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Abstract
Modern inelastic material model formulations rely on the use of tensor-valued
internal variables. When inelastic phenomena include softening, simulations
of the former are prone to localization. Thus, an accurate regularization
of the tensor-valued internal variables is essential to obtain physically cor-
rect results. Here, we focus on the regularization of anisotropic damage at
finite strains. Thus, a flexible anisotropic damage model with isotropic, kine-
matic, and distortional hardening is equipped with three gradient-extensions
using a full and two reduced regularizations of the damage tensor. The-
oretical and numerical comparisons of the three gradient-extensions yield
excellent agreement between the full and the reduced regularization based
on a volumetric-deviatoric regularization using only two nonlocal degrees of
freedom.
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1 INTRODUCTION

Motivation. The prediction of complex material phenomena is, nowadays, based on inelastic material models with
tensor-valued internal variables for the description of for example, plasticity, viscoelasticity, anisotropic damage, or
growth. Yet, finite element simulations of inelastic phenomena without a regularization method suffer from the occur-
rence of localization when modeling softening in for example, plasticity and damage de Borst et al.,1 or viscoelasticity
Steif et al.2 Analogously to Poh et al.3 for small strain plasticity, this work is concerned with the open research ques-
tion of choosing a regularization for tensor-valued internal variables and focuses on the specific inelastic phenomenon of
anisotropic damage. It is well-established that regularizations in the form of gradient-extensions can remedy mesh depen-
dence due to damage softening and restore the ellipticity of the boundary value problem, while the crack localizes in a
band of finite width (e.g., Friedlein et al.4 and the literature cited therein). Here, the first objective is the identification of
an efficient gradient-extension for anisotropic damage with a reduced number of nonlocal variables to decrease the size
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of the global system of equations. The second objective is to ensure that the physical response remains unaltered when
reducing the number of nonlocal variables.

Anisotropic damage modeling. Various modeling methodologies have evolved to describe the induced anisotropy
due to material degradation. Formulations based on a split of the volumetric (isotropic) and deviatoric (anisotropic) mate-
rial response that are separately degraded by two scalar damage variables may be found in for example, Carol et al.5
and Leukart and Ramm.6 Microplane models, see for example, Carol et al.7 and Kuhl et al.,8 project the macroscopic
strain state onto different material planes, where unidirectional constitutive laws are evaluated, and afterwards obtain
the macroscopic material response by a homogenization process (cf. Leukart and Ramm6). A multiplicative split of the
deformation gradient into elastic and damage related components is used by for example, Voyiadjis and Park,9 Schütte
and Bruhns,10 and Dorn and Wulfinghoff,11 where the latter consider the inelastic part to consist out of a normal crack
and a shear crack contribution. An effective or fictitious undamaged configuration is introduced by for example, Menzel
et al.,12 Langenfeld and Mosler,13 and Sprave and Menzel14 to formulate the modeling equations. Finally, anisotropic dam-
age can be interpreted as an evolving structural tensor, see for example, Desmorat et al.15 (whose localization properties
were investigated in Jirásek and Suárez16), Badreddine et al.,17 Desmorat,18 Fassin et al.,19 Fassin et al.,20 Reese et al.,21

Hegde and Mulay,22 and Holthusen et al.,23 which is also the approach followed in this work. Moreover, the employed
damage model serves for the modeling of brittle damage of initially isotropic materials, which is applicable for material
classes like concrete, glass, or ceramics.

Regularization techniques. To remedy the mesh dependence and ensure a correct modeling of the crack localiza-
tion, different approaches can be pursued to account for a nonlocal behavior. Spatial averaging techniques for a specific
quantity are employed in nonlocal integral-type formulations, see for example, Pijaudier-Cabot and Bažant24 for a spatial
average of the damage driving variable, Bažant and Pijaudier-Cabot25 for a spatial average of the damage variable, and
Bažant and Jirásek26 for an overview of nonlocal integral-type formulations. Viscous regularization approaches may be
found in for example, Needleman,27 Geers et al.,28 Niazi et al.,29 Langenfeld et al.30 and peridynamics based formulations
that are inherently nonlocal in for example, Silling,31 Javili et al.,32 and Laurien et al.33

Gradient-extended models provide another effective regularization method that incorporate the gradient of a (local)
quantity into the formulation. In for example, Peerlings et al.,34 the gradient of the equivalent strain and, in de Borst
et al.,35 the gradient of an internal variable are considered. Moreover, the gradient-extension of an anisotropic microplane
damage model is presented in Kuhl et al.8 A decisive advancement for gradient-extended material models with respect
to their straightforward model incorporation is associated with the works of Dimitrijevic and Hackl,36 Dimitrijevic and
Hackl37 and Forest,38,39 who introduce a nonlocal counterpart for the local variable, which is to be regularized. The
gradient effects act on the nonlocal field and the coupling between the local variable and its nonlocal counterpart is
achieved by a penalty approach. Thereby, the local material model formulation is equipped with an additional driving
force, but remains otherwise unaltered, which is from the authors’ point of view an elegant incorporation of the nonlocal
character.

Current and future works. The search for efficient gradient-extension of tensor-valued internal variables is an
active field of research and not restricted to anisotropic damage, but also for example, plasticity still an open ques-
tion. After the works of for example, Wulfinghoff and Böhlke40 and Wulfinghoff et al.41 for strain gradient plasticity,
novel scalar-based gradient plasticity models are presented in Jebahi and Forest,42 Abatour et al.,43 and Abatour and
Forest.44 Further, Friedlein et al.4 compare different gradient-extensions in the logarithmic strain space for plastic-
ity coupled to damage. Moreover, gradient-extensions for fiber-reinforced materials are presented by for example,
Holthusen et al.,45 Poggenpohl et al.46 and the search for gradient-extended scale-transitions at severe material soft-
ening by Poggenpohl et al.47 In Langenfeld et al.,48 three different regularization concepts for brittle damage are
compared and, in Sprave and Menzel,14 gradient-extensions for anisotropic damage and plasticity at finite strains are
investigated.

Following the search for a reduced and effective gradient-extension, the model should then be incorporated into struc-
tural elements (e.g., Aldakheel et al.,49 Barfusz et al.,50,51 and Kikis et al.52) to avoid locking and be combined with a
multiphysical framework (e.g., Dittmann et al.,53 Sarkar et al.,54 and van der Velden et al.55,56) for holistic production and
process simulations. Furthermore, an incorporation of the reduced gradient-extension into the novel iCANN-framework
of Holthusen et al.57 is aspired.

Outline of the work. In Section 2, the constitutive modeling framework of the anisotropic damage model is elabo-
rated for a general gradient-extension. Then, in Section 3, three specific gradient-extensions are motivated and compared
theoretically. Thereafter, in Section 4, the three gradient-extended models are applied to four structural examples and
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VAN DER VELDEN et al. 3 of 35

compared with respect to the structural responses and the resulting damage patterns. Finally, a conclusion is presented
in Section 5.

Notational conventions. In this work, italic characters a, A denote scalars and zeroth-order tensors and bold-face
italic characters b, B refer to first- and second-order tensors. The operators Div(•) and Grad(•) denote the divergence and
gradient operation of a quantity with respect to the reference configuration. A ⋅ defines the single contraction and a ∶ the
double contraction of two tensors. The time derivative of a quantity is given by ̇(•).

