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A B S T R A C T

Topological interlocking assemblies (TIA) are arrangements of blocks kinematically constrained by a fixed
frame, such that all rigid body motions of each block are prevented by the neighbouring blocks and the
frame. In the literature, several blocks are introduced that can be arranged into interlocking assemblies,
however only few of them can be arranged in non-unique ways. This study investigates a particularly versatile
interlocking block called the Versatile Block: this block can be arranged in three different doubly periodic
ways given by wallpaper symmetries. We investigate the hypothesis that the arrangement of copies of the
same block influences the mechanical response of a TIA. We examine the interlocking mechanism and the
correlation between arrangement and overall structural performance in planar TIA consisting of the Versatile
Block. Furthermore, we analyse load transfer mechanisms within the assemblies and from the assemblies onto
the frame. For fast apriori evaluation of the load transfer onto the frame we introduce a combinatorial model
called Interlocking Flows. To investigate our assemblies from a mechanical point of view we conduct several
finite element studies. These reveal a strong influence of arrangement on the structural behaviour, for instance,
an impact on both the point and amount of maximum deflection under a given load, thereby confirming our
hypothesis. We also evaluate the accuracy of the proposed Interlocking Flow model by a comparison with the
finite element simulations.
1. Introduction

The aim of resource efficiency and resource savings drives us to
optimise not only the recyclability of everyday consumer goods but also
the recyclability of components in the construction industry. Compo-
nents are typically manufactured monolithically tailored to a specific
application and consist of high performance composites. They require
separation for recycling, which in most cases consumes additional
energy. This raises the question of how to achieve resource efficiency
without the need for recycling. One possible solution is to start at an
earlier stage, namely to design buildings with reusable components. To
achieve reusability, a transition from a monolithic approach to a modu-
lar design is required. Reusable components offer the potential of being
assembled into different load-bearing structures. For example, compo-
nents consisting of individual blocks that kinetically constrain each
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other and display structural load-bearing behaviour are particularly
desirable.

The idea of building mortarless structures from blocks that kine-
matically constrain each other has been known for a long time. We
are particularly interested in topological interlocking assemblies which
give rise to planar mortarless structures.

A topological interlocking assembly can be defined as an arrange-
ment of blocks that are in contact with each other together with
a peripheral frame such that, if the frame is fixed, any non-empty
finite subset of blocks of the assembly is prevented from moving, see
Estrin et al. (2021). This kinematic restriction of movement is enforced
by the neighbouring blocks. For a precise mathematical definition of
topological interlocking assemblies, the reader is referred to Goertzen
(2024b).
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Fig. 1. Non-convex polyhedron, called Versatile Block, admitting topological interlocking assemblies with coordinates of vertices given by 𝑣1 = (0, 0, 0), 𝑣2 = (1, 1, 0), 𝑣3 = (2, 0, 0), 𝑣4 =
(1,−1, 0), 𝑣5 = (0, 1, 1), 𝑣6 = (1, 1, 1), 𝑣7 = (1, 0, 1), 𝑣8 = (1,−1, 1), 𝑣9 = (0,−1, 1).
1.1. State-of-the-art

The concept of topological interlocking assemblies (TIA), also
known as topological interlocking materials (TIM) or topological inter-
locking structures (TIS), has a long history. It is related to the concept
of masonry and the idea of building flat vaults. Early patents and
concepts of blocks that admit a topological interlocking assembly can
be found in the work of Abeille and Truchet in Gallon (1735) as well
as Frézier (1738), who generalises the work of Abeille and Truchet.
The block proposed by Abeille can be viewed as a truncated tetrahe-
dron. Glickman (1984) proposes a paving block related to an assembly
of tetrahedra. Dyskin et al. (2001a,b) initiate an investigation of topo-
logical interlocking assemblies as a novel material design concept and
coin the term ‘topological interlocking’. Moreover, they show that all
Platonic solids give rise to topological interlocking assemblies (Dyskin
et al., 2003a) and describe a method for constructing TIA with convex
blocks (Kanel-Belov et al., 2010). Osteomorphic type blocks, which are
introduced in Dyskin et al. (2003b), can also be assembled in various
non-planar ways and this versatility gives rise to applications in civil
engineering (see Dyskin et al., 2003b; Yong, 2011; Rezaee Javan et al.,
2016; Harsono et al., 2023). Other methods for generating TIA linked
to Voronoi tessellations are proposed in Subramanian et al. (2019),
Akleman et al. (2020) and Mullins et al. (2022). Voronoi tessellations
are naturally linked to crystallographic groups as certain (convex)
Voronoi cells yield fundamental domains for such groups and thus
space-filling structures, for example space-filling ‘VoroNoodles’ (Ebert
et al., 2023).

