
Mechanics and microstructure modeling

of the solid electrolyte Li7La3Zr2O12

Von der Fakultät für Georessourcen und Materialtechnik der

Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigte Dissertation

vorgelegt von

Roland Sandt, M.Sc.

Berichter: Univ.-Prof. Dr. rer. nat. Robert Spatschek

Univ.-Prof. Dr. rer. nat. Robert Svendsen

Tag der mündlichen Prüfung: 10.09.2024
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Abstract

The efficient electrical energy storage is an important challenge of research, where many

crucial topics like the usage of electrical vehicles are strongly related in the overall con-

text of the proceeding climate change. Solid state batteries are suitable candidates for

next-generation battery systems, and especially the solid state electrolyte Li7La3Zr2O12

(LLZO) influences the ionic conductivity and the mechanical stability of the whole battery

system. Therefore, a mechanical characterization and the understanding of microstructure

formations of LLZO are necessary, and are in the scope of the present work. For that,

established and novel developed approaches and scale bridging descriptions are used in the

framework of the mechanical properties of LLZO.

On the electronic scale, density functional theory (DFT) simulations allow the precise

ab initio calculation of the mechanical properties of cubic LLZO, which is stabilized via

co-substitutions of aluminium and tantalum. Here, prescreening methods, exploiting an

electronic model, an artificial neural network and preliminary DFT calculations, determine

energetically suitable substitution positions and therefore increase the efficiency of the pro-

ductive computations. The directional properties of Young’s modulus and shear modulus

indicate an anisotropy of LLZO, however, the elastic properties of isotropic polycrystalline

LLZO are not deviating much from the averaged outcomes. The resulting values of the

lattice constants, elastic moduli and hardness show the influence of the co-substitutions,

but overall the structural and mechanical properties of cubic LLZO are preserved.

Realistic LLZO is a porous material, whose characteristics cannot be captured via DFT

simulations, therefore a scale bridging description via a differential effective medium theory

approach is used to investigate the influence of pores on the mechanical parameters. For a

porosity of 10 % in LLZO, a decay of 27 % for Young’s modulus is expected. The general

agreement between the predicted and experimental values is good, allowing to use this

model for consistency checks of experimental and theoretical outcomes.

Depending on the doping level, the microstructure consists of a mixture of a tetragonal
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and a cubic phase, where the latter is beneficial due to its higher ionic conductivity. The

formation of an equilibrated microstructure therefore has a strong influence on the over-

all electrochemical performance of this solid electrolyte material. Mechanical mismatches

between the phases are expected to contribute to the spatial arrangement of the phases,

which is difficult to assess with established modeling approaches. Therefore, a novel quan-

tum annealing (QA) method for the determination of the equilibrium microstructure with

long-range elastic interactions between coherent grains was developed. Comparisons with

classical algorithms show that quantum annealing can accelerate the simulations drastically,

even for huge system sizes with several thousands of grains, where conventional algorithms

exhibit high computational demand. In order to simulate realistic LLZO microstructures,

Voronoi tesselations are used to generate the grains. The QA method is demonstrated

under consideration of systems with shear and tetragonal eigenstrains, whose resulting mi-

crostructures are additionally analyzed regarding applied tensile strains and random grain

rotations.

For the application of the developed QA approach to LLZO, the DFT results are used

in order to formulate the eigenstrain. The resulting microstructures show the interplay

between chemical and elastic contributions, where elastic effects favor a formation of ion

conducting channels in doped LLZO.

In materials science the physical properties at finite temperatures are of high interest,

while so far the presented DFT and QA simulations of LLZO consider only ground state

energies at 0 K. Thermal expansion is a crucial issue in solid state batteries, which cannot

be characterised via the presented QA microstructure equilibrations. Therefore, a QA

method for the efficient sampling of finite temperature properties is developed, which

shows high performance at low temperatures and operates at low computational demand.

The performance of the approach is demonstrated using benchmarking scenarios of spin

glasses and Ising chains. The QA sampling is very accurate where conventional approaches

fail and therefore complements classical methods perfectly.
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Kurzfassung

Die effiziente Speicherung elektrischer Energie stellt eine wichtige Herausforderung in der

Wissenschaft dar, wo mehrere essentielle Themen, wie die Nutzung elektrischer Fortbe-

wegungsmittel, eng im Kontext des fortschreitenden Klimawandels stehen. Festkörperak-

kumulatoren sind geeignete Kandidaten für Batteriesysteme der nächsten Generation, wo

insbesondere der Festkörperelektrolyt Li7La3Zr2O12 (LLZO) die ionische Leitfähigkeit und

die mechanische Stabilität des gesamten Batteriesystems beeinflusst. Daher ist die mecha-

nische Charakterisierung und das Verständnis der Bildung von Mikrostrukturen in LLZO

von elementarer Bedeutung und stellt den thematischen Rahmen der vorliegenden Arbeit

dar. Dafür werden etablierte und neuartige, entwickelte Ansätze und skalenübergreifende

Beschreibungen im Kontex der mechanischen Eigenschaften von LLZO genutzt.

Auf der elektronischen Skala erlauben Simulationen mittels der Dichtefunktionalthe-

orie (DFT) die präzise ab initio Berechnung der mechanischen Eigenschaften kubischen

LLZOs, welches durch kombinierte Substituierungen mit Aluminium und Tantal stabilisiert

wird. Mittels Screeningmethoden, die ein elektronisches Modell, ein künstliches neuronales

Netzwerk und initiale DFT Berechnungen ausnutzen, werden energetisch passende Sub-

stitutionspositionen bestimmt und damit die Effizienz weiterer Berechnungen erhöht. Die

richtungsabhängigen Eigenschaften des Elastizitätsmoduls und des Schermoduls zeigen eine

Anisotropie von LLZO, wobei die elastischen Eigenschaften von isotropem polykristallinem

LLZO unwesentlich von den gemittelten Resultaten abweichen. Die resultierenden Werte

für die Gitterkonstanten, elastischen Module und Härte offenbaren den Einfluss der kom-

binierten Substitutionen, allerdings bleiben insgesamt strukturelle und mechanische Eigen-

schaften des kubischen LLZOs erhalten.

Realistisches LLZO ist ein poröses Material, dessen Charakteristiken nicht mittels DFT

Simulationen erfasst werden können, was die Nutzung einer skalenübergreifenden Beschrei-

bung mittels eines Ansatzes der differentiellen effektiven Mediumtheorie zur Untersuchung

des Einflusses von Poren auf die mechanischen Parameter nötig macht. Für eine Porösität
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von 10 % in LLZO ist eine Abnahme von 27 % des Elastizitätsmoduls zu erwarten. Die

allgemeine Übereinstimmung zwischen den vorhergesagten und experimentellen Werten ist

überzeugend und erlaubt die Nutzung dieses Modells für die Konsistenzprüfung experi-

menteller und theoretischer Resultate.

In Abhängigkeit des Substituierungsgehalts besteht die Mikrostruktur aus einer Mi-

schung von tetragonalen und kubischen Phasen, wobei letztere aufgrund ihrer höheren

ionischen Leitfähigkeit erwünscht ist. Die Formation einer equilibrierten Mikrostruktur

hat daher einen starken Einfluss auf die gesamte elektrochemische Leistung des Festelek-

trolyts. Mechanische Missverhältnisse zwischen den Phasen tragen zur räumlichen Anord-

nung der Phasen bei, welche nur schwer mit bestehenden Modellierungsansätzen zugänglich

ist. Daher wurde eine neuartige quantum annealing (QA) Methode für die Bestimmung

von equilibrierten Mikrostrukturen mit langreichweitigen elastischen Interaktionen zwi-

schen kohärenten Körnern entwickelt. Vergleiche mit klassischen Algorithmen zeigen, dass

QA, sogar für große Systeme mit mehreren tausend Körnern, die Simulationen drastisch

beschleunigen kann, wo konventionelle Algorithmen einen hohen Rechenaufwand aufweisen.

Um realistische Mikrostrukturen von LLZO zu simulieren, werden Voronoi Diagramme zur

Erzeugung von Körnern verwendet. Die QA Methode wird unter Berücksichtigung von Sys-

temen mit geschertem und tetragonalem eigenstrain demonstriert, dessen resultierenden

Mikrostrukturen zusätzlich im Hinblick auf externe Verformungen und zufälligen Kornro-

tationen analysiert werden.

Für die Anwendung der entwickelten QA Methode auf LLZO, werden die DFT Resultate

genutzt, um den eigenstrain zu formulieren. Die resultierenden Mikrostrukturen zeigen das

Zusammenspiel chemischer und elastischer Beiträge, wobei elastische Effekte zur Bildung

von ionisch leitenden Kanälen in dotiertem LLZO führen.

In den Materialwissenschaften sind die physikalischen Eigenschaften bei endlichen Tem-

peraturen von großem Interesse, während die bisher thematisierten DFT und QA Simulati-

onen lediglich den Grundzustand bei 0 K berücksichtigen. Die thermische Ausdehnung

ist ein wichtiges Thema in Festkörperbatterien, welches nicht mit den beschriebenen QA

Gleichgewichtsmikrostrukturen charakterisiert werden kann. Daher wird eine QA Me-

thode für das effiziente sampling bei endlichen Temperaturen entwickelt, welche große

Übereinstimmungen bei niedrigen Temperaturen und niedrigen Rechenaufwand zeigt. Die

Leistung des Ansatzes wird anhand von Spingläsern und Isingketten demonstriert. Das

QA sampling ist sehr präzise, wo konventionelle Algorithmen versagen, und ergänzt daher

bestehende, klassische Methoden ideal.
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Chapter 1

Introduction

The urgent and necessary fight against climate change and its overarching consequences

for nature and society are strongly connected to the human power generation and con-

sumption. One of the most important challenges is the efficient electrical energy storage

to allow the independent usage of fluctuating renewable energy or to increase the driv-

ing range and overall performance of electrical vehicles. In the last decades, lithium-ion

batteries dominated and revolutionized the field of energy storage [1], where nowadays

many electrical devices rely on this technology. Although electric car sales in Germany are

currently and temporarily affected by a recession, the sales of electric cars worldwide are

strongly increasing, where in 2022 14% of all new cars sold were electric, compared to less

than 5% in 2020 [2]. It is expected that electric cars will contribute with about 20% to

the total car sales in 2023 [2]. However, besides remarkable progress in electrode and elec-

trolyte design, challenges like the safety behaviour or fast charging remains problematic [1]

and presents a limitation in the overall transition towards a “greener” society. Crucial for

efficient electric mobility are high performance battery systems with high energy densities,

long lifetimes and driving ranges and the realistic possibility of fast charging at public

charging stations. A promising solution for these issues are solid state batteries, which

present several advantages and solve the problematic safety behaviour of battery systems

with liquid electrolytes. Many car manufacturers started in the last years coorporations

and investments in research and fabrication of solid state batteries for electric car appli-

cations, e.g Mercedes-Benz [3] or Toyota [4]. The performance and lifetime of solid state

batteries is strongly connected to the used electrolyte and its mechanical properties. The

mechanical properties play a crucial role regarding thermal expansion during operation,

contact behaviour of the electrode-electrolyte interface or deflection of lithium dendrites
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inside the electrolyte.

The microstructure of materials such as the solid electrolyte LLZO influences their prop-

erties, where especially, for solid state transformations, elastic effects can play a central role.

Mismatch stresses between different phases or grains can influence the microstructure evo-

lution and also the final equilibrated appearance, where ideally, tailoring of the microstruc-

ture leads to the desired parameters and behaviour. But how can the microstructure of a

solid electrolyte be tailored and analyzed via simulations? This is a major challenge due

to the multiple length and time scales, and a full and generic computational description

has not yet been reached due to the complex interplay of physical effects on all scales. At

this point the question arises whether new modeling and computational approaches may

support the material modeling and potentially drastically accelerate the microstructure

simulation of solid electrolytes.

Quantum computing is an emerging technology, which has the potential to boost de-

manding computations of multiscale phenomena in solid electrolytes. Instead of conven-

tional data storage and handling, quantum computing uses qubits as basic entity, which

requires a complete rethinking of algorithmic approaches. However, this general purpose

machines suffer from insufficient number of qubits and system erros and decoherence, whose

solution will take a long time despite promising progress in hardware and software re-

search [5].

During the ongoing development of universal quantum computers the new field of adi-

abatic quantum computing developed in parallel, which is available under the name of

quantum annealing. Here, machines with thousands of qubits and couplers are already

today available. This technology has the potential to be competitive compared to conven-

tional computing, leading to the ongoing debate about quantum supremacy of quantum

annealing, i.e. if a quantum annealer is really superior to classical computing. Neverthe-

less, from a more applied perspective the important question is whether a specific problem

formulation is possible for the quantum annealing topology.

Mechanical effects play a crucial part in the fabrication and operation of solid state bat-

teries, where the development and application of suitable modeling approaches are highly

desired for an efficient and accurate mechanical characterisation. Therefore, the aim of

the present thesis is to develop methodical simulation concepts for quantum computing

and their application in materials science. The underlaying framework is the solid elec-

trolyte Li7La3Zr2O12 (LLZO) and its mechanical properties, which are computed either

with classical and quantum tools and techniques.
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1.1 Literature review

The inorganic oxide LLZO [6] still draws great attention in the scientific community due

to its favourable characteristics as promising solid electrolyte in modern batteries. LLZO

occurs in two different phases: the thermodynamically stable tetragonal phase and the

desired cubic phase with high lithium ion conductivity, which is unstable at ambient tem-

peratures. The tetragonal phase exhibits an ordered geometry with fully occupied atomic

sites, while the cubic structure is disordered with partially filled sites [7], leading to ques-

tions about the mechanical behaviour and stability of the corresponding phases. Many

experimental studies [7–16] investigate the mechanical and microstructural properties of

the cubic phase via single substitutions with aluminium, gallium or tantalum, showing a

successful stabilization of the cubic phase with increased ionic conductivity. Nonemacher et

al. [14] prepared LLZO samples with different amounts of aluminium or tantalum and an-

alyzed the microstructural and electrical properties, while ab initio simulations supported

the mechanical investigations. Several other studies use ab initio simulations, e.g. for the

analysis of lithium diffusion in tetragonal LLZO [17], the calculation of the lithium ion con-

ductivity [18] and exploration of defective configurations [19–21] of pure and single doped

LLZO and further density functional studies about the stability of cubic LLZO [22–24].

Yu et al. [25] investigated the elastic properties of single substituted LLZO with tantalum

or aluminium by using DFT calculations and computed elastic constants. Overall, theo-

retical and experimental studies concerning co-substitutions in LLZO are related to the

characterization of the ionic conductivity [26–29]. Important for the lifetime limitation of

solid state batteries is the lithium dendrite growth inside the electrolyte, which can lead

to the failure of the cell and is investigated in many studies [30–35]. In the context of

dendrite propagation, the mechanical properties of the electrolyte are again of highest im-

portance, because Fincher et al. [36] controlled the dendrite growth direction by applying

an external stress. Additionally, McConohy et al. [37] confirmed that lithium intrusions

form along microctructural defects inside the electrolyte, whose propagation direction can

also be influenced mechanically.

Generally, the modeling and simulation of physical properties is an important part

of materials science, where besides DFT calculations other methods are also of inter-

est. Fourier transform methods are an efficient way to compute the elastic interactions

between precipitates of bulk materials [38, 39], but the determination of the optimized

microstructure on top of these calculations is much more demanding due to the character-

istic long-ranged elastic interactions even for the simplest case of coherent interfaces and
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vanishing elastic contrast between the phases. Additional challenges arise due to proxim-

ity of interfaces [40, 41], while phase field methods [42–45] are powerful, established tools,

but suffer from the mentioned large simulation times. Indeed, machine learning methods

are widespread in materials science [46–49], where these methods can also support DFT

simulation workflows [50–53].

One of the most promising and powerful computation technologies is quantum comput-

ing, where research focus on several challenges, i.e. algorithm development [54, 55], error

correction [56–59], quantum cryptography [60, 61] and quantum processor unit (QPU) ar-

chitecture [62–65]. However, in the perspective of materials science, general purpose quan-

tum computing applications are not yet widespread, while several studies focus on quantum

annealing [66–70] as a technology that is already usable today. Quantum annealing allows

highly efficient energy minimizations, however, applications in materials science [71–76]

are still rare due to the specific binary quadratic problem formulation. A suitable mate-

rial class are the shape memory alloys [77, 78], whose mapping to spin glass is subject of

research [79–82]. Benchmarking of quantum annealing versus classical computations and

performance tests [83–86] represent the dominating focus of recent research, while applica-

tions of quantum annealing in other research fields are also important [87–93]. Due to the

probabilistic nature of the quantum annealing process, also solutions with higher energy

are found, which allow the usage of the quantum annealer as a noisy Gibbs sampler [94,95],

where attention is paid to the sampling process [96–99].

1.2 Scope of the work

The general purpose of this work is the computation of mechanical properties and the

microstructure modeling of the solid electrolyte Li7La3Zr2O12 (LLZO). First, the focus lies

on co-substituted LLZO, where the influence of different tantalum and aluminium amounts

on the structural and mechanical properties is investigated. The ab initio calculations for

the cubic phase are performed via density functional theory (DFT) simulations, as imple-

mented in the Vienna ab initio simulation package (VASP) [100], where a crucial step is the

identification of energetically favourable substitution sites via prescreening methods. Via

an electronic model, which bases on the computation of electrostatic interaction energies

via Ewald summations, a machine learning assisted structure equilibration and preliminary

Γ point simulations, the high precision structure is obtained and the three elastic constants

of the cubic system are determined. The knowledge of these elastic constants allows the
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computation of further mechanical properties, i.e. directional Young’s modulus and shear

modulus. Via the Zener ratio, the quantification of the system’s anisotropy is performed

and homogenization models enable the calculation of effectively isotropic, polycrystalline

material properties, namely isotropic Young’s modulus and Vicker’s hardness. Leaving the

electronic structure scale towards polycrystalline LLZO, a scale bridging description via

the differential effective medium theory is necessary to adress the influence of pores on the

effective Young’s modulus.

To capture the microstructure equilibration with long-range elastic interactions, a novel,

highly efficient computational approach is necessary. Therefore, a quantum annealing

method is developed, which requires the formulation of the system’s elastic energy in terms

of an Ising Hamiltonian. Here, shape memory alloys, which exhibit structural phase transi-

tions, can demonstrate the general, developed approach due to their successful mapping to

spin glas descriptions. The one-dimensional model is used to benchmark the performance

of the annealing process via comparison to classical algorithms, while for an extension to

higher dimension the system is initially discretized to cuboidal grains. These grains can

be in a cubic or tetragonal phase and homogeneous elasticity with Fourier transformation

approaches is used to describe the elastic interactions between the grains. The quantum

annealing runs are performed then on a D-Wave machine with Pegasus topology, while

different transformation eigenstrains and the influence of boundary conditions on the re-

sulting microstructures are investigated. The extension to irregular grain shapes by using a

Voronoi tesselation and the introduction of random grain orientations lead to more realistic

microstructures, which are analyzed under the influence of external strains.

This quantum annealing approach for the determination of realistic microstructures is

further investigated regarding large scale simulations, the introduction of interfacial ener-

gies and the possibility of a cutoff for elastic energy calculations. Finally, the microstructure

equilibration technique is applied to LLZO systems, whose mechanical properties are deter-

mined via the previous ab initio DFT simulations. Under inclusion of elastic and chemical

energy contributions, the equilibrated phase distribution of cubic and tetragonal phases in

LLZO are investigated.

So far all simulations via DFT and quantum annealing, besides DFT extrapolations,

are performed at 0 K. Therefore, an additional novel quantum annealing approach is devel-

oped for an efficient Monte Carlo sampling at finite temperatures. The goal is to calculate

physical properties, especially with high efficiency in the regime of low temperatures, where

classical approaches show large statistical noise. Firstly, spin glasses and their low tem-
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perature thermodynamics are investigated to illustrate the whole sampling process via the

quantum annealer. An extension to larger systems occurs under consideration of the one-

dimensional Ising model due to the availability of an analytical solution. Several different

annealing settings and the influence of varying magnetic fields are analyzed before magne-

tization and heat capacity are calculated via the devloped quantum annealing sampling.

Finally, the performance of the approach compared to classical Monte Carlo sampling is

investigated.
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Chapter 2

Theory & methods

2.1 Electrochemical energy storage

In our modern world, the storage of electrochemical energy is crucial regarding the fabrica-

tion of products, the usage of electronic devices or the powering of electrical vehicles. One

of the most used battery systems for energy storage are lithium-ion batteries, which provide

high energy densities, light weights and long lifetimes [101,102]. Lithium-ion batteries are

rechargeable battery systems, which nowadays mainly use liquid electrolytes, i.e. lithium

salts dissolved in a liquid solvent. Besides the liquid electrolyte, lithium-ion batteries con-

sist of a positive and a negative electrode, denoted as cathode and anode, and additionally

a separator. The anode usually consists of carbon materials, while for the cathode several

materials like the oxide LiCoO2 or the inorganic compound LiFePO4 are used [103]. The

seperator is a thin porous membrane between both electrodes, whose primary function is

the separation of the electrodes to prevent short circuits between them and enabling ion

movement through the cell. Lithium ions Li+ move during the charging process from the

cathode through the separator and intercalate to the anode. Electrons move then from the

cathode to the anode through the external circuit. The necessary electrical energy for the

charging process is finally stored as chemical energy inside the cell. During discharging of

the cell, reactions and processes are reversed and at the anode lithium ions Li+ and elec-

trons e− are released through an oxidation half-reaction. Then, lithium ions move through

the electrolyte to the cathode and react in a reduction half-reaction, while the electrons

move to the cathode via the external circuit, leading to an useable electric current. The

driving force for this lithium ion shuttling is the difference of chemical potentials between

the electrodes.
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Figure 2.1: Schematic illustration of the two battery systems. Left: Lithium-ion battery
with the electrodes and in between the liquid electrolyte. The blue and red bar represents
the current collectors, which are attached to the electrodes and separate them from the
external electronics. The yellow circles describe the lithium ions, whose moving direction
depends on the charging (red arrow) and the discharging (blue arrow) process. Right: Solid
state battery with solid electrolyte. Here, the highlighted area sketches possible lithium
dendrite growth from the anode, through the electrolyte, towards the cathode.

However, besides the advantages of lithium ion batteries also downsides are present,

i.e. safety aspects like leakage of the liquid electrolyte or the improper operation of the

battery. Here, overcharging, low cell voltage during discharging or usage at temperature

extremes can lead to overheating, short circuits and thermal runaways, which are extremely

dangerous due to the usual high flammability of the electrolyte [103]. Another important

topic is the ageing of lithium-ion batteries, which results in performance and capacity loss

due to several chemical and physical processes, i.e. the degradation of anode and cathode,

the deposition of metallic lithium on the anode surface, known as lithium plating [104], and

the formation of an unstable, evolving solid electrolyte interphase (SEI) layer [105], which

is formed by electrolyte decomposition products at the anode and can lead to an increased

battery resistance. In order to overcome and solve these issues, solid state batteries are

developed as promising battery systems for many applications and needs in daily life and

science.
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2.1.1 Solid state battery

A solid state battery consists of solid electrodes and a solid electrolyte and shows high po-

tential for applications in electric vehicles and other commercial, portable electronics. The

function of energy storage inside these batteries is comparable to lithium-ion batteries, but

instead of an additional separator the solid electrolyte separates the electrodes and allows

lithium ions to pass through. The cathode of the battery typically uses materials similar

to those found in lithium-ion batteries, while the anode can consist of lithium metal. Solid

state batteries exhibit differences in performance and stability to conventional lithium-ion

batteries and can solve many problems like the problematic safety behaviour [106–108].

Due to the usage of a solid, nonflammable electrolyte instead of a liquid, the risk of leak-

age and combustion is reduced to a minimum. Regarding energy density, especially if

lithium metal anodes are used [106, 109, 110], solid state batteries are also superior com-

pared to lithium-ion batteries and can allow faster charging [1], what is highly desired

in fast charging applications in electric vehicles. Overcoming issues like the formation of

unstable SEI layers, solid state batteries can exhibit long lifetimes [109], however there are

several challenges and problems to solve.

