2.7)

The validity of this system may also be checked by differentiation from (2.1), (2.2) and (2.3). The solutions of (2.7) are restricted to 
the state space 𝑒𝑢𝑙 = {(𝑝, 𝑢) ∈ℝ2 ∶ 𝑝 > 0}.

It is well-known that even for smooth initial data, where the fields are prescribed at 𝑡 = 0, the solution may develop shock 
discontinuities. This requires a weak form of the conservation laws in (2.7).

For the formulation of weak solutions we first introduce a transformation in state space. With

̃𝑒𝑢𝑙 = {(𝑎, 𝑏) ∈ℝ2 ∶ |𝑏| < 𝑎}

there is a one-to-one transformation Θ ∶ 𝑒𝑢𝑙 ↦ ̃𝑒𝑢𝑙 given by

Θ(𝑝, 𝑢) =

(
𝑝(3 + 4𝑢2)
4𝑝𝑢

√
1 + 𝑢2

)
=
(
𝑎

𝑏

)
. (2.8)

The inverse transformation is given by

𝑝 = 1
3

(√
4𝑎2 − 3𝑏2 − 𝑎

)
, 𝑢 = 𝑏√

4𝑝(𝑝+ 𝑎)
. (2.9)

In [13] we have used contour integrals for weak solutions of conservation laws, following Oleinik’s formulation [19] for a scalar 
conservation law. We put √
3

𝑐 = 𝑐(𝑎, 𝑏) = 5
3
𝑎− 2

3
4𝑎2 − 3𝑏2, (2.10)
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and obtain especially for a smooth solution 𝑎, 𝑏 and for each convex domain Ω ⊂𝑄 with piecewise smooth boundary 𝜕Ω ⊂𝑄:

∫
𝜕Ω

𝑥𝑎𝑑𝑥− 𝑥𝑏𝑑𝑡 = 0, ∫
𝜕Ω 𝑥𝑏𝑑𝑥− 𝑥𝑐 𝑑𝑡 = 1

2
∬Ω(𝑎− 𝑐)𝑑𝑡𝑑𝑥. (2.11)

This is a proper weak formulation which will be used next for more general piecewise smooth solutions. Using the transformation in 
state space (2.8) we obtain an initial value problem for 𝑎 and 𝑏. In the quarter plane 𝑡 > 0, 𝑥 > 0 we have to require that |𝑏(𝑡, 𝑥)| <
𝑎(𝑡, 𝑥). Then we prescribe for 𝑥 > 0 the two initial functions

lim
𝑡↘0

𝑎(𝑡, 𝑥) = 𝑎0(𝑥), lim
𝑡↘0

𝑏(𝑡, 𝑥) = 𝑏0(𝑥), 𝑥 > 0 (2.12)

with |𝑏0(𝑥)| < 𝑎0(𝑥) for 𝑥 > 0.

In the presence of shock waves we also obtain a very simple characterization of the entropy condition, see [1, Chapter 2.1] for 
more details: If for 𝑝−, 𝑝+ > 0 the left state (𝑝−, 𝑢−) can be connected to the right state (𝑝+, 𝑢+) by a single shock satisfying the 
Rankine-Hugoniot jump conditions, then this shock wave satisfies the correct entropy condition if and only if 𝑢− > 𝑢+. This condition 
can also be checked easily for our numerical solutions with shock curves.

In Section 3 the conservation laws (2.11) are used in order to develop a one–dimensional numerical scheme to compute the radially 
symmetric solutions of the system (2.1), (2.2) in two space dimensions. Compared to the corresponding scheme for 𝑑 = 3 presented 
in [14] it turns out that both schemes have essentially the same structure. To be more precise, for 𝑑 = 2 only the subroutine “Euler” 
defined in Definition 3.4 is slightly modified.

3. Formulation of a numerical scheme for the radially symmetric solutions

We develop a one-dimensional numerical scheme for the initial value problem of the radially symmetric ultra-relativistic Euler 
equations in two space dimensions. As mentioned earlier the details for the three-dimensional case can be found in [14]. We show 
that our scheme preserves positive pressure. The method of contour-integration for the formulation of the balance laws (2.11) is 
used to construct a function called “Euler”. This function enables us to obtain the time evolution of the numerical solution on a 
staggered grid. More precisely it allows us to construct the solution (𝑎′, 𝑏′) at the next time step from the solution (𝑎±, 𝑏±) in two 
neighboring grid points at the previous time step according to Fig. 2. Parts of the construction are exactly the same as in [14, Section 
4], namely the determination of the grid points. It finally turns out that only the routine “Euler” has to be modified for the solution 
of the two-dimensional model. For the sake of a better understanding we now present the detailed construction. First we determine 
the computational domain and define some quantities which are needed for its discretization.

1) Given are 𝑡∗, 𝑥∗ > 0 in order to calculate a numerical solution of the initial value problem (2.11), (2.12) in the time range [0, 𝑡∗]
and the spatial range [0, 𝑥∗].

2) We want to use a staggered grid scheme. Any given number 𝑁 ∈ℕ with 𝑁 ⋅ 𝑥∗ ≥ 𝑡∗ determines the time step size

Δ𝑡 =
𝑡∗
2𝑁

.

The time steps are

𝑡𝑛 = (𝑛− 1)Δ𝑡, 𝑛 = 1,… ,2𝑁 + 1.

3) Put

𝑀 =
⌊
𝑥∗
𝑡∗

𝑁

⌋
≥ 1,

then the spatial mesh size is

Δ𝑥 =
𝑥∗
𝑀

,

with the spatial grid points

𝑥𝑗 = (𝑗 − 1)Δ𝑥 , 𝑗 = 1,… ,𝑁 +𝑀 + 1.

Note that our scheme uses a trapezoidal computational domain  defined below that includes the target domain [0, 𝑡∗] × [0, 𝑥∗]. 
Thereby, we can use all initial data that influence the solution on the target domain. In this way we avoid using a numerical 
boundary condition at 𝑥∗.

4) The number

𝜆 = Δ𝑥

2Δ𝑡
≥ 1

is used to satisfy the CFL-condition and to define the computational domain  =
{
(𝑡, 𝑥) ∈ℝ2 ∶ 0 ≤ 𝑡 ≤ 𝑡∗, 0 ≤ 𝑥 ≤ 𝑥∗ + 𝜆(𝑡∗ − 𝑡)

}
.

4

The typical trapezoidal form of the computational domain is illustrated in Fig. 1. For the formulation and the stability of our numerical 
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𝑥

𝑡



0

𝑥∗

𝑥∗ + 𝜆𝑡∗



𝑡∗

Fig. 1. The computational domain .

scheme we need two lemmas, given in [14, Lemma 4.1] and [14, Lemma 4.2].

Lemma 3.1. Assume that |𝑏±| < 𝑎± and put 𝑐± = 𝑐(𝑎±, 𝑏±) according to (2.10). We recall that 𝜆 ≥ 1. Then

a) − 
(
𝑎− +

𝑏−
𝜆

)
< 𝑏− +

𝑐−
𝜆

< 𝑎− +
𝑏−
𝜆

,

b) − 
(
𝑎+ −

𝑏+
𝜆

)
< 𝑏+ −

𝑐+
𝜆

< 𝑎+ −
𝑏+
𝜆

.

Lemma 3.2. Assume that 𝑎 > 0, 0 < 𝜂 ≤ 1∕3 and −𝑎(1 + 𝜂) < 𝜉 < 𝑎(1 − 𝜂). Then we obtain 4𝑎2(1 + 3𝜂2) − 3𝜉2 > 0 and||||||
𝜉 + 𝜂

√
4𝑎2(1 + 3𝜂2) − 3𝜉2

1 + 3𝜂2

|||||| < 𝑎.

For the numerical discretization of the integral balance laws (2.11) we choose the triangular balance domain Ω depicted in Fig. 2. 
We assume that the midpoints 𝑃− = (𝑡, 𝑥−Δ𝑥∕2), 𝑃+ = (𝑡, 𝑥+Δ𝑥∕2) and 𝑃 ′ = (𝑡+Δ𝑡, 𝑥) of the cords of 𝜕Ω are numerical grid points 
for the computational domain . Let the numerical solution (𝑎± , 𝑏±) be given at the grid points 𝑃±. We have to require |𝑏±| < 𝑎± for 
the numerical solution in the actual time step 𝑡 = 𝑡𝑛 with 𝑛 = 1, … , 2𝑁 . The major task is to calculate the numerical solution (𝑎′ , 𝑏′)
for the next time step 𝑡+Δ𝑡 = 𝑡𝑛+1 at its grid point 𝑃 ′, see Fig. 2. The spatial value 𝑥 ≥ 0 is given. We have to determine a function

Euler(𝑎−, 𝑏−, 𝑎+, 𝑏+, 𝑥,Δ𝑥,𝜆) = (𝑎′, 𝑏′) (3.1)

for the calculation of (𝑎′, 𝑏′). This leads to the structure of a staggered grid scheme. Note that at the boundary the balance region Ω
may have parts outside , e.g. points below the half-space 𝑥 ≥ 0. In the latter case we employ a simple reflection principle for the 
numerical solution in order to use the function Euler as well for the boundary points with 𝑥 = 0.

