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Abstract: The use of machine learning has shown to benefit a wide range of applications, es-
pecially for classification tasks. As such, the detection of algorithmically generated domains to
identify corrupted machines has proven itself to be a mature use case with good classification
performance. The use of privacy and security sensitive data, however, raises concerns in scenarios
that require interaction with external parties. As one of such scenarios, we consider the training of
domain generation algorithm detection classifiers in a Machine-Learning-as-a-Service (MLaaS)
scenario. We evaluate the use of a Bloom encoding approach from the area of privacy-preserving
record linkage to prevent the MLaaS provider from getting to know the exact classification task
as well as the data samples transmitted for training and classification. We investigate the threat
associated with pattern mining attacks by performing a privacy analysis for two versions of these
encodings (basic and randomized). We further identify sets of parameter values which we find to
provide an adequate level of protection against these attacks. We see the potential for this approach
in machine learning use cases dealing with sensitive data or tasks, especially for MLaaS scenarios
dealing with short data samples that lack a clear structure.
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1 Introduction

As in many other application areas, machine learning has become a popular approach
for solving classification tasks in the cybersecurity domain, often involving the use of
sensitive data. This, however, raises concerns when considering collaborative settings,
such as federated learning, Machine-Learning-as-a-Service (MLaaS) or the collaborative
creation of diverse data sets. Domain generation algorithm (DGA) detection is one
example of a cybersecurity use case dealing with sensitive information. A malicious
application of DGAs lies in enabling communication between a bot herder (i.e., the
controller of a botnet) and bots (i.e., the corrupted machines) in a botnet via a command-
and-control server. Instead of hard-coding the domain of a command-and-control server
into the malware, new suitable domains are frequently generated via the DGA by both
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the bots and the bot herder locally. The properties of the DGA enable a connection
between a bot and a command-and-control server due to a likely overlap of domains
generated by bots and domains generated by the bot herder. For the bot herder, this has
the benefit that blocklisting domains used for command-and-control servers in the past
does not affect future communication, ensuring that control over the botnet is preserved.
In order to detect potential bots in a monitored network, the use of machine learning has
been proposed to identify algorithmically generated domains (AGDs), viewing them as
indicators of compromise (see, e.g., [Drichel et al., 2020]). As the classifiers need to
distinguish AGDs from non-AGDs, the training data sets also have to include benign
samples, such as non-existent (NX) domain requests. These NX domains, however, pose
both a privacy and security risk. NX domains collected in real-world networks can reveal
information about browsing behavior, which may conflict with legal obligations such as
customer contracts, or with company guidelines. Further, the leakage of NX domains
can pose a threat to security, since respective requests can reveal misconfigured devices
in a network, which try to connect to web-services that are no longer available. This may
be abused by malicious actors, who register such a domain to mimic the respective web-
service. NX domains can further provide information about specific benign applications
using AGDs (such as endpoint security software) in the network.

The sanitization of samples in the DGA detection use case represents a class of
problems that poses special requirements on sanitization approaches. Specifically chal-
lenging is that AGDs and NX domains are relatively short strings that do not provide a
clear distinction between sensitive and non-sensitive parts, ruling out redaction-based
sanitization approaches. The overall lack of structure beyond a separation into different
domain elements via dots (the number of which can vary) further rules out classical
anonymization approaches as they are commonly used for relational data. The benefit
of using data sanitization over approaches such as secure multi-party computation (see
[Drichel et al., 2021] for an application in DGA detection) is that they are applied to
data rather than algorithms. While this commonly leads to weaker formal guarantees in
regard to the protective qualities of the approach, data sanitization approaches are often
more efficient than cryptographic approaches and provide the data owner with more
flexibility, since they can be applied locally without requiring other parties to take part
in a specific privacy-preserving protocol.

To protect these samples in different collaborative settings, [Nitz and Mandal, 2023]
have proposed the use of Bloom encodings as a sanitization measure, utilizing an encoding
approach from the area of privacy-preserving record linkage (PPRL) based on Bloom
filters. While this work has demonstrated the feasibility of performing machine learning
tasks on these encodings, respective data leakage risks were primarily considered on a
conceptual level. With this work, we aim to examine this risk on a more technical level.

Our contribution: We perform the first technical analysis of the data leakage risk
associated with using Bloom encodings in a MLaaS setting. Our investigation focuses
on the DGA detection use case and consists of two parts. In Section 5 we analyze the
impact of the randomization procedure proposed in [Schnell and Borgs, 2016] on pattern
preservation in the encodings. In Section 6 we apply the pattern mining attack proposed
in [Christen et al., 2018] and evaluate the quality of its intermediate results as well as the
re-identified cleartext candidates. In Section 7 we provide suggestions for choosing pa-
rameter values when applying the Bloom encoding approach in MLaaS settings based on
our findings. Our analysis concludes that the parameter values used in [Nitz and Mandal,
2023] prevent reliable cleartext re-identification through this attack in the considered
setting.
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The remainder of this work is structured as follows. In Section 2 we briefly summarize
related work and introduce definitions used throughout this work. In Section 3 we discuss
the key properties of the Bloom encoding approach when applied in a general MLaaS
setting. We then describe the scope and threat model of our analysis in Section 4. In
Section 5 we perform the analysis of bit pattern preservation under special consideration
of randomized Bloom encodings. We complement this analysis by evaluating the practical
application of pattern mining attacks in Section 6. Section 7 provides suggestions for
choosing encoding parameters based on the result of the previous two sections. Lastly,
we discuss our findings and provide directions for future work in Section 8.