For fabrication and operation of solid state batteries, the solid battery components are

exposed to deformations and stresses inside the cell, which can result in defects and a

limited lifetime. Maintaining tight contact between the electrodes is crucial for optimal

performance. However, this also results in high stresses within the battery components.

During cycling of the cell, the electrodes are exposed to internal stresses due to temperature

changes and the lithium ion intercalation, which lead to volume changes and high mechan-

ical stresses within the solid electrolyte [111]. As a result, structural defects and especially

micro-cracks are formed where preferentially lithium dendrites grow [15,37], which shorten

the lifetime of the battery further. Typically, failure and sudden degradation of this bat-

tery type are caused by lithium metal dendrite growth inside the electrolyte. These lithium

metal intrusions [37], which are often but not necessarily tree-like, propagate through the

electrolyte and connect the electrodes, leading to short circuits and premature defect of the

cell. Additionally, at the anode side lithium plating on the electrolyte-electrode interface

and inside the electrolyte along grain boundaries and pores creates high local stresses, which

belong to the main reasons of battery failure [112]. Therefore, the mechanical behaviour,

stability and characterization are important topics for the fabrication and operation of

solid state batteries. Overall, the performance of the battery is strongly influenced by the

used solid electrolyte and the cell’s mechanical behaviour. Therefore, the choice of the
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electrolyte material is a crucial step in the fabrication, where Li7La3Zr2O12 (LLZO) shows

promising properties as solid electrolyte.

2.1.2 Solid electrolyte Li7La3Zr2O12

LLZO is an oxide, which is widely used as solid electrolyte material due to its high ionic

conductivity and chemical stability in contact with lithium metal reactions [6, 108]. The

garnet structured LLZO exhibits two different phases, namely a thermodynamically stable

tetragonal phase with the lattice parameters a = b 6= c, which shows a poor ionic conduc-

tivity of about 10−6 S/cm due to the disadvantageous distribution of lithium [7]. The other

possible configuration is the cubic phase with the lattice parameters a = b = c, which is

highly desired due to the high lithium-ion conductivity of about 10−4 S/cm [7]. The reason

for this difference is that the lithium ions bind to all available sites in the tetragonal phase

and therefore the migration of lithium ions in the cubic phase is better due to more vacant

ionic positions [7]. Raju et al. [7] state that an 8 per formula unit LLZO structure has 56

lithium ions, while the number of possible lithium ion positions is 56 in the tetragonal phase

and 120 in the cubic phase. However, the cubic phase is unstable at ambient temperatures

with a typical transition temperature of 450 − 1000 K [7], but substitutions of different

aliovalent chemical elements allow the stabilization of the cubic phase. Here, Ta5+, Al3+

and Ga3+ are suitable candidates for substitutions [8,113]. In general, substitutions affect

the structural composition via volume changes of the unit cell, the access of migration

pathways and the configurational changes of binding sites [114]. To avoid possible nega-

tive effects by substitutions, the combined substitutions are suitable to avoid the blocking

effect of aluminium (Al), which decreases the ionic conductivity by blocking lithium ion

pathways [26, 115]. Aluminium therefore stabilizes the cubic phase, but the gained higher

ionic conductivity is directly lost. Tantalum (Ta) substitutions show a beneficial lithium

ion conductivity of the electrolyte [116]. However, besides the stabilizing effect of Ta, a

doping with this element increases the material’s costs drastically [14], where the combined

doping of Al and Ta stabilizes the cubic phase efficiently under avoidance of the mentioned

element’s downsides [26]. In order to have a solid state battery with high performance, the

solid electrolyte and also its doped variants play a crucial role, where mechanical effects

strongly influence the lifetime of the cell.
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2.2 Continuum mechanics

2.2.1 Linear elasticity

In this work multi-grain setups and combined substituted solid electrolytes are described

via the theory of linear elasticity, which in general assume solids as continuous bodies.

Applied forces on the solids lead to deformations, resulting in changes of volume and

shape of the body. Here, only elastic deformations are considered, i.e. any displacements

are reversible. Any point in the body is described by a vector r, while a deformation

displaces all points, leading to a different vector r′ [117]. The displacement is then defined

as the difference between these vectors

ui = x′i − xi , (2.1)

with components xi of vector r and x′i of vector r′. In the framework of linear elasticity,

i.e. only small deformations are considered, the change in a length element under deforma-

tion is defined via the strain tensor [118]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.2)

which is symmetric εij = εji. An undeformed body is in mechanical equilibrium, therefore

the forces on this body vanish. However, under deformation the arrangement inside the

body is changed and internal forces arise, which tend to recover the equilibrium configu-

ration. These forces are called internal stresses and are described via the stress tensor σij

(dimension: force per area), which is also symmetric σij = σji. For linear elasticity with

small deformations, the strain is proportional to the applied stress, and this relation is

given by Hooke’s law

σij = Cijkl εkl , (2.3)

with the fourth-rank elasticity tensor Cijkl, which connects strain and stress. In Cartesian

coordinates strain and stress tensor have each nine components and therefore the elasticity

tensor has 81 components, whose number can be reduced due to symmetry considerations

to less then 21 independent components [118]. For isotropic systems, i.e. independence of

direction in space for the properties, Hooke’s law is given by

σij = λεkkδij + 2µεij , (2.4)
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with the first Lamé coefficient λ and shear modulus µ. Note that Einstein’s sum convention

is used here. The internal stresses balance each other out in equilibrium and therefore the

equations of equilibrium of a deformed body are [118]

∂σij
∂xj

= 0. (2.5)

The elastic energy density can be calculated via [118,119]

f =
1

2
σijεij =

1

2
λε2kk + µε2ij , (2.6)

which depends on the strain tensor quadratically.

2.2.2 Eigenstrain

The picture of this strain concept can be expanded by the term eigenstrain [120], which

describes the inelastic strain of a material caused by effects like thermal expansion, phase

transformations or crystallographic inclusions. These eigenstrains cause internal stresses

inside the material, which are called eigenstresses and are independent of any external

applied force. In the case of infinitesimal deformations, the total strain εij is considered as

the sum of the elastic strain εel
ij and the eigenstrain ε

(0)
ij [121]

εij = εel
ij + ε

(0)
ij . (2.7)

Then, the isotropic Hooke’s law with elastic strain εel
ij = εij − ε(0)

ij is given by

σij = λ
(
εkk − ε(0)

kk

)
δij + 2µ

(
εij − ε(0)

ij

)
. (2.8)

The integration of the elastic energy density with elastic strain (eq. (2.6)) leads to the

elastic energy for isotropic materials

Eel =

∫

V

(
λ

2

(
εkk(r)− ε(0)

kk (r)
)2

+ µ
(
εij(r)− ε(0)

ij (r)
)2
)

dr. (2.9)

2.2.3 Inclusions

Many materials are inhomogeneous and consist of different phases and multiple grains. A

specific case is a single inclusion inside a large medium. In particular, the elastic energy
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of inclusions with a strain mismatch inside an isotropic body can be considered, where the

elastic moduli for inclusions and body are the same. J.D. Eshelby considered ellipsoidal

inclusions with general eigenstrains and found a solution, which states that strain and

stress fields inside the inclusion are uniform [121, 122]. For homogeneous elasticity tensor

and external stress, there is only a dependence between the external, potential energy and

the inclusion’s volume [123, 124], which is generalized in the Bitter-Crum theorem. This

theorem states that if in addition the eigenstrain is purely isotropic and dilatational, the

total elastic energy depends only on the volume fraction of the inclusions and not on their

shape, position, number or size [124].

2.3 Density functional theory

In the present work solid electrolyte’s mechanical properties are calculated via ab initio

computations, i.e. only using nature’s laws and constants. These calculations and simula-

tions are based on the density functional theory (DFT), which allows quantum mechanical

descriptions for atomic and molecular systems with reasonable computational demand.

The overall goal is to solve the time-independent Schrödinger equation

ĤΨ = EΨ, (2.10)

with complex wave function Ψ, Hamiltonian operator Ĥ and system’s total energy E.

Solids usually contain several thousands of electrons and nuclei, which are strongly coupled

due to Coloumb forces. Therefore, the corresponding wave functions are high-dimensional

and the complexity of the describing Schrödinger equation increases enormously. To sim-

plify the description, the first assumption is the Born-Oppenheimer approximation [125],

which states that the nuclei are fixed in space and corresponding motions of electrons and

nuclei are treated separately due to the significant mass differences. This leads to the

separation of electronic and nuclear contributions in the Schrödinger equation. Then, the

many-body Hamiltonian of a N -electron system is given by

Ĥ =
N∑

i

(
− ~2

2mi

∇2
i

)
+

1

2

N∑

i 6=j

e2

|ri − rj|
+

N∑

i

Vext(ri), (2.11)

where the first term describes the kinetic energy, the second term characterises the Coulomb

interaction between the electrons and Vext(ri) presents the external potential arrising from
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the electron-nuclei interaction.

2.3.1 Hohenberg-Kohn theorems & Kohn-Sham equations

Solving this time-independent Schrödinger equation of a N -electron system is highly com-

putationally demanding, because the wave function has to be calculated for N interacting

electrons with 3N coordinates. Here, the DFT allows the system’s transformation to an

electron-density-dependent problem [126] and therefore reducing the formulation’s com-

plexity, i.e. the electron density only depends on three spatial coordinates. The theoret-

ical background of the interplay between wave functions, Hamiltonian, external potential

Vext(ri) and electron density is given by the Hohenberg-Kohn theorems [127]. The first

theorem states that the external potential Vext(ri) of the many-body problem is a unique

functional of the ground state’s electron density. This implies that the knowledge about

the ground state’s electron density allows the calculation of the corresponding external

potential and thus the wave function. Therefore, this inversion is in contrast to the gen-

eral way of computing the electron density from the wave function, which is determined by

solving the Schrödinger equation with known Hamiltonian and included external potential.

The system’s energy is then written as a functional of the electron density ρ(r) [126]

E[ρ(r)] = F [ρ(r)] +

∫
Vext(r)ρ(r) dr, (2.12)

with the universal functional F [ρ(r)] = T [ρ(r)] + U [ρ(r)] consisting of the electronic, ki-

netic energy operator T [ρ(r)] and the electron-electron interaction functional U [ρ(r)]. This

universal functional is independent of the external potential and therefore the connection

between external potential and electron density is unique.

The second Hohenberg-Kohn theorem states that the energy minimizing electron den-

sity of the system is the ground state electron density ρ0. This ground state energy can

then be determined via the variational principle with E[ρ(r)] ≥ E0[ρ0(r)]. Therefore, the

application of the Hohenberg-Kohn theorems allows a different formulation, where the 3N

dimensional wave function is replaced with the electron density, resulting in a three variable

problem. However, solving the resulting Kohn-Sham equations is still computational de-

manding due to the unknown universal functional F [ρ(r)], consisting of N coupled electron

interactions.

Kohn and Sham [128] solved this problem by mapping the N electron system to an non-

interacting one-electron system, where the electronic interactions are expressed through an
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effective potential Veff . The corresponding Kohn-Sham Hamiltonian is given by

ĤKS = − ~2

2m
∇2 + VH[ρ](r) + Vext[ρ](r) + Vxc[ρ](r) = − ~2

2m
∇2 + Veff [ρ](r), (2.13)

with the noninteracting kinetic energy and the Hartree potential VH[ρ](r) =
∫ e2ρ(r′)
|r−r′| dr′

describing the interaction between one electron at r and the mean electron density at

r′. Vext[ρ](r) presents again the external potential from the electron-nuclei interaction

and the contribution Vxc[ρ](r) describes the correlation and exchange between electrons

and therefore quantum mechanical many-body effects. The computation of the kinetic

energy, the Hartree energy and the external energy is unproblematic, however the exchange-

correlation potential Vxc[ρ](r) is unknown and is determined via approximations.

The local density approximation (LDA) assumes local dependence of the exchange-

correlation potential Vxc[ρ](r) on a uniform electron density and on the energy per electron

of an homogeneous electron gas. The system is approximated as locally homogeneous,

where at each point of space a uniform electron density is assigned, leading to following

expression

V LDA
xc [ρ(r)] =

∫
ρ(r)εhom

xc [ρ(r)] dr, (2.14)

with exchange and correlation energies per electron εhom
xc = εhom

x + εhom
c of the homogeneous

electron gas. This approximation achieves good results for systems with slowly varying

electron densities and no large gradients, e.g. simple metals. However, the LDA under-

estimates lattice parameters and therefore overestimates mechanical parameters like bulk

modulus [126].

In order to describe inhomogeneous systems with varying electron densities, the general-

ized gradient approximation (GGA) is used to determine the exchange-correlation potential

by including the gradient of the electron density ∇ρ(r). The GGA is suitable for almost

all systems and leads to an accurate computation of the exchange-correlation potential.

One of the most famous GGA formulations is the improved functional by Perdew- Burke

and Ernzerhof (PBE) [129].

Finally, these approximations allow the calculation of the effective potential Veff , leading

to the Kohn-Sham equations

(
− ~2

2m
∇2 + Veff [ρ](r)

)
φi(r) = εiφi(r), (2.15)

with energy εi and Kohn-Sham orbitals φi(r), which define the electron density via ρ(r) =
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∑
i |φi(r)|2 [128]. This eigenvalue equation is solved in an iterative self-consistent proce-

dure, which involves an electronic and ionic minimization for the electron density. Starting

point is the estimation of an initial electron density and the solution of the Kohn-Sham

equations via diagonalization. The resulting new electron density is then used as the initial

input, until the change of the electron density or the total energy fulfills certain criteria

and leads to a stopping of the electronic loop. Then, the forces of the system are calcu-

lated and the ionic positions are updated and the electronic iterations start again. The

whole procedure is stopped, if the thresholds for the electronic and ionic minimizations are

reached and the ground state electron density is determined, leading to the computation

of the total energy and further physical properties of the system.

2.3.2 Treatment of solids

The treatment of solids requires the consideration of an almost infinite number of electrons

and atoms and therefore further simplifications are necessary like the introduction of a

pseudopotential, which approximates the complicated motion effects of core electrons by a

simpler potential with fewer nodes in the resulting pseudo-wavefunctions [126].

Additionally, the periodically arrangement in solids can be exploited by reformulating

the wave function. According to the Bloch theorem [130] the wave function is expressed as

Ψk(r) = exp(ikr) · uk(r), (2.16)

with a periodic function uk(r), which has the same periodicity as the crystal lattice such

that uk(r) = uk(r + R). The real lattice vector is defined by R = n1a1 + n2a2 + n3a3 with

unit cell vectors ai and integer numbers ni. The periodic function is given under Fourier

expansion as

uk(r) =
∑

G

ck(G) · exp(iGr), (2.17)

with Fourier coefficients ck(G) and the reciprocal lattice vector G. This leads to the wave

function

Ψk(r) =
∑

G

ck(k + G) · exp(i(k + G)r), (2.18)

meaning that the wave function is expressed by the superposition of plane waves. There-

fore, it is sufficient to consider only a small part of the periodic solid for accurate DFT

calculations, i.e. specific k-vectors from the first Brillouin zone. Additionally, an energy
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cutoff is introduced to reduce the maximum set of plane waves due to the fact that low

energy plane waves contribute the strongest to the total energy in the search for the ground

state energy. The energy cutoff is given by [126]

Ecutoff ≥
~2

2m
|k + G|2, (2.19)

where the specific value of Ecutoff is system dependent and the convergence of the DFT

results has to be checked carefully.

2.4 Quantum computing

Classical computing stores information in bits, which are either in state 0 or 1, and performs

computations via arrangements of logic gates. Quantum computing on the other hand uses

for information storage so called qubits, which identify again these two states but also their

superposition. A quantum state of a qubit |ψ〉 can be written as the linear combination of

two basis states {|0〉, |1〉}
|ψ〉 = α|0〉+ β|1〉, (2.20)

with complex amplitudes α and β, which obey the normalization condition |α|2 + |β|2 =

1. All superposition states are handled simultaneously in computations, what leads to

quantum parallelism, which can accelerate computations drastically compared to classical

operations. A measurement on a quantum system leads to the collapse of the wave function

to one possible eigenstate. This occurs as a probabilistic process, which is in contrast to

the deterministic, classical computations.

Furthermore, different qubits can be coupled and form mixed states, where this principle

is known as entanglement. These states cannot be described independently of each other

and therefore can be considered as a single object with multiple, possible states, ensuring

the computational power of quantum computing. Considering two quantum systems a and

b, states, which can be formulated as products of pure states

|ψ〉 = |ψ〉a ⊗ |ψ〉b, (2.21)

with tensor product ⊗ are called separable. If this formulation as combination of product

27



states is not possible, the states are entangled, e.g. a Bell state [131] of a two-qubit system

|Ψ+〉 =
1√
2

(|0〉a|1〉b + |1〉a|0〉b) . (2.22)

In quantum computing these entangled Bell states can be created via quantum circuits,

consisting of a Hadamard gate, which maps to superposition states, and a CNOT gate

for the transformation of quantum states. Further quantum gates allow the construction

of quantum circuits, which lead to the implementation of quantum algorithms like Shor’s

algorithm for the factoring of prime numbers or Grover’s search algorithm for unstructured

databases [131]. These algorithms could beat the performance of the classical counterparts

easily, however, general purpose quantum computers with a reasonable number of qubits

and error control are not available yet.

2.4.1 Quantum annealing

While the quantum computer’s sizes grow and better error control and corrections are

invented, a technology named as quantum annealing has been developed and has already

today the potential to be competetive compared to classical machines. Quantum annealing

belongs to the class of adiabatic quantum computing and is commercially available with

over 5000 qubits arranged on a lattice. The quantum annealing process is used to solve

discrete optimization problems and to sample from low-energy states. Qubits store and

process information and are realized via superconducting loops, where the direction of a

circulating current inside a loop defines different spin states [132]. The interaction of each

qubit with external flux biases allows the construction of an energy landscape with variable

barrier height and energy difference [132]. The computation starts with the initialization

of the system in the ground state of the known Hamiltonian

H0 ∼ −
∑

i

σxi , (2.23)

with Pauli matrices σi, i.e. a strong transverse magnetic field [133,134]. This Hamiltonian

is turned during the quantum annealing process into the desired Hamiltonian, which is

based on an Ising model [135]

Hp =
∑

i

hisi +
∑

i<j

Jijsisj , (2.24)
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with spin states si = ±1, bias hi and coupling strength Jij between qubits i and j. The Ising

model describes a discrete magnetic model with spins, which are arranged on a lattice and

interact ferromagnetically or antiferromagnetically with their neighbors. With this model

it is possible to identify phase transitions and it is widely used in statistical mechanics,

where the general case with arbitrary couplings hi and Jij is called spin glass. Another

widely used formulation is the quadratic unconstrained binary optimization (QUBO)

E(x) =
∑

i6j

xiQijxj , (2.25)

with binary variables xi ∈ {0, 1} and upper triangular matrix of real weights Qij. The

QUBO and Ising formulations are computationally equivalent and can be transformed into

each other via the relation xi = si+1
2

between the binary variables.

The goal during the annealing process is to find the energetic minimum of this Ising

Hamiltonian min{si=±1}Hp. The annealing process follows the time dependence [136]

H(s) =
1

2
A(s)H0 +

1

2
B(s)Hp , (2.26)

with annealing evolution functions A(s) and B(s) and normalized anneal parameter s ∈
[0, 1]. The initial, known ground state is given for s = 0, A(0) � B(0), while for s = 1,

A(1) � B(1), the desired problem Hamiltonian is present [137]. The normalized anneal

parameter s increases linearly for the standard annealing schedule, while the incorporation

of quenches and pauses inside this curve influences the resulting energy states, i.e. it comes

to an intermediate freezing of the system at excited energy states [138]. This variation of

the annealing schedule is beneficial for the sampling of the quantum Boltzmann distribu-

tion, where then more excited energy states are considered with performance advantages

for increasing system sizes compared to classical approaches [138]. Another schedule type

is the reverse annealing, which initialize the qubits in a classical state as a starting point

for a local minima search [139]. Both Hamiltonians H0 and Hp do not commute [135],

and the time of the transition of the initial Hamiltonian to adopt the low energy state is

sufficiently large. This is important for the validity of the adiabatic theorem of quantum

mechanics [140], which states that a system remains in its eigenstate, if changes occur

adiabatically. Additionally, quantum annealing uses tunneling to leave metastable re-

gions and entanglement to create entangled states inside the quantum annealing processor

(QPU) [141].
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Due to the probabilistic nature of the QA process and imperfections of the machines,

the lowest energy state is not always found, especially if close low energy states exist.

Therefore, a suitable number of repetitions is made and the annealing process is repeated

according to a given number of reads to identify the configuration with the lowest detected

energy. Another possibillity to overcome technical machine’s biases is to use spin flip re-

versals, which improve the sampling and the solution’s quality further by automatically

transforming the couplings according to Jij → Jijgigj and hi → higi with random gauges

gi ∈ {−1,+1} [142]. This inversion of spins leaves the physical problem invariant. In order

to initialize a problem on the QPU, the minor embedding is used to generate a subgraph

of coupled qubits, so called chains, to cover one variable of the problem [143, 144]. These

chains are weighted and constrained according to a chain strength term to ensure that

each subgraph of coupled qubits returns the same value. If the chain strength is not large

enough, the subgraphs will result in different values at the end of the annealing and so

called chain breaks occur, which lead to non-optimal outcomes. If the QPU’s architecture

is still not fitting, hybrid quantum annealing is useful for huge systems, using the inter-

play between classical algorithmus and quantum annealing in areas of high computational

complexity [136,143].

2.4.2 Optimization & sampling

An important part of current quantum computing is the benchmarking against classical

algorithms. The situation in research regarding quantum supremacy is still a hot and

ongoing topic and a lot depends on the different problem classes and modified and improved

classical algorithms [83–86].

The simplest approach for the minimization of a N spin system is the brute force ap-

proach, for which all 2N possible configurations are computed and the solution with the

lowest energy is selected. Iterations over all spin configurations are extremely computa-

tional demanding, but result in the true ground state of the system. This deterministic

approach scales with ∼ O(2N).

Simulated annealing [145] is a probabilistic approach, which starts with a random initial

spin configuration. In each iteration a new configuration is generated by a single spin

flip, which is accepted if its energy is lower than the previous configuration. However, if

the energy difference between new and old spin system ∆E is positive, the configuration

is not directly denied. The acceptance of the candidate configuration depends on the

probability given by the Boltzmann factor exp(−∆E/T ) with temperature T . The idea
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is to avoid being stuck in local energy minima and to enable the approximation of the

global minima. This is similar to quantum annealing, which employs tunneling to leave

metastable regions [66]. The temperature T is reduced during the simulation according

to specific cooling schedules, leading to higher sensitivity to subtle energy variations and

finally convergence towards an energetic minimum. The optimization of the simulation’s

stopping criteria and the used cooling strategie is a crucial step. Besides a simple linear

cooling, there exists several alternatives, e.g. exponential or logarithmic schedules [146].

Simulated annealing is a time-consuming approach due to the optimization of algorithm

parameters to avoid being caught in high energy local minima, however, the results are

often very promising [147].

Monte Carlo methods are statistical techniques, which are based on random sampling

and the Boltzmann factor exp(−∆E/T ). They are used mainly for numerical integra-

tion, optimization problems and importance sampling. The Metropolis Monte Carlo al-

gorithm [148] generates random samples from a probability distribution and is equivalent

to the simulated annealing algorithm for constant temperature. These sequences of sam-

ples are Markov chains, which are only dependent on the previous configurations. Further

physical quantities can be computed via the obtained random samples, i.e. the estimated

expectation value of an observable A(x) is defined as

〈A〉 =
N∑

i=1

P (x)A(x), (2.27)

with Boltzmann probability

P (x) = exp(−βE(x))/Z. (2.28)

Here, β = 1/kT and the canonical partition function is given by Z =
∑N

i=1 exp(−βE(x)).

2.5 Artificial neural networks

Machine learning (ML) is an important part of artificial intelligence. ML algorithms allow

an efficient analysis of huge data sets and are able to accelerate computations significantly

in many interdiciplinary fields of research and daily life. Here, the processing of data is

differentiated in several categories: (i) The supervised learning where input and desired

output values are given with the goal to predict output from new data. (ii) The unsuper-

vised learning which tries to find structure and patterns in unlabeled data, and (iii) the
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Figure 2.2: Sketch of two fully connected ANNS. Left: single-layered perceptron with
inputs xi, weights wi and output y = φ(τ). Right: multilayered perceptron with one
additional hidden layer. Both ANNs are feedforward neural networks.

reinforcement learning whose idea is to control the learning process via positive or nega-

tive feedback. However, also the combination of (i) and (ii) exist, i.e. the semi-supervised

learning where labled and unlabled data sets are analysed.

