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Kurzfassung 

Mit der hohen Durchdringung von dezentralen Energieressourcen (DERs) in Verteilernetzen ergeben 

sich viele Herausforderungen für den Netzbetrieb, insbesondere für die Spannungsregelung. Die auf 

einer Zustandsschätzung (SE) basierende Spannungsregelung für Verteilnetze nutzt 

Spannungsschätzungen, um zu berechnen, wie viel flexible Leistung erforderlich wäre, um die 

Spannungen innerhalb der gewünschten Grenzen zu halten. Die Wirksamkeit dieser Methode hängt 

von der Genauigkeit der SE ab, die verschiedenen Unsicherheitsquellen unterliegt. Die Installation 

zusätzlicher Zähler im Netz kann dazu beitragen, die Gesamtgenauigkeit zu erhöhen, aber die damit 

verbundenen Kosten für die Zähler müssen vor der Entscheidung über ihre Installation berücksichtigt 

werden.  

Um wirtschaftliche Überlegungen bei der Verbesserung der SE zu berücksichtigen, wird in dieser Arbeit 

ein zweimoduliger Rahmen für die Durchführung einer Sensitivitäts- und Kosten-Nutzen-Analyse (KNA) 

der SE-basierten Spannungssteuerung entwickelt. Zunächst wird eine auf der Globalen 

Sensitivitätsanalyse (GSA) basierende Methodik für die Zählerplatzierung vorgeschlagen, die eine Top-

Down-Prioritätenliste der zu installierenden Zähler erstellt, um die Genauigkeit der SE zu verbessern. 

Da die Installation zusätzlicher Zähler aus wirtschaftlicher Sicht sinnvoll sein sollte, werden die aus der 

Zählerplatzierung hervorgehenden Zähler einer Kosten-Nutzen-Analyse unterzogen, bei der die Kosten 

für die Installation eines zusätzlichen Zählers mit den Einsparungen an flexibler Leistung verglichen 

werden, die sich aus der Verbesserung der Spannungsregelungsstrategie mit dem installierten Zähler 

ergeben (im Sinne einer geringeren Leistungsflexibilität, die erforderlich ist, um die Spannung 

innerhalb der zulässigen Grenzen zu halten).  

Der vorgeschlagene Rahmen wird angewandt, um verschiedene Szenarien mit unterschiedlichen 

Niveaus von Last, Erzeugung und DER-Durchdringung in einem repräsentativen 99-Knoten-

Verteilungsnetz zu untersuchen. Die Ergebnisse zeigen den Einfluss der Betriebsbedingungen auf die 

Schätzungsunsicherheiten und unterstreichen die Bedeutung der Auswahl der besten Metrik für das 

DSO-Ziel, da die Zählerplatzierung die Ergebnisse der KNA stark beeinflusst. Es wird auch gezeigt, dass 

signifikante Einsparungen mit einer geringen Anzahl von Zählern erreicht werden können, 

insbesondere in Szenarien mit geringer Erzeugung, Last und DER-Durchdringung. 

Das entwickelte Rahmenwerk weist aufgrund seiner Modularität genügend Flexibilität auf, z.B. kann 

die vorgeschlagene Zählerplatzierungsstrategie durch jede andere Zählerplatzierungsmethode ersetzt 

werden, ohne die KNA zu beeinträchtigen, spezifische Kosten können in das KNA-Modul aufgenommen 

werden, was die Replizierbarkeit des Rahmenwerks mit alternativen Randbedingungen sicherstellt, 

und die Zählerplatzierungsstrategie allein kann für jede andere SE-basierte Anwendung übernommen 

werden, falls wirtschaftliche Überlegungen nicht von Interesse sind. Darüber hinaus bietet der 

vorgeschlagene Rahmen den VNB ein neues Instrument, das ihnen hilft, fundierte Entscheidungen in 

Bezug auf betriebliche Aufgaben zu treffen: Durch die Verknüpfung der Zählerplatzierung mit der 

Spannungssteuerung und die Hervorhebung der wirtschaftlichen Vorteile können die VNB effektiv 

entscheiden, ob sich die Installation eines Zählers aufgrund von Kostenüberlegungen lohnt, anstatt nur 

Unsicherheitsschwellen zu berücksichtigen. 
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Abstract 

With the high penetration of distributed energy resources (DERs) in distribution systems, many 

challenges arise in grid operation, particularly for voltage control. State-estimation (SE) based voltage 

control for distribution systems makes use of voltage estimates to calculate how much flexible power 

would be required to keep the voltages within desired limits. The effectiveness of this method depends 

on the accuracy of the SE, which is subject to different sources of uncertainty. The installation of 

additional meters in the grid can help to increase the overall accuracy, but the associated costs of the 

meters need to be considered before deciding on their installation.  

To account for economic considerations in the process of improving SE, this thesis elaborates a two-

module framework to perform a sensitivity and cost-benefit analysis (CBA) of the SE-based voltage 

control. First, a Global Sensitivity Analysis (GSA) based meter placement methodology is proposed, 

which produces a top-down priority list of meters to be installed to help improve the accuracy of the 

SE, and different ranking metrics are elaborated to reflect Distribution System Operators (DSOs)-

specific objectives. Second, as the installation of additional meters should make sense from an 

economic point of view, the meters coming from the meter placement are subject to a CBA where the 

cost of installing an additional meter is compared with the savings in flexible power coming from the 

improvement of the voltage control strategy with the installed meter (in terms of lower power 

flexibility required to keep the voltage within the allowed boundaries).  

The proposed framework is applied to study various scenarios with different levels of load, generation, 

and DER penetration, on a representative 99-node distribution grid. The results show the influence of 

operating conditions on the estimation uncertainties and highlight the importance of selecting the 

fittest metric for the DSO target, as the meter placement heavily influences the results of the CBA. It 

is also shown that significant savings can be achieved with a low number of meters, especially in 

scenarios with low generation, load, and DER penetration.  

The developed framework showcases enough flexibility due to its modularity, e.g., the proposed meter 

placement strategy can be replaced by any other meter placement method without affecting the CBA, 

specific costs can be included in the CBA module ensuring the replicability of the framework with 

alternative boundary conditions, and the meter placement strategy alone can be adopted for any other 

SE-based application in the case economic considerations are not of interest. Moreover, the proposed 

framework provides DSOs with a new tool to help them in making informed decisions with respect to 

operational tasks: by linking the meter placement with the voltage control and emphasizing the 

economic benefits, DSOs can effectively decide if a meter is worth installing based on cost 

considerations rather than just accounting for uncertainty thresholds. 

Keywords: Distribution Systems State Estimation, global sensitivity analysis, cost-benefit analysis, state 

estimation-based voltage control, meter placement. 
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1 Introduction 

Power distribution systems are currently experiencing significant changes due to the integration of 

distributed energy resources (DERs) such as solar photovoltaics (PV), wind turbines, electric vehicles 

(EVs), and energy storage systems (ESSs). The ever-increasing penetration of DERs, driven by a 

worldwide effort to reduce greenhouse gas emissions, and eventually reach carbon neutrality, comes 

along with increased volatility that can increase the number of voltage fluctuations, creating a negative 

impact on the quality and reliability of power supply. The previous makes voltage control a more 

critical issue in modern power distribution systems. 

By making use of a State Estimation solution, the voltages in the grid can be estimated so that the DSOs 

are able to have a picture of the current operating conditions and consequently know if any voltages 

are outside of desired operational limits and act upon it to bring the voltages within desired limits. 

With the increasing penetration of DERs, one available strategy for DSOs to control the voltages is to 

make use of the new controllable resources available in the grids. SE-based voltage control, using the 

voltage estimates at the grid’s nodes as a starting point, regulates the power setpoints of controllable 

sources in the grid to keep the voltages within acceptable limits. The voltage control is paired with an 

optimization algorithm to make sure that the minimum amount of power is being used to correct any 

possible voltage deviation, to minimize the associated costs. Since the voltage estimates come with an 

associated uncertainty, the voltage control must consider safety margins, in order to assure that the 

corrective actions actually keep the voltages within acceptable limits. The larger the uncertainties, the 

bigger the safety margins, and consequently, the bigger the necessary effort to correct voltage 

deviations, i.e., more power is required from the flexible sources to correct the deviations.  

One way to reduce the safety margins, and the costs associated with the use of power flexibility, is to 

install meters in the grid to improve the accuracy of the state estimation. A good starting point of 

analysis is to devise a way of, a priori, identifying which type of meter, and in which grid location, can 

provide the largest uncertainty reduction to the state estimation results. In this context, a very helpful 

tool, and a not very used one in power systems applications, is Sensitivity Analysis, which has the 

purpose of answering this type of questions as part of its main characteristics. Loosely speaking, a 

meter that can reduce the uncertainty of the state estimation is eventually a meter that, if installed in 

the grid, is expected to reduce the costs of the associated required flexible power.  

However, since the installation of the meters also carries a cost and considering the large sizes of 

distribution grids, and their traditional low levels of monitoring, this is not a straightforward task. 

Moreover, since the objective of meter installation, in this case, is to reduce the associated costs of 

flexible power used for voltage control, a cost-benefit analysis is needed to help in the decision of 

whether it makes sense or not to install a given meter since it allows to compare the cost of the meter 

versus the potential reduction in flexible power costs.  
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1.1 Literature Review 

Although the use of sensitivity analysis is widespread in many scientific areas, its use in power system 

applications has been traditionally based on methods that perform a linearization of the problem or in 

the so-called “perturb and observe” methods, which is based on changing the value of a given quantity 

and observe its effect on another quantity. These methods, which fall under the category of “local” 

sensitivity analysis, are only able to perform a valid analysis around a specific operating point and, 

although they have been proven to be of help, they can only explore small changes in the inputs, thus 

becoming not so reliable for large disturbances, as the ones affecting today’s power systems because 

of the DERs penetration, especially for distribution grids [1].  

The impact of uncertainties sources affecting state estimation and derived power systems applications 

has been studied before [2–4]. In [2], the effect of uncertainties sources on the state estimation-based 

voltage control of active distribution sources was studied, analyzing how the uncertainty of the 

estimated voltages affects the amount of power, and its associated cost, required for voltage control 

in active distribution grids. In [3] the effect that various inputs, like measurement uncertainties, 

measurement configuration, and load levels, have on the estimated voltage magnitudes is analyzed. 

In [4] the impact that the sources of uncertainty in the modeling of distribution lines have on power 

flow calculations is studied by looking at the variability of the voltage profile. However, in these, only 

uncertainty analysis is performed, i.e., the uncertainty of the affected quantities was quantified, but it 

wasn’t apportioned to the uncertainty sources originating it. 

The use of sensitivity analysis for state estimation studies has been previously reported in the literature 

[5, 6], however, these only make use of “local” sensitivity analysis techniques.  The use of more 

effective Sensitivity Analysis methods, falling in the category of “global” sensitivity analysis, is then 

necessary to study a range of operation wider than the baseline conditions. Although these “global” 

methods have also been used for power systems applications in the literature, as in [7, 8] or in [9] 

where a preliminary optimal meter placement strategy based on global sensitivity analysis is sketched 

out, they still have not been used much on State Estimation or State Estimation-based applications. 

Although the use of optimal meter placement strategies in the literature has been extensively reported 

[10–14], existing references usually have as goal the reduction of the estimation uncertainties below 

a given threshold using a minimum number of meters or to minimize the estimation uncertainties using 

a fixed number of meters. These optimization objectives are selected without any connection to grid 

management tasks that rely on state estimation results, which does not allow for an evaluation of the 

benefits that the installation of a specific meter on the grid could have on said management tasks. An 

approach that would allow performing this evaluation is an important planning tool that helps DSOs 

to justify or discard the installation of new meters based on, for example, the economic viability of 

installing a new meter by comparing the cost of the meter versus savings obtained by the improvement 

of an operational task due to the installation of the meter, as done in this thesis.  
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1.2 Thesis objectives  

The objective of this thesis is to propose a meter placement strategy based on global sensitivity analysis 

(GSA) and to propose a cost-benefit analysis framework that uses the meter placement results to 

evaluate the economic viability of installing the suggested meters, comparing the costs of installing the 

meter with savings obtained in operational costs associated to voltage control. Specifically, the thesis 

focuses on the following research questions: 

• How can Global Sensitivity Analysis be used to derive a meter placement strategy, which 

inputs should be considered, and how should the meter placement problem be posed?  

• What are the cost benefits of improving SE by installing new meters compared to keep 

using flexible power, considering factors such as investment costs, operational costs, and 

DER and ESS penetration? 

The contributions of this thesis are twofold. First, a systematic methodology for meter placement 

based on SA of the SE is provided, which can help distribution system operators (DSOs) to enhance the 

results of their SE algorithms and improve the reliability and efficiency of their networks. Second, a 

methodology for performing a cost-benefit analysis of state estimation-based voltage control is 

developed, which can help decision-makers to assess the economic feasibility of installing new meters 

and make informed investment decisions. 

The rest of this thesis is organized as follows:  

• Chapter 2 “Theoretical background” describes the theoretical background for this thesis, 

including global sensitivity analysis, Polynomial chaos expansion, state-estimation, and 

voltage control algorithm. 

• Chapter 3 “Framework” describes the proposed meter placement strategy based on 

sensitivity analysis and the proposed cost-benefit analysis methodology to decide on the 

installation of new meters, as well as how these two parts are tied together. It is also 

included a description of the distribution system models used and specifics on the 

implementation of uncertainty and sensitivity analysis, and the voltage control algorithm.  

• Chapter 4 “Results and Discussion” presents the results and discussion of the simulations 

done, pertaining to the meter placement strategy and cost-benefit analysis.  

• Chapter 5 “Conclusions and Future Work” provides the conclusions and future work of the 

thesis. 
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2 Theoretical background 

This chapter deals with the presentation and explanation of all the mathematical tools used for this 

thesis. The aim is to present Sensitivity Analysis (SA), a metamodeling tool, the Polynomial Chaos 

Expansion (PCE) metamodeling tool, State Estimation (SE), and a Voltage Control algorithm.   

Section 2.1 deals with presenting Sensitivity Analysis, its difference with respect to Uncertainty 

Analysis (UA), and the variance-based Method used in this thesis. Section 2.2 presents the Polynomial 

Chaos Expansion, a metamodeling tool that aids in performing the SA by means of a surrogate model. 