2 Background

The sanitization of training data for DGA detection poses some challenges that set it
apart from more traditional data such as relational or graph data. The lack of clear
structure beyond a required domain and top-level domain does not allow to directly
distinguish between sensitive and non-sensitive parts of a sample. Related work on
protecting respective samples has hence taken other approaches. In [Drichel et al., 2021]
different frameworks implementing cryptographic protocols have been evaluated to
protect samples for DGA detection in a Classification-as-a-Service setting. While the
utility was only affected marginally through model simplifications, the communication
overhead introduced by the protocols has been considered to be prohibitive for real-
world setting. In [Holmes et al., 2021] the general reversibility of FANCI feature vectors
[Schiippen et al., 2018] for the DGA detection use case has been considered. While
the quality of reconstructed samples was of poor quality, the analysis only considered
general reversibility via machine learning, without accounting for potentially available
background knowledge or other forms of data leakage. In [Nitz and Mandal, 2023] the
use of a Bloom filter based encoding approach from the area of PPRL has been discussed
for machine-learning based DGA detection. The protective properties of this approach,
however, have only been discussed on a conceptual level. In this work, we examine the
protective properties of this Bloom encoding approach more thoroughly.

Input
Sample: "EXAMPLE"
Size of Bloom filter: 64
Number of hash function: 4
Substring length: 2

2-gram decomposlition of the sample
NN

For each 2-gram separately: Hash the 2-gram with each of the 4
hash functions into an empty 64-bit Bloom filter

v v v v v v
Bit Bit Bit Bit Bit Bit
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[ 64-bit Bloom encoding of "EXAMPLE" |

Figure 1: Visualized example of the flow for creating basic Bloom encodings, adapted
from [Nitz and Mandal, 2023].
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2.1 Bloom Encodings

Similar to [Nitz and Mandal, 2023], we focus on two variants of Bloom encodings: The
basic encodings initially proposed in [Schnell et al., 2009] and encodings hardened via
randomization [Schnell and Borgs, 2016].

Basic: Formally, the basic Bloom encoding approach can be defined as follows: Let
a cleartext record P be given, as well as values for the Bloom filter size [, a set of k£ many
independent cryptographic hash functions H = {h, ..., hx }, and the substring length ¢.
Then the basic Bloom encoding B of P is the bit string of length [, in which B[i] = 1
with bit position ¢ € {1, ...,1}, if, and only if, there exists a hash function » € H and a
substring @) of P of length ¢ such that i = (h(Q) mod [)+ 1. This definition is extended
to data sets by encoding each record of a data set into a separate Bloom filter. The values
of the parameters [, k and ¢ as well as the set of hash functions H remain consistent
across different records. Figure 1 provides a visualization of the flow for creating basic
Bloom encodings for a given cleartext.

Randomized: Motivated by decoding attacks on basic Bloom encodings, the use
of RAPPOR’s permanent randomized response step [Erlingsson et al., 2014] has been
proposed as a hardening approach for Bloom encodings [Schnell and Borgs, 2016]. A
randomized encoding E is derived from a basic encoding B by applying the following
procedure for a given f € [0, 1] to its individual bit positions ¢ € {1, ...,1}:

0, with probability 0.5 - f
Elil =41, with probability 0.5 - f @)
BJi], with probability 1 — f

We refer to a Bloom encoding as sparse, if it contains more 0-bits than 1-bits, and we
refer to it as dense in the vice versa case. We further say that a bit pattern Z C {1, ..., 1}
defining a set of bit positions containing 1-bits matches a Bloom encoding B, if B[i] = 1
for all i € Z. We use this terminology for both basic and randomized encodings. For the
basic Bloom encoding of a single g-gram, we refer to the set of bit positions containing
1-bits as the g-gram pattern of this g-gram. For convenience, we say that a g-gram
matches a Bloom encoding, if its g-gram pattern matches this encoding. Note that the
basic Bloom encoding of a cleartext is the bitwise OR of the individual basic Bloom
encodings of all of its ¢g-grams. This also means that the bit pattern of a cleartext is the
union of the individual g-gram patterns of all of its g-grams. When we refer to g-gram
frequencies or the number of g-gram occurrences, we do not count duplicate occurrences
within the same cleartext.

2.2 Bloom Encodings in DGA Detection

While the Bloom encoding approach was originally proposed to link records of different
data holders without revealing sensitive information, it provides properties which make it
suitable for machine learning. Specifically, it preserves similarity of samples through its
substring decomposition step and provides encodings of uniform length. Since similarity
is preserved on a structural level rather than a semantic one (in contrast to, e.g., feature
extraction), it can also be applied without requiring to first understand which properties
of a sample are relevant for a specific classification task. In [Nitz and Mandal, 2023]
binary DGA detection classifiers have been trained using | € {64,128}, k = 2, ¢ = 2,
and f € {0.0,0.4}, where f = 0.0 implies that no randomization is used. For evaluating
utility of the encodings, the NYU model [Yu et al., 2018] has been used due to its good
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performance in the featureless binary DGA detection task (malicious/benign) [Drichel
et al., 2020]. The data set used for this evaluation consisted of 134 036 samples with a
50/50 label distribution (malicious/benign in regard to AGDs), which was split into a
101 866 sample training set, a 5 362 sample holdout set, and a 26 808 sample evaluation
set with a 50/50 label distribution each. The benign samples were NX domains collected
in a university environment, and the malicious samples originated from DGArchive
[Plohmann et al., 2016]. The results are depicted in Figure 2. It can be seen that both
shorter Bloom filters and the use of randomization have a negative impact on accuracy
and recall. Surprisingly, the precision held up well except for the case of using both
shorter Bloom filters and randomization (I = 64, f = 0.4).

0.00 0.20 0.40 0.60 0.80 1.00
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Cleartext baseline 71.000 |zzz2 Precision
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Figure 2: Utility evaluation results for binary DGA detection on Bloom encodings with
cleartext results for reference, adapted from [Nitz and Mandal, 2023].

