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Abstract
We capture optimal decay for the Mullins–Sekerka evo-
lution, a nonlocal, parabolic free boundary problem from
materials science. Ourmain result establishes convergence
of BV solutions to the planar profile in the physically rel-
evant case of ambient space dimension three. Far from
assuming small or well-prepared initial data, we allow
for initial interfaces that do not have graph structure and
are not connected, hence explicitly including the regime
of Ostwald ripening. In terms only of initially finite (not
small) excess mass and excess surface energy, we establish
that the surface becomes a Lipschitz graph within a fixed
timescale (quantitatively estimated) and remains trapped
within this setting. To obtain the graph structure, we lever-
age regularity results from geometric measure theory. At
the same time, we extend a duality method previously
employed for one-dimensional PDE problems to higher
dimensional, nonlocal geometric evolutions. Optimal alge-
braic decay rates of excess energy, dissipation, and graph
height are obtained.
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2 OTTO et al.

1 INTRODUCTION

The Mullins–Sekerka interfacial evolution (abbreviated MS in the following) is a nonlocal free
boundary evolution: The normal velocity of the interface is a nonlocal function of the interface.
Essential features of MS are the preservation of (signed) mass and the reduction of surface area.
In addition, there is a scale invariance: The solution space is invariant under a rescaling of length
by a factor of 𝜆 and time by a factor of 𝜆3. Hence MS is a geometric version of a third-order
parabolic equation.
We are interested in the relaxation to a planar interface for fairly ill-prepared initial data: The

initial interface is required neither to be a graph nor to consist of a single connected compo-
nent. Singularities are not a matter of idle curiosity in MS but rather a fact of life: A well-known
and naturally occurring configuration is that of Ostwald ripening, in which the positive phase
is distributed in multiple, disconnected islands, and the smaller islands shrink and disappear (a
singularity in the flow). We allow for such configurations.
We do not study existence but rather analyze the qualitative and quantitative properties of any

BV solution (which are not known to be unique). We will obtain optimal relaxation rates to the
flat configuration based on only monitoring the (absolute) excess mass or “volume” (between the
positive phase Ω+ ⊆ ℝ𝑑+1 and {𝑧 > 0}):

 ∶= ∫
ℝ𝑑+1

|𝜒| d𝐱, where 𝜒 ∶= 𝟏Ω+
− 𝟏ℝ𝑑 ×{𝑧>0} (1.1)

and the excess surface area (compared to the flat configuration):

 = ∫
Γ

1 − 𝑒𝑧 ⋅ 𝑛 d𝑆,

where, 𝑒𝑧 is the unit vector in the 𝑧-direction and 𝑛 is the unit inward normal to the boundary
of the positive phase Γ = 𝜕Ω+.
In its strong form, the MS dynamics consists of the evolution of a 𝑑-dimensional hypersurface

Γ, which is the boundary of a region Ω+ and induces a potential 𝑓 ∶ ℝ𝑑+1 → ℝ as the two-sided
harmonic extension of the mean curvature (the sum of the principal curvatures) 𝐻 of Γ according
to {

𝚫𝑓 = 0 in ℝ𝑑+1 ⧵ Γ,

𝑓 = 𝐻 on Γ.
(1.2)

The surface Γ itself evolves with normal velocity determined by the jump in normal derivative of
𝑓 across Γ via:

𝑉 ∶= −[𝛁𝑓 ⋅ 𝑛], (1.3)

where here and throughout we use square brackets to indicate [𝛁𝑓 ⋅ 𝑛] = ∇𝑓+ ⋅ 𝑛 − ∇𝑓− ⋅ 𝑛.

Definition 1.1. For given initial data 𝟏Ω+ (0) ∈ 𝐵𝑉loc (ℝ𝑑+1 ), we call an 𝐿1-continuous family of
characteristic functions 𝟏Ω+ (𝑡) ∈ 𝐵𝑉loc (ℝ𝑑+1 ) together with 𝑓 ∈ 𝐿2 (0, ∞; 𝐻̇1 (ℝ𝑑+1)) a weak BV
solution of the MS dynamics if the following conditions are satisfied.
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 3

(1) For any 𝑇 > 0, all 𝜑 ∈ 𝐶∞
𝑐 (ℝ𝑑+1 × [0, 𝑇]), and 𝜒 as in (1.1) there holds(

∫
ℝ𝑑+1

𝜒𝜑 d𝐱

)
(𝑇) −

(
∫

ℝ𝑑+1

𝜒𝜑 d𝐱

)
(0)

= ∫
𝑇

0
∫

ℝ𝑑+1

𝜒𝜕𝑡 𝜑 d𝐱 d𝑡 − ∫
𝑇

0
∫

ℝ𝑑+1

𝛁𝑓 ⋅ 𝛁𝜑 d𝐱 d𝑡. (1.4)

(2) Let Γ(𝑡) ⊆ ℝ𝑑+1 be the support of the Radon measure 𝛁𝟏Ω+
and let 𝑛 be the Radon–Nikodym

derivative of 𝛁𝟏Ω+
with respect to its total variation measure |𝛁𝟏Ω+

|. For almost all 𝑡 > 0, and
all 𝜉 ∈ 𝐶∞

𝑐 (ℝ𝑑+1; ℝ𝑑+1 ), there holds

∫
Γ

(Id −𝑛 ⊗ 𝑛) ∶ ∇𝜉 d𝑆 = ∫
ℝ𝑑+1

𝟏Ω+
div (𝑓𝜉) d𝐱, (1.5)

where the notation ∫
Γ

d𝑆 is to be understood as ∫
ℝ𝑑+1 d|𝛁𝟏Ω+

|.
We will see in Section 4 that there exists a measurable function 𝐻 such that the integrals in (1.5)

are equal to − ∫
Γ

𝐻𝜉 ⋅ 𝑛 d𝑆, and 𝐻 can be considered the generalized mean curvature. (Note that
with our choice of orientation, the mean curvature 𝐻 is positive where Ω+ is convex.) We remark
that (1.4) encodes 𝜕𝑡 𝜒 − Δ𝑓 = 0 in the sense of distributions; in particular,𝑓 is harmonic outsideΓ.
For a smooth solution, (1.3) follows from (1.4) via integration by parts, and the boundary condition
(1.2) follows from (1.5), integration by parts, and the equality with − ∫

Γ
𝐻𝜉 ⋅ 𝑛 d𝑆 observed above.

We will work throughout the paper with BV solutions that satisfy the hypothesis:

Hypothesis (H). The energy is absolutely continuous and nonincreasing with a.e.
time derivative

−
d

d𝑡
 ≥ 𝐷 ∶= ∫

ℝ𝑑+1

|𝛁𝑓|2 d𝐱. (1.6)

Furthermorewe assume that the solution is smooth once it reaches a state with graph
structure and small enough Lipschitz constant, that is, that there exists 𝜀0 > 0 such
that

Ω+ (𝑡) =
{

(𝑥, 𝑧) ∈ ℝ𝑑+1 ∶ 𝑧 > ℎ(𝑥, 𝑡)
}

and ‖∇ℎ(⋅, 𝑡)‖∞ ≤ 𝜀0

implies that the solution is smooth in space-time on (𝑡, ∞).

In particular, Hypothesis (H) allows for singular events that occur when connected compo-
nents of Ω+ disappear (as in Ostwald ripening) or collide. We motivate our hypothesis in the
context of the available literature in Subsection 1.1 below. The reader who prefers not to consider
weak solutions may alternatively suppose that there is a strong solution outside of finitely many
singular times.
The MS evolution has the (formal) structure of a gradient flow of the excess surface energy 

with respect to the 𝐻̇−1 metric, where the configuration space is given by characteristic functions.
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4 OTTO et al.

Naturally Hypothesis (H) implies that for all 𝑠 < 𝑡 there holds

(𝑡) − (𝑠) ≤ − ∫
𝑡

𝑠

𝐷(𝜏) d𝜏, (1.7)

and we will regularly make use of the energy dissipation in the form

 ≤ 0 for all 𝑡 > 0. (1.8)

Remark 1.2. The De-Giorgi type inequality from [15] suggests replacing (1.6) by −
d

d𝑡
 ≥ 1

2
𝐷, in

which case our results carry through unchanged.

We obtain optimal algebraic-in-time decay rates for the energy gap within the 𝐿1 setting, that
is, for initially finite 𝐿1 distance to a half-space, 0 < ∞. The 𝐿1 norm is naturally related to the
fact that the dynamics is mass conserving, that is, the value ∫

ℝ𝑑+1 𝜒 d𝐱 is a conserved quantity
of the evolution. (Note, however, that the 𝐿1 norm  is not typically preserved; an elementary
example is the shrinking of two initially circular islands symmetrically located on either side of a
flat interface.) Our most interesting result is for 𝑑 = 2, where we show that even for initial data
that do not have graph structure or even connected phases, the evolution enters the graph setting
within finite time, after which it remains trapped close to the linear evolution.
Our main result for 𝑑 = 2 (ambient space dimension three) is:

Theorem 1.3 (Relaxation to flat). Consider an initial set Ω+,0 ⊆ ℝ3 of locally finite perimeter with
reduced boundary Γ0 having finite excess mass 0 and excess energy 0. Corresponding to this initial
data, consider any solution of MS satisfying (H). For all times 𝑡 > 0, the excess mass is bounded by

 ≲ 0 + 
3

2

0 , (1.9)

and the energy decays according to

 ≲ min

{
0 ,

2
0 + 3

0

𝑡
4

3

}
. (1.10)

Moreover, there exists a time 𝑇𝑔 ∼ 3∕2
0 (“graph-time”) such that for all 𝑡 ≥ 𝑇𝑔, the interface Γ(𝑡) is

the graph of a Lipschitz function

Γ(𝑡) =
{

(𝑥, 𝑧) ∈ ℝ3 ∶ 𝑧 = ℎ(𝑥, 𝑡)
}

, (1.11)

with

‖∇ℎ(⋅, 𝑡)‖∞ ≤ 1. (1.12)

Finally, for 𝑡 ≥ 𝑇𝑔, the dissipation and height function ℎ satisfy

𝐷(𝑡) ≲
( 𝑡

2

)
𝑡

(1.13)
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 5

and

‖ℎ‖∞ + 𝑡
1

3 ‖∇ℎ‖∞ ≲
0 + 

3

2

0

𝑡
2

3

, respectively. (1.14)

Remark 1.4 (Notation). In order to get straight to the discussion of the main result, we rele-
gate a discussion of the (hopefully rather natural) notation—including the order notation ∼, ≲

etcetera—to Subsection 1.4. The meticulous or skeptical reader may want to start there.

Remark 1.5 (Uniqueness). We do not require uniqueness, and the result is true for anyweak solu-
tion. Once the solution has become a graph with small Lipschitz constant, we expect uniqueness
to hold (see the discussion in Subsection 1.1, below), but we do not require it for our result.

Remark 1.6 (Dimension-dependent rates in the full-space problem). Because we work on the full
space, there is no spectral gap for the linearized evolution and the algebraic rates are optimal; see
Subsection 1.2. Unlike the generic exponential rates that one obtains on compact domains, the
algebraic decay rates in (1.10), (1.13), and (1.14) are dimension-dependent (see also Proposition 2.3)
and in this sense reflect the structure of the evolution.

Remark 1.7 (Flat initial data). The 𝐿1 bound (1.9) reflects the linear behavior when

0 ≲ 
2

3

0 , (1.15)

in the sense that the nonlinear system obeys the same bound  ≲ 0 satisfied by the linearization
(see the discussion in Subsection 1.3.2 below). The condition (1.15) is a properly nondimensional
way of imposing approximate flatness of the initial configuration. It does so only on average; it
does not impose a graph structure, let alone of uniformly small slope.

Remark 1.8 (The dimensionless quantity). It is critical for our result that there exists a nondi-
mensional combination of  and 𝐷 whose smallness suffices to control the Lipschitz norm of
the function ℎ. In dimension 𝑑 ≥ 3, the slope cannot be controlled in terms of  and 𝐷 alone
(the quantity 𝐷3 just fails in 𝑑 = 3), and one would need a different approach to obtain Lipschitz
control. The exciting observation of our paper in ambient dimension three (𝑑 = 2) is that the ele-
mentary but critical fact that the dimensionless quantity 𝐷2 becomes small (cf. Lemma 1.10) can
be leveraged to establish generation and propagation of Lipschitz control (cf. Section 4). In
𝑑 = 1, as already exploited in [9], smallness of the dimensionless quantity 2 𝐷 is propagated and
serves to maintain Lipschitz control.

Remark 1.9 (𝑑 = 1). Proposition 2.3 establishes that also in 𝑑 = 1, the solution for appropriate ini-
tial data within the graph setting remains in the graph setting and decays optimally. Additionally,
Proposition 2.1 in 𝑑 = 1 shows that the excess mass remains bounded in terms of the initial values
as expected (at least for a time quantified in terms of the initial excess energy). Hence “all” that is
missing for 𝑑 = 1 is the analogue of Proposition 2.2.
However, we do not believe that the analogue of Theorem 1.3 holds for 𝑑 = 1. Indeed a heuristic

calculation for a flat configuration perturbed only by a round island with radius 𝑅 at distance 𝐿
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6 OTTO et al.

from the interface has dissipation of order (𝑅2 log(𝐿∕𝑅))−1. In particular, the dimensionless quan-
tity scales like 2 𝐷 ∼ (log(𝐿∕𝑅))−1, so that the bound 2 𝐷 ≪ 1 does not exclude islands if 𝑅 ≪ 𝐿

and there can be no analogue of Proposition 2.2 assuring graph structure based on this smallness
condition. In addition, one cannot hope for a relaxation rate of the energy as in (1.10), since the
normal velocity at the island can bemade arbitrarily small by increasing 𝐿 (which changes neither
0 nor 0).

1.1 Review of literature

In the literature, the terms MS and Hele–Shaw are sometimes used interchangeably, but we will
use the convention from [10]. The MS and Hele–Shaw evolutions are related: Their one-phase
formulations coincide, while in the two-phase model, the Hele–Shaw model has normal velocity
given by the (continuous over the boundary Γ) pressure gradient

𝑉 = ∇𝑞 ⋅ 𝑛,

where the pressure is harmonic outsideΓ andhas jumpgiven by themean curvature on the surface{
𝚫𝑞 = 0 in ℝ𝑑+1 ⧵ Γ,

[ 𝑞] = 𝐻 on Γ.

We refer to [10] for details.
We concentrate here on literature about the two-phaseMS evolution and do notmention results

in neighboring areas like the one-phase MS evolution, the mean curvature flow, and the Stefan
problem with Gibbs–Thomson boundary condition. We note but do not comment additionally on
the rich connection to the Cahn–Hilliard equation as a diffuse interface approximation of MS and
corresponding convergence results. For an excellent, broad overview, we refer to the introduction
of [15].

1.1.1 Existence

Most of the available existence results for MS are on bounded domains. We comment separately
on short-time and long-time results.
Short-time existence results for MS on bounded domains go back to [7] for weak solutions in

𝑑 + 1 = 2 dimensions, and to [8, 12] for strong solutions in arbitrary dimension. As mentioned
above, starting from non-connected initial data, components can merge or vanish. Even worse:
starting from connected initial data, the evolution can produce non-connected phases. Thus the
evolution is expected to be non-smooth at least at finitely many points in time, which poses a
natural restriction on the existence time of strong solutions. Very recently, [11] proves short-time
existence of strong solutions in the whole space in the graph setting in 𝑑 + 1 = 2. This is the only
existence result on unbounded domains of which we are aware.
Even though non-smooth events are expected during the evolution and need to be incorporated

in a weak solution concept, the important properties of surface reduction and (signed) mass
conservation are maintained across these events. Long-time existence of weak solutions via
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 7

approximation by minimizing movements is proved in the BV setting in [19] with an additional
assumption on the convergence of the energy. Building on results by Schätzle [26], the existence of
varifold solutions that “contain” BV solutions is proved in [25] without the additional assumption.
The recent work [15] provides long-time existence of weak gradient flow solutions that satisfy a
De Giorgi type inequality for energy and dissipation; in particular an inequality corresponding
to (1.7) (with factor 1

2
) holds true. These solutions satisfy a weak-strong uniqueness principle due

to [14].
A combination of [11, 15], and [14] is our justification for Hypothesis (H): Due to [15] it seems

reasonable that weak solutions satisfying the correct dissipation behavior also exist on the whole
space. An extension of [11] to 𝑑 + 1 = 3 dimensions seems possible albeit challenging; in this case
the long-time existence of a strong solution would be guaranteed by our uniform control of the
dissipation, and weak-strong uniqueness would guarantee that a solution remains smooth once
it has become regular.

1.1.2 Ostwald ripening

Ostwald ripening consists of the coarsening of initial configurations in which many small, nearly
spherical islands of one of the phases are present. The larger islands grow at the expense of the
smaller ones, which eventually disappear. During this process the number of connected compo-
nents decreases and the average size of islands grows until only the largest component (in our
case unbounded) remains. We refer to [2, 21] and the references mentioned therein for a detailed
analysis of this stage of the evolution.
Our result includes the regime of Ostwald ripening: One can consider initial configurations

in which the unbounded components of positive and/or negative phase are complemented by
spherical or nearly spherical islands of the opposite phase—or initial data that flows into such
a regime.

1.1.3 Relaxation rates

We are interested in capturing and quantifying convergence to the longtime limit. On bounded
domains, convergence to the groundstate is exponential (see Remark 1.6) since the linearization
exhibits a spectral gap. This is made rigorous in [7, 13] where exponential convergence is proved
(in 𝑑 + 1 = 2 and 𝑑 + 1 ≥ 2, respectively) for initial data that are close to a ball in a strong sense. In
[18] exponential convergence to a collection of equally sized discs is proved for a so-called flat flow
solution of MS on the torus of dimension 𝑑 + 1 = 2. They consider a large class of initial data and
theirmethod relies on a quantitativeAlexandrov SoapBubble Theorem.An existence and stability
analysis for an interface with 𝜋

2
contact angle at the boundary of the domain is conducted in [1,

17] (in 𝑑 + 1 = 2, 3 and 𝑑 + 1 = 2, respectively), including exponential stability for minimizers in
appropriate situations.
Regarding convergence rates for the whole space problem, where no spectral gap is available, a

relaxation result in 𝑑 + 1 = 2 is established in [9] in terms of the energy gap, the dissipation, and
the squared 𝐻̇−1 distance

 ∶= ‖𝜒(0)‖2
𝐻̇−1
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8 OTTO et al.

associated to the gradient flow. The assumptions on the initial data are 2
0 𝐷0 ≪ 1, that Γ0 is the

graph of a function ℎ(0) with ‖ℎ𝑥 (0)‖∞ ≤ 1, and

0 ∶= ‖𝜒(0)‖2
𝐻̇−1

< ∞

(rather than 0 < ∞). Exploiting a method introduced in [24], the method makes use of

 ≲  1

2 𝐷
1

2

to obtain the decay rates

 ≲
0

𝑡
, 𝐷 ≲

0

𝑡2
, (1.16)

which are the same algebraic decay rates as pointed out by Brezis [6] for a gradient flow with
respect to a convex energy. A corollary is the control

‖ℎ‖∞ + 𝑡
1

3 ‖∇ℎ‖∞ ≲
0

𝑡
1

3

.