A general method for constructing planar TIA based on non-convex
fundamental domains of a crystallographic group is introduced in
Goertzen et al. (2022) and Goertzen (2024a) and for non-planar TIA
in Akpanya et al. (2023a). Recent overviews of design principles and
applications related to TIA are given in Dyskin et al. (2019) and Estrin
et al. (2021).

Several investigations in the literature focus on different aspects of
the mechanical behaviour of TIA made of materials such as brittle ma-
terials (ceramics, concrete), metals (aluminium, steel) and plastics. An
overview of the mechanical performance of TIA is given in Siegmund
et al. (2016). Some also focus on developing new numerical models for
studying TIA, e.g. Feldfogel et al. (2024a).

The studies by Krause et al. (2012) resp. Mirkhalaf et al. (2018)
show that assemblies made of osteomorphic resp. convex ceramic
blocks can withstand higher flexural deflection compared to monolithic
solid ceramic plates—up to ten times — and outperform them in
toughness—up to 50 times — while offering adjustable stiffness and
resilience to damage. Mirkhalaf et al. (2018) also show that simultane-
ous improvements of strength and toughness is possible using a design
based on octahedral blocks. Casting with concrete is a promising option
for manufacturing blocks for TIA. Several mechanical experiments and
simulations studying the behaviour of TIA with osteomorphic type
concrete blocks are conducted in Rezaee Javan et al. (2017, 2018).
2 
Moreover, using soft-interfaces between blocks, for instance by apply-
ing rubber, Rezaee Javan et al. (2020) show that flexural compliance
with less damage can be further improved.

Materials such as aluminium and steel are also promising materials
when combined with the principle of TIA. Schaare et al. (2008) show
that TIA, constructed from aluminium, steel or PVC cubes, demon-
strate non-linear mechanical behaviours under indentation, including
significant hysteresis, softening post-peak, and negative stiffness during
unloading. This unique response is intrinsic to the assembly design, re-
gardless of the material. Schaare et al. (2009) show that these interlock-
ing assemblies also exhibit a unique, amplitude-dependent damping
capacity due to friction between cube interfaces caused by mechanical
vibrations.

Feng et al. (2015) investigate the impact mechanics of TIA with
tetrahedra made of ABS and demonstrate numerically that these assem-
blies can absorb more impact energy than conventional solid plates.

TIA based on convex blocks can be parameterised using several
methods, such as varying plane tessellations or angles of out-of planes.
This yields a variety of TIA with distinct mechanical performance.
For this, several parameter studies based on scaling convex blocks
arising from various tessellations are conducted in Short and Siegmund
(2019), Kim and Siegmund (2021), Williams and Siegmund (2021) and
Weizmann et al. (2021).

Investigations of the effects of both the Young’s modulus and the
friction coefficient on the structural mechanics of TIA are investigated
in Koureas et al. (2022) and Feldfogel et al. (2023, 2024b). Koureas
et al. (2023) study the effect of non-planar block geometry in the con-
text of beam-like structures. Ullmann et al. (2023) conduct a compara-
tive study on the deflection limit of slab-like assemblies and monolithic
slabs, and propose a theoretical upper bound on the deflection limit.

