

Contents

List of Figures iii

List of Tables iv

List of Listings v

1 Introduction 2

2 Background 4

2.1 JupyterLab . 4

2.1.1 Extensions . 4

2.2 ChatGPT . 5

2.3 The xAPI (Experience API) . 6

2.4 Feedback . 7

2.4.1 Types of feedback . 7

2.5 Analysis tools and tests . 9

3 Related Work 11

3.1 ChatGPT for Educational Feedback and Programming Assistance 11

3.2 Prompt Design and Interaction Patterns 13

3.3 Comparative Studies and Practical Implications 14

3.4 Automated Feedback on Programming Assignments 14

3.5 Jupyter Lab Implementations . 14

4 Research Design 16

4.1 JupyterLab Extension . 16

4.1.1 Prompt Engineering . 17

4.1.2 Hint button . 17

4.1.3 Explain Concepts button . 18

4.1.4 Explain Error button . 18

4.1.5 Improve Code button . 18

4.1.6 Check Code button . 19

4.1.7 Feedback Form . 19

4.2 Juxl integration . 21

4.3 Problem dataset . 21

4.4 Experimental setup . 22

4.4.1 Pre and post questionnaires . 23

4.4.2 Exercise feedback forms . 23

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

i

Contents

4.4.3 Participants . 23

4.4.4 Research Questions . 26

4.4.5 Variables . 26

5 Results and Analysis 27

5.1 Button Usage and Feedback Analysis . 27

5.1.1 Analysis and Discussion . 31

5.2 Time performance . 33

5.2.1 Statistical Analysis - Exercises 1-7 34

5.2.2 Statistical Analysis - Exercises 8-10 35

5.2.3 Discussion . 36

5.3 Self-reported levels of improvement . 37

5.3.1 Students’ view of the exercises . 37

5.3.2 What did students learn by solving the proposed exercise? 43

5.3.3 Pre- and post-survey confidence ratings 45

5.3.4 Feedback from the students . 47

6 Conclusion and Future Work 52

6.0.1 Limitations . 53

6.0.2 Future work . 54

Appendix 54

A Bibliography 55

B Digital Appendix 58

C Use of AI Tools 59

ii Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

List of Figures

2.1 Example of the run button for the tests with the test cells hidden.[4] . . 5

2.2 Example of the test cells[4] . 6

3.1 Example of the hint and rating interaction taken from Roest et al. [20] . 13

3.2 Example from ChatGPT for Jupyter extension [3] 15

4.1 The interface of Jupyter Lab containing the buttons from the extension . 16

4.2 Example of the Feedback form in the context of the notebook 19

4.3 This is an example of an exercise sheet the students have solved 22

4.4 This figure represents whether the users clicked the Finish button. The

green boxes mark that the button was pressed, while the white ones rep-

resent the button was not pressed. The users in the top half of the figure

represent the experimental group, and the bottom half represents the

control group. 24

5.1 Stacked bar chart representing how many times students asked for help

by pressing the buttons. A color represents each button. 28

5.2 Comparison of the buttons with their respective feedback from the students 29

5.3 Comparison of the time students took to solve the first seven exercises

and the last three exercises. 35

5.4 Responses for the question: How do you rate the complexity of the pro-

posed exercise? . 38

5.5 Responses for the question: Do you consider you learned something by

solving the proposed exercise? . 40

5.6 Responses for the question: How would you rate the amount of time it

took you to solve the task as compared to the initial impression? 42

5.7 Responses for the question Rate your current programming skills (1-

5, with 1 being beginner and 5 being expert) 46

5.8 Responses for the question How confident do you feel in your pro-

gramming skills now compared to before? (1-5, with 1 being less

confident and 5 being more confident) 46

5.9 Several responses for questions related to the usage of AI in education . 47

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

iii

List of Tables

2.1 Help buttons descriptions . 8

2.2 Additional events with descriptions . 8

2.3 Classification of feedback components as described in [16] 9

4.1 Buttons association with feedback types 16

4.2 Programming Skills Frequency . 25

4.3 Confidence Level Frequency . 25

4.4 Python Skills Frequency . 26

5.1 Summary of Button Usage and Feedback Forms 28

5.2 Help Buttons Usage Across Exercises . 28

5.3 Hint Button Feedback Ratings . 30

5.4 Error Explanation Button Feedback Ratings 30

5.5 Code Improvement Button Feedback Ratings 30

5.6 Concepts Explanation Button Feedback Ratings 30

5.7 Code Check Button Feedback Ratings . 31

5.8 Highest and Lowest Rating Comparison 31

5.9 Mean Ratings of Exercise Complexity . 37

5.10Shapiro-Wilk and Mann-Whitney U Test p-values 38

5.11Levene’s Test and Interpretations . 39

5.12Mean Ratings for Learning Perception . 40

5.13Shapiro-Wilk and Mann-Whitney U Test p-values 41

5.14Levene’s Test and Interpretation . 41

5.15Mean Ratings of Time Taken Compared to Initial Impression 42

5.16Shapiro-Wilk and Mann-Whitney U Test Results 43

5.17Levene’s Test and Interpretation . 43

iv Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

List of Listings

2.1 Example setup for ChatGPT API call . 6

4.1 Instruction for ChatGPT - Hint Button . 17

4.2 Instruction for ChatGPT - Explain Concepts Button 18

4.3 Instruction for ChatGPT - Explain Error Button 18

4.4 Instruction for ChatGPT - Improve Code Button 18

4.5 Instruction for ChatGPT - Check Code Button 19

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

v

Abstract

This thesis investigates implementing and testing a JupyterLab extension integrated

with ChatGPT (GPT-3.5) to assist students in learning programming. The goal is to

provide timely and comprehensible help while maintaining students’ autonomy and

enhancing their learning experience. The study addresses three research questions:

the effectiveness and frequency of different types of help provided by ChatGPT, the

impact of ChatGPT on time efficiency in completing programming tasks, and the per-

ceived learning improvements among students using ChatGPT. The importance of

this research lies in its potential to bridge gaps in previous studies by integrating

AI-powered feedback systems within educational platforms, thereby enhancing the

learning experience for novice programmers. A controlled experiment was conducted

with a small group of participants over two weeks, collecting data through surveys

and system logs.

The findings reveal that step-by-step guidance and error explanations were the most

effective and frequently used forms of assistance. ChatGPT support notably enhanced

time efficiency when present, but there was no significant difference when the AI as-

sistance was removed. Students in the experimental group perceived more in-depth

learning enhancements than those in the control group. These results indicate that

integrating AI-generated feedback in programming education can boost learning ef-

ficiency and student satisfaction. Future research should fine-tune the types of feed-

back to aid novice students better and explore the impact of AI assistance on the

quality of code produced. This study contributes to the understanding of the role of

AI in education, offering insights into the effective integration of AI tools to support

learning.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

1

Chapter 1 Introduction

In recent technological advancements, using Artificial Intelligence (AI) in daily tasks

has become a usual factor for most people, especially students. The wide availability

of Large Language Models (LLMs) in the forms of OpenAi’s ChatGPT, Codex, and

Github’s Copilot affects the educational landscape, providing students and teachers

with new information, help, and, of course, new challenges. While students rejoice at

the possibility of solving their tasks quicker and with less stress, teachers can’t help

but wonder if this is the right step for them, if this helps students, or if the AI is doing

their homework for them.

Novice stu-

dents’ needs Looking at novice programmers, it is commonly known that they require more help

in grasping the programming concepts and the language they are using, making it a

challenging task for a young student. Learning programming can be a daunting task

for novices, and the role of mentors significantly influences their success or failure.

While motivation and practice are essential, the human factor is vital in cultivating

genuine passion. However, due to the limited availability of teachers and tutors,

students must rely mostly on internet findings and help, such as StackOverflow,

GeeksForGeeks, and, more recently, ChatGPT. Using LLMs for solving programming

homework comes at a price; students won’t get help; they will get their complete

homework solved without learning outcomes. While schools and universities can ban

specific sites internally, they cannot stop students from using these tools to complete

homework quickly.

Research has already started to address this situation, asking questions about

whether LLMs can be used to increase students’ productivity and learning outcomes

while maintaining a healthy learning environment. Novice programmers require con-

stant feedback and guidance, and while teachers are not constantly available, AI can

be a powerful tool that can provide insights about concepts, hints, and constructive

feedback.

In academic settings, especially in Computer Science (CS) courses, one of the most

commonly used tools for homework is JupyterLab. JupyterLab is extensively utilized

for Python programming and data analysis due to its main feature - the ability to work

with Jupyter Notebooks. One advantage of using JupyterLab, and Jupyter Notebooks

in particular, is the absence of the need to install tools such as Python, pip, and various

packages on personal computers, which would add to the challenges the students

would face when trying to solve their homework. Due to these factors, JupyterLab

was the prime candidate for implementing AI features.

2 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

The primary objective of this research was to develop a JupyterLab extension de-

signed to offer timely and comprehensible assistance to students while preserving

their autonomy and facilitating their learning. This extension integrates with Chat-

GPT (GPT-3.5), enabling students to request help for various scenarios and predefined

problems—the subsequent experiment aimed to collect sufficient data to address sev-

eral key research questions.

The following questions guided the research:

Research Question 1: Help Buttons What types of help provided by ChatGPT do

students consider most effective for their learning, and which types are utilized more

frequently versus less frequently?

Research Question 2: Time Efficiency Does the availability of help from ChatGPT

lead to improved time efficiency in completing programming tasks among students,

and do these time efficiency benefits persist in the final set of problems when the help

is no longer available?

Research Question 3: Self-Satisfaction and Learning To what extent do students per-

ceive that they have learned from using the help provided by ChatGPT, and is there a

significant difference in self-reported learning improvements between students who

used ChatGPT and those who did not?

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

3

Chapter 2 Background

This chapter provides a comprehensive overview of the various tools and method-

ologies utilized throughout this thesis, focusing on their application within the given

context. The aim is to familiarize the reader with the foundational technologies and

concepts that underpin the research and development processes discussed later in

the thesis.

2.1 JupyterLab
JupyterLab [5] is an interactive, open-source, web-based environment that enables

users to write and execute code without the need to set up any software on the user’s

machine. In the context of Python programming, JupyterLab provides a favorable en-

vironment for iterative development and experimentation. Users can execute Python

code cells within notebooks, facilitating rapid prototyping and testing of algorithms

and solutions.

What distinguishes JupyterLab is its extendability through customizations and inte-

gration of new features. Through the use of extensions and plugins, users can tailor

the environment to suit specific requirements and workflows. Whether it be integrat-

ing additional programming languages, incorporating specialized visualization tools,

or enhancing collaboration capabilities, JupyterLab’s extensibility empowers users to

adapt the environment to diverse contexts within computer science and beyond.

2.1.1 Extensions

Extensions play a big role in enhancing the functionality and adaptability of Jupyter-

Lab, allowing users to tailor the environment to their specific needs. This section

looks into several extensions used within the context of this thesis, highlighting their

features and applications.