Although the 𝑡−1 decay rate of the energy from (1.16) is the same algebraic rate that we will
obtain for 𝑑 = 1 in Proposition 2.3 below, the 𝐿1 approach yields a stronger result for compactly
supported perturbations, since it allows non-neutral perturbations of the halfspace, whereas0 <

∞ implies ∫
ℝ𝑑 ℎ0 d𝑥 = 0.

In 𝑑 = 2, our 𝐿1 result picks up the faster dimension-dependent decay, while the method of [9]
is blind to the dimension.
The most important distinction to be drawn between [9] and the present work is that here, for

𝑑 = 2, we show that the graph structure and Lipschitz bound on the height are generated by the
dynamics, whereas, in [9] this is an assumption on the initial data. We remark that convergence
rate results for MS for non-perturbative, non-graph initial data are extremely rare; to the best of
our knowledge, there is only [18] for flat flow solutions in two dimensions (without resolving
dependence of the rate on the initial data) and the present work.
The 𝐿1 method used here was previously introduced to establish relaxation results for the one-

dimensional Cahn–Hilliard equation [5, 23], and is shown here to be a useful tool for obtaining
sharp relaxation rates for geometric evolutions.

1.2 Discussion of optimality

The rates in (1.14) are optimal: It is exactly these rates that hold for the geometrically linearized
problem. In order to see this, consider

−𝚫𝑓 = 0 in ℝ𝑑 × {𝑧 > 0}, (1.17)

𝑓 = Δℎ on ℝ𝑑 × {𝑧 = 0}, (1.18)

ℎ𝑡 = −2𝑓𝑧 on ℝ𝑑 × {𝑧 = 0}, (1.19)

ℎ(0) = ℎ0 on ℝ𝑑 × {𝑧 = 0}, (1.20)
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 9

where the flat geometry is fixed and decoupled from ℎ. The boundary values for 𝑓 are imposed by
ℎ in form of the linearized expression for the mean curvature (cf. 5.2) and the jump of the normal
derivative of 𝑓 at the flat interface determines the linearization of the normal velocity, which is
just ℎ𝑡 (cf. 5.3).
In order to solve problem (1.17)–(1.20), we Fourier transform (1.17) and (1.18) in the 𝑥 variable

and deduce:

−𝜕2
𝑧𝑧 𝑓(𝑘, 𝑧) = −|𝑘|2 𝑓(𝑘, 𝑧),

𝑓(𝑘, 0) = −|𝑘|2 ℎ̂(𝑘),

where 𝑘 is the tangential wavenumber and 𝑓 and ℎ̂ are the Fourier-transform of 𝑓 and ℎ in
the tangential direction, respectively. Combining this with the growth condition on 𝑓(𝑘, 𝑧) from‖∇𝑓‖𝐿2 (ℝ𝑑+1 ⧵{𝑧=0}) < ∞, we obtain

𝑓(𝑘, 𝑧) = − exp(− |𝑘| 𝑧)|𝑘|2 ℎ̂(𝑘).

Finally, using (1.19), we arrive at the closed equation

𝜕𝑡 ℎ̂ + 2|𝑘|3 ℎ̂ = 0. (1.21)

By the above computation we see that the Dirichlet-to-Neumann map 𝐴 ∶ 𝑓 ↦ −𝑓𝑧 on ℝ𝑑 is
represented by the multiplier |𝑘| in Fourier-space which is why we denote |∇| ∶= 𝐴. With this
notation (1.21) can be written in physical space as

𝜕𝑡 ℎ − 2|∇|Δℎ = 0, (1.22)

and the Fourier symbol of −2|∇|Δ is exactly given by 2|𝑘|3 in the tangential wave number 𝑘. From
the Fourier representation one obtains

ℎ̂(𝑡) = 𝐺̂(𝑡)ℎ̂0 ,

with 𝐺̂(𝑡, 𝑘) = exp(−2 |𝑘|3 𝑡). Thus, ℎ itself is given by

ℎ(𝑡) = 𝐺(𝑡) ∗ ℎ0 ,

where

𝐺(𝑡, 𝑥) =
1

𝑡
𝑑

3

𝐺̃

(
𝑥

𝑡
1

3

)
(1.23)

for some profile 𝐺̃ = 𝐺(1). In particular

‖𝐺̂(𝑡)‖1 ≲ 𝑡
−

𝑑

3 , ‖ |𝑘|𝐺̂(𝑡)‖1 ≲ 𝑡
−

𝑑+1

3 ,

which together with the estimates

‖ℎ‖∞ ≤ ‖𝐺‖∞‖ℎ0‖1 ≲ ‖𝐺̂‖1‖ℎ0‖1 ,

‖∇ℎ‖∞ ≤ ‖∇𝐺‖∞‖ℎ0‖1 ≲ ‖ |𝑘|𝐺̂‖1‖ℎ0‖1 ,
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10 OTTO et al.

yields

‖ℎ‖∞ + 𝑡
1

3 ‖∇ℎ‖∞ ≲ 𝑡
−

𝑑

3 ∫
ℝ𝑑

|ℎ0| d𝑥.

Hence, initial data in 𝐿1 lead to an 𝐿∞ decay of 𝑡
−

𝑑

3 , which is precisely the decay captured in (1.14).

1.3 Method

There are two things to explain: Where does the graph structure come from and how are the
relaxation rates obtained?

1.3.1 Graph structure

We begin with the former. It is an elementary observation that

Lemma 1.10. For every 𝜀 there exists 𝑇𝑔 ≤ 2

3
√

𝜀


3

2

0 such that

(𝐷2
)

(𝑇𝑔 ) ≤ 𝜀. (1.24)

Proof. The proof follows using 𝑇 =
2

3
√

𝜀


3

2

0 and the inequality almost everywhere in time:

(𝐷2 )
1

2 =  1

2 𝐷
(1.6)≤ −

2

3

d

d𝑡
 3

2 . (1.25)

Then since  and hence  3

2 is nonincreasing, we deduce

inf
𝑡≤𝑇

(𝐷2
) 1

2 ≤ 1

𝑇 ∫
𝑇

0

(𝐷2 )
1∕2

d𝑡
(1.25)≤ 2

3𝑇


3

2

0 = 𝜀
1

2 .
□

For 𝜀 sufficiently small, 𝐷2 ≤ 𝜀 implies graph structure of Γ and the Lipschitz control

‖∇ℎ‖∞ ≲ (𝐷2 )
1

6 , (1.26)

which we show using on the one hand results of Meyers and Ziemer [20, 29] and Schätzle [26] to
establish local control on the 𝐿𝑝 norm of the mean curvature 𝐻, and on the other hand Allard’s
regularity theory [3] to convert 𝐿𝑝 control of the curvature into graph structure and Lipschitz
continuity with respect to the plane {𝑧 = 0}. An interpolation between small scale control of 𝐻

via 𝐷 and large scale control of the comparison plane via  yields exactly (1.26).
Based on (1.26), we will distinguish between an initial layer in time, where boundedness of the

energy will suffice, and the small slope regime

‖∇ℎ‖∞ ≪ 1, (1.27)
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 11

where decay of energy and dissipation will be established and exploited. In the regime (1.27), we
leverage the control of 𝐷, 𝐷2 to deduce

‖∇2 ℎ‖𝑝 ≲  4−𝑝

6𝑝 𝐷
2(𝑝−1)

3𝑝 (1.28)

for a suitable𝑝 ∈ (2, 4). This we derive by appealing to a trace-Sobolev estimate and aMeyers-type
perturbative argument.
We then consider the dissipation of the dissipation; based on (1.28), we establish the differential

inequality

d

d𝑡
𝐷 ≲ 𝐷4 .

Together with (1.6), this immediately implies

d

d𝑡
(𝐷2 ) ≤ 0 for 𝑡 ≥ 𝑇𝑔 , (1.29)

so that 𝐷2 ≪ 1 and hence also graph structure and the small slope regime are preserved.

1.3.2 Relaxation rates via Nash and 𝐿1 control

As far as the relaxation in time, the core idea is to use a Nash-type estimate controlling  in terms
of the 𝐿1-distance  and the dissipation 𝐷:

 ≲  6

7 𝐷
4

7 ,

which is not hard to show. If  remains bounded, then this algebraic relation combined with
the differential equation (1.6) yields a differential inequality for the excess energy, which implies
(1.10). Hence our main mathematical contribution is a duality argument that shows that  does
not increase too much:

 ≲ 0 + 
3

2

0 . (1.30)

One can view this result in the following way: Although the evolution is not initially in a per-
turbative regime and thus behaves genuinely nonlinearly, the gradient flow structure imbues the
problem with an inherent relaxation towards the linear regime. We show with the duality argu-
ment that one can leverage this relaxation to capitalize on the linearization even in the initial
nonlinear stage—essentially because the evolution does not move away from the linear regime that
much.
In both the initial layer and the small slope regime, we employ a duality argument inspired by

[22] and used previously in the 𝐿1-method developed and employed in [5, 23]. The earliest use of
this duality method may be the adjoint method of Evans used by Evans, Tran, and others in the
context of Hamilton–Jacobi equations; see [16] and the citing references.
The duality argument is a nonlinear generalization of a duality argument for the linearization

(1.22), which we will explain in the remainder of this subsection. The main task for the duality
arguments of our paper will hence be to estimate the linearization errors in the right way.
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12 OTTO et al.

But for now, let us look at the linear case. To see that (1.30) is true for the linear problem in any
dimension, that is, that the 𝐿1-norm of ℎ is controlled in terms of the initial data, it is enough to
use

‖ℎ‖1 ≤ ‖𝐺‖1‖ℎ0‖1

in combination with the fact that 𝐺 is bounded in 𝐿1 uniformly in 𝑡. This in turn follows from
(1.23) and the 𝐿1 control of the mask 𝐺̃, which is smooth and decays with rate

|𝑥|−𝑑−1 for large 𝑥. (1.31)

The decay can be derived via integration by parts as in

(2𝜋)
𝑑

2 |𝑥|𝑑+1
𝐺̃(𝑥) = ∫

ℝ𝑑

|𝑥|𝑑+1
𝑒𝑖𝑥⋅𝑘 𝑒−2|𝑘|3 d𝑘

= −6𝑖 ∫
ℝ𝑑

|𝑥|𝑑−1
𝑒𝑖𝑥⋅𝑘 𝑥 ⋅ 𝑘|𝑘|𝑒−2|𝑘|3 d𝑘,

repeating 𝑑 more times and observing that |𝑘|3 is (𝑑 + 1)-times weakly differentiable.
This approach is not well-suited for generalization to nonlinear equations. Hence, we turn

instead to the dual characterization of the 𝐿1 norm via

‖ℎ(𝑇)‖1 = ∫
ℝ𝑑

|ℎ(𝑇)| d𝑥 = sup
𝜓∈𝐿∞ (ℝ𝑑 ),‖𝜓‖∞≤1 ∫ℝ𝑑

ℎ(𝑇)𝜓 d𝑥

and the dual or adjoint equation with terminal data 𝜓:

𝜕𝑡 𝑢 + 2|∇|Δ𝑢 = 0 on [0, 𝑇) × ℝ𝑑 ,

𝑢(𝑇) = 𝜓 on ℝ𝑑 ,

for which solutions exist, which can be seen by applying the kernel 𝐺 backwards in time. For
reference below, the property ‖𝐺‖1 < ∞ yields

‖𝑢(𝑡 = 0)‖∞ ≲ ‖𝜓‖∞ . (1.32)

The idea is now to introduce the harmonic extension 𝑢̄ of 𝑢 to ℝ𝑑 × {𝑧 > 0}, which satisfies

−𝜕𝑡 𝑢̄ + 2𝜕𝑧 Δ𝑢̄ = 0 on (0, 𝑇) × ℝ𝑑 , (1.33)

−𝚫𝑢̄ = 0 on (0, 𝑇) × ℝ𝑑 × {𝑧 > 0}, (1.34)

𝑢̄(𝑇) = 𝜓 on ℝ𝑑 , (1.35)

and analogously for the harmonic extension ℎ̄ of the function ℎ satisfying (1.22).
Using (1.33) and the corresponding equation for ℎ̄, we calculate

d

d𝑡 ∫
ℝ𝑑

𝑢ℎ d𝑥 =
d

d𝑡 ∫
ℝ𝑑

𝑢̄ℎ̄ d𝑥 = 2 ∫
ℝ𝑑

(𝜕𝑧 Δ𝑢̄)ℎ̄ − 𝑢̄(𝜕𝑧 Δℎ̄) d𝑥

= 2 ∫
ℝ𝑑

𝜕𝑧 𝑢̄Δℎ̄ − 𝑢̄𝜕𝑧 Δℎ̄ d𝑥
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 13

(1.34)
= −2 ∫

(𝑧>0)

𝛁𝑢̄ ⋅ 𝛁Δℎ̄ − 𝛁𝑢̄ ⋅ 𝛁Δℎ̄ d𝑥

= 0, (1.36)

and deduce

∫
ℝ𝑑

ℎ(𝑇)𝜓 d𝑥 = ∫
ℝ𝑑

ℎ0 𝑢(0) d𝑥
(1.32)

≲ ‖ℎ0‖1‖𝜓‖∞ .

Taking the supremum over all 𝜓 with ‖𝜓‖∞ ≤ 1 gives ‖ℎ‖1 ≲ ‖ℎ0‖1. Applying this argument to a
nonlinear perturbation of (1.22) leads to a nontrivial right-hand side in (1.36), for which suitable
estimates are required. The advantage of themethod is that it isolates and quantifies the nonlinear
behavior, since the linear contributions cancel. This is the approach that we will use to establish
𝐿1 control.

1.4 Notation and organization

Notation 1.11 (Time-dependent functionals). We explicitly denote the 𝑡-dependence of the quan-
tities Γ,  , 𝐷,  only when we occasionally want to draw attention to it. We denote the initial
values with index 0:

Γ0 , 0 , 𝐷0 , 0 .

Notation 1.12 (Gradients and such). We use regular and boldface font to distinguish between 𝑑-
dimensional and (𝑑 + 1)-dimensional objects. We use d𝑥 to note integration with respect to the
𝑑-dimensional Lebesgue measure over 𝑥 ∈ ℝ𝑑 and ∇, Δ to denote the gradient and Laplacian
with respect to 𝑥; for the (𝑑 + 1)-dimensional measure, gradient, and Laplacian, we use d𝐱, 𝛁,
and 𝚫:

d𝐱 = d𝑥 𝑑𝑧, 𝛁𝑓 =

(
∇𝑓

𝜕𝑧 𝑓

)
, 𝚫 ∶= Δ + 𝜕𝑧𝑧 .

We refer to 𝑥 as the tangential variable.

Notation 1.13 (Norms). Our convention is to denote norms on the interface explicitly and suppress
the domain on ℝ𝑑, for example,

‖𝑔‖𝐿𝑝 (Γ) , ‖𝑔‖𝑝 = ‖𝑔‖𝐿𝑝 (ℝ𝑑 ) ,

except when ℝ𝑑 is made explicit for emphasis.

Notation 1.14 (Jump). For a quantity 𝑞 ∶ ℝ𝑑 → ℝ that is defined on both Ω+ and Ω− and has a
well-defined trace 𝑞+ and 𝑞− on Γ from each side, respectively, we denote the jump by

[𝑞] ∶= 𝑞+ − 𝑞− .
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14 OTTO et al.

Notation 1.15 (Minimum). We occasionally use the notation

𝐴 ∧ 𝐵 ∶= min{𝐴, 𝐵}.

Notation 1.16 (Order). For 𝐵 ≥ 0, we use the notation

𝐴 ≲ 𝐵

if there exists a universal constant 𝐶 ∈ (0, ∞) depending at most on the dimension 𝑑, such that
𝐴 ≤ 𝐶𝐵. If for 𝐴, 𝐵 ≥ 0 there holds 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴, we write 𝐴 ∼ 𝐵.
We say

𝐴 ≲ 𝐵 implies 𝐸 ≲ 𝐹

if for every 𝐶1 < ∞ there exists 𝐶2 < ∞ such that

𝐴 ≤ 𝐶1 𝐵 implies 𝐸 ≤ 𝐶2 𝐹,

and analogously for statements involving 𝐴 ∼ 𝐵 or 𝐸 ∼ 𝐹.

Notation 1.17. When we say let  and  be finite, we mean that there exists a set Ω+ of locally
finite perimeter with reduced boundary Γ and that the associated excess mass and excess energy
are finite.

1.4.1 Organization

The rest of the paper is organized as follows. Section 2 announces the three central propositions
(which will be proved in Sections 3, 4, and 5) and establishes the main theorem based on these
results. Section 3 establishes control of the excessmass in the initial layer. Section 4 proves that the
graph regime and Lipschitz control are reached by time 𝑇𝑔. Finally, Section 5 establishes control
and decay for later times 𝑡 > 𝑇𝑔. A few auxiliary results are gathered in the appendix.

2 CENTRAL PROPOSITIONS AND PROOF OFMAIN THEOREM

As described in Subsection 1.3, in the initial layer wewill usemerely  ≤ 0 but need an argument
to control  ; the result is recorded in Proposition 2.1.