Section 2.3 presents the State Estimator implementation used for this work, briefly introducing state 

estimation in power systems and the specific formulation used. Lastly, section 2.4 presents the Voltage 

Control Algorithm, which is a key part of the Cost-Benefit analysis.  

2.1 Sensitivity Analysis 

Sensitivity Analysis is a powerful technique that, generally speaking, studies how the variability in the 

inputs of a model affects the variability of the model’s output, where the model could be any numerical 

procedure or algorithm that replicates the behavior of a real-life phenomenon, and the inputs can be 

the type and structure of the model, model equation parameters, initial and boundary conditions, 

resolution levels, etc. These inputs are subject to sources of uncertainty like data imprecision, own 

randomness of the model, etc.  [1]. More specifically, SA attempts to attribute the variability of the 

model output to each of the inputs. This makes SA an important tool in decision-making processes 

because it helps to provide valuable insights into the results obtained from complex models or 

simulations and how these results are affected by the inputs, which in turn gives hints as to what the 

effectiveness of a corrective action (any action taken to reduce the uncertainty of an input, or inputs) 

might be.  

As a general guide, performing SA helps to answer questions like [1]:  

• Which inputs produce the largest variation in the model output? 

• Which inputs do not influence the model output? 

• How much is the variability of the model output reduced by reducing the uncertainty of a given 

input? 

2.1.1 Uncertainty Analysis 
A very closely related concept to SA is Uncertainty Analysis (UA). while SA can be defined as the study 

of how the uncertainty of the model output can be attributed to each of the model inputs, UA can be 

defined as the characterization of the model output uncertainty, affected by the inputs’ uncertainty 

[1]. The method used for performing UA is chosen depending on the nature of the uncertainty of the 

inputs [9]. If the inputs are random variables defined by a Probability Density Function (PDF), 

combinations of the inputs within their respective PDF can be used to evaluate the model and produce 

a set of output values from which an empirical distribution histogram can be computed. The most used 
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method for the previous cases is the Monte Carlo Simulation (MCS) [15]. A brief description of MCS is 

given next.  

Given a general model 𝑦 = 𝑓(𝒙) relating the inputs to the outputs, where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛] is the 

vector of the inputs and 𝑦 is the model output, and the uncertainty of each input is defined by a 

corresponding PDF. Each of the model inputs is sampled within its respective PDF to obtain 𝑁 different 

combinations of inputs, for which the model is evaluated, obtaining 𝑁 corresponding values of 𝑦 that 

represent the output distribution and from which the expectation and the variance can be estimated. 

The simplicity of the method is what makes it so widely used, however, to assure that the 𝑁 values of 

𝑦 are representative of the true output distribution, a large number of input combinations has to be 

used. This makes MCS suffer from scalability problems that might make it not feasible, or too time-

consuming, to use it.  

When performing SA, the use of UA becomes necessary, as characterizing the output uncertainty is 

needed to then attribute its variability to the variability of the inputs. Figure 1 shows a general 

depiction of how UA and SA are related. 

 
Figure 1. General depiction of the connection between SA and UA [1]. 

 

2.1.2 Sensitivity Analysis classification 
The SA methods can be classified based on their exploration of the input space, in “local” or “global” 

methods, and based on their sampling strategy, in “One-At-a-Time” (OAT) or “All-At-a-Time” (AAT). 

Local methods only explore small, or local, changes of the inputs around a given baseline, i.e., only a 

portion of the input PDF is considered. Global methods, on the other hand, aim to explore (at least 

conceptually) the entirety of the inputs PDFs. OAT methods, as the name indicates, only consider the 

variation of one of the inputs at a time, while maintaining the other inputs fixed at a given value. On 

the opposite, AAT methods consider the variation of all the inputs at the same time, for example, as 

done in MCS. Although the One-at-a-time methods intuitively help to explain how much the variability 



  7 
 

of the considered input affects the variability of the model output, they do not account for the possible 

interactions between the inputs [1].  

For the work of this thesis only a “global”, AAT method was used, the chosen method is explained in 

the next subsection.  

2.1.3 Variance-based Sensitivity Analysis 
Variance-based SA comprises a group of global AAT SA methods that are based on the decomposition 

of the model output variance into contributions from the individual inputs and contributions from the 

possible input interactions. The method used in this thesis is the so-called Sobol’ or Sobol’ indices 

method [16]. A description of the method is presented next taken from [1], a more detailed 

explanation can be found in [16, 17]. 

Considering again the generic model used in Section 2.1.1, the main idea in variance-based methods is 

to consider the question of how much the variability of the model output, 𝑉𝑎𝑟(𝑦), changes when we 

fix a given model input, 𝑥𝑖, to its “true” value 𝑥𝑖
∗. It is expected that the conditional variance of the 

output, 𝑉𝑎𝑟(𝑦|𝑥𝑖 = 𝑥𝑖
∗), is lower than the original variance, 𝑉𝑎𝑟(𝑦), since one of the sources of 

uncertainty has been eliminated. Since 𝑥𝑖
∗ cannot be known, a reasonable choice is to evaluate the 

conditional variance over all the possible values of 𝑥𝑖  and compute the expected value of the 

conditional variance, while all other variables are varied in their respective PDFs, i.e., 

𝔼𝑥𝑖
(𝑉𝑎𝑟𝑥~𝑖

(𝑦|𝑥𝑖 = 𝑥𝑖
∗)). Given the law of total variance: 

 𝑉𝑎𝑟(𝑦) = 𝔼𝑥𝑖
(𝑉𝑎𝑟𝑥~𝑖

(𝑦|𝑥𝑖)) + 𝑉𝑎𝑟𝑥𝑖
(𝔼𝑥~𝑖

(𝑦|𝑥𝑖)) (1) 

 

where 𝔼𝑥𝑖
(𝑉𝑎𝑟𝑥~𝑖

(𝑦|𝑥𝑖)) is the residual output variance, and 𝑉𝑎𝑟𝑥𝑖
(𝔼𝑥~𝑖

(𝑦|𝑥𝑖)) can be interpreted 

as the reduction in the model output variance, obtained by fixing 𝑥𝑖 to its “true” value 𝑥𝑖
∗, i.e. if the 

uncertainty of input 𝑥𝑖 were to be eliminated. From the previous definitions, it is expected that a very 

influential input variable 𝑥𝑖 would have a larger variance reduction value than other not-so-influential 

input variables. Therefore, this value can be used as a measure of how influential an input is for the 

model output, in other words, as a measure of the sensitivity of 𝑦 to 𝑥𝑖. With the previous in mind, the 

first-order Sobol’ Index for variable 𝑥𝑖 can be computed with: 

 
𝑆𝑖 =

𝑉𝑎𝑟𝑥𝑖
(𝔼𝑥~𝑖

(𝑦|𝑥𝑖))

𝑉𝑎𝑟(𝑦)
         𝑤𝑖𝑡ℎ 𝑆𝑖 ∈ [0,1] 

  
 

(2) 

As defined before,  𝑆𝑖  is a measure of how important an input 𝑥𝑖  is to the variability of the model 

output, or in other words, how much of the variability of the model output, 𝑦, can be attributed solely 

to the variability of input 𝑥𝑖. This also allows to perform a ranking of the inputs, from more influential 

to least, by sorting the computed sensitivity indices (SIs). However, while a high value of 𝑆𝑖 indicates 

that the input 𝑥𝑖 is important, a low value of 𝑆𝑖, cannot be interpreted as 𝑥𝑖 being not important. The 

definition of the first-order index omits the combined effect that the selected input might have on the 
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model output by interacting with the other variables since the conditional variable is computed by 

fixing just one of the variables.  

As a solution to this problem, higher-order Sobol’ Indices can be defined, similarly to Equation (2). For 

example, the Second-order Index, 𝑆𝑖𝑗, is a measure of the combined contribution that inputs 𝑥𝑖 and 𝑥𝑗 

have in variability of the model output. The higher-order indices can be computed up until the 𝑀𝑡ℎ 

order, with 𝑀 being the number of inputs of the model. Although the higher-order indices provide a 

very detailed decomposition of the model output variance, the computation of all the higher-order 

indices can easily become an unfeasible task, since there will be as many as 2𝑀 − 1 terms in the 

decomposition. For a model with only 10 inputs, this means that 1023 terms would have to be 

computed.  

As a workaround for the dimensionality problem, the total-order Sobol’ Indices are introduced as: 

 
𝑇𝑖 =

𝔼𝑥~𝑖
(𝑉𝑎𝑟𝑥𝑖

(𝑦|𝑥~𝑖))

𝑉𝑎𝑟(𝑦)
= 1 −

𝑉𝑎𝑟𝑥~𝑖
(𝔼𝑥𝑖

(𝑦|𝑥~𝑖))

𝑉𝑎𝑟(𝑦)
 

  
 

(3) 

where 𝑉𝑎𝑟𝑥~𝑖
(𝔼𝑥𝑖

(𝑦|𝑥~𝑖)) is the variance reduction that is obtained, on average, if the uncertainties 

of all the inputs, except 𝑥𝑖, could be eliminated, and 𝔼𝑥~𝑖
(𝑉𝑎𝑟𝑥𝑖

(𝑦|𝑥~𝑖)) is the residual model output 

variance. 𝑇𝑖 can then be interpreted as the overall contribution of variable 𝑥𝑖 to the output  variance, 

including all higher-order interactions of 𝑥𝑖. For example, for a model consisting of three variables, 

𝑇1 = 𝑆1 + 𝑆1,2 + 𝑆1,3 + 𝑆1,2,3. If the total-order index for a variable 𝑥𝑖 is close to zero, this variable can 

be considered as not important, since neither the self-influence nor the interactions of 𝑥𝑖 with all the 

other variables have an impact on the model output variability. 

For variance-based sensitivity indices, the following properties hold true: 

• 0 ≤ 𝑆𝑖 ≤ 𝑇𝑖 ≤ 1 if the inputs are independent 

• Σ𝑖
𝑛𝑆𝑖 ≤ 1 if the inputs are independent 

• Σ𝑖
𝑘𝑆𝑖 = 1 if there are no input interactions in the model 

• 𝑇𝑖 − 𝑆𝑖 measures how much 𝑥𝑖 is involved in interactions with other inputs 

• 1 − Σ𝑖
𝑛𝑆𝑖 indicates the overall interactions among inputs 

As an example, let us consider the following toy model:  

 𝑦 = 𝑓(𝑥) = 𝑥1
2 − 𝑥2 + 4𝑥1𝑥3 (4) 

 

Where 𝑦 is the model output and 𝑥 = [𝑥1, 𝑥2, 𝑥3] is the vector of random input variables, assumed to 

be independent for this example. 𝑥1 has a Uniform PDF in the range [-0.5,0.5], 𝑥2 has a Uniform PDF 

in the range [0.5,1.5], and 𝑥3 has a Uniform PDF in the range [0,1]. The values of the sensitivity indices 

are shown in Table 1. 
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Table 1. Sensitivity Indices for example model. 

First Order 𝑆𝑖 Total Order 𝑇𝑖 Second Order 𝑆𝑖𝑗 Third Order 𝑆𝑖𝑗𝑘 

𝑆1 = 0.64 𝑇1 = 0.84 𝑆12 = 0.00 
𝑆123 = 0.00 𝑆2 = 0.16 𝑇2 = 0.16 𝑆13 = 0.20 

𝑆3 = 0.00 𝑇3 = 0.20 𝑆23 = 0.00 
 

From the sensitivity indices, it can be seen that the input that would bring a bigger reduction in the 

output variability, if its uncertainty were to be eliminated, is 𝑥1, which is expected since the model is 

a sum of three terms of which two depend on 𝑥1, and one of those is squared. This means that if some 

corrective action could be made on one of the inputs to reduce its uncertainty, with the intention of 

reducing the model output variability, it would make the most sense to do it on 𝑥1, assuming that it 

takes the same effort, in terms of money, time, etc., to reduce the uncertainty of any input.  

Another thing to notice is that even though 𝑆3  is null, variable 𝑥3  cannot be regarded as non-

important, as explained before, and 𝑇3 confirms that it does have some influence on the model output, 

as can be expected just by looking at the model. In this case all the influence of 𝑥3 is of second order, 

i.e., it has a combined effect with one of the other inputs, 𝑥1 in this case.  

When computing the variance-based sensitivity indices with methods like the one in [18] the 

computational cost for obtaining the full set of first and total order indices is 𝑁(𝑀 + 2) model runs, 

where 𝑁  is the sample size, usually between a few hundreds to a thousand. This becomes very 

computationally expensive for a high number of input variables or if each of the model evaluations 

takes time in the order of seconds to minutes. For this, several methods have been proposed in the 

literature, among them the use of metamodels as in [17]. 

 

2.2 Polynomial Chaos Expansion  

As mentioned before, the computation of the Sobol’ Indices might become computationally too 

expensive, one way of overcoming this limitation is the use of metamodeling tools, the chosen method 

for this thesis was the use of Polynomial Chaos Expansion as proposed in [17]. This method builds a 

surrogate model to represent the input-output relation of the original model, from this surrogate 

model the sensitivity indices can be more easily computed. A brief explanation of the method is given 

next based on [9, 17, 19], for a more detailed explanation the references should be revised. 

Consider a vector 𝑋 ∈ ℝ𝑀  of independent random variables, each with its own PDF, and a generic 

model 𝑦 = 𝑓(𝑋). The PCE of 𝑓(𝑋) is defined as: 

  𝑦 = 𝑓(𝑋) = ∑ 𝑦𝛼Ψ𝛼(𝑋)

𝛼∈ℕ𝑀

 (5) 
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where the Ψ𝛼(𝑋) are multivariate polynomials orthonormal with respect to the PDFs of the elements 

of 𝑋, 𝛼 ∈ ℕ𝑀 are the indices that identify the components of the multivariate polynomials and the 

𝑦𝛼 ∈ ℝ are the corresponding coefficients.  