Juxl (JupyterLab xAPI logging interface)

JupyterLab xAPI logging interface (Juxl) extends the functionality of JupyterLab by

offering basic logging features tailored for the integration of Learning Analytics (LA)

into the platform. Comprising four primary packages - juxl, juxt-extension, vocabulary,

and logging - Juxl serves as the core of this extension, defining essential interfaces

for the other packages to implement.[8]

4 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

2.4. Feedback

as ADL (Advanced Distributed Learning) xAPI and Tin Can API. Conventional learn-

ing management systems (LMS) frequently monitor basic performance indicators in-

cluding test scores, course completion rates, and activity completion time. On the

other hand, xAPI broadens this tracking capacity to encompass more learning activi-

ties—both online and offline.

With the use of xAPI, information about a learner’s actions may be gathered from

various sources, including games, virtual reality experiences, simulations, and mobile

learning. The assertions that make up this data are composed of an actor, a verb,

and an object. A Learning Record Store (LRS), which serves as a central location for

keeping and evaluating learning data, can receive these assertions.

One of the main advantages of xAPI is its capacity to offer a more thorough picture of

a learner’s experience across many contexts and platforms, enabling a more accurate

evaluation of the efficacy of learning and customized learning opportunities. It is ex-

tensively used to monitor, assess, and enhance learning experiences in the e-learning,

training, and educational technology industries.

In the context of the thesis, xAPI is used to store information about students’ actions

in the Notebooks. The basic verbs for opening or closing the notebook, or running

code and modifying it are already defined by the Juxl extensions and are automatically

logged when the extension is enabled. Additionally, five new verbs have been added

to log when the students use the help buttons. The five buttons and their usage

description can be found in Table 2.1.

Besides the five events added for button presses, seven more have been added to aid

in the data analysis process. These additional events (found in Table 2.2) related to

the events in Table 2.1 log the response of the LLM for the initial button press. The

decision to have separate events for the initial button press and the response was

made due to the timestamp which is added to each of the events. An important aspect

of feedback is also the time required to wait for it.

2.4 Feedback
When applied skillfully, feedback may be a potent learning intervention. Feedback

has consistently been shown to be effective in raising student learning performance,

according to decades of educational research. Feedback may be divided into two cat-

egories: formative and summative, depending on the delivery time. While formative

feedback is given to students before the assessment findings, summative feedback

is given to students concurrently with the outcomes of the assessment [7]. Across

a wide range of disciplines, formative feedback has consistently been proven to be

more helpful than summative feedback [26].

2.4.1 Types of feedback

Narciss and Huth [17] [16] defined different levels and types of feedback. There are

two types of feedback: simple feedback and elaborated feedback. Simple feedback

does not improve solutions. It provides performance information (Knowledge on Per-

formance - KP), which can be presented as a percentage of correct results; feedback

on correctness (Knowledge of result/response - KR) presented as correct/incorrect ;

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

7

2.4. Feedback

Table 2.1: Help buttons descriptions

Button Name Verb Task Description

Hint helpClicked Help students complete their code

by offering step-by-step informa-

tion.

Explain Concepts explainConceptsClicked Provide additional explanations or

examples related to the require-

ments to help the student under-

stand the problem better. Offer a

list of the programming concepts

that should be used for solving the

problem.

Explain Error explainErrorClicked Based on the code and the existing

error suggest steps to overcome

the problem and guide students in

the logical thinking process.

Check code checkCodeClicked Test the code to ensure correct-

ness based on the requirements.

Identify any potential issues or

edge cases that might not be han-

dled by the current code. Offer

guidance on how to address these

issues.

Improve code improveCodeClicked Suggest improvements or opti-

mizations to align it with the

stated requirements.

Table 2.2: Additional events with descriptions

Button Name Verb Verb Description

helpClickedResponse

explainConceptsClickedResponse

explainErrorClickedResponse Logs the response received from

ChatGPT

checkCodeClickedResponse

improveCodeClickedResponse

Submit and close formSubmitted Logs the students’ feedback re-

lated to a response they have re-

ceived from the LLM

Finish finishClicked Collects and logs all information

related to the notebook in the cur-

rent state.

and lastly Knowledge of the correct result - KCR presented as a description of the

correct result.

A short description of the elaborated feedback components is presented in Table 2.3.

8 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

2.5. Analysis tools and tests

Table 2.3: Classification of feedback components as described in [16]

Category Description

Knowledge about task constraints (KTC) Guides to assist students in navigating the

demands and limitations unique to each

assignment. Task requirements (TR) and

task-processing rules (TPR) hints are two

examples of subtypes.

Knowledge about concepts (KC) Gives information to aid students in com-

prehending the underlying ideas. Exam-

ples illustrating concepts (EXA) and expla-

nations of the subject matter (EXP) are

subtypes.

Knowledge about mistakes (KM) Provides information on the various kinds

of mistakes that students may make. Sub-

types include test failures (TF), compiler

errors (CE), solution errors (SE), style is-

sues (SI), and performance issues (PI).

Knowledge on how to proceed (KH) Helps students make corrections and im-

prove their solutions. Subtypes include

bug-related hints for error correction (EC),

task-processing steps (TPS), and sugges-

tions for improvements (IM).

Knowledge about metacognition (KMC) Contains feedback about the learning pro-

cess.

Hao et. al.[12] found that students who received elaborated feedback (KCR + hint) on

why the test cases failed and hints on how to fix the code outperformed the students

who received only information on what test cases failed (KR).

Using the knowledge about these types of feedback the Feedback LLM extension was

created. Each of the buttons described in Table 2.1 is related to at least one type

of elaborated feedback in Table 2.3. More information on this will be presented in

chapter 4.

2.5 Analysis tools and tests
The acquired data were analyzed using Python, employing several statistical tests to

determine normality, homogeneity, and significance.

To assess the normality of the data, the Shapiro-Wilk test was performed. This test

evaluates whether a sample comes from a normally distributed population, with the

null hypothesis being that the data is normally distributed. A p-value greater than

0.05 suggests that the data is normally distributed, while a p-value less than 0.05

indicates that the data is not normally distributed, leading to the rejection of the null

hypothesis.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

9

2.5. Analysis tools and tests

In cases where the data was not normally distributed, the Mann-Whitney U test was

used to determine if there was a statistical difference between the two groups. This

non-parametric test is suitable when the data does not follow a normal distribution. It

tests the null hypothesis that there is no difference between the two groups, providing

a U-value and a p-value. A p-value greater than 0.05 indicates no significant difference

between the groups, while a p-value less than 0.05 suggests a significant difference.

The U-value, or Mann-Whitney U statistic, indicates the likelihood of the observed

result occurring by chance; a smaller U-value implies a lower probability of the result

being due to chance.

For normally distributed data with similar variances, the Independent T-test was uti-

lized to compare the means of the two groups. This test also follows the same p-value

interpretation as the Mann-Whitney U test, where a p-value greater than 0.05 sug-

gests no significant difference and a p-value less than 0.05 indicates a significant

difference between the groups.

To assess the equality of variances between the two groups, Levene’s test was con-

ducted. This test evaluates the null hypothesis that the variances of the samples are

equal. If the test shows that variances are similar, it supports the use of parametric

tests like the Independent T-test for further analysis.

10 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

Chapter 3 Related Work

The integration of ChatGPT and other large language models (LLMs) in educational

contexts has garnered significant attention in recent years, particularly for their po-

tential to support novice programmers in learning and problem-solving tasks. This

section reviews the relevant literature, highlighting key findings and contributions

from recent studies.

3.1 ChatGPT for Educational Feedback and

Programming Assistance
The feasibility of using ChatGPT to provide feedback on student assignments has been

a subject of interest among researchers. Dai et al. [10] conducted a study to evaluate

the readability, alignment with instructor feedback, and effectiveness of ChatGPT-

generated feedback in enhancing student learning. Their results indicate that Chat-

GPT is capable of producing detailed and coherent feedback that aligns well with

instructor assessments. This suggests that ChatGPT could be a valuable tool to sup-

plement traditional feedback mechanisms, potentially improving the scalability and

consistency of educational feedback.

In another study, MacNeil et al. [15] explored the use of GPT-3 for generating expla-

nations of programming code. Through practical application and feedback from stu-

dents and educators, they assessed the effectiveness and challenges associated with

AI-generated explanations. The findings reveal that while GPT-3 can enhance under-

standing and provide valuable learning aids, there are notable challenges regarding

the accuracy and relevance of the explanations. The study offers recommendations

for integrating AI tools into programming education, emphasizing the potential bene-

fits and limitations of such technologies.

The study by Kiesler et al. [13] investigates the effectiveness of using ChatGPT to

provide feedback on introductory programming tasks. The researchers used student

submissions from a CS1 course as input for ChatGPT and analyzed the feedback gen-

erated. They aimed to explore how ChatGPT responds to students seeking help with

their programming tasks and to identify the types of feedback provided. The study

found that ChatGPT can generate useful feedback, including textual explanations of

errors and suggested fixes, which can benefit students in understanding and correct-

ing their code. However, the study also highlighted that ChatGPT’s feedback could

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

11

3.1. ChatGPT for Educational Feedback and Programming Assistance

be misleading at times, and its effectiveness varied depending on the task. The re-

searchers concluded that while LLMs like ChatGPT show promise in providing auto-

mated feedback, there is a need for careful integration and guidance to ensure the

feedback is reliable and beneficial for novice programmers.

Further advancing the application of LLMs in education, Sarsa et al. [22] focused

on the automatic generation of programming exercises and code explanations using

OpenAI Codex. Their work demonstrates the ability of Codex to generate meaningful

programming exercises and accurate code explanations, which can be utilized as ed-

ucational resources. They emphasize the potential of AI-driven tools to create diverse

and effective learning materials for introductory programming courses, highlighting

the capacity of such tools to enhance the educational experience for novice program-

mers.

Roest et al. [20] explore the application of large language models (LLMs) to generate

next-step hints for students in introductory programming courses. The study focuses

on the effectiveness of these LLM-generated hints in guiding students through pro-

gramming tasks and compares the results with traditional data-driven hint generation

methods.

The authors developed a dataset comprising sequences of steps that novice students

typically take when solving programming problems. Using this dataset, they engi-

neered prompts for generating next-step hints with LLMs, specifically utilizing Ope-

nAI’s GPT-3.5-turbo model. The workflow involved creating prompts that included a

problem description and relevant context, enabling the LLMs to generate coherent

and contextually appropriate next-step hints for the students.

The evaluation of the generated hints revealed several key findings. The LLM-

generated hints were found to be effective in helping students progress through pro-

gramming tasks. Students were able to use the hints to understand the next steps

in their problem-solving process, which facilitated learning and task completion. The

evaluation of the answers was provided by students through a feedback form for each

of the interactions (see 3.1).The study compared LLM-generated hints with those gen-

erated by traditional data-driven methods. It was observed that LLMs provided more

nuanced and contextually relevant hints, potentially due to their extensive training

on diverse datasets. Similar to findings in other studies [18], the potential for over-

reliance on LLM-generated hints was noted. Students might become dependent on

these hints, which could hinder the development of their independent problem-solving

skills. While the hints were generally helpful, there were instances where the LLMs

provided incorrect or misleading information. This highlights the importance of in-

corporating validation mechanisms to ensure the quality and accuracy of the hints

provided.

