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A B S T R A C T

This study introduces a scalable, cloud-based approach to occupancy monitoring designed to optimize HVAC operations in office buildings. It addresses the challenges 
of developing and implementing a multi-parameter IoT-based occupancy monitoring system by integrating various off-the-shelf sensors—CO2, infrared (IR), motion 
(PIR), and door status detection—into a cohesive system. Leveraging wireless LoRaWAN and novel cloud technologies, the system ensures easy installation, efficient 
maintenance, and robust data management. CO2-based occupancy detection models were trained using data from a reference office and validated in another office 
environment. Among the various models evaluated, the four best-performing ones—Decision Trees, Random Forest, LightGBM, and K-Nearest Neighbors—were 
selected for integration into a multi-parameter detection system. To further enhance system performance and identify optimal sensor combinations and configurations 
for cost-effective and accurate occupancy detection, a data fusion methodology was employed. This methodology, validated with ground-truth data from a test bed, 
tested the monitoring system in different office settings, ranging from single to quadruple-occupant rooms. Integration of additional parameters into the developed 
data fusion approach significantly improved system performance, achieving a True Positive Rate (TPR) of 95% compared to 81% with a simple baseline data fusion 
method. This approach also reduced false detections during unoccupied periods, as tested in multiple rooms within the studied building, thereby enhancing the 
system’s reliability for integration into occupancy-aware HVAC control strategies.

1. Introduction

1.1. Motivation

Within the European Union (EU), buildings are responsible for 40% 
of energy consumption and 36% of greenhouse gas emissions, under-
scoring the urgency of improving energy efficiency in this sector to meet 
the EU’s climate and energy goals [1,2]. Approximately 75% of buildings 
within the EU are energy-inefficient, leading to significant energy waste 
[1]. This issue can be mitigated by upgrading existing infrastructure 
through advanced retrofitting with the potential to cut nearly one-third 
of 2005 building energy use and incorporating innovative technologies 
through Smart Retrofitting (SR) in existing buildings and transforming 
ordinary buildings into Smart Buildings (SB) [3–5]. Optimizing the op-
eration of Heating, Ventilation, and Air Conditioning (HVAC) systems is 
crucial to enhance energy efficiency in the building sector, especially in 
commercial buildings like offices. This can be achieved by integrating 
real-time occupancy data into HVAC control strategies. Dynamically ad-
justing HVAC operations based on actual occupancy patterns [3,6], an 
approach that has gained prominence due to the increased frequency of 
remote work [7] and advances in telecommunication technologies post-
COVID-19-buildings can significantly reduce energy consumption while 
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maintaining optimal indoor conditions. One of the significant benefits 
of occupancy detection is its ability to control local and distributed ven-
tilation systems based on real-time occupancy data [8]. By dynamically 
adjusting ventilation in specific zones, we enhance energy efficiency and 
indoor comfort while mitigating the risk of airborne diseases such as 
COVID-19 [8,9].

A considerable amount of energy utilized in operation is dissipated 
when offices are unoccupied, primarily due to over-ventilation caused 
by the improper configuration of manually adjusted HVAC systems [6]. 
Additionally, balancing energy conservation, occupant comfort, and In-
door Air Quality (IAQ) presents a significant challenge within the built 
environment [10]. The adoption of occupancy detection technology 
offers a promising solution to the challenges mentioned above, en-
abling the optimization of temperature settings to conserve energy while 
ensuring occupant comfort [11]. Additionally, incorporating real-time 
occupancy data significantly enhances traditional statistical modeling 
approaches, leading to more accurate occupancy and energy use pre-
dictions in building energy systems. This improved accuracy not only 
supports flexible operational strategies that facilitate the effective inte-
gration of local renewable energy sources but also enhances user com-
fort and improves the management of energy use in building energy 
systems [12–14].
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1.2. Problem and objective

Numerous obstacles such as integration and maintenance of occu-
pancy sensors in existing Building Automation and Control Systems 
(BACS) hinder the deployment of efficient systems for detecting occu-
pancy within office buildings [6,15–18]. Challenges in the development 
and implementation stage include but are not limited to the acquisition 
of high-quality labeled data, with a particular emphasis on obtaining 
accurate ground truth occupancy data crucial for the development and 
assessment of these systems [15,16]. Generalizing models trained on 
limited datasets gathered from constrained environments remains chal-
lenging in ensuring robust performance for detection systems in the 
whole building. Concerns over data privacy significantly exacerbate 
these challenges, especially when employing camera-based methodolo-
gies that involve the collection and storage of visual data, potentially 
violating individual privacy rights [19,16]. Furthermore, the limitations 
of required hardware infrastructure pose another substantial barrier 
[18,17]. This encompasses issues related to the inherent limitations of 
sensors commonly used in these systems, such as Passive Infrared (PIR) 
motion sensors or environmental sensors, which may not always accu-
rately detect occupancy [18]. Additionally, the physical and financial 
implications of sensor installation, which often requires complex wiring 
and integration with existing building infrastructure, present significant 
challenges [19].

On the other hand, novel IoT-based and battery-driven sensor tech-
niques reduce implementation efforts but introduce new requirements 
for the design and operation of occupancy monitoring systems. These 
systems must enhance or at least maintain the precision and accuracy 
required for the optimal operation of HVAC systems while reducing 
measurement and communication intervals due to maintenance consid-
erations.

This paper presents an IoT framework solution consisting of a net-
work of privacy-compliant Commercial Off-the-Shelf (COTS) LoRaWAN 
sensors and a cloud infrastructure for plug-and-play and scalable inte-
gration of sensors into an occupancy detection system. A state-based 
data fusion algorithm is introduced and evaluated in a real office build-
ing environment for multi-parameter occupancy detection and assess-
ment of various sensor combinations. Additionally, to integrate and 
evaluate the potential of CO2-based detection models, ground-truth oc-
cupancy data collected from a reference office were used to train and 
fine-tune four different modeling approaches.

2. Related works

The digitization of the built environment is a key driver of inno-
vation in the Architecture, Engineering, Construction, and Operation 
(AECO) sector [20]. A critical challenge identified is the underutiliza-
tion of Building Information Modeling (BIM) during the operational 
phase of buildings due to insufficient data in as-built models, empha-
sizing the necessity for enhanced data collection and management as 
Industry 4.0 technologies, such as sensors, become more widespread 
[20,21]. Research like Mannino et al. [22] proposes addressing these 
challenges by employing BIM integrated with AI and real-time data to 
facilitate transitions to dynamic Digital Twins, optimizing facilities man-
agement. Occupancy-driven Digital Twin Systems (DTS) represent a key 
area of current research in Building Management Systems (BMS) and 
energy optimization. Numerous studies [23,13,24,25] have highlighted 
the integration of real-time and post-occupancy data with advanced data 
analytics techniques to enhance operational efficiency during the build-
ing’s lifecycle. However, a significant research gap remains in leveraging 
modern IoT technologies and cloud infrastructure for occupancy mon-
itoring systems to further improve building management and energy 
optimization.