A widely used ML method are artificial neural networks (ANNs), which allow to tackle

prediction, recognition and classification tasks [149]. ANNs are inspired by the human

brain and its biological neural network, consisting of several layers and nodes as artificial

neurons. Like the biological counterparts, the neurons are connected, receive signals from

other neurons and also send them, if a certain activation threshold is triggered. The

perceptron [150] is a simple ANN algorithm for supervised learning and also the basis of

modern ANNs. It was published 1957 by F. Rosenblatt and consists of one input layer

of artificial neurons, which also represents the output layer. The neurons act like a linear

regression model, where each input is weighted separately to control the importance and

afterwards the inputs are summed according to [151]

τ =
n∑

i=1

wixi + b , (2.29)
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with weights wi, inputs xi and bias b, which represents an additional control parameter

for the learning process. The output y is then given by the activation function y = φ(τ),

which mimicks biological neurons with their activation threshold. There are several possible

activation functions depending on the architecture of the ANN and the specific problem to

solve. Typical functions are the non-linear heaviside step function or the linear function

y = x. Finally, the resulting output yi is compared with the desired output ŷi and in each

learning iteration the weights and bias of the neurons are adjusted according to [151]

wi,new = wi,old + α(ŷi − yi)xi , (2.30)

until the difference between calculated and desired output is minimized. Here, the hy-

perparameter α describes the learning rate, whose reasonable choice is essential for the

learning process.

The complexity of the perceptron can be increased via the inclusion of more neuron

layers. The multilayer perceptron consists of an input layer, several hidden layers for the

processing and transformations of the input data and an output layer. There are two

general types of information flow in multilayer ANNs: the feedforward neural networks

with an information flow in one direction, i.e. from the input layer through the hidden

layers to the output layer, and recurrent neural networks, whose information flow occurs

also in the back direction and connects input and output of neurons.
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Chapter 3

Summary & discussion

The goal of this work is the determination of mechanical properties and the microstructure

modeling of the solid electrolyte Li7La3Zr2O12 (LLZO). Different simulation techniques and

modeling approaches were successfully developed and used to characterize LLZO extensive

and to extend the research field of materials science by new, highly efficient modeling

methods. In this work the whole range of the electronic scale, over the inclusion of pores,

up to the macroscopic level with thousands of grains is covered.

First, ab initio DFT simulations of the cubic phase under Ta and Al substitutions are

performed to investigate the influence of substitutions on the structural and mechanical

properties. Due to the large set of possible lithium substitution sites, an electronic model

based on the electrostatic energy is used to determine energetically suitable lithium po-

sitions for substitution. The computational demand of this prescreening workflow can be

reduced with an ANN, which predicts directly the equilibrium coordinates of the ions. This

ML approach can be very helpful in the context of unit cells with high numbers of different

atoms, where the prediction of equilibrated structures reduces the necessary number of sim-

ulations. To make the ANN more accurate for substitutions levels, which deviate strongly

from the training data, the training dataset can be extended and the direct prediction of

further physical quantities is subject of future research. Preliminary ab initio simulations

at the Γ point lead to the final high precision structure for productive calculations, where

the prescreening approaches increase the efficiency and accuracy of the computations.

The knowledge of the three elastic constants allows the calculation of the directional

properties of Young’s modulus and shear modulus, where slightly divergent values for the

different directions are found. This indicates an anisotropy, which is also confirmed by the

Zener ratio, however, the Zener value ranges in the magnitude of other isotropic oxides,
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what leads to the conclusion that the elastic properties of isotropic polycrystalline LLZO

will not deviate much from the averaged results. The resulting mechanical properties are

determined for a wide range of substitution levels, where the resulting lattice constants

show a clear Ta substitution dependence. The decreasing lattice constants of systems with

high Ta level is expected due to the smaller ionic Ta radius compared to the substituted

Zr, however, the variations of the lattice constants are small (< 0.1 Å). The resulting

Young’s modulus decreases with increasing Al level, where the variations of values are also

small and overall the Young’s moduli are comparable to the tetragonal LLZO phase. These

results are again found in the calculated hardness, which shows only a weak dependence

on substitutions and results in values close to the unsubstituted structure. Therefore, the

co-substitutions preserve the structural and mechanical properties of LLZO. This presents

an important contribution regarding the stabilization of cubic LLZO and the fabrication

of batteries using this solid electrolyte.

The DFT calculations do not capture the fact that LLZO is a porous material, whose

pores influence the mechanical properties. A scale bridging description via a differential

effective medium theory approach between the electronic scale and the larger scale of pores

is expected to be accurate with measured effective elastic constants for low pore concentra-

tions. The typical porosity of LLZO is of the order of 10 % and leads to an expected decay

of 27 % for Young’s modulus, where different values of Poisson ratio ν do not influence

the elastic modulus decrease. The comparison and validation of the calculated Young’s

modulus values with single Ta substituted experimental results shows a good agreement,

where the computed and experimental values only differ by a few GPa. Therefore, this

model can be used for consistency checks of theoretical and experimental results. Gen-

erally, the inclusion of pores via the differential medium theory enables an effective and

accurate description for application relevant solid electrolytes. Together with the DFT

calculated mechanical properties of co-substituted LLZO, the mechanical behaviour of the

solid electrolyte is precisely characterized, leading to potential material optimizations re-

garding the mechanical suppression of dendrites and other mechanical based issues during

the operation of batteries (publication 1).

In order to compute the microstructure equilibration with long-range elastic interac-

tions, a novel quantum annealing method is developed. First, the general approach, where

the elastic interactions between coherent grains of different phases, orientations or variants

are considered, is illustrated in a one-dimensional Ising formulation. The goal of the quan-

tum annealing method is to minimize the elastic energy and to find the optimal variant
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configuration. For benchmarking and performance tests, the approach is compared to clas-

sical, numerical techniques, where the brute force approach shows the highest computation

time and even small system sizes (N ≈ 40) are too large for reasonable computations. The

simulated annealing algorithm produces good result, whereas pure quantum annealing is

by far the fastest method to solve optimization problems and represents an almost constant

elapsed QPU access time with about three orders of magnitude faster computation times.

However, beyond around N = 50 spins chain breaks occur occasionally and can influence

the resulting microstructure. Therefore, hybrid quantum annealing is used, which leads to

a slightly increased computation time compared to pure QA, allowing the calculation of

system sizes of 103 grains with an almost constant timing. Thus, hybrid quantum anneal-

ing is the fastest approach for large system sizes and outperforms the compared classical

algorithms easily.

For transformations in higher dimensions, the system is discretized into small cuboidal

grains, whose elastic energy is determined via the usage of homogeneous elasticity, which

reduces the problem formulation to pairwise interactions as demanded by the necessary

binary quadratic description of QA machines. Fourier transformation approaches are ex-

ploited to compute distance and orientation dependent interactions between grains and

two different eigenstrains are introduced, leading to different resulting microstructure pat-

terns. Here, the calculation of the O(N2) elastic energy interactions dominates the total

computing time, where the O(2N) possible grain configurations are optimized via QA in

negligible times. The resulting microstructures depend on the used boundary conditions,

i.e. for shear eigenstrain energetically equivalent stripe patterns with nonuniform widths

are obtained, while for tetragonal eigenstrains single variants (〈σij〉 = 0) or regular inclined

stripes (〈εij〉 = 0) are found. These inclined stripes have an inclination angle φ ≈ 33◦ cor-

responding to a detailed analysis, which reveals the influence of the granular structure and

antialiasing effects on the inclination angle.

In order to bridge the gap towards realistic microstructures, the grains are generated

according to a Voronoi tesselation and external strains are applied, which lead to the

appearance of a magnetic term in the Ising formulation. The resulting microstructures with

tetragonal eigenstrain show similiar characteristics as before, where now the increasingly

applied external strain favors the selection of just one variant. Additionally, random grain

rotations are introduced and lead at high strains not to a selection of one variant, because

of local grain rotations and corresponding alignment with the strain direction.

Concluding, this new method for the equilibration of solid phase microstructures with
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long-range elastic interactions enables a highly efficient QA computation with several thou-

sand interacting grains, where conventional, classical algorithms are outperformed. The

problem formulation is the crucial step in quantum annealing, which is implemented here

with high performance, allowing realistic material descriptions. Thus, the model belongs

to one of the few application relevant QA methods in the field of materials science and

presents therefore an important contribution to research (publication 2).

A detailed derivation of the coefficients of the underlying Ising formulation leads to

explicit and accurate expressions for the elastic interactions between the grains, whose

accuracy is crucial for the determination of correct equilibrated microstructures. The

inclusion of a real space cutoff to truncate the elastic interactions is not legitimate as it

leads to wrong predictions.

An important test of the developed model is the application to large systems under ex-

ternal mechanical loads, i.e. N = 2500 grains are considered, where the computation of the

Ising coefficients is the computational demanding part. Here, hybrid quantum annealing

just needs about one minute for the determination of the equilibrium microstructure. For

tetragonal eigenstrain, the expected microstructures under varying tensile strain in hori-

zontal direction are found, which show decreasing stripe thickness with increasing strain.

Therefore, generalizations to 3D systems with high numbers of grains are possible for the

microstructure equilibration with representative volume elements. This will be an impor-

tant area of focus for future research.

Finally, the QA technique is directly applied to LLZO under usage of the previous

calculated lattice parameters and inclusion of a chemical contribution, which represents

the volume fractions of the grains. Here, the doping level in LLZO determines the phase

fractions of tetragonal and cubic phases, leading to a competing interplay between chemical

and elastic effects. The resulting microstructures for varying chemical energy strength and

phase fractions reveal that the elastic contributions favor a formation of ion conducting

channels of cubic phase. This self-organization process through the presence of elastic

effects may enable a grain engineering in the future.

Apart from the considered bulk energies, also the interplay with interfacial energies is

investigated, where negative and positive interfacial energies show the expected influence

on the resulting microstructures. Depending on the sign of the interfacial energy, the

system favors more or less interfaces in the resulting pattern, leading to structures where

interfacial and elastic contributions compete (publication 3).

So far the focus of this work lies on ground state energies at T = 0 K, however, regarding
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materials science the physical properties of solid electrolytes at finite temperatures are

of high interest. The developed Monte Carlo sampling method via quantum annealing

allows the determination of finite temperature properties at low computational costs. For

the first demonstration of the sampling method a spin glass system is considered, which

shows that the distribution of states follows a Boltzmann distribution. Via the low energy

configuration set and the approximated canonical partititon function, further observables

can be computed. The computed thermodynamic properties coincide with the theoretical

expectation at low temperatures, where at higher temperatures deviations from theory are

found. Therefore, the imperfect QA process delivers a set of states in the phase space,

which contributes strongest to the partition function due to their high Boltzmann weight.

In order to investigate the performance and limitations of the sampling approach, the

1D Ising model and its analytical solution is considered for the calculation of further

thermodynamic properties. The QA sampling is much faster and requires less computer

ressources than classical algorithms, because the QA sampling uses the same configura-

tions for all temperatures, while for the Metropolis algorithm a separate Markov chain is

generated for each temperature.

A limitation of the QA approach is that only smaller system sizes can be considered

via pure QA due to the available machine sizes, however, the development of quantum

annealing is an ongoing process, where in the future machines with more qubits and higher

connectivity are present. Future research will focus on effective implementations of hybrid

quantum annealing and convergence studies to extrapolate to the limit of infinite sample

sizes. Concluding, the QA sampling is a novel technique for the characterization of solid

electrolytes, which allows the highly efficient prediction of thermophysical properties at

low temperatures, and complements classical approaches perfectly. The application of this

sampling technique to the microstructure equilibration of LLZO will allow the prediction of

thermophysical properties with high efficiency at low temperatures and will be subject of

further research. An implementation of the QA sampling in existent QA codes allows the

usage of found exited states during the optimization towards the ground state for almost

no costs (publication 4).
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[45] K. Wang, G. Boussinot, C. Hüter, E.A. Brener, and R. Spatschek. Modeling of

dendritic growth using a quantitative nondiagonal phase field model. Phys. Rev.

Mater., 4:033802, 2020.

[46] D. Yang, Y. Wang, R. Pan, R. Chen, and Z. Chen. A neural network based state-

of-health estimation of lithium-ion battery in electric vehicles. Energy Procedia,

105:2059–2064, 2017.

[47] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, and A. Walsh. Machine learning

for molecular and materials science. Nature, 559:547–555, 2018.

43



[48] J. Vandermause, S.B. Torrisi, S. Batzner, Y. Xie, L. Sun, A.M. Kolpak, and B. Kozin-

sky. On-the-fly active learning of interpretable Bayesian force fields for atomistic rare

events. npj Comput. Mater., 6:20, 2020.

[49] B. Celik, R. Sandt, L.C. Pereira dos Santos, and R. Spatschek. Prediction of Bat-

tery Cycle Life Using Early-Cycle Data, Machine Learning and Data Management.

Batteries, 8:266, 2022.

[50] G. Hegde and R.C. Bowen. Machine-learned approximations to Density Functional

Theory Hamiltonians. Sci. Rep., 7:42669, 2017.

[51] R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse, and M. Bokdam. Phase Transi-

tions of Hybrid Perovskites Simulated by Machine-Learning Force Fields Trained on

the Fly with Bayesian Inference. Phys. Rev. Lett., 122:225701, 2019.

[52] M. Bogojeski, L. Vogt-Maranto, M.E. Tuckerman, K.-R. Müller, and K. Burke. Quan-

tum chemical accuracy from density functional approximations via machine learning.

Nat. Commun., 11:5223, 2020.

[53] M. Hodapp and A. Shapeev. Machine-learning potentials enable predictive and

tractable high-throughput screening of random alloys. Phys. Rev. Materials,

5:113802, 2021.

[54] L.K. Grover. A fast quantum mechanical algorithm for database search. Proceedings

of the twenty-eighth annual ACM symposium on Theory of Computing, pages 212–

219, 1996.

[55] P.W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Log-

arithms on a Quantum Computer. SIAM J. Sci. Statist. Comput., 26:1484, 1997.

[56] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu,

L. Frunzio, S.M. Girvin, L. Jiang, M. Mirrahimi, M.H. Devoret, and R.J. Schoelkopf.

Extending the lifetime of a quantum bit with error correction in superconducting

circuits. Nature, 536:441–445, 2016.
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A B S T R A C T   

The influence of co-substitutions on the structural and mechanical properties of garnet structured Li7La3Zr2O12 

(LLZO) is investigated. Ab initio simulations of the cubic phase under Al and Ta substitutions are performed for 
an analysis of substitution dependencies on lattice constants, elastic moduli and hardness. The use of the dif
ferential effective medium theory methods enables a scale bridging description towards porous LLZO, with a 27% 
decay of Young’s modulus for a porosity of 10%, compared to dense LLZO.   

1. Introduction 

Li-based all solid state batteries (ASSBs) are promising next genera
tion batteries due to their high energy densities, high cycle life, low self- 
discharge rate and their improved safety behaviour [1–5]. The absence 
of liquid electrolytes prevents the cell from leakage and allows an 
effective usage as a modern battery in electric vehicles and other battery 
power driven products. However, downsides are still present like the 
disadvantageous volume expansion of solid battery components during 
usage and production [3,4,6]. Arising stresses and deformations can lead 
to instabilities and limitation of lifetime, what makes the knowledge of 
the mechanical behaviour a crucial part of actual research. Another 
important problem is the Li metal dendrite growth or rather intrusion 
[3,7–9] inside the electrolyte and therefore occuring short circuits, 
which can lead to premature and sudden degradation. A recent study by 
Fincher et al. showed that the dendrite propagation in solid-state bat
teries can be controlled and deflected by an imposed stress, where a 
critical stress of around 150 MPa can prevent short circuits [10]. 
McConohy et al. found out that the main reason for lithium intrusions 
are localized microstructural defects and cracks within the electrolyte, 
whose propagation direction can also be controlled mechanically [7]. 
Therefore, the knowledge of the solid electrolyte’s mechanical proper
ties is crucial for an effective usage and production. However, the choice 
of a suitable solid electrolyte, which determines the performance of the 
battery, is also important, where Li7La3Zr2O12 (LLZO) is a promising 
candidate. LLZO is an oxide with high Li-ion conductivity and chemical 

stability in combination with lithium metal [1,4,11]. A thermodynam
ically stable tetragonal phase with poor Li-ion conductivity [12,13] 
exists, whereas the highly conductive cubic phase is desired, which is 
unstable at ambient temperature [12,14]. Here, substitutions of 
different aliovalent elements are an effective way to stabilize the desired 
cubic phase, where substitutions with Al3+, Ta5+ and Ga3+ show good 
results [13–16]. Experimentally, combined substitutions with Ta5+ and 
Ga3+ lead to higher ionic conductivity [13]. Nonemacher et al. [17] 
investigated experimentally and theoretically single substitutions of Al 
and Ta in LLZO and their influence on microstructure and mechanical 
properties. 

In this work, we stabilize the cubic phase via combined substitutions 
of Al and Ta, where benefits of both dopants are exploited and the me
chanical behaviour is investigated. Both dopants tantalum (Ta) and 
aluminium (Al) stabilize the cubic phase, however Al blocks lithium 
pathways [18], what compensates the increased ionic conductivity, 
while for Ta substitutions beneficial ionic conductivities are found [19], 
but the material’s costs are also increased [17]. Shin et al. showed the 
fast stabilization of the cubic phase in co-substituted LLZO and the 
overcoming of the mentioned blocking effect [20]. 

Here, the determination of the mechanical properties occurs via 
density functional theory (DFT) simulations, where a good agreement 
between experiments and simulations was found for single substitutions 
in LLZO [17]. Research was also done in respect to the computation of 
elastic properties of LLZO with Al and Ta single substitutions via DFT 
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simulations [21]. 
However, DFT calculations of LLZO lead to a high computational 

demand due to the large number of atoms inside the unit cell (around 
190 atoms), a large number of possible substitution sites and the 
required high precision simulation parameters, in particular energy 
cutoff and the stopping criteria for electronic and ionic self-consistency 
loop. Therefore, an acceleration is strongly desired to increase the effi
ciency and to lower the necessary number of DFT runs and in the end to 
save energy and computing time. Apart from prescreening techniques 
for the identification of most favorable lattice site occupations based on 
an estimation of the electrostatic interaction energy [17], we present 
here additionally machine learning techniques for obtaining optimized 
predictions for the ion positions. In general, artificial intelligence, 
especially machine learning (ML) represents an important part in 
research, where data sets are analyzed efficiently and workflows and 
calculations are accelerated drastically. In the field of battery research, 
ML approaches and models are widely used for example for the pre
diction of battery lifetime [22]. A common ML method are artificial 
neural networks (ANNs), which are based on layers and nodes as 
“neurons” to mimic the human brain and are used to solve prediction, 
classification and recognition tasks [22–25]. The optimization via ML 
methods inside ab initio DFT simulation workflows is a current topic and 
studies focused on the automatically generation of force fields [26], the 
improvement of chemical accuracy [27] or the prediction of further 
physical quantities and properties [28–30]. 

LLZO used for battery applications is typically polycrystalline and 
porous, which has influence on the elastic and mechanical properties 
[17,31,32]. Experiments on LLZO have shown that the results of 
indentation tests are influenced by the porosity regarding different 
indentation depths and corresponding loads [17], indicating the multi- 
scale nature of the material. Thus, it is crucial to extend the electronic 
structure modeling level to the microstructure scale for a parameter free 
prediction of the coarse-grained mechanical properties. 

2. Methods 

2.1. Calculation of the mechanical properties 

For all simulations density functional theory (DFT) is used, as 
implemented in the Vienna ab initio simulation package (VASP) [33] 
with plane wave basis set and the projector augmented wave (PAW) 
method [34,35]. The exchange-correlation energy is determined via the 

Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation 
(GGA) [36] using for Li and Zr the softer pseudopotential variants which 
treat p and s semi-core states as valence states. Pure lithium lanthanum 
zirconate Li7La3Zr2O12 (LLZO) is substituted with different amounts of 
Al (x = 0.125, 0.25, 0.375, 0.5, 0.625 and 0.75) and Ta (y = 0.125, 0.25, 
0.375, 0.5, 0.625 and 0.75), where the co-substituted LLZO results in 
Li7− 3x− yAlxLa3Zr2− yTayO12 (AlxTay:LLZO). The substitution of Li with Al 
creates a 3+ oxidation state, which leads to two more Li vacancies to 
achieve electrically neutral structures. However, the substitution of Li 
with Ta do not lead to more Li vacancies, but a Zr atom is replaced in the 
sense of electroneutrality. Due to the large set of possible substitution 
sites, preliminary screening calculations as explained in Ref. [17] are 
performed to reduce the configuration space drastically (see Fig. 1). We 
note that these four prescreening steps are optional, but improve effi
ciency and precision of the following calculations drastically. This 
electronic model is based on the calculation of the electrostatic energy 
via Ewald summation [37] and the pymatgen library [38], which pro
vides various materials analysis features. Based on these estimates, ionic 
substitutions are made on sites which have the highest electrostatic 
energy, under consideration of the assigned oxidation states Li1+, La3+, 
Zr4+, O2− , Al3+ and Ta5+. 

The acceleration of the equilibrium atomic coordinates’ determina
tion can be beneficial for the reduction of the computational effort. 
Therefore, ML methods can replace the determination of the equilibrium 
structure in the calculation workflow. In this work we have developed 
an approach which takes guessed atomic coordinates as input values. As 
output, the trained ML algorithm delivers directly suggested equilibrium 
coordinates of the ions. To this end, we construct an artificial neural 
network (ANN), where the atomic Cartesian coordinates of each struc
ture with different volumes are processed as input values (with 
maximum substitution level of Al x = 0.5 and Ta y = 0.375). Further 
details of the developed machine learning model will be presented 
elsewhere. 

Additional preliminary ab initio simulations at the Γ point are per
formed for the five most energetically preferable configurations, 
selected via the described electronic model. Here, the energy cutoff is 
550 eV and the stopping criteria for the electronic self-consistency loop 
is at 10− 6 eV, while the ionic relaxation is stopped for forces smaller than 
0.05 eV/Å. We note that all simulations are performed for fixed cell 
volume and cell shape but variable ionic positions, hence the ionic po
sitions inside the cubic unit cell can relax during the DFT calculations for 
given volumes and deformations states of the cell. 

Fig. 1. Illustration of the prescreening workflow. The large set of possible substitution sites is reduced via the electronic prescreening model to only five energetically 
favorable configurations, which can be pre-equilibrated via ML methods. Preliminary Γ point calculations determine the configuration with the lowest energy among 
the five structures. We note that this configuration is used for all following productive calculations, which include in particular a full k-point sampling. 
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The configuration with the lowest energy among the preliminary Γ 
point simulations is chosen for the productive calculations of the me
chanical properties. The simulation parameters are unchanged for the 
productive runs, except for the chosen energy cutoff of 700 eV and the 
2 × 2 × 2 mesh for the Brillouin zone, sampled using the Monkhorst- 
Pack scheme [39]. 

For the determination of mechanical properties, i.e. the elastic 
moduli in a cubic system, the knowledge of three elastic constants is 
required, and these elastic constants are calculated following the 
approach of Söderlind et al. [40]. First, the volume of the structures is 
varied isotropically for volume changes of up to ±3% and the resulting 
energy-volume curves are fitted with the Birch-Murnaghan equation of 
state [41–43] to determine the equilibrium volume and the bulk 
modulus of each structure. Next, the energy as function of a shear strain 
ε determines the three elastic constants in a cubic system, therefore the 
structures are deformed according to two deformation matrices [40] 

D1 =

⎛

⎝
1 + ε 0 0

0 1 + ε 0
0 0 1

/
(1 + ε)2

⎞

⎠, (1)  

D2 =

⎛

⎝
1 ε 0
ε 1 0
0 0 1/(1 − ε2)

⎞

⎠, (2)  

where fitting allows to calculate the elastic constants via the tetragonal 
shear constant C′ and bulk modulus B [40], 

C′ =
1
2
(C11 − C12), (3)  

B =
1
3
(C11 + 2C12). (4) 

With the knowledge of the elastic constants, i.e. C11,C12 and C44, we 
calculate the directional Young’s modulus [21] 

E[100] =
(C11 − C12)(C11 + 2C12)

(C11 + C12)
,

E[110] =
4(C11 − C12)(C11 + 2C12)C44

2C11C44 + (C11 − C12)(C11 + 2C12)
,

E[111] =
3(C11 + 2C12)C44

C11 + 2C12 + C44
,

(5)  

and the shear modulus 

G[100] = C44,

G[110] =
2(C11 − C12)C44

C11 − C12 + 2C44
,

G[111] =
3(C11 − C12)C44

C11 − C12 + 4C44
.

