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Abstract: Extracorporeal circulation (ECC) is frequently implemented in a vast array of modalities
such as hemodialysis, cardiopulmonary bypass, extracorporeal membrane oxygenation (ECMO), and
others. Patients receiving any such therapy are frequently encumbered with chronic inflammation,
which is inherently accompanied by oxidative stress. However, ECC treatments themselves are also
responsible for sustaining or promoting inflammation. On these grounds, an in vitro study was de-
signed to investigate the therapeutic potential of molecular hydrogen (H2) against pro-inflammatory
agents in ECC settings. Five miniature ECMO circuits and a small vial (Control) were primed with
heparinized blood from healthy adult donors (n = 7). Three of the ECMO systems were injected with
lipopolysaccharide (LPS), out of which one was additionally treated with an H2 gas mixture. After
6 h, samples were drawn for the assessment of specific biomarkers (MCP-1, MPO, MDA-a, TRX1,
and IL-6). Preliminary results indicate a progressive oxidative and inflammatory response between
the six systems. Circulation has triggered inflammation and blood trauma, but the staggering influ-
ence of LPS in this outcome is indisputable. Accordingly, hydrogen’s remedial potential becomes
immediately apparent as biomarker concentrations tend to be lower in the H2-handled circuit. Future
research should have distinct objectives (e.g., dosage/duration/cycle of hydrogen administration) in
order to ascertain the optimal protocol for patient treatment.

Keywords: extracorporeal circulation; molecular hydrogen; ECMO; oxidative stress; inflammation;
anti-inflammatory action

1. Introduction

The term artificial organs pertains to devices and therapies capable of reproducing
the function of human organs either partially or fully. Often, these constitute long-term,
implantable solutions, whereas on other occasions, they can only be implemented for a
certain period or in intermittent sessions. Apparatus and treatments for the lung, kidney,
and liver fall into the last category, which necessitates the extracorporeal handling of blood.
Patients suffering from impaired function of any of the aforementioned organs are also
frequently afflicted by topical or systemic inflammation and/or oxidative stress, regularly
exacerbated by the extracorporeal treatment [1–4].

Recently, the outbreak of the COVID-19 pandemic skyrocketed the utilization of extra-
corporeal membrane oxygenation (ECMO), rendering the study of oxidative/inflammatory
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phenomena in treated patients extremely pertinent [5,6]. According to Millar et al., the
application of ECMO in critically ill patients is associated with a systemic inflammatory
response, which can lead to organ injury and dysfunction [7]. This reaction is characterized
by a rapid increase in plasma concentrations of inflammatory cytokines, such as TNF-α
and IL-8, during the first 2 h of ECMO, potentially due to the release of pre-formed stores
in the intestine [8]. The inflammatory response is further exacerbated by the exposure of a
patient’s blood to the non-endothelialized surface of the ECMO circuit, which activates the
innate immune system and can lead to inflammation and organ injury [3,4,7].

Studies have established that hydrogen gas possesses anti-inflammatory properties and
can improve survival rates and organ damage in models of generalized inflammation [9,10].
This is particularly relevant in the context of ECMO treatment, which can lead to an excessive
systemic inflammatory response [3,11]. The potential of hydrogen gas as a therapeutic agent
in emergency and critical care medicine has already been demonstrated by Sano et al. in
2017 [12], whereas its continued application as an antioxidant in hemodialysis dates from
2009 [13,14]. Furthermore, it has been recommended for use in the treatment of various
systemic diseases due to its anti-inflammatory and antioxidant abilities [15,16]. In the context
of lung injury, a 2% supplement of hydrogen gas during mechanical ventilation (MV) support
effectuated a reduction in the ventilator-induced inflammatory response and lower levels of
epithelial apoptosis after 2 h of treatment [17,18]. Likewise, rats treated with hydrogen while
on ECMO and MV exhibited 250% higher survival rates compared to the placebo group 4 h
after resuscitation from cardiac arrest [19]. By the happenstance of COVID-19 hydrogen had
already gained substantial momentum as an antioxidant and anti-inflammatory agent, hence
the numerous postulations of its efficacy against the side effects of the viral infection [15,20–22].