Occupancy-aware HVAC control systems can be divided into user-
defined and automated controls [6]. User-defined controls involve man-
ual adjustments or programmed schedules which may not always align 

with actual occupancy, leading to potential inefficiencies [6]. Auto-
mated controls, on the other hand, use sensors to detect and predict 
the presence of occupants, adjusting the HVAC operation accordingly 
for optimized energy use and enhanced comfort without the need for 
user intervention. [6,15]. Moreover, effective HVAC systems are essen-
tial for maintaining optimal IAQ. Enhanced ventilation strategies can 
significantly reduce the concentration of airborne mold spores, thereby 
decreasing the risk of poor IAQ and associated health issues. From a 
public health perspective, accurate occupancy detection is vital to en-
sure that IAQ remains within safe levels during occupancy, protecting 
occupants from potential health risks posed by airborne diseases, such 
as COVID-19, as explored in previous studies [8,26,27].

These systems integrate real-time and predicted occupancy data for 
more efficient HVAC operation strategies [15,16] achieving up to 75% 
energy savings with robust designs less sensitive to occupancy variations 
[28]. Overall, the studies have demonstrated dramatic reductions of up 
to 42% in HVAC energy usage in buildings [28,29]. Studies by Peng 
et al. [30,31] showed that occupancy-prediction-based cooling control 
can save 7–52% of energy in office buildings, while Wang and Chen 
[32] demonstrated that using indoor positioning systems for accurate 
occupancy data can save about 22% energy in air-conditioning systems. 
That being said, it is essential to examine the foundational works on 
occupancy detection and prediction methodologies to understand the 
evolution of occupancy-aware HVAC control systems. Occupancy detec-
tion determines the presence or absence of individuals inside a specific 
zone, which can range from small rooms to large commercial or residen-
tial buildings [33]. Occupancy prediction involves anticipating future 
occupancy states and can be used for tasks such as requirement analy-
sis and managing HVAC systems based on predicted future occupancy 
trends [33].

To facilitate seamless integration into existing BACS and to achieve 
enhanced scalability and cost-effectiveness in the occupancy detection 
system, it is imperative to embrace state-of-the-art communication tech-
nology within the IoT infrastructure, especially for transmitting data 
from sensors. In response to the IoT requirements for extended con-
nectivity range, low bandwidth, reduced power usage, and economic 
viability (where close-range radios such as ZigBee and Bluetooth are 
inadequate and conventional cellular networks like 2G, 3G, and 4G 
are too power-intensive), a novel wireless communication approach 
termed Low Power Wide Area Network (LPWAN) has surfaced to fill 
this void [34]. LPWAN is a wireless telecommunications wide-area net-
work designed for long-range, low-bit-rate communication between sen-
sors, machines, and other devices [35]. LPWAN encompasses standards-
compliant technologies like Sigfox, LoRaWAN, and Narrowband IoT 
(NB-IoT) [36,37] which are compared with each other in Table 1.

In the context of occupancy measurement, sensors are categorized 
based on their level of intrusiveness. Trivedi et al. [18] delineate these 
into low and high intrusiveness categories. Low-intrusive sensors, in-
cluding CO2, environmental, IR, PIR, vibration, ultrasonic, tag-based, 
and electricity consumption sensors, are characterized by their cost-
effectiveness and minimal privacy invasion. These sensors typically 
function by detecting indirect indicators of occupancy, such as CO2
levels, thermal variations, or movement, yet may require additional 
devices or sensor fusion for enhanced accuracy and to overcome con-
straints like slow response times and susceptibility to environmental 
noise [18,40]. High-intrusive sensors, such as cameras, sound sensors, 
network activity-based systems, and smart devices, provide more de-
tailed data. Cameras capture visual information, ensuring high accu-
racy in occupancy detection, while sound sensors detect audio levels 
that can indicate presence. However, these sensors raise greater privacy 
concerns and may also incur higher costs and complexity in installa-
tion and data management [16,18,40]. Additionally, radar sensors have 
been shown in previous research works as a promising occupancy mea-
surement technique and can also be used for office occupancy detection 
[41,42]. However, their higher power consumption, potential interfer-
ence, multipath effects in reflective environments, over-detection, and 
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Table 1

Comparison of Sigfox, LoRa, and NB-IoT.

(adopted from [38,39,34])

Factors Sigfox LoRa NB-IoT

Quality of Service (QoS) Lower than NB-IoT Lower than NB-IoT Best QoS
Battery Life Long Long Short
Latency Higher Adjustable Lower
Scalability Up to 50 K devices/cell Up to 50 K devices/cell Up to 100 K devices/cell
Coverage >40 km <20 km <10 km
Infrastructure Expenses >€4000/base station >€100/gateway, >€1000/base station >€15000/base station
Device Expenses <€2 Between €3 and €5 >€20

privacy concerns make them less suitable compared to simpler, more 
cost-effective technologies like Passive Infrared (PIR) sensors for bi-
nary occupancy detection in office buildings. These factors, particularly 
in energy-constrained systems and privacy-sensitive regions, limit their 
practicality in office settings. Nevertheless, ultra-wideband (UWB) radar 
technology has been utilized in various research efforts, particularly for 
activity recognition in smart buildings [43].

Various methods have been developed for accurate occupancy detec-
tion. Some research has concentrated on data from single sensors, like 
CO2 concentration, known to reflect human presence. Although these 
methods can be remarkably accurate, they are often complex to im-
plement. This complexity requires a deep understanding of all system 
variables, posing significant challenges in practical applications [16], 
such as intensive sensor calibration schedules and a lack of scalability. 
In 1998, Wang and Jin [44] devised a technique aimed at regulating 
the ventilation of outside air and measuring dynamic CO2 flow to de-
tect occupancy within indoor environments. Their methodology was 
evaluated by performing simulations of offices and conference rooms. 
Conclusively, they suggested assessing their strategy’s applicability in 
the systems of the buildings through real-world testing. Cali et al. [45]
developed an algorithm that uses CO2 concentration data and was eval-
uated in two offices with mechanical air flow ventilation, one without, 
furthermore a kitchen, and a spacious bedroom/living area of the house, 
also lacking a ventilation system. The algorithm resulted in 95.8% de-
tection of presence accuracy, and the research showed that algorithm 
effectiveness depends on air flow rates, outdoor CO2 concentration, and 
infiltration rates.

On the other hand, other studies have adopted a more comprehen-
sive strategy by integrating multiple parameters through data fusion 
techniques. Data fusion in occupancy detection encompasses early fu-
sion, late fusion, and deep learning-enhanced fusion approaches. Early 
fusion, as defined by Rajabi et al. [46], involves integrating sensor data 
with supervised learning methodologies at the beginning of the process-
ing pipeline. This method combines raw signals from all sensors into 
a comprehensive feature set before any analysis, aiming for a detailed 
and nuanced understanding of the data. However, it demands extensive 
datasets and requires significant effort in feature engineering. Addi-
tionally, each time a new sensor type is introduced, the fusion model 
and its features must be tailored and retrained, adding to the develop-
ment workload. Late fusion, however, is described as a more flexible 
approach where data from each sensor is processed independently be-
fore being combined. This method simplifies integration and adaptation 
to new sensors but might miss opportunities for deeper insights avail-
able through early fusion. Ansanay [47] integrated motion sensor data 
for a comprehensive analysis of CO2 levels and further employed an 
algorithm that applies thresholds to various ratios, utilizing CO2 con-
centration data collected at 10-minute intervals. The approach faced 
certain challenges, including delayed occupancy detection in large ar-
eas or situations of detecting occupancy with open windows, leading to 
instances of false negatives. Pedersen et al. [48] presented an approach 
by using sensor data (CO2, PIR, Volatile Organic Compounds (VOC), hu-
midity, temperature) trajectories and rules for combining sensor data, 
which resulted in an accuracy of 98% in a controlled test office room 
environment and 78% in a dorm apartment setting.