Although the sum in Equation (5) has infinite terms, it must be truncated in practical applications to 

create the truncated PCE defined as: 

 𝑓(𝑋) ≈ 𝑓𝑃𝐶(𝑋) = ∑ 𝑦𝛼Ψ𝛼(𝑋)

𝛼∈𝒜

 (6) 

 

where 𝒜 ⊂ ℕ𝑀 is the set of selected indices of the multivariate polynomials, which is done by defining 

a total-degree truncation scheme, where all polynomials of degree lower or equal to 𝑝 are selected. 

The total number of terms in the series 𝐾 grows exponentially with the degree 𝑝 and is given by: 

 𝐾 =
(𝑀 + 𝑝)!

𝑀! 𝑝!
 (7) 

 

In many applications not all terms are equally important. Often, the important terms tend to be the 

ones where only a few variables are involved, according to the sparsity of effects principle. One 

modification to the original scheme is the hyperbolic, or q-norm, truncation scheme, which makes use 

of the q-norm (𝑞 ∈ (0,1]) to define the truncation [20]: 

 𝒜𝑀,𝑝,𝑞 = {𝛼 ∈ 𝒜𝑀,𝑝 ∶ ‖𝛼‖𝑞 ≤ 𝑝}  (8) 

where: 

 ‖𝛼‖𝑞 = (∑𝛼𝑖
𝑞

𝑀

𝑖=1

)

1/𝑞

 (9) 

 

Figure 2 shows an example of how the truncation behaves in two dimensions for different values of 𝑝 

and 𝑞. For 𝑞 = 1, first row of the figure, the hyperbolic scheme is the same as the total-degree scheme, 

for example, for 𝑝 = 3, the total number of terms is 10. By reducing the value of 𝑞, columns in the 

figure, the total number of terms is reduced, for example, for 𝑝 = 3 and 𝑞 = 0.5, the total number of 

terms is reduced to 7.  

Once the PCE coefficients have been obtained, the evaluation of the metamodel on new samples 

becomes a matter of using Equation (6), this is a very efficient operation that comes at a computational 

cost of only evaluating the polynomials and a small number of matrix multiplications, which can be 

used to obtain the PDF of the model output. Another important property of the PCE is that the 

coefficients can be used to efficiently compute the Sobol’ Indices, for a more detailed explanation 

see [21]. 
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Figure 2. Hyperbolic truncation for various 𝒑 and 𝒒 values [19]. 

 

2.3 State Estimation 

State Estimation (SE) is the process by which the states of a system (i.e., the set of variables that 

completely describe the current state of a system), are estimated based on the knowledge of the 

behavior of the system under study, the system model, and a set of measurements about its operating 

conditions. In the context of power systems, the states of the system are usually the set of complex 

node voltages, from which any other grid variable, for example, branch currents or power flows, can 

be calculated. For this, a set of measurements coming from different monitoring devices, including 

voltmeters, power injection meters, power flow meters, PMUs, etc. is used together with information 

on the topology of the grid, status of switches, and equations modeling the different elements of the 

system and the relations between system variables, like power flow equations. 

The process of state estimation is vital for ensuring that power systems are operated in a reliable and 

secure manner. The accurate representation of the system’s current state allows operators to make 

informed decisions and take appropriate real-time control actions. The information provided by state 

estimation is crucial to obtain system awareness, estimate the conditions of the system during 

contingencies, and monitor system stability. Additionally, this information is the base for many other 

advanced applications such as optimal power flow, contingency analysis, and system planning. Figure 

3 shows a general picture of the state estimation framework in power systems.  
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Figure 3. State Estimation framework in power systems. [22] 

2.3.1  State Estimation implementation 
The implementation of state estimation for power systems is not unique and depends on several 

factors. One of these factors can be the selection of the states, for example, different groups of grid-

related quantities can be selected as the states to be estimated, one of the more straightforward 

selections would be to use magnitudes and angles of the grid voltages, however, another valid 

selection could be the one composed of the complex voltage at a given reference node in the grid and 

the set of complex currents for all the branches of the grid. In principle, any set of variables, that once 

known allow for the computation of any other grid quantity, is a valid selection for the states of the 

system. 

Another factor that influences the implementation of the state estimation is whether the grid under 

study is a distribution or a transmission grid, for example, in transmission grids some simplifications 

can be made to the system equations due to the high X/R ratio, small angle differences and low 

variability of voltage magnitudes. These simplifications do not hold true for distribution systems. Also, 

while transmission grids are highly monitored grids with many voltage and power measurements 

available, on the other hand, distribution grids have a low level of monitoring, with usually very few 

voltage measurements available, which brings a challenge on how to achieve accurate results with 

fewer available measurements. 

For the estimation of the states, there are different mathematical models available, Weighted Least 

Squares (WLS), Maximum Likelihood Estimation (MLE), and Kalman Filter (KF), among others. The most 

widely use of these is the WLS which is the method used in this thesis and will be presented next.  

2.3.2 State Estimation formulation 
The specific State Estimation implementation used for this thesis is the one presented in [2], the 

explanation of the formulation, the choice of the state vector, and the general estimation algorithm 

are explained next. 

The general formulation of a state estimator for power systems is usually based on: 
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 𝑧 = ℎ(𝑥) + 𝑒 (10) 

 

where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑁]⊺ is the vector of the state variables, ℎ(𝑥) = [ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑀(𝑥)]⊺ is the 

vector of the measurement functions, which links the state variables to the measurements in the 

measurement vector 𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑀]⊺, and 𝑒 is the vector of measurement errors corresponding to 

𝑧. The measurement vector includes all the available measures, the ones coming from measuring 

devices installed in the grid, and the so-called pseudo-measurements, information known a priori 

about the power at the nodes, usually from historical or statistical data.  

The state vector used in this implementation is: 

 𝑥 = [𝑉𝑟𝑒𝑓
𝑟 , 𝑉𝑟𝑒𝑓

𝑥 , 𝐼1
𝑟, 𝐼1

𝑥 , … , 𝐼𝑁𝑏𝑟

𝑟 , 𝐼𝑁𝑏𝑟

𝑥 ]
⊺
 (11) 

 

where 𝑉𝑟𝑒𝑓
𝑟  and 𝑉𝑟𝑒𝑓

𝑥  are the real and imaginary parts, respectively, of the complex voltage at a 

previously chosen reference node in the grid, 𝐼𝑖
𝑟  and  𝐼𝑖

𝑥  are the real and imaginary parts of the 

complex current flowing through the 𝑖-th branch of the grid. In the case that no PMUs are available in 

the grid, 𝑉𝑟𝑒𝑓
𝑥  is removed from the state vector since angles have to be defined relative to the angle of 

the voltage at the reference node, which is set to zero. 

To estimate the states a WLS approach is used to solve the minimization: 

 𝑥 = min
𝑥

[𝑧 − ℎ(𝑥)]⊺𝑊[𝑧 − ℎ(𝑥)] (12) 

 

Where 𝑊 is a weighting matrix defined as the inverse of the covariance matrix of the measurements, 

that gives more importance to the more accurate measurements. The covariance matrix is obtained 

as:  

 𝐶𝑜𝑣 =

[
 
 
 
𝜎1

2 0 ⋯ 0

0 𝜎2
2 … 0

⋮
0

⋮
0

⋱ ⋮
⋯ 𝜎𝑀

2 ]
 
 
 

 (13) 

 

Where 𝜎𝑖 is the standard deviation associated with the 𝑖-th measurement.  

The minimization problem in (12) is solved with an iterative process consisting of three steps for each 

iteration. The first step is preparing the measurements, for this, phasor measurements are expressed 

in rectangular coordinates, and power measurements are transformed into equivalent current 

measurements according to: 
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 𝐼𝑒𝑞
𝑟 + 𝐼𝑒𝑞

𝑥 =
𝑃 − 𝑗𝑄

𝑣∗
 (14) 

 

where 𝑆 = 𝑃 + 𝑗𝑄 is the complex power considered as measurement and 𝑣∗ is the complex conjugate 

of the estimated voltage phasor at the previous iteration for the considered node.   

The second step is to obtain the updated (for the current iteration) state estimates by solving the 

normal equations according to: 

 𝑥𝑘 = 𝑥𝑘−1 + (𝐻⊺𝑊𝐻)−1𝐻⊺𝑊[𝑧𝑘 − ℎ(𝑥𝑘−1)] (15) 

 

Where 𝐻 is the Jacobian of the measurement functions and 𝑘 is the current iteration. 

The third and final step is the update of the voltage estimates making use of the current state vector 

estimate, computed with (15), and a forward sweep according to: 

 𝑣 = 𝑣𝑟𝑒𝑓,𝑘1 − 𝑍𝑛𝑜𝑑𝑖𝑘̂ (16) 

Where 1 is a column vector of ones, 𝑖𝑘̂ is a vector containing the branch currents estimates at the 

current iteration and 𝑍𝑛𝑜𝑑  is a matrix whose 𝑖-th row contains the impedances of the branches in the 

path from the reference node to the node 𝑖. These three steps are then iteratively repeated until the 

difference in the state estimates between the previous iteration and the current one fall below 10−6 

for all the state variables. 

After the iterative process is terminated, the uncertainties of the voltage and currents estimates can 

be computed by computing the inverse of the gain matrix 𝐺 defined as: 

 𝐺 = 𝐻⊺𝑊𝐻 (17) 

Where the elements of the inverse of the G matrix represent the variance of the estimates. The 

uncertainty of the estimates in percentage is then computed, assuming a Gaussian distribution and a 

coverage factor of 3, as: 

 𝑈𝑒𝑠𝑡,𝑖 = 300 ∗
𝜎𝑖

𝑥𝑖
 % (18) 

 

Where 𝜎𝑖 is the standard deviation of the 𝑖-th estimate and 𝑥𝑖 is the estimated value of the 𝑖-th state. 

Since the states are selected as the real and imaginary parts of voltages and currents, the values 

extracted from the inverse of the gain matrix have to be transformed if the uncertainty of a magnitude 

estimate is to be computed. 
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2.4 Voltage Control Algorithm 

The main objective of the voltage control algorithm is to keep the voltage magnitudes in the grid within 

desirable limits by regulating the reactive and active power setpoints of available flexible sources in 

the grid, like Energy Storage Systems, PV modules, Wind Turbines, Distributed Generation, etc. The 

voltage control algorithm used for this thesis is the one presented in [2] and is explained next. 

The voltage control algorithm is based on a centralized constrained optimization to keep the grid’s 

voltages within the predefined limits, it builds from a linearized branch flow model that approximates 

the relation between node voltage magnitudes and the injected active and reactive power at the nodes 

according to:  

 𝑉 = 1𝑉0 + 𝑅𝑃𝑖𝑛𝑗 + 𝑋𝑄𝑖𝑛𝑗  (19) 

 

where 𝑉0 is the voltage magnitude at the main substation, 𝑉 is a vector containing all the bus voltage 

magnitudes, 𝑃𝑖𝑛𝑗  and 𝑄𝑖𝑛𝑗  are vectors containing the active and reactive power injections at each 

node, and 𝑅 and 𝑋 are the real and imaginary parts of the impedance matrix 𝑍, which is obtained from: 

 [
𝑍 1
1⊺ 0

]  = [
𝑌 10

10
⊺ 0

]
−1

 (20) 

 

Where 𝑌 is the admittance matrix of the grid and 10 is a column vector with the first element equal to 

1 and the rest equal to 0.  

From (19), it can be derived a way of modifying the voltage magnitude profile of the grid by adjusting 

the active and reactive power injections of flexible sources following: 

 𝑉𝑐 = 1𝑉0 + 𝑅𝑃𝑖𝑛𝑗 + 𝑋𝑄𝑖𝑛𝑗 + 𝑅Δ𝑃 + 𝑋Δ𝑄 (21) 

 

Where 𝑉𝑐 is the resulting voltage magnitudes after the adjustment of the power injections, and Δ𝑃 and 

Δ𝑄 are the changes in power setpoints requested to the flexible sources.  

The goal of the used optimization algorithm is to minimize the overall power variations requested to 

the flexible sources (FS) to keep the voltage magnitudes between the predefined limits. With this in 

mind, the effect of the power variations on the voltage profile is considered by weighting active power 

changes with R and reactive power changes with X. The objective function of the optimization is then 

defined as: 

 𝐽(Δ𝑃𝐹𝑆, Δ𝑄𝐹𝑆) = Δ𝑃𝐹𝑆𝑅Δ𝑃𝐹𝑆 + Δ𝑄𝐹𝑆XΔ𝑄𝐹𝑆 (22) 

 



16   
 

The constraints used for the optimization problem are based on the operational limits of the available 

flexible sources, i.e., the maximum and minimum power setpoints and the boundaries for the grid 

voltages. The first constraint depends on the type of available flexible sources, if we consider ESSs and 

DGs are available, it could be expressed as: 

 −𝑃𝑐ℎ,𝑖
𝑚𝑎𝑥 ≤ Δ𝑃𝐸𝑆𝑆,𝑖 ≤ 𝑃𝑑𝑖𝑠,𝑖

𝑚𝑎𝑥   ∀𝑖 = 1,… ,𝑁 (23) 

 −𝑄𝐷𝐺,𝑖
𝑚𝑎𝑥(𝑡) ≤ Δ𝑄𝐷𝐺,𝑖 ≤ 𝑄𝐷𝐺,𝑖

𝑚𝑎𝑥(𝑡)   ∀𝑖 = 1,… ,𝑁 (24) 

 −𝑃𝐷𝐺,𝑖
𝑚𝑎𝑥(𝑡) ≤ Δ𝑃𝐷𝐺,𝑖 ≤ 0   ∀𝑖 = 1,… ,𝑁 (25) 

 

Where 𝑃𝑐ℎ,𝑖
𝑚𝑎𝑥  and 𝑃𝑑𝑖𝑠,𝑖

𝑚𝑎𝑥  are the maximum charging and discharging power for the Storage System 

located at the 𝑖-th node, 𝑄𝐷𝐺,𝑖
𝑚𝑎𝑥 is the maximum reactive power for the 𝑖-th Distributed Generator, and 

𝑃𝐷𝐺,𝑖
𝑚𝑎𝑥 is the generated active power for the 𝑖-th Distributed Generator at the considered time 𝑡. The 

limits would be set to zero in all the nodes where no ESS or DG are available. 