3 Bloom Encodings in Machine-Learning-as-a-Service

As discussed in [Nitz and Mandal, 2023], using Bloom encodings in a MLaaS setting
with an honest-but-curious service provider does not require to share any parameter
values with this service provider. It further has the benefit that the MLaaS provider only
gets to see the encodings, which keeps the actual underlying classification task (such
as DGA detection) hidden. Knowledge of the encoding parameters further acts as an
access control mechanism: Because the model has been trained on encoded data only,
it will only provide suitable classification results for encodings generated via the same
parameter values. The data owner can hence ensure that neither the MLaaS provider nor
any other unintended party can use the trained classified without first gaining access to
the encoding parameters.

Recent work in PPRL such as [Armknecht et al., 2023] has considered two primary
threats to using Bloom encodings in settings where the adversary tries to decode them
without having access to the parameter values: Graph matching attacks [Vidanage et al.,
2020] and pattern mining attacks [Christen et al., 2018][Vidanage et al., 2019][Christen
et al., 2019]. However, since graph matching attacks require a significant overlap between
the cleartexts behind the targeted encoding and a background knowledge data set available
to the adversary [Armknecht et al., 2023][Vidanage et al., 2020], we consider the threat
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of pattern mining attacks to be the greater risk in the MLaaS setting. For a pattern mining
attack, the adversary aims to find frequent co-occurring bit patterns in the encodings
and link those patterns to g-grams in a background knowledge data set. This background
knowledge needs to have comparable ¢g-gram frequencies to the cleartext data set behind
the targeted encodings, and is ideally taken from a comparable domain. In contrast to
graph matching attacks, it does not require a direct overlap with the targeted data set.

4 Scope of the Analysis and Threat Model

We split our analysis into two parts: The analysis of the impact of randomization on
preserving bit patterns (compared to basic Bloom encodings) in Section 5 and the practical
evaluation of pattern mining attacks in Section 6. The analysis of pattern preservation
primarily investigates properties that could be exploited in attacks based on pattern
mining. As the results of this analysis, however, remain abstract (e.g., by quantifying
certain biases or correlations), the question of what these values mean for practical attacks
arises. We thus also evaluate the success of pattern mining attacks. In the following, we
briefly summarize the scope of our privacy analysis and the threat model assumed for
the pattern mining attacks. For both parts, we utilize DGA detection data sets.

Analysis of pattern preservation: We first analyze the impact of the randomization
procedure as given by Equation 1 on the preservation of patterns present in the basic
Bloom encodings. For this, we look at bit patterns on different levels:

1. We begin by examining the impact on the bias exhibited by individual bit positions.
Specifically, we consider this bias to be determined by how much more (or less)
likely it is that a certain bit position is set compared to a uniform distribution (i.e., a
0.5 chance).

2. Secondly, we investigate the likelihood that complete bit patterns are preserved
during randomization. Since especially g-gram patterns are of interest for pattern
mining, we focus on these patterns, but our analysis can be analogously applied
to the preservation of other substring patterns as well. We also examine how the
introduction of false bit patterns to an encoding relates to the preservation of g-gram
patterns by considering the correlation between the number of instances in which
a g-gram pattern occurs in encodings and the number of instances in which the
g-gram is part of respective cleartexts. This is motivated by the observation that this
correlation is used in pattern mining attacks to associate frequently occurring bit
patterns to frequently occurring g-grams in a background knowledge data set.

3. Thirdly, we consider the preservation of partial patterns. This is motivated by the
idea that decoding attempts may not need to re-identify full g-gram patterns, if these
patterns contain unique subpatterns. For this, we analyse bit value co-occurrence
(meaning patterns of length 2) and consider how much more (or less) likely two bits
are to co-occur in an encoding compared to a uniform bit distribution, as well as the
impact that randomization has on these biases.

We use a 2000 sample DGA data set to also practically evaluate these biases and
correlations.

Evaluation of pattern mining attacks: For the practical evaluation of pattern mining
attacks, we focus on the use of Bloom encodings in the MLaaS scenario. As such, the data
owner intends to use a MLaaS solution by an honest-but-curious provider (the adversary)



1230 Nitz L., Mandal A.: Bloom Encodings in DGA Detection: Improving ...

to train and afterwards use a DGA detection classifier. To prevent the MLaaS provider
from learning the samples transmitted for training and classification, the data owner
encodes the samples as Bloom encodings. The adversary is assumed to be aware that
the Bloom encoding approach has been used. As motivated in Section 3, we focus on
pattern mining attacks as the attack method. We further assume that the adversary has
knowledge of the ¢g-gram length (since it is commonly ¢ = 2) and access to a background
knowledge data set taken from a similar domain as the data set behind the encodings.
As the encodings can hide the actual classification task from the MLaaS provider, the
latter assumption may not necessarily be realistic. But it does also account for settings in
which the adversary can find out the classification task, e.g., by relating the classification
timeline to events in the real world. The goal of the attack is to reconstruct as many
cleartexts as possible from the encodings by re-identifying individual domain elements.
We evaluate the success of the attack by the quantity and quality of re-identified ¢-
gram patterns, the quality of the assignment of re-identified patterns to encodings (both
matching and non-matching), and the quality of the re-identified cleartext candidates
(meaning domain elements) per encoding.

5 Analysis of Pattern Preservation

In the following, we perform a privacy analysis of the Bloom encoding approach hardened
by the randomized response step of the RAPPOR mechanism as given by Equation 1.
We start by analyzing the impact of the randomization procedure on the probability of
individual bit positions being set. Afterwards, we discuss the effect of the randomization
procedure on the preservation of complete g-gram patterns and the introduction of false
patterns. Lastly, we discuss the risk of partial patterns and the impact the randomization
procedure has on bit value co-occurrence in encoded data sets. Throughout our analysis,
we practically evaluate our findings on a 2 000 record subset of the DGA data set that was
used for the utility evaluation in [Nitz and Mandal, 2023] as referred to in Section 2.2.
This 2 000 record subset, which in the following is referred to as the DGA-2000 data
set, was obtained by randomly sampling 1 000 malicious (AGDs) and 1 000 benign (NX
domains) records from the data set used for the utility evaluation.