Recent studies have explored various deep learning-enhanced data 
fusion techniques to improve prediction accuracy and feature extrac-
tion from diverse sources, demonstrating significant advancements and 
challenges in the field. Tsanousa et al. [49] introduce deep learning-
enhanced fusion, employing Convolutional Neural Networks and Mul-
tilayer Perceptrons to tackle data from diverse sources, enhancing 
prediction accuracy through advanced feature selection and ensemble 
methods. However, this approach requires significant computational re-
sources and sophisticated model tuning, to address occupancy data’s 
complexity and privacy concerns. Sayed et al. [50] propose a technique 
for non-intrusive binary occupancy detection by using CO2 and envi-
ronmental sensors. The suggested methodology involves the conversion 
of intricate time-series data into images to extract significant features 
from the data. A custom-designed Convolutional Neural Network (CNN) 
model in this study reached a range of 95.56% to 99% accuracy for their 
test datasets. This method also uses standard machine learning methods 
(KNN, Decision Tree, and Random Forest) to analyze pixel data derived 
from images, which gives an accuracy range of 91.53% to 99.42%. Fu-
ture directions for this study encompass the use of the framework in 
real-world scenarios to promptly detect occupancy patterns [50]. Co-
lace et al. [51] demonstrated that their long short-term memory neural 
network effectively detects current occupancy and predicts future occu-
pancy, achieving a prediction accuracy rate of 94.17%, in real scenarios 
(using a one-month dataset collected from the ICAR-CNR IoT Labora-
tory). However, the researchers didn’t validate the technique in real-
world buildings to refine forecast time intervals.

To substantiate the principles underlying IoT frameworks for oc-
cupancy detection, we reference two pertinent studies. The first, by 
Zheng et al. [52], outlines a robust occupancy monitoring system utiliz-
ing a suite of non-intrusive sensors to measure various environmental 
parameters, including temperature, humidity, CO2 levels, and motion. 
This system employs an artificial neural network for real-time data pro-
cessing, achieving an impressive occupancy detection rate of over 90% 
in multi-occupancy lab spaces. Such a high detection rate underscores 
the effectiveness of non-intrusive sensors in multi-parameter occupancy 
estimation. Furthermore, Agarwal et al. [19], highlights the energy sav-
ings potential of occupancy-based HVAC controls, reporting savings 
from 10% to 15% in pilot deployments. Together, these studies vali-
date the reliability and practicality of these methods. The scalability and 
energy efficiency observed in this pilot deployment reinforce the prac-
ticality and environmental benefits of implementing such technologies 
in existing buildings.

3. Contribution and outline

This study introduces a low-intrusive and cost-efficient occupancy 
measurement approach, leveraging LPWAN and cloud infrastructure, 
as shown in Fig. 3, for ease of integration and full management of oc-
cupancy sensors. The main contributions of this research work can be 
summarized as follows:

Development and Evaluation of Various CO2-based Occupancy 
Detection Modeling Approaches: This paper delves into the develop-
ing and evaluation of CO2-based detection models using self-calibrated 
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Table 2

Sensors and measurement parameters utilized in this study.

(adapted from sensors’ documentations in [53], [54], [55])

Occupancy Metric Sensor Specification LoRaWAN Sensor

PIR Motion Sensor binary motion detection Elsys ERS2 CO2 (firmware version 3.1.1)

CO2 Concentration (with internal automatic calibration) 0 – 2000 ppm (extended: 0 – 10000 ppm) Elsys ERS2 CO2 (firmware version 3.1.1)

Grid-Eye IR Array Sensor (with internal automatic 
calibration for detection)

0 = No heat-emitting object detected; 
1 = Pending (Entry or Exit in progress); 
2 = Heat-emitting object detected

Elsys ERS2 Eye (firmware version 3.2.37)

Door Opening Activity Sensor 1 = open, 0 = closed Elsys EMS Door (firmware version 2.4.2)

CO2 sensors within a test bed environment, using limited collected 
ground truth data from a reference office, providing insights into their 
efficacy within multi-parameter occupancy detection systems.

Introduction of a Late-Fusion State-Based Occupancy Detection 
Approach: This research introduces a novel approach for occupancy 
detection, which categorizes and integrates multiple occupancy parame-
ters, including CO2 concentration, door opening status, Passive Infrared 
(PIR), and Grid-EYE Infrared (IR) Array sensors, for occupancy measure-
ment. This framework directly merges data from the received sensor 
signals. This emphasis on rapid data processing enhances the scalability 
of the solution across entire buildings.

Assessment of Different Sensor Combinations in a Real-Life Of-

fice Building: The research includes an assessment of various sensor 
combinations and CO2-based detection models in a real-life office build-
ing to identify cost-efficient sensor combinations, contributing to the 
practical applicability and economic feasibility of the approach.

Focus on Off-The-Shelf LoRaWAN Sensors: The approach lever-
ages readily available, and cost-effective commercial LoRaWAN sensors, 
which leads to conservative considerations and limitations regarding 
data transmission frequencies and battery lifetime of sensors, provid-
ing a practical and feasible solution for real-time occupancy detection 
in office environments.

Addressing Key Implementation Challenges: The framework ef-
fectively tackles multiple critical implementation challenges previously 
identified, such as integration, efficient data management and main-
tenance, generalization, robustness, privacy concerns, and scalability. 
This makes it a comprehensive solution for occupancy detection in build-
ings.

In Section 4, we detail the development steps of the occupancy de-
tection system. We begin with the discussion of occupancy measurement 
and modeling techniques in Section 4.1 utilized in our study, providing 
an overview of the occupancy parameters and the sensors used, focusing 
on their specifications and capabilities. We then delve in section 4.1.2
into the self-calibration feature of CO2 sensors, highlighting its impor-
tance for robust and low-maintenance CO2-based occupancy detection.

Following this, we present in section 4.1.3 our approach to ground 
truth data collection, which serves as a crucial foundation for validating 
our trained CO2 models. The next part of this section is dedicated to 
CO2-based occupancy detection modeling. We explain in section 4.1.4
the methodologies and algorithms utilized to estimate occupancy status 
based on CO2 measurements, providing a comprehensive understanding 
of the underlying principles. In the section 4.2, we introduce the baseline 
data fusion method. This method serves as a comparative benchmark for 
the technique developed later in the section 4.3. We then proceed to the 
development of the state-based data fusion method, describing the steps 
taken to integrate multiple occupancy parameters and sensor outputs 
into a cohesive detection system. This includes a detailed explanation of 
the algorithms and state-based approach employed to enhance detection 
generalizability and reliability.