Proposition 2.1. Let 𝑑 = 2 or 𝑑 = 1. Within the setting of Theorem 1.3 and for any 𝑇 ≲ 
3

𝑑

0 , there
holds

sup
0≤𝑡≤𝑇

(𝑡) ≲ 0 + 
𝑑+1

𝑑

0 . (2.1)

The next main ingredient in 𝑑 = 2 is to show that a graph structure is achieved once 𝐷2 is
small enough.
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 15

Proposition 2.2. Let 𝑑 = 2. Let Γ be the reduced boundary of a set Ω+ of locally finite perimeter
and suppose finite excess energy  and dissipation 𝐷. There exists 𝜀1 > 0 such that if 𝐷2 ≤ 𝜀1, then
there exists a Lipschitz function ℎ ∶ ℝ2 → ℝ such that

Γ = {(𝑥, 𝑧) ∶ 𝑥 ∈ ℝ2 , 𝑧 = ℎ(𝑥)} and ‖∇ℎ‖∞ ≲ (𝐷2 )
1

6 . (2.2)

We will use Lemma 1.10 with an 𝜀 small enough so that Proposition 2.2 identifies a time
𝑇𝑔 ≲ 3∕2

0 such that graph structure is achieved. In addition, as described in Subsection 1.3, we
will choose 𝜀 sufficiently small so that (1.29) and the control from (2.2) locks the dynamics within
the small slope regime. The next and final proposition encapsulates relaxation to flat for graphs
with small Lipschitz norm. We use this in Theorem 1.3 in 𝑑 = 2 to establish relaxation once
the evolution has entered the graph setting; in 𝑑 = 1, the proposition says that for initial data
as given, the relaxation rates hold. We state it as a “stand-alone result” since it already gives a
stronger relaxation result for the graph setting in 𝑑 = 1 than has previously been established (see
Subsection 1.1).

Proposition 2.3. Let𝑑 = 2 or𝑑 = 1. There exists 𝜀2 > 0with the following property. Consider the the
MSdynamics under the hypothesis (H) in the graph setting, that is, whereΓ0 is the graph of a function
ℎ0 ∶ ℝ𝑑 → ℝ. If 3−𝑑

0 𝐷𝑑
0 ≤ 𝜀2 and ‖∇ℎ0‖∞ ≤ 1, then Γ remains a graph satisfying ‖∇ℎ‖∞ ≤ 1 and

 ≲ 0 + 
𝑑+1

𝑑

0 , (2.3)

 ≲ min

⎧⎪⎨⎪⎩0 ,
2

0 + 
2(𝑑+1)

𝑑

0

𝑡
𝑑+2

3

⎫⎪⎬⎪⎭ (2.4)

hold for all future times. In addition there exists 𝑇diss ∼ 
3

𝑑

0 such that

𝐷(𝑡) ≲
( 𝑡

2

)
𝑡

, (2.5)

‖ℎ‖∞ + 𝑡
1

3 ‖∇ℎ‖∞ ≲
0 + 

𝑑+1

𝑑

0

𝑡
𝑑

3

(2.6)

holds for all 𝑡 ≥ 𝑇diss.

Proof of Theorem 1.3. We fix 𝜀 ∶= min{𝜀1 , 𝜀2 } for the constants 𝜀1 and 𝜀2 from Propositions 2.2 and
2.3. If necessary we reduce 𝜀 additionally so that for the implicit constant on the right-hand side
of (2.2), there holds

‖∇ℎ‖∞ ≤ 𝐶(𝐷2 )
1

6 ≤ 1.

For this 𝜀 > 0, we apply Lemma 1.10 to define 𝑇𝑔 ≲ 3∕2
0 so that

𝐷2 (𝑇𝑔 ) ≤ 𝜀.
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16 OTTO et al.

On [0, 𝑇𝑔 ], we use Proposition 2.1 to control

sup
0≤𝑡≤𝑇𝑔

(𝑡) ≲ 0 + 
3

2

0 . (2.7)

By choice of 𝜀, Proposition 2.2 yields that the interface at time 𝑇𝑔 is a graph, and for 𝑡 ≥ 𝑇𝑔

Proposition 2.3 yields that the excess mass is bounded by

 ≲ (𝑇𝑔 ) + (𝑇𝑔 )
3

2

(1.8)(2.7)

≲ 0 + 
3

2

0 for 𝑡 ≥ 𝑇𝑔 ,

and the energy decays according to

 ≲ min

⎧⎪⎨⎪⎩0 ,
(𝑇𝑔 )2 + (𝑇𝑔 )3

(𝑡 − 𝑇𝑔 )
4

3

⎫⎪⎬⎪⎭
(1.8)(2.7)

≲ min

⎧⎪⎨⎪⎩0 ,
2

0 + 3
0

(𝑡 − 𝑇𝑔 )
4

3

⎫⎪⎬⎪⎭ for 𝑡 ≥ 𝑇𝑔 . (2.8)

In view of

3
0

𝑡
4

3

≳ 0 for 𝑡 ≲ 
3

2

0 ,

(1.8) and (2.8) combine to give (1.10).
Increasing from 𝑇𝑔 to 2(𝑇𝑔 + 𝑇diss) for 𝑇diss from Proposition 2.3, we again argue as for (2.7) to

control  up to this point and then use (2.5)–(2.6) to obtain (1.13)–(1.14). □

3 CONTROL OF THE INITIAL LAYER

This section is devoted to the proof of Proposition 2.1. Throughout the section wewill let 𝑑 ∈ {1, 2}

and 𝜒 be as defined in (1.1).
We represent  via duality in the form

 = sup
𝜓∈𝐿∞ (ℝ𝑑+1 ),‖𝜓‖∞≤1 ∫ℝ𝑑+1

𝜓𝜒 d𝐱 = sup
𝜓∈𝐶∞

𝑐 (ℝ𝑑+1 ),‖𝜓‖∞≤1 ∫ℝ𝑑+1

𝜓𝜒 d𝐱, (3.1)

because it will be convenient below to work with smooth and compactly supported test functions.
(The restriction can be justified by passing to the limit in a standard cut-off and mollification
argument.) Rather than work with test functions on ℝ𝑑+1, it will be convenient to argue for (2.1)
by way of the following modified version of the excess mass

 ∶= sup
𝜓∈𝐿∞ (ℝ𝑑 ),‖𝜓‖∞≤1 ∫ℝ𝑑+1

𝜓̄𝜒 d𝐱 = sup
𝜓∈𝐶∞

𝑐 (ℝ𝑑 ),‖𝜓‖∞≤1 ∫ℝ𝑑+1

𝜓̄𝜒 d𝐱, (3.2)

where 𝜓̄ is the harmonic extension of 𝜓 (and the second equality is justified as in (3.1)). Control
of  will deliver control of  using
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 17

Lemma 3.1. If  ,  < ∞, then

 ≲  +  𝑑+1

𝑑 . (3.3)

As explained in Section 1.3, the idea to bound  is to introduce the adjoint harmonic extension
𝑢̄ of 𝜓 using (1.33)–(1.35) and to estimate d

d𝑡
∫

ℝ𝑑+1 𝜒𝑢̄ d𝐱. In the following auxiliary lemmawe split
the error and announce the corresponding estimates.We denote by 𝑢̃ and 𝑣 the constant extensions
in the 𝑧-direction of 𝑢 and 𝑣 = − |∇|𝑢 to ℝ𝑑+1.

Lemma 3.2 (Splitting the error and preprocessing). Let 𝑇 > 0, 𝜓 ∈ 𝐶∞
𝑐 (ℝ𝑑 ) with ‖𝜓‖∞ ≤ 1, and

let 𝑢̄ satisfy (1.33)–(1.35), extended by even reflection to ℝ𝑑 × {𝑧 < 0}. There holds(
∫

ℝ𝑑+1

𝜒𝑢̄ d𝐱

)
(𝑇) −

(
∫

ℝ𝑑+1

𝜒𝑢̄ d𝐱

)
(0)

= ∫
𝑇

0

(
2 ∫

ℝ𝑑+1

𝜒𝑣𝜕𝑧 𝑓 d𝐱 − 2 ∫
Γ

(1 − 𝑒𝑧 ⋅ 𝑛)(𝛁𝑣 ⋅ 𝑛) d𝑆 + ∫
ℝ𝑑+1

𝜒(𝜕𝑡 𝑢̄ − 𝜕𝑡 𝑢̃) d𝐱

)
d𝑡. (3.4)

Moreover, the error terms can be estimated for almost every 𝑡 as

𝐴1 ∶=
|||||2 ∫

ℝ𝑑+1

𝜒 𝑣 𝜕𝑧 𝑓 d𝐱
||||| ≲

 1

2 𝐷
1

2

(𝑇 − 𝑡)
1

3

, (3.5)

𝐴2 ∶=
|||||2 ∫

Γ

(1 − 𝑒𝑧 ⋅ 𝑛)(𝛁𝑣 ⋅ 𝑛) d𝑆
||||| ≲


(𝑇 − 𝑡)

2

3

, (3.6)

𝐴3 ∶=
|||||∫ℝ𝑑+1

𝜒 (𝜕𝑡 𝑢̄ − 𝜕𝑡 𝑢̃) d𝐱
||||| ≲

 1

2  1

2

(𝑇 − 𝑡)
5

6

+


(𝑇 − 𝑡)
2

3

. (3.7)

For the proof of Proposition 2.1 it will be convenient to use the notation:

𝑇 ∶= sup
𝑡∈[0,𝑇]

(𝑡), 𝑇 ∶= sup
𝑡∈[0,𝑇]

(𝑡). (3.8)

Proof of Proposition 2.1. For given 𝜓 ∈ 𝐶∞
𝑐 (ℝ𝑑 ) with ‖𝜓‖∞ ≤ 1 and 𝑇 > 0, let 𝑢̄ be the solution to

(1.33)–(1.35). Using Lemma 3.2 we write

(
∫

ℝ𝑑+1

𝜓̄𝜒 d𝐱

)
(𝑇) ≤

(
∫

ℝ𝑑+1

𝑢̄𝜒 d𝐱

)
(0) + ∫

𝑇

0

𝐴1 + 𝐴2 + 𝐴3 d𝑡.

Employing the estimates (3.5)–(3.7), taking the supremum over 𝜓, and using (A.3) in the form‖𝑢̄‖∞ ≤ ‖𝜓‖∞ ≤ 1, we obtain

(𝑇) ≤ 0 + 𝐶 ∫
𝑇

0

(𝑇 − 𝑡)
−

1

3  1

2 𝐷
1

2 + (𝑇 − 𝑡)
−

2

3  + (𝑇 − 𝑡)
−

5

6  1

2  1

2 d𝑡. (3.9)
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18 OTTO et al.

It remains to estimate the time integral, which we do term by term:

∫
𝑇

0

(𝑇 − 𝑡)
−

1

3  1

2 𝐷
1

2 d𝑡 ≲ 
1

2

𝑇

(
∫

𝑇

0

(𝑇 − 𝑡)
−

2

3 d𝑡 ∫
𝑇

0

𝐷 d𝑡

) 1

2

≲ 
1

2

𝑇

(
𝑇

1

3 0

) 1

2

,

∫
𝑇

0

(𝑇 − 𝑡)
−

2

3  d𝑡 ≲ 0 ∫
𝑇

0

(𝑇 − 𝑡)
−

2

3 d𝑡 ≲ 𝑇
1

3 0 ,

∫
𝑇

0

(𝑇 − 𝑡)
−

5

6  1

2  1

2 d𝑡 ≲ 
1

2
𝑇 

1

2

0 ∫
𝑇

0

(𝑇 − 𝑡)
−

5

6 d𝑡 ≲ 
1

2
𝑇 

1

2

0 𝑇
1

6 .

Inserting the right-hand sides with 𝑇 ≲ 
3

𝑑

0 into (3.9), using Lemma 3.1, and applying Young’s
inequality yields

(𝑇) ≤ 0 +
1

2
𝑇 + 𝐶

𝑑+1

𝑑

0 .

Taking the supremum in 𝑇, absorbing the second term from the right-hand side in the left-hand
side, and again applying Lemma 3.1 yields the result. □

3.1 Proofs of auxiliary statements

For the proof of Lemma 3.1, we will need one technical lemma, which we state here and prove
after establishing Lemma 3.1.

Lemma 3.3. If  ,  < ∞, then

∫
Γ

|𝑛′|2 d𝑆 ≲  , (3.10)

where 𝑛′ = 𝑛 − (𝑛 ⋅ 𝑒𝑧 )𝑒𝑧. Furthermore, for 𝑅 > 0, there holds

∫
Γ

(|𝑧| ∧ 𝑅)2 d𝑆 ≲ 𝑅 + 𝑅2 , (3.11)

where we recall the notation |𝑧| ∧ 𝑅 = min{|𝑧| , 𝑅}.

Proof of Lemma 3.1. It will be useful to introduce the intermediary functional

̃ ∶= sup
𝜓∈𝐿∞ (ℝ𝑑 ),‖𝜓‖∞≤1 ∫ℝ𝑑+1

𝜓̃𝜒 d𝐱,

where as usual 𝜓̃ denotes the constant extension of 𝜓 and we again recall the definition of 𝜒 from
(1.1).
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 19

The proof consists of several steps and makes use of a cut-off lengthscale 𝑅 > 0, corresponding
to which we define

𝑅 ∶= ∫
ℝ𝑑 ×{|𝑧|≤𝑅}

|𝜒| d𝐱, ̃𝑅 = sup
𝜓∈𝐿∞ (ℝ𝑑 ),‖𝜓‖∞≤1 ∫ℝ𝑑 ×{|𝑧|≤𝑅}

𝜓̃𝜒 d𝐱,

and analogously for 𝑅 (cf. 3.2).
It suffices to show:

Step 1: There exists 𝐶0 < ∞ such that for any 𝑅 ≥ 𝐶0
1

𝑑+1 , there holds

 − 𝑅 ≲  𝑑+1

𝑑 . (3.12)

Step 2: For any 𝑅 ≥ 0 there holds

𝑅 − ̃𝑅 ≲  𝑑+1

𝑑 . (3.13)

Step 3: There exists 𝐶 < ∞ such that for any 𝑅 ∼  1

𝑑+1 , there holds

̃𝑅 − 𝑅 ≤ 1

2
 + 𝐶 𝑑+1

𝑑 . (3.14)

Indeed, choosing 𝐶0 from Step 1 and 𝑅 = 𝐶0
1

𝑑+1 , it follows that

 (3.12)≤ 𝑅 + 𝐶 𝑑+1

𝑑

(3.13)≤ ̃𝑅 + 𝐶 𝑑+1

𝑑

(3.14)≤ 1

2
 + 𝑅 + 𝐶 𝑑+1

𝑑 ≤ 1

2
 +  + 𝐶 𝑑+1

𝑑 ,

from which we deduce (3.3).
Step 1: Let

𝜒𝑅 ∶= 𝜒 𝟏ℝ𝑑 ×{|𝑧|≤𝑅} , (3.15)

so that𝑅 = ‖𝜒𝑅‖1. We denote𝛥𝜒 = 𝜒 − 𝜒𝑅 and by𝛥𝑉 = 𝛥𝑉(𝑅) = ‖𝛥𝜒‖1 =  − 𝑅 the portion
of the mass in ℝ𝑑 × {|𝑧| > 𝑅} bounded by Γ and the hyperplanes ℝ𝑑 × {𝑧 = ±𝑅}. Note that 𝛥𝑉 is
monotone and by Fubini’s theorem absolutely continuous with

d𝛥𝑉

d𝑅
= ∫

ℝ𝑑

𝜒(𝑥, 𝑅) − 𝜒(𝑥, −𝑅) d𝑥 ≤ 0 for almost every 𝑅 > 0.

Without loss of generality, wemay assume ≫  𝑑+1

𝑑 (since otherwise (3.12) holds trivially for any
𝑅 ≥ 0).
Letting 𝑅 = ∫

Γ∩(ℝ𝑑 ×{|𝑧|>𝑅})
1 − 𝑒𝑧 ⋅ 𝑛 d𝑆 denote the excess energy of Γ in ℝ𝑑 × {|𝑧| > 𝑅}, we

apply the divergence theorem on the domain
{

(𝑥, 𝑧) ∈ ℝ𝑑+1 ∶ 𝜒(𝑥, 𝑧) ≠ 0, |𝑧| > 𝑅
}
for the

constant function 𝑒𝑧 to derive

𝑅 = ∫
ℝ𝑑 ×{|𝑧|>𝑅}

|𝛁𝜒| d𝐱 +
d𝛥𝑉

d𝑅
, for almost every 𝑅 > 0. (3.16)

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22225, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 OTTO et al.

On the other hand for almost every 𝑅 > 0 there holds

∫
ℝ𝑑+1

|𝛁𝛥𝜒| d𝐱 = ∫
ℝ𝑑 ×{|𝑧|>𝑅}

|𝛁𝜒| d𝐱 −
d𝛥𝑉

d𝑅

(3.16)
= 𝑅 − 2

d𝛥𝑉

d𝑅
.

Clearly

𝑅 − 2
𝑑𝛥𝑉

𝑑𝑅
≤  − 2

𝑑𝛥𝑉

𝑑𝑅
,

so that by the isoperimetric inequality for 𝛥𝜒, we have

𝛥𝑉 ≤ 𝐶

(
 − 2

d𝛥𝑉

d𝑅

) 𝑑+1

𝑑

.

Rewriting this as

−
d𝛥𝑉

d𝑅
≥ 1

𝐶
𝛥𝑉

𝑑

𝑑+1 −
1

2
 ,

and observing that 𝛥𝑉(0) =  , we obtain that as long as 𝛥𝑉 ≥ (𝐶)
𝑑+1

𝑑 , there holds

−
d𝛥𝑉

d𝑅
≥ 1

2𝐶
𝛥𝑉

𝑑

𝑑+1 .

Integration from 0 to 𝑅 yields  1

𝑑+1 − 𝛥𝑉
1

𝑑+1 ≥ 1

2𝐶(𝑑+1)
𝑅 and hence 𝑅 ≤ 2𝐶(𝑑 + 1) 1

𝑑+1 . By

contraposition this implies that for any 𝑅 ≥ 6𝐶 1

𝑑+1 , there holds 𝛥𝑉 ≤ (𝐶)
𝑑+1

𝑑 ≲  𝑑+1

𝑑 .
Step 2: The cut-off plays no role in this step (i.e., the argument is the same for any 𝑅 ≥ 0), so

without loss of generality, we will establish (3.13) for 𝑅 = 0. Integrating out the 𝑧-component, we
define

𝑔(𝑥) ∶= ∫
ℝ

|𝜒|(𝑥, 𝑧) d𝑧, ℎ(𝑥) ∶= ∫
ℝ

𝜒(𝑥, 𝑧) d𝑧,

so that  and ̃ can be represented as

 = ∫
ℝ𝑑

𝑔 d𝑥, ̃ = ∫
ℝ𝑑

|ℎ| d𝑥

and compared by studying the set 𝐹𝑅 ∶=
{

𝑥 ∈ ℝ𝑑 ∶ |𝑥| < 𝑅, |ℎ(𝑥)| < 𝑔(𝑥)
}
.

Naturally |ℎ| ≤ 𝑔. Also because of the structure of 𝜒, there holds

∫
ℝ

|||𝜕𝑧 𝟏Ω+
(𝑥, 𝑧)

||| d𝑧 ≥ 3 on the set 𝐹𝑅 .