1.2. Hypothesis

Different blocks have been introduced that facilitate interlocking
assemblies. Very few of these blocks can be arranged in different planar
ways. This is a big restriction for modular systems. Goertzen et al.
(2022) introduced a new block, called the Versatile Block (see Fig. 1),
and Akpanya et al. (2023b) proved that this block can be arranged into
interlocking assemblies in several different ways. Whether the arrange-
ment of copies of the same block also has an influence on the mechanical
behaviour of an interlocking assembly was not yet known. In this paper, we
demonstrate that the mechanical behaviour of interlocking assemblies
from the same block can differ greatly by comparing three different
symmetric arrangements of the Versatile Block. For this, we introduce
a new general combinatorial method, called ‘Interlocking Flows’, in
the spirit of directional blocking graphs (Wang et al., 2018), that
associates a flow network to an interlocking assembly and yields a fast
prediction of the load transfer within the assembly. We compare the
three different symmetric arrangements of the Versatile Block using
the established method of FEM. Our focus lies on understanding the
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dynamic interaction between the blocks within a planar assembly when
subjected to transverse loading. We examine how external forces are
transferred to the frame that holds the assembly together. To further
improve our understanding of the topological interlocking assembly
from a mechanical point of view, we conduct a comparative analysis
of the load-bearing behaviour between the assemblies and monolithic
plates of the same geometry, specifically evaluating the maximum
deflection of the system and distribution of stresses under given load.
The results of the FEM analyses confirm that the arrangement has an
influence on the mechanical behaviour of the assembly and validate the
novel method of Interlocking Flows.

2. Topological interlocking assemblies with the Versatile Block

Planar topological interlocking assemblies consist of blocks that are
arranged between two parallel planes in 3D-space. We focus on planar
interlocking assemblies consisting of identical blocks congruent to the
Versatile Block (see Fig. 1), first introduced in Goertzen et al. (2022).
For each assembly, the frame is chosen to consist of the blocks on the
perimeter. The bottom-side of the Versatile Block forms a square in the
plane 𝑧 = 0 with area 2, whereas the top-side forms a rectangle in the
plane 𝑧 = 1 of the same area. In fact, the intersection of the Versatile
Block with any plane 𝑧 = 𝑎 with 𝑎 ∈ [0, 1] yields a polygon with area
2. We call the plane 𝑧 = 0 the bottom plane and the plane 𝑧 = 1 the top
plane. Note that all vertices of the Versatile Block lie in either the top
or the bottom plane.

Planar assemblies with the Versatile Block can be characterised
by Truchet tilings, see Akpanya et al. (2023b). Here, a Truchet tile
(see Smith and Boucher (1987)) is defined as a square with a diagonal
such that one of the resulting triangles is coloured black and the other
white and can be interpreted as a colouring of the bottom square of the
Versatile Block, see Fig. 2. A Truchet tiling results in a corresponding
assembly if any black triangle is adjacent only to white triangles and
vice versa, see for instance Fig. 3. Using this correspondence it can be
shown, that the Versatile Block can be arranged in 2𝑛+𝑚 possible ways
in an 𝑚 × 𝑛 grid leading to exponentially many possible assemblies,
see Akpanya et al. (2023b).

Out of these many possibilities, we select three symmetric arrange-
ments, motivated by the fact that the construction of the Versatile
Block corresponds to the wallpaper symmetries 𝑝1, 𝑝𝑔 and 𝑝4 (see
Appendix B). We can assemble four copies of the Versatile Block
according to these wallpaper symmetries, as shown in Fig. 3. These can
be continued in a doubly periodic way to form infinite assemblies with
the corresponding wallpaper symmetry, see Goertzen et al. (2022) and
Goertzen (2024a). More on the underlying theory of arranging blocks
with wallpaper symmetries is given in the Appendix B.

3. Interlocking flows

Recall that our aim is to compare the three different symmetric
planar arrangements of the Versatile Block mentioned above to un-
derstand the interaction between the blocks and the frame within an
assembly when subjected to transverse loading. FEM simulations are
utilised in the following section to predict the mechanical behaviour
of such assemblies precisely. Nonetheless, due to the time-intensive
nature of FEM simulations, it is beneficial in engineering applications
to forecast the quality of a topological interlocking assembly prior to a
FEM simulation. In this section, the focus lies on the evaluation of the
load transfer from the blocks onto the frame. For this, we introduce a
fast discrete evaluation method based on the combinatorial theory of
tilings and flow networks, which we call ‘Interlocking Flows’.