These findings suggest that hydrogen gas may play a vital role in mitigating inflamma-
tion in ECC settings. In furtherance of validating this thesis, an in vitro study was designed
with clinical relevance in mind. Emphasis has been placed on investigating hydrogen’s
impact during gas exchange, as the second most frequently encountered extracorporeal
circulation modality after hemodialysis [23]. Blood from healthy human donors circulated
in small ECMO circuits in order to observe the influence of diverse parameters (circuit
components, introduction of pathogens, and hydrogen treatment) on the provocation of
an inflammatory response. The preliminary results communicated here corroborate the
feasibility of this study and pave the way for prospective exhaustive in vitro trials, where
the specific characteristics of hydrogen-enriched ECMO treatments ought to be further
investigated and explicitly determined ahead of any in vivo applications.

2. Materials and Methods
2.1. Donors

On account of being viewed as a pilot study since its inception, and in pursuance of
minimizing the margin of error, a few straightforward criteria were set for the selection of
blood donors:

• should be healthy adults
• should be capable of donating > 300 mL of blood without complications
• should have an average hematocrit Hct ≥ 42%
• should not have experienced acute pyretic or other inflammatory incidents recently
• should not have any blood-associated conditions
• should not have a prescription for anticoagulation medication, etc.

Based on the above, female donors were excluded during this preliminary phase. The
study was conducted in accordance with the Declaration of Helsinki and was approved by
the RWTH Aachen Medical Faculty Institutional Ethics Committee (EK 23–234, extended
approval from 20 July 2023).

2.2. In Vitro Inflammation

As per the selection criteria stipulated above, the donated blood should be free from
any inflammation and oxidation prior to any further handling. Yet, for the purposes of this
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study, an inflammatory response needed to be artificially triggered on demand. A solution
was offered in the form of endotoxins, which promote the secretion of pro-inflammatory
cytokines [24]. To determine the optimal dosage, a titrated solution of Lipopolysaccharide
(LPS) was introduced in samples of donated blood. After 6 hours, plasma from each
sample was implemented in the measurement of Interleukin 6 (IL-6) concentration via an
enzyme-linked immunosorbent serologic assay (ELISA).

2.3. Experimental Setup

In pursuance of examining every alternative possible, six systems (5× ECMO, 1× Con-
trol), each serving a different purpose, were tested simultaneously in vitro. Three circuits were
infused with 250 ng mL−1 of LPS each in order to artificially set off an inflammatory response,
whereas the rest remained uncontaminated. The latter would contribute to the evaluation of
the pro-inflammatory influence of extracorporeal circulation itself.

To facilitate the delivery of hydrogen gas (Hydrogen 5.0, Linde AG, Munich, Germany),
a gas exchanger module was annexed to one of the LPS-infused systems. The supplied gas
mixture contained roughly 6% H2, resulting in a dissolved H2 concentration of 100–120 ppb.
Two more circuits, one of which was also LPS-treated, were also furnished with identical
gas exchangers to keep track of any ramifications stemming from the gas exchange and
from the integration of such modules. Naturally, the gas admixture that these two systems
received was devoid of hydrogen and aimed to maintain blood gas values within the
physiological range. The implemented gas exchanger modules had a surface area, Aeff, of
0.3 m2 and 20 mL of priming volume.

All five ECMO circuits comprised a peristaltic pump (Stoeckert Instrumente GmbH,
Munich, Germany), 3/16” and 1/4” tubing, and a collapsible reservoir made out of thin
silicone. The control setup, consisting of a reaction tube filled with untreated blood, was
left standing for the entire duration of the experiment (texp = 6 h). Table 1 summarizes the
essential characteristics of each setup and their corresponding labeling for disambiguation,
whereas Figure 1 portrays the predominant variations.
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Table 1. Inventory of the systems tested in this study and their fundamental properties. The star-
flagged setups were additionally equipped with a miniature gas exchanger module.