2 CONSTITUTIVE MODELING

In this Section 2, we briefly present the brittle model version of Holthusen et al.23 without specification of its
gradient-extension. The core and novelty part of this article, that is, the choice and comparison of different
gradient-extensions, is discussed in detail in Section 3.

2.1 Strong and weak forms

The gradient-extension in this work is incorporated following the micromorphic approach of Forest38,39 using a nonlocal
micromorphic tuple (see Holthusen et al.23). Thus, the balance of linear momentum, stated in the reference configuration,
reads

Div(FS) + f0 = 0 in Ω0, (1)

FS ⋅ n0 = t0 on Γt0, (2)

u = u′ on Γu0, (3)

and, furthermore, the balance of the micromorphic field reads

Div
(
𝚵0i − 𝚵0e

)
− 𝝃0i

+ 𝝃0e
= 0 in Ω0, (4)(

𝚵0i − 𝚵0e

)
⋅ n0 = 𝝃0c

on Γc0, (5)

d = d
′

on Γd0
(6)

with the primary variables being the displacement u and the nonlocal micromorphic tuple d. Moreover, F denotes the
deformation gradient, S the second Piola-Kirchhoff stress, f0 the mechanical volume forces, n0 the outward normal vector,
t0 the applied mechanical surface tractions, 𝝃0i

and 𝚵0i the internal forces related to the micromorphic tuple and its
gradient, 𝝃0e

and 𝚵0e the micromorphic volume forces, and 𝝃0c
the micromorphic tractions. Boundary conditions for the

primary variables are generally denoted by (•)′. However, since Γd0 = ∅ is employed, for the micromorphic boundary
conditions Γ = Γc0 holds.

Using the test functions 𝛿u and 𝛿d, the strong forms, Equations (1)–(6), are transferred to their corresponding weak
forms under the assumption of a simplified micromorphic balance equation, that is, neglecting external and contact forces
as well as Dirichlet boundary conditions for the micromorphic tuple, resulting in

gu(u,d, 𝛿u) ∶= ∫Ω0

S ∶ 𝛿E dV − ∫Ω0

f0 ⋅ 𝛿u dV − ∫Γt0

t0 ⋅ 𝛿u dA = 0, (7)

gd(u,d, 𝛿d) ∶= ∫Ω0

𝝃0i
⋅ 𝛿d dV + ∫Ω0

𝚵0i ∶ Grad(𝛿d) dV = 0. (8)

Finally, for the linearization and finite element discretization the reader is kindly referred to Holthusen et al.23
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2.2 Kinematics

The constitutive framework is based on logarithmic strains and, thereby, facilitates a physically motivated formulation
of the elastic energy contribution that distinguishes between isochoric and volumetric damage mechanisms in the finite
strain regime considering the damage growth criterion of Wulfinghoff et al.58 Analogously to for example, Miehe et al.,59

the logarithmic strain is defined as

𝜼 ∶= 1
2

ln(C), (9)

where C denotes the right Cauchy–Green deformation tensor.
In contrast to the additive split used in finite strain plasticity, see for example, Holthusen et al.23 for ductile

damage with logarithmic strains, which is only exactly valid for coaxial loadings, the consideration of solely brit-
tle damage does not rely on kinematic approximations and, hence, the framework in this work is geometrically
exact.

2.3 Thermodynamically consistent derivation

The model’s total Helmholtz free energy 𝜓 is additively split into four contributions

𝜓
(
𝜼,D, 𝜉d,d,d,Grad(d)

)
= 𝜓e(𝜼,D) + 𝜓d(𝜉d) + 𝜓h(D) + 𝜓d(d,d,Grad(d)), (10)

where 𝜓e represents the elastic energy depending on the strain 𝜼 and the second-order damage tensor D. Next, 𝜓d repre-
sents the isotropic damage hardening energy depending on the accumulated damage variable 𝜉d. The additional kinematic
damage hardening energy 𝜓h (cf. Hansen and Schreyer60) ensures that the eigenvalues of the damage tensor are limited
to a value of one and that complete failure is described by D = I (see Fassin et al.,19 Fassin et al.,20 and Holthusen et al.23).
Finally, 𝜓d represents the micromorphic energy contribution depending on a general local tuple d ∶= (d1, … , dnd

), a
set of nd local invariants formulated in terms of the damage tensor D, and as a corresponding counterpart the nonlocal
micromorphic tuple d ∶= (d1, … , dnd

) and its gradient Grad(d).
Following a general derivation in this section, the specific forms of the energies are presented in Section 2.4.
The isothermal Clausius–Duhem inequality including the micromorphic extension reads (cf. Forest38,39)

−𝜓̇ + 𝜶 ∶ 𝜼̇ + 𝝃0i
⋅ ̇d + 𝚵0i ∶ Grad( ̇d) ≥ 0, (11)

where the stress power is given in terms of the logarithmic strain rate 𝜼̇ and its thermodynamically conjugate
force 𝜶.

The rate of the Helmholtz free energy, Equation (10), is computed with respect to the rates of its arguments as

𝜓̇ = 𝜕𝜓

𝜕𝜼
∶ 𝜼̇ + 𝜕𝜓

𝜕D
∶ Ḋ + 𝜕𝜓

𝜕𝜉d
𝜉̇d +

𝜕𝜓

𝜕d
⋅ ̇d + 𝜕𝜓

𝜕Grad(d)
∶ Grad( ̇d). (12)

Please note, that the partial derivative of the energy𝜓 with respect to the damage tensor D yields the elastic, the additional
damage hardening and the nonlocal damage driving forces Ye, Yh, and Yd that are defined as

𝜕𝜓

𝜕D
= 𝜕𝜓e

𝜕D
⏟⏟⏟
=∶−Ye

+ 𝜕𝜓h

𝜕D
⏟⏟⏟
=∶Yh

+
𝜕𝜓d

𝜕D
⏟⏟⏟
=∶Yd

=∶ −Y. (13)

In Section 3, we will present and compare the explicit forms of the nonlocal damage driving force Yd, since these differ
for distinct choices of the micromorphic tuple, that is, the gradient-extension, whilst the other damage driving forces Ye
and Yh remain unchanged.
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VAN DER VELDEN et al. 5 of 35

Thereafter, the rates of Equation (12) are inserted into the balance equation, Equation (11), and yield by repositioning(
𝜶 − 𝜕𝜓

𝜕𝜼

)
∶ 𝜼̇ + (Ye − Yh − Yd

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=∶Y

) ∶ Ḋ + Rd 𝜉̇d

+
(
𝝃0i

− 𝜕𝜓

𝜕d

)
⋅ ̇d +

(
𝚵0i −

𝜕𝜓

𝜕Grad(d)

)
∶ Grad( ̇d) ≥ 0.