The idea behind this tool is motivated by the principle of least
resistance, or the principle that forces are taking the shortest path.
Each block in the given assembly is associated to a node in a directed
graph and for each arc (directed edge) in the graph we give a value.
With this, each path in the graph can be quantified by multiplying the
3 
Fig. 2. Top: Orientations of a Truchet tile consisting of black and white triangle.
Bottom: Top and bottom view of the corresponding orientation of Versatile Blocks,
see Akpanya et al. (2023b). Possible arrangements of copies of the Versatile Block can
be classified by the following tiling rule of Truchet tiles: adjacent tiles have to meet
at different colours.

weights of each arc (see Example 3.3). Moreover, we show that the
resulting system satisfies an equilibrium condition, i.e. applied loads
are distributed within the network.

In more precise terms, we obtain a flow network that predicts the
distribution of loads within the underlying assembly. For the underly-
ing graph structure of this network, this method builds on the work
on Directional Blocking Graphs, which are introduced in Wilson (1992)
and Wilson and Latombe (1994) and investigated in the context of
interlocking assemblies in Wang et al. (2018). Here, we give an adapted
version of the definition of such a graph for interlocking assemblies by
treating the blocks on the frame differently.

For this, let (𝑋𝑖)𝑖∈𝐼 be a topological interlocking assembly consisting
of blocks 𝑋𝑖 ⊂ R3 indexed by a finite index set 𝐼 with a frame indexed
by 𝐽 ⊂ 𝐼 and 𝑑 ∈ R3 a vector. We say that a block not contained in the
frame is restrained in direction 𝑑 by another block if shifting the first
block in the direction 𝑑 leads to an intersection with the latter block,
i.e. for 𝑖 ∈ 𝐼 ⧵𝐽 and 𝑗 ∈ 𝐼 , the translated block 𝑋𝑖−𝑑 ∶= {𝑥−𝑑 ∣ 𝑥 ∈ 𝑋𝑖}
intersects with 𝑋𝑗 . Furthermore, we say that a block in the frame
restrains itself from moving.

Definition 3.1. The Directional Blocking Graph (short DBG) ((𝑋𝑖)𝑖∈𝐼 , 𝑑)
is defined as the directed graph with

1. vertices given by the set 𝐼 and
2. arcs of the form 𝑖 → 𝑗 if the block 𝑋𝑖 is restrained by 𝑋𝑗 in

direction 𝑑 for 𝑖, 𝑗 ∈ 𝐼 .

In the context of this paper, we apply a load 𝑥 in the direction
𝑑 = (0, 0,−𝜀), for a small value 𝜀 > 0, for each block in the interlocking
assembly simultaneously. We use the DBG to model how this load is
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Fig. 3. Bottom and top view with corresponding Truchet tiling of four copies of the Versatile Block arranged according to the wallpaper symmetries (a) 𝑝1, (b) 𝑝𝑔 and (c) 𝑝4.
transferred onto the frame of the underlying assembly. This can be
achieved by introducing a value function on the arcs of a DBG, yielding
a flow network with sinks given by the nodes corresponding to the
blocks belonging to the frame.

Definition 3.2. Let (𝑋𝑖)𝑖∈𝐼 be a planar assembly with copies of the
Versatile Block. We define a value function 𝑣 for arcs of the DBG
 ∶= ((𝑋𝑖)𝑖∈𝐼 , 𝑑) with 𝑑 = (0, 0,−𝜀) as follows: let 𝑖 → 𝑗 be an arc
of  with 𝑖, 𝑗 ∈ 𝐼 , then we set

𝑣(𝑖 → 𝑗) ∶=
{

1
2 , if 𝑖 ≠ 𝑗
1, if 𝑖 = 𝑗 .

Then  together with the value function 𝑣 on its arcs is called an
Interlocking Flow.

In the definition above, we choose the value 1
2 for distinct Versatile

Blocks, since in this context we assume that a given Versatile Block 𝑖
in a given planar arrangement (𝑋𝑖)𝑖∈𝐼 is always supported equally by
two of its neighbouring blocks from below. For blocks belonging to the
frame, we choose the value 1, since these blocks are restrained from
moving. Note that the definition of an Interlocking Flow can be easily
generalised to assemblies with blocks other than the Versatile Block.
Here, the value function 𝑣 has to be chosen in a way such that the sum
over all values of arcs leaving a given node is always equal to 1.