Subsequently, a detailed cloud architecture is presented in 4.4 for 
integrating sensor data into an agent-based task queue framework, with 
a focus on enabling automatic integration, management, and scalability 
of the monitoring system. We demonstrate how the system operates in 

a real-world environment, showcasing its effectiveness and practicality 
for various applications.

Through these sections, we provide a comprehensive guide to the 
development of an occupancy detection system, from initial sensor se-
lection to sophisticated modeling and real-world implementation.

4. Methodology

In this section, we introduce the development steps of the occu-
pancy detection system. After introducing the occupancy parameters 
and models, we delve into the development of the state-based data 
fusion approach for multi-parameter occupancy detection. Finally, the 
integration and deployment of the data fusion algorithm in a cloud ar-
chitecture are demonstrated.

4.1. Occupancy measurement and modeling

4.1.1. Occupancy parameters and sensors

Trivedi et al. [18] discussed that low-intrusive sensors, including 
CO2, environmental, IR, PIR, vibration, ultrasonic, tag-based, and elec-
tricity consumption sensors, are characterized by their cost-effectiveness 
and minimal privacy invasion. This study also emphasizes the selection 
of sensors that ensure privacy preservation through low-intrusive oc-
cupancy data collection methods. Table 2 includes explanations of the 
non-intrusive sensors selected in this study. Table 2 and the following 
sections describe the measurement parameters and each LoRaWAN sen-
sor model that measures them used in this work for occupancy detection. 
The technical specifications for each sensor and calibration methodol-
ogy are provided in Table 2 accordingly.

The sensors have been configured to transmit data at 10-minute in-
tervals. Door sensors, utilized for monitoring doors, transmit data upon 
each activation; in the absence of activity, they transmit a status update 
every 10 minutes. Elsys ERS2 Eye sensor, utilizing Grid-Eye-Infrared 
technology, which merges IR and PIR capabilities, can identify objects 
that emit heat, including humans, by capturing thermal imagery of the 
environment. The Grid-Eye technology and its algorithm are delineated 
in the [54].

4.1.2. Self-calibration feature of CO2 sensors

The CO2 sensor undergoes factory calibration and typically requires 
no maintenance due to its internal automatic calibration routine. This 
routine sets the 400 ppm baseline to the lowest value read over the 
last approximately 8 days [53]. To ensure accurate initial calibration, 
the sensor must be exposed to fresh, well-ventilated air for at least 10 
minutes within the first 8 days. After this period, manual calibration is 
generally unnecessary for occupancy detection systems in typical office 
environments.

The sensor’s self-calibration feature then helps mitigate drift by cali-
brating the CO2 sensor to a minimum value during the night when CO2
levels are typically lower due to fewer occupants. Manual calibration 
is usually not required because office environments usually maintain 
air quality and ventilation levels that allow CO2 levels to cycle through 
low (near outdoor) levels at least once every few days. This cyclical re-
duction in CO2 levels during non-occupancy periods, such as nights or 
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Fig. 1. Preprocessing steps and data flow diagram.

weekends, provides an automatic recalibration mechanism, ensuring the 
sensor’s accuracy and reliability in tracking occupancy levels based on 
CO2 concentrations.

4.1.3. Ground truth data collection

For the specific research needs of this paper, two rooms (Reference 
Office 1 and 2) were equipped with sensors to gather labeled data. The 
process of collecting ground truth data for the evaluation of the occu-
pancy detection system involved two methods:

• Paper-Based Logging: One of the team members manually recorded 
high-quality occupancy events in Reference Office 1 on paper for 
two months.

• Manual Button Logging System: In Reference Office 2, a manual 
logging system with two buttons was installed. The office users, 
who were not part of our research team, pressed one button upon 
entering the room and the other button when exiting.

Ground truth data were gathered during the first phase from Ref-
erence Office 1 to train the model. The model was trained and tested 
on data from Reference Office 1. Subsequently, we collected data from 
Reference Office 2, which has a different architectural layout, using a 
different ground truth data collection approach to test the effectiveness 
and generalizability of the trained models. Additionally, delays and un-
certainties in this manual triggering process, performed by colleagues 
who were not part of the primary research team, led to concerns about 
the reliability of this data for model training.

4.1.4. CO2-based occupancy detection modeling

This study evaluates the efficacy of four machine learning models—
Random Forest (RF), Light Gradient Boosting Machine (LGBM), K-
Nearest Neighbors (KNN), and Decision Tree (DT)—in predicting binary 
occupancy based on indoor CO2 concentrations across office rooms. The 

model selection process was conducted using a cross-validation method 
in the Python framework PyCaret [56].

The training dataset, consisting of 12,712 data points collected over 
one month from Room 1, has been organized where 10% of the data 
is randomly allocated as test data, and the remaining 90% is used for 
training purposes. The training dataset also has been uploaded to the 
GitHub repository. During the preprocessing phase, several steps (see 
Fig. 1) were taken to ensure the data’s quality and usability for devel-
oping occupancy detection models:

1. Data Cleaning/Interpolation: Initially, any missing data points 
were handled, either by interpolation where appropriate or by re-
sampling the data to make the dataset more consistent.

2. Differencing: The CO2 data underwent differencing to highlight 
changes over intervals of one, two, and four measurements. This 
helps in identifying trends and patterns more distinctly.

3. Rolling Mean Calculation: A rolling mean over the last four peri-
ods with a 10-minute window was calculated for features such as 
CO2 levels. This smoothing technique reduces noise and captures 
more stable trends in the environment.

4. Forward Filling: Any remaining missing values were forward 
filled, using the last available valid observation to maintain data 
integrity.

5. Feature Selection: After processing, a final feature set was se-
lected, including raw CO2 levels, the differenced CO2 data, and the 
calculated rolling means. Feature elimination was also conducted 
to remove redundant or irrelevant features, streamlining the model 
to focus only on those variables that contribute significantly to the 
accuracy of the occupancy detection.

This preprocessing pipeline ensures that the dataset is primed for 
effective model training.

https://github.com/FAE-R/building_automation_framework
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Table 3

Sensor categories and their characteristics in the designed data fusion algorithm.

Category Occupancy Metric(s) Description

Category 1 Door opening status This metric is a fundamental parameter for the state-based data fusion algorithm 
developed. It resets occupancy logic based on its activation (see Table 4).

Category 2 CO2-based detection model and/or Grid-EYE Infrared Status This type of metrics includes long-term and/or slow occupancy metrics.
Category 3 PIR motion status (or other similar metrics like window 

opening status)
These metrics indicate short-term occupancy events.

The choice to utilize simpler machine learning models such as Deci-
sion Trees and clustering techniques was driven by the relatively modest 
size of the dataset, which is more conducive to models that require less 
data for effective training and offer greater interpretability in results. 
Afterward, the models were trained using derived features designed to 
capture both the level and variability of indoor CO2 concentrations over 
time. The model input features are as follows:

• Mean CO2 Concentration: The average CO2 level over the preced-
ing four 10-minute periods, providing a smoothed estimate of the 
recent room environment.