(14)

State laws. The state laws are obtained by the Coleman and Noll61 procedure and the argumentation of Forest39 as

𝜶 = 𝜕𝜓

𝜕𝜼
, (15)

𝝃0i
= 𝜕𝜓

𝜕d
, (16)

𝚵0i =
𝜕𝜓

𝜕Grad(d)
, (17)

and the reduced dissipation inequality with Rd ∶= −𝜕𝜓∕𝜕𝜉d as

Y ∶ Ḋ + Rd 𝜉̇d ≥ 0. (18)

Evolution equations. For the evolution of the internal variables D and 𝜉d, we define two general convex, zero-valued,
and non-negative inelastic potentials gd1 and gd2 in terms of the driving forces Y and Rd that yield the evolution
equations

Ḋ = 𝛾̇d
𝜕gd1

𝜕Y
, (19)

𝜉̇d = 𝛾̇d
𝜕gd2

𝜕Rd
, (20)

where 𝛾̇d is the damage multiplier which is obtained by satisfying the damage onset criterion Φd(Y,Rd) ≤ 0 in accordance
with the Karush–Kuhn–Tucker conditions

𝛾̇d ≥ 0, Φd ≤ 0, 𝛾̇dΦd = 0. (21)

2.4 Specific forms of Helmholtz free energy, damage onset criterion and inelastic
potentials

Helmholtz free energy. Motivated by for example, Desmorat,18 Badreddine et al.,17 Leukart and Ramm,6 Lemaitre
et al.62 and similar to Simo,63 the elastic energy features a physically motivated split into isochoric and volumetric parts
to account for the evolution of micro cracks and microvoids separately. Moreover, it fulfills the damage growth criterion58

and reads

𝜓e = 𝜇 tr
(
dev(𝜼)2(I − D)

)
𝜗 + fd 𝜇 tr

(
dev(𝜼)2)(1 − 𝜗) + fd

K
2

tr(𝜼)2 (22)

with the isotropic degradation function

fd =
(

1 − tr(D)
3

)ed

, (23)
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6 of 35 VAN DER VELDEN et al.

where 𝜇 denotes the elastic shear modulus, 𝜅 the elastic bulk modulus, 𝜗 the degree of damage anisotropy,
and ed the exponent of the isotropic degradation function. Nonlinear and linear isotropic damage hardening are
incorporated by

𝜓d = rd

(
𝜉d +

exp(−sd 𝜉d) − 1
sd

)
+ 1

2
Hd 𝜉

2
d (24)

with the damage hardening parameters rd, sd and Hd. The additional kinematic damage hardening energy is formulated
in terms of the eigenvalues Di of the damage tensor

𝜓h = Kh

3∑
i=1

⎛⎜⎜⎝−
(1 − Di)

1− 1
nh

1 − 1
nh

− Di +
1

1 − 1
nh

⎞⎟⎟⎠, (25)

where Kh and nh are numerical parameters. The micromorphic energy contribution penalizes the difference
between the components of the local and the nonlocal tuple by the numerical penalty parameters Hi and
incorporates an internal length scale via the gradient of the nonlocal quantity and the materials param-
eters Ai for each component of the micromorphic tuple up to the total number of nonlocal degrees of
freedom nd

𝜓d = 1
2

nd∑
i=1

Hi

(
di − di

)2
+ 1

2

nd∑
i=1

Ai Grad
(

di

)
⋅ Grad

(
di

)
. (26)

Damage onset criterion. The chosen damage onset criterion with damage threshold Y0

Φd ∶=
√

3
√

Y+ ∶ A ∶ Y+ − (Y0 − Rd) ≤ 0 (27)

features the option to include distortional damage hardening with the fourth order interaction tensor A and material
parameter cd

A =
(
(I − D)cd ⊗ (I − D)cd

) 23
T (28)

with the positive semi-definite part of the damage driving force being

Y+ =
3∑

i=1
⟨Yi⟩nY

i ⊗ nY
i , (29)

where ⟨•⟩ = max(•, 0) and nY
i denote the eigenvectors of the damage driving force Y.

Inelastic potentials. The inelastic potential gd1 for the evolution of the damage tensor is chosen in a
pseudo-non-associative structure as

gd1 =
3

2(Y0 − Rd)
Y+ ∶ A ∶ Y+, (30)

where the relation
√

3
√

Y+ ∶ A ∶ Y+ = Y0 − Rd obtained from Equation (27) for a converged state is utilized to avoid
a division by zero in the local iteration (cf. Challamel et al.64 and Holthusen et al.23), when algorithmic differentiation
(e.g., Korelc65 and Korelc and Wriggers66) is employed. However, the absolute value and direction of the evolution are
identical to choosing an associative evolution equation, that is, Ḋ = 𝜕Φd∕𝜕Y. Furthermore, the inelastic potential gd2 for
the evolution of the accumulated damage is chosen linearly as

gd2 = Rd. (31)

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7580 by R
w

th A
achen H

ochschulbibliothek, W
iley O

nline L
ibrary on [15/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VAN DER VELDEN et al. 7 of 35

3 MICROMORPHIC GRADIENT-EXTENSIONS

3.1 Motivation

The novelty of this work lies in the comparison of different gradient-extensions for anisotropic damage with respect to
their efficiency and accuracy. To ensure the comparability of the results, the same local anisotropic damage formulation is
utilized throughout this work and only the choice of the local micromorphic tuple, that is, the selection of local quantities
whose localization is prevented by the gradient-extensions, is adapted. Here, we restrict ourselves to invariant-based
micromorphic tuples of the damage tensor and are, thus, able to study the effect of different nonlocal damage driving
forces.

Other authors, for example, Fassin et al.,19 Fassin et al.,20 and Sprave and Menzel,14 investigated the regularization of
a scalar damage hardening variable. However, as pointed out by Fassin et al.,20 this procedure can violate the differentia-
bility of the damage onset function when employing associative damage evolution by maximizing the dissipation and is,
thus, not considered in this context.

In the following, we present three model formulations (models A, B, and C) with full, using six nonlocal
degrees of freedom, and reduced regularization of the damage tensor, using three and two nonlocal degrees of
freedom.

Full regularization. Initially, we strive for a rigorous regularization, that is, a regularization of all independent com-
ponents, of the damage tensor and, therefore, in model A, all six independent components of the symmetric second order
damage tensor are regularized individually. Thereby, no mesh dependence of any component of the damage tensor is
expected to occur and, furthermore, an accurate reference solution for the reduced regularizations is obtained. A similar
procedure can be found in Langenfeld and Mosler,13 where the six independent components of the integrity tensor are
regularized. However, a full regularization requires six additional nonlocal micromorphic degrees of freedom and, thus,
triples the number of global degrees of freedom compared to the local, purely mechanical problem. Due to this signif-
icant increase in degrees of freedom, we aim to reduce the former and to simultaneously maintain the regularization’s
accuracy.

Reduced principal traces regularization. The idea for the first reduced regularization is based on the unique-
ness of the eigenvalues of the damage tensor. A regularization of the former should, thus, also lead to a proper
regularization of the entire tensor. For the ease of numerical implementation and since the principal traces of the dam-
age tensor can unambiguously determined from its eigenvalues, model B utilizes the reduced micromorphic tuple of
Holthusen et al.23 In this formulation, the micromorphic tuple contains the three principal traces of the damage ten-
sor to each of which a corresponding nonlocal counterpart is introduced. Compared to model A, model B requires
three nonlocal degrees of freedom less, but still doubles the total number of degrees of freedom compared to the
local model.