Thus, we have

∫
𝐹𝑅 ×ℝ

|||𝛁𝟏Ω+

||| d𝐱 ≥ ∫
𝐹𝑅

∫
ℝ

|||𝜕𝑧 𝟏Ω+
(𝑥, 𝑧)

||| d𝑧 d𝑥 ≥ 3|𝐹𝑅|. (3.17)

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22225, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 21

As usual, by using the divergence theorem on a cylindrical domain over 𝐹𝑅, we have

∫
Γ∩(𝐹𝑅 ×ℝ)

𝑒𝑧 ⋅ 𝑛 d𝑆 = |𝐹𝑅|. (3.18)

Combining these facts, we deduce

 ≥ ∫
Γ∩(𝐹𝑅 ×ℝ)

1 − 𝑒𝑧 ⋅ 𝑛 d𝑆
(3.18)

= ∫
𝐹𝑅 ×ℝ

|||𝛁𝟏Ω+

||| d𝐱 − |𝐹𝑅|
(3.17)≥ 2

3 ∫
𝐹𝑅 ×ℝ

|||𝛁𝟏Ω+

||| d𝐱
(3.17)≥ 2|𝐹𝑅|. (3.19)

As (3.19) is true independently of 𝑅, we conclude that the set 𝐹 ∶= {|ℎ| < 𝑔} has finite measure
and

 ≥ 2

3 ∫
𝐹×ℝ

|||𝛁𝟏Ω+

||| d𝐱. (3.20)

For 𝑤 = 𝑔, ℎ we decompose ∇𝑤 = ∇𝑟 𝑤 + ∇𝑠 𝑤, where ∇𝑟 𝑤 is regular with respect to the
Lebesgue measure and ∇𝑠 𝑤 denotes the singular part. We will show that

∫
𝐹

√|∇𝑟 𝑔|2 + 1 d𝑥 + ∫
𝐹

|∇𝑠 𝑔| d𝑥 ≲ ∫
𝐹×ℝ

|||𝛁𝟏Ω+

||| d𝐱, (3.21)

∫
𝐹

√|∇𝑟 ℎ|2 + 1 d𝑥 + ∫
𝐹

|∇𝑠 ℎ| d𝑥 ≲ ∫
𝐹×ℝ

|||𝛁𝟏Ω+

||| d𝐱, (3.22)

which together with the isoperimetric inequality on {(𝑥, 𝑧) ∶ |ℎ| (𝑥) < 𝑧 < 𝑔(𝑥)} implies

 − ̃ = ∫
ℝ𝑑

(𝑔 − |ℎ|) d𝑥

≲

(
∫

𝐹

√|∇𝑟 𝑔|2 + 1 d𝑥 + ∫
𝐹

|∇𝑠 𝑔| + ∫
𝐹

√|∇𝑟 ℎ|2 + 1 d𝑥 + ∫
𝐹

|∇𝑠 ℎ| d𝑥

) 𝑑+1

𝑑

(3.21)(3.22)

≲

(
∫

𝐹×ℝ

|||𝛁𝟏Ω+

||| d𝐱

) 𝑑+1

𝑑

(3.20)

≲  𝑑+1

𝑑 .

The proof of (3.21) and (3.22) are the same, and we will show (3.21). Notice that we can write
distributionally

∇𝑔(𝑥) = ∫
ℝ

𝜎∇𝟏Ω+
d𝑧,

where 𝜎 = ±1 on (−∞, 0) and (0, ∞), respectively and

1 = ∫
ℝ

𝜕𝑧 𝟏Ω+
d𝑧.
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22 OTTO et al.

Thus, for any 𝜉 ∈ 𝐶∞
𝑐 (ℝ𝑑 ; ℝ𝑑 ), 𝜁 ∈ 𝐶∞

𝑐 (ℝ𝑑 ; ℝ), there holds

∫
ℝ𝑑

𝜉 ⋅ ∇𝑔 + 𝜁 d𝑥 = ∫
ℝ𝑑+1

(
𝜎𝜉 ⋅ ∇𝟏Ω+

+ 𝜁𝜕𝑧 𝟏Ω+

)
d𝐱 ≤ ∫

ℝ𝑑+1

√||𝜉||2 + 𝜁2|||𝛁𝟏Ω+

||| d𝐱.

Taking the supremum over 𝜉, 𝜁 with |𝜉|2 + 𝜁2 ≤ 1 yields the bound in (3.21).
Step 3: We recall the definition of 𝜒𝑅 from (3.15) and denote Γ𝑅 = Γ ∩

(
ℝ𝑑 × {|𝑧| ≤ 𝑅}

)
. We

claim that to establish (3.14), it suffices to show

|||||∫ℝ𝑑+1

𝜒𝑅 (𝜓̃ − 𝜓̄) d𝐱
||||| ≤
(
𝑅 ∫

Γ𝑅

|𝑧||𝑛′| d𝑆

) 1

2

. (3.23)

(Recall our notation 𝑛′ = 𝑛 − (𝑛 ⋅ 𝑒𝑧 )𝑒𝑧.) Indeed, observe that

∫
Γ𝑅

|𝑧||𝑛′| d𝑆 = ∫
Γ𝑅

(|𝑧| ∧ 𝑅)|𝑛′| d𝑆

≤
(
∫

Γ

(|𝑧| ∧ 𝑅)2 d𝑆 ∫
Γ

|𝑛′|2 d𝑆

) 1

2

(3.10)(3.11)≤ 𝑅
1

2  1

2  1

2 + 𝑅 ,

where we used Lemma 3.3. Using 𝑅 ∼  1

𝑑+1 , we arrive at

∫
Γ𝑅

|𝑧||𝑛′| d𝑆 ≲  𝑑+2

2(𝑑+1)  1

2 +  1

𝑑+1  . (3.24)

Inserting (3.24) into (3.23) (and using 𝑅 ≤ ) gives
|||||∫ℝ𝑑+1

𝜒𝑅 (𝜓̃ − 𝜓̄) d𝐱
||||| ≲  3𝑑+4

4(𝑑+1)  1

4 +  𝑑+2

2(𝑑+1)  1

2 ,

so that Young’s inequality and considering the supremum over 𝜓 leads to (3.14).
It hence remains only to establish (3.23). The idea is to write 𝜓̃ − 𝜓̄ = (Id −)𝜓, where  is the

convolution with the Poisson kernel

𝑃(𝑥, 𝑧) = 𝐶
|𝑧|(|𝑥|2 + 𝑧2
) 𝑑+1

2

, (3.25)

and then shift (Id −) onto 𝜒𝑅:
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 23

∫
ℝ𝑑+1

𝜒𝑅 (𝜓̃ − 𝜓̄)d𝐱 = ∫
ℝ𝑑+1

𝜒𝑅 (𝑦, 𝑧)𝜓(𝑦)d𝑦 d𝑧 − ∫
ℝ𝑑+1

(
∫

ℝ𝑑

𝜒𝑅 (𝑥, 𝑧)𝑃(𝑥 − 𝑦, 𝑧)𝜓(𝑦)d𝑦

)
d𝑥 d𝑧

= ∫
ℝ𝑑+1

𝜒𝑅 (𝑦, 𝑧)𝜓(𝑦)d𝑦 d𝑧 − ∫
ℝ𝑑

𝜓(𝑦)

⎛⎜⎜⎜⎜⎜⎝
∫

ℝ
∫

ℝ𝑑

𝑃(𝑦 − 𝑥, 𝑧)𝜒𝑅 (𝑥, 𝑧) d𝑥

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
=∶𝜒𝑅,𝑧 (𝑦)

d𝑧

⎞⎟⎟⎟⎟⎟⎠
d𝑦

= ∫
ℝ
∫

ℝ𝑑

𝜓(𝑦)
(

𝜒𝑅 (𝑦, 𝑧) − 𝜒𝑅,𝑧 (𝑦)
)

d𝑦 d𝑧

≤ ∫
ℝ
∫

ℝ𝑑

||𝜒𝑅 (𝑦, 𝑧) − 𝜒𝑅,𝑧 (𝑦)||d𝑦 d𝑧.

For fixed 𝑀 > 0, using that

∫
ℝ𝑑

𝑃(𝜂, 𝑧)d𝜂 = 1 for all 𝑧, (3.26)

we estimate

∫
ℝ𝑑

||𝜒𝑅 (𝑦, 𝑧) − 𝜒𝑅,𝑧 (𝑦)||d𝑦 = ∫
ℝ𝑑

|||||∫ℝ𝑑

𝑃(𝜂, 𝑧)𝜒𝑅 (𝑦, 𝑧) − 𝜒𝑅 (𝑦 + 𝜂, 𝑧)d𝜂
|||||d𝑦

≤ ∫
ℝ𝑑 ∫{|𝜂|≤𝑀|𝑧|} 𝑃(𝜂, 𝑧)|𝜒𝑅 (𝑦, 𝑧) − 𝜒𝑅 (𝑦 + 𝜂, 𝑧)|d𝜂d𝑦

+ ∫
ℝ𝑑 ∫{|𝜂|>𝑀|𝑧|} 𝑃(𝜂, 𝑧)|𝜒𝑅 (𝑦, 𝑧) − 𝜒𝑅 (𝑦 + 𝜂, 𝑧)|d𝜂d𝑦

≤ ∫
{|𝜂|≤𝑀|𝑧|}

(
𝑃(𝜂, 𝑧) ∫

ℝ𝑑 ∫
1

0

|∇𝜒𝑅 (𝑦 + 𝑠𝜂, 𝑧) ⋅ 𝜂|d𝑠 d𝑦

)
d𝜂

+ 2 ∫
ℝ𝑑

|𝜒𝑅|(𝑥, 𝑧) d𝑥 ∫
{|𝜂|>𝑀|𝑧|} 𝑃(𝜂, 𝑧)d𝜂

(3.25)

≲ ∫
{|𝜂|≤𝑀|𝑧|} ∫

1

0
∫

ℝ𝑑

|∇𝜒𝑅 (𝑦 + 𝑠𝜂, 𝑧)|d𝑦d𝑠|𝜂|𝑃(𝜂, 𝑧)d𝜂

+ ∫
ℝ𝑑

|𝜒𝑅|(𝑥, 𝑧) d𝑥 ∫
{|𝜂|>𝑀|𝑧|}

|𝑧|(|𝜂|2 + 𝑧2
) 𝑑+1

2

d𝜂

(3.26)

≲ 𝑀|𝑧|∫
ℝ𝑑

|∇𝜒𝑅|(𝑥, 𝑧) d𝑥 +
1

𝑀 ∫
ℝ𝑑

|𝜒𝑅|(𝑥, 𝑧) d𝑥.

Integration over 𝑧 and optimization in 𝑀 yields (3.23), where we have used

□
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24 OTTO et al.

Proof of Lemma 3.3. Estimate (3.10) follows from

|𝑛′|2 = 1 − (𝑒𝑧 ⋅ 𝑛)2 = (1 + 𝑒𝑧 ⋅ 𝑛)(1 − 𝑒𝑧 ⋅ 𝑛) ≤ 2(1 − 𝑒𝑧 ⋅ 𝑛), (3.27)

where we used the fact that |𝑒𝑧 ⋅ 𝑛| ≤ 1. For the proof of (3.11) we compute

∫
Γ

|𝑧|𝑒𝑧 ⋅ 𝑛 d𝑆 = ∫
Γ

|𝑧|𝑒𝑧 ⋅ 𝑛 d𝑆 − ∫
ℝ𝑑 ×{0}

|𝑧|𝑒𝑧 ⋅ 𝑒𝑧 d𝑆 = − ∫
ℝ𝑑+1

𝜒 div (|𝑧|𝑒𝑧 ) d𝐱

= ∫
ℝ𝑑+1

|𝜒| d𝐱 =  ,

and thus

∫
Γ

(|𝑧| ∧ 𝑅)2 d𝑆 ≤ ∫
Γ

(|𝑧| ∧ 𝑅)2 𝑒𝑧 ⋅ 𝑛 d𝑆 + ∫
Γ

(|𝑧| ∧ 𝑅)2 (1 − 𝑒𝑧 ⋅ 𝑛) d𝑆

≤ 𝑅 ∫
Γ

|𝑧|𝑒𝑧 ⋅ 𝑛 d𝑆 + 𝑅2 ∫
Γ

1 − 𝑒𝑧 ⋅ 𝑛 d𝑆

= 𝑅 + 𝑅2 . □

Proof of Lemma 3.2. The idea is to use 𝑢̄ as a test function in the weak equation (1.4):(
∫

ℝ𝑑+1

𝜒𝑢̄ d𝐱

)
(𝑇) −

(
∫

ℝ𝑑+1

𝜒𝑢̄ d𝐱

)
(0) = ∫

𝑇

0

(
∫

ℝ𝑑+1

𝜒𝜕𝑡 𝑢̄ d𝐱 − ∫
ℝ𝑑+1

𝛁𝑓 ⋅ 𝛁𝑢̄ d𝐱

)
d𝑡

= ∫
𝑇

0

(
∫

ℝ𝑑+1

𝜒𝜕𝑡 𝑢̄ d𝐱 + 2 ∫
ℝ𝑑

𝑓𝜕𝑧 𝑢̄ d𝑥

)
d𝑡. (3.28)

Because 𝑢̄ is not an admissible test function (it is merely continuous across ℝ𝑑 × {𝑧 = 0} and
does not have compact support in space), this requires an approximation argument. Extending
(1.4) to test with functions that are smooth on ℝ𝑑 × {𝑧 < 0} and ℝ𝑑 × {𝑧 > 0} and continuous
across ℝ𝑑 × {𝑧 = 0} is straightforward. For the integrability/support, we take a smooth cut-off
function 𝜂𝑅 ∈ 𝐶∞

𝑐 (𝐵𝑅+1 (0)) with 𝜂𝑅 ≡ 1 on 𝐵𝑅 (0) and ‖𝜂𝑅‖∞ + ‖∇𝜂𝑅‖∞ ≲ 1 and test (1.4) by
𝜑𝑅 = 𝜂𝑅 𝑢̄ to obtain(

∫
ℝ𝑑+1

𝜒𝜑𝑅 d𝐱

)
(𝑇) −

(
∫

ℝ𝑑+1

𝜒𝜑𝑅 d𝐱

)
(0)

= ∫
𝑇

0

(
∫

ℝ𝑑+1

𝜒𝜕𝑡 𝜑𝑅 d𝐱 − ∫
ℝ𝑑+1

𝛁𝑓 ⋅ 𝛁𝜑𝑅 d𝐱

)
d𝑡

= ∫
𝑇

0

(
∫

ℝ𝑑+1

𝜒𝜂𝑅 𝜕𝑡 𝑢̄ d𝐱 − ∫
ℝ𝑑+1

𝜂𝑅 𝛁𝑓 ⋅ 𝛁𝑢̄ d𝐱 − ∫
ℝ𝑑+1

𝑢̄𝛁𝑓 ⋅ 𝛁𝜂𝑅 d𝐱

)
d𝑡. (3.29)

To pass to the limit in the various terms, we will argue using regularity and decay.
First note that by 𝐿1-continuity (cf. Definition 1.1), 𝜒 is in 𝐿∞ (0, 𝑇; 𝐿1 (ℝ𝑑+1)). We turn now

to a closer examination of 𝑢 = 𝐺 ∗ 𝜓 and 𝑢̄(𝑡) = 𝑃 ∗ 𝐺(𝑇 − 𝑡) ∗ 𝜓, where 𝐺 is the kernel from
(1.23) and 𝑃 is the Poisson kernel (3.25). For the second term on the left-hand side of (3.29),
we observe that 𝜓 ∈ 𝐶∞

𝑐 (ℝ𝑑 ) and 𝐺 ∈ 𝐿1 (ℝ𝑑 ) for 𝑡 < 𝑇 implies 𝑢(0) ∈ 𝐿∞ (ℝ𝑑 ) and hence, by
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 25

𝑢̄ = 𝑃 ∗ 𝑢, also 𝑢̄(0) ∈ 𝐿∞ (ℝ𝑑+1). Similarly for the first term on the right-hand side of
(3.29), notice that |∇|Δ𝜓 ∈ 𝐿∞ (ℝ𝑑 ) and 𝐺 is uniformly bounded in 𝐿1 whence |∇|Δ𝑢 =

𝐺(𝑇 − 𝑡) ∗ |∇|Δ𝜓, is in𝐿∞ (0, 𝑇; 𝐿∞ (ℝ𝑑 )). Thus,we argue for and exploit that 𝜕𝑡 𝑢̄, as the harmonic
extension of |∇|Δ𝑢, is in 𝐿1 (0, 𝑇; 𝐿∞ (ℝ𝑑+1)) ⊆ 𝐿∞ (0, 𝑇; 𝐿∞ (ℝ𝑑+1)).
To pass to the limit in the second term on the right-hand side of (3.29), we deduce from 𝑢 ∈

𝐿2 (0, 𝑇; 𝐻1 (ℝ𝑑 )) ⊆ 𝐿2 (0, 𝑇; 𝐻̇
1

2 (ℝ𝑑 )) that 𝛁𝑢̄ ∈ 𝐿2 (0, 𝑇; 𝐿2 (ℝ𝑑+1)). (For our definition of 𝐻̇
1

2 , see
(5) below.)
Finally for the last term on the right-hand side of (3.29), we will use the decay of 𝑢̄:

|𝑢̄(𝐱)| ≲
1|𝐱|𝑑 for |𝐱|≫ 1, (3.30)

cf. Lemma A.1. The decay (3.30) together with the 𝐿2 control of ∇𝑓 and 𝐿∞ control on ∇𝜂𝑅 allows
one to conclude that the last term on the right-hand side of (3.29) vanishes in the limit and we
may pass from (3.29) to (3.28).
As explained above the statement of the lemma, we define 𝑣 = − |∇|𝑢 on the flat interface

ℝ𝑑 × {𝑧 = 0}, that is, 𝑣 = 𝜕𝑧 𝑢̄, and introduce 𝑣 as the constant continuation of 𝑣 in the 𝑧-direction.
To establish (3.4), it suffices to argue that for almost every time there holds

∫
ℝ𝑑

𝑓𝜕𝑧 𝑢̄ d𝑥 = ∫
ℝ𝑑+1

𝜒𝑣𝜕𝑧 𝑓 d𝐱 − ∫
Γ

(1 − 𝑒𝑧 ⋅ 𝑛)(𝛁𝑣 ⋅ 𝑛) d𝑆 −
1

2 ∫
ℝ𝑑+1

𝜒 𝜕𝑡 𝑢̃ d𝐱. (3.31)

We record for reference below that 𝛁(𝑣𝑒𝑧 ) = 𝑒𝑧 ⊗ 𝛁𝑣 and

div (𝑣𝑒𝑧 ) = 0 (3.32)

and hence also

div tan (𝑣𝑒𝑧 ) ∶= (Id −𝑛 ⊗ 𝑛) ∶ 𝛁(𝑣𝑒𝑧 ) = −𝑛 ⋅ 𝛁(𝑣𝑒𝑧 )𝑛 = −(𝑒𝑧 ⋅ 𝑛)(𝛁𝑣 ⋅ 𝑛). (3.33)

By the divergence theorem and the distributional definition (1.5) of themean curvature on Γ, there
holds

∫
ℝ𝑑

𝑓𝜕𝑧 𝑢̄ d𝑥 = ∫
ℝ𝑑

𝑓𝑣𝑒𝑧 ⋅ 𝑒𝑧 d𝑥 = − ∫
ℝ𝑑+1

𝟏ℝ𝑑 ×{𝑧>0} div (𝑓𝑣𝑒𝑧 ) d𝐱

= ∫
ℝ𝑑+1

𝜒 div (𝑓𝑣𝑒𝑧 ) d𝐱 − ∫
Γ

div tan (𝑣𝑒𝑧 ) d𝑆. (3.34)

Using (3.32), the first integral on the right-hand side simplifies to

∫
ℝ𝑑+1

𝜒 div (𝑓𝑣𝑒𝑧 ) d𝐱 = ∫
ℝ𝑑+1

𝜒𝑣𝜕𝑧 𝑓 d𝐱. (3.35)

Substituting (3.35) into (3.34), it suffices for (3.31) to show

∫
Γ

div tan (𝑣𝑒𝑧 ) d𝑆 = ∫
Γ

(1 − 𝑒𝑧 ⋅ 𝑛)(𝛁𝑣 ⋅ 𝑛) d𝑆 +
1

2 ∫
ℝ𝑑+1

𝜒 𝜕𝑡 𝑢̃ d𝐱. (3.36)
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26 OTTO et al.