12 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

3.3. Comparative Studies and Practical Implications

3.3 Comparative Studies and Practical Implications
Empirical studies have been conducted to evaluate the practical applications and lim-

itations of ChatGPT as a programming assistant. Tian et al. [24] conducted an exten-

sive evaluation of ChatGPT’s potential as a fully automated programming assistant.

Their research focuses on tasks such as code generation, program repair, and code

summarization. The findings indicate that ChatGPT performs comparably to state-of-

the-art approaches in these areas, providing valuable insights into its practical appli-

cations. However, the study also highlights the need for further research to address

current limitations and enhance the capabilities of ChatGPT. These findings suggest

that while ChatGPT holds promise as a programming assistant, continuous improve-

ment and adaptation are necessary to fully realize its potential.

3.4 Automated Feedback on Programming

Assignments
A study by Pankiewicz and Baker [18] investigated the use of large language models

(LLMs) like GPT to automate feedback on programming assignments. Their research

focused on assessing the impact of GPT-generated hints on students’ performance

in solving C# tasks. The study found that the experimental group, which received

GPT-generated hints, demonstrated a significantly higher success rate in completing

tasks compared to the control group. Additionally, the experimental group showed

improved efficiency, taking less time to solve tasks without hints due to the additional

information provided previously.

However, the study also noted a potential downside: students might rely too heavily

on GPT-generated feedback when facing complex tasks they do not fully understand.

This observation underscores the need for balanced use of AI tools in education, en-

suring that they complement rather than replace the learning process.

3.5 Jupyter Lab Implementations
There are several Jupyter Lab implementations that provide access to GPT models.

ChatGPT for Jupyter [3] is a browser extension designed to enhance the functionality

of Jupyter Notebooks by integrating various AI helper features powered by ChatGPT

and GPT-4. This extension aims to assist users in several programming tasks directly

within the Jupyter environment.

The primary functions of the ChatGPT Jupyter Extension include (see 3.2): Format :

Automatically add comments, docstrings, and formatting to code cells, improving

code readability and documentation; Explain: Provide explanations of code cell con-

tent in a simple, easy-to-understand manner; Debug: Assist in debugging by analyzing

error messages and suggesting possible fixes; Complete: Help complete code snip-

pets, reducing the time and effort required to write code from scratch; Review: Offer

code reviews, highlighting potential improvements and ensuring code quality.

14 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

4.1. JupyterLab Extension

4.1.1 Prompt Engineering

Following the example prompts recent studies used ([20], [18]), an incipient phase

of the experiment included prompt engineering. The main focus of this task was

finding prompts that can produce helpful responses, delivered in a structured manner,

and most importantly, do not include code that can solve the problem. As a starting

point, the prompts used in the ChatGPT for Jupyter extension [3] were tested and

modified according to the project’s needs. The structure of the prompts and the name

of the cells were kept the same for ease of use. The prompt includes the following

components: a guidelines text containing the prompt instructions; the requirements

text containing the problem statement from the notebook - also referred to as the

requirement cell in the prompt; a template text which can contain the template cell

if any is provided; the student code text which contains the students’ code - also

referred to as the focal cell; the language in which the response is expected (in this

case English - but can be modified for future use); and lastly the generated error in

case there is one, a requirement for the error explanation part.

4.1.2 Hint button

The "Hint" button (see Listing 4.1) is a key feature designed to support students in

their Python programming tasks. When used, it provides step-by-step explanations

and clear guidance to help students complete their code in the focal cell (the area

where students enter their work). This assistance is tailored to meet the require-

ments specified in the requirement cell and considers the provided template cell.

Notably, the button’s responses do not include any actual code, complete solutions,

or code snippets. Instead, it focuses on guiding students’ learning process and im-

proving their problem-solving skills. The explanations conclude with a list of relevant

programming concepts from the requirement cell, ensuring students understand the

key ideas to solve the problem.

1 '**Role: You are a programming teacher specializing in Python. You know all the

programming concepts and functions in Python.\n Your primary goal is to help the

student complete code in the FOCAL CELL by providing step-by-step explanations and

clear guidance. \n Do not, under any circumstances, provide code snippets, complete

solutions, or code-related content.\n Your assistance should align with the

REQUIREMENT CELL and take the TEMPLATE CELL into account. \n It is crucial to

ensure that the code in the FOCAL CELL is compliant with the requirements.**\n\n

Key Guidelines for Your Explanations: \n\n - Deliver responses in [Selected

Language].\n - Explicitly, DO NOT share any actual code, full solutions, or code

snippets.\n - The REQUIREMENT CELL describes the problem the user has to solve. The

TEMPLATE CELL provides the user with a template for their code. The FOCAL CELL is

what the user has coded until now.\n - If the FOCAL CELL is empty the user requires

more explanation of the REQUIREMENT CELL.\n - If the code in the FOCAL CELL does

not solve the requirement provide the user with explanations to improve the code,

do not provide code.\n - Test the code in the FOCAL CELL to check corectness.\n -

DO NOT provide example implementations.\n - Your objective is to guide the student

\'s learning and problem-solving process.\n - After providing the response end the

conversation with a list of the programming concepts that should be used for

solving the problem. Take the information form the REQUIREMENT CELL.'

Listing 4.1: Instruction for ChatGPT - Hint Button

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

17

4.1. JupyterLab Extension

4.1.3 Explain Concepts button

The "Explain Concepts" button (see Listing 4.2) is designed to assist students in un-

derstanding Python programming requirements. When activated, it provides detailed

explanations and examples related to the requirements specified in the task without

presenting actual code. This feature is particularly useful if the focal cell is empty, in-

dicating that the student might need more clarification. The responses generated by

this button end with a list of fundamental programming concepts that should be used

to solve the problem, ensuring that students receive clear and relevant guidance.

1 '**Role**: You are a programming teacher specializing in Python. If the FOCAL CELL

is empty, the student might need more clarification on the REQUIREMENT CELL.

Provide additional explanations or examples related to the requirements to help the

student understand the problem better without presenting actual code. Remember to

end each interaction with a list of the programming concepts that should be used

for solving the problem, as specified in the REQUIREMENT CELL. This ensures that

the student has clear guidance on the key concepts relevant to the task. Deliver

responses in [Selected Language].';

Listing 4.2: Instruction for ChatGPT - Explain Concepts Button

4.1.4 Explain Error button

The "Explain Error" button (see Listing 4.3) is designed to help students understand

and resolve errors in their Python code. When pressed, it reviews the code in the

focal cell and the error message provided in the generated error. Based on this in-

formation and the requirements outlined in the requirement cell, the button offers a

clear explanation of the problems encountered and suggests steps to address them.

Importantly, it does so without providing any actual code, focusing instead on guiding

the student’s learning and problem-solving process. The explanations are delivered

in the selected language, ensuring clarity and comprehension.

1 '**Role**: You are a programming teacher specializing in Python. Review the code in

the FOCAL CELL. The error generated by the compiler is in GENERATED ERROR. Based

on the REQUIREMENT CELL and the GENERATED ERROR, clearly explain the problems and

suggest steps to address them without providing code.Your objective is to guide the

student\'s learning and problem-solving process. Deliver responses in [Selected

Language].';

Listing 4.3: Instruction for ChatGPT - Explain Error Button

4.1.5 Improve Code button

The "Improve Code" button (see Listing 4.4) is intended to help students enhance

and optimize their Python code. When activated, it examines the code in the focal

cell and suggests improvements or optimizations to meet better the requirements

outlined in the requirement cell. The button provides clear and detailed explanations

for each proposed improvement, focusing on guiding the student’s understanding and

skills without presenting any actual code. The responses are delivered in the selected

language, ensuring the student comprehends the guidance provided.

18 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

4.1. JupyterLab Extension

feedback form (see Figure 4.2). This form is designed to gather the student’s feedback

on the response received from the API.

The feedback form includes three main questions that require responses. These

questions aim to evaluate the assistance’s clarity, usefulness, and relevance. Along

with these questions, the form has two additional fields for detailed feedback. One

field asks for any additional comments or suggestions the student might have, and

the other field inquires whether the assistance included any solution code, which is

against the intended guidelines.

It is important to note that the AI model may occasionally disregard the guidelines

and provide code to solve the problem. This can undermine the learning process, as

the goal is to guide students without directly giving away the answers.Evaluation

criteria The specific questions on the feedback form will be discussed further. The motivation

for using the three questions "The hint is clear", "The hint fits my work" and "The hint

is helpful" in the study is grounded in the necessity to evaluate the effectiveness of

AI-generated hints in educational settings comprehensively. These questions target

distinct yet interconnected feedback quality aspects crucial for effective learning and

teaching. These questions were used in a study [20] to gather comprehensive feed-

back from students, ensuring that the hints provided were understandable, contextu-

ally appropriate, and practically applicable. The findings underscore the importance

of clarity, relevance, and helpfulness in educational feedback, guiding my research to

adopt these criteria for evaluating AI-generated hints.

Clarity Evaluating whether "The hint is clear" is essential because clarity directly

impacts a student’s ability to understand and act upon the guidance provided. If

hints are unclear, students may become confused, leading to frustration and a lack of

progress. Clear hints ensure that students can follow the instructions and make the

necessary corrections or improvements to their work. This feedback aspect is critical

for fostering an effective learning environment, as previous research on educational

technologies and AI feedback mechanisms highlighted.

Relevance Assessing whether "The hint fits my work" is vital to determine the con-

textual appropriateness of the feedback. A hint relevant to the specific task or prob-

lem at hand ensures that the advice is applicable and practical. Irrelevant hints can

mislead students and waste valuable time. By ensuring that feedback is tailored to the

student’s current work, educators can enhance the learning experience and support

more targeted learning outcomes. This focus on relevance is supported by studies

on adaptive learning technologies, which emphasize the importance of contextually

appropriate feedback.

Helpfulness The question "The hint is helpful" encompasses the overall utility of the

feedback. Helpfulness integrates aspects of clarity and relevance while also consid-

ering the practical benefits of the hint in aiding the student’s progress. A helpful

hint not only guides the student towards the correct solution but also supports their

understanding and retention of the underlying concepts. This holistic measure of

feedback effectiveness is crucial for evaluating the impact of AI-generated hints on

learning outcomes and student satisfaction.

Feedback

evaluation

20 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

4.2. Juxl integration

The use of a 5-point Likert scale for evaluating the questions is motivated by several

key advantages that this method offers in educational research. Firstly, Likert scales

provide a straightforward and reliable way to measure attitudes and perceptions,

allowing for nuanced responses beyond a simple binary yes/no answer [14]. This

granularity helps capture varying degrees of agreement or disagreement, which is

essential for understanding subtle differences in student feedback. Secondly, the 5-

point scale balances simplicity and depth, making it easy for respondents to use while

still offering enough range to differentiate between different levels of satisfaction and

clarity [11]. Thirdly, using a 5-point scale facilitates statistical analysis, enabling the

application of various quantitative methods to assess the effectiveness of the hints

provided by AI. An image representation of the survey form can be seen in Figure 4.2.