The second constraint can be expressed as: 

 Δ𝑉(𝑡) ≤ 𝑉𝑚𝑎𝑥 − 𝑉̂(𝑡) + Δ𝑉(𝑡 − 1) (26) 

 Δ𝑉(𝑡) ≥ 𝑉𝑚𝑖𝑛 − 𝑉̂(𝑡) + Δ𝑉(𝑡 − 1) (27) 

 

Where 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are vectors containing the upper and lower boundary for each of the voltage 

magnitudes, 𝑉̂(𝑡) is the vector of the estimated voltage magnitudes at the time 𝑡, coming form the 

State Estimation, and Δ𝑉 is the resulting voltage variation due to the power setpoints adjustments. 

The resulting voltage variation form the previous step, Δ𝑉(𝑡 − 1), is included in the second constraint 

to make sure that the power adjustments are kept over time as long as they are needed, without 

relaxing the adjustments when the State Estimation sees a better voltage magnitude coming for the 

very same power adjustment. 

Since the estimated voltage magnitudes have an associated uncertainty, calculated as in section 2.3.2, 

equations (26) and (27) are modified to restrict the constraint and ensure that corrected voltage 

magnitudes will remain within limits regardless of the deviation between the actual voltage and the 

estimated value. For example, the desired unmodified voltage bounds used for this thesis are 0.95 and 

1.05 p.u., if one of the voltage magnitudes has an estimation uncertainty of 2.5% then the bounds are 

modified to 0.975 and 1.025 p.u. by following (28) and (29).  

 𝑉𝑚𝑖𝑛 = 0.95 +
𝑈𝑒𝑠𝑡

100
 (28) 
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 𝑉𝑚𝑎𝑥 = 1.05 −
𝑈𝑒𝑠𝑡

100
 (29) 

 

where 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the same as in equations (26) and (27), and 𝑈𝑒𝑠𝑡  is a vector containing the 

estimation uncertainties of the voltage magnitudes. This ensures that the voltage always stays within 

the desired boundaries regardless of the negative impact of the state estimation uncertainties.  

In summary, the optimization problem is a quadratic optimization with linear inequality constraints 

and can be formulated as: 

 

min
Δ𝑃𝐹𝑆,Δ𝑄𝐹𝑆

 𝐽(Δ𝑃𝐹𝑆, Δ𝑄𝐹𝑆) 

 
Subject to (23), (24), (25), (26), (27), (28), (29) 

(30) 
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3 Framework 

This chapter focuses on the framework developed in this thesis and the specifics of the implementation 

of the concepts explained in the Theoretical background chapter.  Section 3.1 deals with the two grids 

used for the simulations, a toy grid used for preliminary analyses, and a real distribution grid. Section 

3.2 explains how the state estimation is performed and what states and inputs are considered. Section 

3.3 deals with the uncertainty and sensitivity analysis of the state estimator and explains what inputs, 

with their respective uncertainties, and outputs are considered. Section 3.4 explains the proposed 

meter placement methodology based on the results of the GSA. Lastly, section 3.5 explains the cost-

benefit analysis (CBA) methodology conceived to define the best metering infrastructure considering 

the meter placement results and the requirements of the voltage control algorithm. 

The implementation of the framework is done by making use of MATLAB and is divided into two main 

modules, the first is a meter placement algorithm based on GSA which takes as inputs the current 

meter configuration of the grid under study and the set of possible meters to install and produces a 

top-down ranked list of meters that successively bring the highest reduction to the uncertainty profile 

of the magnitude estimates. This list of meters is then used as input to the second part, a Cost-Benefit 

analysis, that evaluates the economic viability of the installation of each meter to make the final 

decision of which of the meters to install.  

Figure 4 shows the general layout of the framework. It is worth noting that the implementation was 

made to allow the replacement of any of the parts for similar, or potentially different, analysis. 

 
Figure 4. High-level representation of the two-module developed framework. 

3.1 Distribution System Model 

During the work of this thesis two different grids were used, a small 10-node toy grid, used to develop 

the meter placement methodology, to do initial tests of all the different codes that were implemented, 

and used in this chapter to better explain the different methodologies; and an industrial 99-node 

representative MV distribution grid used to provide a realistic scenario for testing the scalability and 

performance of the meter placement and running the cost-benefit analysis simulations, taking 

advantage of the available yearly profiles.  

Initial meter configuration

Meters that could be installed

Initial meter configuration

Grid data

Ranked list of meters

Cost of meters

Cost of flexible power

GSA-based meter 
placement

Cost-Benefit Analysis 
considering voltage 
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3.1.1  Toy grid 
The 10-node toy grid is a sample grid created mainly with the idea of testing and developing the meter 

placement methodology. The grid consists of two feeders, each with one generator, and loads at every 

other node, except for the slack bus. Since no time series profiles exist for this grid the cost-benefit 

analysis cannot be tested on this grid, only the meter placement procedure is applied to the grid. The 

one-line diagram of the grid can be seen in Figure 5. 

 

 

Figure 5. One-line diagram of the toy grid.  

 

3.1.2 Industrial Distribution grid 
A 99-node MV distribution grid was also used to test the meter placement procedure and the cost-

benefit analysis. This grid is an industrial distribution grid from the Atlantide research project [23–25]. 

The network consists of 99 nodes and 7 feeders with several distributed generators, including 3 Wind 

generators, 22 PV plants, and 3 CHP plants; and a mix of industrial, commercial, and residential loads. 

Yearly, monthly, weekly, and daily profiles are available for the grid. These profiles allow us to account 

for different loading and generation operating conditions and are an important part of the cost-benefit 

analysis. The one-line diagram of the grid can be seen in Figure 6. 
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Figure 6. One-line diagram of the 99-node grid.    

Irrespective of the grid that is used, some data needs to be read and prepared for the subsequent 

calculations, this includes topological information of the grid, line parameters, and current set points 

for loads and generation.  

3.2 State-Estimation 

The state estimator explained in Section 2 is used for two main purposes: 

- to obtain a set of estimated voltage magnitudes given a certain operating condition and meter 

configuration, and from those values perform uncertainty and sensitivity analysis of the state 

estimator for the meter placement procedure;  

- as a means to estimate the uncertainty of the voltage estimates which are inputs to the voltage 

control algorithm.  

Before estimating the states, a power flow is run on the grid using current operating conditions to 

obtain the real values of the voltage magnitudes and power flows. Additionally, a given meter 

configuration, including pseudo-measurements, and respective uncertainties are provided. The 

uncertainties given for power injection and power flow meters are assumed to be the uncertainty for 

both active and reactive power measurements. The creation of the measured data is done by sampling 

𝑁 times a normal distribution using as the mean the real voltage magnitude, power flow, or power 

injection value, depending on the type of meter or pseudo-measurement, and as standard deviation 

the value calculated with:  

 

 𝜎 = 𝑈 ∗
𝑉

3 ∗ 100%
 (31) 
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Where 𝑈 is the measurement uncertainty in %, 𝑉 is the real value obtained from the power flow and 

the factor of three is to account for the coverage factor. For each of the 𝑁 sets of measured data, a 

respective set of estimated voltage magnitudes is obtained. The value of 𝑁 depends on the purpose of 

the estimation, for the uncertainty and sensitivity analysis performed in this thesis, a value of at least 

1000 was used, and for the voltage control 1 was used.  

3.3 Uncertainty and Sensitivity Analysis 

To perform the uncertainty and the sensitivity analysis the outputs from the power flow and state 

estimator are required. For the uncertainty analysis the set of 𝑁 estimated voltage magnitudes for 

each node of the grid and the true values of the voltage magnitudes are used to compute the extended 

uncertainty in % of the voltage magnitude estimates according to (32), similar to [12]. 

 

 𝑈𝑉̂𝑖 
= 𝜎𝑉̂𝑖 −𝑉𝑖

∗
3 ∗ 100%

𝑉𝑖
 (32) 

 

Where 𝑈𝑉̂𝑖
 is the extended uncertainty in percentage for node 𝑖 , 𝜎𝑉̂𝑖−𝑉𝑖

 is the sample standard 

deviation of the difference between the magnitude estimates and the true value for node 𝑖, and 3 is 

the coverage factor. From the calculated uncertainties of the estimated magnitude, an uncertainty 

profile can be plotted for the given meter configuration and current operating conditions, being these 

the same configuration and conditions specified for the state estimation routine.   

Figure 7 shows an exemplary uncertainty profile obtained from the toy grid, the respective meter 

configuration comprises one voltmeter at node 1, with 1% uncertainty; and power injection pseudo-

measurements at all nodes, except for node 1, with 50% uncertainty.    

 
Figure 7. Example uncertainty profile for toy grid. 

For the GSA calculations, the same set of inputs are required as in the uncertainty analysis, a given 

meter configuration, and the results from the state estimation for the current operating conditions. 
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With these data, 𝑁 samples are created by sampling within a normal distribution, as explained in 

Section 3.2, using Latin Hypercube Sampling (LHS) as the sampling strategy for a better filling of the 

sample space. The number of inputs for the GSA is selected based on the number of meters in the 

given meter configuration, considering that power meters are treated as two separate inputs, one for 

active power and one for reactive power. This results in a sample matrix of 𝑁𝑥𝑀, where 𝑀 is the 

number of the inputs (here, number of voltmeters and twice the number of power injection and power 

flow meters), and 𝑁  is the number of samples, at least 1000. With this sample matrix, the state 

estimation is run 𝑁 times obtaining 𝑁different voltage magnitude estimates for each node of the grid, 

which results in a 𝑁𝑥𝑁𝑁𝑜𝑑𝑒𝑠 matrix that is used as output matrix for the GSA.  

For running the GSA, the UQLab tool is used [26]. UQLab is an open-source Uncertainty Quantification 

framework that facilitates performing, among others, sensitivity analysis. For this thesis, the 

Polynomial Chaos Expansion (PCE) [19] and Sensitivity Analysis (SA) [21] modules are used to perform 

the GSA of the state estimator. First, the PCE module is used to construct a PCE metamodel from the 

sample and output matrices described previously, and the type of distribution and parameters used 

for sampling the input data (Normal, with respective mean and standard deviation). Then, the SA 

module is used to compute the first and total order Sobol Sensitivity Indices from the constructed PCE 

metamodel. The sensitivity indices are calculated independently for each voltage magnitude estimate 

as output and give information on how much the uncertainty of each measurement contributes to the 

uncertainty of each voltage magnitude estimate. The indexes are then used as inputs for the meter 

placement methodology explained in the next section.   

Figure 8 shows an exemplary heatmap for the toy grid obtained with voltage measurements at all 

nodes, with 1% uncertainty for node 1 and 3% uncertainty for all other nodes, power injections pseudo-

measurements at all nodes, except node 1, with 50% uncertainty; and power flow measurements at 

all branches with 50% uncertainty, the selection of the meter configuration is explained in section 

3.4.1. From the heatmap, the most influential measurements for each of the voltage magnitude 

estimates are the voltage measurements followed by some of the power flow measurements and then 

some of the power injection measurements, which is expected for the given meter configuration.  

 
Figure 8. Example of GSA heatmap. 
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3.4 Meter Placement methodology 

A meter placement strategy based on performing GSA of the state estimator is proposed in this thesis 

as one of the two main components of this work, the other one being the cost-benefit analysis. The 

objective of this meter placement strategy is to select, based on sensitivity indices, from a pool of 

possible meters to be installed, the meter that can bring the largest uncertainty reduction to the 

voltage estimation profile. The use of GSA for the meter placement allows us to consider, at the same 

time, many uncertainty sources that could affect the state estimation without too high of a 

computational burden, as well as to analyze in a deeper way how these sources explain the uncertainty 

of the estimated values. The GSA also provides flexibility regarding the type of uncertain inputs that 

can be considered, facilitating analysis with different objectives by changing said inputs without major 

inconvenience to the GSA per se. 

3.4.1 Meter configuration setup 
The starting point of this strategy is the current meter configuration of the grid. However, the problem 

setup needs to be different from just the GSA of the state estimator with the given meter configuration, 

which is not enough to achieve our goal and would be limited to studying which of the meters already 

present in the grid is the most important, in terms of explaining the variability of the estimates. To 

achieve our goal, the set of uncertain inputs, as well as their respective uncertainties, considered in 

the GSA has to be tailored with the ultimate goal of the meter placement in mind. As a first 

consideration, the current meter configuration cannot be used as it is because it does not include the 

meters that could be installed, but are not currently present, and therefore these measurements will 

not be “seen” by the GSA. To make them available to the GSA the meter configuration must include all 

of the meters that could be installed.  

For example, in the toy grid, the initial meter configuration is assumed to be one voltage meter at node 

1, with 1% uncertainty, and power injection pseudo-measurements at all nodes, except at node 1, with 

50% uncertainty. If the GSA is performed with this configuration, it will not be possible to assess the 

contribution of, for example, a voltage meter at node 4. Instead, the meter configuration is assumed 

to be composed of voltage meters at all nodes, power injection pseudo-measurement at all nodes, 

except at node 1, and power flow meters at all branches. 

The inclusion of the meters, or measurements, that are not actually present in the grid raises the 

question of what uncertainty should be given to them. As a first approach, the uncertainty could be 

given as the uncertainty that the meter would have if it were present in the grid, for example, 1%, but 

this brings some problems for the GSA. If voltage measurements are available for the state estimation 

with very low uncertainty and everywhere in the grid, the estimation is no longer much of an 

estimation itself and becomes more a measurement of the states, a very unrealistic and not 

representative case. The state estimation would ignore non-voltage measurements and the magnitude 

estimates will be very close to the measured value and follow any change in the measurements, as 

small as it might be, almost entirely. This is a great feature of the state estimator because a 
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measurement that is considered to be very accurate is very close to the real value. However, for our 

objective this is not as good because it might create a bias towards the voltage measurements and 

underestimate all other measurements’ importance, not helping to assess the impact that the 

installation of a particular meter would have.  

Figure 9 shows the resulting heatmap of the first-order indices for the toy grid with the assumed meter 

configuration and using 1% uncertainty for all meters. It could be concluded that the inclusion of a 

voltage meter is far more important than the inclusion of any power injection or power flow meter. 