To this end, we compute

∫
Γ

div tan (𝑣𝑒𝑧 ) d𝑆
(3.33)

= − ∫
Γ

(𝑒𝑧 ⋅ 𝑛)(𝛁𝑣 ⋅ 𝑛) d𝑆

= ∫
Γ

(1 − 𝑒𝑧 ⋅ 𝑛)(𝛁𝑣 ⋅ 𝑛) d𝑆 − ∫
Γ

𝛁𝑣 ⋅ 𝑛 d𝑆. (3.37)

Finally we transform the second integral on the right-hand side as

∫
Γ

𝛁𝑣 ⋅ 𝑛 d𝑆 = ∫
Γ

𝛁𝑣 ⋅ 𝑛 d𝑆 − ∫
ℝ𝑑

𝛁𝑣 ⋅ 𝑒𝑧 d𝑆 = − ∫
ℝ𝑑+1

𝜒 div (𝛁𝑣) d𝐱

= ∫
ℝ𝑑+1

𝜒|∇|Δ𝑢̃ d𝐱

= −
1

2 ∫
ℝ𝑑+1

𝜒𝜕𝑡 𝑢̃ d𝐱. (3.38)

Substituting (3.38) into (3.37) demonstrates (3.36). This concludes the proof of (3.4).
We start by estimating 𝐴1. We estimate

𝐴1 ≤ ‖𝑣‖∞ ∫
ℝ𝑑+1

|𝜒||𝛁𝑓| d𝐱 ≤ ‖𝑣‖∞

(
∫

ℝ𝑑+1

|𝜒|2 d𝐱 ∫
ℝ𝑑+1

|𝛁𝑓|2 d𝐱

) 1

2

≤ ‖𝑣‖∞ 1

2 𝐷
1

2 .

An application of (A.4) yields (3.5). Inserting (A.5) in

𝐴2 ≲ ‖∇𝑣‖∞ ∫
Γ

1 − 𝑒𝑧 ⋅ 𝑛 d𝑆 ≲ ‖∇𝑣‖∞

delivers (3.6).
Finally, we turn to 𝐴3, which we rewrite as

𝐴3 =
|||||∫ℝ𝑑+1

𝜒(𝜕𝑡 𝑢̄ − 𝜕𝑡 𝑢̃) d𝐱
||||| = 2
|||||∫ℝ𝑑+1

𝜒(Δ𝑣 − Δ𝑣) d𝐱
|||||.

Using the divergence theorem and ∇𝑣(𝑥, 0) = ∇𝑣(𝑥, 0) = ∇𝑣(𝑥), we reformulate the right-hand
integral as

|||||∫ℝ𝑑+1

𝜒(Δ𝑣 − Δ𝑣) d𝐱
||||| =
|||||∫Γ

𝑛′ ⋅ ∇(𝑣 − 𝑣) d𝑆
|||||, (3.39)

and estimate for 𝑅 > 0 via|||||∫Γ

𝑛′ ⋅ ∇(𝑣 − 𝑣) d𝑆
|||||

≲
(

𝑅−1‖∇𝑣‖𝐿∞ (ℝ𝑑 ) + ‖|𝑧|−1
∇(𝑣 − 𝑣)‖𝐿∞ (ℝ𝑑+1 )

)
∫

Γ

|𝑛′|(|𝑧| ∧ 𝑅) d𝑆
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 27

≲
(

𝑅−1‖∇𝑣‖𝐿∞ (ℝ𝑑 ) + ‖𝜕𝑧 ∇𝑣‖𝐿∞ (ℝ𝑑 )

)
∫

Γ

|𝑛′|(|𝑧| ∧ 𝑅) d𝑆, (3.40)

wherewehave used ‖ |𝑧|−1
∇(𝑣 − 𝑣)‖∞ ≤ ‖𝜕𝑧 ∇𝑣‖∞ and themaximumprinciple (cf. LemmaA.2).

Next, using Lemma 3.3, we estimate

∫
Γ

|𝑛′|(|𝑧| ∧ 𝑅) d𝑆 ≤
(
∫

Γ

|𝑛′|2 ∫
Γ

(|𝑧| ∧ 𝑅)2

) 1

2 ≤  1

2
(

𝑅 + 𝑅2) 1

2 . (3.41)

We insert (3.41) in (3.40) to obtain|||||∫Γ

𝑛′ ⋅ ∇′ (𝑣 − 𝑣) d𝑆
||||| ≲

(
𝑅

−
1

2 ‖∇𝑣‖∞ + 𝑅
1

2 ‖𝜕𝑧 ∇𝑣‖∞

)
 1

2 ( + 𝑅)
1

2 ,

which we in turn substitute into (3.39) to deduce

|𝐴3| ≲

(
𝑅

−
1

2 ‖∇𝑣‖∞ + 𝑅
1

2 ‖𝜕𝑧 ∇𝑣‖∞

)
 1

2 ( + 𝑅)
1

2 .

The choice 𝑅 = (𝑇 − 𝑡)
1

3 and the use of (A.5) and (A.6) finishes the proof of (3.7). □

4 ENTERING THE GRAPH SETTING

In this section we prove Proposition 2.2; in particular, 𝑑 = 2. We will, in the spirit of Notation 1.12,
write balls in dimension 2 in regular font and in dimension 3 boldface, that is, for 𝑥0 ∈ ℝ2 and
𝐱0 ∈ ℝ3, we denote

𝐵𝜌 (𝑥0 ) =
{

𝑥 ∈ ℝ2 ∶ |𝑥 − 𝑥0| < 𝜌
}

, 𝐁𝜌 (𝐱0 ) =
{

𝐱 ∈ ℝ3 ∶ |𝐱 − 𝐱0| < 𝜌
}

.

For the proof of Proposition 2.2, we need two ingredients. First, we need a version of Allard’s
regularity theorem. We define the tilt excess with respect to ℝ2 as

𝐸(𝐱, 𝜌) = 𝜌−2 ∫
𝐁𝜌 (𝐱)∩Γ

1 − (𝑛 ⋅ 𝑒𝑧 )2 d𝑆.

We rely on Allard’s Regularity Theorem [3, Section 8] in the form given by Simon [27, Theorem
23.1], which can be stated in our BV setting as:

Theorem 4.1 (Allard’s Regularity Theorem). For any 𝑝 > 2 and 𝛼 ∈ (0, 1) there are 𝜀𝛼 > 0,
𝛾 ∈ (0, 1), and 𝐶 < ∞ with the following property. Let Ω+ be a set with locally finite perimeter,
Γ = supp𝛁𝟏Ω+

, and the generalized scalar mean curvature 𝐻 of Γ given by a measurable function
on Γ. If for 𝐱 = (𝑥, 𝑧) ∈ Γ the three conditions

(i) |||𝛁𝟏Ω+

||| (𝐁𝜌 (𝐱)) ≤ 2(1 − 𝛼)𝜋𝜌2,
(ii) 𝐸(𝐱, 𝜌) ≤ 𝜀𝛼 ,

(iii) 𝜌
2
(

1−
2

𝑝

)‖𝐻‖2
𝐿𝑝 (𝐁𝜌 (𝐱)∩Γ)

≤ 𝜀2
𝛼 ,
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28 OTTO et al.

hold, then 𝐁𝛾𝜌 (𝐱) ∩ Γ is the graph of a Lipschitz function ℎ over 𝐵𝛾𝜌 (𝑥) satisfying the estimate

‖∇ℎ‖𝐿∞ (𝐵𝛾𝜌 (𝑥)) ≤ 𝐶

(
𝐸(𝐱, 𝜌)

1

2 + 𝜌
1−

2

𝑝 ‖𝐻‖𝐿𝑝 (𝐁𝜌 (𝐱)∩Γ)

)
. (4.1)

Equivalently, one can work with the newer version [28, Theorem 5.5.2] and straightforward
modifications of our proof.
To establish (iii) and control the second term on the right-hand side of (4.1), we need 𝐿𝑝 control

of the mean curvature for 𝑝 > 2 = 𝑑, which we obtain in the following form.

Lemma 4.2. Assume that 𝐷2 < ∞. Then the distributional mean curvature is given by a locally
integrable function 𝐻 ∈ 𝐿4 (Γ) and

‖𝐻‖𝐿4 (Γ) ≲

(
1 + (𝐷2 )

1

20

)
𝐷

1

2 . (4.2)

We will deduce this estimate by combining a trace estimate of Meyers and Ziemer with a
monotonicity formula of Schätzle; see Subsection 4.1 below.

Proof of Proposition 2.2. Fix𝑝 = 4,𝛼 ∈ (0,
1

2
), and𝐱0 = (𝑥0 , 𝑧0 ) ∈ Γ.Wewill check that there exists

𝜌 > 0 such that the conditions of Theorem 4.1 hold. Note for reference below that the tilt excess
is controlled by the energy as in the proof of Lemma 3.3 via

𝐸(𝐱0 , 𝜌) = 𝜌−2 ∫
𝐁𝜌 (𝐱0 )∩Γ

1 − (𝑒𝑧 ⋅ 𝑛)2 d𝑆
(3.27)≤ 2𝜌−2 . (4.3)

For condition (i) we calculate as for (3.16), using the divergence theorem on the intersection of an
infinite cylinder of radius 𝜌 > 0 with Γ and {𝑧 = 0}, that

∫
Γ∩{(𝑥,𝑧)∶|𝑥−𝑥0|<𝜌}

𝑒𝑧 ⋅ 𝑛 d𝑆 = 𝜋𝜌2. (4.4)

Consequently for any 𝜌 > 0, by expanding the ball to a cylinder, there holds

|||𝛁𝟏Ω+

|||(𝐁𝜌 (𝐱0 )) ≤ ∫
Γ∩{(𝑥,𝑧)∶|𝑥−𝑥0|<𝜌}

1 d𝑆 = ∫
Γ∩{(𝑥,𝑧)∶|𝑥|<𝜌}

𝑒𝑧 ⋅ 𝑛 d𝑆 + 
(4.4)

= 𝜋𝜌2 +  . (4.5)

From here we read off that condition (i) holds as long as 𝜌 is large enough so that

𝜌−2 ≤ (1 − 2𝛼)𝜋, that is, 𝜌 ≥
√


(1 − 2𝛼)𝜋

. (4.6)

At the same time, the estimate (4.3) guarantees condition (ii) as long as

𝜌−2 ≤ 1

2
𝜀𝛼 , that is, 𝜌 ≥

√
2
𝜀𝛼

. (4.7)
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 29

Finally, restricting 𝜀1 from Proposition 2.2 to 𝜀1 ≤ 1, Lemma 4.2 yields (iii) for all 𝜌 small enough
so that

2𝐶𝜌𝐷 ≤ 𝜀2
𝛼 , (4.8)

where 𝐶 is the implicit constant in (4.2). Choosing

𝜌 =

( 
𝐷

) 1

3

(4.9)

and 𝐷2 ≤ 𝜀1 for 𝜀1 > 0 small enough delivers (4.6), (4.7), and (4.8).
For this radius 𝜌, the surface Γ ∩ 𝐁𝛾𝜌 (𝐱0 ) is a graph over the disk 𝐵𝛾𝜌 (𝑥0 ). Since 𝐱0 ∈ Γ was

arbitrary, Γ is locally a graph over ℝ2. We consider the set

𝑀 =
{

𝑥 ∈ ℝ2 ∶ #(Γ ∩ ({𝑥} × ℝ)) = 1
}

.

Note that #(Γ ∩ ({𝑥} × ℝ)) ≥ 1 everywhere. Since  < ∞, the set 𝑀 is not empty. Because of the
local graph property, 𝑀 and its complement 𝑀𝑐 are open, and hence 𝑀 = ℝ2 and Γ is given by a
global Lipschitz graph function ℎ. Finally, the bound from Theorem 4.1 in combination with (4.3)
and Lemma 4.2 yields

‖∇ℎ‖∞ ≲ 𝜌−1 1

2 + 𝜌
1

2 𝐷
1

2
(4.9)

= 2(𝐷2 )
1

6 . □

4.1 Proof of Lemma 4.2

We capitalize on the fact that 𝐻 is the trace of 𝑓 and employ the following Meyers–Ziemer trace
estimate, contained in [20, Theorem 4.7]; see also [29, Theorem 5.12.4] and [26, p. 386]. (We again
formulate the results in the BV setting.)

Lemma 4.3 (Meyers–Ziemer trace estimate). Let Ω+ be a set with locally finite perimeter and Γ =

supp𝛁𝟏Ω+
. Let

𝑀(Ω+) ∶= sup
𝐱∈ℝ3 ,𝜌>0

𝜌−2|||𝛁𝟏Ω+

|||(𝐁𝜌 (𝐱)).

If 𝑀(Ω+ ) < ∞, then for all 𝜑 ∈ 𝐶1
0 (ℝ3 ) there holds

|||||∫Γ

𝜑 d𝑆
||||| ≲ 𝑀(Ω+)‖∇𝜑‖1 .

To obtain a uniform bound on 𝑀(Ω+), we will use the following slight adaption of a
monotonicity formula of Schätzle, cf. [26, Lemma 2.1], whose proof follows [27, Section 17].

Lemma4.4 (Schätzle’s monotonicity formula). There is a constant 𝐶 < ∞ with the following prop-
erty. LetΩ+ be a set with locally finite perimeter and Γ = supp𝛁𝟏Ω+

, and let𝑓 ∈ 𝐻̇1 (ℝ3 ) satisfy (1.5).
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30 OTTO et al.

Then, for any 𝐱 ∈ ℝ3, the function

𝜌 ↦ 𝜌−2|||𝛁𝟏Ω+

|||(𝐁𝜌 (𝐱)) + 𝐶𝜌
1

2 ‖∇𝑓‖2

is nondecreasing.

Proof of Lemma 4.2. Using density we apply the Meyers–Ziemer estimate from Lemma 4.3 with
𝜑 = 𝑓4 to obtain

‖𝑓‖4
𝐿4 (Γ)

≲ 𝑀(Ω+)‖∇(𝑓4 )‖1 ≲ 𝑀(Ω+)‖𝑓3 ∇𝑓‖1 ≲ 𝑀(Ω+)‖∇𝑓‖2‖𝑓‖3
6 ≲ 𝑀(Ω+)‖∇𝑓‖4

2

≲ 𝑀(Ω+)𝐷2 ,

where we used Sobolev embedding in the penultimate step. Since 𝑓 has a trace in 𝐿4 on Γ, an
application of the divergence theorem to the right-hand side of (1.5) reveals that 𝑓 = 𝐻 on Γ in
𝐿4 (Γ). To deduce (4.2) it hence suffices to show

𝑀(Ω+) ≲ 1 + (𝐷2 )
1

5 . (4.10)

To this end, we observe that for any fixed 𝑅 > 0, Schätzle’s monotonicity formula (Lemma 4.4)
implies for 𝜌 ≤ 𝑅 that

𝜌−2|||𝛁𝟏Ω+

|||(𝐁𝜌 (𝐱)) ≤ 𝑅−2|||𝛁𝟏Ω+

|||(𝐁𝑅 (𝐱)) + 𝐶𝑅
1

2 𝐷
1

2

(4.5)≤ 𝜋 + 𝑅−2 + 𝐶𝑅
1

2 𝐷
1

2 ≲ 1 + (𝐷2 )
1

5 , (4.11)

where in the last step we have optimized with

𝑅 =

( 
𝐷

1

2

) 2

5

.

It remains to control the supremum over larger radii, which is achieved by observing that (4.5) for
𝜌 ≥ 𝑅 gives

𝜌−2|||𝛁𝟏Ω+

|||(𝐁𝜌 (𝐱)) ≤ 𝜋 + 𝑅−2 ≲ 1 + (𝐷2 )
1

5 . (4.12)

The combination of (4.11) and (4.12) establishes (4.10). □

5 RELAXATION RATES IN THE GRAPH SETTING

In this section, we work in the graph setting with small Lipschitz constant and hence, by the last
part of Hypothesis (H), assume that all quantities are smooth. In particular, Equations (1.2) and
(1.3) hold pointwise.
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 31

Because Γ is given as the graph of a function as in (1.11), the excess mass  reduces to the
𝐿1-norm of the height function

 = ∫
ℝ𝑑

|ℎ| d𝑥.

