CEAS Aeronautical Journal
https://doi.org/10.1007/s13272-024-00762-6

ORIGINAL PAPER q

Check for
updates

Model-driven development for functional correctness of avionics
systems: a verification framework for SysML specifications

Hendrik Kausch'@® - Mathias Pfeiffer' @ - Deni Raco'® - Bernhard Rumpe'® - Andreas Schweiger?

Received: 30 January 2024 / Revised: 23 May 2024 / Accepted: 5 August 2024
© The Author(s) 2024

Abstract

Currently, the most widespread software quality assurance methods in the avionics domain are semi-automated reviews and
testing. However, their effort grows disproportionately to the size of the system under development. Also, these methods
cannot achieve exhaustive coverage due to the complexity of today’s avionics systems and their potentially infinite set of
combinations of possible inputs and system states. Furthermore, the later software issues are detected in the development
process, the more expensive it is to fix them. To overcome these issues, a model-driven verification approach for modeling
and analyzing avionics systems in early phases of the development is presented. To this end, semantics is given to SysML v2
models by a mapping to a theorem prover encoding. The development of a dedicated SysML v2 profile supporting event-driven
data flow specifications, the encoding of corresponding structures in the theorem prover Isabelle, and a generator creating
theorems from SysML v2 models are presented. The approach is evaluated by formally proving a representative liveness
property of a hierarchical system model from the avionics domain. Since liveness properties can be negated only by infinite
data sequences and thus cannot be covered exhaustively by testing, this case study demonstrates the added value for meeting
typical safety requirements in the avionics domain. The results can be transferred from avionics to other domains, as well.

Keywords Model-driven development - Safety - Avionics - Formal methods - Formal verification - Theorem prover

1 Introduction

Rising automation during ground and air operations of
aircraft drive the complexity of avionics systems. Nowa-
days, the latter’s development accounts for over 30% of the
overall aircraft development costs [1]. The corresponding
effort is mainly generated by the strict safety (EUROCAE
ED-12C/RTCA DO-178C') and security (EUROCAE ED-
202A/RTCA DO-326A 1) demands. These are required
by the certification authorities (such as EASA for Europe
or FAA for the United States of America) and cover the
complete development and maintenance process and the
operational phase for both software (EUROCAE ED-12C)

B Deni Raco
raco@se-rwth.de

Chair of Software Engineering, RWTH Aachen University,
Aachen, Germany

2 Airbus Defence and Space GmbH, Manching, Germany

1" As the EUROCAE and RTCA documents are technically equivalent
to each other, we use only the EUROCAE reference throughout the
remainder of this article for improving the readability.

Published online: 21 October 2024

and hardware (EUROCA ED-80/RTCA DO-254 1) of the
avionics system. The major part of the avionics’ development
costs is accounted for by the verification phase [2]. This is
caused by the types of verification techniques in place in most
of the cases, e.g., testing and semi-automated reviews. How-
ever, the effort for these methods grows disproportionately
with the system’s size [2]. In addition, testing fails to deliver
exhaustive coverage in certain scenarios. This is due to the
systems’ complexity and their potentially infinite combina-
tions of possible inputs and system states. In comparison,
formal verification methods are able to verify correctness for
all inputs and system states.

The later in the project errors are detected and fixed, the
more extensive is the corresponding effort for correcting
them [3, 4]. Fixing these errors requires additional effort or
increasing the development pace. Though the latter contra-
dicts [5] the agile principle of development at constant pace,’
it is still widely seen in industry. NB, that agile methods can
and should be applied also to the modeling phase [6], because
they are compliant with avionics development in line with

2 https://agilemanifesto.org/principles.html, last access 03/03/2023.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-024-00762-6&domain=pdf
http://orcid.org/0000-0003-4910-0638
http://orcid.org/0009-0007-4445-0387
http://orcid.org/0000-0002-0988-6149
http://orcid.org/0000-0002-2147-1966
https://agilemanifesto.org/principles.html

H. Kausch et al.

the standards [7] mentioned above. In addition, Beizer [8]
demonstrates, that the cumulative distribution of error dis-
coveries related to development stages can be described as
an S shape. That means, that more issues are detected, as
later development stages are entered [9]. The combination of
these two factors (costs for fixing and distribution of issues)
drives the overall development costs.

To tackle the issues mentioned above, we propose the
deliberate usage of EUROCAE ED-12C’s supplements,
which enable the deployment of formal (RTCA DO-333/
EUROCAE ED-216 1) and model-based methods (RTCA
DO-331/EUROCAE ED-218 1). Aerospace industry has
successfully adopted formal methods [10] for verifying
properties at the code level, using model checkers and
abstract interpretation, e.g., for worst-case execution time
analysis [10, 11], which is also regulated by EUROCAE
ED-216, or for replacing® testing efforts for certain prop-
erties [10]. However, the application of formal methods
typically requires highly skilled personnel. Furthermore, it
is inherently hard to guarantee the successful application of
formal methods [1], such as in the above example. Deploy-
ing a development methodology may alleviate some of these
shortcomings. Such a methodology should channel methods
towards their automated application and should drive success
rates by applying tactics to the system engineering process.
The objective is to increase the effectiveness of formal meth-
ods and to lower the barrier of entry, effectively increasing
acceptance in the avionics domain.

Software quality is determined significantly by the quality
of the corresponding models [12, p. 409] used in the devel-
opment process. Thus, the quality of models in the context of
model-based development needs to be verified. Our approach
introduces explicit means for verifying the model quality
[13], since there is no widespread and accepted approach
for measuring and improving model quality [12, p. 409].

1.1 Structure

Section 1.2 outlines methods, formalisms, and modeling lan-
guages for formal verification. Section 1.3 compares related
work and summarizes previous work. Section 1.4 sums up
the contributions of this article regarding the challenges pre-
sented in Sect. 1. Section?2 introduces a typical avionics
use case representing a class of modern, software-intensive
avionics systems. Section3 provides details of our seman-
tic foundation, event-based specifications, theorem-prover
encodings, engineering process methodology, and a SysML
v2 frontend. Sections 4.1 and 4.2 evaluate the applicability of
the methodology, while Sect. 4.3 evaluates the verifiability.

3 NB, that testing can never demonstrate the absence of issues, but only
their presence.

@ Springer

Section4.4 covers tool qualification considerations. Finally,
Sect. 5 summarizes and discusses the findings.

1.2 Foundations of formal methods

Formal methods can tackle the deficits regarding testing men-
tioned in Sect. 1. The key classes of formal methods [10]
for avionics development according to EUROCAE ED-216
are abstract interpretation, model checking, and deductive
methods. Abstract interpretation is the least expressive and
is targeted to very specific artifacts. It requires some expertise
to discharge false positives. Model checking is less expres-
sive than theorem provers. It is mostly automated, but still
requires expertise to be used successfully. Deductive meth-
ods (e.g., theorem proving) are the most powerful and most
expressive formal method. They require a strong expertise
and continuous interaction to be used successfully. The men-
tioned classes are introduced in more detail below:

Abstract interpretation [14] abstracts from software
source code notation into more abstract models, enabling
reasoning about certain information regarding the execution
of the software itself. To use abstract interpretation as a
formal method, one can use over-approximation or under-
approximation [15, p. 21]. Over-approximation is capable
of demonstrating the absence of defects. However, over-
approximations are not able to expose software defects. They
usually generate a huge number of false positives, which have
to be ruled out manually. In contrast, under-approximation
identifies present bugs and raises corresponding issues,
but is not able to demonstrate the absence of defects. To
improve these limitations of under-approximation, O’Hearn
suggested to use incorrectness logic [16]. However, Ascari
et al. [15] demonstrate that this logic cannot rule out under-
approximation’s limitations completely.

Model checking is a formal method [17, 18] able to check
whether a formal system model fulfills some property specifi-
cation. It can provide counterexamples for property violation
by giving an execution trace that reaches a state, where the
property does not hold. Model checking can also be used to
check semantic differences, e.g., between functional archi-
tectures of a system [19]. The main limitation of model
checkers is, that they suffer from the explosion of the state
space. One can try to exploit the state space’s structural reg-
ularities, e.g., by using symbolic techniques and abstractions
[20]. However, such exploits fail to cover the whole state
space, so they come at the cost of giving up exhaustivity.
Unfoldings [21] are yet another approach for reducing the
size of the state space. However, the state explosion is still
an issue with systems with sequential execution.

Theorem provers, as one representative of deductive
methods, offer the highest assurance level and have been
used for verifying important properties, e.g., the safety and
security properties of the complete kernel of an operating

Model-driven development for functional...

system [22]. To this end, the formal semantics of a program-
ming language (such as C) or a modeling language (such as
SysML) needs to be encoded (eventually automatically by
a code generator) into the language of the selected theorem
prover. The added benefit is, that one can write more than just
tests covering the program functionalities. Full proofs over
each potential input are possible, as well. A key advantage
of theorem proving compared to model checking is that the
complexity of proofs grows only linearly with the system’s
complexity [23]. There exist multiple theorem provers, dif-
fering in capabilities such as size of their library, strength of
their logic, and their level of automation [24].