But this would be a wrong conclusion as shown in Figure 10. The figure shows various uncertainty 

profiles for the toy grid. In red is the profile under the assumed initial configuration, in yellow is the 

profile after adding a voltage meter at node 2, and in blue is the profile after adding a power flow 

meter between nodes 3 and 5. Although the addition of the voltmeter, as compared to the power flow 

meter, is indeed better at reducing the uncertainty profile, the impact of the power flow meter is not 

negligible as the heatmap would suggest. 

 
Figure 9. Heatmap assuming 1% uncertainty for all meters – toy grid. 
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Figure 10. Uncertainty profiles with original meter configuration, with a voltmeter at node 2, and with a power flow meter between 

nodes 3 and 5.   

 

Another possibility is to consider the uncertainty of the meter that could be installed as a value that 

does not affect the uncertainty of the state estimation results, but this would also result in misleading 

sensitivity indices because a measurement with a high uncertainty would just be ignored by the state 

estimator due to its weighting strategy and would have a very low sensitivity index. Figure 11 shows 

the resulting heatmap when a high uncertainty is assumed for the meters to be installed, in this case, 

voltmeters at all nodes are assumed to have 50% uncertainty, except for node 1, whose meter is 

considered to be present in the initial configuration with 1% uncertainty. Power injection pseudo-

measurements are assumed to have 50% uncertainty, as in the initial configuration; and power flow 

meters are considered to have 500% uncertainty. The heatmap would suggest that the voltmeter at 

node 1 and a couple of the power injections are the most important measurements. However, Figure 

12 shows that, for example, installing a power injection meter at node 7 is not better at reducing the 

uncertainty profile than installing a voltmeter at node 2 or a power flow meter between nodes 3 and 

5. 

Uncertainties values should then be selected so that the respective measurement does not become 

overly dominant or completely ignored by the state estimator weighting. An exact value or a well-

defined strategy for choosing the uncertainty values is not provided in this work. Instead, general 

guidelines are provided to tune these values according to the grid that is used, this process also 

requires the input of the expertise and knowledge of the grid of the analyst performing the meter 

placement. A first approach to finding these values is to look for an uncertainty value that creates a 

“halfway improvement” in the uncertainty profile for a specific meter, one that has a big impact on 

the uncertainty profile.  
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Figure 11. Heatmap assuming 50% uncertainty for voltmeters and 500% uncertainty for power flow meters – toy grid. 

 

Figure 12. Uncertainty profiles with original meter configuration, with a voltmeter at node 2, with a power flow meter between nodes 3 

and 5, and with a power injection meter at node 7. 

Figure 13 shows this “Halfway improvement” for a voltmeter installed a node 7. The figure shows the 

uncertainty profile of the toy grid for different values of uncertainties associated with the 

measurement, no measurement, 50%, 3%, and 1% uncertainty. From the graph, it can be seen that not 

having the measurement and having it with an uncertainty of 50% have more or less the same impact 

on the uncertainty profile, which makes 50% the worst case when this measurement is available, a 

similar result could be obtained with more or less uncertainty, for example, 25% uncertainty, but the 

exact uncertainty value at which the worst case occurs is not important, rather the shape of the curve 

is the important part. The profile when the uncertainty is considered as 1% is the best possible one 

when this measurement is present, again a similar profile could be obtained with a slightly higher 

uncertainty, but the important part is the shape of the profile. The profile when the uncertainty is 
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considered as 3% shows a visual “halfway improvement” in the profile, in the sense that it is more or 

less in the middle between the worst and best scenarios.  

 
Figure 13. “Halfway improvement” for voltmeter at node7. 

 
Figure 14. “Halfway improvement” for the power flow meter between nodes 3 and 5. 

Figure 14 shows the same graph for the power flow meters in the toy grid. The chosen uncertainty 

value for the “halfway improvement in this case is 50%. These uncertainty values are then chosen as 

the uncertainty values to be used in the GSA for the respective type of meter. The best value to be 

used is not necessarily this 3 or 50%, it could be more or less, but this proved to be a good initial choice. 

Further ahead in the meter placement procedure, the chosen values should be re-evaluated by 

comparing the suggestions coming from the meter placement strategy and the analyst’s expertise and 

knowledge of the grid. One important factor to keep in mind is that the chosen uncertainty values 

should not be low enough that one type of meter is favored over another by the state estimator just 

because of its low uncertainty. In such a case, the chosen value should be increased to eliminate the 

bias towards a specific type of meter. Figure 15 shows the resulting heatmap using 3 and 50% as the 
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selected uncertainties, power flow meters are now shown to have some importance, not as much as 

voltage meters, but definitively more than before.  

 
Figure 15. Heatmap of the first-order Sobol’ indices with the chosen uncertainty values for the toy grid. 

 

3.4.2 Meter placement procedure 
The general procedure for the meter placement is as follows and is summarized in Figure 16: 

• Step 1: Define the meter configuration including already present meters and meters that could 

be installed. 

• Step 2: Generate 𝑁 samples of the measurements given the meter configuration and run 𝑁 

state estimations. 

• Step 3: Using the sampled measurements and the results of the state estimation run the GSA 

of the state estimator and obtain the SIs of each meter, or measurement, for each magnitude 

estimate. 

• Step 4: Based on the SIs choose the most influential meter, or measurement, as corrective 

action, i.e., install the selected meter. 

• Step 5: Update the meter configuration with the suggested corrective action.  

• Step 6: Go back to step 2.   

 

Now the problem lies in how to choose the corrective action for step 4. Looking at the sensitivity 

indices we can see which meter, or measurement, is contributing the most to the uncertainty of a given 

magnitude estimate. However, since the sensitivity indices are calculated at the node-level and grid-

level information is required to make a decision on which meter should be installed, a summary metric 

based on the indices has to be implemented. The chosen metric has to, on one hand, summarize the 

SIs of one meter, or measurement, for each of the magnitude estimates into a single value and, on the 

other hand, reflect the objective of lowering the uncertainty profile. After the summary values for each 

meter or measurement are obtained, they are sorted in descending order and the highest valued one, 
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ignoring meters already present in the grid, is chosen as the suggested corrective action, i.e., the meter 

to be installed. For this work, three metrics were proposed and used for the simulations. 

 
Figure 16. Flowchart for the meter placement strategy. 

3.4.3 Metrics for meter placement 
Equation (33) shows the first proposed metric, “weighted sum”, where 𝐼𝑚𝑝𝑥𝑖

 is the summarized value 

given to the meter or measurement 𝑥𝑖; 𝑇𝑥𝑖,𝑗 is the total order Sobol index of meter, or measurement, 

𝑥𝑖 for node 𝑗; and 𝑈𝑉̂𝑗
 is the extended uncertainty in percentage for node 𝑗, as in equation (32). This 

metric takes the sum of the SIs obtained for a meter, or measurement, as a measure of how important 

they are on a grid-level, and then weights it with the square of the expanded uncertainty. The latter 

fulfills two different functions, first, it gives an indication of how far the uncertainty of a magnitude 

estimate is from a completely ideal zero uncertainty, and second, it gives more importance to meters, 

or measurements that are important to the most uncertain estimates. 

 

 
𝐼𝑚𝑝𝑥𝑖

= ∑ 𝑇𝑥𝑖,𝑗 ∗ 𝑈𝑉𝑗̂

2

𝑁𝑁𝑜𝑑𝑒𝑠

𝑗=1

 

 

(33) 

 

Equation (34) shows the second metric, “weighted sum with threshold”, where 𝐼𝑚𝑝𝑥𝑖
 is the 

summarized value given to the meter or measurement 𝑥𝑖; 𝑇𝑥𝑖,𝑗 is the total order Sobol index of meter, 

or measurement, 𝑥𝑖 for node 𝑗; and 𝑈𝑉̂𝑗
 is the expanded uncertainty in percentage for node 𝑗, as in 

equation (32). This metric is very similar to the “weighted sum”, but with the difference that it 



30   
 

considers only the SIs of a meter, or measurement, for a given node if the uncertainty of the estimated 

voltage magnitude for that node is bigger than an arbitrary threshold 𝑇ℎ𝑟. This allows to direct the 

corrective actions to the nodes with higher estimation uncertainties. The threshold also works if the 

goal of the meter placement is reducing the maximum uncertainty below a given value. In that case, 

as the uncertainty of a node falls below the threshold, the node will stop being considered in the 

decision-making process. 

 

 
𝐼𝑚𝑝𝑥𝑖

= ∑ 𝑇𝑥𝑖,𝑗 ∗ 𝑈𝑉𝑗̂

2

𝑁𝑛𝑜𝑑𝑒𝑠

𝑗=1

, 𝑓𝑜𝑟 𝑈𝑉̂𝑗
> 𝑇ℎ𝑟 

 

(34) 

 

Equation (35) shows the third metric, “weighted sum for one feeder”. Where 𝐼𝑚𝑝𝑥𝑖
 is the summarized 

value given to the meter or measurement 𝑥𝑖 ; 𝑓  is the feeder in which the node with the highest 

estimation uncertainty is; 𝑇𝑥𝑖,𝑗 is the total order Sobol index of meter, or measurement, 𝑥𝑖 for node 𝑗; 

and 𝑈𝑉̂𝑗
 is the expanded uncertainty in percentage for node 𝑗, as in equation (32). This metric is also 

similar to the previous ones, but instead of having a grid-level focus, it has a feeder-level focus. This is 

because the benefits in the uncertainty profile obtained by the installation of a single meter are almost 

completely local to the feeder in which the meter is installed, at least for feeders with a moderate 

number of nodes, and this allows for a stepwise uncertainty reduction of peaks in the uncertainty 

profile.  

 

 
𝐼𝑚𝑝𝑥𝑖

= ∑𝑇𝑥𝑖,(𝑗∈𝑓) ∗ 𝑈𝑉𝑗∈𝑓̂

2

𝑓

 

 

(35) 

 

Other metrics were tested during the work of this thesis but did not perform very well. Among these 

were variations of the proposed metrics, like not focusing on the feeder with the highest uncertainty, 

but on the feeder with the highest sum of uncertainties. This, however, might focus the suggestions 

on feeders with a higher number of nodes, but low uncertainty, and ignore feeders with a lower 

number of nodes, but high uncertainties. Another proposition was to focus the weighted sum on a 

selection of nodes based on the local maxima of the uncertainty profile, but this option loses 

performance as the uncertainty profile goes lower since many local maxima start to appear altering 

the focused approach. A somewhat different approach was to sort the SIs for each node, and the 

choosing as corrective action the meter associated with the SI that was sorted as the highest the most 

times, i.e., the mode. This approach also did not perform very well in comparison to the three 

presented here above. 
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3.4.4 Meter placement in the toy grid 
For a better understanding of the meter placement strategy the first three iterations for the toy grid 

are shown next following the “weighted sum” metric, the rankings for the other two metrics will also 

be shown but ignored. For the weighted sum with threshold, the threshold was selected as 1%. 

The initial meter configuration consists of a voltage meter at node 1 with 1% uncertainty and power 

injection pseudo-measurements at all nodes, except node 1, with 50% uncertainty, resulting in the 

uncertainty profile shown in Figure 17. Now for the meter placement, all meters that could be installed 

are added to the meter configuration. This means that we have voltage meters at all other nodes with 

3% uncertainty, and power flow meters at all branches with 50% uncertainty, which results in the 

heatmap in Figure 18. From these SIs, the three metrics are computed, and the first ten ranked results 

are shown in Table 2. 

 

Figure 17. Initial uncertainty profile for the toy grid. 

 
Figure 18. Initial configuration heatmap for toy grid. 

 



32   
 

Table 2. Ranked metrics for initial meter configuration in toy grid. 

Weighted sum 
Weighted sum  
with threshold  

(𝑻𝒉𝒓 = 𝟏%) 

Weighted sum  
for one feeder 

V1 11.5299 V1 11.5299 V1 4.5271 

V7 4.6141 V7 4.6141 V7 3.1059 

V6 4.2459 V6 4.2459 V6 2.7525 

V5 3.7479 V5 3.7479 V5 2.2855 

V10 3.6002 V10 3.6002 P3-5 2.1915 

V9 3.4203 V9 3.4203 V3 1.6840 

V8 3.2009 V8 3.2009 P2-3 1.4959 

V3 3.1010 V3 3.1010 V10 1.3419 

V4 2.8839 V4 2.8839 V9 1.3283 

V2 2.6296 V2 2.6296 V8 1.3220 

 

From the table, the suggested meter to install is a voltmeter at node 7, we ignore the voltmeter at 

node 1 because it is already present in the grid. Figure 19 shows how the uncertainty profile changes 

when installing each of the first three suggested meters, it can be seen that the inclusion of a voltmeter 

at node 5, ranked 4th, has the lowest impact of the three and that the inclusion of a voltmeter at node 

7 or 6, ranked 2nd and 3rd, respectively, has very similar results, this as expected from the ranking, see 

the similar values for V7 and V6, and the somewhat lower value for V5.  

Figure 20 shows how the uncertainty profile changes after the addition of a voltmeter at node 7, the 

suggested meter, the figure also shows what the profile would look like if a voltmeter at node 2 and a 

power flow meter between nodes 9 and 10 were installed. The resulting profiles are in agreement with 

the ranking as the voltmeter at node 7, which is ranked 2nd, brings an important reduction of the 

uncertainty profile; the voltmeter at node 2, which is ranked 10th, also results in a good reduction in 

the profile, yet not as good as the voltmeter in node 7; and lastly, the power flow meter between 

nodes 9 and 10, which is ranked 23rd, does not produce a significant reduction in the profile. This 

comparison between higher and lower-ranked meters is only done to show that the ranking makes 

sense and will be omitted in the following for the sake of brevity. 
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Figure 19. Comparison of the first three ranked meters. 

 
Figure 20. Possible uncertainty profiles after first corrective action. 

 

After having decided to install a voltmeter at node 7 as the corrective action, we now update the meter 

configuration and run the GSA again. This produces the heatmap shown in Figure 21 and the ranking 

shown in Table 3. From the table, the suggested corrective action is to install a power flow meter 

between nodes 8 and 9. Figure 22 (note the change in the limits of the axis showing the uncertainty) 

shows the resulting uncertainty profile after installing the suggested meter, a voltmeter at node 2, 

which is ranked 9th, and after installing a power flow meter between nodes 1 and 2, which is ranked 

27th. It is worth noting that, as the levels of uncertainty decrease, the differences in the corrective 

actions become less and less evident.  
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Figure 21. Heatmap for toy grid after first corrective action.  