Next we make use of the fact that the points 𝑃± with the numerical values (𝑎±, 𝑏±) and 𝑃 ′ with the unknown value (𝑎′, 𝑏′) are 
the midpoints of the three boundary cords of the balance region Ω. We put 𝑐± = 𝑐(𝑎±, 𝑏±) and 𝑐′ = 𝑐(𝑎′, 𝑏′) for abbreviation, see (2.10). 
Then we use for 𝑘 = 0, 1, 2 the straight line paths 𝛾𝑘 from Fig. 2. For the corresponding path integrals

∫
𝛾𝑘

𝑥𝑎(𝑡, 𝑥)𝑑𝑥− 𝑥𝑏(𝑡, 𝑥)𝑑𝑡 and ∫
𝛾𝑘

𝑥𝑏(𝑡, 𝑥)𝑑𝑥− 𝑥𝑐(𝑎(𝑡, 𝑥), 𝑏(𝑡, 𝑥))𝑑𝑡

with the unknown weak entropy solution 𝑎(𝑡, 𝑥), 𝑏(𝑡, 𝑥) the numerical discretizations 𝐼𝑘,𝑎 and 𝐼𝑘,𝑏, respectively, are given by

⎧⎪⎪⎪⎨⎪⎪
𝐼0,𝑎 = ∫

𝛾0

𝑥𝑎′ 𝑑𝑥− 𝑥𝑏′ 𝑑𝑡 = 𝑎′

𝑥+Δ𝑥

∫
𝑥−Δ𝑥

𝑥𝑑𝑥 = 4𝑎′𝜆Δ𝑡 𝑥 ,

𝐼0,𝑏 = 𝑥𝑏′ 𝑑𝑥− 𝑥𝑐′ 𝑑𝑡 = 𝑏′

𝑥+Δ𝑥

𝑥𝑑𝑥 = 4𝑏′𝜆Δ𝑡 𝑥 .

(3.2)
5

⎪⎩ ∫
𝛾0

∫
𝑥−Δ𝑥
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0

𝑥−Δ𝑥∕2

𝑥+Δ𝑥∕2

𝑥

𝑡

𝑥

𝑡−Δ𝑡 𝑡 𝑡+Δ𝑡

𝛾2

𝛾1

𝛾0

Ω

(𝑎+, 𝑏+)

(𝑎−, 𝑏−)

(𝑎′, 𝑏′)

Fig. 2. The balance region Ω.

⎧⎪⎪⎨⎪⎪⎩

𝐼1,𝑎 = ∫
𝛾1

𝑥𝑎+ 𝑑𝑥− 𝑥𝑏+ 𝑑𝑡 = −2(𝜆𝑎+ − 𝑏+)Δ𝑡
(
𝑥+ 1

2
Δ𝑥

)
,

𝐼1,𝑏 = ∫
𝛾1

𝑥𝑏+ 𝑑𝑥− 𝑥𝑐+ 𝑑𝑡 = −2(𝜆𝑏+ − 𝑐+)Δ𝑡
(
𝑥+ 1

2
Δ𝑥

)
.

(3.3)

⎧⎪⎪⎨⎪⎪⎩

𝐼2,𝑎 = ∫
𝛾2

𝑥𝑎− 𝑑𝑥− 𝑥𝑏− 𝑑𝑡 = −2(𝜆𝑎− + 𝑏−)Δ𝑡
(
𝑥− 1

2
Δ𝑥

)
,

𝐼2,𝑏 = ∫
𝛾2

𝑥𝑏− 𝑑𝑥− 𝑥𝑐− 𝑑𝑡 = −2(𝜆𝑏− + 𝑐−)Δ𝑡
(
𝑥− 1

2
Δ𝑥

)
.

(3.4)

We recall that 𝑥 ≥ 0 and distinguish two cases.

Case 1: First we assume that 𝑥 > 0. In this case we put

𝑞 = Δ𝑥

2𝑥
≤ 1. (3.5)

The numerical discretization of the first balance law in (2.11) gives

𝐼0,𝑎 = −𝐼1,𝑎 − 𝐼2,𝑎 . (3.6)

We obtain from (3.2), (3.3), (3.4), (3.5) and (3.6) for 𝑎′ the explicit solution

𝑎′ = 1
2

(
𝑎− +

𝑏−
𝜆

)
(1 − 𝑞) + 1

2

(
𝑎+ −

𝑏+
𝜆

)
(1 + 𝑞). (3.7)

For the numerical discretization of the second balance law in (2.11) we approximate the integral

1 (𝑎− 𝑐)𝑑𝑡𝑑𝑥 by
1 (𝑎′ − 𝑐′) 𝑑𝑡𝑑𝑥 = (𝑎′ − 𝑐′)Δ𝑡Δ𝑥.
6

2 ∬
Ω

2 ∬
Ω
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Now (3.2), (3.3), (3.4) give the following ansatz for the calculation of 𝑏′ :

𝐼0,𝑏 = −𝐼1,𝑏 − 𝐼2,𝑏 + (𝑎′ − 𝑐′)Δ𝑡Δ𝑥,

⇔ 𝑏′ = 1
2

(
𝑏+ −

𝑐+
𝜆

)
(1 + 𝑞) + 1

2

(
𝑏− +

𝑐−
𝜆

)
(1 − 𝑞) + (𝑎′ − 𝑐′) 𝑞

2𝜆
.

(3.8)

Recall that 𝑐 = 𝑐(𝑎, 𝑏) is given by (2.10) and thus the values 𝑐± are known. We further use (2.10) to substitute 𝑐′ and obtain

𝑏′ − 𝑞

3𝜆

√
4𝑎′ 2 − 3𝑏′ 2 = 1

2

(
𝑏+ −

𝑐+
𝜆

)
(1 + 𝑞) + 1

2

(
𝑏− +

𝑐−
𝜆

)
(1 − 𝑞) − 𝑎′

𝑞

3𝜆
.

This is an implicit equation for 𝑏′ where the right-hand side is known. Introducing the abbreviations

𝜂 = 𝑞

3𝜆
and 𝜉 = 1

2

(
𝑏− +

𝑐−
𝜆

)
(1 − 𝑞) + 1

2

(
𝑏+ −

𝑐+
𝜆

)
(1 + 𝑞) − 𝑎′𝜂 (3.9)

we obtain the implicit equation

𝑏′ = 𝜉 + 𝜂
√
4𝑎′ 2 − 3𝑏′ 2. (3.10)

This leads to a quadratic equation for 𝑏′. Lemma 3.1 gives

−𝑎′(1 + 𝜂) < 𝜉 < 𝑎′(1 − 𝜂)

for the quantity 𝑎′ in (3.7). In order to apply Lemma 3.2 with 𝑎′ instead of 𝑎 we have to choose the solution

𝑏′ =
𝜉 + 𝜂

√
4𝑎′ 2(1 + 3𝜂2) − 3𝜉2

1 + 3𝜂2
(3.11)

of (3.10) with the positive square root. Now 𝑏′ is well defined with |𝑏′| < 𝑎′, see the transformation (2.8) in state space.

Case 2: We assume that 𝑥 = 0. In this case we put

𝑎′ = 𝑎+ − 𝑏+∕𝜆 , 𝑏′ = 0. (3.12)

Here we apply the reflection method from [14, Remark 4.5, equation (4.12)]. We note that |𝑏+| < 𝑎+ implies 𝑎′ > 0 and hence |𝑏′| = 0 < 𝑎′ also in case 2. We summarize our results in the following

Theorem 3.3 (Numerical solution (𝑎′, 𝑏′) for the balance region Ω). Given are real quantities 𝑥≥ 0 and 𝑎±, 𝑏±. Assume that |𝑏±| < 𝑎±. We 
recall 𝜆 ≥ 1 defined in terms of Δ𝑡 and Δ𝑥 and put 𝑐± = 𝑐(𝑎±, 𝑏±) in (2.10).