1.3 Related work

Formal verification, reasoning, and theorem proving require
well-defined semantics, matching the problem domain [25].
Formalisms such as Communicating Sequential Processes
(CSP) ([26], as used in e.g., [27]), Calculus of Commu-
nicating Systems (CCS) [28], m-calculus [29], Ptolemy
[30], Temporal Logic of Actions (TLA) [31], Petri Nets
[32] or Focus [33, 34] are usually used as mathematical
underpinning for reasoning. The reason is their support of
non-determinism, underspecification, and a notion of behav-
ioral refinement, time-sensitive specifications, and hierar-
chical decomposition. In particular, decomposition is badly
needed in general, otherwise the verification of a complex
atomic component can quickly become unfeasible. This in
turn requires compositional® verification, which is provided
by Focus and our Isabelle formalization of Focus. In Focus,
distributed and interactive systems consist of components
exchanging messages through unidirectional channels. The
semantics of a component is a (set of) stream processing
functions each of which representing a potential behavior.
Behavioral refinement is then represented by set inclusion.
Concurrency is represented by an appropriate composition
operator connecting channels. The most important reason
that FOcuUs is used in this article is due to the fact, that
its refinement mechanism is fully compositional [34, 36].
This means, that after decomposing a system, refining the
components separately, and then composing them again,
the composed system will be — by construction — a correct
refinement of the one before its refinement, thus saving sup-
plementary testing and integration costs.

Time-synchronous behavior specifications [36, 37] are
known to be well-suited for hardware specification and verifi-
cation [38]. Meanwhile, in software applications such as the
increasingly software-intensive avionics domain, an event-
driven paradigm is much more common for building scalable
distributed systems [39].

4 Compositionality is introduced by Carnab as Frege’s principle [35,
p- 120-121].

For a user friendly interface, modeling languages can be
used to hide the complexity of the mathematical formalisms.
A number of synchronous data flow modeling languages such
as Esterel [40] and Lustre [41] (and its dialect SCADE) have
been created for the development of reactive systems. How-
ever, due to their time-synchronous paradigm, these are rather
suited for the description of hardware systems.

Further modeling languages for specifying distributed
systems have been developed, such as the Palladio Compo-
nent Model [42], MechatronicUML [43], AutoFocus [44] or
Ptolemy [30]. However, neither of them does support event-
based specifications or the latest version of the de facto
standard systems engineering modeling language, SysML
(v1). This paper uses SysML [45], because it is prominently
used in the aerospace and automotive industry for systems
engineering. In particular, a profile enabling an event-based
specification style was developed for this article, since it
promises to be more scalable and flexible than synchronous
communication [39].

By encoding FOCUS in the interactive theorem prover
Isabelle [46] and defining a transformation from SysML
models into FOCUS components in Isabelle, the behavior of
SysML specifications is formally defined. Isabelle enables
machine-supported and automated proof searches and allows
for the generation and verification of machine-based and
machine-checked formal proofs. The verification of com-
munication in distributed systems using theorem provers has
been demonstrated [47]. However, the protocol being veri-
fied was manually encoded directly in the theorem prover,
which requires expertise and is more error prone compared
to our model-driven generative approach.

Integrating formal verification, particularly deductive
methods and modeling languages is not new. The authors
of [48] combine the modeling language RSML™¢ and the
theorem prover PVS via a code generator similarly to our
approach. However, the modeling paradigm is synchronous
and not event-based. In addition, the modeling language is
not an industry standard such as SysML. There is no automa-
tion, as the proving process is manual.

SysML-Sec [49] provides a SysML profile and a model-
driven toolkit to develop and formally verify embedded
systems w.r.t. to safety and security concerns. However, the
approach is based on the previous version of SysML (v1),
while the approach described in this article resorts to its suc-
cessor version with considerably extended expressiveness.

For specifying distributed software systems through the
approach presented in this article, we build on our previous
works. These differ from the work in this paper in certain
aspects. In [50, 51] a code generator encoding class diagram
syntax and semantics for describing systems was introduced,
but had no tool-support for verifying properties and focused
on language variability instead. References [36, 52, 53] used
a time-synchronous version of the architecture description

@ Springer

H. Kausch et al.

language (ADL) MontiArc. MontiArc is a domain specific
language (DSL) based on FOCUS built using the framework
MontiCore [54-56]. In contrast, SysML v2 is used in this
article. Compared to our SysML time-synchronous variant
in [23] a profile of SysML was extended in this article,
building on our previous works [57, 58] to support event-
based processing. Furthermore, [59] presented an encoding
of streams and stream processing functions in the theorem
prover Isabelle, but not for (event-based) automata, and cov-
ered only the untimed streams. Reference [60] focuses on the
signatures for timed event-based automata, which serve as a
blueprint for the implementation presented in this article.
Model analysis in [11] was performed in another previous
work of ours using the alternative formal methods of model
checking. These do help to reduce the complexity of the veri-
fication of the developed system’s correctness. However, the
system requirements of a representative avionics software
system treated in [57] required the development of an infras-
tructure to model and reason over event-based processing
systems. The work presented in this article extends and elab-
orates on that infrastructure.

1.4 Results

This article updates and continues our previous projects (Ger-
man Federal Ministry for Economic Affairs and Climate
Action ASSET-2 [61] and German Federal Ministry of Edu-
cation and Research SPES series [62]5) and research on
model-based verification of safety-critical properties [23, 36,
52, 53, 59, 63]. To begin closing the gap between systems
engineering and formal methods, we extend our previous
work by the following key novel contributions:

e Introduction of event-driven modeling in SysML v2

e Provision of an event-driven reasoning infrastructure

e A semantical mapping from SysML v2 to a data flow
formalism

e A development methodology to improve the rate of suc-
cessful application of formal methods

e Evaluation in a use case from the avionics domain han-
dling liveness properties

e Automation using a Formal Integrated Development
Environment (F-IDE)

In summary, we present an approach levering generative
model-based formal verification using event-driven specifi-
cations. It covers the early development phases and provides
means to guarantee the (a) compliance, (b) consistency, (c)
verifiability, and (d) traceability between system require-
ments (SRs), high-level requirements (HLRs), and the design

3 https://spesml.github.io, last access 05/05/2024.

@ Springer

Requirements

\ ’

\ Compliance

/’ Traceability
/

Consistency ,~~ ™\
Verifiability | Y
\
~ "
N Compliance
\\Tmceabi/ity

Design Y2

Y /‘ Consistency
Software > Low-Level >/ Verifiability

Architecture Requirements

Source Code

——> Development
——-> Review/Analysis

Executable
Object Code

Fig. 1 The MontiBelle approach provides means to guarantee the a
compliance, b consistency, ¢ verifiability, and d traceability between
SRs, HLRs, software architecture, and LLRs in the systematic design
as suggested by EUROCAE ED-216

Computer

-

Y
Packets

Packets

74’-

Fig.2 Graphical representation of the DLUF system context[57]

of a software architecture as well as low-level requirements
(LLRs), as shown in Fig. 1.

2 Use case

As exemplary implementation used to evaluate the viability
of the methods presented in this article, the development of a
software functionality representative for the avionics domain
(Data Link Uplink Feed (DLUF), see Fig.2) is selected. In
this system the users of a wireless connection (e.g., between
an Unmanned Aerial Vehicle (UAV) and its ground station)
need to transfer prioritized data packets. Table 1 introduces
the SRs for the DLUF, the respective requirements type, and
the corresponding verification method.

From these SRs we develop the system’s boundaries, con-
text, and data types and trace them to each SR. Figure?2
depicts the graphical overview of the system’s boundaries
and context. Packets are simple byte arrays of maximum size
of 100 KByte (SRs 14, 17). The packets are received via the
I/0O element of the computer (SR 5). The packets are priori-
tized by a message router, i.e., forwarded to the appropriate
queue according to the sender’s respective prioritization (SRs
1,4, 7). The incoming packets are processed by DLUF such

https://spesml.github.io

Model-driven development for functional...