Reduced volumetric-deviatoric regularization. We, therefore, aim to achieve a further reduction in the
required number of nonlocal degrees of freedom and motivate a regularization of the volumetric and devia-
toric part of the damage tensor based on two nonlocal degrees of freedom. Since isotropic damage yields by
its nature and the sole consideration of microvoids a volumetric damage tensor DI and requires only a sin-
gle nonlocal degree of freedom, we aim to capture the damage anisotropy due to the micro cracks by a reg-
ularization of the deviatoric part of the damage tensor as is has been suggested for investigation in Holthusen
et al.67 A further advantage of model C becomes apparent when considering isotropic damage, since only one
nonlocal degree of freedom is non-zero whereas for model A and B still three nonlocal degrees of freedom are
non-zero.

3.2 Specific micromorphic tuples

To ensure all models’ objectivity, the micromorphic tuples are formulated based on invariants of the damage tensor.
For the micromorphic tuple of model A, we introduce six general structural tensors M1, M2, M3, M4, M5, and M6
that yield

dA = (tr (DM1) , tr (DM2) , tr (DM3) , tr (DM4) , tr (DM5) , tr (DM6)). (32)
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8 of 35 VAN DER VELDEN et al.

Here, the term structural tensor is employed generically for the invariant-based tuple definition and does not refer to
microstructural material characteristics. In order to control the normal and shear components of the damage tensor, we
specify the structural tensors according to the Cartesian basis vectors e1, e2, and e3 as

M1 = e1 ⊗ e1,M2 = e2 ⊗ e2,M3 = e3 ⊗ e3,

M4 = e1 ⊗ e2,M5 = e1 ⊗ e3,M6 = e2 ⊗ e3.
(33)

The micromorphic tuple based on the principal traces of the damage tensor of model B stems from Holthusen et al.23 and
reads

dB =
(
tr (D) , tr

(
D2) , tr (D3)). (34)

Finally, the micromorphic tuple of model C with a split of the damage tensor into volumetric and deviatoric part reads

dC =
(

tr (D)
3

, tr
(
dev(D)2)). (35)

3.3 Explicit nonlocal damage driving forces

Next, we compare the explicit forms of the nonlocal damage driving forces that are derived from Yd = 𝜕𝜓d∕𝜕D. Their
general form depends on the number of elements per micromorphic tuple nd and reads

Yd =
nd∑
i=1

Hi

(
di − di

)
𝜕di

𝜕D
. (36)

The explicit form of the nonlocal damage driving force of model A reads under the consideration of the symmetry of D

YA
d
= H1

(
tr (DM1) − d1

)
sym(M1)

+ H2

(
tr (DM2) − d2

)
sym(M2)

+ H3

(
tr (DM3) − d3

)
sym(M3)

+ H4

(
tr (DM4) − d4

)
sym(M4)

+ H5

(
tr (DM5) − d5

)
sym(M5)

+ H6

(
tr (DM6) − d6

)
sym(M6).

(37)

With 𝜕 tr
(

Di)∕𝜕D = i Di−1, the explicit form for model B reads

YB
d
= H1

(
tr (D) − d1

)
I

+ H2

(
tr
(

D2) − d2

)
2D

+ H3

(
tr
(

D3) − d3

)
3D2.

(38)

And using dev(D) = D − tr(D)∕3 I, the explicit form for model C reads

YC
d
= H1

3

(
tr (D)

3
− d1

)
I

+ H2

(
tr
(
dev(D)2) − d2

)(
2D − 2

3
tr(D)I

)
.

(39)
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VAN DER VELDEN et al. 9 of 35

When comparing the damage driving forces of model A, B, and C, Equations (37)–(39), their different structures are
evident and, thus, also for identical choices of the parameters H1, … , Hnd

and A1, … , And
different model responses are

to be expected.

4 NUMERICAL EXAMPLES

The aim of this section is to study the interesting research question whether an accurate regularization of anisotropic
damage models can efficiently be obtained by a reduced regularization of the damage tensor. Therefore, we investigate
four representative structural examples by utilizing models A, B, and C and are, thus, able to identify the effect of the
gradient-extension with the simulation of the very same boundary value problem with different models. Further, we
can directly compare the accuracy of the reduced regularizations (models B and C) to the reference solution with full
regularization (model A).

The material point behavior of the anisotropic damage model was examined in detail in Holthusen et al.23 to which
we kindly refer the interested reader for further information. The generic material parameters are, unless stated oth-
erwise, adopted from Brepols et al.68 and Holthusen et al.23 and listed in Table 1. For each example, the internal
length scales Ai of models A and C were identified such that the maximum force of the structural response coin-
cided with the one obtained by model B. For the examples in Sections 4.1,4.3, and 4.4, the internal length scales
of model B were chosen in line with Holthusen et al.67 as AB

i = 75 [MPa mm2] and for the example in Section 4.2
in line with Holthusen et al.23 as AB

i = 100 [MPa mm2]. The Taylor series sampling point ah listed in Table 1 is
required for the implementation of the kinematic damage driving force (cf. Holthusen et al.23), but was omitted in
the model presentation in Section 2. In order to avoid snap-backs during the simulation, an artificial viscosity 𝜂v
is utilized. Comprehensive studies in Sections 4.1 and 4.2 confirm that the results are unaffected by the artificial
viscosity for a choice of 𝜂v = 1 [MPa s]. The two-dimensional examples in Sections 4.1,4.2 and 4.4 utilize four-node
quadrilateral plane-strain elements and the three-dimensional example in Section 4.3 utilizes eight-node hexahedral
elements. In all simulations, linear shape functions are employed for the displacement and micromorphic degrees of
freedom.

T A B L E 1 Material and numerical parameters.

Symbol Material parameter Value Unit

𝜇 Elastic shear modulus 55,000 MPa

K Elastic bulk modulus 61666.6 MPa

𝜗 Damage anisotropy 0/1 -

ed Isotropic degradation function exponent 1 -

Y0 Initial damage threshold 2.5 MPa

cd Distortional hardening exponent 1 -

Hd Linear isotropic hardening prefactor 1 MPa

rd Nonlinear isotropic hardening prefactor 5 MPa

sd Nonlinear isotropic hardening scaling factor 100 -

Kh Kinematic hardening prefactor 0.1 MPa

nh Kinematic hardening exponent 2 -

Ai Internal length scales 75–1300 MPa mm2

Symbol Numerical parameter Value Unit

ah Taylor series sampling point 0.999999 -

Hi Micromorphic penalty parameters 104 MPa

𝜂v Artificial viscosity 1 MPa s
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10 of 35 VAN DER VELDEN et al.

The finite element simulations were conducted using the software FEAP,69 new finite element meshes for the example
of Section 4.4 were created with the software HyperMesh,70 and post-processing of the simulations’ results was carried
out with ParaView.71

4.1 Plate with hole specimen

The first example is characterized by a tension dominated loading situation and considers a plate with hole specimen.
This example was, in the context of isotropic damage, previously investigated by for example, Friedlein et al.,72 Sprave
and Menzel,73 Kiefer et al.,74 Brepols et al.,75 and Dimitrijevic and Hackl36 and, for anisotropic damage, by for example,
Sprave and Menzel,14 Langenfeld and Mosler,13 and Fassin et al.20

Figure 1 shows the geometry and the considered boundary value problem. The dimensions read l = 100 [mm]
and r = 50 [mm] with a thickness of 1 [mm]. Due to symmetry, only one quarter of the specimen is mod-
eled in the simulation and the top edge is moved in vertical direction by a prescribed displacement. The
two-dimensional finite element meshes stem from Fassin et al.20 and the mesh with 2039 elements contains
2141 nodes, the mesh with 2651 elements contains 2784 nodes, the mesh with 5302 elements contains 5484
nodes, and the mesh with 14,752 elements contains 15,033 nodes. The internal length scales of model B are cho-
sen as AB

i = 75 [MPa mm2] and the parameters of model A and C are identified as AA
i = 420 [MPa mm2] and

AC
i = 1300 [MPa mm2].