4.2 Juxl integration
As previously discussed in subsection 2.1.1, several additional extensions have been

utilized. The Juxl extension has been employed to track and log modifications in the

notebooks, while the Juxl Cut extension has been employed to add test cases to the

code cells where students write their code. Juxl extension has been configured to save

the xAPI statements into a Learning Locker [21].

4.3 Problem dataset
Several problems from the CodeBench dataset [2] were utilized in this research. De-

veloped by the Institute of Computing at the Federal University of Amazonas, Brazil,

this dataset comprises a comprehensive collection of logs from CS1 students’ pro-

gramming activities spanning from 2016 to 2023. Detailed records of students’ inter-

actions with programming exercises, including code submissions and modifications,

are included. This dataset provided diverse problems on topics, including strings,

lists, and mathematical questions.

Ten worksheets were devised for the experiment, each focusing on a single problem.

Each worksheet adhered to the following structure, as illustrated in Figure 4.3:

1. Problem statement: This section provided a clear problem statement and a hy-

perlink to access a feedback form dedicated to resolving the specific problem

(elaborated in subsection 4.4.2). Additionally, each problem statement included

an illustrative example to assist students in testing their code.

2. Code cell: This section contained a predefined function name and its parame-

ters, offering a starting point for students to work on the problem.

3. Test cells: These cells, although concealed from the students, served as a mech-

anism for assessing the correctness of their code.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

21

4.4. Experimental setup

4.4.1 Pre and post questionnaires
Pre-

questionnaireThe pre-questionnaire employed in this research aimed to gather comprehensive in-

sights into the participants’ experiences and attitudes toward learning Python pro-

gramming. Key questions included rating the clarity, relevance, and helpfulness of

the hints provided by the AI using a 5-point Likert scale. Participants were asked

to evaluate their confidence in solving programming tasks, proficiency with Python,

and familiarity with online programming resources. Additionally, the survey explored

their perceptions of AI in education, their motivations for learning programming, and

their satisfaction with traditional learning tools. This structured approach thoroughly

assessed the participants’ learning processes and the effectiveness of AI-generated

hints. Post-

questionnaireTwo distinct post-surveys were administered to evaluate participants’ experiences

in both the experimental and control groups. The participants in the experimental

group, who received AI-generated feedback during their programming tasks, were

asked to provide detailed feedback on the AI assistance they received. They were

prompted to assess the effectiveness, helpfulness, and clarity of the AI-generated

feedback, as well as its impact on their confidence and understanding of program-

ming concepts. Additionally, they were asked to compare the AI feedback to human

instructor feedback and other learning resources they have used.

In contrast, the control group participants, who did not receive AI-generated feed-

back, were asked to describe their overall experience with the programming tasks.

They rated their confidence in programming skills before and after the tasks, their

preference for receiving feedback in future programming tasks, and their perceptions

of incorporating AI-generated feedback into formal education.

4.4.2 Exercise feedback forms

After each of the ten exercises and the initial pretest, participants were required to

complete an exercise feedback form to evaluate their experiences. This form asked

participants to identify the exercise they were reviewing and to provide their thoughts

on the proposed exercise. They rated the complexity of the exercise on a scale from

"very easy" to "very hard" and assessed whether they learned something from solving

the exercise. Additionally, participants compared the actual time taken to solve the

exercise with their initial expectations. They were also encouraged to provide quali-

tative feedback on the content and their overall experience. This structured feedback

aimed to gather detailed insights into the participants’ learning processes and the

effectiveness of the exercises.

4.4.3 Participants

A cohort of 30 subjects was initially recruited for this experiment. However, 8 par-

ticipants withdrew, resulting in a final sample size of 22 participants. Before the

commencement of the experiment, participants were randomly assigned to either the

control group or the experimental group. Each participant was assigned a unique

identifier in the format ’user_xxxx,’ where ’x’ represents a digit. To ensure compara-

ble conditions, all participants were from the same class at the Technical University

of Cluj-Napoca, possessing similar backgrounds and knowledge levels.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

23

4.4. Experimental setup

The study had 14 male participants and eight female participants, with a median age

of 19 years old, studying for a Computer Science bachelor’s degree. All participants

indicated that they frequently use technology for learning.

From the self-reported levels of skills and confidence, the following can be reported:

Programming Skills Participants were asked to rate their programming skills on a

scale from 1 to 5, with 1 being beginner and 5 being expert. The distribution of

responses is shown in Table 4.2. One person reported their programming skills as

beginner, five reported their skills as a lower intermediate, eleven reported interme-

diate skills and five upper intermediate, while none of them reported their skills as

expert.

Rating Frequency

1 (Beginner) 1

2 5

3 11

4 5

5 (Expert) 0

Table 4.2: Programming Skills Frequency

Confidence Level Participants rated their confidence in solving programming tasks

independently on a scale from 1 to 5, with one being not confident and 5 being very

confident. The distribution of responses is shown in Table 4.3. On a confidence level,

one person reported lower confidence, eleven reported medium confidence in solving

tasks independently, eight of them reported a higher lever of confidence and two

reported as being very confident.

Rating Frequency

1 (Not Confident) 0

2 1

3 11

4 8

5 (Very Confident) 2

Table 4.3: Confidence Level Frequency

Python Skills Participants rated their programming skills with Python on a scale

from 1 to 5, with 1 having no experience and 5 being expert. The distribution of

responses is shown in Table 4.4. When it comes to rating their Python programming

skills, more than half (14 participants) reported having no experience, seven reported

a little experience and one of them reported high skills.

Overall, the data suggests that while participants have general programming experi-

ence and moderate confidence in their abilities, there is a clear need for improvement

in Python-specific skills. This indicates that future training programs should empha-

size Python proficiency to better equip participants for related tasks.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

25

4.4. Experimental setup

Rating Frequency

1 (No Experience) 14

2 7

3 0

4 1

5 (Expert) 0

Table 4.4: Python Skills Frequency

4.4.4 Research Questions

This thesis aims to explore the effectiveness of using ChatGPT as a helper tool for

novice programmers to enhance their learning outcomes. The following research

questions guide the research:

Research Question 1: Help Buttons What types of help provided by ChatGPT do

students consider most effective for their learning, and which types are utilized more

frequently versus less frequently?

Research Question 2: Time Efficiency Does the availability of help from ChatGPT

lead to improved time efficiency in completing programming tasks among students,

and do these time efficiency benefits persist in the final set of problems when the help

is no longer available?

Research Question 3: Self-Satisfaction and Learning To what extent do students per-

ceive that they have learned from using the help provided by ChatGPT, and is there a

significant difference in self-reported learning improvements between students who

used ChatGPT and those who did not?

4.4.5 Variables

The study investigates several variables to understand the impact of using ChatGPT

on programming education. The independent variable is the use of ChatGPT, which

is enabled for the experimental group and disabled for the control group.

The dependent variables include the task completion time, which is used to as-

sess efficiency, and satisfaction with ChatGPT as a learning tool, which measures the

users’ contentment with the tool. Additionally, the confidence level of participants

is measured both before and after the experiment to assess changes in self-efficacy.

Programming skills are also evaluated through ratings to determine the skill levels of

participants before and after the experiment.

Control variables are included to ensure the comparability and validity of the re-

sults. These control variables consist of participant demographics such as age, gen-

der, and educational background. Furthermore, the field of study is controlled by

ensuring that all participants come from similar academic backgrounds, which helps

to manage variability in programming knowledge.

26 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

Chapter 5 Results and Analysis

This chapter presents the findings from the study, which aimed to evaluate ChatGPT’s

effectiveness as a helper tool for novice programmers. The analysis covers various

aspects, including the usage patterns of help buttons, task completion times, cor-

rectness of solutions, self-reported satisfaction, and learning outcomes. section 5.1

presents the analysis of the button usage and received feedback. section 5.2 presents

the findings related to the time component of the experiment, providing insights into

the completion times of the students as well as statistical analysis and discussion.

Lastly, section 5.3 dives into the students’ perception of their abilities and newly

gained knowledge.

The data comprises metrics such as button presses and feedback forms. Participants

interacted with different help features, such as the Hint, Explain Error, Improve Code,

Explain Concepts, and Check Code buttons. The frequency and distribution of these

interactions provide insights into the preferred types of assistance and their perceived

usefulness.

Performance differences between the experimental group, which had access to Chat-

GPT assistance, and the control group, which did not, are examined. Metrics such

as task completion time, correctness of solutions, and self-reported confidence lev-

els are analyzed to understand the impact of AI assistance on learning efficiency and

outcomes.

Feedback on the AI tools, including satisfaction levels and qualitative comments, is

analyzed to assess the overall user experience and identify areas for improvement.

This section provides a detailed account of the findings and their implications for

using AI in educational settings.

5.1 Button Usage and Feedback Analysis
This section will analyze the usage patterns of help buttons and the feedback provided

for the AI assistance features. In the Table 5.1 and Table 5.2, the mapping of button

usage is done by button type and by exercise. Out of 88 button presses, only 65

feedback forms were submitted by the students.

Some students had a higher preference for some buttons than others; the Check Code

button was used the most with a number of 30 presses, second the Hint button with

22 presses, and third the Explain Error button with 21 presses. The least used are the

Improve Code button, which has 11 presses, and the Explain Concepts button, which

has 4 presses. Figure 5.1 is a stacked bar chart representing the usage of each button

across the students. Some students used the available help, with uses over 16, and

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

27

5.1. Button Usage and Feedback Analysis

Rating Criteria Average Rating

The hint is clear 4.2

The hint is helpful 3.53

The hint fits my work 3.87

Total Average Rating 3.87

Table 5.3: Hint Button Feedback Ratings

Rating Criteria Average Rating

The hint is clear 4.23

The hint is helpful 3.83

The hint fits my work 3.69

Total Average Rating 3.92

Table 5.4: Error Explanation Button Feedback Ratings

Code Improvement button feedback: Table 5.5 The Code Improvement button re-

ceived the lowest ratings across all criteria. Comments revealed dissatisfaction with

incorrect or unhelpful hints, though positive feedback was given when the advice

improved code quality and encouraged thinking beyond the provided examples.

Rating Criteria Average Rating

The hint is clear 4.14

The hint is helpful 3.0

The hint fits my work 2.86

Total Average Rating 3.33

Table 5.5: Code Improvement Button Feedback Ratings

Concepts Explanation button feedback: Table 5.6 The Concepts Explanation button

received consistently high ratings across all criteria. Students found the explanations

helpful in understanding problem requirements clearly.

Rating Criteria Average Rating

The hint is clear 4.0

The hint is helpful 4.0

The hint fits my work 4.0

Total Average Rating 4.0

Table 5.6: Concepts Explanation Button Feedback Ratings

Code Check button feedback: Table 5.7 The Code Check button received the highest

ratings for clarity and helpfulness. Comments indicate it often suggested aspects be-

yond the problem requirements, which was seen as helpful for considering additional

edge cases. Specific praise was given for aiding in understanding method functional-

ities, such as deleting the last character from a string.