(6) 

The comparison of these directional properties permits the evalua
tion of anisotropy of co-substituted LLZO. Additionally, we quantify the 
anisotropy of a cubic system via the Zener ratio [21] 

A =
2C44

C11 − C12
. (7) 

As for most battery related applications, polycrystalline LLZO with 
random grain orientations is used, we use homogenization models for 
the estimation of the isotropic material properties on the representative 
volume element scale. Therefore, the isotropic Voigt’s shear modulus is 
used as upper bound [44,45] 

GV =
1
5
(C11 − C12 + 3C44) (8)  

and the Voigt-Reuss-Hill averaging scheme involving upper and lower 
bound contributions [21] 

GVRH =
1
2

(
C11 − C12 + 3C44

5
+

5C44(C11 − C12)

4C44 + 3(C11 − C12)

)

. (9) 

These two estimates allow to get an impression of the range of elastic 
constants’ variations within polycrystalline LLZO using different ho
mogenization approaches. As will be shown below, the values are rather 
close to each other, and therefore the consideration of more sophisti
cated Hashin-Shtrikman bounds [46,47] is not required. 

Next, for an effectively isotropic polycrystalline material Young’s 
modulus is estimated as [44,45] 

E =
9BGV

3B + GV
. (10) 

Afterwards, we determine Vicker’s hardness via the following Eq. 
[48] 

HV = 2
(
k2GV

)0.585
− 3, (11)  

with k = GV/B being the ratio of shear and bulk modulus. This semi- 
empirical model is based on Pugh’s modulus ratio k and correlations 
between shear and bulk modulus and hardness, leading to an expression 
for HV = CkmGn, where the parameters C,m and n were previously 
determined by analyzing experimental data [48]. A good agreement 
between this theoretical model and experiments on LLZO was shown in 
[17]. 

The DFT calculations determine the elastic quantities at 0 K, where 
an extrapolation of the values to room temperature (298 K) leads to 
more accurate comparisons with experiments. As proposed in [21] for 
increasing temperatures the elastic moduli of oxides decrease and a 
reduction by 5% to mimic this decrease at 298 K can be applied. 

We note that all results for the mechanical properties base on these 
described DFT calculations. 

2.2. Differential effective medium theory 

The pores appear on a scale which is larger than the electronic 
structure scale, therefore a scale bridging description is required. We 
employ a differential effective medium theory approach [49,50] to 
capture the influence of pores on LLZO. As the polycrystalline material is 
effectively isotropic, also a random distribution of spherical pores does 
not influence the symmetry, and therefore we can describe the elastic 
response through e.g. Young’s modulus and Poisson ratio alone. Spe
cifically, the effective Young’s modulus calculated via the differential 
effective medium theory is given by [31] 

Eeff

E
=

3(c − 1)3
[c(8ν − 2)(c2 − 3c + 3) − 3(1 + ν) ]

(ν + 1)[c(4ν − 1)(c2 − 3c + 3) − 3 ]2
, (12)  

which is expressed here in terms of the void concentration c and the 
Poisson ratio of the dense phase 

ν =
3B − 2GV

6B + 2GV
, (13)  

using the upper bound of Voigt’s shear modulus GV. 

3. Results 

3.1. Mechanical properties 

Following the steps described above, we calculate the elastic con
stants for different co-substituted LLZO structures via DFT simulations 
and determine the corresponding mechanical properties under the in
fluence of high amounts of co-substitutions. 

The mechanical properties of LLZO are determined via the calcula
tion of the elastic constants. First, the comparison of the different values 
for the directional properties of Young’s modulus and shear modulus, 
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see eqs. (5) and (6), allows the evaluation of the co-substituted LLZO’s 
anisotropy. The direction [111] shows the highest values of Young’s 
modulus for all substitutions, whereas E[100] is lowest. The ratio between 
these directional contributions ranges from 1.13 to 1.36 for the different 
co-substituted configurations. The directional properties of the shear 
modulus exhibit similar ratios between 1.13 and 1.29, whereas the 
highest contribution belongs now to the [100] direction and the smallest 
to the direction [111]. The Zener anisotropy, see Eq. (7), allows the 
quantification of anisotropy in cubic systems, where a value of A = 1 
indicates isotropy. The highest value A = 1.44 is found in the single 
substituted Al0.125:LLZO system, while the lowest value A = 1.19 results 
for the co-substituted Al0.625Ta0.75:LLZO structure. Overall, a decrease 
with increasing substitution level is visible, where the values for the 
Zener anisotropy range in the magnitude of other isotropic oxides like 
NiO (A = 1.45) or MnO (A = 1.54) [21]. Therefore, we expect that in 
polycristalline LLZO with random grain orientation, which is isotropic, 
the elastic properties will not deviate much from the averaged values. 
This is confirmed via a comparison of the upper bound of Voigt’s shear 
modulus (Eq. (8)) and the Voigt-Reuss-Hill averaging scheme (Eq. (9)), 
where the deviations between both quantities are small. The highest 
difference (GV − GVRH)/GVRH = 0.015 between upper bound and 
average shear modulus is found for Al0.125Ta0.125:LLZO, while the lowest 
difference is (GV − GVRH)/GVRH = 0.002 for Al0.625Ta0.625:LLZO. 

Fig. 2(a) shows the resulting Young’s moduli as a function of Al 
content. The values of the co-substituted structures are smaller than the 
unsubstituted structure, except for Al0.125Ta0.25:LLZO and Al0.375Ta0.25: 
LLZO. For increasing Al level, the curves decrease slightly, however the 
variation of values for Young’s modulus is small. We note in passing that 
the cubic and tetragonal phase have comparable Young’s moduli, with a 
slighly higher value for the tetragonal phase, which is consistently found 
in experiments and simulation, see [17]. 

The 3D representation in Fig. 3(a) shows the resulting bulk moduli as 
a function of Ta and Al level. General, we expect a correlation between 
the lattice constants and elastic moduli, where smaller/higher bulk 
moduli lead to higher/smaller lattice constants due to weaker/stronger 
interatomic bonding, respectively [17]. This relationship is visible in our 
data, however the variation of data is again not very pronounced. Fig. 3 
(c) shows the resulting Young’s modulus and confirms the previous 
finding, i.e. the decrease with increasing Al level. 

Fig. 2(b) illustrates the resulting lattice constants as a function of 
substituted Ta content. It is clearly visible that the substitution of Ta has 
a higher influence on the lattice constant than Al substitutions. For low 
amounts of Ta the resulting lattice constant lies in the regime of the 
unsubstituted structure, whereas for increasing Ta level the corre
sponding lattice constants decrease. The decrease of the lattice constants 

of structures with high Ta level is expected due to the smaller ionic 
radius of Ta compared to the substituted Zr [19]. We note that single 
substituted Al and Ta structures are calculated for benchmarking and the 
later comparison to the experimental data. For the single substituted Alx: 
LLZO structures a higher lattice constant than for the unsubstituted 
structure is found, while for the Tax:LLZO structures smaller lattice 
constants are determined. This confirms the observed influence of Ta on 
the microstructural properties of co-substituted systems. These findings 
are also supported by the results of the theoretical and experimental 
investigation with single substitutions [17]. Overall, the variation of the 
lattice constants between the different co-substituted configurations is 
small and less than 0.1Å. The 3D representation of the resulting me
chanical properties in Fig. 3(b) reveals the same findings for the lattice 
constants, i.e. the decrease with increasing Ta level. 

Finally, the calculated hardness, as illustrated in Fig. 3(d), shows 
again only a weak substitution dependence. All values are close to the 
unsubstituted structure. 

3.2. Porous materials 

LLZO used for typical battery applications is a porous material, 
whose pores have an influence on the mechanical properties. However, 
these effects cannot be captured via DFT calculations and therefore the 
differential effective medium theory is used as a scale bridging 
description. Generally, this approximation method shows a good 
agreement with the true effective elastic constants for low pore con
centrations. For LLZO, the porosity is typically of the order of 10% [17], 
and therefore a sufficient accuracy of the predictions can be anticipated. 
Table 1 shows the resulting effective Young’s modulus compared with 
corresponding experimental values and measured porosity data reported 
in [17]. We note that we extrapolate the simulated results to 298 K for a 
realistic comparison to the experiments. For dense, tetragonal LLZO 
without substitution, the computed and measured Young’s moduli 
match. The unsubstituted, cubic structure results in a slightly smaller 
value for Young’s modulus than the tetragonal counterpart. 

As only for selected Ta content experimental elastic constants of pure 
cubic phase LLZO are available both for dense and porous samples, we 
restrict the comparisons to these cases. Here it should be mentioned that 
due to system size constraints, only specific Ta concentrations can be 
realized in the simulations, and we picked them to be as close as possible 
to the experimental compositions. The computed and extrapolated 
dense phase Young’s moduli are similar to the experimental values with 
a deviation of the order of a few GPa, where only Ta0.4:LLZOexp is an 
outlier. For a porosity of around 10% we find a comparable drop of the 
effective Young’s modulus both in simulations and experiments. 
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Fig. 2. DFT calculated (a) Young’s modulus and (b) lattice constant for different dopant configurations with (a) fixed Al and (b) fixed Ta concentrations. The grey 
point indicates the corresponding value for the unsubstituted structure in each plot. We note that this cubic structure is unstable at ambient temperatures. 
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Fig. 4 shows the decrease of the ratio Eeff/E as function of the void 
concentration. Different values of the Poisson ratio ν do not affect the 
behaviour of the elastic modulus decrease. Therefore, the expected LLZO 
porosity of around 10% leads to a decay by 27% of Young’s modulus. 

4. Conclusions 

Ab initio DFT simulations of garnet structured Li7La3Zr2O12 with co- 
substitutions of Al and Ta are performed and elastic constants and 
further structural and mechanical properties are calculated. 

LLZO shows a pronounced dependence on the Ta substitution level 
due to the smaller ionic radius of Ta. Also, for the Young’s modulus a 
slight dependency on the Al content is found, while the values for the 

resulting hardness range in the order of magnitude of the unsubstituted 
structure. The co-substitutions preserve the structural and mechanical 
properties, which is important regarding the fabrication of batteries 
using LLZO. 

The differential effective medium theory allows the inclusion of 
pores and bridges the gap towards application relevant materials. 
Benchmarking and validation of our simulation results with single 
substituted experimental values shows a good agreement and allows the 
usage of our model for consistency checks of experimental and theo
retical results. The porosity of LLZO lies at around 10 % and this leads to 
an expected decay of 27 % for Young’s modulus. 

Overall, the presented scale bridging calculations lead to reliable 
predictions of the mechanical properties of doped LLZO. The obtained 
results can be useful for the optimization of the mechanical behaviour of 
the solid electrolyte as well as a beneficial mechanical matching to the 
electrodes to potentially improve electrical contacting and to contribute 
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Fig. 3. DFT calculated (a) bulk modulus, (b) lattice constant, (c) Young’s modulus and (d) hardness for different dopant configurations in a 3D representation. The 
plots show that the mechanical properties of LLZO are preserved under substitutions with Al and Ta. 

Table 1 
Verification and comparison of the simulated, extrapolated results (superscript 
“sim”) and experimental quantities (superscript “exp”), which are taken from 
[17], for single phase materials. All structures are cubic, except two tetragonal, 
unsubstituted configurations (prefix “t”). For the unsubstituted, tetragonal 
structure t-LLZOsim the literature value E = 163.5GPa (0 K) from [51] is used. 
All simulated values are extrapolated to 298 K (reduction of 5%), including the 
simulation literature value.  

Substitution Porosity Young’s modulus 
E 

effective Young’s modulus 
Eeff 

in [mol%] in [%] in [GPa] in [GPa] 

Un-substituted    
t-LLZOexp 23 156 ± 9 71 ± 3 
t-LLZOsim 23 155.3 71.1 
LLZOsim 23 148.9 68.1 

Ta-substituted    
Ta0.125: 
LLZOsim 

8 142.9 112.3 

Ta0.2:LLZOexp 8 141 ± 2 117 ± 6 
Ta0.25:LLZOsim 8 144.9 112.8 
Ta0.375: 
LLZOsim 

9 143.8 108.4 

Ta0.4:LLZOexp 9 124 ± 3 82 ± 10  

Fig. 4. The decrease of the effective Young’s modulus. The resulting ratio of 
the effective Young’s modulus as function of the void concentration for 
different values of Poisson ratio ν, showing a very weak dependence on ν. We 
note that for an experimental expected porosity of 10% a decrease of 27% in the 
elastic quantities is expected. 
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to the suppression of dendrite formation. 
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Quantum annealing 
for microstructure equilibration 
with long‑range elastic interactions
Roland Sandt 1*, Yann Le Bouar 2 & Robert Spatschek 1,3

We demonstrate the use and benefits of quantum annealing approaches for the determination of 
equilibrated microstructures in shape memory alloys and other materials with long-range elastic 
interaction between coherent grains and their different martensite variants and phases. After a 
one dimensional illustration of the general approach, which requires to formulate the energy of the 
system in terms of an Ising Hamiltonian, we use distant dependent elastic interactions between 
grains to predict the variant selection for different transformation eigenstrains. The results and 
performance of the computations are compared to classical algorithms, demonstrating that the new 
approach can lead to a significant acceleration of the simulations. Beyond a discretization using simple 
cuboidal elements, also a direct representation of arbitrary microstructures is possible, allowing fast 
simulations with currently up to several thousand grains.

The modeling of microstructures is an important approach to the understanding, improvement and develop-
ment of new materials for various applications. However, as mechanisms at different length and time scales are 
intimately linked, such descriptions and model implementations are typically challenging and require massive 
computational resources. Although phase field simulation approaches – the most prominent method for predict-
ing microstructure evolution – strongly benefit from developments like the thin interface limit1,2, nondiagonal 
phase field models3,4 and sharp phase field approaches5, simulations containing large microstructural domains 
to obtain predictions with a certain statistical significance are rare, strongly limited by the available (super-)
computer resources and their associated costs and energy consumption. Despite the enormous progress in this 
research field and the extended use of parallel computers and graphics cards for the simulations, limitations 
of the computational techniques remain a serious thread to the basic scientific progress and applied research.

One of the striking questions, which arises at the horizon of materials science modeling is how quantum 
computing will potentially change the simulation landscape in the future. However, at present a general-purpose 
quantum computer of sufficient size is not yet available. In the meantime, a technology known as quantum 
annealing (QA)6–10 has emerged and is available on several sites worldwide. The use of such machines differs 
significantly from traditional gate based computers and therefore currently only specific problems can be handled 
by quantum annealers11. The concept of a quantum annealer is that its qubits are initialized in a well defined 
state which is described by a Hamiltonian with a unique ground state12. During the operation at cryogenic tem-
peratures, this Hamiltonian is changed adiabatically such that the ground state converts into the one of the final, 
desired Hamiltonian12,13, and therefore allows to perform global energy minimization computations efficiently. 
The structure of these Hamiltonians is a binary quadratic model, which can be expressed in terms of a quadratic 
unconstrained binary optimization or equivalently through an Ising model11. Due to this specific structure, so 
far, materials science related applications of this technology are still rare. Instead, actual research focuses mainly 
on the benchmarking and performance tests of quantum annealing compared to classical approaches14–16.

Some first applications in the field of biology and traffic research in the sense of optimization problems have 
been developed recently. Here, quantum annealing enables the efficient analysis of transcription factors in gene 
expression with combined machine learning algorithms17, identification of conformations of lattice protein 
models18 and their folding19, detection of tree cover in aerial images20, real-world traffic flow optimization 
problems21 or control of automated guided vehicles22. However, the usage of quantum annealing in materials 
science is not widespread and few publications correspond to phase transitions in the transverse field Ising 
model23, the investigation of critical phenomena in frustrated magnets via the Shastry-Sutherland Ising model24, 
Monte-Carlo sampling25 and the automated materials design of metamaterials26. The purpose of the present paper 
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is therefore to demonstrate that this novel technology can indeed lead to completely new possibilities beyond 
the existing and commonly used descriptions for the modeling of microstructures.

In order to be as explicit and illustrative as possible, we demonstrate here the case of coherent solid state 
transformations involving austenitic and martensitic phases, where the latter are allowed to appear in different 
variants. Such transitions play a role for shape memory alloys like NiTi, which can be deformed easily at low 
temperatures, but heating to higher temperatures lets the material return to its previous, trained shape27. The 
modelling and mapping of shape memory alloys to spin glass systems was previously established in several 
studies28–31 and can here be exploited for QA applications. In the following we will mainly stick to the terminology 
of the shape memory alloys but emphasize that similar approaches can be used to model e.g. the transforma-
tion and deformation behavior in steels, ferroelastic materials, as well as phase changes in solid electrolytes for 
rechargeable batteries. The particular aspect that plays a central role here are the anisotropic long-range elastic 
interactions, which are common for solid state transformations32, and therefore the ground state configuration 
does not only depend on phase concentrations and fractions, but also on the detailed microstructural arrange-
ment of phases and grains. In a typical phase field simulation33, the microstructural evolution is solved together 
with the relaxation of the mechanical deformations in the spirit of a continuum description, which leads to very 
long simulation times. Here, we show that the separation of the discrete degrees of freedom for the variant dis-
tribution of martensitic phases from the continuous development of the microstructure and the QA treatment 
allow to drastically increase the performance of the computations and therefore to simulate significantly larger, 
application relevant systems compared to existing approaches.

Results
One‑dimensional model.  For a simplified 1D model we consider only a “martensitic” phase which is 
assumed to exist in two different variants. Hence the microstructure consists of a line of grains of these variants, 
as depicted in the inset of Fig. 1a. To be explicit, we assume that both variants have a stress free strain (eigen-
strain), which leads to a shear deformation relative to the austenitic mother phase, and denote these variants by 
state variables si = ±1 . As in the end we will map the description to a one-dimensional Ising model, we also 
use here the terminology of “spins” with two possible alignments in the spirit of a magnetic model. As each of 
the variants leads to a shearing of the cell, we get an overall stress free deformation of this line (compared to 
the shear strain free austenite), depending on the spin configuration. We assume that all grains have the same 
height d , the same elastic constants, and opposite shear eigenstrain ±ε0 . As one can readily see from the inset 
of Fig. 1a, the stress free equilibrium position of the top grain x0 depends only on the number of variants N+ 
with orientation si = +1 and N− with si = −1 , but not on the individual arrangement, which is a particular-
ity of the simplified 1D model and the chosen eigenstrain. Hence, for a fixed number N = N+ + N− spins 
in a row, the macroscopic stress free strain is ε̄ = (N+ − N−)ε0/N , which leads to x0 = Ndε̄ . If an external 
deformation is enforced, i.e. x  = x0 the elastic energy is Fel = µeff(x − x0)

2 with an effective shear modulus 
µeff  . Obviously, the elastic energy is minimized if the spin configuration is such that x = x0 , which implies 
(N+ − N−)min = x/ε0d , up to the point of saturation, where all spins are aligned. This expression serves as 
reference for the comparison with the numerical minimization approaches below. We note that we neglected at 
this stage the discrete nature of the variants, which means that the integer value N+ − N− should be as close as 
possible to the continuum value (N+ − N−)min above. Although the energy in the simple 1D model does not 

Figure 1.   Results of the one-dimensional model comparing different numerical and analytical methods. 
(a) Mean variant orientation (N+ − N−)/N as function of the displacement x/dNε0 . Comparison between 
the results obtained by numerical minimization (solid lines) versus the analytical theory for an infinite 
and continuous system (dashed line). For large displacement, all “spins” are aligned and therefore the 
“magnetization” saturates. The inset shows a sketch of the one-dimensional arrangement of martensite variants 
si = +1 (red) and si = −1 (green). The bottom row is fixed to position x = 0 , whereas the top grain has a mean 
position x0 in the stress free state. If an additional external stress or strain is applied, the top layer is moved to 
position x, and the entire microstructure is sheared to the dashed configuration. (b) Elapsed computation time 
as a function of the number of grains. Different methods and algorithms are compared. Dashed parts of the QA 
curve belong to the regime of chain breaks. For large system sizes, only the hybrid quantum annealing approach 
remains feasible, showing an almost constant computing time need for less than 1000 spin variables (inset).
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depend on the arrangement of the variants but only on the total numbers N+ and N− = N − N+ , we formulate 
the model here on the level of the individual “spins” si for the later extension towards higher dimensions and 
the use of the quantum annealer. Hence we get N+ − N− =

∑
i si . Inserting this into the elastic energy expres-

sion yields Fel = µeffε
2
0d

2
∑

i,j sisj − 2µeffxε0d
∑

i si + µeffx
2 , where the summations run over all spins. For the 

implementation on a quantum annealer, we need to bring this to the Ising form of a Hamiltonian H with

where the first term corresponds to the interaction with an external magnetic field hi and the second term to a 
spin-spin interaction, which favors ferromagnetic (antiferromagnetic) ordering in case that the coupling constant 
Jij is negative (positive). The last, spin-independent term H0 is only an irrelevant additive constant. From the 
comparison of the two above expressions we identify hi = −2µeffxε0d and Jij = 2µeffε

2
0d

2 . First, we note that 
the external deformation is here analogous to the magnetic field in the Ising description. Second, the spin-spin 
interaction term Jij is positive, hence favoring “antiferromagnetic ordering”. Also, this term is independent of 
the spin numbers i, j, which means that this interaction does not depend on the distance between the grains. In 
other words, the elastic interaction depends only on the averaged “magnetization” N+ − N− , which implies a 
mean field interaction.

The goal of the formulation is to minimize the elastic energy and to find the optimal spin or variant con-
figuration {si} . To this end, we use three different numerical approaches (see methods section), and the results 
are compared to the analytical solution above: First, a brute force approach iterates over all spin configurations 
to find the energetic minimum exactly, second we use simulated annealing as probabilistic ground state finder, 
and finally the quantum annealing approach. Fig. 1a shows the resulting “magnetization” (N+ − N−)/N , i.e. the 
average variant orientation, as function of applied displacement x/dNε0 , which corresponds to the magnetic 
field in the Ising model.

As expected, the results agree with the analytical theory up to the aforementioned discretization effect, which 
becomes less pronounced for large grain numbers. For high displacements saturation sets in when all variants 
are de-twinned, which means that all spins are either in the state +1 or −1 . We note that for the investigated 
number of spins all used algorithms lead to the same energy minimum, which confirms that also the probabilistic 
approaches indeed find the global minimum states.

Fig. 1b shows the required computation time for the different methods and algorithms as a function of the 
number of grains N. All conventional algorithm implementations are based on single core computations without 
parallelization and are mainly shown for a qualitative comparison, as the focus of the investigations is on the 
quantum annealing approach. For the latter, we use quantum processing unit (QPU) implementations up to the 
highest possible number of spins (typically N ≈ 170 for the Pegasus architecture34 of a D-Wave machine). The 
brute force approach, where iterations over all spin configurations are run, has the highest computation time. 
Even at small spin systems of around N ≈ 40 the elapsed user time was too large for practical applications due 
to the simulation time scaling ∼ O(2N ) . The pure quantum annealing method produces the fastest results and 
ends up with an almost constant elapsed QPU access time. Overall, the computations for N ≈ 150 are roughly 
three orders of magnitude faster than for the other classical approaches. Beyond around N ≈ 50 spins, so called 
chain breaks35 occur occasionally. They result from the need to encode strongly coupled spins as a single logical 
spin. Ideally, these spins should represent the same state as the individual spins, but in practise this identity can 
be violated. To avoid this issue and to simulate even larger systems, which are essential for higher dimensional 
modeling in the following sections, hybrid classical and quantum annealing approaches can be used, which com-
bine pure QA with conventional minimization approaches36. The numerical results in Fig. 1b show an increase 
of the computation time of the hybrid solver compared to the pure QA, but the relative acceleration compared 
to the classical algorithms becomes even more striking. For the hybrid solver, the elapsed computation time is 
essentially independent of the number of spin variables and increases only beyond 103 grains to several seconds. 
Altogether, the hybrid QA is clearly the fastest approach for large grain numbers and is therefore used in the 
following two-dimensional simulations.