(i) For 𝑥 > 0 we calculate 𝑎′ and 𝑏′ from (3.5), (3.7), (3.9) and (3.11).

(ii) For 𝑥= 0 we calculate 𝑎′ and 𝑏′ from (3.12).

Then we have |𝑏′| < 𝑎′ in both cases. □

Definition 3.4 (The function Euler). The state (𝑎′, 𝑏′) from Theorem 3.3 defines the function Euler in (3.1). □

Now we are able to formulate the numerical scheme for the solution of the initial-boundary value problem (2.12), (2.11). We 
construct staggered grid points in the computational domain  and compute the numerical solution at these grid points. Using the 
function Euler we obtain the evolution of the numerical solution in time, i.e., it allows us to construct the solution at time 𝑡 = 𝑡𝑛+1
from the solution which is already calculated in the grid points at the former time step 𝑡 = 𝑡𝑛.

(I) The staggered grid points are (𝑡𝑛, 𝑥𝑛,𝑗 ) ∈ for 𝑡𝑛 = (𝑛 − 1)Δ𝑡, 𝑛 = 1, … , 2𝑁 + 1 and 𝑗 = 1, … , 𝑀 +𝑁 − ⌊(𝑛 − 1)∕2⌋ with

𝑥𝑛,𝑗 =

{
(𝑥𝑗 + 𝑥𝑗+1)∕2 if 𝑛 is odd

𝑥𝑗 if 𝑛 is even.

We want to calculate the numerical solution (𝑎𝑛,𝑗 , 𝑏𝑛,𝑗 ) at (𝑡𝑛, 𝑥𝑛,𝑗 ).
(II) For 𝑗 = 1, … , 𝑀 +𝑁 we calculate the numerical solution (𝑎1,𝑗 , 𝑏1,𝑗 ) at the grid point (𝑡1, 𝑥1,𝑗 ) = (0, (𝑥𝑗 +𝑥𝑗+1)∕2) from the given 

initial data by

𝑎1,𝑗 = 𝑎0
(
𝑥1,𝑗

)
, 𝑏1,𝑗 = 𝑏0

(
𝑥1,𝑗

)
.

This corresponds to taking the integral average of the initial data on (𝑥𝑗 , 𝑥𝑗+1) and using the midpoint rule as quadrature.

(III) Assume that for a fixed odd index 𝑛 ∈ {1, … , 2𝑁} we have already determined the numerical solution (𝑎𝑛,𝑗 , 𝑏𝑛,𝑗 ) at the grid 
points (𝑡𝑛, 𝑥𝑛,𝑗 ), 𝑗 = 1, … , 𝑀 +𝑁 − (𝑛 − 1)∕2.

First we determine the solution (𝑎𝑛+1,1, 𝑏𝑛+1,1) at the boundary point (𝑡𝑛+1, 𝑥𝑛+1,1) = (𝑡𝑛+1, 0) according to (3.12). For this 
7

purpose we put 𝑎+ = 𝑎𝑛,1, 𝑏+ = 𝑏𝑛,1, 𝑎− = 𝑎𝑛,1, 𝑏− = −𝑏𝑛,1 and have
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(𝑎𝑛+1,1, 𝑏𝑛+1,1) = Euler(𝑎−, 𝑏−, 𝑎+, 𝑏+,0,Δ𝑥,𝜆) with 𝑏𝑛+1,1 = 0.

Next we put 𝑎− = 𝑎𝑛,𝑗−1, 𝑏− = 𝑏𝑛,𝑗−1 and 𝑎+ = 𝑎𝑛,𝑗 , 𝑏+ = 𝑏𝑛,𝑗 for 𝑗 = 2, … , 𝑀 +𝑁 − (𝑛 − 1)∕2 and determine the values 𝑎𝑛+1,𝑗 , 
𝑏𝑛+1,𝑗 at time 𝑡𝑛+1 and position 𝑥 = 𝑥𝑛+1,𝑗 = 𝑥𝑗 from

(𝑎𝑛+1,𝑗 , 𝑏𝑛+1,𝑗 ) = Euler(𝑎−, 𝑏−, 𝑎+, 𝑏+, 𝑥,Δ𝑥,𝜆).

(IV) Assume that for a fixed even index 𝑛 ∈ {1, … , 2𝑁} we have already determined the numerical solution (𝑎𝑛,𝑗 , 𝑏𝑛,𝑗 ) at the grid 
points (𝑡𝑛, 𝑥𝑛,𝑗 ), 𝑗 = 1, … , 𝑀 +𝑁 − 𝑛∕2 + 1.

We put 𝑎− = 𝑎𝑛,𝑗 , 𝑏− = 𝑏𝑛,𝑗 and 𝑎+ = 𝑎𝑛,𝑗+1, 𝑏+ = 𝑏𝑛,𝑗+1 for 𝑗 = 1, … , 𝑀 +𝑁 − 𝑛∕2 and determine the values 𝑎𝑛+1,𝑗 , 𝑏𝑛+1,𝑗 at 
time 𝑡𝑛+1 and position 𝑥 = 𝑥𝑛+1,𝑗 = (𝑥𝑗 + 𝑥𝑗+1)∕2 from

(𝑎𝑛+1,𝑗 , 𝑏𝑛+1,𝑗 ) = Euler(𝑎−, 𝑏−, 𝑎+, 𝑏+, 𝑥,Δ𝑥,𝜆).

Based on Lemma 3.1 and 3.2 we obtain Theorem 3.3. Using (2.12) we can state the following

Theorem 3.5. The numerical scheme described above preserves a positive pressure 𝑝 > 0, provided the pressure is positive in the given initial 
data. □

4. Numerical results

We perform extensive numerical computations where we first validate the one-dimensional radially symmetric scheme (RadSymS) 
presented in Sect. 3 by means of self-similar solutions. Then we verify that the one-dimensional scheme can be used for the validation 
of genuinely multi-dimensional solvers. For this purpose we briefly summarize the numerical methods and models in Sect. 4.1. Then 
we set up different configurations for which we perform the computations in Sect. 4.2.

Finally, we compare the numerical results in Sect. 4.3.

4.1. Numerical methods

One-dimensional radially symmetric solver RadSymS. As described in Sect. 1 a radially symmetric solution of the ultra-relativistic 
Euler equations satisfies the quasi one-dimensional problem

⎧⎪⎪⎨⎪⎪⎩

𝜕

𝜕𝑡

(
𝑥𝑑−1𝑎

)
+ 𝜕

𝜕𝑥

(
𝑥𝑑−1𝑏

)
= 0,

𝜕

𝜕𝑡

(
𝑥𝑑−1𝑏

)
+ 𝜕

𝜕𝑥

(
𝑥𝑑−1𝑐

)
= 𝑑 − 1

2
𝑥𝑑−2(𝑎− 𝑐),

lim
𝑡↘0

𝑎(𝑡, 𝑥) = 𝑎0(𝑥), lim
𝑡↘0

𝑏(𝑡, 𝑥) = 𝑏0(𝑥) ,

(4.1)

for 𝑡 > 0 and 𝑥 > 0 representing the radial direction. Here 𝑑 = 2 or 𝑑 = 3 denotes the space dimension and 𝑐 = 𝑐(𝑎, 𝑏) is given by 
(2.10). We are looking for weak solutions 𝑎 = 𝑎(𝑡, 𝑥), 𝑏 = 𝑏(𝑡, 𝑥) with |𝑏| < 𝑎. For 𝑑 = 2 the weak formulation of the system (4.1) is 
given in (2.11), and for 𝑑 = 3 in [14, Equation (2.13)]. Using the transformation (2.8), its inverse (2.9) and the velocity

𝑣 = 𝑢√
1 + 𝑢2

with |𝑣| < 1 (4.2)

we replace the state variables 𝑎 and 𝑏 by 𝑝 and 𝑣, respectively. We prescribe the initial pressure 𝑝0 = 𝑝(0, ⋅) as well as the initial 
velocity 𝑣0 = 𝑣(0, ⋅). Here we have chosen the variable 𝑣 because the restriction |𝑣| < 1 leads to better color plots (the variable 𝑢 is 
unbounded).

The quasi one-dimensional problem (4.1) is approximately solved by the one-dimensional radially symmetric scheme presented 
in Sect. 3 with 𝑁 = 5000. Note that for constant pressure 𝑝0 > 0 and 𝑣0 = 0, we obtain a stationary solution. This solution is exactly 
reconstructed by the one-dimensional radially symmetric scheme in Section 3. Such a steady part is contained in the solutions to the 
examples presented below.