Moreover, the following geometric quantities can also be expressed in terms of ℎ as

𝑛 =
(−∇ℎ, 1)√

1 + |∇ℎ|2 , (5.1)

𝐻 = div
∇ℎ√

1 + |∇ℎ|2 =
1√

1 + |∇ℎ|2
(

Δℎ −
∇2 ℎ ∶ (∇ℎ ⊗ ∇ℎ)

1 + |∇ℎ|2
)

, (5.2)

𝑉 =
ℎ𝑡√

1 + |∇ℎ|2 . (5.3)

Here the left-hand side quantities are only defined on Γ and are hence evaluated at (𝑥, ℎ(𝑥)) while
the right-hand side quantities are defined on ℝ𝑑 and are evaluated at 𝑥. We will mildly abuse
notation by allowing context to make clear whether 𝐻, 𝑉 take arguments from ℝ𝑑 or Γ. Because
of the Lipschitz bound (1.12) on ℎ, within the Lipschitz regime we have

d𝑆 =

√
1 + |∇ℎ|2 d𝑥 ∼ d𝑥

and hence we can compare quantities on Γ to quantities on ℝ𝑑. A direct consequence of this and
(5.1) is that the energy can be expressed as

 = ∫
ℝ𝑑

√
1 + |∇ℎ|2 − 1 d𝑥.

A second advantage of the Lipschitz setting is that we can deduce nonlinear estimates from the
linearized ones and then take advantage of the (nonlinear) gradient flow structure of the system.
Within the Lipschitz regime, the rough plan is as follows: A simple differential inequality

(Lemma 5.8) implies that the solution remains trapped in the Lipschitz regime. Themain interpo-
lation estimate (Proposition 5.6) and the gradient flow structure imply that as long as the 𝐿1 norm
remains controlled, the natural algebraic decay estimates hold. A duality argument verifies that
the 𝐿1 control is indeed guaranteed; see Subsection 5.3. The pieces are assembled via a buckling
argument in Subsection 5.4.
Fractional and negative spaces, notation. We will work with the spaces 𝐻̇𝑠 for 𝑠 = ±

1

2
, ±1.

For 𝑠 =
1

2
, we define 𝐻̇

1

2 (ℝ𝑑 ) and 𝐻̇
1

2 (Γ) via trace, that is, the space consists of traces of 𝐻̇1 (ℝ𝑑+1)

functions and the norm is given by the Dirichlet norm of the corresponding harmonic extension
(or equivalently the infimum of the Dirichlet norm for all extensions). The negative spaces are
defined by duality.
As in the introduction, we use |∇|𝛼 , 𝛼 ∈ ℝ in the Fourier multiplier sense, that is, if  and −1

are the Fourier and the inverse Fourier transform, respectively, then

|∇|𝛼 𝑔 = −1
(|𝑘|𝛼𝑔

)
.
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32 OTTO et al.

Within our small Lipschitz setting, the trace and Fourier definitions are equivalent in the sense
that ‖𝑔‖𝐻̇±1∕2 (ℝ𝑑 ) ∼ ‖ |∇|±1∕2

𝑔‖2 (see e.g., [9, Proposition A.1]). Also the Sobolev norms on ℝ𝑑

and Γ are equivalent; that is, for a function 𝑤Γ ∶ Γ → ℝ and 𝑤 ∶ ℝ𝑑 → ℝ defined by 𝑤(𝑥) =

𝑤Γ (𝑥, ℎ(𝑥)), we have

‖𝑤Γ‖𝐻̇𝑠 (Γ) ∼ ‖𝑤‖𝐻𝑠 (ℝ𝑑 )

for 𝑠 = ±
1

2
, ±1. For 𝑠 =

1

2
this follows from the fact that the transformation 𝑧′ = 𝑧 − ℎ(𝑥)mapsΩ+

to the half-space while the the Dirichlet energy of the corresponding extensions remains compa-
rable (since ℎ is Lipschitz). For 𝑠 = 1 it is an easy computation. For the negative spaces it follows
by duality. We will make regular use of this fact.
We continue to denote norms on the interface explicitly and suppress the domain on ℝ𝑑, for

example,

‖𝑔‖
𝐻̇

−
1
2 (Γ)

, ‖𝑔‖
𝐻̇

−
1
2

,

except when ℝ𝑑 is made explicit for emphasis.

5.1 Algebraic relationships

The aim of this subsection is to relate the nonlinear quantities tied to the MS evolution to
linear ones (for which we can take advantage of standard interpolation estimates and Fourier
techniques). All statements are for general dimension 𝑑 ≥ 1 unless otherwise indicated.
As a first easy consequence of the Lipschitz bound, we obtain that  scales like the Dirichlet

energy of ℎ, and 𝐷 controls a negative norm of the normal velocity 𝑉. A more elementary proof
of (5.5) in the case 𝑑 = 1 is contained in [9, Lemma 3.1 and proof of Lemma 4.1].

Lemma 5.1. Under the condition ‖∇ℎ‖∞ ≤ 1, there holds

 ∼ ‖∇ℎ‖2
2 , (5.4)

and

‖𝑉‖2

𝐻̇
−

1
2 (Γ)

≲ ‖∇𝑓+ ⋅ 𝑛‖2

𝐻̇
−

1
2 (Γ)

+ ‖∇𝑓− ⋅ 𝑛‖2

𝐻̇
−

1
2 (Γ)

≲ 𝐷. (5.5)

Proof. We deduce (5.4) directly from the identity

|∇ℎ|2 =

(√
1 + |∇ℎ|2 − 1

)(√
1 + |∇ℎ|2 + 1

)
.

The first estimate in (5.5) follows from (1.3). For the second estimate in (5.5), we test with 𝜑 ∈

𝐻̇
1

2 (Γ) (with harmonic extension 𝜑̄) and use the divergence theorem (and 𝚫𝑓± = 0) to estimate|||||∫Γ

𝜑∇𝑓± ⋅ 𝑛d𝑆
||||| =
|||||∫Ω±

∇𝜑̄ ⋅ 𝛁𝑓± d𝑆
||||| ≤ ‖∇𝑓‖2‖∇𝜑̄‖2 .

Taking the supremum over 𝜑 yields the claim. □
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 33

Lemma 5.2. Assume ‖∇ℎ‖∞ ≤ 1. In any dimension, there holds

‖𝐻‖2
𝐻̇−1 (Γ)

≲  , (5.6)

‖𝐻‖2

𝐻̇
1
2 (Γ)

= 𝐷, (5.7)

‖𝐻‖2
𝐿2 (Γ)

≲
(𝐷2

) 1

3 . (5.8)

Corollary 5.3. Let 𝑑 = 2. Assume ‖∇ℎ‖∞ ≤ 1. Then for any 2 ≤ 𝑝 ≤ 4 there holds

‖𝐻‖𝐿𝑝 (Γ) ≲  4−𝑝

6𝑝 𝐷
2(𝑝−1)

3𝑝 . (5.9)

Proof. By embedding (comparing to norms on ℝ𝑑) we have ‖𝐻‖𝐿4 (Γ) ≲ ‖𝐻‖
𝐻̇

1
2 (Γ)

. Then (5.9) fol-

lows by interpolation between this inequality and (5.8), and by using (5.7), where we have again
used the equivalence of the norms on Γ and ℝ𝑑 and the Fourier representation, for which the
interpolation is readily available. □

Proof of Lemma 5.2. A proof in 𝑑 = 1 appeared already in [9, Lemma 3.1].
Estimate (5.8) follows by interpolation between (5.6) and (5.7). Equality (5.7) holds by defini-

tion of the norm. Inequality (5.6) follows from testing equation (5.2) with an 𝐻̇1 (ℝ𝑑 ) function,
integrating by parts, applying the Cauchy–Schwarz inequality, and using the equivalence of the
norms on Γ and ℝ𝑑. □

We next turn to 𝑝-norm control of the full Hessian of ℎ. Our first observation is that in any
dimension, one can directly deduce 𝐿2 control of the Hessian from (5.2) (see (5.10) below). In
𝑑 = 1, this yields control of ‖∇ℎ‖∞ in terms of  and 𝐷 (cf. Corollary 5.5 below and [9, Lemma
3.2]). In 𝑑 = 2 the norm ‖∇2 ℎ‖2 just fails to control ‖∇ℎ‖∞. Although we establish control of‖∇ℎ‖∞ in 𝑑 = 2 by heavier machinery in Proposition 2.2, we can also deduce it in the graph case
in an elementary way from higher 𝑝-integrability of the Hessian (see Corollary 5.5). We also use
the 𝑝 > 2 integrability in Lemma 5.9 below to control the time change of the dissipation, which
we need for our duality argument for large times.

Lemma 5.4 (Control of the Hessian by mean curvature). Assume ‖∇ℎ‖∞ ≤ 1. In any dimension,
there holds

‖∇2 ℎ‖2 ≲ ‖𝐻‖2 , (5.10)

and there exists 𝛿 > 0 such that for any 𝑝 ∈ [2, 2 + 𝛿), there holds

‖∇2 ℎ‖𝑝 ≲ ‖𝐻‖𝑝 . (5.11)

Proof. It suffices to show (5.11). We begin with the representation (5.2) in the form

Δℎ =

√
1 + |∇ℎ|2 𝐻 +

∇ℎ ⊗ ∇ℎ

1 + |∇ℎ|2 ∶ ∇2 ℎ. (5.12)
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34 OTTO et al.

According to the Calderon–Zygmund theory, there exists 𝑀𝑝 < ∞ such that solutions of Δ𝑤 = 𝑔

in ℝ𝑑 satisfy

‖∇2 𝑤‖𝑝 ≤ 𝑀𝑝‖𝑔‖𝑝 and 𝑀2 = 1.

Applying this to (5.12) under the assumption that ‖∇2 ℎ‖𝑝 < ∞ yields the estimate

‖∇2 ℎ‖𝑝 ≤ 𝑀𝑝

(‖‖‖‖‖
√

1 + |∇ℎ|2 𝐻
‖‖‖‖‖𝑝

+
‖‖‖‖‖∇ℎ ⊗ ∇ℎ

1 + |∇ℎ|2
‖‖‖‖‖∞

‖∇2 ℎ‖𝑝

)
.

Since

‖∇ℎ‖∞ ≤ 1, and hence also
‖‖‖‖‖∇ℎ ⊗ ∇ℎ

1 + |∇ℎ|2
‖‖‖‖‖∞

≤ 1

2
,

we obtain

‖∇2 ℎ‖𝑝 ≤√2𝑀𝑝‖𝐻‖𝑝 +
1

2
𝑀𝑝‖∇2 ℎ‖𝑝 . (5.13)

We now use that lim𝑝→2 𝑀𝑝 = 1, which is a consequence of the Riesz–Thorin interpolation the-
orem and 𝑀2 = 1. Choosing 𝑝 > 2 close enough to 2, we have 1

2
𝑀𝑝 < 1 and we can absorb the

second term on the right-hand side of (5.13) into the left-hand side to obtain

‖∇2 ℎ‖𝑝 ≲ ‖𝐻‖𝑝 .

Finally we justify the assumption ‖∇2 ℎ‖𝑝 < ∞ with a fixed point argument that confirms ∇2 ℎ ∈

𝐿𝑝 as long as 1

2
𝑀𝑝 < 1.

We remark that the proof simplifies in 𝑑 = 1, since (5.2) takes the form

𝐻 =
𝑑

𝑑𝑥

ℎ𝑥√
1 + ℎ2

𝑥

=
ℎ𝑥𝑥

(
√

1 + ℎ2
𝑥 )3

.

□

Wenow confirm that the integral estimates on theHessian and previous algebraic relationships
can be converted into a Lipschitz bound in 𝑑 = 2 and 𝑑 = 1.

Corollary 5.5. Let 𝑑 = 2 or 𝑑 = 1 and assume ‖∇ℎ‖∞ ≤ 1. Then

‖∇ℎ‖∞ ≲
(3−𝑑 𝐷𝑑

) 1

6 . (5.14)

Proof. For 𝑑 = 1 this is contained in [9, Lemma 3.2] and can be deduced from the interpolation
estimate

‖ℎ𝑥‖∞ ≲ ‖ℎ𝑥‖ 1

2

2 ‖ℎ𝑥𝑥‖ 1

2

2

(5.4)(5.10)

≲  1

4 ‖𝐻‖ 1

2

2

(5.8)

≲  1

3 𝐷
1

6 .

For 𝑑 = 2, let 𝑝 > 2 be an admissible exponent from Lemma 5.4. Then

‖∇ℎ‖∞ ≲ ‖∇ℎ‖ 𝑝−2

2(𝑝−1)

2 ‖∇2 ℎ‖ 𝑝

2(𝑝−1)

𝑝

(cf. Lemma A.5(i)) together with (5.4), (5.11) and (5.9) yields (5.14) for 𝑑 = 2. □
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 35

Of central importance is the following interpolation estimate controlling the energy in terms
of the excess mass and dissipation. We present it here for arbitrary dimension; for the proof of
Theorem 1.3, we use it for 𝑑 = 2 and 𝑑 = 1.

Proposition 5.6 (Main interpolation estimate). Under the condition ‖∇ℎ‖∞ ≤ 1, there holds

 ≲  6

𝑑+5 𝐷
𝑑+2

𝑑+5 .

Proof. This is a consequence of Lemma 5.1, the interpolation inequality

‖∇ℎ‖2
2 ≲ ‖ℎ‖ 4

𝑑+4

1 ‖∇2 ℎ‖ 2𝑑+4

𝑑+4

2

(cf. Lemma A.5(iii)), (5.10), and (5.8). □

5.2 Differential relationships and decay estimates

We begin with a few elementary results that are true for general nonnegative quantities  ,  , and
𝐷 satisfying given algebraic and differential relationships. Then starting with Lemma 5.10 below,
we show that the assumed relationships hold true for the MS evolution.
Our first observation is an ODE lemma: The gradient flow structure and the interpolation esti-

mate from Proposition 5.6 immediately yield decay of  on any interval [0, 𝑇] in terms of the
supremum 𝑇 defined in (3.8).

Lemma 5.7. Suppose that for some 𝑇 > 0 the quantities  ,  , 𝐷 ∶ [0, 𝑇] → [0, ∞) satisfy

d

d𝑡
 ≤ −𝐷,  ≲  6

𝑑+5 𝐷
𝑑+2

𝑑+5 . (5.15)

Then, for all 𝑡 ∈ [0, 𝑇]:

(𝑡) ≲ min

{
0 ,

2
𝑇

𝑡
𝑑+2

3

}
.

Proof. Combining the relation ̇ ≤ −𝐷 with the inequality (5.15) yields

−̇ ≳ −
6

𝑑+2

𝑇  𝑑+5

𝑑+2 .

An integration in time completes the proof. □

Lemma 5.8. Let 𝑑 = 2 or 𝑑 = 1. For any 𝐶 < ∞, there exists 𝜀1 > 0 with the following property. For
any 𝑇 > 0, if  , 𝐷 ∶ [0, 𝑇] → [0, ∞) satisfy

d

d𝑡
 ≤ −𝐷,
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36 OTTO et al.

and

d

d𝑡
𝐷 ≤ 𝐶𝐷

6−𝑑

3−𝑑 ,

then 3−𝑑 𝐷𝑑 ≤ 𝜀1 implies

d

d𝑡

(3−𝑑 𝐷𝑑
) ≤ 0.

Proof. This follows from the straightforward computation

d

d𝑡

(3−𝑑 𝐷𝑑
)

= (3 − 𝑑) ̇ 2−𝑑 𝐷𝑑 + 𝑑 𝐷̇ 3−𝑑 𝐷𝑑−1

≤ −(3 − 𝑑) 2−𝑑 𝐷𝑑+1 + 𝐶𝑑 3−𝑑 𝐷𝑑−1 𝐷
6−𝑑

3−𝑑

≤ 2−𝑑 𝐷𝑑+1

(
𝑑𝐶
(3−𝑑 𝐷𝑑

) 1

3−𝑑 − (3 − 𝑑)

)
,

which has the right sign if 𝑑𝐶𝜀

1

3−𝑑

1 < 3 − 𝑑. This calculation for 𝑑 = 1 appeared already in [9,
Lemma 5.1]. □

Lemma 5.9. Let 𝑑 = 2 or 𝑑 = 1 and 𝑇 > 0. Suppose  , 𝐷 ∶ [0, 𝑇] → [0, ∞) satisfy the relations

d

d𝑡
 ≤ −𝐷, and d

d𝑡
𝐷 ≲ 𝐷

6−𝑑

3−𝑑 on [0, 𝑇].

Then, there exists 𝑡∗ ∼ 
3

𝑑

0 such that for all 𝑡 ∈ [𝑡∗ , 𝑇] there holds

𝐷(𝑡) ≲
( 𝑡

2

)
𝑡

.

Proof. Let 𝑑 = 2. By integrating the inequality

−
d

d𝑡

(
𝐷−3
) ≤ 𝐶

for 𝐶 ≥ 1 on the interval [𝑠, 𝑡] and multiplying with 𝐷(𝑠)3 𝐷(𝑡)3, we obtain the inequality

𝐷(𝑠)3 ≥ 𝐷(𝑡)3

1 + 𝐶(𝑡 − 𝑠)𝐷(𝑡)3
≥ 𝐷(𝑡)3

𝐶 + 𝐶(𝑡 − 𝑠)𝐷(𝑡)3

and deduce

𝐷(𝑠) ≳
𝐷(𝑡)

(1 + (𝑡 − 𝑠)𝐷(𝑡)3 )
1

3

.

We insert this in

∫
𝑡

𝜏

𝐷(𝑠)d𝑠 ≤ (𝜏) − (𝑡) ≤ (𝜏)
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 37

to obtain

(𝜏) ≳ 𝐷(𝑡) ∫
𝑡

𝜏

1

(1 + (𝑡 − 𝑠)𝐷(𝑡)3 )
1

3

d𝑠 = 𝐷(𝑡)−2 ∫
(𝑡−𝜏)𝐷(𝑡)3

0

1

(1 + 𝜎)
1

3

d𝜎

≳ min

{
(𝑡 − 𝜏)𝐷(𝑡)(𝑡 − 𝜏), (𝑡 − 𝜏)

2

3

}
.

We finish by choosing 𝜏 =
𝑡

2
.

The proof for 𝑑 = 1 is similar and is contained in [9, Proof of (1.13)]. □

We now check that the assumed differential estimates from Lemmas 5.8 and 5.9 hold true for
the MS evolution. The differential inequality for the energy gap is contained in (H). It remains to
derive a differential inequality for the dissipation.

Lemma 5.10. Consider a smooth solution of the MS evolution with graph structure on [0, 𝑇] in
𝑑 = 2 or 𝑑 = 1 and assume ‖∇ℎ‖∞ ≤ 1. In 𝑑 = 1, there holds

d

d𝑡
𝐷 ≲ 𝐷

5

2

(
1 +
(2 𝐷

) 1

2

)
.