Transformations in higher dimensions.  For the determination of the linear elastic energy beyond one 
dimension, we consider coherent precipitates of different variants which form inside the matrix. In this way, the 
entire material can be considered to consist of small entities (in the following denoted as grains), which can be 
in one of the different martensitic states. The simplest possible (cartesian) discretization is to use small cuboidal 
grains with edge length a. All grains are assumed to be coherent (the elastic displacements and tractions are 
continuous at the interfaces between the grains), and we use homogeneous elasticity, i.e. we ignore differences 
in the elastic constants between the different phases or variants. This has the consequence that the elastic energy 
reduces to combinations of pairwise interactions between all grains37.

For demonstrational purposes we perform here two-dimensional simulations in a plane strain setup, but a 
transfer to three dimensions is straightforward. In particular, the annealer part does not depend on the dimen-
sionality of the description. The qualitatively new aspect beyond 1D is the appearance of distance and orientation 
dependent “spin-spin” interactions, which decay only slowly with the distance between the grains, and therefore 
leads to fully populated matrices Jij . As it turns out that an accurate determination of the elastic interaction 
energy is essential for a precise prediction of the equilibrium microstructure, we use Fourier transformation 
approaches with periodic boundary conditions as outlined in the methods section. As boundary conditions, 
we use either vanishing average stress in the periodic volume V, �σij� = 1

V

∫
σij(r) dr = 0 , or, similarly to the 

1D description, a given average strain 〈εij〉 . We employ in the following for simplicity isotropic elasticity, which 
is e.g. described by the Lamé coefficient � and the shear modulus µ , i.e. the stress-strain relationship reads 

(1)H =
∑

i

hisi +
∑

i<j

Jijsisj +H0,
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σij = 2µ(εij − ε
(0)
ij )+ �δij(εkk − ε

(0)
kk ) , where implicit summation over repeated indices is used. The position 

dependent eigenstrain ε(0)ij (r) is known for a given microstructure with fixed phase dependent stress free strains 
(relative to the austenitic mother phase), ε(0)ij (r) = θ(r)ε0ij , where the indicator function θ is zero in the austenite 
and either +1 or −1 in the two considered martensite variants. For a given microstructure, the elastic energy can 
then be computed in reciprocal space, as shown in the methods section. For the formulation as Ising model we 
discretize our microstructure using small non-overlapping cuboidal grains as discussed above and assign a “spin” 
si to each of them like before, such that the indicator field becomes a superposition θ(r) =

∑
i siθi(r) , where θi 

equals one inside the corresponding square and is zero outside. Therefore, the elastic energy decomposes into 
pairwise interactions (for i  = j ) and self-energy terms (for i = j)

where the integral kernel B(r) is defined through the inverse of the elastic Green’s function. Hence, it is sufficient 
to perform the Fourier transform energy calculations for all pairs of the same martensite variant si = sj = 1 on the 
discrete lattice sites in the volume V; for periodic boundary conditions and identical grain shapes, it is sufficient 
to calculate the elastic interaction energy between a reference grain and all the other grains, due to translation 
invariance. In case of fixed average strain boundary conditions, an additional homogeneous term appears (see 
methods section), contributing both to the spin-spin interaction Jij as well as to the magnetic field term hi , which 
is absent for zero average stress boundary conditions. The resulting fully populated matrix of coupling constants 
with both positive and negative entries has similarities to spin glass systems with random couplings, which have 
been investigated in the literature with conventional approaches, see e.g.38.

For the simplest case that the eigenstrain is purely dilatational and isotropic the Bitter-Crum theorem applies 
and the total energy depends only on the volume fraction of the martensite variant, where no interaction between 
the grains is present and only a self energy term remains39.

For a nontrivial elastic interaction and the link to the previous 1D description, we consider a shear trans-
formation strain with ε0xy = ε0yx = ε0 , where all other components vanish. In this case, we obtain a distance and 
orientation dependent interaction as depicted in Fig. 2a, which is computed here for the case of vanishing average 
stress, �σik� = 0 . Here and in the following parts the Poisson ratio is chosen as ν = 1/4 (i.e. � = µ).

The interaction energy is obtained by subtracting the elastic self energies Eself  for each of the two (isolated) 
martensite grains inside the austenitic matrix from the total elastic energy Eel of the two-grain arrangement, 
i.e. Eint = Eel − 2Eself  , to normalize the interaction energy such that it decays to zero for large grain separations. 
For short distances, a transition between attraction and repulsion is found for the 〈100〉 direction, whereas a 
purely repulsive interaction results for the diagonal 〈110〉 directions. Due to the periodic boundary conditions, 
the result depends on the system size V = Lx × Ly , as the grains also interact with their periodic images, hence 
r ≪ Lx , Ly is required to observe the decay of the interaction.

We note that in two dimensions the interaction energy decays asymptotically as r−2 , whereas in three dimen-
sions it scales as r−3 in large systems, which follows from the elastic Green’s function40. For the quantum annealer 
implementation, the interaction energies are needed only for the discrete lattice points (symbols on the curves). 
Although the decay of the elastic interaction may suggest to cut it off beyond a certain distance in real space, it 
turns out that such an approach is inappropriate, as it leads in the end to invalid equilibrium microstructures, 
and it is therefore essential to keep all interaction terms Jij with high precision to avoid spurious effects. We note 
that the formulation on the quantum annealer does not depend on the dimensionality, therefore the scaling plot 
in Fig. 1b applies here as well.

Based on the calculation of the elastic interactions, we obtain from the Ising model implementation on the 
quantum annealer with hybrid solver stripe patterns in 〈100〉 direction as equilibrium structures. These patterns 

(2)Ei,j = sisj
1

2V

∫

dr

∫

dr′B(r − r
′)θi(r)θj(r

′),

Figure 2.   Interaction energies of two grains of equal variant type ( si = sj ). Interaction energies in the case of 
(a) shear eigenstrain and vanishing average stress and (b) tetragonal eigenstrain. The interaction energy per 
length is given in units of �a3ε2

0
 , and the computations were done using a system size of Lx/a = Ly/a = 50 , 

where a is the edge length of the grains. At distance r/a = 0 the grains touch each other. The symbols on the 
continuous curves indicate the information for the interaction at discrete lattice sites, which is actually used in 
the annealer simulations.
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are irregular in the sense that the widths of the stripes are not uniform. This is in analogy to the 1D model, 
which was discussed above, where we found that the arrangement of the two variants is not determined. This 
coincidence, which is physically expected, is nontrivial from the model formulation, as (i) in the 1D model we 
had a distance independent interaction in the discretized model, where here the interaction is significantly more 
complex, but adds up to the same effective descriptions for the periodic arrangement; (ii) a rotation of the pattern 
by 90 degree is possible and sometimes obtained from the optimal configuration due to the discrete rotational 
symmetry; (iii) the fixing of the average stress compared to the given average strain in the 1D formulation can 
lead to unequal distributions of the different variants. In particular, for the presently considered absence of an 
external strain (implying a vanishing magnetic field in the Ising terminology), there is no constraint of the sort 
�si� = 0 for the average spin alignment. All stripe configurations are energetically equivalent, which includes the 
possibility of a single variant configuration. These results therefore confirm simultaneously the accuracy of the 
elastic interaction calculation with the pairwise decomposition as well as the ability of the quantum annealer to 
identify the true ground state configurations.

As next example, we use a tetragonal eigenstrain with the only nonvanishing components 
ε0xx = −ε0yy = ε0zz = ε0 . First, we consider again the situation with vanishing average stress, �σij� = 0 . The cor-
responding interaction energy is shown in Fig. 2b for ν = 1/4 . In this case, the equilibrium microstructure is 
trivial and consists of a single variant, as in this case the elastic energy is zero for the periodic system. Therefore, 
the situation differs from the previous shear transformation, where also lamellar arrangements with both variants 
lead to stress free situations. The reason is that any interface between two variants leads to a mismatch between 
adjacent variants for the tetragonal transformation, and therefore such a situation is energetically unfavorable 
here. A change of boundary conditions to vanishing average strain, �εij� = 0 , alters the situation, since then 
arrangements with equal amounts of both variants are preferred, as this lowers the volumic part of the elastic 
energy. In this case, we find regular inclined stripes as equilibrium pattern, as shown in Fig. 3a.

Again, the solution is not unique; in particular, due to translation invariance, the annealer returns also con-
figurations where the stripes are shifted. Also, a switch of the sign of the inclination angle φ (see definition in the 
figure) leads to energetically equivalent solutions. However, we do not find ground state configurations which 
lead to different (absolute) inclination angles or strip widths or even irregular variations of the latter, contrary 
to the shear transformation case before.

The reason for the observed ground state morphologies is a combination of continuum elasticity effects, the 
granular structure of the material and constraints induced by periodic boundary conditions. Figure 3b shows the 
computed elastic energy for different numbers of regular arrangements of stripes in the periodic system as func-
tion of the inclination angle φ . Here we see a pronounced influence of the grain size, as the elastic energy of con-
figurations with regular stripe pairs with a discretization by 50× 50 grains (squares in the figure) is higher than 
for corresponding cases with very fine grains, where discretization effects do not play a role anymore (smooth 
curves). The oscillating nature is due to the periodic boundary conditions, as improper choices of the inclina-
tion angle lead to discontinuities of the stripe patterns at the boundaries, which is energetically unfavorable. 

Figure 3.   Resulting stripe patterns for tetragonal eigenstrain. (a) Equilibrium structure with three stripe pairs 
(counted along the horizontal axis) in a system consisting of 50× 50 cuboidal grains. A vanishing mean strain, 
�εij� = 0 , is imposed. The width of the stripes is uniform, consisting of grains with configuration si = +1 (red) 
and si = −1 (green). (b) Elastic energy of stripe patterns with different inclination angles φ. The solid curves 
correspond to smooth stripes (the grain size a/Lx , a/Ly ≪ 1 is negligible) and show a pronounced stationary 
point for inclinations for which the pattern repeats periodically without kinks at the boundaries. The squares 
correspond to situations with the same number of stripes, where the system is discretized by 50× 50 quadratic 
grains, leading to pronounced aliasing effects, and the resulting elastic energy is higher than for the smooth 
stripes. This shifts the energetic minimum for 6 stripe pairs at φ ≈ 40

◦ to a lower angle φ ≈ 33
◦ with 3 stripe 

pairs. The infinite system size limit for smooth stripes is depicted as black dotted curve.
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Therefore, continuous patterns correspond to the stationary points of the curves. For specific angles, the curves 
for three and six stripe pairs meet at local minima, which is a consequence of the scale invariance of linear elas-
ticity. From the smooth, continuum limit curves one would conclude that an angle of about φ ≈ 40◦ should lead 
to the energetically lowest configuration (absolute minimum of the smooth red curve). Moreover, in the limit 
of infinite systems, where periodic boundary conditions do not play a role anymore, an analytical treatment is 
possible, leading to the energy expression E∞el = VB(n)/2 for equal volume fraction of the two variants with

with n = cosφ . Energy minimization gives the optimal angle φ = cos−1 √5/8 ≈ 37.8◦ , see Fig. 3b (minimum 
of the black dotted curve).

However, these predictions disagree with the finding from the quantum annealer, which favors a configuration 
with three stripe pairs at a lower angle of φ ≈ 33◦ . This observation can be understood by consideration of the 
granular structure of the patterns investigated here, as the microstructure in the annealer simulations consists of 
50× 50 square grains. First, the explicit appearance of the length scale a breaks the scale invariance of the peri-
odic pattern, and therefore the minima of the energy curves belonging to the discrete microstructures (squares 
in Fig. 3b) do not coincide anymore at the local minima. Additionally, with increasing inclination antialiasing 
effects of the patterns become more relevant, and therefore the energy curves show an increasing disagreement 
with the continuum limit curves. As a result, the energetic minimum in the discrete microstructure indeed shifts 
toward a configuration with three stripe pairs at φ ≈ 33◦ (absolute minimum of the blue squares in Fig. 3b), which 
is in agreement with the prediction of the quantum annealer. Consequently, details of the granular structure can 
change the energetics compared to a full continuum approximation, especially since many local minima of the 
elastic energy are located close to each other.

Variant selection in realistic microstructures.  The approach presented above is not limited to mutu-
ally interacting cuboidal grains, but can also be applied to realistic microstructures. To illustrate the procedures, 
we have generated a microstructure consisting of N = 400 grains using a Voronoi tesselation41. Each grain is 
allowed to take one out of two martensite variants with the tetragonal eigenstrain tensor, and we pre-compute 
all mutual elastic interactions between them. We note that contrary to the case with the cuboidal grains in a 
periodic array here we cannot exploit translational invarince due to the different shapes of the grains, and hence 
these elastic interaction energy calculations scale here as O(N2) instead of O(N) before, although we still use 
periodic boundary conditions. Additionally, we consider now arbitrary given external strains 〈εij〉 , which leads 
to the appearance of a “magnetic” term like in the one dimensional description. With that, we can predict the 
equilibrium variant distribution within the microstructure using the hybrid quantum annealer, and this step is 
typically executed within a few seconds of runtime.

Examples for the equilibrium microstructures are shown in Fig. 4 as function of the externally applied strain 
〈εxx〉 , whereas the other average strain components vanish.

The observed microstructures are indeed similar to what we have found before using the square discretization, 
although here the band widths and orientation deviate from the previous case due to microstructural details and 
the smaller number of grains, and these effects can be explained using an analysis similar to the one done for 
Fig. 3b. We note that in these microstructures all grains have the same orientation, and therefore the application 
of a tensile strain strongly favors the selection of the grain variant si = +1 (for a compressive situation we observe 
the opposite behavior), and we find a full alignment of all variants in the last snapshot.

Additionally, we have performed the same analysis for grains with uniformly distributed random orienta-
tion, which implies a rotation of the local transformation strain tensor, see Fig. 5 for the grain orientations and 
for the variant selection.

Here, also the equilibrated spatial distribution of the variants appears to be irregular. Application of a tensile 
strain again favors the “alignment” of the variant, but this time even for high strains not all grains select the same 
variant, which is due to the local rotation. In fact, a grain, which is rotated by 90◦ with respect to the straining 
direction has a preference to be in variant state si = −1 , as then the direction of expansion is aligned with the 
external tensile strain. This can be clearly seen e.g. in Fig. 5(c) for the highest tensile strain in x direction, where 
the remaining patches with “spin” si = −1 correspond to the grains with orientation close to π/2 (or 3π/2 ). We 
emphasize that for a given microstructure (shapes of all grains) the mutual elastic grain-grain interactions have 
to be computed only once. As mentioned before, this step has to be done with high precision, and consequently 
this is the step which demands the highest amount of computing time. After that, all changes of the external 
boundary conditions affect only the k = 0 mode contributing to the interactions Jij and hi , and these terms can 
be calculated analytically (see methods section). As each hybrid quantum annealing calculation typically requires 
only a few seconds, the entire microstructural change during mechanical loading can be calculated extremely fast.

Discussion
The central result of the present paper is the shown optimization of microstructures via quantum annealing, 
exhibiting a clear performance advantage of the novel approach compared to conventional energy minimization 
strategies. The brute force approach is not recommended, whereas optimized simulated annealing algorithms 
produce good results. However, quantum annealing represents the by far fastest method for optimization prob-
lems, particularly for systems with high numbers of grains (spins) and non-vanishing coupling constants and 
biases, and allows the determination of ground state configurations for system sizes, which are not accessible for 
the classical algorithms on reasonable computing timescales.

B(n) = 4µ

�+ 2µ
ε20

[
(3�+ 2µ)− 2(3�+ 2µ)n2 + 4(�+ µ)n4

]
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For a system consisting of N grains, we need to compute O(N2) spin-spin interactions. These elastic energy 
calculations have to be done with high accuracy, and therefore they dominate the overall computing time. After 
that, O(2N ) spin configurations need to be compared to identify the equilibrium configuration. For the conven-
tional algorithm, this combinatorial step dominates the total computational effort already for low values of N. In 
contrast, with the quantum annealer or its hybrid variant the computation time for the minimization of the Ising 
energy expression is completely negligible compared to the elastic interaction energy computations. Hence, we 

Figure 4.   Resulting equilibrium variant distribution with uniform grain orientation. The microstructures 
consist of 400 grains and tensile strain is applied in horizontal (x) direction. Red (green) grains correspond 
to variant si = +1 ( si = −1 ). The tensile strain is (a) �εxx�/ε0 = 0 , (b) �εxx�/ε0 = 0.1 , (c) �εxx�/ε0 = 0.5 , (d) 
�εxx�/ε0 = 0.9 , (e) �εxx�/ε0 = 1.1 and (f) �εxx�/ε0 = 1.3.

Figure 5.   Resulting equilibrium variant distribution with random grain orientation. (a) Grain orientation map 
corresponding to the microstructures. In the color bar the grain rotation angle is given in radian (modulo π 
due to symmetry). The rotation axis is along the [001] direction. The microstructures consist of 400 grains and 
tensile strain is applied in horizontal (x) direction. The grains have a random orientation, which is the same for 
all cases, based on a uniform distribution. The tensile strain in horizontal direction is (b) �εxx�/ε0 = 0 and (c) 
�εxx�/ε0 = 2.1 . Red (green) grains correspond to variant si = +1 ( si = −1).
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have demonstrated that QA is able to drastically optimize the search for microstructural equilibrium states in 
solid phases with long-range elastic interactions. Already today, the usage of hybrid quantum annealing enables 
the computation of microstructures with several thousand grains which all interact with each other, which is 
essential for a realistic modeling of microstructures inside various materials.

For many application relevant investigations, it is critical to understand whether and how models can be 
formulated that they are suitable for quantum computing. We have demonstrated this here for the particu-
lar case of long-range elastic interactions. Extensions towards the consideration of interfacial energy, multiple 
martensite variants, anisotropic elasticity, orientation relationships between grains and phases, and different 
spatial dimensions are obvious, as they do not conceptually influence the presented strategy of formulating the 
problem in terms of an Ising model. Inhomogeneous elasticity and the proximity to free surfaces can effectively 
lead to many-body interactions, for which perturbative extensions or the introduction of product spin variables 
are promising directions37,42. Beyond the purely elastic effects, further potential applications comprise phase 
changes in multi-phase solid state batteries, phase transformations in high strength steels or other materials like 
ferroelectrics. Overall, the separation of continuous and discrete degrees of freedom and the quantum treatment 
of the latter may also be beneficial for hybrid phase field and quantum annealing descriptions which combine 
a variant selection with a grain morphology evolution in an efficient way to drastically reduce computing time 
demands of existing approaches for application relevant sample sizes.

Methods
Quantum annealing.  Like general purpose quantum computers, a quantum annealer is built from qubits, 
which here store and process information using superconducting loops. A clockwise or anticlockwise circulat-
ing current in such a loop represents different spin states12. In each qubit superconducting loops interact with 
external flux biases, which allows to construct an energy landscape, where the fluxes influence barrier height and 
energy difference12. At the start of the computation, the system is initialized in the ground state of a known Ham-
iltonian H0 ∼ −

∑
i σ

x
i  with Pauli matrices σi , i.e. a strong transverse magnetic field13,43. During the annealing 

process, the Hamiltonian is turned into the desired one based on an Ising model11 Hp =
∑

i hisi +
∑

i<j Jijsisj 
with spin states si = ±1 , bias hi and coupling strength Jij between qubits i and j, for which an energetic minimum 
is sought, min{si=±1} Hp . Both Hamiltonians do not commute11, and the time of the initial Hamiltonian to adopt 
the low energy state is sufficiently large to ensure the validity of the adiabatic theorem of quantum mechanics44, 
which states that a system remains in its eigenstate, if changes occur adiabatically. Notice that the quantum 
annealing employs tunneling to leave metastable regions, contrary to the simulated annealing6. Another impor-
tant quantum mechanical principle in quantum annealing is the entanglement and the usage of entangled states 
inside quantum annealing processors (QPU)45.

As in practise this approach does not always deliver the lowest energy state, especially if energetically close 
low energy states exist, a suitable number of repetitions is made and the configuration with the lowest detected 
energy is taken. If the Ising problems do not match the architecture of the QPU, a subgraph of coupled qubits, 
know as chains, cover one variable of the problem in the so called minor embedding36,46. Additionally, for huge 
systems hybrid quantum annealing exploits classical algorithms and the interplay with quantum annealing in 
areas of high computational demands using a QPU coprocessor working with generic parameters for up to 11616 
spin variables on the D-Wave Advantage system36,47. In practise, the D-Wave framework Leap48 allows a direct 
formulation in terms of a problem Ising Hamiltonian.

Brute force minimization.  For N spins we compute the energy of all 2N possible configurations to deter-
mine the minimum. This deterministic approach delivers the true ground state energy but has a high computa-
tional effort.

Simulated annealing.  For this probabilistic approach49 a random initial configuration is chosen. A new 
candidate configuration, which we generate here by a single spin flip, is accepted if its energy is lower than the 
previous value. If the energy is higher by an amount �E , the configuration is accepted with a probability given 
by the Boltzmann factor exp(−�E/T) , in order not to get stuck in local energy minima. During the simulation, 
the temperature T is reduced according to a specific cooling strategy, in order to converge towards an energetic 
minimum at the end of the simulation. As our main goal is not to maximize the performance of the (classical) 
algorithms but rather to demonstrate the general scaling behavior, we refrain from a detailed discussion of the 
parameter optimization of the probabilistic simulated annealing approach. This includes in particular the use of 
suitable stopping criteria when no further reduction of the energy occur, as well as the use of problem adapted 
cooling strategies. For the simulated annealing approach we use single spin flips trials in each iteration, and the 
temperature T is decreased each time by �T/µeffε

2
0d

2 = 10−6 , which delivers a good performance for large 
system sizes. The simulations are stopped after a fixed number of 107 steps, which is optimized for the largest 
considered spin system with N = 150 in Fig. 1b, leading to a scaling of the computation time ∼ N2 due to the 
calculation of the interaction energy.

Elasticity.  We solve the elastic problem of a multi-grain setup with homogeneous linear elasticity, i.e.  all 
variants and phases are assumed to have the same elastic constants. Also, coherent interfaces are assumed, which 
means continuity of displacements at the interfaces. The martensite variants have different stress free strains (or 
eigenstrains) compared to the mother austenite phase, hence the stress-strain relation reads for general linear 
elasticity σij = �ijkl(εkl − ε

(0)
kl ) , where ε(0)kl (r) is the local stress free strain tensor and �ijkl the elastic tensor. We 

determine the elastic equilibrium configuration, which obeys the condition ∂σij/∂xj = 0 in bulk domains and 
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the continuity of normal stresses at interfaces, using Fourier transformation approaches32. From that, the elastic 
energy can be computed in reciprocal space as32

for a periodic system with vanishing average stress as boundary condition, where θ̂ (k) is the Fourier transform of 
the indicator field θ(r) and B(n) with n = k/k equals B(n) = σ 0

ij ε
0
ij − niσ

0
ij�jkσ

0
klnl with σ 0

ij = �ijklε
0
kl . Here, �ij(n) 

is the normalized Green tensor for displacements, which is defined through its inverse as �−1
ik = �ijklnjnl . The 

summation in Eq. (3) is over discrete vectors due to the periodic boundary conditions in real space. The summa-
tion is in principle infinite, and can be efficiently computed using the decoration technique50. For average strain 
boundary conditions, i.e. a prescribed value of 〈εij〉 , an additional homogeneous ( k = 0 ) contribution appears in 
Eq. (3), which reads Ehom = V�ijkl(�εij� − �ε(0)ij �)(�εkl� − �ε(0)kl �)/2 , which can be calculated analytically.
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We present a detailed derivation of the elastic energy of a homogeneous, isotropic linear elastic medium
consisting of different coherent martensite variants or phases and its mapping to an Ising model, as required for
an efficient quantum annealing determination of the equilibrium microstructure. The approach is demonstrated
for a sample with a large number of grains with a tetragonal eigenstrain. Furthermore, we illustrate how the
elastic effects may lead to the formation of ion conducting channels in the doped solid electrolyte Li7La3Zr2O12

(LLZO). Apart from bulk elastic and chemical effect we demonstrate how to include interfacial effects into the
quantum annealing approach and emphasize the importance of high precision elastic calculations.