• First to Fourth lag features of CO2 Levels: These lag features measure 
the first through fourth differences between consecutive 10-minute 
CO2 readings. They serve to quantify short-term fluctuations in CO2
levels, providing insights into rapid changes in room occupancy.

In the process of utilizing PyCaret for the automation of train-
ing and optimization of CO2 models such as KNN, LGBM, RF, and 
DT, the dataset underwent initial preprocessing where missing values 
in the CO2 features were forward filled using linear interpolation to 
preserve the continuity in the time series data, crucial for maintain-
ing the integrity of temporal analysis. Additionally, to enhance the 
dataset’s quality, periods during which windows or doors were open 
were excluded, ensuring that the environmental conditions measured 
were stable and representative. Following the preprocessing steps, we 
aimed to ensure the temporal integrity of the dataset while enhancing 
the evaluation of model performance. To achieve this, we trained and 
evaluated the models using two different k-fold cross-validation strate-
gies: time series cross-validation and stratified k-fold cross-validation, 
both with 10 folds. These strategies represent distinct variations of 
the standard k-fold cross-validation technique, differing in their split-
ting methods. The time series approach maintains the temporal order 
of data for modeling tasks involving time series, while the stratified 
method ensures a similar distribution of key features across all folds 
for classification tasks. Since we did not observe any significant dif-
ferences between these two methods on our dataset, and because we 
did not incorporate future data as a training feature in our detection 
task, we opted to proceed with the stratified method for subsequent 
analyses. Each model was initially created with default settings and 
subsequently tuned to optimize the F1 score, which balances preci-
sion and recall, vital for handling potentially imbalanced datasets. Sys-
tematic hyperparameter optimization was employed to enhance each 
model’s robustness on unseen data. Finally, model calibration was con-
ducted to fine-tune the probability estimates, leading to improved per-
formance metrics such as accuracy, precision, recall, and F1 score across 
the different folds of cross-validation. This approach leverages auto-
mated machine learning techniques to efficiently manage data prepa-
ration, model selection, and optimization, facilitating the transition 
from raw data to a robust binary classification model for occupancy 
detection.

The analysis was further extended to evaluate non-occupancy detec-
tion capabilities from midnight to 5:00 AM in the studied office building. 
Data for days with user-reported occupancy during these hours were sys-
tematically excluded to ensure accuracy.

4.2. Baseline data fusion method

The baseline data fusion algorithm is designed to respond immedi-
ately to any signal received from the various sensors installed in a room. 
Whenever a signal from any of the occupancy metrics (CO2-based de-
tection model, door, or motion detector) indicates an occupancy event, 
the system sets a flag to 1, representing an active state that could sug-
gest an occupancy event that might require adjustments in thermostat 
settings. This approach is utilized for bench-marking the developed data 
fusion algorithm, introduced in the following section.

4.3. Development of the state-based data fusion method

In contrast to the previously outlined simple data fusion method, 
where any active sensor signal triggers an immediate system response, 
the state-based method incorporates a more sophisticated strategy 
to merge occupancy metrics effectively. This method categorizes the 
occupancy parameters into three distinct categories and utilizes a 
knowledge-based approach to transitioning between states based on 
the sequence and timing of sensor activation. This allows for a more 
nuanced response to different sensor changes, enhancing the robust-
ness and generalizability of the detection system and optimizing HVAC 
operation, especially for battery-driven actuators like smart TRVs (Ther-
mostatic Radiator Valve).

The sensor categories and their characteristics are listed in the Ta-
ble 3.

Fig. 2 illustrates the state transition diagram for the data fusion 
method. The diagram includes five states (S0 to S5) and various tran-
sition conditions between these states (e.g. T02, T10). Each state rep-
resents a specific system status and dictates the interpretation of sub-
sequent sensor data. Integrating this additional knowledge into the 
detection system allows for the consideration of more scenarios in a 
multi-parameter detection framework. Prioritizing sensor signals and 
their characterization enhances the robustness and scalability of the de-
tection system throughout the building. Each transition is triggered by 
specific sensor category conditions, as listed below:

• S0 represents the baseline unoccupied state, indicating that no ac-
tive sensor has been triggered over long periods.

• S1 indicates a short-term unoccupied state with a higher expecta-
tion of an upcoming occupancy event.

• S2 reflects an occupancy state, in which at least Category 1 has been 
triggered within the last 10 minutes.

• S3 defines an occupancy state with a high probability of occupancy, 
even if no occupancy signal has been observed during the last hour.

• S4 and S5 represent advanced states that account for communi-
cation network downtime or sensor malfunctions, indicated by no 
received signal from a sensor for 20 minutes or longer. If only Cat-
egory 2 or 3 are affected, state 4 is activated; otherwise, state 5 is 
activated. We used these states to identify system downtime in the 
developed agent framework in Section 4.4.

Transitions between these states are governed by the timing and se-
quence of sensor signals, ensuring that occupancy status changes only in 
response to significant and relevant events. The structured, rule-based 
transitions enable more efficient resource utilization by minimizing un-
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Table 4

State transition conditions.

Transition Condition

T02 Category 1 triggered.
T10 Starting of a new day (00:00 onward) or after 120 min. remaining only in S1.
T12 If in the last 40 min. Category 1 and in the last 20 min. Category 2 triggered.
T21 None of the Sensor categories triggered within the last 20 minutes.
T13 Category 2 or 3 in the last 20 min. triggered, but Category 1 was not triggered in the last 40 min.
T23 Category 1 not triggered in last 40 min., Category 2 or Category 3 triggered within last 20 min.
T32 Category 1 in last 20 min. triggered.
T31 None of the Categories triggered in the last hour.

Fig. 2. State transition diagram.

necessary heating or cooling actions through accurate prediction of oc-
cupancy and non-occupancy periods based on sensor data interaction. 
This state-based approach enhances the system’s adaptability to varying 
office and measurement conditions, thereby improving the overall ro-
bustness of the detection system. Compared to the basic fusion method, 
it filters out unnecessary transitions while maintaining overall system 
performance in detecting occupancy patterns.

4.4. Implementation of occupancy monitoring system

We demonstrate a modular cloud infrastructure to implement the 
designed occupancy detection system and ensure it is plug-and-play 
capable of easy sensor installation and integration into a scalable en-
vironment. We evaluate its performance during our test period in the 
study’s office building, showcasing its effectiveness and scalability in a 
real-world setting.

The diagram in Fig. 3 depicts the developed system architecture 
for the studied building, utilizing a LoRaWAN communication network. 
Here is a breakdown of the components and their interactions:

• Occupancy Sensors: The sensors are installed in every office room 
in the studied building, as introduced in section 4.1.1. Data from 
these sensors is transmitted to the data logger using MQTT (Mes-
sage Queuing Telemetry Transport), a lightweight messaging proto-
col designed for low-bandwidth, high-latency environments. MQTT 

[57] operates on a publish/subscribe model, making it highly ef-
fective for the real-time transmission of sensor data across complex 
network configurations with minimal network bandwidth.

• Occupancy Agent: The HVAC control can adjust room Heating, Ven-
tilation, and Air Conditioning based on occupancy data provided by 
the occupancy agent to optimize energy usage and maintain com-
fort.

• LoRa Transmission: LoRa technology is used for wireless communi-
cation of sensor data.