In 𝑑 = 2, let 𝑝 > 2 be such that the assertion of Lemma 5.4 is satisfied. Then there holds

d

d𝑡
𝐷 ≲ 𝐷4

(
1 +
(𝐷2

) 4−𝑝

2(𝑝−2)

)
. (5.16)

Remark 5.11. In view of Corollary 5.5 and Lemmas 5.8 and 5.10, the condition ‖∇ℎ‖∞ ≤ 1 will be
preserved for the MS evolution in 𝑑 = 2 and 𝑑 = 1 if 3−𝑑 𝐷𝑑 is small enough initially.

Proof of Lemma 5.10. In 𝑑 = 1, the result is contained in [9, Lemma 4.1 and (4.3)].
For 𝑑 = 2, we recall the well-known evolution equation for the mean curvature (which can be

derived for instance from [4, (3.8) and (3.10)]):

𝐻̇ = − div tan ∇tan 𝑉 − |∇tan 𝑛|2 𝑉, (5.17)

where, ∇tan and div tan are the surface gradient and the surface divergence, respectively, and 𝐻̇

represents the change of the curvature in the normal direction. We compute

d

d𝑡
𝐷 =

d

d𝑡 ∫
ℝ3

|𝛁𝑓|2 d𝐱 =
d

d𝑡 ∫
Ω+ (𝑡)

||𝛁𝑓+
||2 d𝐱 +

d

d𝑡 ∫
Ω− (𝑡)

|𝛁𝑓−|2 d𝐱

= ∫
Ω+ (𝑡)

d

d𝑡
||𝛁𝑓+

||2 d𝐱 + ∫
Ω−

d

d𝑡
|𝛁𝑓−|2 d𝐱 − ∫

Γ

𝑉
(||𝛁𝑓+

||2 − |𝛁𝑓−|2) d𝑆

(1.2)
= ∫

Γ

−2 ̇𝑓+ 𝛁𝑓+ ⋅ 𝑛 + 2 ̇𝑓− 𝛁𝑓− ⋅ 𝑛 − 𝑉
(||𝛁𝑓+

||2 − |𝛁𝑓−|2) d𝑆

(1.2)
= ∫

Γ

−2𝐻̇[𝛁𝑓 ⋅ 𝑛] − 𝑉
(||𝛁𝑓+

||2 − |𝛁𝑓−|2) d𝑆

(5.17)
= ∫

Γ

2
(

div Γ ∇Γ 𝑉 + |∇Γ 𝑛|2 𝑉
)

𝑉 − 𝑉
(||𝛁𝑓+

||2 − |𝛁𝑓−|2) d𝑆, (5.18)
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38 OTTO et al.

where in the third line we have applied the divergence theorem and ̇𝑓± =
𝑑

𝑑𝑡
𝐻(ℎ(𝑥, 𝑡), 𝑡) is the

(total) time derivative of the curvature of a boundary point. Because 𝛁𝑓 is continuous in the
tangential direction, the difference on the right-hand side of (5.18) satisfies

||𝛁𝑓+
||2 − |𝛁𝑓−|2 = (𝛁𝑓+ ⋅ 𝑛)

2
− (𝛁𝑓− ⋅ 𝑛)

2
= [𝛁𝑓 ⋅ 𝑛](𝛁𝑓+ ⋅ 𝑛 + 𝛁𝑓− ⋅ 𝑛)

(1.2)
= −𝑉(𝛁𝑓+ ⋅ 𝑛 + 𝛁𝑓− ⋅ 𝑛). (5.19)

Inserting (5.19) into the right-hand side of (5.18) and integrating by parts, we obtain

d

d𝑡
𝐷 + 2 ∫

Γ

|∇Γ 𝑉|2 d𝑆

≤ 2 ∫
Γ

|∇Γ 𝑛|2 𝑉2 d𝑆

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
=∶𝐴

+ ∫
Γ

𝑉2 (𝛁𝑓+ ⋅ 𝑛 + 𝛁𝑓− ⋅ 𝑛) d𝑆

⏟ ⎴⎴⎴⎴⎴⎴⎴⎴ ⏟ ⎴⎴⎴⎴⎴⎴⎴⎴ ⏟
=∶𝐵

. (5.20)

We will deduce (5.16) from (5.20), the error estimates

𝐴 ≲  4−𝑝

3𝑝 𝐷
2 ( 3𝑝−4)

3𝑝 ‖∇𝑉‖ 2 ( 𝑝+4)

3𝑝

2 , (5.21)

|𝐵| ≲ 𝐷
2

3 ‖∇𝑉‖ 5

3

2 , (5.22)

and Young’s inequality, absorbing the ‖∇𝑉‖2
2 term in the left-hand side, where we use that‖∇𝑉‖2

2 ≲ ∫
Γ
|∇Γ 𝑉|2 d𝑆. (Notice that because of 𝑝 > 2, one has 2(𝑝 + 4)∕(3𝑝) < 2.)

We start by estimating

𝐴 ≲ ‖∇Γ 𝑛‖2
𝐿𝑝 (Γ)
‖𝑉‖2

𝐿
2𝑝

𝑝−2 (Γ)

. (5.23)

On the one hand, a simple computation based on (5.1) and using ‖∇ℎ‖∞ ≤ 1 reveals

‖∇Γ 𝑛‖2
𝐿𝑝 (Γ)

≲ ‖∇Γ 𝑛‖2
𝑝 ≲ ‖∇2 ℎ‖2

𝑝

(5.11)(5.9)

≲  4−𝑝

3𝑝 𝐷
4(𝑝−1)

3𝑝 . (5.24)

On the other hand, we estimate

‖𝑉‖2

𝐿
2𝑝

𝑝−2 (Γ)

≲ ‖𝑉‖2
2𝑝

𝑝−2

≲ ‖𝑉‖ 4(𝑝−2)

3𝑝

𝐻̇−1∕2
‖∇𝑉‖ 2(𝑝+4)

3𝑝

2 . (5.25)

The last inequality follows from the interpolation inequalities

‖𝑉‖2 ≲ ‖𝑉‖ 2

3

𝐻̇−1∕2
‖∇𝑉‖ 1

3

2 , and ‖𝑉‖𝑞 ≲ ‖𝑉‖𝜃
2‖∇𝑉‖1−𝜃

2 ,

for 𝜃 = 2∕𝑞, see Lemma A.5(v). Inserting (5.24) and (5.25) into (5.23) and using ‖𝑉‖
𝐻̇

−
1
2

≲‖𝑉‖
𝐻̇

−
1
2 (Γ)

in combination with Lemma 5.1, we arrive at (5.21).
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 39

We now turn to establishing (5.22) for 𝐵. The terms with 𝑓+ and 𝑓− are handled in the same
way, so without loss of generality, we consider 𝑓+ and begin with|||||∫Γ

𝛁𝑓+ ⋅ 𝑛𝑉2 d𝑆
||||| ≲ ‖𝛁𝑓+ ⋅ 𝑛‖

𝐻̇
−

1
2 (Γ)
‖𝑉2‖

𝐻̇
1
2 (Γ)

≲ 𝐷
1

2 ‖𝑉2‖
𝐻̇

1
2 (Γ)

, (5.26)

where for the second estimate we have applied Lemma 5.1. For the second term on the right-hand
side, we use

‖𝑉2‖
𝐻̇

1
2 (Γ)

≲ ‖𝑉‖ 3

2

6 ‖∇𝑉‖ 1

2

2

(cf. Lemma A.4) and insert (5.25) with 𝑝 = 3 to obtain

‖𝑉2‖
𝐻̇

1
2 (Γ)

≲ ‖𝑉‖ 1

3

𝐻̇
−

1
2

‖∇𝑉‖ 5

3

2 .

Again applying Lemma 5.1 and inserting the result into (5.26) yields (5.22). □

5.3 Duality argument

In this subsection we address the main mathematical challenge of this section, which is to prove
within the graph regime that  remains bounded in terms of its initial data for all time. As in
Section 3, the starting point is a dual representation of  . In the graph setting, we use:

 = sup
𝜓∈𝐿∞ (ℝ𝑑 ),‖𝜓‖∞≤1 ∫ 𝜓ℎ d𝑥,

and againwe use the solution 𝑢̄ of (1.33)–(1.35). To obtain uniform-in-time error estimates for large
times, the decay of  and 𝐷 will play a central role. Before stating and proving the duality result,
we introduce a splitting of the linearization error into kinetic and geometric nonlinearity.

Lemma 5.12 (Splitting the error and preprocessing). Let 𝜓 ∈ 𝐶∞
𝑐 (ℝ𝑑 ) with ‖𝜓‖∞ ≤ 1. In 𝑑 = 2

and 𝑑 = 1 for a smooth solution of MS with graph structure on [0, 𝑇], and 𝑢 satisfying (1.33)–(1.35),
there holds

𝑑

𝑑𝑡 ∫
ℝ𝑑

ℎ𝑢 d𝑥 =
𝑑

𝑑𝑡 ∫
ℝ𝑑

ℎ̄𝑢̄

=

(
− ∫

Γ

𝑉 𝑢̄(𝑥, 0) d𝑆 + 2 ∫
ℝ𝑑

𝑓(𝑥, 0) 𝜕𝑧 𝑢̄ d𝑥

)
+ 2 ∫

ℝ𝑑

(𝑓(𝑥, ℎ(𝑥)) − 𝑓(𝑥, 0)) 𝜕𝑧 𝑢̄ d𝑥 − 2 ∫
ℝ𝑑

(𝐻(𝑥, ℎ(𝑥)) − Δℎ)𝜕𝑧 𝑢̄ d𝑥.

Moreover, the terms

𝐴4 ∶= − ∫
Γ

𝑉𝑢̄ ( 𝑥, 0)d𝑆 + 2 ∫
ℝ𝑑 𝑓 ( 𝑥, 0)𝜕𝑧 𝑢̄d𝑥,

𝐴5 ∶= 2 ∫
ℝ𝑑 (𝑓 ( 𝑥, ℎ ( 𝑥)) − 𝑓 ( 𝑥, 0)) 𝜕𝑧 𝑢̄d𝑥,

𝐴6 ∶= 2 ∫
ℝ𝑑 (𝐻 ( 𝑥, ℎ ( 𝑥)) − Δℎ) 𝜕𝑧 𝑢̄d𝑥,
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40 OTTO et al.

obey the estimates:

|𝐴4| ≲ 𝐷
1

2

⎛⎜⎜⎜⎝


1

𝑑+2

𝑇  𝑑+1

2(𝑑+2)

(𝑇 − 𝑡)
1

3

+


2

𝑑+2

𝑇  𝑑

2(𝑑+2)

(𝑇 − 𝑡)
1

2

⎞⎟⎟⎟⎠, (5.27)

|𝐴5| ≲


1

2

𝑇 𝐷
1

2

(𝑇 − 𝑡)
1

3

, (5.28)

|𝐴6| ≲
1

(𝑇 − 𝑡)
2

3

min
{‖∇ℎ‖2

2 , ‖∇ℎ‖3
3

}
. (5.29)

Proof. A direct calculation yields

𝑑

𝑑𝑡 ∫
ℝ𝑑

ℎ̄𝑢̄ d𝑥 = ∫
ℝ𝑑

𝑢̄𝜕𝑡 ℎ̄ d𝑥 + ∫
ℝ𝑑

ℎ̄𝜕𝑡 𝑢̄ d𝑥

(5.3)(1.33)
= − ∫

ℝ𝑑

√
1 + |∇ℎ|2 𝑉(𝑥, ℎ(𝑥)) 𝑢̄ d𝑥 + 2 ∫

ℝ𝑑

ℎ 𝜕𝑧 Δ𝑢̄ d𝑥

= − ∫
Γ

𝑉 𝑢̄(𝑥, 0) d𝑆 + 2 ∫
ℝ𝑑

Δℎ 𝜕𝑧 𝑢̄ d𝑥

= − ∫
Γ

𝑉 𝑢̄(𝑥, 0) d𝑆 + 2 ∫
ℝ𝑑

𝐻(𝑥, ℎ(𝑥)) 𝜕𝑧 𝑢̄ d𝑥

− 2 ∫
ℝ𝑑

(𝐻(𝑥, ℎ(𝑥)) − Δℎ)𝜕𝑧 𝑢̄ d𝑥

= − ∫
Γ

𝑉 𝑢̄(𝑥, 0) d𝑆 + 2 ∫
ℝ𝑑

𝑓(𝑥, 0) 𝜕𝑧 𝑢̄ d𝑥

+ 2 ∫
ℝ𝑑

(𝑓(𝑥, ℎ(𝑥)) − 𝑓(𝑥, 0)) 𝜕𝑧 𝑢̄ d𝑥

− 2 ∫
ℝ𝑑

(𝐻(𝑥, ℎ(𝑥)) − Δℎ)𝜕𝑧 𝑢̄ d𝑥,

as desired.
For 𝐴4 we compute

𝐴4 = − ∫
Γ

𝑉𝑢̄(𝑥, 0) d𝑆 + 2 ∫
ℝ𝑑

𝑓(𝑥, 0) 𝜕𝑧 𝑢̄ d𝑥

(1.34)
= − ∫

Γ

𝑉𝑢̄(𝑥, 0) d𝑆 + ∫
ℝ𝑑+1

𝛁𝑓 ⋅ 𝛁𝑢̄ d𝐱

(1.2)
= − ∫

Γ

𝑉𝑢̄(𝑥, 0) + [𝛁𝑓 ⋅ 𝑛]𝑢̄(𝑥, ℎ(𝑥)) d𝑆

(1.3)
= ∫

Γ

𝑉(𝑢̄(𝑥, ℎ(𝑥)) − 𝑢̄(𝑥, 0)) d𝑆.
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 41

We use ‖∇ℎ‖∞ ≤ 1 and ‖𝜓‖∞ ≤ 1 to estimate

|𝐴4| ≲ ‖𝑉‖
𝐻̇

−
1
2 (Γ)
‖(𝑢̄(⋅, ℎ(⋅)) − 𝑢̄(⋅, 0))‖

𝐻̇
1
2 (Γ)

(5.5)

≲ 𝐷
1

2 ‖(𝑢̄(⋅, ℎ(⋅)) − 𝑢̄(⋅, 0))‖ 1

2

𝐿2 (ℝ𝑑 )
‖∇(𝑢̄(⋅, ℎ(⋅)) − 𝑢̄(⋅, 0))‖ 1

2

𝐿2 (ℝ𝑑 )

≲ 𝐷
1

2

⎛⎜⎜⎝
 1

𝑑+2  𝑑+1

2(𝑑+2)

(𝑇 − 𝑡)
1

3

+
 2

𝑑+2  𝑑

2(𝑑+2)

(𝑇 − 𝑡)
1

2

⎞⎟⎟⎠,

where we have used

‖(𝑢̄(⋅, ℎ(⋅)) − 𝑢̄(⋅, 0))‖2 = ‖∫ ℎ(⋅)

0

𝜕𝑧 𝑢̄(⋅, 𝑧)d𝑧‖2 ≲ ‖𝜕𝑧 𝑢̄‖∞‖ℎ‖2 ,

and ‖∇(𝑢̄(⋅, ℎ(⋅)) − 𝑢̄(⋅, 0))‖2 = ‖𝜕𝑧 𝑢̄(⋅, ℎ(⋅))∇ℎ(⋅) + ∫
ℎ(⋅)

0

𝜕𝑧 ∇𝑢̄(⋅, 𝑧)d𝑧‖2

≲ ‖𝜕𝑧 𝑢̄‖∞‖∇ℎ‖2 + ‖𝜕𝑧 ∇𝑢̄‖∞‖ℎ‖2 ,

together with (A.4), (A.5), Lemma A.5(ii), and (5.4).
We now turn to 𝐴5. Starting with

𝐴5 = 2 ∫
ℝ𝑑

(𝑓(𝑥, ℎ(𝑥)) − 𝑓(𝑥, 0))𝜕𝑧 𝑢̄ d𝑥

= 2 ∫
ℝ𝑑

𝜕𝑧 𝑢̄ ∫
ℎ(𝑥)

0

𝜕𝑧 𝑓(𝑥, 𝑧) d𝑧 d𝑥,

we estimate

|𝐴5| ≲ ‖𝜕𝑧 𝑢̄‖∞ ∫
ℝ𝑑

|ℎ(𝑥)| 1

2

(
∫

ℎ(𝑥)

0

|𝛁𝑓(𝑥, 𝑧)|2 d𝑧

) 1

2

d𝑥

≲ ‖𝜕𝑧 𝑢̄‖∞

(
∫

ℝ𝑑

|ℎ| d𝑥

) 1

2
(
∫

ℝ𝑑+1

|𝛁𝑓|2 d𝐱

) 1

2

(𝐴.4)

≲ 
1

2

𝑇

𝐷
1

2

(𝑇 − 𝑡)
1

3

.

Finally, we turn to 𝐴6, expressing it in the form

𝐴6 = −2 ∫
ℝ𝑑

(𝐻(𝑥, ℎ(𝑥)) − Δℎ)𝜕𝑧 𝑢̄ d𝑥

(5.2)
= −2 ∫

ℝ𝑑

div

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

1√
1 + |∇ℎ|2 − 1

⎞⎟⎟⎟⎠∇ℎ

⎞⎟⎟⎟⎠𝜕𝑧 𝑢̄ d𝑥
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42 OTTO et al.

= 2 ∫
ℝ𝑑

⎛⎜⎜⎜⎝
1√

1 + |∇ℎ|2 − 1

⎞⎟⎟⎟⎠∇ℎ∇𝜕𝑧 𝑢̄ d𝑥

= −2 ∫
ℝ𝑑

∇ℎ√
1 + |∇ℎ|2

(√
1 + |∇ℎ|2 − 1

)
∇𝜕𝑧 𝑢̄ d𝑥,

which we estimate using

|∇ℎ|√
1 + |∇ℎ|2 ≤ min {1, |∇ℎ|},

to deduce

|𝐴6| ≲ ‖∇𝜕𝑧 𝑢̄‖∞ min
{‖∇ℎ‖2

2 , ‖∇ℎ‖3
3

} (𝐴.5)

≲
1

(𝑇 − 𝑡)
2

3

min
{‖∇ℎ‖2

2 , ‖∇ℎ‖3
3

}
.

□

We are now ready for the duality argument.