5.1 Individual Bit Positions

We begin by considering the impact of the randomization procedure on the distribution of
values per bit position. For this, we focus on the probability that a bit is set in an encoding
for a given data set and given encoding parameters, and compare this probability between
the basic Bloom encoding and the randomized Bloom encoding. Because pattern mining
attacks aim to exploit the circumstance that certain g-grams are more likely to occur than
others, matching more likely g-grams to bit positions which are more likely to be set
does provide an initial starting point for a pattern mining attack. Similarly to [Armknecht
et al., 2023], we consider the bit position bias as the distance from the uniform value
distribution of a bit position, meaning that we define it for a bit position ¢ in a basic
Bloom encoding B and the randomized Bloom encoding E, respectively, as follows

e? =Pr(B[i]=0) - = )

3)
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Per definition of the randomization procedure, a fraction f of bits is expected to change
values to an even distribution, since a fraction 0.5 f of bits is expected to be set, and a
fraction 0.5 f of bits is expected to be unset, independent of the respective values before
randomization. The remaining fraction 1 — f of bits will not change in value, and is thus
expected to maintain the bias ef . Following this argument, the relationship between ef
and ! is expressed by

=01~/ +[-0
—(-p-ef @

and hence decreases linearly at rate 1 — f with growing values of f. If we consider the
bias of an encoded data set as the maximum bias of its bit positions, also the bias of the
data set decreases at this rate, meaning that ¥ = (1 — f) - €. Note that this relationship
is independent of the chosen data set, but that the value of €7 is dependent on the data
set and the encoding parameters.

5.2 Complete Patterns

Next, we consider the probability of preserving full g-gram patterns during randomization
as well as the probability of introducing false pattern. We then discuss how these two
cases relate to each other in the context of pattern mining attacks.

5.2.1 Preservation of Complete Patterns

To analyze the degree to which patterns are preserved during the randomization process,
we consider a basic Bloom encoding B, which encodes a g-gram () (potentially among
others). We denote the set of bit positions set by @ as Zg C {1, ..., [}, meaning i € T
if, and only if, there exists a hash function h € H such thati = (h(Q) mod I) + 1. We
further denote the event of B exhibiting the pattern Z as Ez,,. Since the number of
1-bits of a g-gram pattern is restricted by the number k£ of hash functions, it holds that
1< |Zg| < k.

The probability that the pattern Zg is preserved during randomization, meaning that
for all ¢ € Z it holds that E[i| = 1, is

1 ‘IQ‘
Pr(E[i] =1foralli € Zg | Ez,) = <1—2-f> %)

5.2.2 Introduction of False Complete Patterns

The randomization procedure, however, cannot just damage patterns of g-grams contained
in the respective cleartext, but also introduce patterns to the encoding which represent
g-grams that are not part of the cleartext. While this can already happen within the
basic Bloom encoding due to collisions, the randomization procedure can introduce false
patterns in a non-deterministic fashion.

In the following, we assume that we have some basic Bloom encoding B, and a
g-gram () with pattern Z¢, which is not encoded in B. Specifically, we consider the case
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Figure 3: The probability of falsely introducing bit patterns of varying length during
randomization for different values of f independently of any data set.

that there exists at least one 7 € Z,, such that B[i] = 0. We denote this event by —=[Ez,,.
Then the probability that Z, is falsely introduced to E is

1 |[ZTp=1NZq]| 1 | Zp=0NZq]|
Pr(E[i]lforallieIQ|ﬁEIQ)<1-f) <f)

2 2
(6)
where Zp—1 and Zp_ denote the sets of bit positions of B containing 1-bits and 0-bits,
respectively. The probability hence depends on how many bits of the pattern are already
set. Specifically, it is less likely that the pattern is introduced in the randomized Bloom
encoding when fewer bits of the pattern are set in the basic Bloom encoding (unless
f = 1.0). This relationship is visualized in Figure 3.

5.2.3 Relationship of Pattern Preservation and Pattern Introduction

Figure 3 and Table 1 show that unless the randomization parameter f is chosen close
to 1, it cannot be expected that a notable number of false patterns is generated if the
pattern differs from the basic Bloom encoding in more than two bits. This indicates that
forcing the generation of false patterns during randomization requires the basic Bloom
encodings to be dense, and/or a small number of hash functions (i.e., £ < 3) to ensure
less distinct patterns.
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[Encoding parameters [Noise [[Pearson corr. [Spearman corr. |

=64, k=2,9=2|f =0.0] 0.1603 0.0901
=64, k=2,qg=2|f=04] 0.1213 0.0813
=128, k=2,q=2|f =0.0] 0.2707 0.1678
=128 k=2,q=2|f =04] 0.2194 0.1431
=150,k =3,q=2|f =0.0] 0.3373 0.2115
=150,k =3,q=2|f =04 0.2912 0.1881
1=500,k=5,q=2|f =0.0] 0.7726 0.5544
1=500,k=5,q=2|f =04 0.7090 0.4937

Table 1: The sample Pearson correlation coefficient and Spearman’s rank correlation
coefficient between the number of cleartext occurrences of q-grams and the number of
respective pattern occurrences in different encoded versions of the DGA-2000 data set.
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Figure 4: Visualization of the number of cleartext records containing specific q-grams
(red bars incl. orange part), number of instances in which the q-gram patterns were
preserved during randomization (orange bar) and total number of occurrences of the
q-gram patterns in the randomized Bloom encodings (blue line). Each value on the
x-axis represents a q-gram, and the y-axis shows the total number of respective
instances in the DGA-2000 data set. The white area below the blue line represents
falsely introduced q-gram patterns.