• Network Server: The data transmission involves a network infras-
tructure, using LoRaWAN gateways to facilitate communication be-
tween the sensors and the cloud platform.

• Data Logger: This component collects and stores data from the sen-
sors, structured based on registered sensors and room mapping in 
the system. It serves as an intermediary between the sensors and 
higher-level processing units.

• Context Broker: This component manages the context information 
to map all entities in the building such as sensors, rooms, measure-
ment parameters, etc. designed and implemented in Django Web 
Framework [58]. This framework implements REST APIs [59] (Rep-
resentational State Transfer Application Programming Interfaces) 
to manage and orchestrate data flow between system components.

• Docker Orchestration: Docker [60] is utilized to manage and scale 
containerized framework across multiple hosts, providing tools for 
deploying, scaling, and networking different application containers.

• Database: Utilized as the primary database for storing time-
series data from the occupancy sensors with TimescaleDB [61]. 
TimescaleDB is an open-source database optimized for fast ingest 
and complex queries. It is built on top of PostgreSQL and is specif-
ically designed to handle time-series data with scalability and high 
performance in mind.

• Agent Framework: A task queue management system for scaling, 
handling, and monitoring occupancy detection tasks developed us-
ing Python Package Celery [62]). The agents fetch data from the 
network server, which utilizes REST APIs for seamless data integra-
tion and management.

• Admin Page: An admin dashboard for registering buildings, rooms, 
and sensors, as well as handling and monitoring occupancy agents 
and task results.

The agent framework integrates custom-designed tasks (in our case 
data fusion task) to optimize data handling and distribute occupancy 
detection process across threads or machines. Agents can handle asyn-
chronous, event-based, and scheduled tasks. For efficient occupancy 
detection, as illustrated in Fig. 4, the agents actively pull the neces-
sary monitored sensor data and other relevant information from the 
database based on an Object-Relational Mapping System developed in 
Django web framework. They are equipped with a caching mechanism, 
which allows them to store and quickly access this previously pulled 
data, significantly enhancing their processing and analysis capabilities.

The data required for assigning sensors to rooms in a specific build-
ing are managed on an admin page and can be provided in a real-world 
scenario by the facility manager. Subsequently, an assigned agent han-
dles occupancy detection for each room individually. The system’s de-
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Fig. 3. Occupancy detection system architecture.

Fig. 4. Task management system within the agent framework.

sign, focusing on room-specific sensors and agents, ensures it is easily 
scalable to a large number of office rooms, covering an entire build-
ing or district. The use of a Python web framework and the introduced 
cloud infrastructure aids in this scalability, enabling data flow and high 
availability among all the agents and sensors across different rooms.

The entire cloud infrastructure is documented and available as open-
source in this GitHub repository.

5. Results

In the results section, we first elucidate the Evaluation Metrics for 
Occupancy Estimation employed to assess the performance of various 
CO2 modeling techniques. Following this, we present the effectiveness 
and performance of our state-based data fusion approach, contrasting it 
with the baseline method to highlight improvements. Finally, we assess 
the scalability of our approach across different office rooms within a 
building, demonstrating its capability to filter unnecessary triggers dur-
ing prolonged periods of unoccupancy. This evaluation underscores the 

robustness and reliability of our system in real-world scenarios, ensuring 
its effectiveness in practical applications.

5.1. Evaluation metrics

This work primarily focuses on binary occupancy detection, rep-
resenting occupancy as 1 and non-occupancy as 0. We evaluate the 
performance of our model using a set of fundamental metrics derived 
from the confusion matrix, detailed in the appendix in 7.1.

5.2. Evaluation of CO2-based modeling techniques

We trained CO2-based occupancy detection models using 1-month 
data collected from Reference Room 1, as explained in Section 4.1.4. 
The ground truth data for this period was meticulously recorded, en-
suring high-quality inputs for model training. The supervised models 
employed are selected based on a cross-validation process and include 
Decision Trees (DT), Random Forest (RF), LightGBM (LGBM), and K-
Nearest Neighbors (KNN). After training, we tested these models on data 

https://github.com/FAE-R/building_automation_framework
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Table 5

CO2-based detection model results for reference Room 1 in October (KPIs listed in Ta-
ble 9).

Model Type TPR FPR TNR PPV NPV ACC F1 Score

DT 46.32% 1.82% 98.18% 75.74% 93.73% 92.53% 57.48%
RF 47.33% 1.72% 98.28% 77.14% 93.84% 92.73% 58.66%
LGBM 49.04% 1.68% 98.32% 78.14% 94.03% 92.95% 60.26%
KNN 47.53% 1.84% 98.16% 75.97% 93.86% 92.64% 58.47%

Table 6

CO2-based detection model results for reference Room 2 in February.

Model Type TPR FPR TNR PPV NPV ACC F1 Score

DT 75.03% 0.61% 99.39% 95.91% 95.40% 96.41% 87.80%
RF 80.13% 0.46% 99.54% 97.11% 96.31% 96.41% 87.80%
LGBM 78.63% 0.59% 99.41% 96.24% 96.03% 96.06% 86.55%
KNN 73.37% 0.72% 99.28% 95.12% 95.10% 95.10% 82.84%

Table 7

Performance comparison of data fusion methods on reference Room 1, including data fusion with door and motion sensors, IR 
sensors, and CO2 models.

Data Fusion Method Occupancy Data for Category 2 TPR FPR TNR PPV NPV ACC F1 Score

Baseline Data Fusion No Data 51.36% 1.96% 98.04% 76.2% 94.27% 92.95% 61.36%
Only IR Status 77.9% 3.14% 96.86% 75.24% 97.28% 94.79% 76.55%
CO2 Model (DT) 78.5% 3.04% 96.96% 75.98% 97.36% 94.95% 77.22%
CO2 Model (RF) 80.42% 2.84% 97.16% 77.6% 97.59% 95.33% 78.99%
CO2 Model (LGBM) 81.02% 2.85% 97.15% 77.66% 97.67% 95.39% 79.31%
CO2 Model (KNN) 81.03% 3.03% 96.97% 76.62% 97.66% 95.23% 78.76%

State-Based Data Fusion No Data 81.13% 3.83% 96.17% 72.17% 97.65% 94.53% 76.39%
Only IR Status 92.43% 3.85% 96.15% 74.59% 99.05% 95.74% 82.56%
CO2 Model (DT) 95.05% 5.16% 94.84% 69.26% 99.37% 94.86% 80.14%
CO2 Model (RF) 95.06% 4.59% 95.44% 71.85% 99.38% 95.40% 81.84%
CO2 Model (LGBM) 95.06% 4.66% 95.34% 71.42% 99.37% 95.31% 81.56%
CO2 Model (KNN) 95.05% 5.18% 94.82% 69.21% 99.37% 94.85% 80.10%

collected from Reference Room 2 for a month. The ground truth data for 
Reference Room 2 was obtained through manual triggering by pushing a 
button. Delays and uncertainties in this manual triggering process, per-
formed by colleagues who were not part of the primary research team, 
led to concerns about the reliability of this data for model training. Thus, 
while this dataset was not used for training, it provided a valuable op-
portunity to validate the generalizability of the models in two different 
room environments, despite the noted data quality issues. To enhance 
transparency and address these issues, we will also review and possibly 
update our methods in this part of the text to differentiate the roles of 
each dataset in our study.