System Label
Total Volume

Vprim [mL]
Blood Flow Rate
QB [mL min−1]

Gas Mixture Content [%]
Air CO2 H2

Control C 1.5 - - - -
Reference 1 Ref 45 40 - - -
Reference 2 Ref* 70 40 96 4 -

LPS 1 LPS 45 40 - - -
LPS 2 LPS* 70 40 96 4 -
LPS 3 LPS*H2 70 40 90 4 6

2.4. Test Protocol

Upon obtaining informed consent and explaining the nature and potential conse-
quences of the study, venous blood (ca. 300 mL) was drawn from healthy male donors
with a median age of 37 (28, 55). Sodium heparin (B. Braun, Melsungen, Germany) was
instilled directly in the blood containers as an anticoagulant (10 IU mL−1). In total, seven
experiments (n = 7) were carried out. On each occasion, all six systems were primed with
blood from a single donor.

Once primed, the ECMO circuits were perfused at a blood flow rate of 40 mL min−1

for 6 hours uninterrupted. Blood samples (200 µL) were drawn from each circuit at regular
intervals to determine the partial pressures of oxygen (pO2) and carbon dioxide (pCO2),
hemoglobin (Hb) levels, and other clinically relevant blood gas data. A blood gas analyzer
(Radiometer, Copenhagen, Denmark) facilitated this procedure. Base excess was the only
parameter adjusted, as per ISO 7199:2016 [25], to prevent any acidosis/alkalosis phenomena
that could induce further oxidative stress and/or blood trauma.

Blood dilution was avoided to retain the maximum number of cells possible (mean
hemoglobin Hb = 14 g dL−1 ± 0.7). Blood flow rate and pressure drop were monitored by
an ultrasonic flowmeter (Transonic, Ithaka, NY, USA) and a pressure gauge (CODAN pvb
Critical Care Inc, Forstinning, Germany), respectively, whereas gas supply was regulated
via gas flowmeters (Platon, Vienna, Austria). A contactless hydrogen sensor (Pureron Co.
Ltd., Iwaki, Japan) registered the concentration of dissolved hydrogen in the LPS*H2 circuit,
as Figure 1 attests.

At the end of each experiment, blood samples were taken from each circuit for further
analysis, in volumes sufficient (4–5 mL) for multiple measurements. Plasma, extracted
through centrifugation (14000× g, 5 min, RT), was used for the estimation of oxidative
and inflammatory stress by measuring the concentrations of specific biomarkers (dual
measurement). Likewise, plasma was implemented in the determination of blood trauma
via spectrophotometry (Pharmacia Biotech, Uppsala, Sweden).

An experimental runtime of 6 h offered ample time both for protein expression and for
hydrogen to react with any reactive oxygen species (ROS) in the system. On the other hand,
it prevented any compromise of erythrocyte integrity by paying heed to blood damage
evaluation protocols [26].

For standardization purposes, particularly since priming volume differed significantly
between circuits, the Normalized Index of Hemolysis (NIH) was used for the estimation of
blood trauma, as expressed by Equation (1) [27].

NIH = ∆PfHb·Vprim·100 − Hct
100

· 100
QB·texp

(1)

2.5. Biomarkers of Inflammation and Oxidative Stress

Since the scope of this study was not as broad as the actual spectrum of biomarkers
associated with oxidative and inflammatory responses, a few select samples were singled
out on account of their frequent emergence in the relevant literature [28–36]. An essential
parameter was the inclusion of representative biomarkers from both pools (oxidative and
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inflammatory), as Table 2 signifies. Biomarker assessment was carried out by means of ELISA,
performed as per the manufacturer’s protocol (Thermo Fisher Scientific, Waltham, MA, USA).

Table 2. List of the investigated biomarkers.

Biomarker Abbreviation Classification

Monocyte chemoattractant protein-1 MCP-1/CCL2 oxidative stress/inflammation
Myeloperoxidase MPO oxidative stress/inflammation

Thioredoxin-1 TRX1 antioxidant/anti-inflammatory
Malondialdehyde MDA oxidative stress

Interleukin 6 IL-6 pro-inflammatory

2.6. Statistics

Statistical analysis (multivariate analysis of variance—ANOVA) was conducted to
inspect the level of significance with p < 0.05 using the software GraphPad Prism version
9.1.1 (GraphPad Software, Inc., San Diego, CA, USA).