Description of the multi-dimensional DG solver MultiWave. We also compare the results with the numerical solution of the 
original multi-dimensional initial value problem for the ultra-relativistic Euler equations (2.1), (2.2). For 𝑗 = 1, … , 𝑑 it reads

⎧⎪⎪⎪⎪⎨⎪⎪⎪

𝜕

𝜕𝑡

(
3𝑝̃+ 4𝑝̃|𝐮|2)+ 𝑑∑

𝑘=1

𝜕

𝜕𝑥𝑘

(
4𝑝̃𝑢𝑘

√
1 + |𝐮|2) = 0,

𝜕

𝜕𝑡

(
4𝑝̃𝑢𝑗

√
1 + |𝐮|2)+

𝑑∑
𝑘=1

𝜕

𝜕𝑥𝑘

(
𝑝̃𝛿𝑗𝑘 + 4𝑝̃𝑢𝑗𝑢𝑘

)
= 0,

𝑝̃(0,𝐱) = 𝑝̃ (|𝐱|), 𝐮(0,𝐱) = 𝐮 (𝐱) = 𝑢 (|𝐱|) 𝐱
.

(4.3)
8

⎪⎩ 0 0 0 |𝐱|
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Table 1

Discretization parameters for MultiWave.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

Ω [−2,2]2 [−2,2]2 [−6,6]2 [−6,6]2 [−5,5]2
𝐿 8 8 9 9 8

Δ𝐱0 (2,2) (2,2) (4,4) (4,4) (2,2)

We require radially symmetric solutions of this system, i.e., for 𝑡 ≥ 0 and 𝑥 = |𝐱| > 0 the restrictions for pressure and velocity are 
given by

𝑝̃(𝑡,𝐱) = 𝑝(𝑡, 𝑥) , 𝐮(𝑡,𝐱) = 𝑣(𝑡, 𝑥)√
1 − 𝑣(𝑡, 𝑥)2

⋅
𝐱
𝑥
. (4.4)

For 𝑡 = 0 we obtain given initial data 𝑝̃(0, 𝐱) = 𝑝(0, 𝑥) = 𝑝0(𝑥) and

𝐮(0,𝐱) = 𝐮0(𝐱) =
𝑣0(𝑥)√

1 − 𝑣0(𝑥)2
⋅
𝐱
𝑥
, (4.5)

and for 𝐱 = 𝟎 ∈ℝ𝑑 we may also put 𝐮(0, 𝟎) = 𝟎 and 𝑣0(0) = 0.

The ultra-relativistic Euler equations are solved using a classical Runge-Kutta discontinuous Galerkin (RK-DG) method [4]. For 
this purpose we apply a modal DG scheme for the approximation of (4.3), which can be casted in the form of (B.1), and introduce 
the DG space

𝑆
𝑝

ℎ
∶= {𝑓 ∈𝐿2(Ω) ∶ 𝑓 |𝑉𝜆 ∈Π𝑝−1(𝑉𝜆) ∀ 𝜆 ∈ }. (4.6)

Here Π𝑝−1(𝑉 ) denotes the space of polynomials on the element 𝑉 of maximal degree with respect to 𝑙∞ less than 𝑝, i.e., dim(Π𝑝−1(𝑉 )) =
𝑝𝑑 . For the finite-dimensional space 𝑆𝑝

ℎ
we introduce a basis Φ ∶= {𝜙𝜆,𝑖}𝜆∈,𝑖=1,…,𝑝𝑑 , i.e., 𝑆𝑝

ℎ
= spanΦ of orthogonal and compactly 

supported basis functions 𝜙𝜆,𝑖. The solution of (B.1) is approximated by a piecewise polynomial in the DG space 𝑝

ℎ
, i.e.,

𝑤ℎ(𝑡, ⋅) =
∑
𝜆∈

∑
𝑖=1,…,𝑝𝑑

𝑣𝜆,𝑖(𝑡)𝜙𝜆,𝑖(⋅) ∈ 𝑆
𝑝

ℎ
. (4.7)

By a standard procedure employing the orthogonality property and the local support of the basis functions, see [4], we obtain the 
system of ordinary differential equations in time for the coefficients 𝑣𝜆,𝑖 :

𝜕𝑣𝜆,𝑖

𝜕𝑡
= ∫

𝑉𝜆

f(𝑤ℎ) ⋅∇𝜙𝜆,𝑖𝑑x − ∫
𝜕𝑉𝜆

f̂(𝑤+
ℎ
,𝑤−

ℎ
, 𝑛𝜆)𝜙𝜆,𝑖𝑑Γ. (4.8)

Here 𝑤+
ℎ

denotes the inner and 𝑤−
ℎ

the outer value of 𝑤ℎ at the boundary of 𝑉𝜆. Furthermore 𝑛𝜆 is the outward pointing unit normal 
vector corresponding to 𝑉𝜆. The integrals are approximated by Gauss quadrature formulae of order 𝑝 and at the cell interfaces we 
use a numerical flux 𝑓 . Finally, to obtain a fully-discrete method, we have to discretize the system in time. In particular, for the 
present work we apply a third order DG scheme using piecewise polynomial elements of order 𝑝 = 3 and a third-order explicit SSP-

Runge-Kutta method with three stages for the time discretization. For a numerical flux we choose the local Lax-Friedrichs flux. The 
Gibbs phenomena near to discontinuities are suppressed by the minmod limiter from [4], where we employ the eigenvalues and 
corresponding left- and right-eigenvectors of the flux Jacobian. Details can be found in the Appendix B.

Because of the explicit time discretization we restrict the timestep size by means of a CFL number. The efficiency of the scheme 
is improved by local grid adaption where we employ the multiresolution concept based on multiwavelets. The key idea is to perform 
a multiresolution analysis on a sequence of nested grids providing a decomposition of the data on a coarse scale and a sequence of 
details that encode the difference of approximations on subsequent resolution levels. The detail coefficients become small when the 
underlying data are locally smooth and, hence, can be discarded when dropping below a threshold value 𝜀𝑡ℎ𝑟𝑒𝑠ℎ . By means of the 
thresholded sequence a new, locally refined grid is determined. Details on this concept can be found in [11,8–10].

For all examples, we set the CFL number to 𝐶𝐹𝐿 = 0.06. Table 1 summarizes the computational domain Ω ⊂ ℝ2, the maximum 
refinement level 𝐿 ∈ ℕ and the cell size Δ𝐱0 ∈ℝ2 at the coarsest refinement level for each example. Due to the dyadic grid hierarchy 
in MultiWave the cell size at refinement level 𝑙 is Δ𝐱𝑙 = 2−𝑙Δ𝐱0, for 𝑙 = 0, … , 𝐿.

4.2. Benchmark tests

In the following we set up several radially symmetric problems where two of them provide self-similar solutions, see Example 
1 and 2. All of these configurations may serve as benchmark problems for the validation of multi-dimensional solvers, e.g., finite 
volume schemes or discontinuous Galerkin (DG) schemes.

Example 1: Solutions including a shock and a stationary part. Following [18] self-similar solutions can be constructed solving an 
ODE system in radial direction 𝑥. These solutions are in particular constant along rays 𝜉 = 𝑥∕𝑡 or, equivalently, 𝜗 = 𝑡∕𝑥. Such solutions 
9

are used for validation purposes for both the one-dimensional radially symmetric solver and the multi-dimensional DG solver.
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Table 2

Example 1: Shock states for 𝑑 = 2, 3.

𝑠̃ 𝑝− 𝑣− 𝑝+ 𝑣+

𝑑 = 2 0.45503 15.75505 0 5.71869 −0.41629
𝑑 = 3 0.52314 25.56463 0 17.16524 −0.17106

We consider constant initial data with pressure 𝑝0 = 1 and radial velocity 𝑣0 ∈ (−1, 0). Due to [18, Section 2.3] there is a solution 
𝑝(𝑡, 𝑥) = 𝑃 (𝜗) and 𝑣(𝑡, 𝑥) = 𝑉 (𝜗) depending only on 𝜗 = 𝑡∕𝑥 for 𝑡, 𝑥 > 0, with a single straight line shock emanating from the zero 
point. Let 𝑠̃ ∈ (0, 1) be the unknown constant shock speed. Then we put 𝑣− = 0 and can find an unknown pressure 𝑝− > 0 with

𝑝(𝑡, 𝑥) = 𝑝− , 𝑣(𝑡, 𝑥) = 𝑣− = 0 for 𝑥 < 𝑠̃ ⋅ 𝑡.