 

Table 3. Ranked metrics after first corrective action in toy grid. 

Weighted sum 
Weighted sum 
with threshold 
(𝑻𝒉𝒓 = 𝟏%) 

Weighted sum 
for one feeder 

V7 3.5607 V1 1.8655 V1 1.8651 

V1 2.9879 V7 1.8379 V7 1.8375 

Pf8-9 0.9488 Pf8-9 0.9338 Pf8-9 0.9367 

V10 0.9095 V10 0.7588 V10 0.7589 

V9 0.8275 V9 0.6784 V9 0.6780 

V8 0.7241 Pf4-8 0.6041 Pf4-8 0.6043 

Pf4-8 0.6136 V8 0.5759 V8 0.5754 

V4 0.5880 V4 0.4411 V4 0.4411 

V2 0.4925 Pf 2-4 0.4280 Pf 2-4 0.4280 

V3 0.4696 V2 0.3489 V2 0.3487 
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Figure 22. Possible uncertainty profiles after the second corrective action. 

 

With the power flow meter between nodes 8 and 9, the meter configuration can be updated, and a 

third round of the meter placement can be done. This results in the heatmap shown in Figure 23 and 

the ranking shown in Table 4. From the table, the suggested corrective action is to install a voltmeter 

at node 10. Figure 24 (note the change in the limits of the axis showing the uncertainty) shows the 

resulting uncertainty profiles for installing a voltmeter at node 10, ranked 3rd, and the suggested action; 

installing a voltmeter at node 6, ranked 8th (but the suggested action by the third metric); and installing 

a power flow meter between nodes 1 and 2, ranked 23rd.  

As expected, the power flow meter is not as good as the other options, but it is worth noting the 

difference between metric 1 and metric 3, which up to this point had agreed on the suggested meter. 

The difference comes from the different objectives of the metrics, since metric 3 looks at the feeder 

where the node with the highest estimation uncertainty is, which in this case is feeder 1, the suggested 

corrective action is expected to mostly improve the uncertainties of the nodes in this feeder. Indeed, 

if we compare the two profiles, we see that the uncertainties of the nodes in feeder 1, nodes 3, 5, 6, 

and 7, are lower when we follow metric 3. At this point, judging one over the other becomes more a 

matter of the purpose of the metric. The previous shows the influence of the chosen metric in the 

meter placement results, metrics with different objectives will suggest different actions. 

It is also worth noting that metric 2 produces no ranking since all the uncertainties are below the 

selected threshold, 1%, as shown in Figure 22, and by its definition, it has completed its purpose. 



36   
 

 
Figure 23. Heatmap for toy grid after second corrective action. 

 

Table 4. Ranked metrics after the second corrective action in the toy grid. 

Weighted sum 
Weighted sum 
with threshold 
(𝑻𝒉𝒓 = 𝟏%) 

Weighted sum 
for one feeder 

V7 2.1145 V1 - V7 1.2695 

V1 1.8024 V2 - V1 0.3283 

V10 0.2749 V3 - V6 0.1306 

V9 0.2709 V4 - V5 0.1149 

V8 0.2679 V5 - V3 0.0910 

V4 0.2544 V6 - Pf3-5 0.0817 

V5 0.2374 V7 - V10 0.0791 

V6 0.2367 V8 - V9 0.0783 

V2 0.2367 V9 - V8 0.0775 

V3 0.2367 V10 - V4 0.0757 

 

 
Figure 24. Possible uncertainty profiles after the third corrective action. 
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3.5 Cost-Benefit Analysis 

The second part of this thesis is the implementation of a cost-benefit analysis comparing the yearly 

cost of installing a new meter in the grid, to improve the state estimation, versus the savings in the 

yearly cost of flexible power required by a state estimation-based voltage control. The savings come 

from the improvement that the considered meter brings to the accuracy of the state estimation results 

and, consequently, on the reduction of the safety margins considered in the voltage control algorithm. 

  

3.5.1 State estimation-based voltage control 
The state estimation-based voltage control, as explained in section 2.3.2, is used to compute the 

change in the power output setpoints of flexible power sources that is required to keep all the voltage 

magnitudes within desired limits. For computing these changes an optimization algorithm takes as 

input a set of voltage magnitudes and respective uncertainties, one for each voltage magnitude, and a 

pool of available flexible power sources, with respective set point limits, whose power set points may 

be potentially changed. 

The voltage magnitudes are obtained from a power flow computation considering the current 

operating conditions, the uncertainties are computed by making use of the state estimation routine as 

explained in section 2.3.2, considering the current meter configuration, and are used to restrict the 

desired voltage range. This restricted voltage range then ensures that the corrected voltage 

magnitudes remain within limits even if the actual voltage deviates from the estimated one, as 

explained in section 2.4.  

3.5.2 Cost-benefit analysis  
For the yearly cost-benefit analysis, first, the total amount of flexible power requested in a year, and 

its respective cost considering an initial meter configuration, is needed. For this, the generation and 

load profiles for the Atlantide network are used. These profiles provide a 15-minute resolution for the 

simulation and allow us to adapt accordingly the limits for the maximum and minimum power that can 

be delivered by the pool of flexible sources by scaling the operating set points in those instants of time 

where the voltage exceeds the allowed limits. Besides the PV, Wind, and CHP resources available in 

the grid, Energy Storage Systems are assumed to be installed at each node where a PV plant is present, 

see Figure 6. After the voltage control algorithm has been executed at each time step in the year, the 

overall requested power is computed by adding the magnitude of each set point change at each time 

step for all the flexible sources, then the respective cost is computed by multiplying the total requested 

power by a given cost of flexible power. 

Secondly, for the cost comparison, a list of meters to be considered is needed. From this list, meters 

are selected iteratively to update the initial meter configuration. Then, the year simulation is done 

again to obtain the yearly cost of flexible power, considering the modified meter configuration with 

the additional meter. If the yearly cost of the meter is lower than the savings due to its installation, 

i.e., the difference in yearly flexible power cost with and without the meter, then the installation of 
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the meter is cost-convenient. If the cost of the meter is higher, then its installation is not cost-

convenient. The installation of a meter reduces the amount of requested flexible power since its 

installation reduces the uncertainty profile of the voltage magnitude estimates, which makes the 

modified voltage limits, used as inputs to the voltage control algorithm, less stringent. If the installation 

of the considered meter is advised, then the process is repeated with the next meter in the list until a 

meter is found whose yearly cost is higher than the savings from its installation.  

If during the year simulation, the uncertainty of any estimated magnitude surpasses a value of 5% at 

any time step, the lower voltage limit becomes higher than the upper voltage limit, for example, at 6% 

uncertainty the lower and upper limits are 1.01 and 0.99 p.u., respectively, following (28) and 

(29)Error! Reference source not found.Error! Reference source not found.. In such a scenario, the 

voltage control algorithm cannot find a solution to the optimization problem since the limits make it 

impossible. For the Cost-Benefit analysis loop, this is interpreted as the fact that the next meter must 

be installed, the current year simulation is stopped at this time step and the analysis continues by 

updating the meter configuration with the next meter and running the year simulation with the 

updated meter configuration. 

The list of meters used for this analysis is obtained by repeating several times the GSA-based meter 

placement strategy explained in Section 3.4. This list makes then the connection between the two main 

parts of this thesis. It is worth noting that the two parts are independent of one another and that a 

different meter placement strategy could be used to obtain the list of meters to consider without 

affecting the cost-benefit analysis framework. The cost-benefit analysis loop is summarized in the 

flowchart shown in Figure 25.  
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Figure 25. Flowchart for the cost-benefit analysis. 
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4 Results and Discussion 

This chapter shows the results obtained from the different simulations that were done for this thesis. 

Section 4.1 focuses on the results obtained from the meter placement strategy for the Atlantide grid, 

and Section 4.2 shows the resulting Cost-benefit analysis results obtained from the corresponding 

meter placement results. 

4.1 Meter placement results 

For the meter placement strategy, the Atlantide grid was always assumed to have an initial meter 

configuration comprising one voltmeter at node 1, with 1% uncertainty; and power injection pseudo-

measurements at all nodes, except node 1, with 50% uncertainty. For the GSA and SIs computation, it 

was assumed that voltmeters could be added at any other node, as well as power flow meters at any 

branch. The uncertainty used to run the GSA for the meters that could be installed was 3% for voltage 

meters and 50% for power flow meters, and the uncertainty considered when a meter was installed 

was 1% for voltage meters and 2% for power flow meters.  The simulations were run on a computer 

with Windows 10 and an AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx@2.10 GHz processor, the 

computational time for the calculation of the PCE and the Sensitivity Indices for one round of the meter 

placement and 1000 samples (with 295 inputs and 99 outputs) took around 93.2 seconds for the 

Atlantide grid.  

4.1.1 Operating conditions selection 
Since there are many different operating conditions available, thanks to the load and generation 

profiles of the Atlantide network, a representative operating condition, or set of representative 

operating conditions, must be chosen before the meter placement can be applied. The chosen year 

must match the year chosen for the cost-benefit analysis loop, in this case, 2030, but which specific 

time step, or time steps, within the year, remains a degree of freedom.  

The grouping of the time steps was done by looking at each respective voltage magnitude profile. For 

this, a power flow was run at each time step considering the 15-minute profiles. This results in 

96*365=35040 different voltage profiles, for the year 2030, to be grouped. For the grouping of the 

profiles a simple clustering technique was used, the k-medoids method [27]. This method divides all 

the available profiles into k groups and assigns to each group a centroid within the dataset, the reason 

why it was chosen over other methods like k-means, where the centroid might not exist in the dataset. 

Each group contains all the profiles that are closer, given a distance metric, to the centroid of the group 

than to the centroid of any other group. Figure 26 shows the resulting voltage profiles selected as 

centroids for 6 clusters, additionally, it shows the profiles where the highest overvoltage (OV) and the 

lower undervoltage (UV) of the year occur. Since all the selected centroids are basically scaled versions 

of the profiles with the worst OV and UV, these two were selected as representative profiles. At the 

time steps of the worst OV and UV, the requested power determined by the voltage control algorithm 

will be higher since the voltage magnitude are the furthest away from the desired limits. Section 4.1.2 
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shows the results obtained when only considering the OV case, and Section 4.1.3 shows the results 

obtained by combining the OV and UV cases.   

 
Figure 26. Centroids for 6 clusters. 

 

4.1.2 Meter placement for the OV case 
With the selected representative time step and the meter configuration explained at the beginning of 

Section 4.1 we can start the meter placement procedure. Figure 27 shows the initial uncertainty 

profiles for the Atlantide industrial grid at the worst OV case. For the simulations, 10 iterations of the 

meter placement strategy were done to have a large enough list of meters ready to perform the Cost-

Benefit Analysis without needing to do additional rounds of the meter placement, for the sake of 

explaining the results. In practice, doing one round of the meter placement and then one round of the 

CBA with the single proposed meter will avoid running unnecessary meter placement rounds, which 

can be very time-consuming depending on the size of the grid and the number of inputs considered. 

The heatmaps obtained from the first round of the meter placement are shown in Figure 30 and Figure 

29 for the OV case. The heatmaps were divided into only voltage and active power flow meters for 

visualization purposes and because the other meters were not as important. 
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Figure 27. Initial uncertainty profile for worst OV case. 

 
Figure 28. Heatmap for voltage meters – OV case. 



  43 
 

 
Figure 29. Heatmap for active power flow meters – OV case. 

 

With the intention of showcasing the differences between the proposed metrics, and one that was 

considered, but did not perform well, an additional metric was used. This additional metric, “modified 

weighted sum for one feeder”, is a modified version of the weighted sum for one feeder, where the 

feeder for which the weighted sum is done is not the feeder with the highest uncertainty, but the 

feeder with the highest sum of uncertainties. Table 5 shows the ten suggested meters by each of the 

four metrics, for the “Weighted sum with threshold” metric a threshold of 1% was used. Figure 30, 

Figure 31, Figure 32, and Figure 33 show the uncertainty profiles after adding each of the suggested 

meters by the four metrics.  

Table 5. First ten meters suggested by the four metrics. 

Weighted 
sum 

Weighted sum 
with threshold 
(𝑻𝒉𝒓 = 𝟏%) 

Weighted sum 
for one feeder 

Modified 
weighted sum 
for one feeder 

V32 V32 V32 V32 

V49 V49 V84 V84 

V84 V82 V49 V49 

V93 Pf 62-63 V93 V93 

Pf 62-63 V93 Pf 1-59 Pf 1-59 

V7  V14  V77 V77 

Pf 35-44 V77 Pf 62-63 Pf 62-63 

V70  - V7  V7  

Pf 1-85 - Pf 35-44 Pf 35-44 

V50 - Pf 1-85 Pf 1-85 
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Figure 30. Resulting uncertainty profiles – weighted sum. 

 

Figure 31. Resulting uncertainty profiles – weighted sum with threshold. 
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Figure 32. Resulting uncertainty profiles – weighted sum for one feeder. 

 
Figure 33. Resulting uncertainty profiles – modified weighted sum for one feeder. 

The first thing to note from these results is that the fourth metric, as explained briefly in Section 3.4.3, 

does not have a good performance because the metric focuses on a feeder with a large number of 

nodes with low uncertainty, feeder 1 in this case (nodes 2-33), and ignores a feeder with a low number 

of nodes with high uncertainty, feeder 5 in this case (nodes 79-84). This can be seen in Figure 33, where 

even after 10 meters, the uncertainties on feeder 5 never changed and 5 of the 10 suggestions are 

meters placed in feeder 1 (V32, V7, V30, V14, and V19). Different results can be seen for metrics one 

to three, where a voltmeter, V84, is recommended for feeder 5. 

Another thing to notice is that metrics 1 and 2, being very similar, have the same first two suggestions, 

they differentiate from each other when enough estimation uncertainties fall below the considered 

threshold. Another differentiating factor for metric 2 is that only seven meters can be suggested, this 

is because, after the seventh step, all the uncertainties fall below 1%. This, for now, is no indication 

that the metric is better or worse than the others, that is to be decided in the Cost-Benefit Analysis. To 

have a clearer look at the end state of the uncertainty profiles, Figure 34 shows the initial profile and 

the profiles for each metric after 10 steps (7 steps for metric 2).  
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Figure 34. Uncertainty profile after 10 steps for each metric. 