3. Results

Determining the optimal LPS dosage for the in vitro investigations was crucial for
the quality and accuracy of the experimental outcome. During a pre-trial, blood samples
were subjected to titrated LPS solution in order to trigger an inflammatory response. The
results, presented in Figure 2, point to an LPS concentration of 250 ng mL−1, for which the
maximum IL-6 expression can be observed.
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Figure 2. Method for establishing the optimal LPS dosage for the experimental protocol based on the
inflammatory reaction of blood to titrated LPS solution, expressed in terms of IL-6 concentration.

Figure 3 displays individual blood gas parameters, as well as aspects of gas exchange
for each of the tested circuits. The partial pressure of oxygen and the corresponding satura-
tion are depicted in Figure 3a,b, revealing the importance of the gas exchanger module in
achieving a steady state early on. The Ref and LPS circuits, in contrast, were only subject
to passive gas exchange through the tubing walls, hence the delayed accomplishment of
the final values. Likewise, carbon dioxide rapidly reached equilibrium values in the Ref*,
LPS*, and LPS*H2 circuits, as portrayed in terms of partial pressure in Figure 3c, while
the non-aerated circuits exhibited gradual losses through the conduit. Hydrogen transfer
is represented in Figure 3d in the form of the concentration of molecular hydrogen dis-
solved in the circulating blood. The rendered charts depict average values, while standard
deviations were insignificant and shall therefore not be annotated.
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pressure (a) and saturation (b), carbon dioxide partial pressure (c), and hydrogen concentration (d).

In furtherance of assessing the influence of diverse factors (i.e., circuit design, compo-
nent selection, and test protocol) on experimental conduct, the hemolysis rate was measured
and the Normalized Index of Hemolysis was calculated for each circuit. Moreover, this
process effectuated the individual estimation of mechanically vs. biochemically induced
hemolysis, providing valuable insight into the kinetics of these investigations. Figure 4
discloses evidence of pronounced blood trauma in the systems, where an inflammatory
reaction was artificially triggered, whereas an unprecedented amelioration manifests in the
circuit handled with H2.
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Figure 5 encapsulates the expression of the selected biomarkers in each circuit. MCP-1
demonstrates the least divergence between the various setups, apparent also in its insignificant
variance (p = 0.2027), as measured using one-way ANOVA. On the other hand, MPO shows
the lowest p-value (1.7024·10−13) under one-way ANOVA; however, this is mainly due to the
substantial increase in all circuits except for the control system. Apart from the mean values,
the charts illustrate the standard deviations and the level of significance. TRX1 manifests
reduced disparity between the individual measurements yet presents adequate significance
(p = 0.0006). MDA and, to a much greater extent, IL-6 come closest to the ideal embodiment
of an oxidative/inflammatory response in each system, as per their individual handling,
evincing high levels of significance with p-values of 5.5962·10−9 and 7.0644·10−7, respectively.
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Finally, no plasma leakage was witnessed throughout the experimental procedure,
nor was there any noteworthy volume loss due to sampling, as testified by the constant
pressure drop measurements.

4. Discussion

Reactive oxygen species contribute to and arise from numerous cellular pathologies,
diseases, and aging [37]. Any imbalance in the production or disposal of ROS triggers
oxidative stress that acts as a precursor of inflammatory response [38]. Molecular hydrogen
has been reported to be surprisingly effective in countering phenomena of oxidative
stress and inflammation in a vast range of occasions/disorders [14,39,40]. The notion of
investigating the efficacy of hydrogen gas during extracorporeal gas exchange was premised
on the excessive systemic inflammatory response associated with ECMO treatments, and
the fact that relevant research is scarce.

A cornerstone of this study has been, from the very beginning, the artificial stimulation
of inflammation in circulating blood. LPS was the ideal candidate for this purpose owing to
its straightforwardness in terms of experimental handling, accessibility, and comparability.
Identifying the most suitable concentration to work with was essential prior to any fully
fledged in vitro experiment. This was accomplished by measuring the inflammatory
response of blood samples from healthy human donors when exposed to diverse LPS
concentrations. As Figure 2 demonstrates, the highest IL-6 expression was observed at
250 ng mL−1, hence the decision to work further with this LPS concentration.