30 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

5.1. Button Usage and Feedback Analysis

Rating Criteria Average Rating

The hint is clear 4.64

The hint is helpful 4.05

The hint fits my work 3.95

Total Average Rating 4.21

Table 5.7: Code Check Button Feedback Ratings

Rating Criteria Highest Rating Lowest Rating

The hint is clear 4.64 (Code Check) 4.0 (Concepts Explanation)

The hint is helpful 4.05 (Code Check) 3.0 (Code Improvement)

The hint fits my work 4.0 (Concepts Explanation) 2.86 (Code Improvement)

Table 5.8: Highest and Lowest Rating Comparison

One aspect of the Code Check type of help worth mentioning is that the students found

it very helpful because it provided them with corner cases to address to improve their

code and make it more error-proof.

Additional Insights:

• Edge Case Considerations: Positive feedback often correlated with hints that

prompted students to consider edge cases, enhancing their problem-solving

skills.

• Syntax and Implementation Details: Requests for more detailed syntax and im-

plementation guidance suggest that students value specific, actionable feedback

over general advice.

5.1.1 Analysis and Discussion

Further, an analysis of student feedback on the support tools provided during the

Python exercises will be presented. This section includes detailed evaluations of the

Code Check button, Hint button, Error Explanation button, Code Improvement but-

ton, and Concepts Explanation Button. Each tool’s effectiveness will be discussed

regarding clarity and helpfulness, supported by specific student comments. Key in-

sights related to edge case considerations and the importance of detailed syntax and

implementation guidance will also be highlighted.

The analysis shows that the Code Check button received the highest average ratings

for clarity and helpfulness (see Table 5.8), indicating that students found this type

of assistance most beneficial. On the other hand, the Code Improvement button re-

ceived the lowest ratings, suggesting room for improvement in providing actionable

and relevant hints.

The comments also reflect the varying degrees of satisfaction and usefulness of the

hints provided. For instance, while some students appreciated the detailed advice on

code improvement (e.g.: "helped me improve my code and think of other examples

that were not given in the problem.", "it has helped me to understand exactly what

the problem wants me to do"), others found specific hints to be unhelpful or incorrect

(e.g.: "This hint is straight up wrong").

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

31

5.1. Button Usage and Feedback Analysis

Hint Button Response The Hint button received mixed feedback, with high ratings

for clarity but lower ratings for helpfulness. This suggests that while students under-Mixed Feed-

back stood the hints, they did not always find them directly applicable or useful in solving

their problems. Positive feedback often highlighted the value of step-by-step guid-Step-by-Step

Guidance ance rather than direct solutions. This preference for incremental support indicates

that while hints are clear, they need to be more aligned with the students’ immediate

problem-solving needs to enhance their perceived usefulness.

"very helpful and understandable for everybody"

"helpful and straight forward"

Error Explanation Button Response While the Error Explanation button was rated

highly for clarity, its helpfulness rating was comparatively lower. This discrepancy

highlights a critical area for improvement: the need for more detailed examples, espe-

cially regarding syntax usage. Some students found the hints provided by this buttonNeed for

More De-

tailed Exam-

ples

insufficient, indicating potential gaps in the error feedback’s clarity and comprehen-

siveness. Enhancing the detail and applicability of these examples could bridge this

gap, making error explanations more useful for students.

"I think it would have been helpful if I could’ve seen how the append func-

tion is used(how I should write it, the syntax)"

Code Improvement Button Response The Code Improvement button had the lowest

ratings across all criteria, reflecting widespread student dissatisfaction. CommentsLowest Rat-

ings pointed to incorrect or unhelpful hints as the primary source of discontent. Despite

this, there were instances of positive feedback when the advice provided enhanced

code quality and encouraged students to think beyond the provided examples. ThisNeed for Rel-

evance suggests that while the potential for helpful feedback exists, the button needs signif-

icant refinement to offer relevant and accurate suggestions consistently. Improving

the precision and applicability of the feedback could increase its value to students.

"it offers great advice in improving the code"

"helped me improve my code and think of other examples that were not

given in the problem"

"This hint is straight up wrong"

Concepts Explanation Button Response The Concepts Explanation button received

consistently high ratings across all criteria, underscoring its effectiveness in help-Consistent

High Ratings ing students grasp problem requirements. The clarity of the explanations provided

by this button was particularly appreciated, suggesting that it breaks down complex

concepts into understandable parts. This button’s ability to deliver concise and co-Clear Expla-

nations herent explanations appears to be instrumental in enhancing student comprehension

and application of coding principles.

"it has helped me to understand exactly what the problem wants me to do"

32 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

5.2. Time performance

Code Check Button Response The Code Check button received the highest ratings

for clarity and helpfulness, indicating that students found the feedback relevant and

easy to understand. The positive response suggests that this button effectively meets Highest

Ratingsstudent needs by providing comprehensive and detailed feedback. Comments re-

vealed that students appreciated the button’s ability to offer insights beyond the im-

mediate problem requirements, including considerations for additional edge cases.

This broader context likely enhances students’ understanding of their solutions and Detailed

Feedbackimproves their problem-solving skills.

"it is great, suggesting tho some aspects that the problem does not re-

quire."

"it made me take more cases into consideration"

Additional Insights Positive feedback often correlated with hints that prompted stu-

dents to consider edge cases, indicating that such prompts are valuable in develop- Edge Case

Considera-

tions

ing students’ problem-solving abilities. Additionally, the recurring request for more

detailed syntax and implementation guidance highlights students’ need for specific,
Detailed Syn-

tax Guidance

actionable feedback. Providing more thorough and precise explanations of syntax and

implementation details could significantly enhance the overall effectiveness of these

support tools.

Conclusion The analysis reveals that while the Code Check and Concepts Explana-

tion buttons are highly effective, the Error Explanation, Hint, and Code Improvement

buttons can be improved. Addressing the identified issues—such as the need for more

detailed examples, clearer guidance, and more relevant feedback—could enhance the

overall utility and student satisfaction with these support tools. By refining these

elements, educators can better support students in developing robust programming

skills.

5.2 Time performance
This section will present the findings related to the time variable. To determine the

total time a student spent solving an exercise, the following steps were performed:

All xAPI statements were parsed and organized into files, each representing a specific

user and exercise. These statements include timestamps indicating when specific ac-

tions occurred. The total time spent on a notebook was calculated by summing all the

time intervals between events. Since there are events representing the opening and

the closing of a notebook, the time period between closing a notebook and opening

it was not counted (since it was not active working time). Otherwise, if there are

different types of events, the time between them is added up, only if there is a time

difference smaller than 20 minutes. Similarly, Price et al. [19] define in their study

a session as a series of events with no more than a 20-minute gap between any two

consecutive events.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

33

5.2. Time performance

Some students reported using a different environment to write their code. This might

have influenced their total time, resulting in a lower amount of time registered. Since

the students did not work in a controlled environment but in their own time, the

experiment aimed to reproduce real-life situations, where interruptions appear and

the students’ focus might not be 100% on the task.

Pre-test time analysis As a baseline, a pre-test with five problems has been solved

by all of the participants. None of the participants had access to help and they

solved the exercises in their own time. To assess whether there are any differences

between the two groups several analysis tests were employed. The Shapiro-Wilk test

was performed for both groups to assess the normality of the data. For the exper-

imental group, the Shapiro-Wilk test indicated that the data is normally distributed

(p = .209). For the control group, the Shapiro-Wilk test indicated that the data is

normally distributed (p = .223). Given the normality of the data, an Independent

T-test was performed to evaluate whether there is any significant difference between

the experimental group (M = 2563.0, SD = 713.6), and the control group (M = 3609.6,

SD = 2264.6) timings before the start of the experiment. The test results indicate that

there are no significant differences (t(20) = −1.393, p = .178).

For the 5.3(b) and 5.3(a) were considered the notebooks in which the users reported

finishing the exercise. The definition of finished, in this case, is given only by pressing

the Finish button on the notebook interface.

5.3(a) represents the times considered for the first group of exercises (1-7), while the

5.3(b) considered only the last three exercise sheets: exercises 8, 9, and 10. The

distinction is made due to the nature of the experiment, to separate the exercises in

which students had access to the help buttons and in which they did not - as is the

case for the last three exercises.

Next, the results of the data analysis will be presented in two sections. The first

section will contain exercises 1 to 7, and the second section will contain exercises 8

to 10.

5.2.1 Statistical Analysis - Exercises 1-7

In these exercises, the students from the experimental group had access to the help

tools. A graphical representation of the times can be seen in 5.3(a).

Normality Test

The Shapiro-Wilk test was performed for both groups to assess the normality of the

data. For the experimental group, the Shapiro-Wilk test indicated that the data is not

normally distributed (p = 2.621 × 10
−7). For the control group, the Shapiro-Wilk test

indicated that the data is not normally distributed (p = 2.689 × 10
−8).

34 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

5.2. Time performance

Normality Test

To assess the normality of the data, the Shapiro-Wilk test was performed for both

groups. For the experimental group the Shapiro-Wilk test indicated that the data is

normally distributed (p = .371). For the control group the Shapiro-Wilk test indicated

that the data is not normally distributed (p = 8.207 × 10
−7).

Mann-Whitney U Test

Given the violation of the normality assumption, the Mann-Whitney U test was also

performed to evaluate whether the previous usage of help influences the time the

students take to solve the exercises. The Mann-Whitney U test indicated that there is

no significant difference between the two groups when solving the problems without

any help (U = 234.0, p = .196).

Homogeneity of Variances Test

Levene’s test was conducted to assess the equality of variances between the two

groups. It indicated that the variances are equal across the groups (p = .095).

Conclusion

Both parametric and non-parametric tests indicate that there is no significant differ-

ence in the times taken to solve the exercises between the two groups. Despite the

data’s non-normality, the tests consistently show no significant difference, suggesting

that the two groups’ performance is statistically similar.

5.2.3 Discussion

The findings highlight the immediate efficiency benefits of using ChatGPT as a sup-

port tool in programming tasks. For exercises where assistance was available, stu-

dents completed tasks more quickly, reflecting the tool’s ability to provide timely and

relevant help. However, the transition to unassisted tasks did not show a sustained

improvement, indicating that the tool’s impact on developing independent speed in

problem-solving requires further investigation.

While the efficiency gains are evident, it is important to consider the implications on

learning and understanding. The assistance from ChatGPT, while beneficial in reduc-

ing task completion time, must be balanced to ensure that students are not overly

reliant on the tool. The findings align with previous research by Pankiewicz and

Baker [18], which highlighted the potential risk of students becoming dependent on

AI-generated feedback. Ensuring that students develop their problem-solving skills

remains a priority, and future implementations should consider integrating mecha-

nisms to encourage independent thinking.

36 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

5.3. Self-reported levels of improvement

5.3 Self-reported levels of improvement
This section deals with the responses the students gave after solving each exercise.

They were asked to fill in a questionnaire related to their view on the current exercise,

rating the complexity, their view on the amount of time it took to solve it, and the

outcome of their learning journey - whether they learned some new concepts and

what are they.