In the following, we restrict to the case, where 𝐼 is given by a 𝑛×𝑚
grid for natural numbers 𝑛, 𝑚, where each square corresponds to an
oriented Truchet tile which itself corresponds to an oriented copy of
a Versatile Block and the frame consists of the outer blocks. It follows
that the underlying assembly consists of 𝑛 ⋅ 𝑚 blocks.

We extend the value function 𝑣 to any arcs 𝑖 → 𝑗 not contained in 
by setting 𝑣(𝑖 → 𝑗) = 0. With this choice of value function 𝑣 it follows
that ∑𝑛⋅𝑚

𝑗=1 𝑣(𝑖 → 𝑗) = 1, for all 𝑖 ∈ 𝐼 and together with the fact that all
values of 𝑣 are non-negative, we obtain a (right) stochastic matrix
𝐴 = (𝑣(𝑖 → 𝑗))𝑖,𝑗∈𝐼 ∈ R𝑛⋅𝑚×𝑛⋅𝑚

≥0 , (1)

i.e. the entries of each row of 𝐴 sum up to 1. This matrix can be viewed
as a weighted adjacency matrix of the graph , yielding a flow network
with capacity function 𝑣. This results in the following combinatorial
interpretation: let 𝑥 ∈ R𝐼 be a load vector with 𝑥 = 0, if 𝑗 ∈ 𝐽 and
≥0 𝑗
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𝑥𝑖 ∈ R≥0 for 𝑖 ∈ 𝐼 ⧵ 𝐽 . Thus, the entries of 𝑥 correspond to the applied
loads in direction 𝑑 on each block. In the experiments depicted in the
following, the entries of 𝑥 are chosen to be 𝑥𝑖 = 1 for 𝑖 ∈ 𝐼 ⧵ 𝐽 and
𝑥𝑗 = 0 for 𝑗 ∈ 𝐽 . The model of load transfer can then be discretised by
considering the matrix–vector multiplication

𝐴𝑘 ⋅ 𝑥

for iterations 𝑘 = 0,… , 𝑛, where 𝓁 ≫ 0 is chosen to be large with 𝐴𝓁 ⋅𝑥
being close to the convergence load transfer on the frame given the
initial load 𝑥. Since 𝐴 is a stochastic matrix, it follows that the sum
over all entries of 𝐴𝑘 ⋅ 𝑥 equals the sum over the entries of 𝑥, i.e.
𝑛⋅𝑚
∑

𝑖=1
(𝐴𝑘 ⋅ 𝑥)𝑖 =

𝑛⋅𝑚
∑

𝑖=1
𝑥𝑖,

which reflects the conservation property inherent to stochastic pro-
cesses. We can exploit the underlying structure of the flow network to
compute the matrix vector multiplication 𝐴𝑘 ⋅ 𝑥 as follows:

1. create an empty square grid corresponding to the Truchet tiling;

2. fill the box corresponding 𝑖 ∈ 𝐼 with the value 𝑥𝑖 (initialise
vector 𝑥);

3. add 1∕2 times the value of box 𝑖 ∈ 𝐼 ⧵ 𝐽 to box 𝑗 if the white
part of box 𝑖 touches the black part of box 𝑗 (this corresponds to
the matrix multiplication 𝐴 ⋅ 𝑥);

4. iterate the second and third step 𝑘 − 1 times with the updated
boxes.