Table 1 SRs are, in accordance

with EUROCAE ED-216, No. Requirement Type Verification
dereloped first a}nd describe 1 The DLUF system shall provide a prioritization Functional Test
desired the architecture, .
functionality, and performance component processing messages
of DLUF 2 This prioritization component shall ensure, that packets Functional Formal
of all (potentially low-prioritized) users are transmitted method
time and time again (i.e., provision of non-starvation)
3 The data link shall transmit packets of users with a Performance Test
data rate (i.e., budget) of 10 MByte/s
4 Priorities between 1 and 4 shall be assigned to each Functional Test
user, where 1 denotes highest and 4 lowest priority
5 An /0O event-based processing module shall receive the Architecture Review
packets
The packets are labeled with priorities from the users Structure Review
7 A message router shall forward the packets to the Architecture Review
corresponding buffer
8 Forwarding to the buffers shall depend on the message Functional Test
priority
9 Forwarding shall be done in an event-based manner Functional Test
10 Packets shall be stored by the corresponding Functional Test
buffer to enable future retransmission
11 Packets shall be attempted to be forwarded depending Functional Test
on the remaining capacity
12 Another I/O processing module shall forward the selected Architecture Review
packets to the data link
13 The 170 processing module shall forward the packets Functional Test
in an event-based manner
14 The size of packets shall vary between 1 and 100,000 Structure Test
Bytes
15 The DLUF system shall operate in cycles of length Performance Test
100 ms
16 Per cycle the capacities of each of the four priorities Performance Test
shall be 100 KByte, 200 KByte, 300 KByte, and 400
KByte
17 The system shall not assume any defined packet format Structure Review
but treat the packets as byte arrays
18 The system shall not allocate memory dynamically Structure Review

during runtime

that higher priority packets have precedence over those of
lower priority. At the same time, the balance of all prior-
ity classes has to be achieved: Higher prioritized messages
shall not completely rule out the forwarding of messages of
lower priority (i.e., there is no starvation of messages with
low priority, SR 2). DLUF shall additionally ensure, that the
maximum data rate of the link is 10 MByte/s (SR 3), which is
implicitly ensured by assigning a capacity of 400 KByte, 300
KByte, 200 KByte, and 100 KByte respectively per cycle to
each priority (SR 16) and enforcing the cycle length at 100 ms

(SR 15). Packets also need to be stored immediately in buffers
of fixed size (SRs 7-10). Packets forwarded by DLUF, i.e.,
that are viable to be transmitted within a transmission cycle,
are finally sent via an I/O component to the DataLink (SRs
12, 13).

To this end, it is required to formally verify (instead of
just demonstrating the correct functionality with non exhaus-
tive tests), that these properties hold for the overall system
(instead of just subsystems) in every scenario (instead of just
best-case scenarios). SRs 5-7, 12, and 17-18 are covered

@ Springer

H. Kausch et al.

by appropriate system design and review. SRs 8-11, and 16
require careful design of the inner working of the DLUF sys-
tem. However, SR 2, i.e., the non-starvation property, requires
checking an unknown and potentially infinitely long time
frame to ensure a correct DLUF system. Non-starvation is
a liveness property.® Testing is used in industry for a lot of
similar avionics properties and EUROCAE ED-12 defines
several complementary certification objectives to ensure suf-
ficient verification, when using tests, but to accomplish even
higher certainty of correctness formal verification methods
presented in EUROCAE ED-216 are advised [10]. It has to
hold for the overall system and cannot be sufficiently veri-
fied by only checking properties of the system’s parts, but
requires the integration of all artifacts into a single coherent
claim. SR 2 is selected for further investigation in Sect. 4,
where we leverage formal methods according to EUROCAE
ED-216 to achieve the safety requirements Design Assur-
ance Level (DAL) A and show both the formal proof for
this property, as well as demonstrate the application of our
methodology and tool chain for making this proof feasible.

3 The MontiBelle approach

The MontiBelle approach is a collection of methods, method-
ologies, and tools that tackles the challenges outlined in
Sect. 1. We will detail the improvements made compared to
earlier publications, while mainly only referencing already
published results. The order of issues presented in this section
reflects the list of results presented in Sect. 1.4.

3.1 Semantic foundation

Based on a mathematical and logical foundation, FOCUS is
a formal framework capable of specifying distributed sys-
tems at different abstraction levels. It is a methodology for
the stepwise development and refinement of interactive sys-
tems [34], where streams represent communication histories
between components. Furthermore, refinement is compatible
with composition [65] as discussed in Sect. 1.3.

The property of FOCUS, that refinement is fully composi-
tional, allows the following specification method to be used:
A system can be decomposed into under-specified compo-
nents. These components can then be refined individually,
until an implementation is reached. After assembling these
components into a complete system, the requirements of
the original system automatically hold in the new system
[34], as well. Thus, Focus allows for breaking down the
proof complexity by applying verification at each granularity
level (SRs, HLRs, LLRs, and implementation). This provides

6 Liveness properties prescribe, that the desired functionality is pro-
vided eventually [64].

@ Springer

scalability as a benefit when compared to a monolithic verifi-
cation of the complete system. Refinement is also transitive.
One has to show, that HLRs are sufficient to satisfy the SRs,
that LLRs refine the HLRs, and that the implementation ful-
fills the LLRs. The implementation satisfies the SRs then by
transitivity. The following sections introduce the core con-
cepts and a slightly simplified main encoding in the theorem
prover Isabelle.

3.2 Timed stream bundle processing functions

This section introduces atomic components, i.e., the atomic
building blocks of a system, as timed stream bundle process-
ing functions. To this end, concepts, definitions and Isabelle
encoding for (timed) streams, timed stream bundles (SBs) (a
grouping concept) [34], and timed stream processing func-
tions (SPFs) are presented, that build to a certain degree on
results from [66]. An overview over the abbreviations and
symbols is given in Sect. 3.4.

The most important data type in Isabelle is the streams
domain. Streams are concatenations of messages over some
alphabet and describe the history of communication channels
in a system. With the keyword domain the stream data type
in Isabelle is defined similar to the implementation of Haskell
lists:

domain 'm stream = cons (head::"'m") (lazy rest::"’m stream")

An event in Isabelle is defined to allow reasoning over
timed communication histories of systems in Isabelle. An
event is either a message Event ‘m or the progress of time
datatype ‘'m event = Event ‘'m | /

Components in distributed systems usually communicate
with a multitude of other components via multiple input and
output channels. A stream bundle is a mapping from channel
names to streams and allows the association thereof. With the
pcpodef keyword, the type of stream bundles is defined as
the type of all well formed functions, i.e., mapping channels
to streams, that only contain allowed messages. The notation
C* is used for stream bundles, where C is a set of channels
and C® form finite stream bundles containing only finite
streams on each channel:

pecpodef ’cs bundle = "{f::(’cs =M stream). wellformed f}"

The behavior of a component is algebraically described
by SPFs. An SPF has the signature f : ¢ — 0%, where
I denotes the input channels and O the output channels. In
Isabelle, the general type for SPFs is defined as a function
mapping input bundles of a channel set I to output bundles
of a channel set’O:

type_synonym (’I,’0) spf = "’1¥ 08"

Model-driven development for functional...

To allow for underspecification, the behavior is specified as a
stream processing specification (SPS), which is a set of SPFs
representing all possible deterministic behaviors:

type_synonym (’I,’0O) sps = "(’I,’0O) spf set"

Components defined descriptively are conform to their
predicates by construction, but not always realizable. Defin-
ing contradictory requirements leads to an empty set of
functions, hence, specifications can be inconsistent. For con-
sistent specification, an automaton, that fulfills the require-
ments, can be defined. Since an SPS, whose elements are
defined by an automata, is always consistent, a refinement
relation between the automata and descriptive SPS shows
consistency.

3.3 Event-driven processing

Compared to previous works [23, 67], where a time-
synchronous paradigm more suited to hardware-verification
is demonstrated, event-based systems are a closer match to
the behavior of typical software systems, in particular in the
context of cyber-physical systems. This means event-driven
modeling of reactions to incoming events is a more natu-
ral fit for typical distributed software systems. Due to the
time-sensitive environments found in the avionics domain,
it is necessary for the correct specification of event-based
systems to react to time passing. We thus propose a theory
for event-based processing components. The described pro-
posal preserves compositionality of refinement, because the
underlying semantics corresponds to SPFs.

Behavior of event-driven components is modeled using
state machines [68], that can react immediately to single
events like incoming transmissions. After receiving such an
input, the system can produce arbitrarily, but finitely many
outputs and/or simultaneously change its internal state. Each
transition models the immediate reaction of the automaton to
incoming messages on either the data input i or the control
command channel ctrl. Depending on the internal state, i.e.,
state of the internal memory, messages are stored and for-
warded later. Events on different channels of a component
might occur at the same time, i.e., within a single time frame.
As event-based components react to single events, the order-
ing and subsequent processing of such simultaneous events
is relevant to the semantics of the component. Underspeci-
fication of event order leads to underspecified semantics of
event-based components. The resulting non-determinism is
filtered out of the event automaton by adding a merge func-
tion, that sequences the input. A merge function produces
all possible orders for multiple histories. The order of events
on the merged stream determines the processing order for
the event automaton and was defined in [60]. We define the
signature of the event automaton as follows:

Definition 1 [Timed Event Automaton] The signature of a
timed event automaton is a 5-tuple (S, {con}, O, §, Init) with
the following meaning:

e S is the non empty set of states.

e {con} is the set consisting of the single input channel
with cType(con) = (C x M) := Mj, and C x M is the
set of tuples with channel name and message.

e O is the set of output channels.

e § C S x My, x Sx O? is the transition relation.

e Init € Sy x O and Sy C S is the set of initial states
with initial output.