We have experimentally validated this observation by encoding the same data set
with differing Bloom filter sizes and differing numbers of hash functions, but the same
value for the randomization parameter. The result is shown in Figure 4 and indicates
that the introduction of false patterns is crucial to impede pattern mining attacks, as the
destruction of patterns on its own is not sufficient to break the correlation between the
frequency of a g-gram in the cleartext and the observed frequency of its pattern in the
randomized encoding.

We suspect that this is the case, because most g-grams will have a pattern size
of k, resulting in exactly the same probability of a pattern being destructed during
randomization for the large majority of g-grams. As previous publications (e.g., [Christen
et al., 2018][Vidanage et al., 2019]) have pointed out, patterns shorter than k are relatively
unlikely to occur. Because the probability of bit collisions during pattern generation is a



1234 Nitz L., Mandal A.: Bloom Encodings in DGA Detection: Improving ...

birthday problem, the probability of hash functions colliding during pattern generation is
given as
!

T
N lkk). -

As such, the probability of having a collision in a pattern with [ = 150 and & = 3 is
less than 0.02 (the same also holds for [ = 500 and k£ = 5), and for [ = 500 and k = 10
the probability is still less than 0.087. We thus conclude that relying solely on pattern
destruction is insufficient to break the correlation between the number of cleartexts
in which a ¢g-gram appears and the number of randomized encodings that exhibit this
g-gram’s pattern when considering these parameter ranges.

5.3 Partial Patterns

Even though the first part of our analysis indicates that the correlation between g-gram
frequency and g-gram pattern frequency in the randomized encoding can be disassociated
by forcing dense encodings and only moderately distinctive patterns (i.e., & < 3), this
property on its own is not sufficient to impede pattern mining attacks. In the following,
we will thus analyze the potential risk of partial patterns providing sufficient information
for pattern mining attacks.

5.3.1 Probability of Preserving Partial Patterns

In the following, we assume that the basic Bloom encoding exhibits a g-gram pattern Zg.
For a sub-pattern Zg C I, the probability that it is preserved during randomization is

| Zs]
Pr(E[i] =1foralli € Zs | Ez,) = (1_;.]0) ®)

Preserving the full pattern Z, is hence by the factor (1 — 3 - f)Z@l=Zs less likely than
preserving a sub-pattern Zg. This means that shorter sub-patterns are more likely to be
preserved. They are, however, also more likely to be falsely introduced via collisions
and randomization, as indicated by Figure 4.

To consider this threat in more detail, we analyze the conditional probability of a
bit position being set in co-occurrence with another bit position. To account for biases
of different bit positions, we also consider the probability of an individual bit position
being set in an encoded data set, as well as respective differences between different bit
positions.

Note that the probability of a bit position being set depends on the length of the
cleartext, the g-gram frequencies in the cleartext data set, and the g-gram patterns (which
in turn depend on [, g, k, and the specific hash functions chosen). As this provides us
with many different variables that can drastically influence the outcome and hence make
general statements difficult, we perform this part of our analysis more practically.

5.3.2 Bit Value Co-Occurrence

To evaluate the co-occurrence of bits, we define the co-occurrence matrix as an [ X [ matrix,
which we denote by Cp for the basic encoding and by C'g for the randomized encoding.
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[Encoding parameters [Max. co-occ. bias (f = 0.0)[Max. co-occ. bias (f = 0.4)]

=64, k=2,q=2 0.2450 0.0951
=128,k =2,q=2 0.4714 0.1468
=150,k =3,q =2 0.3854 0.1230
1 =500,k=5,q=2 0.6039 0.1879

Table 2: The maximum co-occurrence bias observed for non-diagonal entries of the
co-occurrence bias matrices for different encoded versions of the DGA-2000 data set.

We define the co-occurrence matrix via its entries as Cg[i, j| := Pr(B[j] = 1 | B[i] = 1),
and analogously Cgli,j] :=Pr(E[j]=1| E[i] = 1) fori,j € {1,...,1}. The entry at
position [z, j] in the co-occurrence matrix hence shows the probability of the bit at posi-
tion j being set, given that the bit at position 7 is set. A value of 1 implies that the bit at
position j is always set, if the bit at position 7 is set, and a value of 0 means that the bit
at position j is never set, if the bit at position i is set.

Figure 5 shows a plot of the co-occurrence matrices (both basic and randomized) for
the DGA-2000 data set. It indicates that the probability of a bit being set in co-occurrence
with a given bit is primarily influenced by how likely it is to be set in general. As
seen in Figure 6, this value distribution is not uniform. Nevertheless, the randomization
procedure weakens this effect, as is expected based on the effect of the randomization
procedure on the value distribution of a bit position.

For a clearer interpretation of the co-occurrence of 1-bits, we define the co-occurrence
bias matrix. Based on the definition of the co-occurrence matrix,Awe define the co-
occurrence bias matrix as an [ x [ matrix, which is denoted by Cp and defined as
Cgli, j] = CBgli,j] — Pr(B[j] = 1) for the basic encoding procedure. Analogously,
we denote the co-occurrence matrix for the randomized encoding procedure by Cy and
define it as Cp[i, j] == Cgli, j] — Pr(E[j] = 1). The co-occurrence bias matrix hence
considers the underlying (and potentially skewed) value distribution of j, and filters it
out to isolate the observable impact that a 1-bit at ¢ has on the value of j.

Figure 7 visualizes the co-occurrence bias matrices for the co-occurrence matrices
shown in Figure 5. The plots indicate that the randomization procedure drastically reduces
the co-occurrence bias, but does not fully eliminate it. Entries that are highly biased
in the co-occurrence bias matrix for the basic encodings, however, are significantly
less distinct in the co-occurrence bias matrix for the randomized encodings (with the
expected exception of the diagonal entries). Nevertheless, some patterns visible in the
co-occurrence bias matrix for the basic encodings are also visible in the randomized
counterpart, but to a lesser extent. As supported by additional results shown in Table 2,
this effect can be weakened by forcing more collisions in the basic Bloom encodings,
which ensures that every bit position is associated with more g-gram patterns.