Proposition 5.13. Let 𝑑 = 2 or 𝑑 = 1, 𝑇 > 0, and consider a smooth solution of the MS problem
with graph structure on [0, 𝑇]. Suppose that 𝑇 < ∞, ‖∇ℎ‖∞ ≤ 1 hold for all 𝑡 ∈ [0, 𝑇] and that 𝐷

satisfies

𝐷(𝑡) ≲ min

{0

𝑡
,
2

𝑇

𝑡
𝑑+5

3

}
. (5.30)

Then  obeys the bound

𝑇 = sup
𝑡∈[0,𝑇]

(𝑡) ≲ 0 + 
𝑑+1

𝑑

0 . (5.31)

Proof. Let 𝑢 satisfy (1.33)–(1.35). We claim that it suffices to establish

∫
𝑇

0

𝑑

dt ∫ℝ𝑑

hu d𝑥 d𝑡 ≲ 
3

2

0 +

(


1

2

𝑇 
3

4

0 + 
3

4

𝑇 
3

8

0

)
in 𝑑 = 2, and (5.32)

∫
𝑇

0

𝑑

𝑑𝑡 ∫
ℝ𝑑

ℎ𝑢 d𝑥 d𝑡 ≲ 
1

3

𝑇 
4

3

0 + 
2

3

𝑇 
2

3

0 + 
5

6

𝑇 
1

3

0 in 𝑑 = 1. (5.33)

Indeed, evaluating the integrals on the left-hand side, taking the supremumover𝜓, recalling (A.3),
and applying Young’s inequality leads to (5.31) for all 𝑇 > 0.
Wewill establish (5.32)–(5.33) based on the error estimates (5.27)–(5.29) in 𝑑 = 2 and 𝑑 = 1. The

strategy is that we need enough decay for integrability at infinity, but no larger power than 1
𝑇 so

that we can, as described above, absorb powers of 𝑇 from the right-hand side into the left-hand
side. To this end, we use either the first or second estimate from (5.30), as needed. Note that the
dissipation decay (5.30) is better than the energy decay (1.10) for this purpose, since we get “more
time decay for the same power of 𝑇 .” Note also that we will make repeated use of Lemma A.3
with 𝑎 + 𝑏 = 1.
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CONVERGENCE TO THE PLANAR INTERFACE FOR A NONLOCAL FREE-BOUNDARY EVOLUTION 43

For 𝐴6, we use (5.29) together with

‖∇ℎ‖3
3 ≤ ‖∇ℎ‖∞‖∇ℎ‖2

2

(5.14)(5.4)

≲  9−𝑑

6 𝐷
𝑑

6

to derive

∫
𝑇

0

|𝐴6| d𝑡 ≲ ∫
𝑇

0

 9−𝑑

6 𝐷
𝑑

6

(𝑇 − 𝑡)
2

3

d𝑡
(5.30)

≲ 
9−𝑑

6

0 ∫
𝑇

0

1

(𝑇 − 𝑡)
2

3

( 2
𝑇

𝑡
𝑑+5

3

) 𝛼 𝑑

6 (0

𝑡

) (1−𝛼)𝑑

6

d𝑡.

We choose 𝛼 to give 𝑡
1

3 decay and invoke (A.7), which leads to

𝛼 = 0 and an error 
3

2

0 in 𝑑 = 2,

𝛼 = 1 and an error 
1

3

𝑇 
4

3

0 in 𝑑 = 1.

To estimate 𝐴5, we use (5.30) to compute

∫
𝑇

0

|𝐴5| d𝑡
(5.28)

≲ 
1

2
𝑇 ∫

𝑇

0

1

(𝑇 − 𝑡)
1

3

( 2
𝑇

𝑡
𝑑+5

3

) 𝛼

2(0

𝑡

) 1−𝛼

2

𝛼 =
1

𝑑 + 2

(𝐴.7)

≲ 
𝑑+4

2(𝑑+2)

𝑇 
𝑑+1

2(𝑑+2)

0 .

Finally we turn to 𝐴4. Estimating (5.27) as in 𝐴5 where for the first time integral we again take
𝛼 =

1

𝑑+2
and in the second time integral we instead take 𝛼 = 0, we obtain an error


2

𝑑+2

𝑇 
𝑑+1

𝑑+2

0 . □

5.4 Proof of Proposition 2.3

Proof. Step 1: Control of the Lipschitz constant. We begin by establishing control on 3−𝑑 𝐷𝑑

and ‖∇ℎ‖∞ for all times. Let 𝜀1 be the constant fromLemma 5.8 and 𝜀 be such that 𝐶𝜀
1

6 < 1, where
𝐶 < ∞ is the implicit constant in (5.14). We set 𝜀2 ∶=

1

2
min{𝜀1 , 𝜀}. This implies

‖∇ℎ0‖∞ < 1. (5.34)

We set

𝑇1 ∶= sup
{

𝑇 > 0 ∶ 3−𝑑 𝐷𝑑 ≤ 2𝜀2 for all 𝑡 ≤ 𝑇
}

and 𝑇2 ∶= sup {𝑇 > 0 ∶ ‖∇ℎ‖∞ < 1 for all 𝑡 ≤ 𝑇}

and note that by smoothness, (1.24), and (5.34), there holds 𝑇1 > 0 and 𝑇2 > 0. Now we define

𝑇 ∶= min{𝑇1 , 𝑇2 }.
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44 OTTO et al.

On the one hand, we can apply Corollary 5.5 so that ‖∇ℎ‖∞ < 1 on [0, 𝑇]. On the other hand,‖∇ℎ‖∞ ≤ 1 implies that we can apply Lemma 5.10. Using 3−𝑑 𝐷𝑑 ≤ 𝜀1, we apply Lemma 5.8 to
get d

d𝑡
(3−𝑑 𝐷𝑑 ) ≤ 0 on [0, 𝑇]. We deduce 𝑇 = ∞.

Step 2: Proof of ( 2.3 ), ( 2.4 ), ( 2.5 ). Next we define

𝑇3 ∶= sup

{
𝑇 > 0 ∶  ≤ 𝐶̃(0 + 

𝑑+1

𝑑

0 ) for all 𝑡 ≤ 𝑇

}
,

where, 𝐶̃ > 1 is a universal constant to be specified below and smoothness implies 𝑇3 > 0.
Our goal is to prove 𝑇3 = ∞ for 𝐶̃ large enough. By Proposition 5.6 and Lemma 5.7 we see that

 ≲
2

𝑇3

𝑡
𝑑+2

3

for 𝑡 ∈ [0, 𝑇3 ].

Combining this with Lemma 5.10, 3−𝑑 𝐷𝑑 < 2𝜀2, and Lemma 5.9, we obtain

𝐷 ≲
( 𝑡

2

)
𝑡

≲
2

𝑇3

𝑡
𝑑+5

3

for all 𝑡 ∈ [𝑇diss, 𝑇3 ],

where, 𝑇diss ∼ 
3

𝑑

0 is the time from Lemma 5.9. Combining Proposition 2.1 for 𝑡 ≤ 𝑇diss with
Proposition 5.13 for 𝑡 ≥ 𝑇diss, we deduce

𝑇3
≤ 𝐶

(
0 + 

𝑑+1

𝑑

0

)
for a universal constant 𝐶 < ∞. Choosing 𝐶̃ > 𝐶 implies 𝑇3 = ∞.
Step 3: Proof of ( 2.6 ). A combination of Corollary 5.5 and Step 2 delivers the bound on ‖∇ℎ‖∞

in (2.6) for 𝑡 ≥ 𝑇diss. The bound on ‖ℎ‖∞ follows from item (iv) of Lemma A.5, Lemma 5.1, and
the bound on ‖∇ℎ‖∞. □
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APPENDIX A: ELEMENTARY BOUNDS
For completeness, we collect here a few elementary results that we apply in the paper.

Lemma A.1. Let 𝜓 ∈ 𝐶∞
𝑐 (ℝ𝑑 ). For the function 𝑢̄ satisfying (1.33)–(1.35), there holds

|𝑢̄(𝐱)| ≲
1|𝐱|𝑑 for |𝐱|≫ 1. (A.1)

Proof. To establish (A.1), we observe that because of the decay rate of 𝐺 from (1.31) and 𝜓 ∈

𝐶∞
𝑐 (ℝ𝑑 ), there holds

‖𝑢(𝑡)‖𝐿1 (ℝ𝑑 ) ≲ 1 and |𝑢(𝑥, 𝑡)| ≲ 𝑇1∕3|𝑥|−(𝑑+1) for large 𝑥 and all 𝑡 < 𝑇. (A.2)

For |𝑧| > |𝑥|, (A.1) directly follows from the decay of the Poisson kernel |𝑃(𝑥, 𝑧)| ≲ |𝑧|−𝑑 and‖𝑢‖𝐿1 (ℝ𝑑 ) ≲ 1. For |𝑥| ≥ |𝑧| and |𝑥| large enough, we write
|𝑢̄(𝑥, 𝑧)| =

||||||∫|𝑥−𝑦|≥ 1

2
|𝑥| 𝑃(𝑥 − 𝑦, 𝑧)𝑢(𝑦)d𝑦 + ∫|𝑥−𝑦|≤ 1

2
|𝑥| 𝑃(𝑥 − 𝑦, 𝑧)𝑢(𝑦)d𝑦

||||||
≲ sup|𝑥−𝑦|≥ 1

2
|𝑥|

|𝑧||𝑥 − 𝑦|𝑑+1
‖𝑢‖1 + ‖𝑃(⋅, 𝑧)‖1 sup|𝑥−𝑦|≤ 1

2
|𝑥| |𝑢(𝑦)|

(𝐴.2)

≲
|𝑧||𝑥|(𝑑+1)

+
1|𝑥|𝑑 ≲

1|𝐱|𝑑 .
□

Lemma A.2. Let 𝜓 ∈ 𝐿∞ (ℝ𝑑 ) and let 𝑢̄ satisfy (1.33)–(1.35). Then we have the following estimates
in terms of the terminal data:

‖𝑢̄‖∞ ≲ ‖𝑢‖∞ ≲ ‖𝜓‖∞ ,

‖∇𝑢̄‖∞ ≲ ‖∇𝑢‖∞ ≲ (𝑇 − 𝑡)
−

1

3 ‖𝜓‖∞ ,

‖∇2 𝑢̄‖∞ ≲ ‖∇2 𝑢‖∞ ≲ (𝑇 − 𝑡)
−

2

3 ‖𝜓‖∞ .

(A.3)

Furthermore recalling 𝑣 = −|∇|𝑢 = 𝜕𝑧 𝑢̄(𝑥, 0), we have

‖𝜕𝑧 𝑢̄‖∞ ≲ ‖𝑣‖∞ ≲ (𝑇 − 𝑡)
−

1

3 ‖𝜓‖∞ , (A.4)

‖𝜕𝑧 ∇𝑢̄‖∞ ≲ ‖∇𝑣‖∞ ≲ (𝑇 − 𝑡)
−

2

3 ‖𝜓‖∞ , (A.5)

‖𝜕2
𝑧 ∇𝑢̄‖∞ ≲ ‖𝜕𝑧 ∇𝑣‖∞ ≲ (𝑇 − 𝑡)−1‖𝜓‖∞ . (A.6)
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Proof. Recall that 𝑢̄ is the harmonic extension of the function 𝑢 satisfying

𝜕𝑡 𝑢 + 2|∇|Δ𝑢 = 0 in [0, 𝑇) × ℝ𝑑 ,

𝑢(𝑇) = 𝜓 in ℝ𝑑 .

By the maximum principle all estimates for 𝑢, 𝑣 and their derivatives carry over to 𝑢̄ and 𝜕𝑧 𝑢̄. The
estimates for 𝑢 are a consequence of

‖∇𝑚 𝑢(𝑡)‖∞ ≤ ‖∇𝑚 𝐺(𝑇 − 𝑡)‖1‖𝜓‖∞ , 𝑚 = 0, 1, 2,

where 𝐺 is the kernel from (1.23). Bounds for ‖∇𝑚 𝐺‖1 are derived by combining 𝐿∞ bounds and
decay at infinity coming from the Fourier transform. The bounds for 𝑣 can be derived based on
the properties of the Poisson kernel and the estimates for 𝑢. □

In the duality proof for large times, we make repeated use of the following fact.

Lemma A.3. For constants 0 < 𝑎, 𝑏 < 1 such that 𝑎 + 𝑏 ≥ 1, there holds

∫
𝑇

0

1

(𝑇 − 𝑡)𝑎

1

𝑡𝑏
d𝑡 ≲

1

𝑇𝑎+𝑏−1
. (A.7)

Proof. The proof can be obtained by elementary integration after separating the region of integra-
tion into [0, 𝑇∕2] and [𝑇∕2, 𝑇] and noting that on the first region, the first term in the integrand
is bounded by ≲ 𝑇−𝑎 and analogously on the second region. □

For the convenience of the reader we include the proof of the following interpolation estimate.

Lemma A.4. Let 𝑑 ∈ ℕ and 𝑉 ∈ 𝐿6 (ℝ𝑑 ) ∩ 𝐻̇1 (ℝ𝑑 ). Then, 𝑉2 ∈ 𝐻̇
1

2 (ℝ𝑑 ) and

‖𝑉2‖2

𝐻̇
1
2

≲ ‖𝑉‖3
6‖∇𝑉‖2 . (A.8)

Proof. We start with

‖𝑉2‖2

𝐻̇
1
2

= ∫
ℝ𝑑

|𝑘|(𝑉2
)2

(𝑘)d𝑘 =
1

(2𝜋)
𝑑

2
∫

ℝ𝑑

𝑉2 (𝑘)
𝑘|𝑘| ∫ℝ𝑑

𝑘𝑒−𝑖𝑘𝑥 𝑉2 (𝑥)d𝑥 d𝑘

= −2
1

(2𝜋)
𝑑

2
∫

ℝ𝑑

𝑉2 (𝑘)
𝑖𝑘|𝑘| ∫ℝ𝑑

𝑒−𝑖𝑘𝑥 𝑉(𝑥)∇𝑉(𝑥)d𝑥 d𝑘

= −2 ∫
ℝ𝑑

𝑉2 (𝑘)
𝑖𝑘|𝑘|(𝑉̂ ∗ ∇̂𝑉

)
(𝑘)d𝑘

= − ∫
ℝ𝑑 ∫ℝ𝑑

𝑖𝑘|𝑘|𝑉2 (𝑘)𝑉̂(𝑘 − 𝑘′ )∇̂𝑉(𝑘′ )d𝑘′ d𝑘

= ∫
ℝ𝑑

∇̂𝑉(𝑘′ ) ∫
ℝ𝑑

−𝑖𝑘|𝑘| 𝑉2 (𝑘)𝑉̂(𝑘 − 𝑘′ )d𝑘 d𝑘′ .
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By the Plancherel theorem, (A.8) follows from the estimate

‖𝐺‖2
2 ∶= ‖−1

(
∫

ℝ𝑑

−𝑖𝑘|𝑘| 𝑉2 (𝑘)𝑉̂(𝑘 − 𝑘′ )d𝑘

)‖2
2 ≲ ‖𝑉‖6

6 , (A.9)

where −1 is the inverse Fourier transform. To prove (A.9) we write

𝐺 = ∫
ℝ𝑑

𝐴[𝑉2 ](𝑥)𝑉(−𝑥),

where 𝐴 is the operator associated to the Fourier-multiplier −𝑖𝑘|𝑘| . This implies
‖𝐺‖2

2 = ∫
ℝ𝑑

𝐴[𝑉2 ]2 (𝑥)𝑉2 (𝑥)d𝑥 ≤ ‖𝑉‖2
6‖𝐴[𝑉2 ]‖2

3 ,

from which (A.9) follows by an application of the Hörmander–Mikhlin theorem (‖𝐴[𝑉2 ]‖3 ≲‖𝑉2‖3). □

Finally, we collect without proof the interpolation estimates that are more or less direct
consequences of the Gagliardo–Nirenberg–Sobolev inequalities.

Lemma A.5. The following interpolation inequalities hold.

(i) Let 𝑔 ∈ 𝐿2 (ℝ2 ) with ∇𝑔 ∈ 𝐿𝑝 (ℝ2 ) for some 𝑝 > 2. Then 𝑔 ∈ 𝐿∞ (ℝ2 ) and

‖𝑔‖∞ ≲ ‖𝑔‖ 𝑝−2

2 ( 𝑝−1)

2 ‖∇𝑔‖ 𝑝

2 ( 𝑝−1)

𝑝 .

For ℎ ∈ 𝐻̇1 (ℝ2 ) with ∇2 ℎ ∈ 𝐿𝑝 (ℝ2 ) this entails in particular

‖∇ℎ‖∞ ≲ ‖∇ℎ‖ 𝑝−2

2(𝑝−1)

2 ‖∇2 ℎ‖ 𝑝

2(𝑝−1)

𝑝 .

(ii) Let ℎ ∈ 𝐿1 (ℝ𝑑 ) with ∇ℎ ∈ 𝐿2 (ℝ𝑑 ). Then ℎ ∈ 𝐿2 (ℝ𝑑 ) and

‖ℎ‖2 ≲ ‖ℎ‖ 2

𝑑+2

1 ‖∇ℎ‖ 𝑑

𝑑+2

2 .

(iii) Let ℎ ∈ 𝐿1 (ℝ𝑑 ) with ∇2 ℎ ∈ 𝐿2 (ℝ𝑑 ). Then ∇ℎ ∈ 𝐿2 (ℝ𝑑 ) and

‖∇ℎ‖2 ≲ ‖ℎ‖ 2

𝑑+4

1 ‖∇2 ℎ‖ 𝑑+2

𝑑+4

2 .

(iv) Let ℎ ∈ 𝐿1 (ℝ2 ) with ∇ℎ ∈ 𝐿∞ (ℝ2 ) ∩ 𝐿2 (ℝ2 ). Then ℎ ∈ 𝐿∞ (ℝ2 ) and

‖ℎ‖∞ ≲ ‖ℎ‖ 1

5

1 ‖∇ℎ‖ 2

5

2 ‖∇ℎ‖ 2

5
∞ .

If ℎ ∈ 𝐿1 (ℝ) with ℎ𝑥 ∈ 𝐿2 (ℝ) then ℎ ∈ 𝐿∞ (ℝ) and

‖ℎ‖∞ ≲ ‖ℎ‖ 1

3

1 ‖ℎ𝑥‖ 2

3

2 .

(v) Let 𝑞 ∈ (2, ∞). If 𝑔 ∈ 𝐿2 (ℝ2 ) with ∇𝑔 ∈ 𝐿2 (ℝ2 ), then 𝑔 ∈ 𝐿𝑞 (ℝ2 ) and

‖𝑔‖𝑞 ≲ ‖𝑔‖ 2

𝑞

2 ‖∇𝑔‖ 𝑞−2

𝑞

2 .
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