 

4.1.3 Meter placement for combined cases 
With the selected representative time steps, OV and UV cases, and the meter configuration explained 

at the beginning of Section 4.1 we can start the meter placement procedure. Figure 35 shows the initial 

uncertainty profiles for the Atlantide industrial grid at the worst OV and UV. Before proceeding with 

the meter placement, a way of putting together the ranking metrics needs to be decided. This is done 

by computing the metrics individually for the OV and UV cases and adding them. In this case, the 

resulting importance given to, for example, a voltmeter at node 5, is the sum of the importance given 

to the meter in each case. For the simulations, only 10 meters were obtained from the meter 

placement strategy. 

 
Figure 35. Initial uncertainty profile for worst OV and UV cases. 
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The heatmaps obtained from the first round of the meter placement for the OV case were shown in 

Figure 28 and Figure 29. Figure 36 and Figure 37 show the heatmaps for the UV case. The heatmaps 

were divided into only voltage and active power flow meters for visualization purposes and because 

the other meters were not as important. 

 
Figure 36. Heatmap for voltage meters – UV case. 

 
Figure 37. Heatmap for active power flow meters – UV case. 

 

Table 6 shows the chosen meters for each of the three proposed ranking metrics combining the results 

of the OV and UV cases, for this case a threshold of 1% was used. It is worth noting that given the initial 

uncertainty profiles for the OV and UV cases, the OV case is expected to dominate the ranking since 

the square of the uncertainties is used as weight. It can also be seen that again the weighted sum with 

threshold stops suggesting meters once the uncertainty profile falls below the selected threshold and 

that the three metrics have the same first three suggestions, however, this is not always the expected 
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behavior. Figure 38 and Figure 39, Figure 40 and Figure 41, and Figure 42 and Figure 43 show how the 

uncertainty profiles change with the addition of each of the meters in the list for the “weighted sum”, 

the “weighted sum with threshold” and the “weighted sum for one feeder” metrics, respectively. 

Analyzing Figure 40 and Figure 41 it can be seen that for the second metric, the uncertainty profile in 

the UV case falls below the threshold, 1%, after three meters, making the following steps entirely 

dependent on the OV case. 

Table 6. First ten meters suggested by the three metrics. 

Weighted sum 
Weighted sum 
with threshold 
(𝑻𝒉𝒓 = 𝟏%) 

Weighted sum 
for one feeder 

V32 V32 V32 

V84 V84 V84 

V50 V50 V50 

Pf 62-63 Pf 62-63 V93 

V93 V93 Pf 1-59 

V14 V6 V77 

Pf 35-44 - Pf 62-63 

V75 - V20 

Pf 1-85 - Pf 35-44 

V55 - V30 

 

 
Figure 38. Uncertainty profiles for OV case – weighted sum.  
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Figure 39. Uncertainty profiles for UV case – weighted sum. 

 
Figure 40. Uncertainty profiles for OV case – weighted sum with threshold. 

 
Figure 41. Uncertainty profiles for UV case – weighted sum with threshold. 
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Figure 42. Uncertainty profiles for OV case – weighted sum for one feeder. 

 
Figure 43. Uncertainty profiles for UV case – weighted sum for one feeder. 

If we compare the results obtained for just the OV case with the ones obtained for the combined OV 

and UV cases, it is visible that in fact, the OV case is dominant, see for example the inclusion of a 

voltmeter at node 93 which is completely a suggestion from the OV case, since the uncertainty around 

node 93 is quite low in the UV case. Although not very differentiating, the UV case does have an impact 

on the final list of meters, this can be seen in the different order of the lists and in the differences in 

meters recommended that are very similar. For example, in the single OV case the meter V49 is 

recommended as second for the weighted sum, whereas in the combined case, the meter V50 is 

recommended as third for the weighted sum. These two meters have almost the same impact in the 

uncertainty profile, as can be seen in Figure 44, where a large zoom in the plot would be required to 

appreciate any visual difference between just the effects of each of the meters. 
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Figure 44. Uncertainty profiles after installing either meter V49 or V50. 

 

4.1.4 OV case for a different year 
Considering the connection between the meter placement and the Cost-Benefit analysis, it is worth 

choosing another year for the simulations to observe differences in the load and generation levels, 

penetration of renewables, and the extent of overvoltages, for this the year 2018 was chosen. For this 

scenario we also focus only on the worst OV case, the meter configuration is the same as assumed in 

the previous cases. Figure 45 shows the initial uncertainty profile for this year and Figure 46 and Figure 

47 show the first round heatmaps, again, the heatmaps were divided into only voltage and active 

power flow meters for visualization purposes, and because the other meters were not as important. 

For this scenario only the weighted sum was used as ranking metric, Table 7 shows the suggested 10 

meters, and Figure 48 shows how the uncertainty profile changes with the addition of each meter. 

Comparing this scenario with the previous ones, we can see that the initial uncertainty profile is lower 

than the previous ones, the highest uncertainty being 2.72% in this one, and 3.96% in the others. 

Another notable thing is that some of the suggested meters are the same as those suggested in 

previous sections, V32, V84, V50/V49, Pf 62-63, and V93. 

Table 7. First ten meters suggested by the weighted sum. 

Weighted sum 

V84 

V32 

Pf 62-63 

V50 

Pf 5-6 

V93 

Pf 1-79 

Pf 47-48 

Pf 46-54 

Pf 47-51 
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Figure 45. Initial uncertainty profile – OV case 2018. 

 
Figure 46. Heatmap for voltage meters – OV case 2018. 
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Figure 47. Heatmap for power flow meters – OV case 2018. 

 
Figure 48. Uncertainty profiles for OV case 2018. 

4.2 Cost-benefit analysis results 

Having obtained various results from the different scenarios analyzed for the meter placement 

strategy we can now run simulations for the Cost-Benefit analysis. Using as input the lists of meters 

obtained, we can then run the CBA routine and see how many meters it makes sense to install in each 

case, from a cost perspective. A total of eight cases are analyzed in this section, from the single OV 

case we consider the results obtained using the “weighted sum”, “weighted sum with threshold”, 

“weighted sum for one feeder” and “modified weighted sum for one feeder” metrics from Section 

4.1.2, and the results obtained using the “weighted sum” metric from Section 4.1.4. From the 

combined OV and UV cases, we consider the results obtained using the “weighted sum”, “weighted 

sum with threshold” and “weighted sum for one feeder” metrics from Section 4.1.3. 
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Before performing the Cost-Benefit analysis we need to establish the cost of flexible power and the 

cost of meters. The cost of flexible energy was assumed to be 100€/MWh, for positive and negative 

control power, and only applicable to active power changes. The cost was selected as in [28] and is 

even a conservative cost considering the cost of balancing energy reported in [29]. A reference cost 

for reactive power provision was not found in accessible sources, moreover, a remuneration for 

generators providing this service is not common in electricity markets. Belgium was found to be the 

only European country to incorporate a market for reactive power [30, 31], but its prices are not 

publicly available [32]. The yearly cost of the meters was assumed to be the same for all types of meters 

and to be 40,000€ distributed over 15 years or 2,666€/yr, based on meter costs reported in [33]. 

Another input that must be defined is the initial meter configuration, in this case, is the same 

configuration used for the meter placement scenarios: one voltmeter at node 1, with 1% uncertainty, 

and power injection pseudo-measurements at all nodes, except node 1, with 50% uncertainty. 

It is worth noting that even though the costs, and the list of meters used, are key factors in the decision-

making process of the Cost-Benefit Analysis, the really important part is how they are used in the 

framework of the Cost-benefit analysis, and that they are just inputs to the analysis that can, and 

should, be adjusted to fit the circumstances of any future user of the proposed framework. 

Additionally, it is also possible to obtain the list of meters under consideration from any other meter 

placement strategy without any impact on the Cost-Benefit analysis. 

Table 8 shows a summary of the results of the Cost-Benefit Analysis, each row represents one of the 

scenarios mentioned earlier, where the 1st metric is the “weighted sum”, the 2nd metric is the 

“weighted sum with threshold”, the 3rd metric is the “weighted sum for one feeder”, and the modified 

3rd metric is the “modified weighted sum for one feeder”. The initial yearly cost for the 2030 scenarios 

is not available because, with the initial meter configuration in these scenarios, there was a time step 

where the uncertainty of an estimated magnitude surpassed the 5% limit, the value given in the table 

was calculated by forcing the uncertainty to be 4.98% at those time steps which emulates an attempt 

at correcting the voltages as much as possible.   

Table 8. Summary of the Cost-Benefit Analysis results. 

 

Scenario 
Number of 

meters 
installed 

Initial yearly 
cost (€/yr) 

Final yearly 
cost (€/yr) 

2030 

1st metric – OV 4 ≈253,747 82,449 

2nd metric – OV 3 ≈253,747 86,903 

3rd metric – OV 4 ≈253,747 82,371 

Modified 3rd metric – OV 2 ≈253,747 90,079 

1st metric – UV+OV 3 ≈253,747 86,926 

2nd metric – UV+OV 3 ≈253,747 86,926 

3rd metric – UV+OV 4 ≈253,747 82,447 

2018 1st metric – OV 2 79,048 15,908 

 

Two things to notice are the differences in magnitudes of the costs for the 2018 and 2030 scenarios, 

where the initial cost for the former is still lower than the final cost for the latter, and how with just 
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two meters a big cost improvement can be made. This shows how much the results of the Cost-Benefit 

analysis are influenced by the operating conditions. For the 2018 case, having lower load and 

generation levels, and voltage uncertainties, with only two meters the total costs were reduced by a 

factor of almost five, whereas for the 2030 scenarios the biggest reduction factor, for the metrics going 

up to the fourth meter, was about 3.  

Another thing to notice is how similar the results of all the metrics are. This is due to the fact that the 

meter placement results are anyway very similar, in fact, the first 4 suggested meters are the same for 

the scenarios that reach the 4 meters installed, and even if the suggested fifth meter changes from 

Pf 62-63 to Pf 1-59 when we compare the 1st metric with the 3rd one, both of the meters act to reduce 

the uncertainty on the same feeder. Moreover, one of these two meters is the meter that makes the 

CBA procedure stop in all of the cases, if we look at the voltage magnitudes and the restricted voltage 

limits during the year for the nodes in the feeder on which these meters act, we see that the voltages 

are never outside the restricted limits. The installation of any of these two meters then makes no 

difference in the output of the voltage control algorithm, i.e., the requested flexible power by the 

voltage control, and its associated cost, are the same with or without these meters present in the grid, 

since the voltages do not need to be corrected.    

Figure 49 shows how the savings due to the installation of each additional meter change at every 

iteration of the Cost-Benefit analysis loop for the simulated scenarios. The dashed line represents the 

yearly cost of each meter, which is always constant, and the other bars represent the savings, the 

difference between the cost of flexible power from the previous round, and the cost with the meter 

under consideration for each scenario. When the bar for any of the scenarios is below the dashed line 

it means that the currently considered meter is more expensive than the savings due to its installation 

and the CBA procedure stops. The first bars of all the scenarios were trimmed for visualization 

purposes, the value for the 2030 scenarios is 157,639 €/yr and for the 2018 scenario is 59,327 €/yr. 

The first bars of the other scenarios were calculated using the assumed initial cost shown in Table 8. 

Figure 50 shows the final total cost of each scenario, composed of the total cost of the meters installed 

(in red), and the cost of the flexible power considering all the meters installed (in blue).  

 

Figure 51 shows how the total cost evolves for each scenario as each new meter is installed and, also 

shows what the total cost is at the meter that stops the Cost-Benefit analysis loop,  the first bars of the 

2030 scenarios are the assumed initial cost shown in Table 8, since with the initial meter configuration 

the year simulation could not be done. This figure was also trimmed for visualization purposes. From 

this figure, it can be seen how the cost of flexible power does not change when the considered meter 

is Pf 62-63 or Pf 1-59, as explained previously. 

Looking at the results for metric 2, it can be seen that in the combined OV+UV case it has the same 

results as metric 1, even though the suggested meters are not all the same. It can also be seen that the 

fact that the meter placement done with metric 2 and 1% as threshold only goes for 7 rounds doesn’t 

affect the result of the CBA in this case, since the Cost-Benefit Analysis indicates that only the first 3 

meters make sense to be installed. If instead, the CBA had stopped at the 7th meter, then the meter 

placement should have been continued with a lower threshold and then incorporate the additional 
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meters into the Cost-Benefit Analysis, although the originally suggested meters are not guaranteed to 

be the same as if the meter placement were done with the lower threshold from the beginning. 

 

 
Figure 49. Cost of meter vs savings for the different scenarios. 

 
Figure 50. Final total cost for the different scenarios. 

 
Figure 51. Total cost at each iteration for the different scenarios. 
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5 Conclusions and Future Work 

Considering the main goals of this thesis, an innovative cost-benefit analysis framework for the 

installation of meters in distribution grids was proposed. Firstly, a new approach to the meter 

placement problem in distribution networks is proposed by making use of variance-based GSA, 

showcasing its applicability and versatility in multiple power system applications. The proposed meter 

placement focuses on the installation of meters that would bring a significant reduction to the 

uncertainty profile of the voltage magnitude estimates, in a way that depends on the ranking metric 

used, rather than on finding the minimum meter configuration that brings the uncertainty of the 

estimates below a given threshold. Secondly, a cost comparison framework was established to 

evaluate the installation of a new meter in the grid from a cost perspective by considering the savings 

brought by the meter in terms of voltage control-related costs. These two main parts of the work were 

then paired under a coupled workflow where the results of the meter placement were then used as 

inputs for the cost-benefit analysis to evaluate from a cost perspective the viability of the proposed 

meter placement.  

A key characteristic of the software implementation is its modularity, making its two parts completely 

independent. Any of the two parts could be exchanged or extracted from the proposed 

implementation for different purposes, the GSA-based meter placement can be replaced by any other 

meter placement technique without affecting the cost-benefit analysis, or the cost-benefit analysis can 

be removed to use the meter placement for any other SE-based application. 