A smaller co-occurrence bias is beneficial, since pattern mining attacks commonly
require distinct observable co-occurrence probabilities [Vidanage et al., 2019]. The
randomization procedure hence seems to address the most problematic entries, and the
degree of noise can be adjusted via f to force the co-occurrence bias below a desired
threshold. If aligned with the previous observation that small values for k are required to
break the correlation between g-gram occurrence in cleartext and the occurrence of their
respective patterns in the encoding, also potential effects of aggregating co-occurrence
biases across multiple bit positions remain negligible.
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Figure 5: Visualization of the co-occurrence matrices Cg (without randomization) and
Cg (with randomization) for the DGA-2000 data set. For given bit positions i and other
bit positions j, Subfigure 5a shows the values Cg[i, j| = Pr(B[j] = 1| B[i]| = 1) and
Subfigure 5b the values Cgli, j| = Pr(E[j] = 1 | E[i] = 1).
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6 Practical Impact on Pattern Mining Attacks

Our analysis showed that the use of dense encodings, short g-gram patterns and random-
ization seem to beneficially impact the correlation between bit positions from a privacy
point of view. To further evaluate whether this is reflected by the success of a pattern
mining attack, we have carried out respective attacks on differently encoded data sets. In
the following, we discuss our choice of attack, the steps it applies, the specific setup we
chose for our experiment and the results of the attack.

6.1 Choice of the Attack

Different kinds of pattern mining attacks on Bloom encodings have been proposed in the
area of PPRL. For our evaluation, we chose the one presented in [Christen et al., 2018],
which takes a 2-step approach to re-identify cleartexts from encodings. First, it mines bit
patterns based on bit position co-occurrences in the encodings and correlates them with
the most frequent g-grams in a background knowledge data set to identify the patterns
of frequent g-grams. The background knowledge data set is assumed to have a g-gram
distribution similar to the data set behind the encodings. In the second step, cleartext
candidates are then re-identified for each encoding based on the previously identified
g-gram patterns.

While more sophisticated pattern mining attacks have shown to provide a higher
success rate in the PPRL setting, these attacks also rely on stronger assumptions. The
attack described in [Vidanage et al., 2019] extends the attack we chose by adding an
intermediate step in which additional less frequent g-grams are re-identified based on the
initially re-identified ones. The quality of this extended re-identification step, however,
is expected to rely on the quality of the initial g-gram re-identification step, which we
evaluate via the chosen attack. Another pattern mining attack has been described in
[Christen et al., 2019]. This attack, however, assumes the existence of duplicate samples
in the used data sets and more heavily relies on the property of 0-bits disproving set
membership in Bloom filters. Since we focus on the use of Bloom encodings in machine
learning, we do not expect duplicate samples in our data. The use of randomization as a
hardening technique additionally breaks the basic Bloom filter property of disproving
set membership via 0-bits. We thus considered the attack described in [Christen et al.,
2018] to be suited best for evaluating the general impact on pattern mining in our setting.

6.2 Attack Description

The chosen pattern mining attack described in [Christen et al., 2018] consists of two
stages, a pattern mining stage and a cleartext re-identification stage.

Stage 1: The pattern mining stage utilizes a background knowledge data set which
is assumed to have a ¢g-gram distribution similar to the cleartext data set behind the
targeted set of encodings. Additionally, the first stage of the attack is parameterized via
the g-gram length, the minimum degree of required distinctness between two g-grams,
and a minimum partition size. The minimum required distinctness of two g-grams is used
to determine when the frequencies of two g-grams in the background knowledge data set
are sufficiently distinct to confidently map them to mined bit patterns. Bit patterns are
mined iteratively on sub-sets of the target encoding data set (referred to as partitions),
where each partition is at most as large as the one of the previous iteration. The minimum
partition size defines a lower limit on the size of these partitions, as the g-gram frequency
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distribution in very small partitions may deviate too much from the frequency distribution
in the background knowledge data set. The pattern mining stage returns a mapping F
of re-identified frequent g-grams and their patterns, and two mappings AT and A~
containing the matching and non-matching re-identified ¢g-grams, respectively, for each
encoding in the target data set.

Stage 2: For the cleartext re-identification stage, the mappings of matching and
non-matching g-grams A+ and A~ are utilized to identify cleartext candidates from the
background knowledge. A cleartext sample is considered to be a candidate of an encoding,
if it does not contain any non-matching g-grams from A~ and a minimum required number
of matching ¢-grams from A™ for that encoding. The minimum required number of
matching g-grams from A7 is provided as a parameter for the cleartext reconstruction.

We slightly adjusted the cleartext re-identification procedure compared to its original
description in [Christen et al., 2018] to make it fit the DGA use case. Specifically, instead
of using records from the background knowledge in full for identifying cleartext candi-
dates, we split each record at its dots. As such, we target the re-identification of individual
domain elements. To preserve basic information about the observed position of a domain
element (first, middle, or last), we preserve dots when splitting a domain. Specifically,
this means that the sample 'test.example.org' would be split into the three domain
elements 'test.', '.example.' and '.org'. In principle, this adjustment allows to
re-identify cleartext candidates, even if the cleartext data set behind the encodings and
the background knowledge data set are intersection-free, as long as a majority of their
samples are taken from a comparable pool of samples.

6.3 Experiment Setup

We have implemented the attack described above using Python 3.9. As cleartext and
background knowledge data sets, we randomly sampled two subsets of the data set used
for the utility evaluation in [Nitz and Mandal, 2023], which is also briefly summarized
in Section 2.2. Each of the two data sets contains 10 000 samples with a 50/50 label
distribution (malicious/benign). The data sets do not contain any duplicate samples and
are intersection-free. Across all experiments, we consistently used the same data set as
the cleartext data set (from which we generated the target encodings with the respective
parameter values) and the other data set as the background knowledge data set.