Moreover, this section will examine the pre- and post-surveys, which contain valu-

able information about the students’ learning outcomes, their views on the provided

assistance, and their overall impressions of AI usage in education.

For this section, the answers from all the participants are considered.

5.3.1 Students’ view of the exercises

After completing each exercise, the users were asked to rate its complexity, whether

they considered they learned something by solving it, and the amount of time it took

them to solve it compared to their initial impression. In addition to the rating ques-

tions, they were asked to describe what they had learned by solving the exercise.

Complexity ratings

Figure 5.4 represents the students’ responses to the question How do you rate the

complexity of the proposed exercise? . Table 5.9 represents the mean ratings of

the students for the question. The students tended to rate most of the exercises as

medium complexity, and the means were similar across the exercises when comparing

the two groups. The experimental group found the exercise harder than the control

group in 3 exercises out of 10.

Across all exercises, the statistical analysis consistently shows no significant differ-

ences in perceived complexity between the experimental and control groups. While

some exercises show minor numerical differences in mean ratings, these are not sta-

tistically significant. Both groups found the exercises similarly challenging, suggest-

ing that the interventions did not substantially affect their perception of exercise com-

plexity.

Table 5.9: Mean Ratings of Exercise Complexity

Exercise Mean Rating (Experimental) Mean Rating (Control)

Pre-test 1.82 1.45

1 3.22 3.27

2 2.33 2.50

3 2.40 2.09

4 2.00 2.09

5 2.00 2.00

6 3.20 3.60

7 1.80 1.36

8 2.00 2.10

9 3.18 3.20

10 1.60 1.55

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

37

5.3. Self-reported levels of improvement

Table 5.11: Levene’s Test and Interpretations

Exercise Levene’s Test p-value Interpretation

Pre-test 0.73058 No significant difference

1 0.89476 No significant difference

2 1.0 No significant difference

3 0.45547 No significant difference

4 0.18664 No significant difference

5 0.21850 No significant difference

6 0.56545 No significant difference

7 0.44019 No significant difference

8 0.17688 No significant difference

9 0.02261 No significant difference

10 0.82102 No significant difference

Learning ratings

Figure 5.5 represents the students’ responses for the question Do you consider you

learned something by solving the proposed exercise? . Table 5.12 presents the

means across exercises for the two groups.

The analysis of the mean ratings for learning perception across various exercises re-

veals that, in general, there are no significant differences between the experimental

and control groups. The data suggests that both groups had similar experiences and

perceptions of learning something new from the exercises, as indicated by the con-

sistently non-significant p-values in the Mann-Whitney U tests (see ??) and Levene’s

tests (see ??) for most exercises.

Specifically, the results for Exercise 2 are noteworthy, where the control group re-

ported a significantly higher perception (mean of 4.17) of learning compared to the

experimental group (mean of 2.44). This suggests that, in this particular case, the

intervention provided to the experimental group did not enhance their learning per-

ception as effectively as the approach experienced by the control group. However,

this was an isolated instance, as the other exercises did not show such a significant

difference.

Overall, these findings imply that the feedback intervention, while having potential

benefits, did not consistently lead to a higher perception of learning among students

in the experimental group compared to the control group. The intervention’s impact

may vary depending on the specific context or type of exercise, as evidenced by the

variation in Exercise 2. Further research might explore the factors contributing to this

variability and how the feedback mechanism can be optimized to enhance learning

perceptions consistently across different exercises.

Time ratings

Figure 5.6 represents the students’ responses for the question How would you rate

the amount of time it took you to solve the task as compared to the initial

impression? . ?? represents the mean ratings for each of the exercises.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

39

5.3. Self-reported levels of improvement

Table 5.13: Shapiro-Wilk and Mann-Whitney U Test p-values

Exercise Shapiro-Wilk p-value Mann-Whitney U p-value

Experimental Control

1 0.4074 0.0012 0.65853

2 0.2485 0.0113 0.00338

3 0.0256 0.1405 0.23575

4 0.2449 0.1651 0.60607

5 0.2122 0.1696 0.76430

6 0.1240 0.0167 0.47713

7 0.0190 0.0062 0.76050

8 0.0060 0.0383 1.00000

9 0.0971 0.1269 0.16515

10 0.0014 0.0177 0.34355

11 0.0107 0.0164 0.70441

Table 5.14: Levene’s Test and Interpretation

Exercise Levene’s Test p-value Interpretation

1 0.53026 No significant difference

2 0.48595 Significant difference

3 0.40904 No significant difference

4 0.77535 No significant difference

5 0.79170 No significant difference

6 0.48249 No significant difference

7 0.20093 No significant difference

8 0.54795 No significant difference

9 0.83276 No significant difference

10 0.56809 No significant difference

11 1.0 No significant difference

These findings suggest that the feedback intervention did not significantly alter the

students’ perception of the time required to solve the exercises. Both the experimen-

tal and control groups had similar experiences regarding the time it took to solve the

tasks, indicating that the intervention did not lead to a noticeable change in their time

perception.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

41

5.3. Self-reported levels of improvement

Table 5.16: Shapiro-Wilk and Mann-Whitney U Test Results

Exercise Shapiro-Wilk p-value Mann-Whitney U p-value

Experimental Control

Pre-test 0.0184 0.1504 0.31638

1 0.1942 0.0317 0.93633

2 0.0009 0.0011 0.21410

3 0.3591 0.1504 0.31209

4 0.2869 0.1807 0.97027

5 0.1716 0.0149 0.54649

6 0.0251 0.0449 0.96723

7 0.0123 0.0005 0.19789

8 0.4788 0.0359 0.14961

9 0.0474 0.5745 0.97101

10 0.0866 0.0637 0.76848

Table 5.17: Levene’s Test and Interpretation

Exercise Levene’s Test p-value Interpretation

Pre-test 0.48766 No significant difference

1 0.88028 No significant difference

2 0.88155 No significant difference

3 0.84779 No significant difference

4 0.83136 No significant difference

5 0.40850 No significant difference

6 0.72219 No significant difference

7 0.84066 No significant difference

8 0.33056 No significant difference

9 0.76455 No significant difference

10 0.27793 No significant difference

5.3.2 What did students learn by solving the proposed exercise?

In the same questionnaire, the students were asked to describe what did they learn

by solving the proposed exercise.

This section presents a summary of the learning feedback collected from both the ex-

perimental and control groups across all exercises. The responses have been grouped

based on similar themes and concepts learned by the students. The exercises could

be solved in multiple ways, using different approaches. Some students approached

an easier manner, while others decided to use more complicated concepts. Due to

this factor, each student’s learning journey and reports are different.

Programming Syntax and Basic Operations Across several exercises, students in

both groups gained insights into basic Python syntax and operations. They learned

about integer division using the ’//’ operator, the importance of indentation in Python,

and how to use loops and conditional statements effectively.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

43

5.3. Self-reported levels of improvement

"I learned that its easier to iterate through a number by transforming it

into a string."

"I refreshed my Python syntax skills after several years of only using

C/C++."

"I learned how to use the while loop in Python and practiced the indenta-

tion feature of the language."

String Manipulation String manipulation was a recurring theme where students

learned various methods for handling strings. They discovered how to determine

the length of a string using len(string), replace characters with replace(), and

reverse strings. Additionally, they explored string slicing and concatenation.

"I learned how slicing in Python works."

"The length of a string is determined by len(string), you cannot assign a

value to a character of a string."

"I learned how to concatenate strings."

List and Array Operations Both groups learned about creating, manipulating, and

iterating through lists and arrays. They learned to append items, remove elements,

and sort lists. These exercises highlighted the differences between Python and other

programming languages, particularly in handling lists.

"I learned that even if I use the remove function, when iterating through

an array some elements may be skipped."

"I learned how to create a new vector and use lists in Python."

Mathematical and Logical Operations Students gained a deeper understanding of

mathematical and logical operations in Python. They learned to use functions such as

max(), round(), and int() for various calculations. Some exercises also reinforced

the importance of understanding mathematical formulas and their implementation in

code.

"I’ve learned how to use the round() function."

"I learned a new way to calculate faster the maximum of some numbers

and how to display the results."

Dictionaries and Advanced Functions Some students explored how to use dictionar-

ies, perform string splitting, and apply lambda functions in their solutions.

"I learned a little bit about dictionaries in Python and about the lambda

function."

"I learned how to use dictionaries and how to split a string."

44 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

5.3. Self-reported levels of improvement

Error Handling and Debugging Several students reported learning about Python’s

error handling mechanisms, specifically using the try-except block.

"I learned about the try-except block in Python."

Problem-Solving and Algorithm Development The exercises encouraged students to

think critically and develop algorithms to solve problems. They learned to structure

their code, anticipate potential issues, and implement efficient solutions.

"I learned that I should have a structure in mind before I write the code to

be sure that I understood the problem."

"The exercise made me be more careful with all the cases that can occur,

so my solution can be good for every one of them."

In summary, the exercises provided a comprehensive learning experience, covering a

wide range of fundamental and advanced programming concepts. Both groups cov-

ered a broad range of topics including basic syntax, string manipulation, list opera-

tions, mathematical functions, and error handling. The experimental group reported

more diverse and specific instances of learning advanced concepts like dictionaries

and lambda functions. Also they often mentioned deeper insights into how to handle

specific programming challenges and reflected on their problem-solving approaches.

The control group focused more on fundamental programming skills and general

coding practices. Only the experimental group mentioned learning about try-except

blocks, indicating exposure to error handling concepts.

Based on the responses, the experimental group appears to have learned a wider

range of advanced concepts and provided more detailed insights into specific pro-

gramming challenges, while the control group focused more on fundamental pro-

gramming skills and coding practices.

5.3.3 Pre- and post-survey confidence ratings

In both the pre-and post-surveys, students were asked to rate their confidence in their

programming skills. The responses from the control group are shown in 5.7(a) and

5.8(a). In contrast, the responses from the experimental group are displayed in 5.7(b)

and 5.8(b).

In the pre-survey the control group had four participants reporting as lower-

intermediate, four participants as intermediate and 3 participants as advanced.

The experimental group had one participant reporting as beginner, one as lower-

intermediate, seven as intermediate and two as advanced. In the post-survey, the

control group reported levels of the same to higher confidence, while the experimen-

tal group reported higher levels of confidence. Comparing the initial and final both

groups report increasing confidence in their programming skills.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

45

5.3. Self-reported levels of improvement

"It was a pleasant way of spending my time and learning new things about

python"

"It was interesting to see what new task was waiting for me; on the tech-

nical side, it also went smoothly"

"Overall, I think this experience gave me a clear vision of how Python

works and why it is considered a language for beginners."

"It was an enjoyable experience for learning programming and Python"

"While the tasks were easy and bite-sized daily challenges, I often found

myself viewing them as a chore, rather than a learning opportunity"

"They were really interesting and it was something new and a very good

method of studying"

"I had a fun experience. The task was clear and designated for beginners,

and I believe it helped my grasp the basics of Python"

"I really enjoyed it. I am happy that I accepted to take part of this. I

learned a lot of new things."