The performance metrics for the trained models evaluated on the 
one-month test dataset from Reference Room 1 and on the dataset from 
Referenced Room 2 are presented in Tables 5 and 6, respectively. These 
results enable a direct comparison of model effectiveness across these 
different room environments.

The analysis of the results reveals several key insights. Firstly, the 
LightGBM model exhibited superior performance in Room 1, achieving 
the highest True Positive Rate and F1 Score among the tested models. 
This indicates its robustness in detecting occupancy based on CO2 levels 
under the given conditions.

When applied to Room 1, all models demonstrated a marked im-
provement in performance metrics. Notably, the Random Forest model 
excelled with the highest True Positive Rate and F1 Score, indicating 
its strong generalizability and reliability in different environmental set-
tings. This enhancement can be attributed to the more consistent CO2
patterns observed in Room 2, possibly due to less frequent window open-
ings during the colder winter months.

These findings underscore the models’ effectiveness in detecting oc-
cupancy during periods when windows are less likely to be opened, such 
as on cold winter days. The adaptability of the models to varying room 

environments suggests their potential applicability in diverse settings, 
ensuring reliable occupancy detection through CO2 monitoring.

5.3. Comparison of state-based and baseline data fusion

In our effort to enhance the performance of CO2 detection models, 
we integrated data fusion techniques that combine binary occupancy 
signals from CO2 models with door opening status and motion sensor 
data. The performance metrics for state-based data fusion and baseline 
data fusion using different sensor metrics for Category 2 (CO2-based 
occupancy detection models or Grid-Eye IR Array sensors) are summa-
rized in Table 7. The results demonstrate that state-based data fusion 
significantly enhances the accuracy and reliability of CO2-based detec-
tion models compared to baseline data fusion. By incorporating defined 
states, the detection systems capture the dynamics of occupancy and 
environmental conditions more effectively, leading to improved perfor-
mance metrics, especially F1 Score and TPR, across all studied scenarios.

The system’s performance concerning the False Positive Rate (FPR) 
metric declined, as shown in Table 7. This suggests that the data fusion 
approach performs poorly in the early detection of upcoming unoccu-
pancy periods compared to the baseline, as shown in Fig. 7.

This data fusion approach aims to leverage the complementary in-
formation provided by these additional sensors to improve occupancy 
detection accuracy. As shown in Table 7, the state-based method signif-
icantly outperformed the baseline data fusion approach for Reference 
Room 1. Notably, the state-based method demonstrated a substantial im-
provement in controlling the True Positive Rate (TPR), leading to more 
reliable and accurate occupancy detection. This highlights the effective-
ness of incorporating door and motion sensor data through state-based 
data fusion to refine CO2 model performance.

The results in Table 7 and Fig. 5 demonstrate that even without a 
CO2 model, the integration of door and motion sensors alone shows 
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Fig. 5. TPR ratio of different CO2 models.

Fig. 6. Illustration of false positive detection by decision tree and not counting with state-based data fusion.

promising potential for occupancy detection with a state-based data fu-
sion approach. Additionally, incorporating the IR sensor with door and 
motion sensors and performing data fusion yields promising results. Fur-
thermore, the performance of data fusion with IR does not surpass the 
improvements achieved with the CO2 model, indicating that CO2 sen-
sors provide a crucial advantage in accurately detecting occupancy.

The state-based data fusion method improves the detection of true 
positives by controlling the occupancy detection triggers from sensors 
or the CO2 model, as illustrated in Fig. 6. This method outperforms 

baseline data fusion by better managing the combination of multiple 
sensors, thereby more effectively avoiding false positives. One of the 
improvements achieved compared to the baseline is the detection of 
long-term occupancy periods in State 3 (S3), during which motion or 
door sensors are not triggered. This improvement is demonstrated by 
the occupancy period detected on October 12th in Fig. 6. Simultane-
ously, short-term unoccupancy windows are filtered out, leading to 
more efficient operation of actuators and avoiding unnecessary control 
actions.
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Fig. 7. Filtering false detection for Room 6.

5.4. Evaluation of false detection filtering

We monitored the occupancy status of 10 rooms (see floor plan with 
related number of occupants in Fig. 8) from January 15th to March 
15th, focusing on the hours between midnight and 5 AM each day. The 
primary objective of our study was to ensure that the system reliably de-
tects unoccupied periods without triggering false detections that could 
cause unwanted HVAC activations. Our analysis incorporated approx-
imately 35,000 data points from signals in the dataset for each room, 
reflecting diverse occupancy patterns influenced by the number of users 
per room.

The individual evaluation of each room revealed that the state-based 
data fusion algorithm resulted in zero false negatives (FNs). This indi-
cates that the algorithm effectively filters out false detections by the 
sensors, ensuring that only genuine unoccupied states are detected. False 
detections can occur for various reasons, such as measurement errors 
or model failures. One approach to mitigate this problem is to reduce 
the sensitivity of CO2-based detection models, although this can lead to 
undesired low accuracy of models during occupancy periods. The pro-
posed data fusion method detects and filters out such undesired model 
or measurement behaviors, as shown in Fig. 7. This enhances the gener-
alizability and robustness of the algorithm across various office rooms. 
By effectively managing false detections, the algorithm ensures more re-
liable identification of unoccupied states, which is crucial for optimizing 
the operation of HVAC systems and improving overall efficiency.

Fig. 7 illustrate instances where CO2 model detection with a Decision 
Tree falsely detected occupancy during the night. However, the state-
based data fusion algorithm successfully omitted these false alarms.

Based on the 2-month results for these 10 rooms, we observe that:

1. The system did not trigger any false unoccupancy detections, con-
firming the reliability of the data fusion technique during long-term 
unoccupancy periods across all rooms.

2. The baseline data fusion method performed poorly as it responded 
to each sensor trigger, leading to frequent false detections. How-
ever, the state-based fusion method demonstrated superior perfor-
mance, effectively filtering out false detections in most rooms, as 
shown in Table 8. The last row of the table highlights the least ef-
fective state-based fusion scenario using Decision Trees (DT) as the 
CO2-based detection technique.

3. The highest number of false detections was recorded in Rooms 6 
and 9 during our test period. Manual calibration of CO2 sensors or 
retuning of detection models for these two rooms could potentially 
improve the accuracy of the sensors and detection models. How-
ever, this approach would significantly increase the maintenance 
costs of the occupancy detection system. The fusion method, on the 
other hand, effectively reduces the need for frequent calibration 
or high measurement quality of sensors. Additionally, the internal 
filtering of false detections within the IR sensor demonstrated in-
creased reliability in detecting long-term unoccupancies.

4. During the two-month analysis period, neither S4 nor S5 were ac-
tivated, indicating no sensor faults or downtimes for the designed 
system.

The results confirm the reliability of the designed system by ac-
curately identifying unoccupied periods without false detections in a 
real-life building. This ensures efficient setback operation of the HVAC 
system, maximizing energy savings potential without the need for high 
maintenance efforts or the use of highly accurate sensors.