For generating the target encodings, we focused on the parameter values used in the
utility evaluation summarized in Section 2.2. As such, we considered a g-gram length of
q = 2, Bloom filter sizes of [ € {64, 128}, k = 2 many hash functions, and noise levels
of f € {0.0,0.4}. For the attack parameters, we used a minimum partition size of 500
samples (5% of the size of the target data set) and considered two g-gram frequency counts
f1 and fo with f; > f5 to be sufficiently distinct, if 100-2- (f; — f2)/(f1 + f2) > 0.01.
For cleartext re-identification, we required a cleartext candidate to contain at least 2
matching re-identified g-grams. We ran the attack without restricting the length of the
mined patterns and used the same support threshold definition as [Christen et al., 2018].

The attack parameters have been adjusted to fit the DGA use case. While the evalua-
tion of the original attack in [Christen et al., 2018] required significantly more distinct
g-gram frequencies by considering distinction thresholds of 1 and 5, it is to note that
the respective evaluation has been carried out on personal data (first name, last name,
street address, city). In the DGA use case, however, we observed that even some of
the most frequent g-grams in the background knowledge have comparable frequencies.
Without respectively lowering the distinctness threshold, the pattern mining attack ter-
minated without being able to mine any g-gram patterns, since the frequencies of the
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’Parameters \q-grams\TP\FP\FN\Avg. precision\Avg. recall‘
=128,k =2,q=2,f=0.0 19]12|23] 26 0.3860 0.3158
1=128k=2,q=2,f=04 2| 0| 2| 4 0 0
=64, k=2,q=2,f=0.0 11} 1|27| 21 0.0303 0.0455
=64, k=2,q=2,f=04 71 1112|113 0.1429 0.0714

Table 3: Evaluation of the re-identified q-gram patterns in F.

most common g-grams were not considered to be sufficiently distinct to continue the
attack. For the cleartext re-identification stage, we also lowered the minimum required
number of matching re-identified g-grams to 2 (compared to 3 in [Christen et al., 2018])
to conceptually allow for the re-identification of a sample’s top-level domain, which in
some cases only consists of two 2-grams (e.g., ' .de', '.ru', '.tk').

6.4 Results

For our evaluation, we focused on the quality of the different individual results of the
pattern mining attack. These consist of the mapping F of g-grams to their re-identified
pattern, the mappings A™ of matching and A~ of non-matching re-identified g-grams to
each target encoding, and the mapping R of cleartext candidates to each target encoding.
For reasons of readability, we refer to the encodings as long if [ = 128, as short if | = 64,
and as randomized if f = 0.4.

6.4.1 Identification of q-Gram Patterns

We evaluated the quality of F by comparing the number of re-identified g-grams, the
number of true positive, false positive and false negative pattern bits as the sum of the
respective values per g-gram pattern, and (similar to [Christen et al., 2018]) the average
precision and recall of the g-gram patterns. As we did not force patterns of a specific
length, re-identified patterns could be of varying length, allowing for the identification
of sub- and supersets of bit patterns. The results are summarized in Table 3.

The results show that the application of the Bloom encoding procedure with longer
Bloom filters and without applying randomization does indeed provide the best g-gram
re-identification results, both in terms of number of re-identified patterns and their quality.
Nevertheless, it should be noted that even these attack results are significantly worse than
the ones in the PPRL setting [Christen et al., 2018], which considers different encoding
parameters (such as longer patterns) and targets personally identifying information.
Salient in our evaluation is the case of longer encodings with randomization, which
provided the worst re-identification result on every metric.

6.4.2 Matching and Non-Matching q-Grams per Encoding

As the re-identified g-gram patterns in F are used to identify suitable cleartext candidates,
we evaluate the quality of the respective mappings A* of matching and A~ of non-
matching g-grams to the encodings. We determine the quality of AT and A~ based on
whether or not the respective g-grams have been part of the cleartext behind the encoding.
We compare the quality of A™ in regard to average precision and recall, and the quality
of A~ in regard to average precision only, where the average is taken over the respective
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Figure 8: Evaluation of the matching (AT ) and non-matching (A~) frequent q-grams
identified by the pattern mining attack.

value of the individual encodings. The results are depicted by Figure 8. We did not
evaluate the recall for A, as the number of false negative non-matching g-grams (i.e.,
g-grams which do not appear in the cleartext behind the target encoding, but also not
in the respective entry in A7) is primarily determined by the number of all possible
q-grams, which dwarfs the number of true positives.

As for the re-identification of g-gram patterns before, the attack performed best on the
longer non-randomized encodings. The low quality of the re-identified ¢-gram patterns,
however, seemed to impact the assignment of matching and non-matching g-grams, as
even in this case the average precision of matching and non-matching patterns is below
0.5 and 0.66, respectively. In general, we observe that shorter (and in this case also
denser) encodings and randomization decrease the quality of AT and A~. Interestingly,
the precision does not drop below 0.25 even in the cases in which at most one bit was
successfully re-identified across all re-identified g-gram patterns. Despite being rather
low in all observed cases, the recall seems to be sensitive to the use of randomization.

6.4.3 Cleartext Re-Identification

The cleartext re-identification via AT and A~ results in a mapping R which assigns a
cleartext candidate set to each encoding. Similar to [Christen et al., 2018], we categorized
the quality of these candidate sets by whether all (correct), some (partial), or none
(wrong) of their elements are substrings of the cleartext behind the respective encoding.
Additionally, we also documented the number of empty candidate sets, and considered
the average precision of the cleartext re-identification stage, taken as the average of the
individual precision per non-empty candidate set. The results are summarized in Table 4.