Due to the Rankine-Hugoniot shock conditions introduced in [13, Section 4.4] we obtain from [13, page 82] for a so called 3-shock 
after a lengthy calculation the algebraic shock conditions

𝑝+
𝑝−

= 9𝑠̃2 − 1
3(1 − 𝑠̃2)

, 𝑣+ = 3
2
𝑠̃− 1

2𝑠̃
, 𝑣− = 0, (4.9)

0 < 𝑝+ < 𝑝−,
1
3
< 𝑠̃ <

1√
3
.

Here 𝑝−, 𝑣− are the values of pressure and velocity left to the 3-shock, and 𝑝+, 𝑣+ are the values of pressure and velocity right to 
the 3-shock. Due to Lai [18, Section 2.3] the solution 𝑝 = 𝑃 (𝜗), 𝑣 = 𝑉 (𝜗) satisfies the initial value problem of ordinary differential 
equations

𝑉̇ (𝜗) = (𝑑 − 1) 𝑉 (𝑉 − 𝜗)(1 − 𝑉 2)
3(𝜗𝑉 − 1)2 − (𝑉 − 𝜗)2

, 𝑉 (0) = 𝑣0 ∈ (−1,0),

𝑃̇ (𝜗) = (𝑑 − 1) 4𝑃𝑉 (𝜗𝑉 − 1)
3(𝜗𝑉 − 1)2 − (𝑉 − 𝜗)2

, 𝑃 (0) = 𝑝0 = 1.
(4.10)

Moreover, we show in Appendix A that Lai’s results guarantee a unique solution for 0 ≤ 𝜗 < 𝜗𝑚𝑎𝑥 with a certain value 𝜗𝑚𝑎𝑥 >
√
3 and 

a unique value 𝜗̃ ∈ (
√
3, min(3, 𝜗𝑚𝑎𝑥)) such that

𝑉 (𝜗̃) = 3
2𝜗̃

− 𝜗̃

2
. (4.11)

After having determined 𝜗̃ we finally obtain

𝑠̃ = 1
𝜗̃
, 𝑣+ = 𝑉 (𝜗̃), 𝑝+ = 𝑃 (𝜗̃), 𝑝− = 𝑝+

3(1 − 𝑠̃2)
9𝑠̃2 − 1

. (4.12)

For our numerical simulation we choose 𝑑 = 2, a constant initial pressure 𝑝0 = 1 and a constant initial velocity 𝑣0 = −1∕
√
2. This 

corresponds to the following initial data for the original initial value problem (4.3)

𝑝̃(0,𝐱) = 1 and 𝐮(0,𝐱) = − 𝐱|𝐱| , 𝐱 ∈ℝ𝑑 ⧵ {𝟎}.

The radially symmetric solution of (4.3) is determined by the solution of the ODE system (4.10) which gives a shock wave moving 
at constant speed 𝑠̃. We want to point out that these ODEs are written in terms of 𝜗 = 𝑡∕𝑥. Thus the initial data 𝑃 (0) and 𝑉 (0) for 
(4.10) prescribe the solution for (4.3) at infinity given by 𝑝0 = 𝑃 (0) and 𝑣0 = 𝑉 (0). The ODE system (4.10) is solved by applying the 
classical fourth order RK-scheme with step size ℎ = 10−6. For the computation of 𝜗̃ the ODE solver is run until (4.11) is satisfied with 
a tolerance of 𝜀 = 10−9. The solution values for the shock speed, the states ahead and behind of the shock, respectively, are presented 
in Table 2. Here the numerical values for 𝑠̃ and for 𝑝−, 𝑣− on the plateau are the same up to three digits after the decimal point. We 
want to mention that for 𝑑 = 3 the values given in (4.11) and (4.12) show a good agreement with the numerical results given in [14, 
Section 5, Example 3].

Example 2: Self-Similar Expansion. In this example we prescribe initial data leading to a smooth self-similar solution by applying 
Lai’s approach as in Example 1. Note that for 𝑑 = 3 the solution will expand into vacuum at the speed of light when the initial value 
for 𝑣0 is close enough to one. We do not consider this case here and refer to [18] for more details. For our numerical simulation we 
choose 𝑑 = 2, a constant initial pressure 𝑝0 = 1 and a constant initial velocity 𝑣0 = 1∕

√
2. This corresponds to the following initial 

data for the original initial value problem (4.3)

𝑝̃(0,𝐱) = 1 and 𝐮(0,𝐱) = 𝐱|𝐱| , 𝐱 ∈ℝ𝑑 ⧵ {𝟎}.
10

The solution consists of a rarefaction wave that is determined by the ODE (4.10). In contrast to Example 1 there is no shock.
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Example 3: Expansion of a Spherical Bubble. Next we consider the expansion of a spherical bubble in 𝑑 = 2 with the following initial 
data

𝑝0(𝑥) =

{
1 for 0 ≤ 𝑥 ≤ 1
0.1 for 𝑥 > 1,

𝑣0(𝑥) = 0.

These initial values correspond to the following initial values for the original initial value problem (4.3)

𝑝̃(0,𝐱) =
{

1 for 0 ≤ |𝐱| ≤ 1
0.1 for |𝐱| > 1,

𝐮(0,𝐱) = 𝟎.

Example 4: Collapse of a Spherical Bubble. Next we study the collapse of a spherical bubble in 𝑑 = 2 with the following initial data

𝑝0(𝑥) =

{
0.1 for 0 ≤ 𝑥 ≤ 1
1 for 𝑥 > 1,

𝑣0(𝑥) = 0.

These initial values correspond to the following initial values for the original initial value problem (4.3)

𝑝̃(0,𝐱) =
{

0.1 for 0 ≤ |𝐱| ≤ 1
1 for |𝐱| > 1,

𝐮(0,𝐱) = 𝟎.

Example 5: Initially Sine–Shaped Radial Velocity. Finally, we study initial data with a velocity in radial direction described by a 
sine function, i.e.,

𝑝0(𝑥) = 1, 𝑢0(𝑥) =

{
sin(2𝜋𝑥), 𝑥 < 1,
0, 𝑥 ≥ 1.

These correspond to the following initial data for the multi-dimensional simulation

𝑝̃(0,𝐱) = 1, 𝐮(0,𝐱) =
⎧⎪⎨⎪⎩
sin(2𝜋|𝐱|) 𝐱|𝐱| , |𝐱| < 1,

0, 𝐱 ≥ 1.

4.3. Discussion of results

For all examples we perform computations with the one-dimensional radially symmetric scheme RadSymS and the multi-

dimensional DG solver MultiWave for comparisons. Details on the discretization parameters can be found in Sect. 4.1. In Figs. 3

– 7 for Examples 1 – 5, respectively, we present 2D-results in the 𝑡–𝑥 plane and a line plot of the solution in radial direction at the 
final time 𝑡𝑒𝑛𝑑 . We compare the results of the two solvers by means of the pressure 𝑝 and the velocity 𝑣. Additionally, for Examples 1 
and 2 we compare the solutions also with the reference solution that can be determined for self-similar problems by solving the ODE 
(4.10) in the smooth part and using the jump conditions (4.12) to determine the stationary part in Example 1, see Sect. 4.2.

Example 1 and 2. The results reported in Figs. 3 and 4 clearly show a good agreement of both numerical methods with the 
reference solution provided by an ODE solver for the final time 𝑡𝑒𝑛𝑑 = 1 in radial direction. Due to the self-similar structure of the 
solution we omit the presentation of results in the 𝑡–𝑥 plane.

Example 3. Initially, the pressure inside the bubble is ten times larger than outside, which leads to a fast expansion of the bubble 
into the outer low pressure area. This in turn gives rise to the formation of another low pressure area. We observe the formation of a 
shock wave, running towards the new low pressure area and reaching the zero point around time 𝑡 = 5.032. The formation of this new 
shock wave is a peculiar nonlinear phenomenon. Shortly before the shock reaches the zero point the pressure takes very low values, 
but its reflection from the zero point depicted in Fig. 5 (a) and (b) indicates a blow up of the pressure in a very small time-space range 
near the boundary. This is similar to [14, Section 5, Example 4], but here the blow up is weaker than in three space dimensions, and 
its illustration requires a higher numerical resolution. This may be the reason why this phenomenon was neglected up to day for the 
explosion test problem with an initial bubble. We expect a similar behavior for the corresponding solution of the explosion problem 
with the classical Euler equations.