DOI: 10.1103/PhysRevResearch.6.033047

I. INTRODUCTION

The properties of many materials are strongly influenced
by the microstructure, which can ideally be tailored to lead
to the desired behavior as needed for the intended ap-
plication. Here, mechanical effects can trigger solid state
transformations, which could be used to create the desired
microstructure. Such a processing technology needs to come
along with powerful simulation techniques, which are able
to quantitatively predict equilibrated microstructures in large
and application relevant systems, to ensure a long term stabil-
ity of the adjusted phase arrangement. Whereas phase-field
approaches [1–4] are strong and established approaches to
simulate the kinetics of microstructure evolution, the long-
term behavior involving thermochemical, interfacial but also
mechanical effects is hard to address due to large simulation
times.

Recently, we established a new simulation technique which
is based on quantum annealing (QA), and which allows to
directly determine the thermodynamic ground state for a
martensitic microstructure with elastic interactions in a very
efficient way [5,6]. QA itself is a specific case of adiabatic
quantum computing, which has become very powerful during
recent years [7–11]. Nowadays such machines with several
thousand qubits and couplers are available on the market.
To use this technique, it is necessary to express the problem
of interest as a discrete optimization problem, as described
through an Ising model or equivalently through a quadratic
unconstrained binary optimization problem [12–14]. Despite

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the fact that quantum annealers allow highly efficient global
energy minimizations, applications of this technology in the
field of materials science and related disciplines [5,15–25]
are still rare due to this specific problem structure. The main
part of actual research concentrates on performance test and
benchmarking of quantum annealing versus classical algo-
rithms [26–29]. Indeed, the solution of optimization problems
via quantum annealing plays recently a role in other research
fields [30–35].

The problem and solution approach proposed in Refs. [5,6]
is based on the concept that a grain structure of the ma-
terial of interest is known, and that for each grain by the
selection of a martensite variant (or more generally a phase)
is driven by the minimization of energy. Such transforma-
tions are important for example for shape memory alloys,
which undergo reversible, structural phase transitions between
martensitic and austenitic phases, depending on temperature
and the trained, previous shape [36,37]. If the grains are co-
herently connected, then interfaces between different phases
lead to internal stresses and therefore raise the elastic en-
ergy. The approach expresses the energy minimization as a
discrete optimization process by mapping it to a spin glass
problem [38–41]. Although this is a significant simplification
of the entire microstructure optimization process, the problem
size grows exponentially with the number of grains and is
therefore hard to solve with conventional computing methods.
We have demonstrated in Ref. [5] that QA leads to a remark-
able acceleration of the computations, therefore allowing for
large scale simulations.

The purpose of the the present paper is fourfold:
First, it describes the entire methodology in more detail

than in Ref. [5]. This includes in particular the derivation of
the coefficients of the underlying spin glass model through
a Fourier space representation of the elastic energy stored in
the microstructure (Sec. II). In this way, one obtains explicit
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expressions for the coefficients of the Ising model, as used
by the quantum annealer. This approach has the advantage
of delivering accurate expressions for the elastic interactions
between the grains. As we demonstrate explicitly in this paper,
this is a necessary condition for obtaining the correct equilib-
rium microstructures using QA (Sec. III D).

Second, we demonstrate the application to large systems
with up to several thousand grains, which is important for
generating representative volume elements of the entire mi-
crostructure and their response to external mechanical loads
(Sec. III A).

Third, we apply the general approach to the ceramic
solid electrolyte Li7La3Zr2O12 (LLZO), therefore going be-
yond the aforementioned shape memory alloys. LLZO has
a thermodynamically stable tetragonal phase with poor Li-
ion conductivity [42,43]. However, for battery applications
the highly conductive and at ambient temperatures unsta-
ble cubic phases [42,44] is desired. The cubic phase can
be stabilized via substitutions of different aliovalent ele-
ments like Al3+, Ta5+, and Ga3+ [43–45]. Several studies
investigated the resulting mechanical and structural prop-
erties of pure and substituted tetragonal and cubic phases
[46–48]. Here we investigate to which extent percolating,
highly conducting ion channels may form as a result from a
self-organization process driven by elastic coherency stresses
(Sec. III B).

Finally, we demonstrate how the approach can be extended
to incorporate also interfacial effects and discuss their influ-
ence on the microstructure selection (Sec. III C).

II. METHODS

A. Elastic energy in reciprocal space

In this section an expression for the elastic energy of the
system, based on the solution of the underlying elastic prob-
lem in reciprocal space, is presented. Although the use of
Fourier methods is beneficial and allows to obtain the quan-
tum annealer coefficients with sufficient accuracy, in principle
any other elastic solver can be used as well, as discussed
in Ref. [6]. For our specific application, we assume that the
eigenstrain is constant within each grain (and related to the
martensite variant), and that the grains are coherently con-
nected. This means on the level of continuum elasticity that at
the interfaces between adjacent grains not only the normal and
shear stresses are continuous (by force balance) but also the
displacements. For simplicity, we assume isotropic elasticity.
As external boundary cases we consider the two important
cases of either a vanishing mean stress in a periodic system or
a given mean strain 〈εαβ〉. Whereas the formalism works both
in two and three dimensions, we use for the applications below
specifically a two dimensional plane strain setup, i.e., the
displacement component vanishes, uz ≡ 0, and ux, uy depend
only on x and y. From the obtained expression of the elastic
energy we generate a formulation as Ising model, which can
then be implemented on the quantum annealer. As we assume
the elastic constants to be the same everywhere (homoge-
neous elasticity), the interactions between grains decompose

into pairwise terms [49], which is necessary for the annealer
formulation.

The starting point is the elastic energy for isotropic materi-
als

Eel =
∫

V

(
λ

2

(
εαα (r) − ε (0)

αα (r)
)2

+μ
(
εαβ (r) − ε

(0)
αβ (r)

)2
)

dr, (1)

with Lamé coefficient λ and shear modulus μ (we employ
Einstein’s sum convention). ε

(0)
αβ (r) is the position-dependent

eigenstrain, which is known for a given microstructure. Af-
ter solution of the elastic problem, the elastic energy of the
system reads in reciprocal space

Eel = V

2

∑
k �=0

[
σ̂

(0)∗
αβ (k)ε̂ (0)

αβ (k) − σ̂
(0)
αδ (k)kαGδβkγ σ̂

(0)∗
βγ (k)

]

+ λV

2

(〈εαα〉 − ε̂ (0)
αα (k = 0)

)2

+μV
(〈εαβ〉 − ε̂

(0)
αβ (k = 0)

)2
. (2)

For a derivation of this energy expression and explanation
of the involved terms we refer to the Appendix. In particu-
lar, the hat symbol (ˆ) denotes Fourier transformation with
reciprocal lattice vector k, and σ

(0)
αβ = λδαβε (0)

γ γ + 2με
(0)
αβ is

the eigenstress. The isotropic elastic Green tensor is defined
through its inverse, G−1

βδ = λkβkδ + μkαkαδβδ + μkβkδ . The
expression (2) holds for given average strain boundary con-
ditions [case (ii)]. For a stress free system [case (i)], where
the average stress vanishes, the last two terms vanish, as by
mechanical equilibrium conditions one obtains in particular
for the homogeneous strain 〈εαβ〉 = ε̂

(0)
αβ (k = 0).

B. Ising formulation

We assume the entire system to be decomposed into N
grains. At this point, we do not make assumptions about the
grain structure, so they can be, e.g., regular cuboids or random
structures, e.g., taken from electron backscatter diffraction
(EBSD) images or a Voronoi tesselation. In agreement with
the preceding analysis, the grains are assumed to be coherent
from the point of view of elasticity. The grains are enumerated
by n and characterized by an indicator function

θn(r) =
{

1 inside grain n,

0 otherwise, (3)

which satisfies the condition
∑

i θi(r) = 1. The eigenstrain
therefore reads

ε
(0)
αβ (r) =

N∑
n=1

θn(r)
K∑

k=1

(
sn,kε

(0,n,k)
αβ + ε

(0,n,0)
αβ

)

=
∑
n,k

sn,kε
(0,n,k)
αβ (r) +

∑
n

ε
(0,n,0)
αβ (r), (4)

where sn,k = ±1 are the spin values to distinguish the different
variants. We consider here a generalized case to describe
more than two variants, therefore extending the previous sim-
plification in Ref. [5] with only two variants with opposite
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eigenstrain. Therefore, an additional summation over K spins
per grain is needed, to encode up to 2K different variants,
see also [6]. (We note that running roman indices like k
enumerate spins and variants, which have to be distinguished
from reciprocal lattice vectors k, which are displayed in bold,
with components kα . Greek letters are used for spatial com-
ponents.) In many situations it is beneficial to consider also
an offset ε

(0,n,0)
αβ , as will be illustrated below in Sec. III B. We

note that the eigenstrain contributions can differ from grain to
grain, to capture different phases or grain orientations. From
the spatially constant eigenstrain contributions within each
grain in the first line of Eq. (4), in the second line a shorter
notation is defined using position dependent eigenstrain con-
tributions, which have a nonvanishing value only inside one
grain.

Similarly, we write for the Fourier transformation of ε
(0)
αβ (r)

ε̂
(0)
αβ (k) =

∑
n,k

sn,k ε̂
(0,n,k)
αβ (k) +

∑
n

ε̂
(0,n,0)
αβ (k). (5)

Consequently, the eigenstress field σ
(0)
αβ (r) [see Eq. (A15)] has

in reciprocal space the form

σ̂
(0)
αβ (k) = λδαβ ε̂ (0)

γ γ (k) + 2με̂
(0)
αβ (k)

=
∑
n,k

sn,k σ̂
(0,n,k)
αβ (k) +

∑
n

σ̂
(0,n,0)
αβ (k). (6)

By insertion into the energy expression (2) we obtain the Ising
formulation, which is necessary for the quantum annealer. We
use here the fixed strain case (ii) with the knowledge that it
differs from the free stress case (i) only by the k = 0 terms.
Therefore, we need to bring the energy to the form

Eel = E0 +
∑
i< j

Ji jsis j +
∑

i

hisi, (7)

where i and j are a shorthand notation for the combined grain
and variant index, e.g., i = (n, k). With this we get the final
elastic energy expression

Eel = V

2

⎧⎨
⎩

∑
k �=0

∑
n,m

(
σ̂

(0,n,0)∗
αβ (k)ε̂ (0,m,0)

αβ (k) − kαGγ βkδσ̂
(0,n,0)
αγ (k)σ̂ (0,m,0)∗

βδ (k)
) + λ

(
ε̄αα −

∑
n

ε̂ (0,n,0)
αα (k = 0)

)2

+ 2μ

(
ε̄αβ −

∑
n

ε̂
(0,n,0)
αβ (k = 0)

)2

+
∑
k �=0

∑
n,k

∑
m,v

[
σ̂

(0,n,k)∗
αβ (k)ε̂ (0,m,v)

αβ (k) − kαGγ βkδσ̂
(0,n,k)
αγ (k)σ̂ (0,m,v)∗

βδ (k)

+ λε̂ (0,n,k)
αα (k = 0)ε̂ (0,m,v)

αα (k = 0) + 2με̂
(0,n,k)
αβ (k = 0)ε̂ (0,m,v)

αβ (k = 0)
]
sn,ksm,v

+
∑
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∑
n,k

∑
m

[
σ̂
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αβ (k)ε̂ (0,m,0)

αβ (k) + σ̂
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αβ (k) − kαGγ βkδ

(
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αγ (k)σ̂ (0,m,0)∗
βδ (k) + σ̂ (0,m,0)

αγ (k)σ̂ (0,n,k)∗
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)

+2λ
(
ε̂ (0,n,k)
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ββ (k = 0) − ε̄ααε̂
(0,n,k)
ββ (k = 0)

) + 4μ
(
ε̂

(0,n,k)
αβ (k = 0)ε̂ (0,m,0)

αβ (k = 0) − ε̄αβ ε̂
(0,n,k)
αβ (k = 0)

)]
sn,k

⎫⎬
⎭,

(8)

where ε̄αβ is the given mean strain. This expression shows
explicitly that the elastic energy in a given microstructure
with homogeneous elasticity and coherent interfaces between
grains, variants or phases leads to an Ising representation,
and the values of the coefficients in Eq. (7) can be directly
determined.

C. Description of the underlying workflow

As explained above, we describe the material of interest to
be decomposed into “grains”, where each of them is entirely
in one of the “martensite” states, hence we can describe the
entire microstructure through a set of spin variables {si}. We
emphasize that the notation as grains does not necessarily
require them to be physical grains, but can also be considered
as numerical “discretization” unit and also different phases
instead of martensite variants can be considered. A simple
discretization in this sense is to use little equilateral cuboidal
elements, as illustrated for two dimensions in Fig. 1. How-
ever, also more complex discretizations are possible and will
be discussed in the following. In either way, the elastic energy
reduces to combinations of pairwaise interactions between
all grains, which follows from the Fourier representation (8)

above, which contains only terms up quadratic order in the
spin variables si; see also Ref. [49]. For the cuboidal dis-
cretization in the system with periodic boundary conditions,
the advantage is that for both the linear and quadratic Ising
coefficients in the representation (7) translation invariance can
be employed. This reduces the computational effort drasti-
cally, as only one “self energy” for an arbitrary grain has to
be computed, as well as the “interaction energy” of one grain
with all other grains. For all other grains, one obviously gets
the same values. The result of such a calculation is illustrated
as heat map in Fig. 2, where the color coding shows the
strength of the interaction, i.e., the magnitude of the Ising
coefficients Ji j for two grains enumerated by i and j. Here,
one of the grains is placed in the center of the system, and
the interaction energy with all grains is shown. Therefore,
the computational effort for calculating the Ising coefficients
scales as N , where N is the number of cuboidal grains. This
figure shows that besides the translational invariance, also
discrete symmetries may be employed, depending on the type
of transformation strain.

In contrast, an irregular discretization as in Fig. 3 requires
the computation of all interaction energies between all pairs
of grains, hence we have a scaling of the effort as N2. Such a
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FIG. 1. Two-dimensional discretization of the system using
cuboidal “grains.”

microstructure could, e.g., be imported from an EBSD
mapping of a material of interest. To mimic a realistic mi-
crostructure, also a Voronoi tesselation can be used. Here, we
use the open source software library voro++ for this purpose
[50,51]. We mention in passing that although we use isotropic
elasticity, still the eigenstrain can depend on grain orientation.
Therefore, we can assign a (random) orientation to each grain

FIG. 2. Each grain can be in the states si = ±1. Interaction ener-
gies of two grains of equal variant type (si = s j) in the case of a shear
eigenstrain, as described by Eq. (14), and vanishing average stress.
The interaction energy per length is given in units of λa3ε2

0 , and the
computations were done using a system size of Lx/a = Ly/a = 50
with a Poisson ratio of ν = 1/4.

in the stage of the Voronoi tesselation, which can then be used
for a tensor rotation of the eigenstrain.

For the computation of the Ising coefficients, the derived
formula (8) can be used directly. Alternatively, it can be easier
to use the strategy described in Ref. [6]. The idea is that one
uses explicit settings of the spins by assigning to them values
0 and 1. Then, it is sufficient to perform calculations with (i)
all spins being equal to zero, (ii) one single spin being equal
to ±1, whereas all other vanish, and (iii) for calculation of
the interaction energies Ji j additionally computations with two
nonvanishing spins si = s j = 1, whereas all other vanish, are
needed, see Refs. [5,6] for details.

Additionally, it makes sense to separate the terms with
k �= 0 from the one with k = 0, as the latter is related to
a given external strain. These latter terms can be calculated
analytically, which has the advantage that a change of the
external boundary conditions does not require a (numerically
expensive) recomputation of the Ising coefficients.

After calculation of the Ising coefficients Ji j and hi, the
problem is ready for implementation on a quantum annealer.
Due to the probabilistic nature of the quantum annealing pro-
cess also higher energy states are found, specially if close low
energy states are present. Therefore, a suitable number of rep-
etitions of the process is made and the solution with the lowest
detected energy is chosen. In the case that the Ising prob-
lems do not match the QPU’s architecture, so called chains,
i.e., subgraphs of coupled qubits, cover one problem variable
through the minor embedding [52,53]. In addition, for large
problem sizes hybrid quantum annealing takes additional
advantage of combining QPU computations with classical
algorithms, allowing for up to 11616 spin variables on the
D-Wave Advantage system [52,54,55]. Finally, the resulting
spin configuration obtained by the quantum annealing process
is visualized according to the generated Voronoi grains.

III. RESULTS

In this section we discuss several aspects, applications and
extensions of the presented method. First, in Sec. III A we
show that even systems with a rather high number of grains
can be simulated efficiently with quantum annealing. The
second example in Sec. III B investigates possible self organi-
zation processes in solid electrolytes for battery applications.
In Sec. III C we illustrate how apart from volumetric effects
also interfacial energy contributions can be included. Finally,
in Sec. III D we emphasize the importance of high precision
elasticity calculations and the influence of possible real space
interaction cutoffs.

A. Large-scale simulation of equilibrium microstructures

In contrast to microstructure evolution simulation ap-
proaches, the present approach aims at determining directly
(constrained) equilibrium patterns. Here, the energy can be
minimized by properly selecting the variants (or phases) for
each grain, depending on the external mechanical load. We
show that for quantum annealing simulations with several
thousand grains are easily feasible. We note that the total
time for determining the ground state configurations for sim-
ulations with N = 2500 grains, as depicted in Fig. 3, do not
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FIG. 3. Equilibrium variant distribution in a microstructure with uniform grain orientation. The microstructures consist of 2500 coherent
grains, and a tensile strain is applied in horizontal (x) direction. Red (green) grains correspond to variant si = +1 (si = −1), as described
through the eigenstrain tensor (9). The tensile strain is (a) 〈εxx〉/ε0 = 0, (b) 〈εxx〉/ε0 = 0.165, (c) 〈εxx〉/ε0 = 0.495, (d) 〈εxx〉/ε0 = 0.66, (e)
〈εxx〉/ε0 = 0.825, (f) 〈εxx〉/ε0 = 0.99, (g) 〈εxx〉/ε0 = 1.155, (h) 〈εxx〉/ε0 = 1.305, and (i) 〈εxx〉/ε0 = 1.32. The Poisson ratio is ν = 1/4.

require more than roughly one minute on a D-Wave quantum
annealer if a hybrid solver is used (the system is too big for a
pure quantum annealer solution); in fact, the pure QPA access
time is significantly lower. However, one has to keep in mind
that the Ising coefficients need to be precomputed, and this
becomes then the computationally expensive part, as ∼N2

interactions need to be calculated with high precision.
In the presented case, we distinguish between two marten-

site variants, hence one spin variable per grain is required. The
eigenstrain is given as

ε
(0)
αβ = si

⎛
⎝ε0 0 0

0 −ε0 0
0 0 ε0

⎞
⎠ (9)

in each grain, relative to the austenitic phase, without consid-
eration of a grain rotation. The strength of the transformation
is controlled by the parameter ε0, and additionally a varying
tensile strain is applied in lateral (x) direction. Figure 3 shows
the resulting variant distribution of equally orientated grains
for different strain strengths. For a vanishing tensile strain,
stripe patterns arise, which are discussed in more detail in
Ref. [5]. For increasing strain, the stripes are getting thinner,

until they are not connecting anymore. A criticial strain of
about 〈εxx〉/ε0 ≈ 1.32 [see panel (i)] leads to a uniform mi-
crostructure, i.e., only red grains with si = +1 remain.

The result shows that even with a straightforward gener-
alization to 3D structures it is possible to have sufficiently
large number of grains in each spatial direction, and there-
fore the approach is well suited to generate strain dependent
microstructures for representative volume elements.

B. Solid electrolyte Li7La3Zr2O12 (LLZO)

Li7La3Zr2O12 (LLZO) is a promising ceramic material
which can be used as electrolyte in all-solid-state batteries.
It has a high-ionic conductivity and can be used with lithium
as anode material, hence allowing for a high-energy density
and stability against failure. However, the room temperature
equilibrium phase of LLZO is a tetragonal phase, which has
a much lower Li ion conductivity than the metastable cubic
phase. The latter can be stabilized by alloying, e.g., with Ta
at increased costs. Therefore, it is desirable to perform such
dopings only to a minimum amount. From a thermodynamic
perspective, the doping level determines the phase fractions of
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the cubic and tetragonal phases, but does not make predictions
for their spatial alignment, as the (bulk) chemistry depends
only on the overall volume fractions but not the arrangement.

In this section we aim to investigate to which extent elastic
effects, which arise due to the misfit between tetragonal and
cubic grains, can affect their equilibrium arrangement by min-
imization of the elastic energy. This may in the future enable
a “grain engineering” by enabling a self-organization process,
if “channels” of the cubic phase inside a tetragonal matrix
could lead to increased ionic conductivity through percola-
tion. To stay in the framework of the presented theoretical
approach, we make a number of simplifying assumptions to
keep the description simple and to rather sketch a possible
way for future optimized electrolyte fabrication. In detail,
the assumptions are: (i) We assume all grains to be equally
oriented. (ii) The grains are coherently connected and we use
the same (isotropic) elastic constants for both phases. (iii) We
consider for simplicity apart from the cubic phase (spin −1)
only one tetragonal variant (spin +1). (iv) The description is
two-dimensional with a plane strain setup.

Points (i) and (ii) are probably the most serious restrictions
of the current description, and therefore we expect the predic-
tions to be rather qualitative and setting an upper bound to the
possible influence of elastic effects. The assumptions (iii) and
(iv) are only technical simplifications, and a generalization to
a full three-dimensional description with more variants is in
the spirit of the general approach described above and mainly
increases the computational effort.

Concerning the description of the mechanical properties
of LLZO, we refer to the previous work [47,48,56]. The
lattice parameters for tetragonal LLZO, which is stable at
ambient temperature, are given as atet = 13.1846 Å and ctet =
12.6390 Å. In the desired cubic case the lattice parameter is
given as acub = 13.03286 Å. We employ the previous defini-
tion of the eigenstrain [Eq. (4)] with two variants, K = 1, and
N grains. Then, the resulting eigenstrain reads

ε
(0)
αβ (r) =

N∑
n

θn(r)
(
s(n)

1 ε
(0,n,1)
αβ + ε

(0,n,0)
αβ

)
, (10)

with eigenstrain tensor components ε
(0,n,1)
αβ and constant

eigenstrain offset ε
(0,n,0)
αβ . We use the cubic phase (s = −1)

as reference state, hence ε
(0)
αβ = 0 in such a grain, whereas in

a tetragonal grain we have

ε
(0)
αβ =

⎛
⎜⎝

atet−acub
acub

0 0
0 ctet−acub

acub
0

0 0 atet−acub
acub

⎞
⎟⎠

=
⎛
⎝0.011643 0 0

0 −0.030221 0
0 0 0.011643

⎞
⎠. (11)

These relations allow to uniquely determine ε
(0,n,1)
αβ and

ε
(0,n,0)
αβ . The elastic properties are—in isotropic

approximation—described to good accuracy with a Poisson
ratio ν = 1/4 as before.

Besides the mechanical component, which is responsible
for the spatial arrangement of the phases, also a chemical

component is important, as it fixes the volume fraction of
the phases. Such a perspective is based on the picture that
the chemical energy is higher than the elastic energy. How-
ever, in general also chemomechanical couplings can play a
role if both energy contributions are of a comparable order
of magnitude. In this case, it is also possible that strong
mechanical misfits affect the phase fractions, as a reduc-
tion of the elastic energy can be stronger than a deviation
from the equilibrium partitioning from a purely chemical
perspective. To qualitatively study such transitions, we add
a description of the chemical contribution to the free energy
and treat the coefficients in this energy term as adjustable
parameters.