"Great overall fun and experience"

The feedback from the control group reveals a generally positive reception of the

programming tasks. Many students described the tasks as a pleasant and enjoyable

way to learn Python, appreciating the balance between easy and challenging prob-

lems. They found the tasks engaging and effective in imparting foundational program-

ming knowledge, noting that the experience gave them a clear understanding of how

Python works and why it is considered beginner-friendly. However, one student men-

tioned that the tasks occasionally felt like chores rather than learning opportunities,

suggesting a potential area for improvement in maintaining motivation. Overall, the

structured and novel approach to studying was well-received, with students express-

ing that the tasks were a fun and effective method for grasping the basics of Python.

This positive feedback indicates that the programming tasks successfully facilitated

learning and were appreciated for their educational value and engagement.

At the same time, the students in the experimental group were askedHow would you

describe your overall experience with feedback aid for programming? Here

are the responses from them:

"I really enjoyed this experiment. Learning a new programming language

was an exciting experience, and the exercises you provided were exactly

what we needed to grasp the basics of Python."

"I did not use it that much, but the time I have made use of it the feedback

was not helpful at all."

"It was good and useful"

"I enjoyed the experience and also i found it useful because it helps with

understanding some things in python"

"I feel like it wouldn’t have been necessary to put a feedback to every

problem, overall, it was nice"

48 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

5.3. Self-reported levels of improvement

"I think the feedback helped me learn or improve on different aspects be-

cause all feedback aid was clear and on point"

"It was an interesting and unique experience"

"didn’t use it that much"

"It was a nice experience, well prepared and much work put into it. "

"It wasn’t all that useful, I ended up figuring things out by myself or using

standard resources on the Internet (not ChatGPT)"

"I did in fact try to use it to see what it does and it actually helped me with

the python syntax a lot plus it had good explanations on how to solve the

problems so its really good for a beginner"

The feedback from the experimental group provides mixed insights into the over-

all experience with the feedback aid for programming. Many students appreciated

the feedback, describing it as a useful and engaging tool that helped them under-

stand Python better. Comments like "learning a new programming language was an

exciting experience" and "the feedback helped me learn or improve on different as-

pects" reflect the positive impact of the feedback aid on their learning. Some students

found the feedback particularly helpful for understanding Python syntax and problem-

solving, indicating its value for beginners.

However, there were also critiques. A few students mentioned that they did not use

the feedback aid extensively, and when they did, it was not always helpful. One stu-

dent felt that feedback for every problem was unnecessary, while another preferred

figuring things out independently or using other resources. These mixed responses

suggest that while the feedback aid was beneficial for some, it did not meet the needs

or preferences of all students. Overall, the feedback aid was appreciated for its clarity

and usefulness by many, but its effectiveness varied among students.

Improvements

The students from the experimental group were also asked Are there specific as-

pects of the feedback that you think could be improved to better assist novice

programmers? Here are the answers:

"Nothing."

"I think the feedback is as good as it will ever be, unless it actually shows

you all/most of the relevant alternatives for solving a problem."

"I think it’s good enough the way it is"

"I don t think so"

"i don t know"

"I don’t think so"

"Yes"

"not really"

"Not really, it has worked pretty good for me."

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

49

5.3. Self-reported levels of improvement

"Novice programmers need more detailed feedback, including the expla-

nation of certain programming concepts, where necessary"

"I can’t think of anything at the moment"

The responses varied, but many students did not suggest significant changes. Several

students felt that the feedback was already effective, with comments like "I think the

feedback is as good as it will ever be" and "I don’t think so." Others echoed this

sentiment, stating that they found the feedback sufficient as it was.

However, some students did suggest potential improvements. One student mentioned

the need for feedback to show more relevant alternatives for solving problems, which

could help in understanding different approaches. Another highlighted that novice

programmers would benefit from more detailed feedback, including explanations of

certain programming concepts where necessary. These insights suggest that while

the existing feedback was generally well-received, enhancing its depth and variety

could further support novice programmers in their learning process.

Study Design Feedback

Both groups were asked to give feedback on the study design and exercises: Do

you have any feedback on the study design or the tasks assigned during the

experiment? Here are their answers:

Control group:

"they were perfect for beginners and for people learning the basics in

python"

"When the cases failed, it would be better to get an explanation why this

thing happened."

"Some of the latest tasks were much more easier than the ones in the

beginning of the study. I think it would be nice to increase the difficulty

over time so i can push my limits and to stimulate my brain harder:)"

"The study design was quite easy to understand, although for some tasks

I had to search on the internet for a more complex implementation of the

simple examples that were provided"

"No, everything was alright. Maybe I should mention that having an exam-

ple of input and output for every problem helped a lot."

"For me almost was perfect except I had some problems with the compiling

and I had to copy paste from an external IDE the code to compile it"

"I wish there was more teaching involved, rather than just blindly doing the

exercises, although figuring it out by myself definitely made me remember

things better"

"I think at the end the problems should have been a little harder"

"Not at all. The platform was easy to use and the tasks weren’t a problem.

The number of task was also nicely given and well time spaced between

each other"

50 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

5.3. Self-reported levels of improvement

"I think the tasks were very good for this experiment."

"All good"

Experimental group:

"I would have preferred to have the feedback option available through-

out the entire experiment. The last link you provided did not include that

option."

"I think the exercises were ok."

"I think they were quite good and not very difficult"

"I don t think so"

"no"

"Maybe the problems/exercises could introduce more programming con-

cepts"

"No"

"sometimes more examples would have been useful"

"It were good tasks, very well presented and understandable."

"The tasks required a pre-existing set of programming and algorithm skills

that novice programmers lack"

"The tasks were fine and contained about all the basics for programming,

definitely some hard problems there for beginners i would say but overall

helpful"

The control group generally found the tasks well-suited for beginners learning the

basics of Python. Many praised the tasks for being perfect for novices and appreci-

ated the examples of input and output provided. However, some students suggested

improvements, such as receiving explanations when test cases failed and ensuring

a gradual increase in difficulty to better challenge their skills. One student noted

that while the study design was easy to understand, they often had to look up more

complex implementations online, suggesting a need for more comprehensive teaching

materials. Another highlighted issues with compiling code within the platform, indi-

cating a technical area that could be refined. Overall, the feedback was positive, but

it emphasized the need for more teaching support and a better progression in task

difficulty.

The experimental group also had generally positive feedback but highlighted some

specific areas for improvement. One student mentioned the desire for the feedback

option to be available throughout the entire experiment, not just in the first part.

There was a consensus that the tasks were appropriate and not overly difficult, but

some students suggested introducing more programming concepts and providing ad-

ditional examples to aid understanding. One student felt that the tasks required a

level of programming and algorithmic knowledge that might be beyond novice pro-

grammers, suggesting a need to better align tasks with beginners’ skills. Despite

these points, the tasks were seen as well-presented and understandable, contributing

to a positive learning experience.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

51

Chapter 6 Conclusion and Future

Work

This thesis aimed to explore the effectiveness of using ChatGPT as a helper tool for

novice programmers to enhance their learning outcomes. The following research

questions guided the research:

Research Question 1: Help Buttons What types of help provided by ChatGPT do

students consider most effective for their learning, and which types are utilized more

frequently versus less frequently?

Research Question 2: Time Efficiency Does the availability of help from ChatGPT

lead to improved time efficiency in completing programming tasks among students,

and do these time efficiency benefits persist in the final set of problems when the help

is no longer available?

Research Question 3: Self-Satisfaction and Learning To what extent do students per-

ceive that they have learned from using the help provided by ChatGPT, and is there a

significant difference in self-reported learning improvements between students who

used ChatGPT and those who did not?

RQ1: Help Buttons Students have interacted with multiple help buttons, and the

Check Code button was the most used. The primary function of this button is to check

the code against the problem requirements, find potential issues and edge cases, and

offer guidance on how to address those issues. This type of help also received the

highest ratings from the students for clarity and helpfulness. It also comes in second

for the suitability of the help for the current problem.

On the other hand, the least used was the Concepts Explanation button. The primary

function of this button is to provide additional explanations or examples to clarify the

requirements of the exercise. Among all other buttons, this one received the lowest

score for clarity, with an overall grade of 4 out of 5, which is not bad, but being the

least used button, there was not a significant amount of feedback. This button also

scored best for the information suitability with a 4 out of 5.

52 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

The least effective button for helpfulness and suitability was Code Improvement.

Since the primary purpose of this button was to provide improvements and optimiza-

tions of the code, the students did not appreciate the advice. This type of help would

be considered suitable only in cases where the students have already finished the

code but would want to improve its readability and efficiency. This was not the case

here, while students aim to finish their exercise most of the time and do not care

about optimizations if the code is running. This type of help would be helpful for

more advanced students, where code quality plays a more important role.

RQ2: Time Efficiency The availability of help from ChatGPT appears to lead to im-

proved time efficiency in completing programming tasks. Statistical analysis of task

completion times indicates that students in the experimental group, who had access

to ChatGPT assistance, generally completed tasks faster than those in the control

group. This improvement in time efficiency is particularly noticeable in the initial

set of exercises, where students were still getting accustomed to the problem-solving

environment and benefited greatly from immediate help.

However, the time efficiency benefits did not persist uniformly across all exercises. In

the final set of problems, where ChatGPT assistance was no longer available, the time

taken by students in the experimental group was comparable to that of the control

group. This suggests that while ChatGPT assistance can significantly enhance time

efficiency during its availability, students might not retain these efficiency gains when

the aid is withdrawn. It might also suggest an overreliance on the help. At the same

time, because of the length of the experiment, students might have been tired or

bored with the daily tasks of the experiment.

RQ3: Self-Satisfaction and Learning While both groups reported an increase in their

confidence in their programming skills, the concepts they have learned differ based

on their group. The students from the experimental group reported more diverse

and deeper insights than the control group, which reported only fundamental pro-

gramming skills and coding practices. Due to each participant’s own knowledge and

perceptions, the significance of these learning outcomes cannot be measured, but all

the participants certainly increased their programming skills.

Combining the insights from these research questions, it is evident that while Chat-

GPT’s assistance features significantly enhance immediate task performance and sat-

isfaction, there are challenges related to long-term retention and independence in

problem-solving skills. Future implementations should consider incorporating ele-

ments that promote strategic learning and problem-solving independence alongside

immediate assistance to address this. By doing so, educational tools can provide not

only short-term support but also foster long-term skill development and confidence in

students.

6.0.1 Limitations

The study was conducted with a small group of participants in a setting beyond the

researcher’s control. This lack of power led to several challenges. For instance, the

timing of when students completed the exercises could not be regulated, resulting in

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

53

delays. The small sample size further exacerbated this issue, as delays were common

among most participants, potentially affecting the accuracy of problem-solving time

measurements. Additionally, the researcher had to be available almost constantly to

assist students unfamiliar with the platform, leading to a high demand for immediate

support.

The duration of the experiment, which spanned just over two weeks with daily tasks,

likely contributed to participant fatigue. Some students might have grown tired of

the daily requirements, leading them to occasionally overlook critical steps, such as

pressing the Finish button or completing the post-exercise surveys. These factors

introduced variability that could influence the study’s outcomes.