]

Because the input stream bundle has only one channel and
per transition only one event is read by the automaton, the /
can be interpreted as a regular message. It is, however, fixed,
that transitions with ,/ as input event start their output with
a 4/ on all output channels. It holds

(s, /. 1, 0ut) €8 = out = sbConc(/**, out’) A out’ € 0%,

where sbConc concatenates two stream bundles and / 2is
the stream bundle “containing” just one tick on every channel.
The denotational semantics of an event automaton can be
represented by a (set of) SPFs. The semantics is given as a
mapping to stream processing functions, was implemented
according to [65], and embeds the automaton type fully in
the existing FOCUS framework [59] in Isabelle. Behavioral
refinement rules over the structure of automatons are given
in [69].

[..] : (S, con, 0,8, Init) - P(con® — 0%).

Further implementation details, functions, and general
theorems are introduced in [59].

3.4 Engineering distributed systems

By connecting components via communication channels, a
distributed system can be engineered. There is three different
kinds of composition types (parallel, sequential, feedback).
By combining the different compositions kinds, complex dis-
tributed systems can be specified. A composition operator ®
composing SPFs and enabling sequential, parallel, and feed-
back compositions is defined. To handle feedback between
components, the messages on feedback channels is iteratively
calculated as a fixed point as defined in [34]. The signature
elements U and — build the union or difference over the chan-
nel sets.

definition spfComp::"(1195 °019) —» (122 °02?)

— ((C11 U °12) — (01 U °02))%— (°01 U "02)%)"

@ Springer

H. Kausch et al.

The composition operator is easily lifted to SPSs by apply-
ing the composition operator in a pairwise way:
definition spsComp:: "C11%—01%) set = (129 02%) set
= ((CI1 U ’12) — 01 U "02)%— (01 U *02)%?) set"
(infixr ') where "spsComp FG = {f®g | f g. feF A geG }"
A significant challenge of applying theorem provers such as
Isabelle for high-level proofs of system properties is, that
these proofs usually rely on lower-level theories. It is there-
fore necessary to develop these lower-level theories such,
that they can be used by engineers in multiple contexts. As
such, constructs needs to be re-usable and operators modular
(Table 2). The presented Isabelle formalizations are generic
and have been successfully applied in different domains, e.g.,
in the verification of a door-light controller [52], a cruise con-
trol system [59], and a pilot flying system [58].

3.5 Methodology for correct dataflow architectures

The development of a system is carried out according to
EUROCAE ED-12C and EUROCAE ED-216 with respect
to the safety requirements level DAL A. The MontiBelle
approach identifies three key classes of system models: (1)
declarative specifications, (2) architecture, and (3) impera-
tive specifications.

From SRs to Formal HLRs: To narrow the gap between
typically informal SRs and formal LLRs, formal HLRs
are introduced. These are formalized as declarative spec-
ifications over communication histories. For example, the
formalized HLR of the non-starvation SRs, i.e., SR 2 in Table
1, can be seen in listing 1. In general, our specifications define
(part of) the system’s interface and give well-defined, but
potentially largely underspecified formalizations of the sys-
tem’s behavior. Formalization of HLRs enables consistency
checking in two ways. One might formally prove, that a real-
ization exists, which matches the formulated requirements.
This is done without explicitly defining the realization, but
rather relying on reasoning to prove the absence of contra-
dictions. The second way is to design a realization and show
its compliance with the HLR. We propose to refine HLRs
to LLR event automata, as they are consistent by construc-
tion. Showing compliance can be automated, as we’ll show
in Sect. 4.2.

Decomposing HLRs: To reach a feasibly fine-grained
architecture, HLRs are decomposed into communication
architectures of more detailed and specialized HLRs. Fig-
ure 3 shows this process exemplary for DLUF: From the HLR
2 formalizing the non-starvation SR, a decomposition of mul-
tiple schedulers, is created. These schedulers are then further
decomposed into atomic blocks of buffers and capacity com-
ponents. Decomposition levels are linked using refinement
relations, ensuring traceability and enabling verifiability of
compliance and consistency. Each refinement relation results

@ Springer

in a proof obligation, i.e., an unfinished (yet to be proven)
theorem. When refining declarative specifications to other
declarative specifications or to architectures, then meeting
the resulting proof obligation typically entails showing the
implication between (potentially multiple) logic predicates.
When refining between architectures, the compositionality
of refinement in FOCUS drives automation.

Developing LLRs from HLRs: To formalize LLRs, an
imperative and thus more implementation-oriented technique
should be used. We propose the use of automata, specifi-
cally event-based automata for software-intensive systems.
A requirement described by an automaton is consistent, as it
itself describes one possible implementation. The modeling
of event-based automata is done using a profile for SysML
v2. Traceability and verifiability are once again achieved
using refinement relations. The compliance is assured by
resolving the resulting proof obligation, i.e., typically an
inductive proof over (the length of) communication histo-
ries, i.e., streams.

Composing the System’s LLRs: Combining architecture
and LLRs into a system design is achieved by refining the
final HLR architecture to an equally structured architecture
composed from an LLR. The refinement of the decomposi-
tion of black boxes to the decomposition of event-automata,
i.e., the refinement of the last HLR architecture to the LLR
architecture, is then reduced to the compositionality of refine-
ment in FOCUS. The development process of the architecture
of LLRs is shown in Fig. 3 for DLUF.

3.6 SysML v2, code generator, and F-IDE

Developing and verifying systems in a theorem prover
requires specific expertise, as does the application of an
engineering process methodology. We therefore use a model-
driven approach based on a SysML v2 profile. The profile
implements the methodology, i.e., delivers rules and guid-
ance for successful application. The textual SysML v2 profile
is implemented using MontiCore [54-56], making models
machine processable, ultimately enforcing valid models [70].
A generator automatically transforms system models and
requirements into theorem prover encodings. This enables
automated reasoning and reduces the risk of encoding errors.
It also provides abstractions to the formal foundation by
virtue of industry standard modeling languages. The tool
chain is summarized in previous works [23, 57, 58].
Methodology through Modeling Language:
MontiBelle ML is a SysML v2 profile dedicated to the
modeling of verifiably safe and secure data-flow systems.
MontiBelleML uses three steps of model conformity to guide
the modeling process towards the successful application of
the MontiBelle methodology. First, models are enforced to
be valid SysML v2 models. This is achieved by implement-
ing SysML v2 using MontiCore [54-56]. MontiCore is a

Model-driven development for functional...

Table 2 Description of

abbreviations and symbols Abbreviation Description Abbreviation Description
cs¢ (Timed) SB cs® Finite (timed) SB
v Progress of time ® Composition of SPFs
X Composition of SPSs P Power set
- Refinement relation [Automata semantic mapping

Fig.3 HLR,LLR, and
architecture development with
the MontiBelle approach of
DLUF

Data Link Uplink Feed
(DLUF)

BEWEN B ffer] gy Capacity] Eam

decompose i refines

momy N B ffer2 :--:CapacityZI 0]

. Scheduler1 .

L] Scheduler2 L] L
.—. - - - High—LeveI

(] Scheduler3 L] Requirements
- - r——-

Cl Scheduler4 [T |

Mgl B ffor3 E-':Capacity3- -

BEREE B fferd giliigCapacityd Has

| Design
P refines | Software Low-Level
I\ Architecture Requirements

&
Buffer1 ET_’SCapacitW Eﬁ-

3
1 refines

decompose g implement <

] l- Buffer1 :--:Capacity1II |

nEnln Byffer2 giife Capacity? Hpmam

[II Buffer3 :-':Capacity3 -l |

momLE B fford :'-':Capacity4' L
_| I

language workbench and is designed to facilitate the devel-
opment of domain specific languages. The implementation of
SysML v2 includes a parser and basic validation rules. Sec-
ond, semantically well-founded models are enforced. Model
elements are restricted to part definitions, state definitions,
constraints, and composition. A rigorous type- and reference-
checker using static analysis complements these restrictions.
Static analysis finds errors before costly verification is
attempted. Third, a methodologically sound development
process is enforced. Formal refinement relations link model
snapshots. Development from declarative specifications to
(architectures of) imperative specifications is encouraged.
Automation through Generation: SysML models are
consumed by a theorem generator. The parsed models are
automatically transformed to their FOCUS representations, as
explained in [58]. This gives formal semantics to the mod-
eled system, enabling reasoning and deduction. The Focus
representation is stored utilizing a common meta-model for
all Focus based systems. This enables the re-use of a syntax-
agnostic transformation. The meta-model was introduced in
[23] and extended in [58]. We previously demonstrated the
usefulness of an intermediary representation by adapting our
transformation to other modeling languages [60].

A Formal Integrated Development Environment (F-
IDE): The F-IDE prototype handles modelling, navigation,
visualization, interactions with the formal backend, and auto-
mated formal verification. For model creation and editing, a
language server implementation’ was automatically gener-
ated from the SysML v2 implementation using MontiCore.
The language server provides syntax highlighting, model
navigation, auto completion, and error reporting. The F-IDE
uses the theorem generator in the background to generate
theorem provers encodings. The proof obligations are sum-
marized in an interactive list. Verification of proof obligations
are attempted by the click of a button. A color-coded light
indicates their status: Verified goals are green, counterex-
amples red. Users are able to hand-craft theorems and hook
those hand-crafted theorems into the generation process. No
inconsistencies are introduced thanks to Isabelle’s conserva-
tive extension mechanism.