Maintenance of physiological blood gas values could only be achieved through con-
trolled gas exchange, as Figure 3 signifies. Although a pO2 value in excess of 100 mmHg
could also be reached in the non-aerated circuits over time, pCO2 continually declined far
below arterial values in these systems. This gradual gas transfer has been attributed to
the material and wall thickness of the collapsible reservoir (<1 mm); the same elements
granting flexibility and collapsibility, enable gas diffusion between the circulating blood
and the surrounding environment. On a separate note, despite being perfectly constant
over time, the pO2 values registered by the BGA upon analyzing blood samples from the
H2-handled circuit were repeatedly found to be lower than anticipated. Gas samples taken
upstream of the gas exchanger sustained similar penalties in pO2, according to the blood
gas analyzer’s report, raising suspicions of erroneous measurements. To illuminate this
obscurity, an in-line pO2 gas sensor (FDO2, Pyroscience GmbH, Aachen, Germany) was
placed at the inlet of the gas exchanger [41]. The values recorded fell within the predicted
range of 130–140 mmHg, thus validating the assumption of BGA measurement inaccuracy
in the presence of H2, whether in blood or in the gas phase. This predicament needs to be
further investigated to ascertain the origins of the error and take the necessary measures
prior to any in vivo trial.

The concentration of dissolved hydrogen in blood remained relatively constant, well
within the expected margin, as Figure 3d denotes, despite the incessant losses towards the
environment. In fact, the rate at which hydrogen can escape through most materials, on ac-
count of its minute size, renders constant gas supply compulsory. The target concentration
of 100–120 ppb is an average of the most frequently implemented concentrations in ongoing
pertinent studies [14]. As a side note, the hydrogen monitoring water system (HWMS)
fitted exclusively onto the H2-supplied circuit systematically yielded consistent results,
whose accuracy has been validated through exhaustive trials and sensor recalibrations [41].

Figure 4 underlines the gravity of blood trauma as a critical parameter to be reckoned
with when conducting gas exchange investigations. In view of the small scale of the circuits
and the duration of the experiment, the magnitude of hemolysis in the uncontaminated
(LPS-free) systems is not out of the ordinary, as similar studies attest [42]. The low blood
volume and protracted experimental runtime, in association with the lack of any physio-
logical regulation mechanisms during in vitro trials, are presumably the main culprits for
the severely higher blood trauma in the LPS-infused circuits. Still, the recorded hemolysis
rate did by no means influence the gas exchange capacity of blood, as witnessed in the
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pertinent charts (Figure 3). Finally, the notable reduction of blood trauma in the presence of
hydrogen is an intriguing observation that requires further analysis.

Evidence of the antioxidative and anti-inflammatory action of molecular hydrogen
is provided in Figure 5, where the expression of each biomarker in every system is docu-
mented. Specifically:

• MCP-1 levels remain practically unchanged throughout the investigation in all the
circuits. This may indicate a low cell count that hampers any noticeable observation in
MCP-1 expression when blood stems from healthy donors. The mild concentration
increase in the LPS systems confirms the low number of cells being triggered.

• The majority of circuits exhibit a tendency towards the concentration in the Control
with regard to MPO measurements. The concentration difference between the C and
Ref/LPS systems leaves a small margin for H2 to act, similar to MCP-1. The slight vari-
ance between the different setups points towards time-dependent cell activation rather
than any shear rate-induced stress. Nevertheless, these findings might provide a clue
concerning in vivo investigations, where cell variability occurs over time, and in vivo
activation mechanisms come into effect, potentially allowing for better evaluation of
hydrogen’s efficacy.

• TRX1 expression does not seem to be affected by H2 as it is with MPO. This agrees
with the fact that TRX1 and MPO are associated with anti-inflammatory and pro-
inflammatory activity, respectively. Hence, lower MPO concentrations correspond to
higher ones for TRX1.