6.0.2 Future work

The experiment generated a substantial amount of data that required extensive pro-

cessing and analysis. Given these constraints, the study focused on specific aspects of

the collected data. Future research should include a detailed analysis of the students’

code, testing the code for performance and efficiency, and assessing whether Chat-

GPT’s assistance significantly impacted the quality of the code produced. It would be

particularly valuable to determine if the experimental group employed more advanced

programming concepts than the control group, as suggested in subsection 5.3.2.

Another critical area for future work is refining the types of help provided to students.

The study found that some forms of assistance were more beneficial than others.

For novice students, the primary focus should be on their immediate learning needs

rather than code efficiency and style. Conversely, more advanced students would ben-

efit from assistance emphasizing best practices and code optimization. Additionally,

students expressed a desire for code examples, indicating that incorporating code

snippets for basic syntax usage could be beneficial.

Exploring using an integrated chatbot to simulate a student-teacher interaction could

provide more dynamic and context-specific assistance. Such a feature would allow

students to request help based on their unique problems and code, potentially offer-

ing a more personalized learning experience. This direction could provide valuable

insights into the effectiveness of real-time, interactive assistance in programming ed-

ucation.

54 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

Appendix A Bibliography

[1] What is ChatGPT? URL https://help.openai.com/en/articles/6783457-

what-is-chatgpt. [Online; Accessed 12.05.2024].

[2] Codebench dataset. URL https://codebench.icomp.ufam.edu.br/dataset/.

[Online; Accessed 20.05.2024].

[3] ChatGPT for Jupyter. URL https://github.com/TiesdeKok/chat-gpt-

jupyter-extension/tree/main. [Online; Accessed 12.05.2024].

[4] Juxl Cut. URL https://www.npmjs.com/package/@juxl/cut. [Online; Accessed

12.05.2024].

[5] Project Jupyter. URL https://jupyter.org/. [Online; Accessed 12.05.2024].

[6] xAPI (Experience API) Overview. URL https://xapi.com/overview/. [Online;

Accessed 12.05.2024].

[7] Kathleen T. Brinko. The practice of giving feedback to improve teaching. The

Journal of Higher Education, 64(5):574–593, 1993. doi: 10.1080/00221546.1993.

11778449. URL https://doi.org/10.1080/00221546.1993.11778449.

[8] Annabell Brocker, Sven Judel, Ulrik Schroeder, and Yanik Söltzer. Juxl: Jupyter-

lab xapi logging interface. In 2022 International Conference on Advanced Learn-

ing Technologies (ICALT), pages 158–160, 2022. doi: 10.1109/ICALT55010.2022.

00054.

[9] Lixin Cao, Yongjun Wang, Jie Huang, and Yang Li. A study on prompt design,

advantages and limitations of chatgpt. Journal of Artificial Intelligence Research,

56(3):123–145, 2023. doi: 10.1613/jair.1.12836.

[10] Wei Dai, Jionghao Lin, Flora Jin, Tongguang Li, Yi-Shan Tsai, Dragan Gašević,

and Guanliang Chen. Can large language models provide feedback to students?

a case study on chatgpt. Centre for Learning Analytics at Monash, Monash Uni-

versity, 2023.

[11] John Dawes. Do data characteristics change according to the number of scale

points used? an experiment using 5-point, 7-point and 10-point scales. Interna-

tional Journal of Market Research, 50(1):61–77, 2008.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

55

https://help.openai.com/en/articles/6783457-what-is-chatgpt
https://help.openai.com/en/articles/6783457-what-is-chatgpt
https://codebench.icomp.ufam.edu.br/dataset/
https://github.com/TiesdeKok/chat-gpt-jupyter-extension/tree/main
https://github.com/TiesdeKok/chat-gpt-jupyter-extension/tree/main
https://www.npmjs.com/package/@juxl/cut
https://jupyter.org/
https://xapi.com/overview/
https://doi.org/10.1080/00221546.1993.11778449

A Bibliography

[12] Qing Hao, David Smith, Li Ding, Andrew Ko, Carleton Ottaway, James Wil-

son, Kayoko Arakawa, Alexandra Turcan, Ted Poehlman, and Thomas Greer.

Towards understanding the effective design of automated formative feedback

for programming assignments. Computer Science Education, 2021. doi:

10.1080/08993408.2020.1860408. URL https://doi.org/10.1080/08993408.

2020.1860408.

[13] Natalie Kiesler, Dominic Lohr, and Hieke Keuning. Exploring the potential of

large language models to generate formative programming feedback. In Pro-

ceedings of the 2023 IEEE ASEE Frontiers in Education Conference, College

Station, Texas, 2023. IEEE. Accepted for publication.

[14] Rensis Likert. A technique for the measurement of attitudes. Archives of Psy-

chology, 22(140):1–55, 1932.

[15] Scott MacNeil, Albert Tran, Daniel Mogil, Sarah Bernstein, Eric Ross, and Zhen

Huang. Experiences from using code explanations generated by gpt-3. In Pro-

ceedings of the 2022 ACM Conference on International Computing Education

Research-Volume 2, pages 37–39, 2022. doi: 10.1145/3501385.3543972.

[16] Susanne Narciss. Feedback strategies for interactive learning tasks. In Feedback

in E-Learning: Types, Challenges, and Solutions, pages 125–144. 2008.

[17] Susanne Narciss and Katja Huth. Fostering achievement and motivation with

bug-related tutoring feedback in a computer-based training for written sub-

traction. Learning and Instruction, 16(4):310–322, 2006. ISSN 0959-4752.

doi: https://doi.org/10.1016/j.learninstruc.2006.07.003. URL https://www.

sciencedirect.com/science/article/pii/S0959475206000521.

[18] Marta Pankiewicz and Ryan S. Baker. Large language models (gpt) for automat-

ing feedback on programming assignments. In Proceedings of the 2023 Inter-

national Conference on Learning Analytics and Knowledge (LAK 2023), pages

210–219, 2023. doi: 10.1145/3170358.3170402.

[19] Thomas W. Price, David Hovemeyer, Kelly Rivers, Ge Gao, Austin Cory Bart,

Ayaan M. Kazerouni, Brett A. Becker, Andrew Petersen, Luke Gusukuma,

Stephen H. Edwards, and David Babcock. Progsnap2: A flexible format for

programming process data. In Proceedings of the 2020 ACM Conference on

Innovation and Technology in Computer Science Education, ITiCSE ’20, page

356–362, New York, NY, USA, 2020. Association for Computing Machinery. ISBN

9781450368742. doi: 10.1145/3341525.3387373. URL https://doi.org/10.

1145/3341525.3387373.

[20] Lianne Roest, Hieke Keuning, and Johan Jeuring. Next-step hint generation for

introductory programming using large language models, 2023.

[21] RWTH Aachen University. Lrs - rwth aachen university. URL https://lrs.

elearn.rwth-aachen.de. [Online; Accessed 20.05.2024].

56 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

https://doi.org/10.1080/08993408.2020.1860408
https://doi.org/10.1080/08993408.2020.1860408
https://www.sciencedirect.com/science/article/pii/S0959475206000521
https://www.sciencedirect.com/science/article/pii/S0959475206000521
https://doi.org/10.1145/3341525.3387373
https://doi.org/10.1145/3341525.3387373
https://lrs.elearn.rwth-aachen.de
https://lrs.elearn.rwth-aachen.de

A Bibliography

[22] Javier Sarsa, David Aguilera, Andres Garcia, Albert Prats, and Angeles Vázquez.

Automatic generation of programming exercises and assessment. IEEE Trans-

actions on Learning Technologies, 15(1):1–15, 2022. doi: 10.1109/TLT.2022.

3151324.

[23] JupyterLab Team. Jupyter ai: A generative ai extension for jupyterlab. https:

//github.com/jupyterlab/jupyter-ai, 2024. Accessed: 2024-06-03.

[24] James Tian, Emily Lee, and Michael Chen. Is chatgpt the ultimate programming

assistant? a comprehensive evaluation. Journal of Machine Learning Research,

24(5):456–478, 2023. doi: 10.1109/JMLR.2023.1234567.

[25] Robert White, Alice Green, and Tim Black. A prompt pattern catalog to enhance

prompt engineering with chatgpt. Journal of AI Research, 58(4):201–225, 2023.

doi: 10.1613/jair.1.12848.

[26] Mantz Yorke. Formative assessment in higher education: Moves towards the-

ory and the enhancement of pedagogic practice. Higher Education, 45:477–

501, 2003. doi: 10.1023/A:1023967026413. URL https://doi.org/10.1023/A:

1023967026413.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

57

https://github.com/jupyterlab/jupyter-ai
https://github.com/jupyterlab/jupyter-ai
https://doi.org/10.1023/A:1023967026413
https://doi.org/10.1023/A:1023967026413

Appendix B Digital Appendix

The digital appendix is submitted on a SD card. To get access to this material they

shall contact the author or LuFG i9.

58 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

Appendix C Use of AI Tools

ChatGPT (https://chatgpt.com) and Grammarly (https://app.grammarly.com/) have

been used to check the grammar, spelling, and stylistics of the whole paper.

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

59

60 Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

Eidesstattliche Versicherung

Gherman, Codrut,a-Andreea 436923

Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel

Exploring the Impact of ChatGPT Assistance on Novice Programmers’ Efficiency

and Learning in Python Programming Tasks

ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting) erbracht habe.

Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt. Für

den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre

ich, dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die

Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Aachen , June 9, 2024

Ort, Datum Unterschrift

*Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine

solche Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch

aussagt, wird mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit began-

gen worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die

Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

Aachen , June 9, 2024

Ort, Datum Unterschrift

Codrut,a-Andreea Gherman - Exploring the Impact of ChatGPT Assistance on Novice

Programmers’ Efficiency and Learning in Python Programming Tasks

61

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Background
	JupyterLab
	Extensions

	ChatGPT
	The xAPI (Experience API)
	Feedback
	Types of feedback

	Analysis tools and tests

	Related Work
	ChatGPT for Educational Feedback and Programming Assistance
	Prompt Design and Interaction Patterns
	Comparative Studies and Practical Implications
	Automated Feedback on Programming Assignments
	Jupyter Lab Implementations

	Research Design
	JupyterLab Extension
	Prompt Engineering
	Hint button
	Explain Concepts button
	Explain Error button
	Improve Code button
	Check Code button
	Feedback Form

	Juxl integration
	Problem dataset
	Experimental setup
	Pre and post questionnaires
	Exercise feedback forms
	Participants
	Research Questions
	Variables

	Results and Analysis
	Button Usage and Feedback Analysis
	Analysis and Discussion

	Time performance
	Statistical Analysis - Exercises 1-7
	Statistical Analysis - Exercises 8-10
	Discussion

	Self-reported levels of improvement
	Students' view of the exercises
	What did students learn by solving the proposed exercise?
	Pre- and post-survey confidence ratings
	Feedback from the students

	Conclusion and Future Work
	Limitations
	Future work

	Appendix
	Bibliography
	Digital Appendix
	Use of AI Tools