7 See https://microsoft.github.io/language- server-protocol/, last access
30/06/2023.

@ Springer

https://microsoft.github.io/language-server-protocol/

H. Kausch et al.

4 Evaluation

In this section, the presented MontiBelle approach to for-
mally verify the correctness of distributed, event-based
systems is evaluated. We begin by validating the correct-
ness of our FOCUS encoding in Isabelle in Sect. 4.1. We
then demonstrate the successful application of the model-
driven MontiBelle methodology and tool chain to the DLUF
case study in Sect. 4.2. Lastly and most importantly, we
demonstrate the successful verification of the non-starvation
property in Sect. 4.3.

4.1 The encoding of FOCUS

A mathematical framework could be unsound, i.e., could
include errors or might even be constructed from false claims.
If that were the case, it would not be fit for the development of
correct systems. We thus encoded FOCUS and our extension
for event-driven processing formally into a theorem prover.
The formalizations are built on well-established formaliza-
tions of the Higher Order Logic of Computable Functions
(HOLCF) [71, 72]. The implementation is a conservative
extension without any gaps, meaning no axioms were intro-
duced and all theorems are successfully proven based on
the HOLCEF. This proves, that FOCUS and the extensions for
event-driven processing are sound.

To assure we encoded FOCUS accurately, we encoded
and verified key theorems from literature [33] formally. We
call a Focus function (e.g., the composition operator) suffi-
ciently accurately encoded, if the theorem prover accepts the
proof of key properties over it (such as commutativity). The
encoded theorems also provide valuable abstraction layers
for foundational FOCUS definitions. For example, the theo-
rem for commutativity of composition allows the re-ordering
of (sub-)systems, without unfolding their definitions. These

abstractions allow for more effective and efficient proofs,
increasing automation. For instance, the mentioned commu-
tativity enables the re-use of proofs for systems composed of
the same parts in a different order. One of the key theorems
proven for our encoding of FOCUS is the compositionality
of refinement. Both the step-wise decomposition of HLRs
into an architecture and final composition of all LLRs (Fig. 3)
into a coherent system requires the guarantee, that no incor-
rect behavior is introduced in the process, i.e., a refinement
relation holds. This can be verified fully automatically. Addi-
tionally, refinement in FOCUS is transitive. An evolving
system specification might be continuously refined. By tran-
sitivity, the final specification is a refinement of the original
specification. All theorems were encoded and verified in the
theorem prover Isabelle [59].

4.2 The MontiBelle approach

We demonstrate the applicability of the MontiBelle approach
by virtue of modeling both a typical avionics system, as well
as a liveness requirement. This demonstrates the modeling
power, i.e., the ability to accurately represent typical avion-
ics systems and their requirements. The generalizability of
this approach, specifically the language-agnostic transforma-
tion backend, was recently demonstrated by implementing
a language-specific frontend for an ADL [60]. This article
shows the use of a different ADL, namely SysML v2. This
demonstrates the generalizability to a class of modeling lan-
guages.

First, we develop a formal HLR from SR 2 using the
textual notation of SysML v2. We thereby express a highly
under-specified behavior specification. The result is the sys-
tem model in listing 1. The syntax is described in [58]. We
refer to this first layer of HLRs as HLR 1 and call this spec-
ification style a black box specification.

1 part def DLUF_black {

2 port input: ~Packets[4]; port output: Packets[4];

3 satisfy requirement ’'non-starvation’ {

4 assumes ’'infinitely long timeframe’ { Vie{l,2,3,4}.
5 input[i].length () = oo }

6 assumes ’'message in each interval’ { Vi € {1,2,3,4},
7 Vt:nat: input[i]l.atTime(t).length() > 0 }

8 assumes ’'size below max. capacity’ { Vi € {1,2,3,4}:
9 Vv € input[i].values(): v < maxCapl[i] }

10 require 'infinitely many outputs’ { Vi € {1,2,3,4}:
11 output[i] .messages ().length() = o } } }

Listing 1 HLR 1 "non-starvation" formally modeled in textual SysML v2

@ Springer

Model-driven development for functional...

Next, the development engineer can either directly pro-
vide an LLR or decompose the HLR further. Decomposition
is motivated by the complexity of the specification. The cre-
ation of a compliant LLR and the formal verification of its
compliance is hard, if the HLR is complex and multi-facetted.
Note, that creating such an LLR without further decompo-
sition might be possible, but challenging. Additionally, the
direct development of an LLR is not parallelizable. Due to
the complexity of HLR 1, we choose to decompose DLUF’s
HLR into four scheduler subsystems. The decomposition is
summarized in Fig. 3, top left corner. Each scheduler is spec-
ified using SysML v2’s textual notation, similar to listing
1. The composition of schedulers is referred to as HLR 2.
A refinement relation establishes a verifiable trace between
HLR 1 and 2. Each scheduler is further decomposed into mes-
sage buffers and capacity gates. Each of these in total eight
subsystems is specified analogously to HLR 1 as a black box
specification. A refinement relation links each buffer capac-
ity subsystem to the black box scheduler. The result is an
architecture composed of HLRs.

Once the development of LLRs from decomposed black
box specifications is reasonably achievable and verifiable,
the LLR of all four buffers and capacity gates are speci-
fied. LLRs are specified using SysML v2 state machines.
Black box buffer and capacity gate specifications are traced
to the developed state machines using refinement relations.
The syntax for state machines was given in [57, 58]. It is
important to note, that state machines are consistent [65].
This means, there exists a function, and thus an implementa-
tion, that satisfies the requirements of the state machine. By
refining to a state machine, the consistency of the black box
specifications and their composition is verified, as well. The
refinement chain also ensures the LLRs and architecture to
be correct w.r.t. HLR 1.

4.3 Verifiability

In this section, the applicability of the engineering process
methodology in combination with our FOCUS encoding in
Isabelle is evaluated by verifying properties and refinement
relations between different development artifacts in Isabelle.
To ensure, that even low priority messages are transmitted
again and again, we verify the non-starvation property (list-
ing 1) formally for the DLUF system. Formal refinement and
refactoring techniques from [73—75] are leveraged to achieve
higher automation for the verification. Leveraging the com-
positionality and transitivity of the refinement relation of
Sect. 4.1, there is two main proof obligations for the com-
pliance. First, the composition of the four HLR Schedulers
refines the DLUF HLR (see Fig. 3). Second, the composition
of an HLR buffer and HLR capacity component refines an
HLR scheduler component.

1. The DLUF decomposition into four Schedulers
The refinement relation between the DLUF_HLR2 and
DLUF_HLRI architectures is proven:

theorem shows "(Scheduler_HLR2 400®Scheduler_HLR2 300
& Scheduler HLR2 200 (¥) Scheduler HLR2 100) < DLUF HLRI1"

Listing 2 Refinement proof between Scheduler composition and DLUF.
The maximal capacity of a Scheduler is given by a parameter in KByte.
Here, the Papameters are 400, 300, 200, and 100.

Proof sketch. The HLR of the Schedulers logically imply the

HLR of DLUF. Isabelle’s automatic prover tools find a proof.
2. The Scheduler Decomposition into Buffer and

Capacity

The composition of the buffer and capacity HLR compo-

nents refines the scheduler components of the DLUF_HLR2

architecture:

theorem shows "(Buffer HLR3 () (Capacity_ HLR3 cap)) C
(Scheduler_ HLR2 cap)"

Listing 3 Refinement proof between Scheduler composition and DLUF.

The proof functions and is automated analogously to the
proof of listing 2. However, compliance to the DLUF black
box requirement is not enough. Additionally, two more proof
obligations are necessary, to confirm the consistency of
DLUF and the compliance of the DLUF_LLR system. First,
the LLR buffer component must refine the HLR buffer com-
ponent. Second, the LLR capacity component must refine the
HLR capacity component.

LLR of the Buffer Component: The buffer HLRs must
be fulfilled by the Buffer LLR, i.e., the buffer automaton.
To satisfy the first requirement, the buffer automaton’s out-
put shall contain packets only, that were obtained as input.
This way, the buffer is restricted from creating packets, that
never existed, e.g., packets, that are greater than the capacity
limit and prevent the DLUF system from transmitting data.
To realize the second requirement, the buffer shall send out-
put messages, when input messages exist and the capacity
feedback provides correct acknowledgments for transmitted
messages. Since the buffer component has two input chan-
nels, the refinement relation is shown for every possible
sequencing of input messages (see listing 4).

theorem shows "Buffer_ LLR C Buffer HLR3"
Listing 4 The LLR buffer component refines the HLR buffer component.