Chapter 3 explains the proposed workflow implementation and how the two main parts work. The 

meter placement strategy explanation shows the necessary pre-steps to apply GSA, showing how 

much the uncertainties of the GSA inputs can affect the results of the meter placement, too much 

uncertainty can underestimate the effect of meters and too little can overestimate it. Although the 

selection of these uncertainties is very grid dependent and a standard way of doing this is not 

proposed, general guidelines are presented in this regard. The framework for the Cost-Benefit analysis 

is also presented, showing the integration of the voltage control algorithm and how simulations for a 

year are set up and run in order to compare the yearly cost of the meters with the cost of the yearly 

flexible power used for voltage control. 

Chapter 4 presents the simulation results for the 99-node industrial grid. The results for the meter 

placement strategy allow us to conclude that the placement is affected when considering different 

generation and load levels, and DER penetration, as in the 2030 scenarios where the costs were higher 

than in the 2018 scenario. Although the specific meter selection varies, the three proposed ranking 

metrics are shown to have very similar results, showing that different meters can have similar impacts 

on the uncertainty profile. As an additional advantage of the proposed strategy, it can be noted that 

different ranking metrics can be used to make the meter placement fit different objectives without 

changing the GSA setup. The obtained results prove how the choice of a proper metric for the 

application under analysis is crucial, as differences can still be found depending on the implemented 

metric.  
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The use of different operating conditions has a great influence on the uncertainty of the state 

estimation, being able to make some uncertainties rise or fall considerably, which results in the 

scenario with higher uncertainties dominating the results when different scenarios are analyzed 

together. It is also concluded that the performance of the metrics for the meter placement cannot be 

completely judged until the CBA is performed, considering that the CBA is the final goal of the whole 

framework. Comparing the metrics, metrics 1 and 3 are better suited for the CBA than metric 2 since 

metrics 1 and 3 allow to continue the meter placement until the CBA finds a meter that should not be 

installed. Metric 2 on the other hand can make the CBA stop if the uncertainty profile falls below the 

chosen threshold and the CBA has not found a meter that should not be installed, in which case a lower 

threshold can be selected and continue the CBA or the whole process could be restarted with the lower 

threshold.  

The results of the CBA show how much the CBA is influenced by the results of the meter placement.  It 

can also be concluded that, contrary to what one would think, a high number of meters is not necessary 

to achieve relatively large savings, especially in cases with low generation, load, and DER levels. 

Because of the way that the CBA is proposed, the considered costs for meters and power are also of 

great influence in the CBA results, however, this was thought as an intended characteristic since costs 

of power and meters might be very location-dependent and it makes the framework applicable for any 

DSO. The modularity of the framework implementation also allows us to use the meter placement 

strategy for other SE-based applications, or the cost-benefit analysis together with other similar meter 

placement strategies.  

In conclusion, a new Cost-Benefit analysis framework for the installation of meters in distribution grids 

has been proposed to help DSOs in their decision-making process, showcasing the applicability of GSA 

techniques for this specific power system applications and making use of a robust voltage control 

strategy for current and future power systems with high DER penetration. The proposed approach 

connects the meter placement strategy with a grid management task as is the voltage control, making 

the decision on whether to install a meter dependent on the economic benefits that the installation of 

the meter could bring, from the voltage control perspective and not just on whether or not the 

estimation uncertainties are below a given threshold. 

5.1 Future work  

Regarding the meter placement strategy, some variations can be made to add more degrees of 

freedom for the analysts/DSOs, for example, by considering PMUs as potential meters, or to expand 

or improve the capabilities of the meter placement, the use of different GSA techniques (Borgonovo, 

Morris, HDMR, PAWN) can be used to obtain improvements in terms of computational time and meter 

selection, for example by using screening techniques to reduce the dimensionality of the problem by 

eliminating nonimportant inputs. New metrics can be proposed and explored to improve the meter 

selection or to better adapt to different analysis purposes. Since the meter placement strategy in its 

core is a way of improving the State Estimation, it could also be expanded to other SE-based 

applications.  
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Some extensions to the Cost-Benefit analysis can be in the consideration of different costs for different 

types of meters, as well as considering the possible dependency of the meter cost on the location in 

which they are to be installed. Regarding the costs of flexible power, the inclusion of costs associated 

with the provision of reactive power can be considered, as well as time-based costs for power, since 

the energy prices fluctuate during the day, especially if high-resolution load and generation profiles 

are available.  

  



60   
 

6 References 

[1] M. Ginocchi, F. Ponci, and A. Monti, “Sensitivity Analysis and Power Systems: Can We Bridge the 

Gap? A Review and a Guide to Getting Started,” Energies, vol. 14, no. 24, p. 8274, 2021, doi: 

10.3390/en14248274. 

[2] M. Pau, E. de Din, F. Ponci, P. A. Pegoraro, S. Sulis, and C. Muscas, “Impact of uncertainty 

sources on the voltage control of active distribution grids,” in 2021 International Conference on 

Smart Energy Systems and Technologies (SEST), Vaasa, Finland, 2021, pp. 1–6. 

[3] M. Pau, P. A. Pegoraro, S. Sulis, and C. Muscas, “Uncertainty sources affecting voltage profile in 

Distribution System State Estimation,” in 2015 IEEE International Instrumentation and 

Measurement Technology Conference (I2MTC) Proceedings, Pisa, Italy, 2015, pp. 109–114. 

[4] M. Pau, F. Ponci, and A. Monti, “Impact of Network Parameters Uncertainties on Distribution 

Grid Power Flow,” in 2019 International Conference on Smart Energy Systems and Technologies 

(SEST), Porto, Portugal, 2019, pp. 1–6. 

[5] R. Minguez and A. J. Conejo, “State Estimation Sensitivity Analysis,” in MELECON 2006 - 2006 

IEEE Mediterranean Electrotechnical Conference, Benalmadena, Spain, 2006, pp. 956–959. 

[6] T. Stuart and C. Herczet, “A Sensitivity Analysis of Weighted Least Squares State Estimation for 

Power Systems,” IEEE Trans. on Power Apparatus and Syst., PAS-92, no. 5, pp. 1696–1701, 1973, 

doi: 10.1109/TPAS.1973.293718. 

[7] A. Ahmadifar, M. Ginocchi, M. S. Golla, F. Ponci, and A. Monti, “Development of an Energy 

Management System for a Renewable Energy Community and Performance Analysis via Global 

Sensitivity Analysis,” IEEE ACCESS, vol. 11, pp. 4131–4154, 2023, doi: 

10.1109/access.2023.3235590. 

[8] A. Dognini, M. Ginocchi, E. de Din, F. Ponci, and A. Monti, “Service Restoration of AC–DC 

Distribution Grids Based on Multiple-Criteria Decision Analysis,” IEEE ACCESS, vol. 11, pp. 

15725–15749, 2023, doi: 10.1109/ACCESS.2023.3244872. 

[9] R. Scalabrin and G. Cocchi, “Sensitivity Analysis of a State Estimator and State Estimation based 

Applications,” Master thesis, Scuola di ingegneria industriale e dell'informazione, Politecnico 

Milano, 2022. 

[10] M. E. Baran, J. Zhu, and A. W. Kelley, “Meter placement for real-time monitoring of distribution 

feeders,” IEEE Trans. Power Syst., vol. 11, no. 1, pp. 332–337, 1996, doi: 10.1109/59.486114. 

[11] M. Ghasemi Damavandi, V. Krishnamurthy, and J. R. Marti, “Robust Meter Placement for State 

Estimation in Active Distribution Systems,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1972–1982, 

2015, doi: 10.1109/TSG.2015.2394361. 

[12] J. Liu, F. Ponci, A. Monti, C. Muscas, P. A. Pegoraro, and S. Sulis, “Optimal Meter Placement for 

Robust Measurement Systems in Active Distribution Grids,” IEEE Trans. Instrum. Meas., vol. 63, 

no. 5, pp. 1096–1105, 2014, doi: 10.1109/TIM.2013.2295657. 

[13] N. Nusrat, M. Irving, and G. Taylor, “Novel meter placement algorithm for enhanced accuracy of 

distribution system state estimation,” in 2012 IEEE Power and Energy Society General Meeting, 

San Diego, CA, 2012, pp. 1–8. 



  61 
 

[14] R. Singh, B. C. Pal, R. A. Jabr, and R. B. Vinter, “Meter Placement for Distribution System State 

Estimation: An Ordinal Optimization Approach,” IEEE Trans. Power Syst., vol. 26, no. 4, pp. 

2328–2335, 2011, doi: 10.1109/TPWRS.2011.2118771. 

[15] E. Zio, The Monte Carlo simulation method for system reliability and risk analysis. London: 

Springer, 2013. 

[16] I. Sobol′, “Global sensitivity indices for nonlinear mathematical models and their Monte Carlo 

estimates,” Mathematics and Computers in Simulation, vol. 55, 1-3, pp. 271–280, 2001, doi: 

10.1016/S0378-4754(00)00270-6. 

[17] B. Sudret, “Global sensitivity analysis using polynomial chaos expansions,” Reliability 

Engineering & System Safety, vol. 93, no. 7, pp. 964–979, 2008, doi: 10.1016/j.ress.2007.04.002. 

[18] A. Saltelli, “Making best use of model evaluations to compute sensitivity indices,” Computer 

Physics Communications, vol. 145, no. 2, pp. 280–297, 2002, doi: 10.1016/S0010-

4655(02)00280-1. 

[19] Marelli S., Lüthen N., and Sudret B., “UQLab user manual ‐ Polynomial chaos expansions,” Chair 

of Risk, Safety and Uncertainty Quantification, ETH Zurich,Switzerland, 2022. 

[20] G. Blatman, “Adaptive sparse polynomial chaos expansions for uncertainty propagation and 

sensitivity analysis,” Université Blaise Pascal, Clermont-Ferrand, France, 2009. 

[21] Marelli S., Lamas C., Konakli K., Mylonas C., Wiederkehr P., and Sudret B., “UQLab user manual ‐ 

Sensitivity analysis,” Chair of Risk, Safety and Uncertainty Quantification, ETH 

Zurich,Switzerland, 2022. 

[22] F. Ponci, “Advanced Monitoring for Power Systems: Module I – Course Introduction,” 2022. 

[23] F. Pilo et al., “ATLANTIDE - Digital archive of the Italian electric distribution reference networks,” 

in CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, Lisbon, Portugal, 

2012, p. 165. 

[24] A. Bracale et al., “Analysis of the Italian distribution system evolution through reference 

networks,” in 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 

Berlin, Germany, 2012, pp. 1–8. 

[25] G. Celli, F. Pilo, G. Pisano, and G. G. Soma, “Reference scenarios for Active Distribution System 

according to ATLANTIDE project planning models,” in 2014 IEEE International Energy Conference 

(ENERGYCON), Cavtat, Croatia, 2014, pp. 1190–1196. 

[26] S. Marelli and B. Sudret, “UQLab: A Framework for Uncertainty Quantification in Matlab,” in 

Vulnerability, Uncertainty, and Risk, Liverpool, UK, 2014, pp. 2554–2563. 

[27] The MathWorks, Inc., kmedoids. [Online]. Available: https://www.mathworks.com/help/stats/

kmedoids.html (accessed: Sep. 5 2023). 

[28] R. Bolgaryn, Z. Wang, A. Scheidler, and M. Braun, “Active Power Curtailment in Power System 

Planning,” IEEE Open J. Power Energy, vol. 8, pp. 399–408, 2021, doi: 

10.1109/OAJPE.2021.3118445. 

[29] Amprion GmbH, BALANCING GROUP PRICE. [Online]. Available: https://www.amprion.net/

Energy-Market/Balancing-Groups/Balancing-Group-Price/ (accessed: May 15 2023). 

[30] T. Wolgast, S. Ferenz, and A. Niesse, “Reactive Power Markets: A Review,” IEEE ACCESS, vol. 10, 

pp. 28397–28410, 2022, doi: 10.1109/ACCESS.2022.3141235. 



62   
 

[31] SmartNet Consortium, D1.1: Ancillary Service Provision by RES and DSM Connected at 

Distribution Level in the Future Power System. [Online]. Available: https://smartnet-project.eu/

publications/index.html#tab-id-2 (accessed: May 15 2023). 

[32] Elia, Open Data Portal. [Online]. Available: https://opendata.elia.be/explore/?

disjunctive.theme&disjunctive.dcat.granularity&disjunctive.dcat.accrualperiodicity&

disjunctive.keyword&sort=explore.popularity_score&refine.keyword=Bidding&refine.keyword=

Costs (accessed: May 15 2023). 

[33] F. G. Duque, L. W. de Oliveira, E. J. de Oliveira, and J. C. de Souza, “A cost-benefit multiobjective 

approach for placement of meters in electrical distribution systems,” Electric Power Systems 

Research, vol. 191, p. 106897, 2021, doi: 10.1016/j.epsr.2020.106897. 

 


	Table of Contents
	List of Figures
	List of Tables
	1  Introduction
	1.1 Literature Review
	1.2 Thesis objectives

	2 Theoretical background
	2.1 Sensitivity Analysis
	2.1.1 Uncertainty Analysis
	2.1.2 Sensitivity Analysis classification
	2.1.3 Variance-based Sensitivity Analysis

	2.2 Polynomial Chaos Expansion
	2.3 State Estimation
	2.3.1  State Estimation implementation
	2.3.2 State Estimation formulation

	2.4 Voltage Control Algorithm

	3  Framework
	3.1 Distribution System Model
	3.1.1  Toy grid
	3.1.2 Industrial Distribution grid

	3.2 State-Estimation
	3.3 Uncertainty and Sensitivity Analysis
	3.4 Meter Placement methodology
	3.4.1 Meter configuration setup
	3.4.2 Meter placement procedure
	3.4.3 Metrics for meter placement
	3.4.4 Meter placement in the toy grid

	3.5 Cost-Benefit Analysis
	3.5.1 State estimation-based voltage control
	3.5.2 Cost-benefit analysis


	4  Results and Discussion
	4.1 Meter placement results
	4.1.1 Operating conditions selection
	4.1.2 Meter placement for the OV case
	4.1.3 Meter placement for combined cases
	4.1.4 OV case for a different year

	4.2 Cost-benefit analysis results

	5 Conclusions and Future Work
	5.1 Future work

	6 References