To lowest order, a deviation of the chemical free energy
from a situation with equilibrium phase fractions is quadratic
in the volume fraction deviation. Hence, this energy contribu-
tion can be written as

�E = V γ

(
N∑

i=1

fisi − f

)2

= 2V γ

N∑
i< j

fi f jsis j − 2V γ f
N∑
i

fisi + const. (12)

Here, f is a parameter quantifying the expected equilibrium
volume fraction of the two phases, which is controlled by
the alloying, as described above. It ranges between −1 for
a purely cubic and +1 for a tetragonal system. Therefore,
in particular f = 0 corresponds to equal volume fractions
of the two phases. The parameter fi is the volume fraction
of grain i, hence

∑N
i fi = 1 holds. Finally, γ controls the

strength of the chemical energy contribution. It relates the
curvature of the composition dependent chemical free energy
curves to the elastic contribution, and can therefore be used
to tune between a chemically and a mechanically dominated
system. As the chemical energy expression (12) is quadratic
in the spin variable si, it can directly be implemented on the
quantum annealer, together with the elastic contribution. The
quantum annealing calculations are then performed via hybrid
computations, which allow to reliably find the ground state
even for larger systems.

Figure 4 shows the resulting equilibrium variant distribu-
tion. In all panels the same Voronoi tesselated microstructure
with 100 grains is used. Furthermore, all grains have the
same orientation, hence the same eigenstrain (11) is used
for all of them. As mechanical boundary conditions we use
vanishing average strain, 〈εαβ〉 = 0. In horizontal direction the
weighting parameter γ and in vertical direction phase fraction
parameter f is varied. Here, green (red) grains correspond to
the cubic (tetragonal) phase. The patterns in Figs. 4(a)– 4(d)
consist only of the cubic grains due the choice f = −1 in
the chemical energy. We note that in this state the system is
stress free due to the chosen mechanical boundary condition
〈εαβ〉 = 0. All pictures in the right column [Figs. 4(d), 4(h),
4(l), and 4(p)] correspond to γ = 0, which means that the
chemical energy contribution is absent. As then the energy
consists only of the elastic contribution, the system becomes
completely cubic in this case due to the chosen reference
of vanishing eigenstrain in the cubic phase. In contrast, the
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FIG. 4. Equilibrium phase distribution of tetragonal and cubic phases in LLZO for grains with uniform orientation. The microstructures
consist of 100 grains and the parameters γ and f are varied. Red grains correspond to si = +1, i.e., the tetragonal phase, green to si = −1,
which is the cubic phase.

chemical energy dominates for the cases in the left column
[Figs. 4(a), 4(e), 4(i), and 4(m)], and then the volume frac-
tions are close to the expected value f from the chemical
perspective. Nevertheless, the elastic contribution is still suf-
ficient to favor an ordering as inclined stripes similar to the
above situation in Fig. 3, with an orientation as expected from
the analysis in Ref. [5]. Also, a small cubic island remains
even in the case f = 1 in Figs. 4(m). In the bottom row, the
chemical contribution favors purely tetragonal systems ( f =
1), whereas the elastic energy favors the cubic state due the
the mechanical boundary conditions. In this extreme case the
volume fractions are then strongly controlled by the weighting
parameter γ /μ. For intermediate values, where two-phase
structures are found, the strip patterns are are more rugged
in comparison to the patterns in Fig. 3, which is mainly due
to the smaller number of grains. For all other cases, as, e.g.,
for the row f = 0, where from a chemical perspective equal
volume fractions of the phases are expected, the overall energy
minimization including elastic contributions lead to deviations
from this expectation, hence highlighting the aforementioned
strong chemomechanical coupling.

As a consequence we observe indeed a tendency for the
formation of ion conducting channels through the presence of
elastic effects for suitable mechanical boundary conditions.
However, it has to be pronounced that here all grains are
assumed to have the same orientation, and therefore also the
tetragonal distortion leads to an expansion in both x and z
direction. As long as the orientation remains in this plane by a
grain rotation, the eigenstrain tensor (11) remains invariant,
hence favoring such a self-organization process toward an
increased ionic conductivity of the solid electrolyte.

C. Interfacial energy

So far, we have considered with the elastic and chemical
contributions only bulk energies. As a consequence, there is
no selection of a length scale. In other words, a rescaling of
the pattern (including a change of the grain size) will lead to
identical patterns, and only the total energy changes according
to its proportionality to the system volume.

The inclusion of interfacial contributions therefore leads to
new physical effects, as—depending on the length scale—the
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FIG. 5. Equilibrated microstructures for zero average strain and
shear transformations with vanishing and negative interfacial energy
in a system of 50 × 50 cuboidal grains. Left: σ/με2

0 a = 0, right:
σ/με2

0 a = −1. The length is measured in multiples of the lattice unit
a, the Poisson ratio is ν = 1/4.

bulk and interface energies can compete. In fact, with the
interfacial energy density (per area) σ , the ratio σ/μ sets a
characteristic length scale. For a positive value of σ we expect
a coarsening tendency of the microstructure, and hence in
equilibrium the amount of interfaces shall be minimized in
particular if the interfacial energy dominates.

To formulate an interfacial energy (per unit length in 2D)
in the spirit of an Ising model for the quantum annealer, we
use a nearest-neighbor interaction, which penalizes interfaces
between different variants, using

Einterface = 1

2

∑
i, j(NN)

ai j σ̃i j (1 − sis j ), (13)

where ai j is the interface length between grain i and j and σ̃i j

is the interfacial energy for this pairs of grains. The formu-
lation (13) is for general anisotropic interface energies, and
for demonstrational purposes we focus here on the isotropic
case with σ̃i j ≡ σ for all interfaces. The summation in this
formula is limited to nearest-neighbor (NN) pairs, but also
generalizations to longer ranged interactions are conceivable
to mimic additional interactions.

As a simple illustration we use first the case of a shear
transformation with eigenstrain

ε
(0)
αβ = si

⎛
⎝ 0 ε0 0

ε0 0 0
0 0 0

⎞
⎠, (14)

which was conceptually discussed from point of view of elas-
tic effects in Ref. [5]. If we use a discretization by equally
sized cubes (hence, all ai j = a) without interfacial effects,
σ = 0, then the equilibrium pattern for fixed and vanishing
average strain boundary conditions, 〈εαβ〉 = 0, are horizontal
or vertical stripes with equal volume fractions of the two vari-
ants, hence the microstructure is effectively one-dimensional.
In this case, the entire pattern is stress free, as in each lamella
εαβ = ε

(0)
αβ . Consequently, an arbitrary arrangement of stripes

with equal amounts of the red and green phases minimizes the
elastic energy to zero; see left panel of Fig. 5. Consequently,
the selection among all the possible stripe patterns becomes
entirely through the interfacial energy for σ �= 0. Thus, for
σ > 0 the system minimizes the total energy by having a
stripe pattern with as few interfaces as possible. With the

FIG. 6. Top row: Equilibrated microstructures for zero average
strain and tetragonal transformations with different values of posi-
tive interfacial energy in a system of 50 × 50 cuboidal grains. Left:
σ/με2

0 a = 1, right: σ/με2
0 a = 9. Bottom row: The same for negative

interfacial energy: Left: σ/με2
0 a = −0.06, right: σ/με2

0 a = −0.07.
The length is measured in multiples of the lattice unit a, the Poisson
ratio is ν = 1/4.

condition 〈εαβ〉 = 0 we therefore obtain two equally sized red
and green stripes, provided that the interfacial energy is not
too high that even a strained single phase pattern is favorable.
In turn, for a negative interfacial energy σ < 0 the optimal
microstructure consists of a regular array of lamellae with
minimum width a; see right panel in Fig. 5.

For a tetragonal eigenstrain, see Eq. (9), patterns with
regular inclined stripes for 〈εαβ〉 = 0 similar to Figs. 3 and
4 appear without interfacial energy. For a positive interfa-
cial energy σ > 0, an increasing value of σ first leads to a
reduction of the number of stripes as well as a rotation of
the stripes to comply with the periodic boundary conditions
(see top row of Fig. 6). A higher value of the interfacial
energy destroys this morphology and leads to patterns with
unequal amounts of the variants, as the interfacial energy
overweights the elastic effects, though the latter alone would
favor configurations where the mean eigenstrain vanishes due
to the boundary condition. In a narrow intermediate param-
eter range, the appearing pattern contains a nucleus of one
variant inside a matrix of the other one (see top right panel
of Fig. 6). The elastic energy stabilizes the nucleus for the
same argument as just above, whereas the interfacial energy
balances this contribution and favors the disappearance of the
nucleus. For even higher values of σ the system becomes
single phased due to the dominance of the interfacial energy.
For negative interfacial energy, patterns with more interfaces
become favorable (see bottom row of Fig. 6). Initially, this
leads to an increase of the stripe density and change of the
orientation angle with decreasing interfacial energy, which
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then start to become unstable up to the point where the lamel-
lar microstructure is entirely destroyed. This transition occurs
within a very narrow range of interfacial energies.

D. Discussion on the elastic energy calculation

The key element of the quantum-annealer-based deter-
mination of the elastic ground state microstructure is the
formulation via pairwise interactions in the Ising formulation.
An example for the interaction coefficients Ji j is shown in
Fig. 2. This heatmap shows that the interactions with the
closest neighbors is highest and decays with the distance be-
tween the grains. Depending on the dimension of the system,
the elastic interactions decay asymptotically either as 1/r2

in 2 dimensions or 1/r3 in 3D. There are similarities to the
computations of long ranged Coulomb interactions, e.g., for
molecular dynamics simulations, which require the use of
Ewald summation techniques to properly capture the long
range tails of the interactions in periodic systems. Therefore,
also here the use of a real space cutoff for the elastic grain-
grain interactions is critical, although the interactions seem to
decay quickly.

To emphasize this effect, we consider again the shear trans-
formation case (14), which leads to stripe patterns; see Fig. 5.
As mentioned before, this example can be solved analytically
easily, as having a vanishing stress in each stripe by εαβ = ε

(0)
αβ

leads to a completely stress free case, which is compatible
with both the boundary conditions 〈σαβ〉 = 0 and 〈εαβ〉 = 0,
provided that the volume fractions of the two variants is equal.
However, from the picture of pairwise interactions in the Ising
representation this solution is not obvious. As all the Ising
coefficients are different from zero, it is an almost miraculous
cancellation of all N (N − 1)/2 mutual interactions, such that
the total elastic energy is exactly zero (apart from a constant
offset, which is typically not considered for the annealer for-
mulation). If now the range of the interactions is artificially cut
off, then it cannot be expected that the elastic energy agrees
with the analytical calculation.

To illustrate this effect, we set up a regular stripe mi-
crostructure manually in a system discretized by 50 × 50
cuboidal grains with a given lamella thickness λ. Additionally,
we impose an artificial cutoff to the range of the interactions
by setting Ji j = 0 beyond a given separation of the consid-
ered grains. Figure 7 shows the resulting elastic energy, as
computed from the truncated Ising summation for different
stripe thicknesses λ. In all cases we see that the expected
energy E = 0 is only reached without a cutoff (in the periodic
system, this is achieved if the range of the interaction is taken
at least half the system length, which is 25 in the example).
With the cutoff, the energy is obtained incorrectly, and then
also the quantum annealer is obviously not able to find the
physically correct ground state configuration. Qualitatively,
the energy is close to the expected value, if the cutoff range
is significantly larger than the stripe thickness λ, but as in
general the equilibrium microstructure can only be obtained
based on exact Ising coefficients, we can therefore conclude
that the use of any cutoff for the elastic interaction energy
calculation is not appropriate.

Apart from the issue of a real space cutoff, also possi-
ble numerical rounding errors have to be considered. As the
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FIG. 7. Total elastic energy as expressed through the Ising sum-
mation for a regular lamellar structure with strip width λ as function
of the real space interaction cutoff. The correct elastic energy Etot =
0 is reached only without cutoff, i.e., larger than half of the system
size, which is 25 here. For the case with noise, an uncorrelated
random variable with uniform distribution, vanishing mean value and
maximum magnitude of 2% of the strongest grain-grain interaction in
[100] interactions is added to all interaction parameters Ji j up to the
cutoff distance, leading to an inappropriate total energy even without
cutoff.

elastic energy is represented through a summation over ∼N2

terms, even small errors can lead in total to improper results.
For the shear transformation example, the grain-grain inter-
action at a distance of 20 lattice units in [100] direction has
decayed to about 2% of the maximum interaction strength at
next-to-nearest-neighbor interactions (see Fig. 2). To illustrate
the potential influence of numerical inaccuracies, a random
noise of this strength is added artificially to all considered
pair interaction coefficients, leading to modified total ener-
gies, which do not converge to the analytical result without
cutoff anymore; see Fig. 7. Therefore, the comparison to an
analytically known solution like the stripe patterns can help to
identify possible rounding errors.

In many cases, the ground state configuration is unique,
but for example for the shear transformation with the irregular
“barcode” patterns as in Fig. 5, the ground state is strongly
degenerate. Therefore, the Ising coefficients need to computed
with very high accuracy in order not to introduce spurious
biases. We indeed obtain for high resolution Fourier trans-
formation computed interaction coefficients always different
patterns by the quantum annealer, which is an indication for
proper representation of the elastic energy through the Ising
summation. In essence, a precise calculation of the interaction
energy is therefore essential, and rough estimated, e.g., based
on the proper long distance asymptotics, not sufficient.

IV. CONCLUSION AND OUTLOOK

The present paper’s central result is the extended descrip-
tion and investigation of the underlying elastic calculations
of the microstructure optimization via quantum annealing.
We describe the underlying calculations of long-ranged elas-
tic interactions in reciprocal space and show the resulting
direct Ising formulation for the quantum annealer. Large
scale simulations of equilibrium microstructures with 2500
grains and varying tensile strain result in the expected stripe
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patterns, which are getting thinner for increasing strain. Here,
the quantum annealing part requires just roughly one minute
of computing time and presents no drastically increase with
increasing system sizes. This shows that also a generaliza-
tion to 3D structures with huge system sizes and therefore
the generation of microstructures with representative volume
elements is possible.

The application of the quantum annealing microstructure
equilibration to the solid electrolyte LLZO includes a
chemical energy component, which competes with the
elastic energy and influences the resulting microstructures. In
essence, the elastic effects favor a formation of ion conducting
channels through a self-organization process for suitable
mechanical boundary conditions. We note that these findings
are based on a number of simplifying assumptions, but future
investigations may extend the model’s complexity toward an
optimization of solid electrolytes. Therefore, this application
is a promising step toward quantum-computing-based
material design.

Further extensions include interfacial contributions to in-
vestigate the competition between bulk and interface energies
and their influence on the microstructure formation.

The truncation of the elastic interaction range through a
real space cutoff is tempting, however, we show that this is not
useful due to an artificial scale selection, which results in im-
proper microstructure predictions. Therefore, all interactions
between the grains have to be taken into account with high
accuracy. Fortunately, this is possible on the quantum annealer
without great losses in computing time also for large system
sizes.
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APPENDIX: DERIVATION
OF THE ELASTIC ENERGY

In this Appendix we determine the elastic equilibrium state
for a given eigenstrain distribution and express the elastic
energy for this equilibrated state in reciprocal space.

Generally, the Fourier transformation of a (real) function
f (r) is denoted as

f̂ = 1

V

∫
V

f (r) exp(ikr) dr, (A1)

inside a periodic cuboidal system with volume V = Lx × Ly ×
Lz. Then, the back transformation reads

f (r) =
∑

k

f̂ (k) exp(−ikr), (A2)

using the reciprocal lattice vectors

k = 2π

(
nx

Lx
,

ny

Ly
,

nz

Lz

)
, ni ∈ Z. (A3)

The orthogonality between the base functions is expressed
through Parseval’s theorem, which holds for arbitrary func-
tions f1(r), f2(r) and their Fourier transforms f̂1(k), f̂2(k),

1

V

∫
V

f1(r) f2(r) dr =
∑

k

f̂1(k) f̂ ∗
2 (k), (A4)

where the star denotes complex conjugation. For numerical
implementations, Fast Fourier libraries like FFTW can be
used [58].

The strain can be split into a homogeneous (macroscopic
shape deformation) and heterogeneous part [59]

εαβ (r) = ε̄αβ + δεαβ (r). (A5)

The homogeneous strain ε̄αβ is then defined such that the
mean value of the fluctuation part vanishes,

〈δεαβ (r)〉 = 1

V

∫
V

δεαβ (r) dV = 0. (A6)

Similarly, we split the elastic energy into a contribution E1

which does not contain the fluctuations δεαβ and the remain-
ing part E2,

E1 =
∫

V

(
λ

2

(
ε̄αα − ε (0)

αα (r)
)2 + μ

(
ε̄αβ − ε

(0)
αβ (r)

)2
)

dr (A7)

and

E2 =
∫

V

(
λ

2

(
δε2

αα (r) − 2ε (0)
αα (r)δεββ (r)

)

+μ
(
δε2

αβ (r) − 2ε
(0)
αβ (r)δεαβ (r)

))
dr, (A8)

hence Eel = E1 + E2.
Elastic equilibrium can be expressed through the min-

imization of the energy. Since E1 and E2 are functionals
of independent degrees of freedom, the minimzation of Eel

requires the separate minimization of E1 and E2. Here, we dis-
tinguish between two cases, namely (i) vanishing mean stress,
〈σαβ〉 = 0, and (ii) given average mean strain, 〈εαβ〉 = ε̄αβ .

In case (i) the elastic energy is minimized with respect to
the (total) displacement components as degrees of freedom.
This includes the minimization of E1 with respect to the ho-
mogeneous strain contributions ε̄αβ ,

∂E1

∂ε̄αβ

=
∫

V

[
λδαβ

(
ε̄γ γ − ε (0)

γ γ (r)
) + 2μ

(
ε̄αβ − ε

(0)
αβ (r)

)]
dr

= 0. (A9)

By definition the mean stress is given in the isotropic case as

σ̄αβ = 〈σαβ (r)〉
= λδαβ

(
ε̄γ γ − 〈

ε (0)
γ γ (r)

〉) + 2μ
(
ε̄αβ − 〈ε (0)

αβ (r)〉),
(A10)

and therefore the minimization condition (A9) can be read as

〈σαβ (r)〉 = 0, (A11)
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which is in agreement with the desired boundary condition of
vanishing mean stress, hence

ε̄αβ = 〈
ε

(0)
αβ (r)

〉 = ε̂
(0)
αβ (k = 0). (A12)

For the minimization of E2 we represent the strain variation
δεαβ through the displacement field uα ,

δεαβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
, (A13)

as the minimization has to be done with respect to uα as
independent degrees of freedom. Furthermore, we introduce
the stress fluctuation

δσαβ (r) = λδαβδεγ γ (r) + 2μδεαβ (r) (A14)

and the eigenstress

σ
(0)
αβ = λδαβε (0)

γ γ + 2με
(0)
αβ (A15)

as abbreviations. Then, the energy E2 is minimized with re-
spect to uα ,

δE2

δuα

= − ∂

∂xβ

(
δσαβ (r) − σ

(0)
αβ (r)

) = 0, (A16)

which is the expected stress balance. In reciprocal space this
relation reads

G−1
αβ ûβ = −ikβ σ̂

(0)
βα , (A17)

with the inverse isotropic Green tensor

G−1
βδ = λkβkδ + μkαkαδβδ + μkβkδ. (A18)

By inversion we therefore get the solution (for k �= 0)

ûα = −iGαγ kβ σ̂
(0)
βγ . (A19)

For a two-dimensional plane strain setup we get explicitly for
this tensor

G2D = 1

μ(λ + 2μ)k4

×
(

(λ + μ)k2
y + μk2 −(λ + μ)kxky

−(λ + μ)kxky (λ + μ)k2
x + μk2

)
, (A20)

with k = (kx, ky) and k = |k|. Inserting the (general) solution
into the energy expressions gives in reciprocal space by using

Parseval’s theorem (A4)

E1 = λV

2

∑
k �=0

ε̂ (0)
αα (k)ε̂ (0)∗

ββ (k) + μV
∑
k �=0

ε̂
(0)
αβ (k)ε̂ (0)∗

αβ (k)

(A21)

and

E2 = λV

2

∑
k �=0

δε̂αα (k)δε̂∗
ββ (k) − λV

∑
k �=0

ε̂ (0)∗
αα (k)δε̂ββ (k)

+μV
∑
k �=0

δε̂αβ (k)δε̂∗
αβ (k)

−2μV
∑
k �=0

ε̂
(0)∗
αβ (k)δε̂αβ (k), (A22)

using

δε̂αβ = 1
2 (ikα ûβ + ikβ ûα ). (A23)

The total elastic energy expression can then be further simpli-
fied to

Eel = V

2

∑
k �=0

[
σ̂

(0)∗
αβ (k)ε̂ (0)

αβ (k) − σ̂ (0)
αγ (k)kαGγ βkδσ̂

(0)∗
βδ (k)

]
.

(A24)

For case (ii), i.e., given mean strain conditions, ε̄αβ is not
a degree of freedom, and therefore the variation of E1 is not
needed. Then we get for E1

E1 = λV

2

∑
k �=0

ε̂ (0)
αα (k)ε̂ (0)∗

ββ (k) + μV
∑
k �=0

ε̂
(0)
αβ (k)ε̂ (0)∗

αβ (k)

+ λV

2

(
ε̄αα − ε̂ (0)

αα (k = 0)
)2

+μV
(
ε̄αβ − ε̂

(0)
αβ (k = 0)

)2
, (A25)

whereas E2 remains unaffected. Finally, we therefore get for
the total elastic energy

Eel = V

2

∑
k �=0

[
σ̂

(0)∗
αβ (k)ε̂ (0)

αβ (k) − σ̂ (0)
αγ (k)kαGγ βkδσ̂

(0)∗
βδ (k)

]

+ λV

2

(
ε̄αα − ε̂ (0)

αα (k = 0)
)2

+μV
(
ε̄αβ − ε̂

(0)
αβ (k = 0)

)2
, (A26)

which differs from case (i) only by the homogeneous contri-
bution. Obviously, the earlier case follows from the average
strain relaxation with ε̂

(0)
αβ (k = 0) = ε̄αβ , in agreement with

the conditions (A11) and (A12).
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Efficient low temperature Monte 
Carlo sampling using quantum 
annealing
Roland Sandt 1* & Robert Spatschek 1,2

Quantum annealing is an efficient technology to determine ground state configurations of discrete 
binary optimization problems, described through Ising Hamiltonians. Here we show that—at very low 
computational cost—finite temperature properties can be calculated. The approach is most efficient at 
low temperatures, where conventional approaches like Metropolis Monte Carlo sampling suffer from 
high rejection rates and therefore large statistical noise. To demonstrate the general approach, we 
apply it to spin glasses and Ising chains.

The recent advent of quantum annealing (QA) is an important step towards the development of quantum com-
puting in the future, which will significantly boost also statistical physics and materials science modeling. In 
general, QA, as implemented by the company D-Wave, allows to find efficiently ground state configurations of 
discrete optimization problems, with many possible applications in academia and industry1–5. There are many 
problem types to which QA has been applied, like the demonstration of scaling or algorithmic advantages for 
QA in specific problem classes6–8. So far, applications of QA in the field of materials science are still rare, and 
among them are the determination of equilibrium microstructures with long-range elastic interactions9, phase 
transitions in the transverse field Ising model10, the investigation of energy states of frustrated magnetic systems 
via the Shastry-Sutherland model11 and the designing of metamaterials12. Another example is the combined use 
of quantum annealers and Boltzmann machines to sample spin glasses and to predict molecular dynamics data 
of a MoS2 layer13.

The concept of QA is to initialize the system’s Hamiltonian at cryogenic temperatures in a well defined 
ground state, and then to smoothly convert the energy landscape such that it represents the desired optimization 
problem14,15. If this adiabatic transformation is performed carefully, the system ends up in the ground state of 
the destination Hamiltonian. An explicit finite temperature modeling of this transition has been performed for 
the Sherrington-Kirkpatrick spin glass model, see16,17 and references therein. However, apart from the stochastic 
nature of the approach itself, the preparation, transformation and readout process are not perfectly adiabatic, 
noise-free and decoupled from the environment, hence frequently states with higher energy are found, especially 
for Hamiltonians with small energy gaps. For a typical QA experiment, multiple repetitions and reads are used to 
determine the true ground state. In this paper we demonstrate that this deficit of the technology can actually be 
turned into a virtue, as it allows to determine finite temperature thermodynamic properties extremely efficiently. 
Related to that, the concept of using QA as (noisy) Gibbs sampler has been discussed recently18,19, but it turns 
out that a tuning of the temperature for performing quantitative simulations is challenging. Moreover, it has 
been shown that at least for some machine architectures degenerate ground states are sampled unequally with an 
exponential bias, contrary to the thermodynamic equilibrium concept that equal energy states should be visited 
with the same probability in the canonical ensemble, therefore demanding special attention20–24.