Proof sketch. Proof by induction over the input stream of
the buffer automaton. For the empty input stream, both
requirements hold trivially. Assume the property holds for
an arbitrary stream s. Show, that it holds for every expanded

@ Springer

H. Kausch et al.

stream of s by processing the additional stream element by
the transition function of the buffer automaton. Since the tran-
sitions do not contradict the requirements, e.g., the transitions
only output messages, that were obtained as input messages,
the induction is proven and the refinement relation holds.

LLR of the Capacity Component: For the capacity com-
ponent, analogous requirements were proven by induction.
Compared to the buffer refinement, an additional challenge
is, that the refinement is proven for every possible maximum
capacity, e.g., for every parameter cap. Additionally, it must
be ensured, that, when transmitting a message, the correct
acknowledgment is produced for the buffer component. Sec-
ondly, when the input messages exist and do not exceed the
capacity limit, they are transmitted. As a result, a refinement
relation is concluded (see listing 5).

theorem shows "Capacity LLR cap C Capacity HLR3 cap"

conservative extensions of Isabelle HOLCF [72] in Sect. 3
and for generated DLUF theories is checked by and derived
from this kernel. Thus, no inconsistencies are introduced
[46]. NB, that tool qualification according to EUROCAE ED-
215 of the generator mapping SysML v2 models to Isabelle
theories is needed, as well.

EUROCAE ED-12C requires test coverage analysis to
take into account (1) requirements-based coverage analysis®
and (2) structural coverage analysis.” To achieve similar cov-
erage by formal methods, the following objectives need to be
met: For (1), the full coverage of HLRs and LLRs is needed.
This can be achieved by the presented approach, since it
ensures the traceability between HLRs and LLRs (Sect. 3.5).
Missing requirements can thus be detected by identifying

Listing 5 The LLR capacity component refines the HLR capacity component.

LLR of the DLUF System: The final proven refinement
relation shows, that the composition of the LLR components
fulfills the DLUF requirement, e.g., SR 2.

theorem shows
"(Buffer_LLR X) (Capacity_LLR 400)) &
(Buffer_LLR (¥) (Capacity LLR 300)) @
(Buffer_LLR) (Capacity_LLR 200)) Q)
(Buffer_LLR (¥) (Capacity LLR 100)) < DLUF HLRI"

broken traceability links. For (2), the verification coverage
of the software structure is required, which can be achieved
through the following means: (i) The complete coverage of

Listing 6 The LLR architecture fulfills the non-starvation property and refines DLUF.

Proof Sketch. First, we know, that the DLUF_LLR architec-
ture is a refinement of the DLUF_HLR3 architecture from the
compositionality of the refinement relation [59] and previous
proofs over Buffer and Capacity HLR refinements (listing 5
and listing 4). Using the same compositionality argument and
the scheduler refinement (listing 3), the refinement relation
between the DLUF_HLR3 architecture and the DLUF_HLR?2
architecture follows. At last, using the transitivity of the
refinement relation [59] and the refinement between the
DLUF_HLR?2 and DLUF_HLRI architecture (listing 2), the
theorem holds. In conclusion, the non-starvation property for
the DLUF system holds.

4.4 Tool qualification

The objective of the presented approach is to replace some of
the testing effort by formal verification. This in turn requires
the presented tool to be qualified according to RTCA DO-
330/EUROCAE ED-215 1. Reference [76] describes, how
Isabelle as a tool for proofs for functional correctness of
DLUF can be qualified according to EUROCAE ED-215.
Isabelle is based on a very small and trusted kernel of peer-
reviewed axioms. The definitional approach used for the

@ Springer

each single requirement can be checked by the traceability
provided by the approach (Sect. 3.5). (ii) The completeness of
the system’s requirements can be achieved by using FOCUS,
which offers the semantic foundation created by mathemati-
cal and logical means. Unintended dataflow relationships are
avoided by means of code generation (Sect. 3.6). (iii) Extra-
neous and deactivated code can be achieved by review or
not formal analysis. Since in our case the code is generated
(Sect. 3.6), no unnecessary code is introduced. This property
can be demonstrated by the corresponding qualification.

5 Conclusion

The article raised the need for means for detecting issues
early in avionics development processes. These are assumed
to reduce costs for fixing defects considerably. At the same
time model-based development can increase the software

8 The coverage ensures that there is verification evidence available for
the complete set of the system’s requirements.

9 Since exhaustive testing is usually not achievable, adequate metrics
assess the degree, to which testing provides good enough confidence
for product safety.

Model-driven development for functional...

quality, if the created models meet the necessary quality. Fur-
thermore, formal methods can reduce the test effort and in
particular prove the correctness of software, while testing can
demonstrate only the absence of defects. As a result of all of
these improvements, the development can be performed at
the same pace during all stages.

We described, which formal methods can be deployed in
line with EUROCAE ED-216 and explained relevant and
related work in this context. As a foundation for this arti-
cle we have selected theorem provers as a representative of
deductive methods, because they are the most powerful and
most expressive formal method tool. However, they require
a strong user expertise and continuous interaction. Thus, we
have developed a corresponding methodology easing their
successful application in industry projects.

A relevant avionics use case is presented to demonstrate
the viability of the methods and methodology. The SRs for the
DLUF system are listed and one key requirement, a liveness
property, is identified for detailed treatment. This property
cannot be exhaustively tested and thus requires formal meth-
ods. While the case study is small, it is also archetypal and
one representative requirement is specifically formally veri-
fied.

The methodology demonstrated in this article consists of a
model-driven verification framework enabling event-driven
system specifications and reasoning. It enables a verified
design and a correct refinement of safety-critical systems.
The designer can either directly specify the system using
a logic language such as Isabelle, or using an architec-
ture description language such as SysML as a user-friendly
way for describing the interface, behavior, and interaction
between components. The system model and any desired
properties can then be translated to equivalent specifications
in a theorem prover. FOCUS as semantical foundation was
chosen due to its compositionality of refinements.

We have introduced means for modeling time-critical soft-
ware systems efficiently and effectively and for verifying
properties formally. This includes the FOCUS data types for
monolithic definitions of timed components and systems and
their encodings in Isabelle. These data types are stream, sb,
spf, and sps. Furthermore, causality concepts and the seman-
tics of components are formalized. Event-driven processing
components are introduced. To describe such components,
a merge specification, which describes possible process-
ing orders, and event automata, that define the event-driven
behavior of the component, are formalized and encoded in
Isabelle. Next, a composition operator capable of parallel,
sequential, and feedback composition was introduced and
a corresponding Isabelle encoding has been provided. The
approach offers decompositional specification of systems
using (1) declarative specifications, (2) architecture, and (3)
imperative specifications. The refinement relations ensure
traceability and enable the automated formal verification of

compliance, compatibility, and consistency between an HLR
and its corresponding LLRs. The developed methodology
is complemented by a tool chain comprising a SysML v2
profile for modeling, a code generator for automatic theo-
rem encoding, and an F-IDE. The modeling language profile
supports system development along methodological recom-
mendations. The code-generator drives automation, while the
F-IDE enables the intuitive and integrated use of the tool
chain.

The methodology and tool chain are applied to the ver-
ification of the liveness property of the DLUF case study.
To this end, the generated Isabelle theories for the SysML
models of the DLUF system are formally checked regarding
their compliance and consistency by proving corresponding
refinement relations in Isabelle. This demonstrates applica-
bility of the MontiBelle approach.

As introduced in Sect. 1, the substitution of certain tests
and manual reviews related to the mentioned objectives is
possible. It also helps with requirements demanding proper-
ties being true always or never, which generally cannot be
fully verified by testing. Note however, that certain sets of
tests and reviews can only be complemented by this approach,
but not completely replaced. In this context the following
aspects are relevant:

e The correctness of formalization of the requirements
need to be checked.

e Justification and appropriateness of the methodology
needs to be checked.

e Compatibility with the target computer needs to be
checked (unless the target environment is formally mod-
eled).

e Completeness of requirements needs to be checked.

e Identifying dead or disabled code is covered by estab-
lished tools.

In general, we observe an increasing maturity and feasi-
bility in the application of formal methods in safety-critical
systems, as it is possible by following the EUROCAE ED-
216 standard, which can help to replace or complement many
tests. NB, that the formal specification might create some
additional effort, when considering the overall benefits over
testing. However, they usually overcompensate later signif-
icantly, since technical flaws at the beginning may result in
highly expensive corrections of deficits identified later in the
development process, and the later the errors are corrected,
the more costly they are to correct. In a future case-study, a
more precise evaluation of costs might be performed along-
side the formal correctness verification using the presented
approach.

To counter the claim of increased effort required for early
application of formal methods, we proposed a language-

@ Springer

H. Kausch et al.

agnostic code generator and presented an industry standard
modeling language as front end in this article. As industry
proven and approved tools for systems engineering and espe-
cially for system modeling exist, we deem it feasible and
maybe even necessary to integrate the MontiBelle frame-
work into such tools and demonstrate the unobtrusive nature
of additional checks, reports, and safety guarantees emerg-
ing from formal verification. We also strongly believe in the
benefits provided by a unified yet customizable industry stan-
dard modeling language, such as the SysML v2 is aiming at
to become. We belief, that all users, be it requirements stake-
holders, system engineers, or quality control, could greatly
benefit from accessible, integrated, and transparent applica-
tion of formal methods.