In Figure 2, the normalized force-displacement curves prove mesh convergence for all models already upon
the first refinement with 2651 elements (see Figure 2A–C). Furthermore, Figure 2D provides the direct com-
parison of all models using the finest mesh with 14,752 elements. Model A and C yield an identical structural
response, while the vertical force drop of model B is shifted to the right with uB

0.5 Fmax
= 0.751 [mm] compared to

uA,C
0.5 Fmax

= 0.706 [mm].
Figure 3 shows the damage contour plots at the end of the simulation. For all models, the width of the dam-

age zone of component Dyy is thicker than that of component Dxx, since the specimen is loaded in y-direction.
Models A and C yield coinciding results, whilst for model B, the damage zone for both normal components of
the damage tensor are more pronounced. This observation is consistent with the results of Figure 2D, where,
loosely speaking, the area under the force-displacement curve is larger for model B and, hence, a larger amount
of energy is dissipated in this case, which implies that the corresponding damage zones have to be larger
as well.

The Green-Lagrange strain components at the end of the simulation are presented in Figure 4. The maximum strain
in loading direction yields for model A a value of EA

yy = 6.452 [–], for model B a value of EB
yy = 8.287 [–], and for model C

(A) (B)

F I G U R E 1 Geometry and boundary value problem of the plate with hole specimen. (A) Geometry. (B) Boundary value problem.
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VAN DER VELDEN et al. 11 of 35

(A) (B)

(C) (D)

F I G U R E 2 Mesh convergence studies for the plate with hole specimen and model comparison. The forces are normalized with respect
to the maximum force of the finest mesh (14,752 elements) of model B with Fmax = 5.0767 × 104 [N]. (A) Model A. (B) Model B. (C) Model C.
(D) Model comparison.

a value of EC
yy = 5.747 [–]. The deformed shapes of the specimen and the strain distributions conform for model A and

model C while model B exhibits stronger necking at the inner edges.
Next, we examine the necessity of using an anisotropic damage formulation, here that is, 𝜗 = 1 [–], compared

to an isotropic one, that is, 𝜗 = 0 [–]. Figure 5 shows the force-displacement curves of the plate with hole simu-
lation with the finest mesh (14,752 elements) for all models using the anisotropic and isotropic model formula-
tion. The isotropic damage formulations overestimate the structure’s maximum load bearing capacity (A: +4.18 [%],
B: +4.26 [%], C: +4.58 [%]). Hence, the identification of material parameters based on experimental data requires
the user to consider the differences between isotropic and anisotropic damage models and to design the experi-
ments accordingly. Deviations in the resulting damage contour plots for anisotropic and isotropic damage can also
be observed in Figure 6, where the shape and intensity are clearly nonconforming at the edges of the damage
zone.

Then, we investigate the behavior of the local model formulation without utilizing a gradient-extension, analo-
gously to Fassin et al.,20 in order to ensure that no regularizing effects result from the use of an artificial viscos-
ity. Figure 7 shows the force-displacement curves for different mesh-discretizations and, as clearly indicated by the
enlarged image section, no convergence with respect to the maximum force can be observed upon mesh refinement.
This observation suggests the occurrence of localization in the simulation, which is confirmed by the damage con-
tour plots in Figure 8, where the crack localizes into a single row of elements for each mesh. From the results of
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12 of 35 VAN DER VELDEN et al.

(A) (B) (C)

F I G U R E 3 Contour plots of the normal and shear components of the damage tensor for the plate with hole specimen at the end of the
simulation. (A) Model A. (B) Model B. (C) Model C.

Figures 7 and 8 we can infer that the consideration of a sufficiently small artificial viscosity, here 𝜂v = 1 [N s∕mm2],
does not cure the mesh dependence of the local damage model and, thus, does not interfere with the investigated
regularizations.

Nevertheless, the model’s response is obviously not completely independent of the choice of the artificial viscosity.
Thus, we study the influence of the parameter 𝜂v in Figures 9 and 10 using model C. Figure 9 shows the increasing the
artificial viscosity leads to a less step drop in the force-displacement curve after reaching the maximum peak load and, also,
to a higher residual force after the failure of the specimen. However, the maximum load bearing capacity of the structure
is unaffected by a variation of 𝜂v. Figure 10 shows the difference plots for the components of the damage tensor comparing
the results of using 𝜂v = 1 [N s∕mm2] versus 𝜂v = 2∕4∕10 [N s∕mm2]. Even for an increase of the artificial viscosity by a
factor of ten, the maximum difference for the normal and shear components yields only values of |ΔDxx| = 0.0386 [–],|ΔDyy| = 0.0395 [–], and |ΔDxy| = 0.0015 [–].

These studies have proven the negligible influence of the artificial viscosity on the results of the simulation and justify
its use in the present work to allow for a displacement-driven load control.

For model C, the evolution of the components of the micromorphic tuple and their differences to their local counter-
parts are presented in Figure 11 for the states of crack initiation, crack propagation and failure. Inside and in the vicinity of
the crack, the nonlocal variable d1 that is associated with tr(D)∕3 evolves towards a value of one and the nonlocal variable
d2 that is associated with tr

(
dev(D)2) initially grows, but eventually evolves towards a value of zero. The differences of

the micromorphic tuple’s components and the local tuple’s components is restricted to
(

d1 − d1

)
[–] ∈ [−0.0343, 0.0149]
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VAN DER VELDEN et al. 13 of 35

(A) (B) (C)

F I G U R E 4 Contour plots of the normal and shear components of the Green-Lagrange strain tensor for the plate with hole specimen at
the end of the simulation on the deformed configuration. (A) Model A. (B) Model B. (C) Model C.

and
(

d2 − d2

)
[–] ∈ [−0.0164, 0.0160]. Thus, the choice of the micromorphic penalty parameter Hi = 104 [MPa] ensures

a consistent evolution of the micromorphic and the local tuple.

4.2 Asymmetrically notched specimen

The next example compares the three gradient-extensions for a combined tension and shear loading situation and con-
siders an asymmetrically notched specimen. This example has also been investigated in for example, Friedlein et al.,4
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14 of 35 VAN DER VELDEN et al.

F I G U R E 5 Comparison of the force-displacement curves of the anisotropic and isotropic computation for the plate with hole specimen
(14,752 elements). The forces are normalized with respect to the maximum force of the anisotropic computation of model B with
Fmax = 5.0767 × 104 [N].

(A) (B) (C)

F I G U R E 6 Comparison of the damage contour plots of the anisotropic and isotropic computation for the plate with hole specimen by a
difference plot of the isotropic damage value D compared to the normal components of the anisotropic damage tensor Dxx and Dyy. (A)
Model A. (B) Model B. (C) Model C.