From a materials science perspective, the ground state configuration at temperature T = 0K is often only of 
limited interest for many practical applications. For example, for a ferromagnet, all spins are aligned in the ground 
state, whereas for finite temperatures thermal fluctuations lead to finite correlation lengths, phase transitions and 
temperature dependent magnetizations. A conventional approach for a statistical modeling of such properties is 
to use Monte Carlo (MC) sampling techniques, as an explicit computation of the partition function is typically 
not feasible due to the vast size of the phase space. The probably most prominent approach for such computations 
is the generation of discrete Markov chains using Metropolis transition probabilities, which generate a sequence 
of configurations which obey Boltzmann statistics, and therefore allow to express the ensemble average through 
the easier calculation of time averages along these Markov chains25,26. In practise, a transition from one state to 
another is taking place with probabilities depending on the energy difference �E between two configurations 
according to a Boltzmann distribution p ∼ exp(−β�E) with β = 1/kT with the Boltzmann constant k. Usually, 
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such approaches are inefficient at low temperatures, as then the rejection rate for new configurations is very high, 
and hence an insufficient sampling of the phase space is achieved with trapping in local minima, resulting in 
noisy predictions of the desired thermodynamic properties. Another important sampling strategy was developed 
by Wang and Landau, using a non-Markovian algorithm to extract the density of states via a flat histogram tech-
nique, from which all desired thermodynamic properties can be calculated27. Besides these major techniques, 
Dall et al. developed an algorithm to sample the Boltzmann distribution fast at low temperatures. However, this 
algorithm is most suitable for systems with short range interactions28. Another possibility for the fair sampling 
of ground and degenerate states is the introduction of parallel tempering with isoenergetic cluster updates in 
Monte Carlo methods29 or the combination with simulated annealing on a quantum annealer30,31. We mention 
that Boltzmann machines, which can serve as a link between machine learning and statistical thermodynamics32, 
are investigated in the context of QA33–36 from a computer science perspective, but to the best of our knowledge, 
the direct application of QA for classical finite temperature modeling for statistical physics and materials science 
has not yet been accomplished and is the subject of the present paper.

Results
Spin glass.  The key feature of the quantum annealer is that it finds preferentially configurations which are 
close to the global energy minimum of the phase space. As a first illustration how to determine the low tempera-
ture thermodynamics from these configurations, we use a spin glass37,38 with random couplings, which is given 
by the Hamiltonian

with N = 20 spins si = ±1 and random values for the coupling constants, Jij , hi ∈ [−Jmax, Jmax] , Jmax = 1/2 . 
As the matrix Jij is fully populated, the model also includes long-range interactions. We point out that due to 
the random couplings, the energy landscape of the spin glass contains many states with nearby energy values 
without degeneracy, which avoids the issue of potentially unfair sampling of isoenergetic states. An example from 
materials science for such a spin glass are misfitting coherent grains in a polycrystalline solid, where the coupling 
constants result from elastic long-range interactions and external forces9. We repeat the quantum annealing read 
out process 10,000 times to get an estimate of the distribution of identified states, as due to the above mentioned 
reasons also higher energy states are found in practise. Therefore, we obtain a (sub-)set of states S = {xi} , and 
each configuration consists of the value of spin variables, xi = (s

(i)
1 , . . . , s

(i)
N ) , for which the resulting probability 

distribution is illustrated in the inset of Fig. 1a.
The distribution of the states depends to good approximation only on the energy of the individual configura-

tions and follows (roughly) a Boltzmann distribution (with different effective temperatures), as has been dis-
cussed in the literature18,19, although it should be noted that quantum fluctuations can lead to deviations from the 
purely thermal probability distribution39. For the following steps it is important to mention that the explicit form 
of the distribution is not critical, and we only exploit the fact that states with low energies are found preferentially.

Additionally, a rescaling of the Hamiltonian H → aH by a factor 0 < a < 1 allows to sample regions of 
the phase space with higher energy (see inset in Fig. 1a), requiring to switch off the automatic rescaling of the 
coupling constants by the D-Wave framework. The smaller a is chosen, the more high energy configurations are 
sampled. Explicitly, for the N = 20 spin glass with a configuration space of size 2N ≈ 106 , we use 10,000 reads, 

(1)H =
∑

i<j

Jijsisj +
∑

i

hisi

Figure 1.   Mean magnetization and probability distribution of a spin glas and sampling strategy. (a) The plot 
shows the temperature dependent magnetization of an N = 20 random coupling spin glass. The QA sampled 
values coincide with the theoretical results in the low temperature regime, whereas for elevated temperatures the 
energy rescaling factor a affects the quality of the results. The probability for getting a state x, which is estimated 
using 10,000 repetitions of the sampling, depends to good approximation only on its energy E(x) and follows 
essentially a Boltzmann distribution, as shown as inset. Different rescaling factors a > 0 shift the distributions 
to higher or lower energies. (b) Illustration of the different sampling strategies. The blue trajectory illustrates 
the Markov chain generated by the Metropolis algorithm to generate a Boltzmann probability distribution (red 
shading). Alternatively, the Wang-Landau approach constructs the density of states, from which thermodynamic 
properties can be predicted. In contrast, the QA approach identifies low energy configurations (green shading), 
which are taken as most representative fraction of the phase space for low temperature expectation values.
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which lead to around 300 (for a = 1.0 ) to 5,000 (for a = 0.25 ) distinct configurations in the subset S (the actual 
numbers fluctuate due to the non-deterministic behavior). We note that the concept of the rescaling of coupling 
constants has been previously used to effectively change the temperature of the distribution generated by the 
quantum annealer18,19, which is however not required here.

To obtain a numerical estimate of the canonical partition function using QA, we take the identified distinct 
low energy configuration set S and use the approximated canonical partition function

which obviously becomes more accurate for a better sampling of the low energy configurations. Notice that the 
desired (and given) inverse temperature β is typically not related to the effective one related to the probability 
distributions of the QA sampling. With the estimated Boltzmann probability pa(x) = exp(−βH(x))/Za of a state 
x we can obtain estimated expectation values of an observable A(x) according to

We emphasize that the set S is significantly smaller than the size 2N of the phase space, and therefore estimated 
values can be calculated efficiently also for large values of N, for which a direct computation of the partition 
function is no longer feasible. Furthermore, the same set is used for all temperatures, and therefore it is not neces-
sary to create new chains of configurations like for Metropolis sampling. In this sense, the proposed algorithm 
is comparable to multicanonical approaches employing Wang-Landau sampling. As S contains mainly the low 
energy configurations, we expect that the estimated expectation values get accurate for low temperatures, i.e. large 
values of the inverse temperature β = 1/kT.

This expectation is confirmed in Fig. 1a for the magnetization per spin, m = M/N = N−1�
∑N

i=1 si� . The 
results show that irrespective of the choice of the rescaling parameter a, the low temperature magnetization 
always coincides with the theoretical expectation, which is obtained from a brute force sampling of the partition 
function. Hence, a is here not used as a method to tune the effective temperature, as compared to the approaches 
mentioned above18,19. As discussed above, a smaller value of a leads to sampling of more excited states, and con-
sequently the better the agreement with the theoretical prediction also for higher temperatures. We emphasize 
that a single value of the parameter a is sufficient to determine the low temperature behavior accurately, and the 
dependence on the choice of this parameter is weak, which is beneficial for applications, as no careful tuning of 
this degree of freedom is required.

In essence, we can consider the (imperfect) quantum annealing process as a way to find a representative set 
of states in the phase space which contribute strongest to the partition function from statistical mechanics due 
to their high Boltzmann weight. These selected configurations are used to estimate thermodynamic properties. 
This strategy, compared to conventional Boltzmann sampling approaches, is illustrated in Fig. 1b. The simple 
and robust concept is to identify potentially relevant low energy states, with no weighting according to the prob-
ability of appearance during the readout process. Instead, the proper Boltzmann weighting is then done in the 
approximated calculation of expectation values and the partition function, using directly the desired temperature.

1D Ising model.  To investigate the performance of the approach also for larger systems, we consider the 1D 
Ising model, as in this case an analytical solution is known and allows also for comparisons in situations, where 
a brute force sampling of the phase space is no longer feasible. Moreover, the example differs from the previous 
one by having a sparse interaction matrix Jij and the existence of degenerate states. Therefore, these two cases 
cover a wide range of typical situations.

Explicitly, we use a one-dimensional Ising model with nearest neighbor ferromagnetic coupling to illustrate 
the calculation of thermodynamic properties using the set of states S sampled in analogy to the demonstration 
above. The model is described by the Hamiltonian ( J < 0)

with periodic boundary conditions ( sN+1 = s1 ), and has a simple analytical solution also for finite values of N, 
which serves as benchmark for the procedure. In fact, the canonical partition function is40

with the eigenvalues

from which e.g. the Helmholtz free energy F = −kT lnZ and the magnetization per spin m = M/N = (∂F/∂B)/N 
can be calculated.

Again, the comparison between the exact solution and the QA sampling shows an excellent agreement of the 
magnetization for low temperatures, as shown in Fig. 2 for N = 20 and N = 50 spin systems.

(2)Za =
∑

x∈S

exp(−βH(x)),

(3)�A� =
∑

x∈S

pa(x)A(x).

(4)H = J

N∑

k=1

sksk+1 + B

N∑

k=1

sk

(5)Z =
∑

states

exp(−βH) = �
N
+ + �

N
−

(6)�± = exp(−βJ)

[

cosh(βB)±

√

sinh2(βB)+ exp(4βJ)

]

,
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For low temperatures the quantum annealing sampling is indeed in perfect agreement with the exact solution, 
already even for a low number of sampled configurations, which are typically generated anyway for QA applica-
tions. For higher temperatures deviations are visible, and the estimated magnetization saturates at unphysical 
finite values. This is an expected result, as for high temperatures all states contribute to the partition function, and 
then the pre-selection advantage by the QA is lost. The deviations decrease with increasing number of samples 
and increase with higher numbers of spins.

It is known that slight asymmetries in the quantum annealer can lead to favoring of specific spin alignments, 
and therefore spin reversal transformations, which change signs of the coupling constants without changing 
the physical results (see "Methods" section), can be beneficial41. We indeed observe a better agreement with the 
theoretical prediction if this feature is used. Figure 3a shows the influence of different number of spin reversal 
transforms on resulting magnetization and computational demand.

An increasing number of transforms lead to better results, compared to the exact analytical solution at the 
expense of an increase of the needed annealing time. However, quantum annealing sampling needs only a frac-
tion of time compared to other algorithms, and therefore this increase will not be critical for many applications.

An additional analysis of the magnetic field term of the Ising Hamiltonian in Fig. 3b shows the expected 
alignment of spins for varying external magnetic field B. All curves show the expected low temperature agree-
ment with theory, depicted as dotted lines. Surprisingly, for low magnetic fields, where the asymmetry between 

Figure 2.   Magnetization of the 1D Ising model with periodic boundary conditions. The graphs show the 
magnetization per spin as function of temperature for (a) N = 20 and (b) N = 50 spin systems, comparing the 
exact analytical solution with the results from the quantum annealer. In the low temperature regime there is a 
perfect match, which becomes worse for higher values of kT/J. In the high temperature limit, where we expect 
the average magnetization to vanish, the annealer prediction saturates at finite values, as high energy states 
are not sampled properly. An increase of the number of annealing cycles leads to more accurate predictions, 
which is further enhanced by spin flip reversals. The parameters for coupling constants are B/J = 0.01 . Ten spin 
reversal transformations are considered for each sampling, while for 100, 000 samples in the N = 50 system 
1, 000 spin flip transformations are used. The shading illustrates the error bars of the calculations, as estimated 
from repeated simulations (see "Methods" section).

Figure 3.   Influence of different number of spin-reversal gauge transforms and varying magnetic fields. ( a) 
Different amounts of spin-reversal transformations (SRT) during the annealing change the sampling outcomes. 
For QA of the N=20 spin system with B/J = 0.01 and altogether 100 samples no, 10 and 100 SRT are used. 
A higher fraction of spin flips leads to more accurate predictions of the magnetization, as compared to the 
analytical solution (black curve). The inset shows the increasing computational demand of additional SRT. On 
the vertical axis, the measured QPU access time including corresponding overhead is shown as function of the 
number of spins in a logarithmic representation. ( b) Magnetization as function of temperature for different 
external magnetic fields B. The dotted lines show the exact analytical solution for the corresponding magnetic 
fields.
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spin up and down configurations is lower, and where usually thermodynamic sampling is most difficult, the best 
agreement between simulation and theoretical prediction is reached even for elevated temperatures.

The D-Wave frontend Leap also provides functionality to influence the transformation from the transverse to 
the desired Hamiltonian. Usually, the associated parameters can be used to obtain the true ground state in a more 
reliable way. In this spirit, also reverse annealing42 is useful for a successful ground state search and consequently 
to suppress the appearance of excited states. In general, a pause in the annealing process leads to a interrup-
tion of the quantum fluctuations induced by the transverse field and allows for thermal relaxations43. Here, we 
have checked whether these features can also be used to achieve the opposite goal of the usual improved global 
minimization, namely a better sampling of low energy states above the ground state. It turns out that a pause 
in the annealing procedure has only minor influence on the expectation value of the magnetization, whereas 
quenching improves the chance of finding low energy states. Therefore, we have modified the annealing schedule 
up to the maximum possible duration of 2000µ s, including a quench step. With such a customized annealing 
schedule, a better prediction of the magnetization at low temperatures is found already for just 100 samples in an 
N = 50 spin system, compared to the standard schedule. Therefore, a change of the annealing protocol can lead 
to additional improvements for the thermodynamic predictions, although typically the effect is less pronounced 
than the use of the spin reversal transformations mentioned above, and therefore the standard 20 µ s annealing 
schedule is used for all shown plots.

We compare the preceding QA results to conventional MC sampling using the Metropolis algorithm 
(see "Methods" section). For each temperature, a separate Markov chain is generated for the sampling. The 
comparison of both approaches is shown in Fig. 4 for the magnetization m and the heat capacity per spin, 
c = kβ2(�H2� − �H�2)/N.The generic and frequently used Metropolis MC approach suffers from low accept-
ance rates for proposed configurations at low temperatures, and therefore an accurate sampling in this regime is 
difficult. Exactly in this low temperature regime the quantum annealer approach plays its strength as it accesses 
directly the low energy configurations, which give the highest contribution to the partition function. The same set 
of generated configurations is used for all temperatures, like for multicanonical sampling techniques. We note that 
for the Monte Carlo sampling typically many more samples are necessary than for QA to get comparable results 
in the low temperature regime, and this number increases significantly for larger spin systems. Due to the focus 
on the QA approach, we refrain from further MC code optimization, Wang-Landau sampling and a comparison 
to other algorithms, which can perform well also for low temperatures. The presently suggested approach can 
become most relevant in situations, where QA is anyway used for identifying ground state configurations, as 
then at almost no additional computational cost also thermodynamic properties can be obtained. Altogether, 
we find that the different approaches complement each other very well, in particular since the QA approach is 
most suitable in the low temperature regime.

Discussion
Quantum annealing is an efficient approach to determine global minima of complex energy landscapes, which 
are described by Ising Hamiltonians or, equivalently, quadratic unconstrained binary optimization (QUBO) 
problems. Due to machine imperfections and the stochastic nature of quantum annealing, typically several repeti-
tions of the annealing process have to be performed, in order to find reliably the true ground state(s). Whereas 
for many applications the excited, higher energy states are ignored in the end, we have demonstrated here that 
they can be used for an efficient Monte Carlo Boltzmann sampling to obtain thermodynamic properties above 
absolute zero. These additional results are obtained essentially for free or at low computational cost, since in 

Figure 4.   Comparison to Metropolis Monte Carlo sampling. (a) Comparison of the analytical theory, 
Metropolis Monte Carlo sampling and quantum annealing sampling for the 1D Ising model with N = 20 spins 
and B/J = 0.01 . Whereas the Metropolis algorithm performs well in the high temperature regime, the results 
get noisy for low temperatures due to the high rejection rate of proposed states. Notice that the used 108 random 
trial configurations correspond to more than the 2N configurations of the phase space, while only 100 samples 
with 10 spin flip transformations are necessary for the quantum annealing sampling. The exact analytical 
solution is depicted as black solid line. The inset shows the magnification of the low temperature regime using 
a logarithmic representation of M/N + 1 . (b) Heat capacity per spin for the same parameter set as in panel (a). 
The plot compares the analytical solution (black curve) to the Metropolis MC sampling (grey curve) and QA 
predictions for different number of reads. The inset shows the magnification of the low temperature regime.
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the low temperature regime often only very few configurations with energies slightly above the ground state are 
required to predict the low temperature thermodynamics.

The shown simulations do not exhibit artifacts which could indicate an improper sampling of energeti-
cally equivalent states, although such configurations exist in particular in the considered Ising model already 
due to translation invariance. In principle, e.g. an exponential bias of degenerate ground or low energy state 
configurations20 could be expected to lead to inappropriate low temperature predictions, but the current results 
do not show such discrepancies. We believe that the robustness of the approach relies on the fact that it is suffi-
cient to identify each low energy configuration x once to be included into the set S, and therefore unfair sampling 
artifacts are screened if the number of reads is high enough. It is conceivable that for larger system sizes N such 
effects become more pronounced, and we observe that for sizes N ≈ 80 on the used machine (Advantage sys-
tem 4.1 with Pegasus topology) indeed more reads are required to obtain reliable results, and then the required 
computing time increases significantly. A good indication for such a need of more reads is that the identified low 
energy states have only a low number of realizations, as then the chances for missing relevant states is increased. 
In general, we note that the considered examples are not adjusted to the machine topology, and we therefore do 
not expect a strong machine type dependence of the prediction quality.

Let us briefly discuss limitations of the proposed sampling approach: First, the system sizes, which can be 
considered with QA, are currently limited due to the available machine sizes. However, the development of 
quantum annealing is still at its beginning and progressing fast, hence it can be expected that in the future faster 
and highly connected machines, especially with a higher number of accessible qubits, will be available, which 
will allow to study also models in higher dimensions with first and second order phase transitions also at finite 
temperatures. In the meantime, also the use of hybrid approaches44, which combine QA and classical minimiza-
tion methods, may turn out to be useful also for finite temperature sampling. Such approaches are in general 
already provided by D-Wave, but they currently require manual repeated sampling due to the lower efficiency 
compared to pure QA. Also, overriding the automatic coupling constant renormalization is not possible, as the 
focus of the approach is to find most efficiently the true ground state. Nevertheless, the use of hybrid methods 
allows to study significantly larger system sizes than with pure QA9.

The second limitation is that QA requires to express the problem in terms of an Ising or QUBO formulation. 
We emphasize that the 1D Ising model was mainly used here to have an exact solution for benchmarking the 
results. Nevertheless, the methodology is applicable also to other problems where thermal excitations can play 
a role, e.g. for (weak) coherency strains in microstructures with long range elastic interactions9. In general, the 
Ising or QUBO limitation can actually be less severe as it may appear. To illustrate this, let us consider a simple 
three state system, k = 1, 2, 3 with discrete states xk and energy levels Ek . This case can be represented through 
the Ising Hamiltonian H =

∑N
i<j Jijsisj +

∑N
i hisi with N = 2 spins. The three parameters J12 , h1 and h2 can be 

uniquely determined via a linear system of equations from the given energy values Ek by identifying the states 
xk with spin pair configurations (s1, s2) . As the Ising model leads to 2N configurations, there is one undesired 
state in this example, which can simply be omitted in the calculation of the thermodynamic properties. This way 
illustrates how the approach for obtaining low temperature data can be extended to general problems beyond 
the Ising or QUBO model.

Finally, it is not a priori clear up to which temperature the QA approach can deliver quantitative results. As 
demonstrated in this work, the use of more samples can improve the results, and a convergence study could be 
performed to extrapolate to the limit of infinite sample sizes. However, in practise such an approach will probably 
less useful, as it effectively leads to a sampling of the entire phase space, and then conventional approaches can be 
used more efficiently. Therefore, we believe that the QA sampling approach will be most useful to complement 
classical methods like Metropolis or Wang-Landau sampling, and will play its strengths in the low temperature 
limit at low computational overhead, where the other approaches are less suitable, in particular if anyway QA 
minimization is employed.

Methods
Quantum annealing.  Like general purpose quantum computers, quantum annealers use qubits to process 
and store information, physically realized via superconducting loops, which represents different spin states via 
clockwise or anticlockwise circulating currents45. The interaction of these superconducting loops with external 
flux biases allows the construction of an energy landscape, where energy difference and barrier height are con-
trolled via these fluxes45. At the start of the computation, the system is initialized in the ground state of a known 
Hamiltonian H0 ∼ −

∑
i σ

x
i  with Pauli matrices σi , i.e. a strong transverse magnetic field46,47. During the anneal-

ing process, the Hamiltonian is turned into the desired one based on an Ising model48 Hp =
∑

i hisi +
∑

i<j Jijsisj 
with spin states si = ±1 , bias hi and couplings Jij between spins si and sj , for which an energetic minimum is 
sought, min{si=±1} Hp.

The annealing process follows the time dependence49 H(s) = 1
2A(s)H0 + 1

2B(s)Hp with normalized anneal 
parameter s ∈ [0, 1] and annealing evolution functions A(s) and B(s). For s = 0 , A(0) ≫ B(0) , the initial, well 
known ground state is present, while for s = 1 , A(1) ≪ B(1) , the system is expressed through the desired problem 
Hamiltonian43. In a standard annealing schedule the annealing parameter increases linearly, where varying this 
curve via pauses and quenches leads to a freezing of the system at an intermediate point with excited energy 
states50. This allows the sampling of the quantum Boltzmann distribution and a comparison towards classical 
estimators shows performance advantages of the quantum annealer for increasing system sizes50. Also, reverse 
annealing is possible, where qubits are initialized in a classical state and local minima are then searched around 
this state51.

The Hamiltonians H0 and Hp do not commute48, and the time of the initial Hamiltonian to adopt the low 
energy state is sufficiently large to ensure the validity of the adiabatic theorem of quantum mechanics52, which 
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states that a system remains in its eigenstate, if changes occur adiabatically. Nevertheless, the machines are not 
perfect and do not always adopt the corresponding low energy state of the system. Therefore, also higher energy 
states are found, which differ from the ground state, especially if energetically close low energy states exist, a 
suitable number of repetitions is made and the annealing process is repeated according to a specified number 
of reads.

In our work the application of spin flip reversals is beneficial and improves the sampling further. This fea-
ture reflects that the machine is technically not absolutely invariant under an inversion of spins due to slight 
asymmetries. To overcome an artificial bias, the annealer can automatically transform the couplings according 
to hi → higi and Jij → Jijgigj with random gauges gi ∈ {−1,+1} , which leave the physical problem invariant.

We use the D-Wave framework Leap53, as it allows to directly formulate the problem in terms of an Ising 
Hamiltonian. The standard embedding composite EmbeddingComposite, which automatically minor-embeds54 a 
problem into a sampler, is used in this work. Depending on the problem size, the given number of reads (samples) 
is distributed over several backend calls due to time limits of individual calls.

All quantum annealing calculations are repeated n = 10 times to determine the standard deviation 
σ = ±

√

1
n−1

∑n
i=1(xi − x̄)2  , which is presented as shaded area in the plots. Here, n refers to the number of 

experiment repetitions, and for each of them, the given total number of reads is used.

Metropolis Monte Carlo.  Starting point of the Metropolis Monte Carlo sampling is the generation of ran-
dom spin configurations. In each iteration all spins are flipped and this new configuration is accepted, if the 
energy is lower than the previous one, i.e. �E < 0 . If the new energy is higher, the configuration is accepted with 
a probability given by the Boltzmann factor exp(−�E/kT) . For each configuration in particular the magnetiza-
tion M =

∑N
i=1 si is calculated and averaged along the generated trajectory. These calculations are repeated for 

each temperature.

Data availability
Data that was obtained during this project will be made available by the corresponding author upon request.
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