From the depicted solution at time 𝑡 = 6 we observe the reflected shock curve at radius around 𝑥 = 0.55. The results in the 𝑡–𝑥
plane given in Fig. 5 (a) and (b) show the expansion of the bubble and the formation of the new shock which focuses at the origin and 
then is reflected again. At the focus point the pressure rises drastically in a small vicinity of the origin and away from that the pressure 
values do not vary a lot. Therefore we present a zoom plot of the pressure. We observe an excellent agreement of both numerical 
methods for the velocity in Fig. 5 (b). For the pressure the results also agree well, except close to the reflection point of the shock at 
the origin where the DG method cannot resolve this structure due to the resolution of the multi-dimensional method, see Fig. 5 (a). 
Additionally, we compare both methods at final time 𝑡𝑒𝑛𝑑 = 6 where the solutions coincide very well, see Fig. 5 (c) and (d).

Example 4. The results in the 𝑡–𝑥 plane, see Fig. 6 (a) and (b), show the collapse of the bubble with a focus point at the origin 
which then is reflected again. At the focus point the pressure rises drastically in a small vicinity of the origin and away from that 
11

the pressure values do not vary a lot. Thus, we again present a zoom plot of the pressure for this example. We observe an excellent 
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Fig. 3. Example 1: Comparison for MultiWave (green 𝐿 = 8, blue 𝐿 = 9) and RadSymS (red) in radial direction with the solution of ODE system (4.10) (black) at 
final time 𝑡𝑒𝑛𝑑 = 1 for the pressure 𝑝, see (a), and velocity 𝑣, see (b). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

agreement of both numerical methods for the velocity in Fig. 6 (b). For the pressure the results also agree well except close to the 
reflection point of the shock at the origin where the DG method cannot resolve this structure due to the resolution of the multi-

dimensional method, see Fig. 6 (a). Additionally, we compare both methods at time 𝑡𝑒𝑛𝑑 = 6 where the solutions coincide very well, 
see Fig. 6 (c) and (d).

Example 5. The results in the 𝑡–𝑥 plane, see Fig. 7 (a) and (b), show a complex wave structure for the velocity and a high pressure 
focus at around time 𝑡 = 0.77. Again, we present a zoom plot of the pressure for this example. We observe an excellent agreement of 
both numerical methods for the velocity in Fig. 7 (b). For the pressure the results also agree well, except close to the reflection point 
of the shock at the origin where the DG method cannot resolve this structure due to the resolution of the multi-dimensional method, 
see Fig. 7 (a). Additionally, we compare both methods at final time 𝑡𝑒𝑛𝑑 = 6 where the solutions coincide very well, see Fig. 7 (a) and 
(b).

For all simulations with the multi-dimensional DG solver MultiWave we note some perturbations near the focus point after wave 
reflection in this point. These can be observed in the one-dimensional plots for the velocity at the final time 𝑡𝑒𝑛𝑑 , see in particular 
Fig. 3 (b) and 7 (d). Most likely, the perturbations are caused by a dimensional effect introduced by the Cartesian grids that are not 
able to preserve and resolve radial symmetry. This dimensional effect can be clearly observed in the adaptive grids not presented here. 
Under grid refinement the perturbations become smaller and are located more closely to the focus point. Exemplarily, we perform 
two computations with the DG solver with maximal refinement level 𝐿 = 8 and 𝐿 = 9 for Example 1. In Fig. 3 (a) and (b) we observe 
that the perturbation becomes smaller with higher resolution.

5. Conclusion

In the present work we studied radially symmetric solutions for the ultra-relativistic Euler equations in two and three space 
dimensions. An efficient numerical scheme for the computation of such one-dimensional radially symmetric solutions was developed.

Furthermore, we computed solutions for different sets of initial data exhibiting complex wave structures. In the case of self-similar 
solutions we compared our method with a reference solution obtained by solving simplified ODEs along a ray 𝜗 = 𝑡∕𝑥 = 𝑐𝑜𝑛𝑠𝑡 for 
fixed time 𝑡𝑒𝑛𝑑 . These comparisons show an excellent agreement of the proposed one-dimensional radially symmetric method with 
the reference solution at some fixed time 𝑡.

By construction one-dimensional solver is capable of calculating radially symmetric solutions very efficiently in comparison to 
12

multi-dimensional solvers and, thus, provides reference solutions in the 𝑡–𝑥 plane for comparison with multi-dimensional solutions. 
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Fig. 4. Example 2: Comparison for MultiWave (blue) and RadSymS (red) in radial direction with the solution of ODE system (4.10) (green) at final time 𝑡𝑒𝑛𝑑 = 1 for 
the pressure 𝑝, see (a), and velocity 𝑣, see (b).

Exemplarily, this was demonstrated by performing simulations for the two-dimensional initial value problem applying the DG-solver 
MultiWave. These solutions were compared with solutions of the one-dimensional radially symmetric solver. The solutions showed 
a very good agreement. For this a high resolution was needed for the multi-dimensional DG solver resulting in high computational 
cost.

Finally, we want to emphasize that the examples considered here are very much suited as challenging genuinely multi-dimensional 
benchmark problems for numerical methods designed for hyperbolic PDEs. The one-dimensional radially symmetric solver can 
provide non-trivial reference solutions at low cost and high accuracy. These reference solutions may be used for validation of multi-

dimensional solvers.
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Fig. 5. Example 3: Comparison for MultiWave (left) and RadSymS (right) in the 𝑡–𝑥 plane, see (a), (b). Further RadSymS (red) and MultiWave (blue) are compared 
in radial direction at final time 𝑡𝑒𝑛𝑑 = 6, see (c), (d), for pressure 𝑝 and velocity 𝑣.
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Fig. 6. Example 4: Comparison for MultiWave (left) and RadSymS (right) in the 𝑡–𝑥 plane, see (a), (b). Further RadSymS (red) and MultiWave (blue) are compared 
in radial direction at final time 𝑡𝑒𝑛𝑑 = 6, see (c), (d), for pressure 𝑝 and velocity 𝑣.

Appendix A. Application of Geng Lai’s analysis

It is shown by Geng Lai in [18, Section 2] that for special solutions depending only on 𝜗 = 𝑡∕𝑥 > 0 the system (2.1), (2.2) can be 
reduced to the system of ODEs (4.10). It is sufficient to discuss

𝑉 (𝑉 − 𝜗)(1 − 𝑉 2)
15

𝑉̇ (𝜗) = (𝑑 − 1)
𝑓 (𝜗,𝑉 )

with (A.1)
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Fig. 7. Example 5: Comparison for MultiWave (left) and RadSymS (right) in the 𝑡–𝑥 plane, see (a), (b). Further RadSymS (red) and MultiWave (blue) are compared 
in radial direction at final time 𝑡𝑒𝑛𝑑 = 6, see (c), (d), for pressure 𝑝 and velocity 𝑣.

𝑓 (𝜗,𝑉 ) = 3(𝜗𝑉 − 1)2 − (𝑉 − 𝜗)2

for 𝑑 = 2 and 𝑑 = 3 space dimensions, respectively. The differential equation (A.1) has to be supplemented by an initial condition 
𝑉 (0) = 𝑣0 with |𝑣0| < 1. For 𝑣0 ∈ (0, 1) we obtain continuous solutions, see [18, Section 2.2] for further details. For our discussion we 
want to focus on the case −1 < 𝑣0 < 0 where shock wave solutions occur. Hence we require an initial condition
16

𝑉 (0) = 𝑣0 ∈ (−1,0) . (A.2)
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By (0, 𝜗𝑚𝑎𝑥) with 𝜗𝑚𝑎𝑥 > 0 we denote the maximal existence interval for the solution 𝑉 = 𝑉 (𝜗) of the initial value problem (A.1), 
(A.2). It is shown in [18, Section 2.3] that 𝑉 (𝜗) < 0 for 𝜗 ∈ [0, 

√
3] and 𝑣0 ∈ (−1, 0). Lai obtained that 

√
3 < 𝜗𝑚𝑎𝑥 <∞ for the initial 

condition (A.2). Note that we have the normalized speed of light 𝑐 = 1. The values 𝑉 = ±1 and 𝑉 = 0 are fixed points for the ODE 
(A.1). Hence it is sufficient to study solutions 𝑉 = 𝑉 (𝜗) ∈ (−1, 0) with 𝜗 ∈ (0, 𝜗𝑚𝑎𝑥). In order to show that (4.11) has a unique solution 
𝜗̃ ∈ (

√
3, min(3, 𝜗𝑚𝑎𝑥)) we first determine the sign of the denominator 𝑓 (𝜗, 𝑉 ) on the right-hand side of (A.1). Initially we have 