F I G U R E 7 Force-displacement curves for the local damage model without gradient-extension for the plate with hole specimen for
increasing degrees of mesh refinement. The forces are normalized with respect to the maximum force of the nonlocal computation of
model B with Fmax = 5.0767 × 104 [N].
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VAN DER VELDEN et al. 15 of 35

(A) (B) (C) (D)

F I G U R E 8 Damage contour plots for the local anisotropic damage model for the plate with hole specimen captured at position
u∕l × 102 = 0.5 [–] from Figure 7 for different mesh discretizations. The damage values are averaged over all Gauss-points per element. (A)
2039. (B) 2651. (C) 5302. (D) 14,752.

F I G U R E 9 Force-displacement curves for the plate with hole specimen using model C for a variation of the artificial viscosity 𝜂v (mesh
2039). The forces are normalized with respect to the maximum force of 𝜂v = 1 [N s∕mm2] (2039 elements) with Fmax = 5.0920 × 104 [N].

Felder et al.,76 Barfusz et al.,77 Brepols et al.,68 Ambati et al.78 and also in Holthusen et al.,23 where the same boundary
value problem with the same material parameters is solved for model B using an arc-length controlled method yielding
a double snap-back. These results serve in this section as an additional reference solution for model B and confirm the
displacement controlled simulation results using the artificial viscosity.

Figure 12 shows the geometry and the corresponding boundary value problem. The dimensions read h = 36 [mm],
l = 100 [mm], l1 = 40 [mm], l2 = 20 [mm] and r = 5 [mm] with a thickness of 1 [mm]. The two-dimensional finite ele-
ment meshes stem from Felder et al.76 and Holthusen et al.23 and the mesh with 1624 elements contains 1713 nodes,
the mesh with 3592 elements contains 3713 nodes, the mesh with 6651 elements contains 6798 nodes, the mesh
with 9667 elements contains 9833 nodes, the mesh with 12,704 elements contains 12,897 nodes, and the mesh with
13,955 elements contains 14,130 nodes. The internal length scales of model B are chosen, analogously to Holthusen
et al.23 as AB

i = 100 [MPa mm2] and the parameters of model A and C are identified as AA
i = 330 [MPa mm2] and

AC
i = 1100 [MPa mm2].
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16 of 35 VAN DER VELDEN et al.

(A) (B) (C)

F I G U R E 10 Difference plot of the damage contours of the normal and shear components of the damage tensor for the plate with hole
specimen using model C for different values of the artificial viscosity 𝜂v at the end of the simulation of Figure 9. (A) 𝜂v = 1 vs. 2 [N s∕mm2].
(B) 𝜂v = 1 vs. 4 [N s∕mm2]. (C) 𝜂v = 1 vs. 10 [N s∕mm2].

Figure 13 shows the normalized force-displacement curves for the asymmetrically notched specimen and all mod-
els predict the maximum peak force also with the coarsest mesh (1624 elements) accurately. In the post-failure regime,
models A and C show with increasing mesh refinement less deviations from the final solution compared to model B
(see Figure 13A–C). The model comparison in Figure 13D shows that, analogously to the tension dominated example
in Section 4.1, the vertical drop of model B is shifted to the right, that is, uB

0.5 Fmax
= 1.062 [mm] compared to uA

0.5 Fmax
=

0.947 [mm] and uC
0.5 Fmax

= 0.955 [mm].
In Figure 14, the damage contour plots with a zoom to the center of the asymmetrically notched specimen are pre-

sented. All models demonstrate the formation of a shear crack between the notches as well as a more pronounced
evolution of the damage component Dxx, since the x-direction corresponds to the loading direction. With regard to the nor-
mal components of the damage tensor, the results of models A and C differ in shape and intensity compared to model B.
While models A and C yield a sigmoidal crack pattern, model B yields a straight shear crack. Moreover, the total width
of the damage zone for model B is greater than for models A and C, which is in line with the findings of Section 4.1.
When comparing the shear components of the damage tensor, model A yields the evolution of Dxy over a wider spread
area compared to models B and C, but exhibits no distinct peak values at the notches. The smoothed out distribution of
Dxy can result from the strict regularization properties of model A that controls each component of the damage tensor
individually.

The study comparing isotropic and anisotropic damage for the asymmetrically notched specimen is presented in
Figure 15. The force-displacement curves yield also for this example a significant overestimation of the maximum peak
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VAN DER VELDEN et al. 17 of 35

(A) (B) (C)

F I G U R E 11 Contour plots for the evolution of the micromorphic degrees of freedom and their differences to the components of the
local micromorphic tuple for the plate with hole specimen using model C. (A) Initiation. (B) Propagation. (C) Failure.

force when considering only an isotropic damage formulation (A: +4.86 [%], B: +6.00 [%], C: +6.03 [%]) and corroborates
that damage has to be modeled as an anisotropic phenomenon.

Finally, this example serves to compare the displacement driven load control using artificial viscosity to an arc-length
driven load control without artificial viscosity for model B. Figure 16 shows the force-displacement curves for both load
control procedures, where the arc-length controlled reference solution is obtained from Holthusen et al.23 Both procedures
yield the same maximum peak force also for coarse meshes. Then, the displacement driven procedure yields a vertical
drop of the force-displacement curve while the arc-length controlled procedure yields a double snap-back during the
force decrease. Thereafter, the curves again unite and are congruent with each other and, thus, proof that both control
procedures, with and without artificial viscosity, are equally valid.
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18 of 35 VAN DER VELDEN et al.

(A)

(B)

F I G U R E 12 (A) Geometry and (B) boundary value problem of the asymmetrically notched specimen.

(A) (B)

(C) (D)

F I G U R E 13 Mesh convergence studies for the asymmetrically notched specimen and model comparison. The forces are normalized
with respect to the maximum force of the finest mesh (13,955 elements) of model B with Fmax = 3.7959 × 104 [N]. (A) Model A. (B) Model B.
(C) Model C. (D) Model comparison.
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VAN DER VELDEN et al. 19 of 35

(A) (B) (C)

F I G U R E 14 Contour plots of the normal and shear components of the damage tensor for the asymmetrically notched specimen at the
end of the simulation. (A) Model A. (B) Model B. (C) Model C.

F I G U R E 15 Comparison of the anisotropic and isotropic computation for the asymmetrically notched specimen (13,955 elements).
The forces are normalized with respect to the maximum force of the anisotropic computation of model B with Fmax = 3.7959 × 104 [N].
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20 of 35 VAN DER VELDEN et al.

F I G U R E 16 Comparison of the results of model B for the asymmetrically notched specimen obtained by a displacement-controlled
procedure using artificial viscosity and by an arc-length controlled procedure (reference solution from Holthusen et al.23). The forces are
normalized with respect to the maximum force of the computation with the displacement-driven procedure (13,955 elements) with
Fmax = 3.7959 × 104 [N].

(A)

(B)

F I G U R E 17 (A) Geometry and (B) boundary value problem of the three-dimensional tensile specimen.

4.3 Three-dimensional tensile specimen

This example features the failure investigation of a three-dimensional I-shaped tensile specimen with models A,
B, and C. Previously, this example was investigated in Felder et al.76 in the context of thermo-mechanical cou-
pling, in Ambati et al.78 numerically and experimentally, and in Holthusen et al.67 with a ductile formulation of
model B.