Concerning the scalability of the approach, in this case
study we dealt with a model consisting of ca. 40 compo-
nent specifications. Future work needs to verify properties
of a much larger industry model. We still expect the ver-
ification complexity to be well manageable by leveraging
compositionality of refinement, and by following the pro-
posed methodological way of designing the system. If, e.g.,
we propose a design recommendation, that each component
shall be decomposed into up to ten sub-components, then
step-wise refinement of properties will involve at most ten
components, where this number is supposed to be small
enough for the verification to be fully automatic. There exist
larger case studies, reaching well above 1000 components.
We recommend using decomposition of systems into up to
ten components to manage this complexity. This way we
could handle magnitudes of up to 1000 components using
just three decomposition layers.

The presented approach enables considerable model
quality by ensuring, e.g., model correctness and consistency.
To provide a more holistic analysis of the effects of the Mon-
tiBelle approach regarding the model quality, an in-depth
analysis including multiple case studies is necessary. Such
an analysis will then be able to demonstrate, which particu-
lar model quality attributes [12] are or might not be covered.
For model quality attributes, that might not yet be covered,
the approach might be extended or adapted accordingly.
Funding Open Access funding enabled and organized by Projekt
DEAL. German Federal Ministry for Economic Affairs and Climate
Action, AMoBaCoD-Project (Grant no. 20X2201C).

Data availability Not applicable.
Declarations
Conflict of interest The authors have no conflict of interest to declare.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the

@ Springer

source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Annighoefer, B., Halle, M., Schweiger, A., Reich, M., Watkins,
C., van der Leest, S., Harwarth, S., Deiber, P.: Challenges and
ways forward for avionics platforms and their developmentin2019.
In: 38th Digital Avionics System Conference (DASC), San Diego,
California, USA (2019)

2. Brahmi, A., Delmas, D., Essoussi, M.H., Randimbivololona, F.,
Atki, A., Marie, T.: Formalise to automate: deployment of a safe
and cost-efficient process for avionics software. In: 9th European
Congress on Embedded Real Time Software and Systems (ERTS
2018), Toulouse, France (2018)

3. Baziuk, W.: Bnr/nortel: path to improve product quality, reliability
and customer satisfaction. In: Proceedings of Sixth International
Symposium on Software Reliability Engineering. ISSRE’95, pp.
256-262, Toulouse, France (1995)

4. Boehm, B.W.: Software engineering. IEEE Trans. Comput. C
25(12), 1226-1241 (1976)

5. Cockburn, A.: Agile Software Development: The Cooperative
Game, 2nd edn. Addison-Wesley Professional, Upper Saddle River
(2006)

6. Rumpe, B.: Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer, Berlin (2017)

7. Marsden, J., Windisch, A., Mayo, R., Grossi, J., Villermin, J., Fabre,
L., Aventini, C.: ED-12C/DO-178C vs. Agile Manifesto—a solu-
tion to agile development of certifiable avionics systems. In: 9th
European Congress Embedded Real-time Software and Systems
(ERTS2 2018), Toulouse, France (2018)

8. Beizer, B.: Software System Testing and Quality Assurance. Van
Nostrand Reinhold Co., New York (1984)

9. Rivers, A.T., Vouk, M.A.: Resource-constrained non-operational
testing of software. In: Proceedings Ninth International Sympo-
sium on Software Reliability Engineering (Cat. No.98TB100257),
pp. 154-163 (1998)

10. Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or
formal verification: Do-178c alternatives and industrial experience.
IEEE Softw. 30(3), 50-57 (2013)

11. Schopp, U., Schweiger, A., Reich, M., Chuprina, T., Lucio, L.,
Briining, H.: Requirements-based code model checking. In: 2020
IEEE Workshop on Formal Requirements (FORMREQ), pp. 21—
27. IEEE Computer Society, Los Alamitos (2020)

12. Fieber, F., Huhn, M., Rumpe, B.: Modellqualitit als Indikator fiir
Softwarequalitit: eine Taxonomie. Inform. Spektrum 31(5), 408—
424 (2008)

13. Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B., Schweiger, A.:
Enhancing system-model quality: evaluation of the MontiBelle
approach with the avionics case study on a data link uplink feed
system. In: Software Engineering 2024—Companion Proceedings
(AvioSE), pp. 119-138. Gesellschaft fiir Informatik e.V., Linz
(2024)

14. Cousot, P, Cousot, R.: Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Model-driven development for functional...

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

Languages. POPL 77, pp. 238-252. Association for Computing
Machinery, New York (1977)

. Ascari, F., Bruni, R., Gori, R.: Limits and difficulties in the

design of under-approximation abstract domains. In: Foundations
of Software Science and Computation Structures, Editors: Patricia
Bouyer, Lutz Schroder, pp. 21-39. Springer, Cham (2022)
O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang.
4(POPL) (2019)

Clarke, E.M., Emerson, E.A.: Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In: Grumberg,
0., Veith H. (Eds.) Logics of Programs, pp. 52-71. Springer, Berlin
(1982)

. Queille, J.P,, Sifakis, J.: Specification and verification of concurrent

systems in cesar. In: International Symposium on Programming,
pp. 337-351. Springer, Berlin (1982)

Maoz, S., Ringert, J.O., Rumpe, B.: CDDift: Semantic Differencing
for Class Diagrams. In: ECOOP 2011—Object-Oriented Program-
ming, pp. 230-254. Springer, UK (2011)

Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT
Press, Cambridge (2008)

Esparza, J., Heljanko, K.: Unfoldings—A Partial-Order Approach
to Model Checking. Springer, Berlin (2008)

Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T.,
Kolanski, R., Heiser, G.: Comprehensive formal verification of an
os microkernel. ACM Trans. Comput. Syst. 32(1), 1-70 (2014)
Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B.: Model-based design
of correct safety-critical systems using dataflow languages on the
example of SysML architecture and behavior diagrams. In: Pro-
ceedings of the Software Engineering 2021 Satellite Events, vol.
2814. CEUR, Online (2021)

Wiedijk, F.: Comparing mathematical provers. In: Asperti, A.,
Buchberger, B., Davenport J.H. (Eds.) Mathematical Knowledge
Management, pp. 188-202. Springer, Berlin (2003)

Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics
of “Semantics”? IEEE Comput. J. 37(10), 64-72 (2004)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice
Hall International, Englewood Cliffs (1985)

Murray, T., Lowe, G.: On refinement-closed security properties and
nondeterministic compositions. Electr. Notes Theor. Comput. Sci.
250, 49-68 (2009)

Milner, R.: A Calculus of Communicating Systems. Springer,
Berlin (1982)

Parrow, J.: An introduction to the pi-calculus. In: Bergstra, J.A.,
Ponse A., Smolka, S.A. (Eds.) Handbook of Process Algebra, pp.
479-543. Elsevier Science, Amsterdam (2001)

Lee, E.: Fundamental limits of cyber-physical systems modeling.
ACM Trans. Cyber Phys. Syst. 1, 1-26 (2016)

Abadi, M., Lamport, L.: Open Systems in TLA. In: Proceedings
of the Thirteenth Annual ACM Symposium on Principles of Dis-
tributed Computing-PODC *94, pp. 81-90. ACM Press, New York
(1994)

Reisig, W.: Petri Nets: An Introduction. Springer, Berlin (1985)
Broy, M., Stglen, K.: Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer,
New York (2001)

Broy, M., Rumpe, B.: Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. Inform. Spek-
trum 30(1), 3-18 (2007)

Carnab, R.: Meaning and Necessity: A Study in Semantics and
Modal Logic. The University of Chicago Press, Chicago (1947)
Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B.: MontiBelle—
toolbox for a model-based development and verification of dis-
tributed critical systems for compliance with functional safety. In:
ATAA Scitech 2020 Forum. ATAA, Orlando (2020)

Grosu, R., Rumpe, B.: Concurrent timed port automata. Technical
Report TUM-19533, TU Munich, Germany (1995)

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

438.

49.

50.

51.

52.

53.