𝑓 (0, 𝑣0) = 3 − 𝑣20 > 0. As long as −1 < 𝑉 < 0 we have 𝑉 < 0, 𝑉 − 𝜗 < 0 and 1 − 𝑉 2 > 0 for the three factors in the nominator of the 
right-hand side of (A.1). We conclude that 𝑓 (𝜗, 𝑉 ) = 0 can only occur at the singular point 𝜗 = 𝜗𝑚𝑎𝑥 and obtain by the intermediate 
value theorem that 𝑓 (𝜗, 𝑉 (𝜗)) > 0 and 𝑉̇ (𝜗) > 0 for 0 < 𝜗 < 𝜗𝑚𝑎𝑥. Hence 𝑉 is strictly monotonically increasing in (0, 𝜗𝑚𝑎𝑥). The 
equation 𝑓 (𝜗, 𝑉 ) = 0 can be solved explicitly. Reformulating the denominator gives

0 = 3(𝜗𝑉 − 1)2 − (𝑉 − 𝜗)2

=
(√

3(𝜗𝑉 − 1) + (𝑉 − 𝜗)
)(√

3(𝜗𝑉 − 1) − (𝑉 − 𝜗)
)
. (A.3)

We obtain two possible functions where the denominator vanishes, namely 𝑉 1, 𝑉 2 ∶ (
√
3, ∞) ↦ℝ with

𝑉 1(𝜗) =
𝜗+

√
3√

3𝜗+ 1
> 0 and 𝑉 2(𝜗) = −

𝜗−
√
3√

3𝜗− 1
< 0 . (A.4)

Since 𝑉 < 0, we can rule out the positive function 𝑉 1. Due to Lai we obtain from the monotonicity of the solution 𝑉 that

lim
𝜗↗𝜗𝑚𝑎𝑥

𝑉 (𝜗) = sup
0<𝜗<𝜗𝑚𝑎𝑥

𝑉 (𝜗) = 𝑉 2(𝜗𝑚𝑎𝑥) , lim
𝜗↗𝜗𝑚𝑎𝑥

𝑑𝑉

𝑑𝜗
= +∞. (A.5)

A straightforward calculation shows for the function 𝑉 2 in (A.4) that

𝑉 2(𝜗) >
3
2𝜗

− 𝜗

2
(A.6)

for all 𝜗 >
√
3. The right-hand side of (A.6) vanishes at 𝜗 =

√
3 and takes the value −1 for 𝜗 = 3. Using the intermediate value theorem 

we finally conclude from (A.6) and the first relation in (A.5) that (4.11) has a unique solution

𝜗̃ ∈ (
√
3,min(3, 𝜗𝑚𝑎𝑥)) . (A.7)

This guarantees a solution with a shock, see Example 1 in Sect. 4.2. According to (4.12) this shock propagates with constant speed 
𝑠̃ = 1∕𝜗̃.

Estimation (A.7) contains the unknown quantity 𝜗𝑚𝑎𝑥. Now we derive a better suited explicitly given upper bound for 𝜗̃. For this 
purpose we note that the bijective mapping 𝑉0 ∶ [

√
3, 3] ↦ [−1, 0] with

𝑉0(𝜗) =
3
2𝜗

− 𝜗

2
(A.8)

has the inverse function 𝑉 −1
0 ∶ [−1, 0] ↦ [

√
3, 3] given by

𝑉 −1
0 (𝑣) =

√
𝑣2 + 3 − 𝑣 . (A.9)

The solution 𝑉 of the initial value problem is strictly monotonically increasing with 𝑉 (0) = 𝑣0, whereas 𝑉0 is strictly monotonically 
decreasing for 𝜗 >

√
3. Thus, we obtain again from 𝑉 −1

0 (0) =
√
3 and 𝑉 −1

0 (−1) = 3 the estimation√
3 < 𝜗̃ <

√
𝑣20 + 3 − 𝑣0 < 3 . (A.10)

With (A.10) we have obtained useful bounds for 𝜗̃ and, hence, for the shock speed 𝑠̃ in (4.12) depending only on the initial data but 
independent of 𝜗𝑚𝑎𝑥. Moreover, this result holds for 𝑑 = 2 as well as for 𝑑 = 3 space dimensions.

Appendix B. Eigensystem for ultra-relativistic Euler equations

The ultra-relativistic Euler equations can be written in conservative form

𝜕𝑡𝒘+
𝑑∑

𝑘=1
𝜕𝑥𝑘𝒇𝑘(𝒘) = 𝟎 (B.1)

for the vector of conserved variables 𝒘 = (𝑤1, … , 𝑤𝑑, 𝑤𝑑+1) = (𝒘, 𝑤𝑑+1) ∈ ℝ𝑑+1 with 𝑑 ∈ {1, 2, 3} consisting of momentum 𝒘 =
(𝑤1, … , 𝑤𝑑 ) ∈ℝ𝑑 and energy 𝑤𝑑+1 and fluxes in the 𝑘th coordinate direction

𝑑∑ 𝑤𝑖𝑤𝑘
17

𝒇𝑘(𝒘) = 𝑝𝒆𝑘 +
𝑖=1 𝑤𝑑+1 + 𝑝

𝒆𝑖 +𝑤𝑘𝒆𝑑+1, 𝑘 = 1,… , 𝑑, (B.2)
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with 𝒆𝑖 the 𝑖th unit vector in ℝ𝑑+1. This system is closed by an equation of state for the pressure

𝑝 = 𝑝(𝒘) (B.3)

to be specified below. For its discretization classical finite volume schemes or DG schemes may be applied. For this purpose, numerical 
fluxes in normal direction 𝒏 ∈ℝ𝑑 , |𝒏| = 1, have to be computed at the interfaces of the elements typically requiring the eigenvalues 
and eigenvectors of the corresponding flux Jacobian. In the following we determine the eigensystem to the Jacobian of the flux in 
normal direction

𝒇𝒏(𝒘) ∶=
𝑑∑

𝑘=1
𝒇𝑘(𝒘)𝑛𝑘. (B.4)

The flux Jacobian is determined by

𝑨𝒏 ∶= 𝜕𝒘𝒇𝒏(𝒘) =

(
𝑨 𝒂

𝒏
𝑇 0

)
(B.5)

with

𝑨 = 𝒏⊗∇𝒘𝑝+
𝑤𝑛

𝑤𝑑+1 + 𝑝
𝑰𝑑×𝑑 +

1
𝑤𝑑+1 + 𝑝

𝒘⊗ 𝒏−
𝑤𝑛

(𝑤𝑑+1 + 𝑝)2
𝒘⊗∇𝒘𝑝,

𝒂 = 𝜕𝑤𝑑+1
𝑝𝒏−

1 + 𝜕𝑤𝑑+1
𝑝

(𝑤𝑑+1 + 𝑝)2
𝑤𝑛𝒘.

To compute the eigenvalues we need to determine the characteristic polynomial of the matrix

𝑩𝒏 ∶=𝑨𝒏 − 𝜆𝑰 (𝑑+1)×(𝑑+1).

The derivation is elementary but tedious work performing some algebraic manipulations. It will be helpful to introduce an orthonormal 
system 𝒕𝑖 ∈ℝ𝑑 , 𝑖 = 2, … , 𝑑, to the normal 𝒏 ≡ 𝒕1 inducing the orthogonal matrix

𝑻 𝒏 ∶= (𝒕1 = 𝒏, 𝒕2,… , 𝒕𝑑 ), 𝑻 𝒏𝑻
𝑇

𝒏
= 𝑰𝑑×𝑑 .

Furthermore we introduce the notation

∇𝒏𝑝 ∶= 𝑻
𝑇

𝒏
∇𝒘𝑝, 𝒘𝒏 ∶= 𝑻

𝑇

𝑛 𝒘.

Then the characteristic polynomial corresponding to the determinant of the matrix 𝑩𝒏 reads

|𝑩𝒏| = (−1)𝑑+1
(
𝜆−

𝑤𝑛

𝑤𝑑+1 + 𝑝

)𝑑−1
𝑝2(𝜆),

where the quadratic polynomial 𝑝2(𝜆) = 𝜆2 + 𝑝𝜆 + 𝑞 is determined by the coefficients

𝑝 ∶=
𝑤𝑛

(𝑤𝑑+1 + 𝑝)2

𝑑∑
𝑖=1

𝑤
𝒕𝑖
𝜕𝒕𝑖 𝑝− 𝜕

𝒕1
𝑝−

2𝑤𝑛

𝑤𝑑+1 + 𝑝
,

𝑞 ∶= (1 + 𝜕𝑤𝑑+1
𝑝)

𝑤2
𝑛

(𝑤𝑑+1 + 𝑝)2
− 𝜕𝑤𝑑+1

𝑝− 1
𝑤𝑑+1 + 𝑝

𝑑∑
𝑖=2

𝑤
𝒕𝑖
𝜕𝒕𝑖 𝑝.