6. Conclusion and future work

This study has demonstrated the efficacy of various supervised ma-
chine learning models including Random Forest, Light Gradient Boost-
ing Machine, K-Nearest Neighbors, and Decision Tree, in detecting bi-
nary occupancy based on indoor CO2 concentrations from low-cost, self-
calibrated, off-the-shelf LoRaWAN sensors. The models were trained us-
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Table 8

False detections across 10 Rooms for different models.

CO2 Model/Data Fusion/IR Sensor Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Room 9 Room 10

DT 5 5 13 14 6 15 17 10 19 7
RF 1 2 1 2 2 15 2 2 6 3
LGBM 1 2 1 2 2 20 6 2 6 3
KNN 1 2 1 2 2 18 2 2 10 3
IR 0 0 0 0 0 0 0 0 0 0
State-based fusion using DT model 0 0 0 0 0 0 0 0 0 0

ing a dataset from one room and tested across various rooms, achieving 
promising results, particularly during the winter months when windows 
are typically closed, thus enhancing CO2 model performance. To further 
improve the robustness and generalizability of the system by integrating 
more occupancy parameters, a state-based data fusion algorithm was de-
signed and shown in a test bed environment incorporating door, motion, 
and Grid-Eye IR Array sensor data can significantly boost the detection 
capability, achieving up to 95% True Positive Rate (TPR). Standalone 
use of motion and door sensors also demonstrated strong detection capa-
bilities, with up to 80% TPR. Additionally, substituting the CO2 sensor 
with the low-cost infrared (IR) sensor operating based on Grid-Eye tech-
nology resulted in robust outcomes, reaching up to 92% TPR.

To assess and evaluate the scalability of the system in a real office 
building, a cloud architecture was designed and implemented using the 
Django web framework. The reliability of the data fusion approach was 
benchmarked against a simpler data fusion method using 2 months of 
data. The results reveal the system’s performance in accurately detect-
ing long-term unoccupancy periods and its scalability. Additionally, the 
evaluation addressed critical implementation issues including data pro-
cessing and availability in an IoT-based sensor network, sensor measure-
ment accuracy, and the management and monitoring of the occupancy 
system in a real-world scenario.

The integration of occupancy detection methods, particularly prac-
tical designs with cost-efficient, non-intrusive, and low-maintenance 
approaches, can be highly effective for sustainable built-environment 
optimization, especially in ecologically disturbed regions. By accurately 
measuring occupancy through multiple sensors and advanced machine 
learning models, such systems enable more precise control of energy 
use, thereby reducing waste and enhancing overall energy efficiency. 
This is crucial in regions where ecological balance is already fragile, as 
optimized energy management can help mitigate further environmental 
impact. The True Positive Rate of up to 95% achieved by the proposed 
approach suggests that these methods are reliable and could be scaled 
for broader applications, emphasizing the potential for cost-effective im-
plementation and the broader impact on energy management and public 
health in various regions. This would provide a more comprehensive un-
derstanding of the field-scale applicability and contribute to the global 
discourse on sustainable building practices.

Future research will focus on exploring new sensor combinations and 
parameters within the data fusion approach and integrating the occu-
pancy monitoring system into HVAC control systems for dynamic energy 

optimization. The goal is to identify and assess various system design 
configurations under real operational conditions. During warmer sea-
sons, when open windows may reduce the effectiveness of CO2 models, 
evaluating the performance of other infrared (IR) or radar sensor tech-
nologies as alternative or complementary parameters will be crucial. Ad-
ditionally, exploring adaptive learning algorithms to enable CO2 models 
to adapt to variations between different office environments will be a 
priority. Furthermore, future research will investigate integrating new 
states in the designed data fusion approach to handle sensor failures and 
explore redundant sensors for more sophisticated fault detection logic. 
Due to the high thermal inertia in buildings, integrating occupancy de-
tection into HVAC control strategies requires exploring the feasibility 
of extending data fusion techniques to predict future occupancy pat-
terns. Accurate occupancy prediction allows for proactive adjustments 
to HVAC operations, leading to more efficient energy use and improved 
comfort. This approach has the potential to significantly enhance both 
energy efficiency and occupant satisfaction.

7. Appendix

7.1. Confusion matrix

The confusion matrix, as shown in Table 9, has significant impor-
tance in the context of binary classification tasks since it serves as a 
simple and informative representation of the classifier’s performance. 
The classifications of the model may be categorized into four unique 
groups, specifically True Positives (TP), True Negatives (TN), False Pos-
itives (FP), and False Negatives (FN) [63]. In the situation under consid-
eration, it is of great importance to emphasize that a true positive refers 
to the precise detection of occupancy, whereas a true negative indicates 
the correct detection of non-occupancy.

Table 9

Confusion matrix for binary occupancy detection.

Predicted

Occupied Not Occupied

Actual Occupied True Positive (TP) False Negative (FN)
Not Occupied False Positive (FP) True Negative (TN)

The key performance indicators (KPIs) derived from the matrix for 
assessing the occupancy system are shown in Table 10.

Table 10

Key performance indicators for evaluating occupancy estimation.

(adapted from [64–68])

KPI Description Formula

TPR: True Positive Rate, 
Recall

It is the proportion of actual occupied spaces that the model correctly identifies as occupied. It measures the 
model’s ability to correctly detect occupied cases.

𝑇𝑃

𝑇𝑃+𝐹𝑁

FPR: False Positive Rate It’s the proportion of unoccupied spaces incorrectly identified as occupied by the system. This rate measures 
how often the model mistakenly labels a space as being occupied.

𝐹𝑃

𝐹𝑃+𝑇𝑁

TNR: True Negative Rate, 
Specificity

TNR measures the proportion of unoccupied spaces that the system correctly identifies as unoccupied. It 
quantifies the ability of the model to correctly recognize spaces that are not occupied.

𝑇𝑁

𝑇𝑁+𝐹𝑃

PPV: Positive Predicted 
Value, Precision

It is the probability that a space identified as occupied by the model is actually occupied. It measures the 
ability of the model to correctly predict positive (occupied) cases.

𝑇𝑃

𝑇𝑃+𝐹𝑃
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Table 10 (continued)

KPI Description Formula

NPV: Negative Predictive 
Value

NPV indicates the probability that a space identified as unoccupied by the model is indeed unoccupied. It 
assesses the model’s accuracy in correctly predicting negative (unoccupied) cases.

𝑇𝑁

𝑇𝑁+𝐹𝑁

ACC: Accuracy It is the ratio of correctly classified occupied and unoccupied observations to total observations. However, 
class imbalance, where one class (occupied or unoccupied) outnumbers the other in frequency, may 
compromise this statistic.

𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

F1: F1 Score The harmonic mean of precision and recall. In the domain of occupancy detection, the F1 score possesses a 
higher degree of informativeness compared to accuracy, particularly in situations where there is an 
imbalanced distribution of classes.

2 ⋅ 𝑃𝑃𝑉 ⋅𝑇𝑃𝑅
𝑃𝑃𝑉 +𝑇𝑃𝑅

7.2. Building floor plan

Fig. 8. Floor plan.
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