Figure 17 shows the geometry and the considered boundary value problem. Due to symmetry, only an eighth of the
original specimen is considered in the simulation. The dimensions read l = 50 [mm], h1 = 10 [mm], h2 = 6.25 [mm], d =
5 [mm], r = 15 [mm] and t = 1.5 [mm]. The three-dimensional finite element meshes stem from Holthusen et al.67 and
the mesh with 580 elements contains 996 nodes, the mesh with 4113 elements contains 5788 nodes, the mesh with 13,660
elements contains 16,998 nodes, and the mesh with 18,510 elements contains 22,908 nodes. The internal length scales of
model B are chosen as AB

i = 75 [MPa mm2] and the parameters of model A and C are identified as AA
i = 180 [MPa mm2]

and AC
i = 680 [MPa mm2]. In the simulation we apply ut = 2 [mm] at the end of the specimen and plot in Figure 18 the

reaction force F over the displacement u at position x = 0 [mm], y = 25 [mm], and z = 0 [mm] (cf. Figure 17B).
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(A) (B)

(C) (D)

F I G U R E 18 Mesh convergence studies for the three-dimensional tensile specimen and model comparison. The forces are normalized
with respect to the maximum force of the finest mesh (18,510 elements) of model B with Fmax = 1.1762 × 104 [N]. The black boxes in (D)
indicate the points of comparison in Figures 19 and 20. (A) Model A. (B) Model B. (C) Model C. (D) Model comparison.

In Figure 18, all models again yield in the force-displacement curves the same maximum peak force also for
coarse mesh discretizations (580 elements). In this example, only models A and C were able to compute con-
verged solutions up to the final loading of ut = 2 [mm]. With model B, no solution could be obtained due to
local convergence problems beyond ut = 0.556 [mm], which corresponds to u = 0.456 [mm] and u∕l × 102 = 0.912 [–]
(see Figure 18B).

The model comparison in Figure 18D shows again an excellent agreement between models A and C, while model B
analogously to the previous Sections 4.1 and 4.2, yields a higher energy dissipation. The points of comparison for the
damage contour plots in Figures 19 and 20 are indicated by the black boxes in Figure 18D.

As already reported in Holthusen et al.,67 the damage tensor component Dyy, that is, the degradation of the plane
perpendicular to the loading direction evolves most pronounced for all models (see Figure 19). And again, the damage
zone of model B spreads furthest and, thus, dissipates the largest amount of energy. Moreover, the contour plots for the
normal components agree well for models A and C.

In Figure 20, the study of the shear components Dxy, a plane parallel to the loading direction, reveals a concentration
at the shoulder of the specimen for all models. The study of the shear components Dxz, that is, the plane perpendicular
to the loading direction, yields a uniform distribution, except for the center of the specimen with model B. The study
of the shear components Dyz, that is, the second plane perpendicular to the loading direction, reveals a localization for
model B at the transition from the fine to the coarse mesh, which cannot be observed for the full regularization with
model A.
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22 of 35 VAN DER VELDEN et al.

(A) (B) (C)

F I G U R E 19 Contour plots of the normal components of the damage tensor for the three-dimensional tensile specimen at the point of
comparison indicated in Figure 18D. (A) Model A. (B) Model B. (C) Model C.

4.4 Smiley specimen

The final example serves for the investigation of a complex combination of normal and shear stress states. Inspired by
Gerke et al.,79 Roth and Mohr,80 Tancogne-Dejean et al.,81 Till and Hackl,82 and Miyauchi,83 we designed a smiley speci-
men where the normal and shear load carrying cross sections are equal. The design, further, features smooth transitions
from arcs to straight lines to avoid stress singularities at these points. Furthermore, this example illustrates the neces-
sity to investigate the eigenvalues of the damage tensor in order to accurately study the degradation of the specimen and,
again, compares the differing results of the isotropic and the anisotropic damage model.
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(A) (B) (C)

F I G U R E 20 Contour plots of the shear components of the damage tensor for the three-dimensional tensile specimen at the point of
comparison indicated in Figure 18D. (A) Model A. (B) Model B. (C) Model C.

Figure 21 shows the geometry and the considered boundary value problem. The dimensions read l = 50 [mm],
l1 = 10 [mm], l2 = 3.5 [mm], l3 = 5 [mm], l4 = 1.5 [mm], l5 = 4.5 [mm], l6 = 2 [mm], l7 = 1 [mm], l8 = 4 [mm], w =
25 [mm], w1 = 10 [mm], w2 = 1 [mm], w3 = 0.5 [mm], w4 = 4.5 [mm], w5 = 2 [mm], r1 = 8 [mm], r2 = 6.5 [mm], r3 =
5 [mm], r4 = 1 [mm], r5 = 2 [mm], and r6 = 4 [mm] with a thickness of 1 [mm]. Due to symmetry, only one half of
the specimen with clamped ends is modeled in the simulation. The two-dimensional finite element mesh with 755
elements contains 862 nodes, the mesh with 2649 elements contains 2845 nodes, the mesh with 7681 elements con-
tains 8011 nodes, and the mesh with 13,013 elements contains 13,428 nodes. The internal length scales of model B
are chosen as AB

i = 75 [MPa mm2] and the parameters of model A and C are identified as AA
i = 220 [MPa mm2] and

AC
i = 790 [MPa mm2].
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(A) (B)

F I G U R E 21 (A) Geometry and (B) boundary value problem of the smiley specimen.

Figure 22 shows the normalized force-displacement curves. In this example, no model obtains convergence with
respect to the maximum peak force using the coarsest mesh (755 elements), only upon mesh refinement this is achieved.
The model comparison in Figure 22D yields a distinct horizontal offset to the right of the vertical drop for model B at
uB

0.5Fmax
∕l × 102 = 1.275 [–]. For this example, a difference in the force drop can also be observed for models A and C with

uA
0.5Fmax

∕l × 102 = 1.008 [–] compared to uC
0.5Fmax

∕l × 102 = 1.045 [–].
The damage contour plots in Figure 23 reveal a tension dominated failure with all models, where model B shows the

largest damage zone. Moreover, models B and C exhibit concentrated peak values for the shear component of the damage
tensor Dxy while model A yields a smooth distribution. In Roth and Mohr,80 a similar geometry is investigated that yields
a shear dominated failure, which differs from the tension dominated failure in this work. Due to our specific design of
the shear smiley specimen with equal cross sections for tension and shear loads, the failure mode cannot be determined
with certainty a priori.

The Green-Lagrange strain components at the end of the simulation are presented in Figure 24. The maximum strain
in loading direction yields for model A a value of EA

yy = 5.1252 [–], for model B a value of EB
yy = 4.9081 [–], and for model C

a value of EC
yy = 4.8018 [–]. The deformed shapes of the specimen and the strain distributions conform for model A,

model B and model C.
For the smiley specimen, we also study the evolution of the components of the damage tensor in Figure 25,

where we restrict ourselves to the presentation of model C. In the initial damage state, the normal component Dxx
evolves equally at the tension and shear load carrying cross sections. In the intermediate damage states, the evolu-
tion of Dxx concentrates in the normal load carrying cross section up to total failure. The evolution of the normal
component Dyy occurs predominantly in the normal load carrying cross section during the entire loading. Finally,
the evolution of the shear component Dxy primarily happens at the inner side of the shear load carrying cross
section.