He, J., Turner, K.J.: In: Specification and Verification of Syn-
chronous Hardware using LOTOS, pp. 295-312. Springer, Boston
(1999)

Kouneyv, S., Rathfelder, C., Klatt, B.: Modeling of event-based com-
munication in component-based architectures: State-of-the-art and
future directions. Electronic Notes in Theoretical Computer Sci-
ence 295, 3-9 (2013). Proceedings the 9th International Workshop
on Formal Engineering approaches to Software Components and
Architectures, Tallinn, Estonia (FESCA)

Berry, G., Bouali, A., Fornari, X., Ledinot, E., Nassor, E., de
Simone, R.: Esterel: a formal method applied to avionic software
development. Sci. Comput. Program. 36(1), 5-25 (2000)

Caspi, P, Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: a declar-
ative language for programming synchronous systems. In: POPL
’87: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, Munich, West Germany
(1987)

Becker, S., Koziolek, H., Reussner, R.: The Palladio component
model for model-driven performance prediction. J. Syst. Softw.
82, 3-22 (2009)

Dziwok, S., Pohlmann, U., Piskachev, G., Schubert, D., Thiele,
S., Gerking, C.: The mechatronicuml design method: process and
language for platform-independent modeling. Technical Report
tr-ri-16-352, Software Engineering Department, Fraunhofer IEM/-
Software Engineering Group, Heinz Nixdorf Institute, Zukun-
ftsmeile 1, 33102 Paderborn, Germany. Version 1.0 (2016)

Voss, S., Zverlov, S.: Design Space Exploration in Auto FOCUS
3—an Overview. In: IFIP First International Workshop on Design
Space Exploration of Cyber-Physical Systems, Berlin, Germany
(2014)

Object Management Group (OMG), SysML v2 Submission Team
(SST): OMG Systems Modeling Language (SysML) Version 2.0
Beta 2 (Release 2024-03). https://github.com/Systems-Modeling.
Accessed 28 Sep 2024

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assis-
tant for higher-order logic. lecture notes in artificial intelligence,
vol. 2283. Springer, Berlin (2002)

Paul, S., Agha, G., Patterson, S., Varela, C.: Eventual consensus in
Synod: verification using a failure-aware actor model. Innov. Syst.
Softw. Eng. 19(4), 395-410 (2023)

Rayadurgam, S., Joshi, A., Heimdahl, M.P.E.: Using PVS to
prove properties of systems modelled in a synchronous dataflow
language. In: Formal Methods and Software Engineering, pp. 167—
186. Springer, Berlin (2003)

Apvrille, L., Roudier, Y.: SysML-Sec: a SysML environment for
the design and development of secure embedded systems. In:
APCOSEC 2013, Yokohama (2013)

Cengarle, M.V., Gronniger, H., Rumpe, B.: Variability within
modeling language definitions. In: Conference on Model Driven
Engineering Languages and Systems (MODELS’09). LNCS 5795,
pp- 670-684. Springer, USA (2009)

Gronniger, H., Rumpe, B.: Modeling Language Variability. In:
Workshop on modeling, development and verification of adaptive
systems. LNCS 6662, pp. 17-32. Springer, USA (2011)

Kriebel, S., Raco, D., Rumpe, B., Stiiber, S.: Model-based engi-
neering for avionics: will specification and formal verification e.g.
Based on Broy’s Streams Become Feasible? In: Proceedings of the
workshops of the software engineering conference. Workshop on
Avionics Systems and Software Engineering (AvioSE’19). CEUR
Workshop Proceedings, vol. 2308, pp. 87-94. CEUR Workshop
Proceedings, Online (2019)

Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B.: An approach for
logic-based knowledge representation and automated reasoning
over Underspecification and refinement in safety-critical cyber-
physical systems. In: Combined Proceedings of the Workshops at

@ Springer

https://github.com/Systems-Modeling

H. Kausch et al.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Software Engineering 2020, vol. 2581. CEUR Workshop Proceed-
ings, Online (2020)

Gronniger, H., Krahn, H., Rumpe, B., Schindler, M., Vélkel, S.:
MontiCore 1.0: Ein Framework zur Erstellung und Verarbeitung
doménspezifischer Sprachen. Informatik-Bericht 2006-04, CFG-
Fakultdt, TU Braunschweig (2006)

Holldobler, K., Rumpe, B.: MontiCore 5 Language Workbench
Edition 2017. Aachener Informatik-Berichte, Software Engineer-
ing, Band 32. Software Engineering. Shaker Verlag, Germany
(2017)

Holldobler, K., Kautz, O., Rumpe, B.: MontiCore language work-
bench and library handbook: edition 2021. Aachener Informatik-
Berichte, Software Engineering, Band 48. Software Engineering.
Shaker Verlag, Diiren (2021)

Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B., Schweiger, A.: Cor-
rect and sustainable development using model-based engineering
and formal methods. In: 2022 IEEE/AIAA 41st Digital Avionics
Systems Conference (DASC). IEEE, USA (2022)

Kausch, H., Michael, J., Pfeiffer, M., Raco, D., Rumpe, B.,
Schweiger, A.: Model-based development and logical Al for secure
and safe avionics systems: a verification framework for SysML
behavior specifications. In: Aerospace Europe Conference 2021
(AEC 2021). Council of European Aerospace Societies (CEAS),
Warsaw, Poland (2021)

Biirger, J.C., Kausch, H., Raco, D., Ringert, J.O., Rumpe, B.,
Stiiber, S., Wiartalla, M.: Towards an Isabelle Theory for Dis-
tributed, Interactive Systems—The Untimed Case. Aachener Infor-
matik Berichte, Software Engineering, Band 45. Software Engi-
neering. Shaker Verlag, Germany (2020)

Kausch, H., Pfeiffer, M., Raco, D., Rath, A., Rumpe, B., Schweiger,
A.: A theory for event-driven specifications using focus and Mon-
tiArc on the example of a data link uplink feed system. In: Software
Engineering 2023 Workshops, pp. 169-188. Gesellschaft fiir Infor-
matik e.V., Bonn (2023)

Reich, M., Schweiger, A., Lorenz, J., Margull, U.: Experience
Report on Reuse in Avionics. In: IBS Workshop Micro Air Vehicle
Technologie—Konzepte und Anwendungen 2019, vol. 9, pp. 28—
35. TUDpress THELEM Universititsverlag GmbH und Co. KG,
Dresden (2020)

Bohm, W., Broy, M., Klein, C., Pohl, K., Rumpe, B., Schrock,
S. (eds.): Model-Based Engineering of Collaborative Embedded
Systems. Springer, Cham (2021)

Ringert, J.O., Rumpe, B.: A little synopsis on streams, stream pro-
cessing functions, and state-based stream processing. Int. J. Softw.
Inform. 5, 29-53 (2011)

@ Springer

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett.
21(4), 181-185 (1985)

Rumpe, B.: Formale Methodik des Entwurfs verteilter objektorien-
tierter Systeme. In: Ausgezeichnete Informatikdissertationen 1997.
B. G. Teubner, Stuttgart (1997)

Rumpe, B., Klein, C., Broy, M.: Ein strombasiertes mathematisches
Modell verteilter informationsverarbeitender Systeme—Syslab-
Systemmodell. Technischer Bericht TUM-19510, TU Miinchen,
Deutschland (1995)

Grosu, R., Klein, C., Rumpe, B., Broy, M.: State Transition Dia-
grams. Technical report, TU Munich (1996)

Rumpe, B.: Formale Methodik des Entwurfs Verteilter Objek-
torientierter Systeme. Herbert Utz Verlag Wissenschaft, Munich
(1996)

Paech, B., Rumpe, B.: A new concept of refinement used for
behaviour modelling with automata. In: Proceedings of the Indus-
trial Benefit of Formal Methods (FME’94). LNCS 873, pp.
154—-174. Springer, Spain (1994)

Holldobler, K., Rumpe, B., Wortmann, A.: Software language engi-
neering in the large: towards composing and deriving languages. J.
Comput. Lang. Syst. Struct. 54, 386-405 (2018)

Regensburger, F.: HOLCF: Eine konservative Erweiterung von
HOL um LCF. PhD thesis, Technische Universitit Miinchen,
Munich, Germany (1994)

Huffman, B.C.: HOLCF ’11: A Definitional Domain Theory for
Verifying Functional Programs. Portland State University, Portland
(2012)

Philipps, J., Rumpe, B.: Refinement of information flow archi-
tectures. In: ICFEM’97 Proceedings. IEEE CS Press, Hiroshima,
Japan (1997)

Philipps, J., Rumpe, B.: Roots of refactoring. In: Tenth OOPSLA
Workshop on Behavioral Semantics. Tampa Bay, Florida, USA,
October 15. Northeastern University, USA (2001)

Andronick, J.: Please check my 500K LOC of Isabelle. In: Cofer,
D., Klein, G., Slind, K., Wiels V. (Eds.) Qualification of Formal
Methods Tools—Report from Dagstuhl Seminar 15182 (2015)
Andronick, J.: Please check my S00K LOC of Isabelle. In: Qualifi-
cation of Formal Methods Tools—Report from Dagstuhl Seminar
15182 (2015)

	Model-driven development for functional correctness of avionics systems: a verification framework for SysML specifications
	Abstract
	1 Introduction
	1.1 Structure
	1.2 Foundations of formal methods
	1.3 Related work
	1.4 Results

	2 Use case
	3 The MontiBelle approach
	3.1 Semantic foundation
	3.2 Timed stream bundle processing functions
	3.3 Event-driven processing
	3.4 Engineering distributed systems
	3.5 Methodology for correct dataflow architectures
	3.6 SysML v2, code generator, and F-IDE

	4 Evaluation
	4.1 The encoding of Focus
	4.2 The MontiBelle approach
	4.3 Verifiability
	4.4 Tool qualification

	5 Conclusion
	References