The roots of the characteristic polynomial and, thus, the eigenvalues, are

𝜆0 =
𝑤𝑛

𝑤𝑑+1 + 𝑝
((𝑑 − 1)-multiple) or 𝜆± = − 𝑝

2
±

√(
𝑝

2

)2
− 𝑞. (B.6)

A system of linearly independent right eigenvectors is determined by

𝒓𝑖0 = 𝒕𝑖 − 𝛼𝑖
(
𝒆𝑑+1 + 𝜆0𝒕1

)
∈ℝ𝑑+1, 𝑖 = 2,… , 𝑑, (B.7)

𝒓± = 𝜆±𝒕1 + 𝛼±

𝑑∑
𝑖=2

𝑤
𝒕𝑖
𝒕𝑖 + 𝒆𝑑+1 ∈ℝ𝑑+1 (B.8)

with

𝛼𝑖 ∶=
𝜕
𝒕𝑖
𝑝

𝜕𝑤𝑑+1
𝑝+ 𝜆0𝜕𝒕1

𝑝
, 𝛼± ∶=

𝑤𝑑+1 + 𝑝

(𝑤𝑑+1 + 𝑝)2 −𝑤2
𝑛

(
1 −

𝑤𝑛

(𝑤𝑑+1 + 𝑝)
𝜆±

)
. (B.9)
18

Here 𝒕𝑖 = (𝒕𝑇𝑖 , 0)
𝑇 and 𝒕1 = 𝒏 = (𝒏𝑇

, 0)𝑇 . The system of right eigenvectors is linearly independent, i.e., the matrix
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𝑹𝒏 = (𝒓−, 𝒓10,… , 𝒓𝑑−10 , 𝒓+)

is regular. Thus, a system of linearly independent left eigenvectors

𝑳𝒏 = (𝒍−, 𝒍10,… , 𝒍𝑑−10 , 𝒍+)𝑇

exists that is orthogonal to the right eigenvectors, i.e.,

𝑹𝒏𝑳𝒏 = 𝑰 and 𝑹𝒏𝑨𝒏𝑳𝒏 =𝚲𝒏 ∶= diag(𝜆−, 𝜆0𝟏𝑇𝑑−1, 𝜆+).

The system of orthogonal left eigenvectors is determined by

𝒍𝑖0 =
1
𝐷

(
𝑢
𝒕𝑖
(𝛼+ − 𝛼−)𝒕1 +

𝑑∑
𝑗=2

(𝐷𝛿𝑖,𝑗 − 𝛼𝑗𝑢𝒕𝑖
𝛽)𝒕𝑗 − 𝑢

𝒕𝑖
(𝛼+𝜆− − 𝛼−𝜆+)𝒆𝑑+1

)
, 𝑖 = 2,… , 𝑑, (B.10)

𝒍± = ∓ 1
𝐷

(
(1 + 𝛼∓𝑆)𝒕1 +

𝑑∑
𝑖=2

𝛼𝑖(𝜆0 − 𝜆∓)𝒕𝑖 − (𝛼∓𝜆0𝑆 + 𝜆∓)𝒆𝑑+1

)
(B.11)

with

𝐷 ∶=
(
𝜆− + 𝛼−𝜆0𝑆

)(
1 + 𝛼+𝑆

)
−
(
𝜆+ + 𝛼+𝜆0𝑆

)(
1 + 𝛼−𝑆

)
, 𝑆 ∶=

𝑑∑
𝑖=2

𝛼𝑖𝑢𝒕𝑖
, (B.12)

𝛽 ∶= 𝛼+(𝜆− − 𝜆0) + 𝛼−(𝜆0 − 𝜆+). (B.13)

So far, we have not yet specified an equation of state. For this purpose we rewrite the conserved variables in terms of the primitive 
variables determined by the velocity 𝒖 ∶= (𝑢1, … , 𝑢𝑑 ) ∈ℝ𝑑 and the pressure 𝑝, i.e.

𝑤𝑖 ∶= 4𝑝𝑢𝑖
√
1 + |𝒖|2, 𝑖 = 1,… , 𝑑 (B.14a)

𝑤𝑑+1 ∶= 𝑝(3 + 4|𝒖|2). (B.14b)

Reversely, the primitive variables can be rewritten in conserved variables as

𝑢𝑖 =
𝑤𝑖√

4𝑝(𝑤𝑑+1 + 𝑝)
, 𝑖 = 1,… , 𝑑, (B.15a)

𝑝 = 1
3

(
−𝑤𝑑+1 +

√
−3|𝒘|2 + 4𝑤2

𝑑+1

)
≥ 0. (B.15b)

From this we determine the derivatives of the pressure by

𝜕𝑤𝑗
𝑝 =

{
−𝑤𝑗∕(𝑤𝑑+1 + 3𝑝) , 𝑗 = 1,… , 𝑑

(𝑤𝑑+1 − 𝑝)∕(𝑤𝑑+1 + 3𝑝) , 𝑗 = 𝑑 + 1
. (B.16)

Introducing normal and tangential momentum 𝒘𝒏 = (𝑤
𝒕1
, … , 𝑤

𝒕𝑑
)𝑇 and velocity 𝒖𝒏 = (𝑢

𝒕1
, … , 𝑢

𝒕𝑑
)𝑇 by means of

𝒘𝒏 ∶= 𝑻
𝑇

𝑛 𝒘 = 4𝑝𝒖𝒏
√
1 + |𝒖|2, 𝑤

𝒕𝑖
= 𝒕𝑖 ⋅𝒘, 𝑤

𝒕1
= 𝒕1 ⋅𝒘 ≡ 𝒏 ⋅𝒘 =𝑤𝑛,

𝒖𝒏 ∶= 𝑻
𝑇

𝑛 𝒖, 𝑢𝒕𝑖
= 𝒕𝑖 ⋅ 𝒖, 𝑢

𝒕1
= 𝒕1 ⋅ 𝒖 ≡ 𝒏 ⋅ 𝒖 = 𝑢𝑛,

the pressure gradient and its directional derivatives in normal and tangential direction are determined by

∇𝒘𝑝 = − 𝒘

𝑢𝑑+1 + 3𝑝
= −2

√
1 + |𝒖|2

3 + 2|𝒖|2 𝒖, 𝜕𝑤𝑑+1
𝑝 =

𝑤𝑑+1 − 𝑝

𝑤𝑑+1 + 3𝑝
= 1 + 2|𝒖|2

3 + 2|𝒖|2 ,
∇𝒏𝑝 ∶= 𝑻

𝑇

𝑛 ∇𝒘𝑝 = −
𝒘𝒏

𝑤𝑑+1 + 3𝑝
= −2

√
1 + |𝒖|2

3 + 2|𝒖|2 𝒖𝒏,

𝜕𝒕𝑖 𝑝 = 𝒕𝑖 ⋅∇𝒘𝑝 = −
𝑤

𝒕𝑖

𝑤𝑑+1 + 3𝑝
= −2

√
1 + |𝒖|2

3 + 2|𝒖|2 𝑢
𝒕𝑖
.

Then the eigenvalues in primitive variables read

𝜆± =
2𝑢2𝑛

3 + 2|𝒖|2 ±

√
2(|𝒖|2 − 𝑢2𝑛) + 3

3 + 2|𝒖|2 , 𝜆0 =
𝑢𝑛√

1 + |𝒖|2 . (B.17)
19

The left and right eigenvectors (B.11), (B.10) and (B.8), (B.7), respectively, can be written in primitive variables with
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𝑤
𝒕𝑖
= 4𝑝𝑢

𝒕𝑖

√
1 + |𝒖|2, 𝛼𝑖 = −

2𝑢
𝒕𝑖

√
1 + |𝒖|2

1 + |𝒖|2 +∑2
𝑖=2(𝑢𝒕𝑖 )

2
, 𝑖 = 2,… , 𝑑,

𝛼± = 1
4𝑝

(
1 + |𝒖|2 − 𝑢2𝑛

) (1 −
𝑢𝑛√

1 + |𝒖|2 𝜆±
)

, 𝑆 =
𝑑∑
𝑖=2

𝛼𝑖4𝑝𝑢𝒕𝑖
√
1 + |𝒖|2.
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