Next, Figure 26 shows the mesh convergence of the components of the damage tensor, where we again restrict our-
selves to the presentation of model C. As indicated by the force-displacement curves in Figure 22C, differences can be
observed in the damage contour plots obtained with the coarsest mesh (Figure 26A) compared to the results obtained

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7580 by R
w

th A
achen H

ochschulbibliothek, W
iley O

nline L
ibrary on [15/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VAN DER VELDEN et al. 25 of 35

(A) (B)

(C) (D)

F I G U R E 22 Mesh convergence studies for the smiley specimen and model comparison. The forces are normalized with respect to the
maximum force of the finest mesh (13,013 elements) of model B with Fmax = 2.9590 × 103 [N]. (A) Model A. (B) Model B. (C) Model C. (D)
Model comparison.

with the refined meshes (Figure 26B–D). However, the results obtained with the refined meshes hardly deviate and are,
thus, considered converged.

Now, we study the eigenvalues of the damage tensor for model C. Figure 27 shows the first eigenvalue D1 (top)
and second eigenvalue D2 (middle) as well as the scaled normals to the corresponding eigenvectors in the x-y-plane.
These normals are supposed to indicate the orientation and the density of the anisotropic micro cracks. Hence, the
micro cracks associated with the largest eigenvalue D1 are perpendicular to the loading direction and exhibit the high-
est density in the completely damaged zone. Due to the orthogonality of eigenvectors and an in-plane loading, the
micro cracks associated with the second eigenvalue D2 are perpendicular to the micro cracks associated with the first
eigenvalue D1.

Finally, Figure 27 (bottom) shows the difference between the maximum of the normal components Dxx, Dyy, and
Dzz and the largest eigenvalue D1. Evidently, a significant underestimation of the material degradation up to a value of
−0.1926 [–] occurs in the shear load dominated regions, when only considering the normal components of the Cartesian
coordinate system.

The last study is concerned with the comparison of isotropic and anisotropic damage for the smiley spec-
imen. Figure 28 shows the normalized force-displacement curves for the isotropic and anisotropic models and
for all models the isotropic formulation overestimates the maximum peak force (A: +4.52 [%], B: +9.49 [%],
C: +7.65 [%]).
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26 of 35 VAN DER VELDEN et al.

(A) (B) (C)

F I G U R E 23 Contour plots of the normal and shear components of the damage tensor for the smiley specimen at the end of the
simulation. (A) Model A. (B) Model B. (C) Model C.
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(A) (B) (C)

F I G U R E 24 Contour plots of the normal and shear components of the Green-Lagrange strain tensor for the smiley specimen at the
end of the simulation on the deformed configuration. (A) Model A. (B) Model B. (C) Model C.
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(A) (B) (C) (D)

F I G U R E 25 Contour plots of the evolution of the normal and shear components of the damage tensor for the smiley specimen
(model C).

The corresponding isotropic damage contour plots are presented in Figure 29 (top row) and, also for the isotropic
models, total failure occurs in the tension load carrying cross section. However, the absolute difference of the isotropic
damage value to the normals components of the damage tensor for the anisotropic computation (see Figure 29 (middle and
bottom row)) amounts up to 0.4158 [–] for |D − Dxx| and to 0.3293 [–] for |D − Dyy|, which is in line with the observations
in Figure 28.

Last, the absolute difference of the isotropic damage value and the largest eigenvalue of the damage tensor for the
anisotropic calculation for model C is shown in Figure 30. The value of |D − D1| reaches up to 0.1581 [–] and, thus,
underlines the significant difference between isotropic and anisotropic damage.
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(A) (B) (C) (D)

F I G U R E 26 Mesh convergence study of the damage contour plots of the normal and shear components of the damage tensor for the
smiley specimen at the end of the simulation (model C). (A) 755. (B) 2649. (C) 7681. (D) 13,013.

4.5 Summary of the numerical results

The following most important results were obtained for model A (full regularization, six micromorphic degrees of free-
dom), model B (reduced regularization, three micromorphic degrees of freedom), and model C (reduced regularization,
two micromorphic degrees of freedom) in the numerical examples:

• Models A, B and C effectively prevent localization in the structural force-displacement response (Figures 2,13,18, and
22).
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30 of 35 VAN DER VELDEN et al.

F I G U R E 27 Contour plots of the first and second eigenvalue of the damage tensor and of the absolute difference between the
maximum normal component and the first eigenvalue for the smiley specimen at the end of the simulation (model C). The black lines
indicate the scaled normals to the first (top) and second eigenvector (middle) of the damage tensor.

F I G U R E 28 Comparison of the anisotropic and isotropic computation for the smiley specimen (13,013 elements). The forces are
normalized with respect to the maximum force of the anisotropic computation of model B with Fmax = 2.9590 × 103 [N].
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(A) (B) (C)

F I G U R E 29 Contour plots of the isotropic damage value and its absolute difference to the normal components of the damage tensor
for the smiley specimen at the end of the simulation. (A) Model A. (B) Model B. (C) Model C.
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32 of 35 VAN DER VELDEN et al.

F I G U R E 30 Contour plot of the absolute difference between the isotropic damage value and the first eigenvalue of the damage tensor
for the smiley specimen at the end of the simulation (model C).

• Models A and C coincide in the structural response, while model B yields a higher energy dissipation and a horizontal
offset of the vertical force drop to the right for the same maximum peak load (Figures 2D, 13D, 18D, and 22D).

• Models A and C prevent localization of the normal and shear components of the damage tensor (Figures 3A,C,
14A,C, 19A,C, 20A,C, and 23A,C). Model B also prevents localization of the normal components of the damage tensor
(Figures 3B, 14B, 19B, and 23B), but a localization of one shear component occurred in a single example (Figure 20B).

• The damage zones obtained with model B are thicker and, thus, dissipate more energy than the damage zones obtained
with models A and C (Figures 3,14,19, and 23).

• The consideration of isotropic damage continuously yields an overestimation of the structure’s load bearing capacity
(Figures 5,15, and 28).

• The influence of the artificial viscosity on the regularization, the structural response, and the damage distribution is
ruled out (Figures 7–10 and 16).

5 CONCLUSION

This work investigated different gradient-extensions for tensor-valued internal variable based inelastic material mod-
els. Here, we specifically focused on the regularization of anisotropic damage at finite strains through a micromorphic
gradient-extension of the damage driving force. Three different gradient-extensions with full (six micromorphic degrees
of freedom) and reduced regularization (three and two micromorphic degrees of freedom) of the damage tensor were
compared theoretically and numerically in the present study.

A high level of agreement was obtained between the results of the model with full regularization of all six indepen-
dent components of the damage tensor and the model with a reduced regularization of the volumetric and deviatoric
part of the damage tensor, which only utilizes two micromorphic degrees of freedom. Thereby, an efficient, yet effective,
regularization for anisotropic damage at finite strains was identified.

The utilized anisotropic damage model features a flexible formulation that incorporates isotropic, kine-
matic, and distortional damage hardening and fulfills the damage growth criterion for finite strains. There-
fore, it can be considered as a general inelastic local material model of a tensor-valued internal variable based
formulation.

Further investigations should verify the numerical results by experimental validations and could apply the
gradient-extensions to the regularization of other inelastic localizing phenomena. Moreover, the influence of the micro-
morphic internal length scale and penalty parameters should be further investigated with respect to the crack width,
the numerical costs, and the congruence of the micromorphic nonlocal and local tuples. Finally, the capabilities of a
gradient-extension with a single micromorphic degree of freedom could be investigated.
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