• Varying levels of MDA expression can be witnessed among the systems, suggesting a
combination of time-associated and mechanical stress. The inflammatory response to
LPS is once again countered by the treatment with H2, although not to baseline levels.
This agrees with Huang’s findings, where lower MDA concentrations were observed
in the hydrogen-treated lungs (as opposed to the nitrogen-treated ones) [17,18].

• IL-6: apparent string inhibition by H2. In contrast to MDA, the unambiguously
strong IL-6 suppression makes a compelling argument concerning hydrogen’s anti-
inflammatory action and the specific pathways being inhibited, as already reported [43].
Furthermore, as with MPO, IL-6 also has pro-inflammatory characteristics, and since it
is so heavily suppressed, the anti-inflammatory activity might naturally be reinforced
(i.e., TRX1).

Finally, in spite of any disparity in blood gas data between the gas-exchange-handled
circuits and the “non-ventilated” ones, there was no trace of deviating biomarker expression
in sister systems (e.g., Ref–Ref*).

Some of the above findings raise the issue of the number of blood cells, which directly
relates to the overall blood volume of the circuits. This has been a hindrance ever since the
decision was made to conduct the investigations with human blood, which required drastic
downsizing of all the components. For the same reason, the circuit Ref*H2 was omitted
from these investigations, especially since hydrogen is not expected to react with healthy
blood, as some preliminary measurements have shown. The matter of an inexhaustible
blood supply could perhaps be addressed by taking advantage of the hospital’s blood bank
reserves (set aside for quality control purposes). Unfortunately, blood bags usually contain
citrate phosphate dextrose (CPD) as an anticoagulant. This interfered with the study’s
design, which intended heparin as an anticoagulant in pursuit of keeping the results as
clinically relevant as possible.

Ultimately, the experimental output of the study is very positive, corroborating hy-
drogen’s preventative action and therapeutic potential in ECMO settings and laying the
groundwork for future research and subsequent medical applications. A sequel to this
study could offer invaluable information by exploring several parameters, such as:

• the impact of blood volume on biomarker expression
• a wider spectrum of biomarkers
• the influence of hydrogen’s concentration on its curative efficacy
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• hydrogen’s antioxidant and anti-inflammatory action at different administration pat-
terns (e.g., continuous, intermittent, or delayed)

Moreover, recruiting a substantially larger pool of donors, representing both sexes as
well as certain groups of patients, shall bestow upon said study essential gravitas.

Future studies should also consider the duality of hydrogen’s therapeutic potential.
Interestingly, H2 in the form of hydrogen sulfide (H2S) has been shown to have a significant
influence on immune cells. It can modulate the inflammatory response of macrophages,
potentially alleviating proinflammatory phenotypes [44]. However, continuous exposure
to high levels of H2S can lead to immune suppression, triggering oxidative stress, inflam-
mation, apoptosis, and an imbalance in T helper cells [45]. On the other hand, the use of
molecular hydrogen has been found to be a protective agent against radiation-induced
immune dysfunction, reducing oxidative stress and apoptosis and regulating T-cell bal-
ance [46,47]. Moreover, supraphysiological levels of hydrogen peroxide—one of the most
common ROS—trigger vasoconstriction, endothelial dysfunction, hypertension, and a
proinflammatory state [48]. It is, therefore, possible that hydrogen peroxide may contribute
to the inflammatory response during ECMO treatment. The occasionally contradictory
outcome of hydrogen administration and the potential dependence on the composition
of the carrier compound entreat further research to fully understand the impact of H2 on
cellular function, which in several cases can only be addressed by long-term in vivo models.

5. Conclusions

This study attempts to ascertain the therapeutic potential of molecular hydrogen in
extracorporeal gas exchange settings. With this objective in mind, several ECMO circuits
have been assembled and tested in vitro using fully heparinized blood from healthy human
donors. The findings reveal elevated blood trauma in LPS-infused circuits, whereas gas
exchange and the balance of blood gases at physiological levels do not seem to have any
particular influence on the inflammatory outcome. On the contrary, H2 has proven to be
particularly competent in counteracting both oxidative and inflammatory stress, as evinced
by diverse biomarkers, notwithstanding its ameliorative action in terms of hemolysis.
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