The evaluation of the cleartext re-identification exhibits a similar pattern as the re-
identification of ¢g-gram patterns and determination of matches and non-matches above.
The highest success rate is achieved for the longer non-randomized encodings. However,
in none of the cases, all re-identified candidates for an encoding were actually present
in the cleartext behind the encoding. This is likely due to the overall low quality of
re-identified g-grams as well as the condition that a cleartext candidate only requires two
matching g-grams. Partial matches only occurred in the case of long non-randomized
encodings and short randomized encodings, making up 8.55% and 0.67% of candidate
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[Parameters |Correct|Partial[ Wrong|[Empty[Avg. precision]
[ =128 k=2,4=2,7 =00 0] 855 3323] 5822 0.0517
=128 k=2,q=2 /=04 of 0 010000 0
=64 k=2,=2,/ =00 0 0] 1645] 8355 0
I=64, k=2q=2,f=04 0 67| 1348] 8585 0.0237

Table 4: Evaluation of the identified cleartext candidates in R.

sets, respectively. Considering the low quality of F, AT and A~ in the case of short
randomized encodings, we suspect that the partial matches are the result of chance.
Overall, the average precision of non-empty candidate sets showed to be very low,
scoring just over 0.05 in the highest case.

7 Implications for Parameter Selection

In the first part of our analysis we saw that randomization can be used to weaken the
correlation between g-gram frequencies in cleartexts and the frequencies of their pattern
in the encodings. Nevertheless, we observed that randomization on its own may not be
sufficient to break this correlation, since it is unlikely that false patterns are introduced,
if more than 2 bit positions need to be set by the randomization mechanism. We hence
recommend the use of shorter g-gram patterns by choosing k& < 3. Alternatively, dense
encodings can be forced to achieve the same effect for longer patterns.

In the second part of our analysis, we observed that the pattern mining attacks on
encodings using the parameter values chosen in [Nitz and Mandal, 2023] fail to both
reliably re-identify g-gram patterns and reconstruct cleartext values. While randomization
seemed to lead to a lower number of mined g-gram patterns, the quality of these patterns
was too low to measure the impact of the randomization procedure. We suspect that the
lower number of re-identified ¢g-gram patterns is a result of the randomization procedure
bringing the distribution of 1-bits per bit position closer to uniform (see also Figure 6),
which lets the mining of co-occurring bit positions run into the support threshold earlier.
Except for the case of choosing [ = 128,k = 2,9 = 2, f = 0.0, the quality of the
re-identified g-gram patterns seemed to be primarily determined by chance.

We would like to emphasize that the data used for DGA detection exhibits a g-gram
distribution that makes it difficult to relate mined bit patterns to g-grams. Specifically, the
frequencies of some of the most frequent g-grams are almost identical. This difficulty in
cleartext re-identification also remains when choosing less protective values as encoding
parameter, but could potentially be addressed by more sophisticated pattern mining
attacks that do relate patterns to g-grams not just solely based on their frequency. It
should be kept in mind that using different data may require different parameter values,
especially for the Bloom filter size /, to avoid sparse encodings. We thus recommend
to analyze, whether a chosen set of parameter values breaks the correlation between
g-gram frequencies in cleartext and g-gram pattern frequencies in the randomized Bloom
encodings, if other kinds of data are used.

Lastly, we want to point out that we assumed a rather strong adversary who has
access to a suitable background knowledge data set. As discussed above, the MLaaS
setting does not require the MLaaS provider to know which underlying classification
task is solved or which kind of data is encoded, hence further limiting the associated risk
of cleartext re-identification in the MLaaS setting.
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8 Discussion and Future Work

We have considered the use of both basic and randomized Bloom encodings in the MLaaS
setting for the DGA detection use case. Specifically, this scenario aims to keep the data
samples used for training and classification hidden from the MLaaS provider. As the
most severe threat in this scenario, we have considered pattern mining attacks by an
honest-but-curious MLaaS provider, assuming a strong adversary who has access to a
suitable background knowledge data set and the substring length q.

Our analysis of pattern preservation comparing randomized Bloom encodings to
basic ones revealed that relying solely on randomization via RAPPOR’s randomized
response step will likely not suffice to achieve an adequate level of protection. This is
because randomization does weaken certain biases and correlations between cleartext and
encoded data, but does not fully eliminate them unless close to all bits are randomized.
Our findings indicate that the use of k < 3 aligns best with the protection provided by
the randomization procedure. Further, [ should be chosen such that sparse encodings
are avoided. Based on the analysis of privacy properties associated with the length of
q-grams carried out by [Mitchell et al., 2017], we recommend the use of ¢ = 2.

By practically applying pattern mining attacks on both basic and randomized Bloom
encodings of DGA detection data using the parameter values from [Nitz and Mandal,
2023], we found that the quality of re-identified cleartext candidates per encoding was
poor. As these parameter values are also consistent with our recommendations based on
the analysis of preserved patterns, we conclude that the parameter values used in [Nitz
and Mandal, 2023] provide an adequate level of protection against pattern mining attacks
in the DGA use case.

Nevertheless, we acknowledge that further investigations into both pattern mining
attacks and other threats in the MLaaS scenario are required for a better understanding
of a suitable privacy-utility trade-off. Specifically, the design of novel pattern mining
attacks which specifically consider the targeted encodings as randomized may allow
for better re-identification results. Based on the analysis of pattern preservation, we do
however suspect that the quality of re-identification results for the parameter ranges
considered in [Nitz and Mandal, 2023] still protect against respective advances.

In the context of future work, the evaluation of other hardening techniques (such
as diffusion [Armknecht et al., 2023]) in machine learning use cases is of interest, as
they may provide a better privacy-utility trade-off. We also consider the use of Bloom
encodings as a sanitization approach for classification tasks beyond DGA detection (such
as phishing detection [Nitz et al., 2021]) as an interesting extension of this work.
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