Example 3.3. In Fig. 4(a), we see an example of an Interlocking
Flow Network corresponding to an assembly with 16 Versatile Blocks
assembled according to the wallpaper symmetry pg, with 12 of them
representing the frame, i.e. we have 𝑛 = 𝑚 = 4 with the notation
as above. The Versatile Block corresponding to the grey nodes do
not support any blocks from below, therefore there is no need to
consider them. The remaining 8 Versatile Blocks are indexed by the
set {𝐼 ,… , 𝑉 𝐼 𝐼 𝐼} such that the blocks {𝑉 , 𝑉 𝐼 , 𝑉 𝐼 𝐼 , 𝑉 𝐼 𝐼 𝐼} belong to
the frame supporting the other blocks. The assembly of the blocks
not belonging to the frame is also shown in Fig. 3(b). As discussed
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Fig. 4. Toy example for Interlocking Flows based on the assembly of Versatile Blocks based on wallpaper symmetries pg shown in Fig. 3(b).
u
p

m

above, each arc is given a positive value such that for each node,
the values of all outgoing arcs sum up to 1. The values for the inner
blocks are motivated by the fact that the blocks are symmetric, and we
assume that they are supported by exactly two neighbouring blocks.
For the outer blocks on the frame, we assume that they are restrained
from moving and set the values to 1. The matrix shown in Fig. 4(b)
results from the definition of the Interlocking Flow matrix 𝐴 (1). For
each of the inner blocks indexed by the set {𝐼 , 𝐼 𝐼 , 𝐼 𝐼 𝐼 , 𝐼 𝑉 }, we can
pply a load in direction 𝑑 = (0, 0,−𝜀) for 0 < 𝜀 ≪ 1 small. The
uter blocks belonging to the frame are not loaded. Assuming that
ll inner blocks are loaded by a value 1, we obtain a loading vector
= (1, 1, 1, 1, 0, 0, 0, 0). Next, we can compute the distribution of 𝑥 by

omputing the matrix–vector product 𝐴 ⋅ 𝑥. If we iterate this approach,
e evaluate how 𝑥 is distributed in an 𝑖th time step by computing the
roduct 𝐴𝑖 ⋅ 𝑥, see Fig. 5. The final time step 𝐴4 ⋅ 𝑥 demonstrates the
inal distribution of load of the inner blocks transferred to the blocks
elonging to the frame.

As mentioned in the previous section, the planar assemblies of
copies of the Versatile Block are characterised by Truchet tiles. In
Figs. 6–8, the Interlocking Flows for the wallpaper groups 𝑝4, 𝑝1 and 𝑝𝑔
5 
are shown for assemblies with 10 × 10-blocks. For example, Fig. 6(a)
displays an assembly with 𝑝4 wallpaper symmetry with |𝐼| = 100 where
the frame is marked in red. The corresponding Truchet tiling is given in
Fig. 6(b). The initial starting distribution and more intermediate steps
are shown using a heatmap displaying the load value distribution.

Remark 3.4. By considering the result obtained using the Interlocking
Flow method, we can pick candidates for certain applications in a
more time-efficient manner. For an 10 × 10 interlocking assembly with
100 for blocks, there are 210+10 = 220 = 1048576 possible assemblies
sing the Versatile Block, see Akpanya et al. (2023b). For an initial
rediction, we can evaluate the force transfer onto the frame for all

1048576 assemblies in a matter of seconds as it only revolves around
atrix–vector multiplications with relatively small quadratic matrices,

i.e. 100 × 100.
In Fig. 9 we show the corresponding Truchet tiling of an assembly

with 50 × 50 Versatile Blocks. The computation of 1500 time steps take
approximately 1.35 s on a personal computer with Apple M1 Chip.
This example shows how this approach can be used for finding initial
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Fig. 5. Values for toy example in Fig. 4 that are obtained by computing the matrix–
vector products 𝐴𝑖 ⋅ 𝑥, for 𝑖 = 0,… , 4. The colours of the heatmaps indicate the
corresponding values as given in the legend.

solutions for optimal designs and for efficiently predicting the load
distribution from the assembly onto the frame.

4. Mechanical investigation of interlocking assemblies

4.1. Problem formulation

From the mechanical point of view, the blocks in the interlocking
assemblies defined above are considered to be deformable bodies.
External forces are applied to the blocks in the assembly causing them
to move and deform. The blocks interact with each other only by the
contact, which is unknown a priori and can change over time. In order
to investigate purely the interlocking effect in the assemblies, we do
not consider friction between the blocks. Neither the contact forces nor
the displacements at the contact boundary of each block are prescribed.
Thus, the geometry of the blocks must ‘‘constrain’’ the relative motion
between them. This means that interlocking must be achieved only by
the geometry of the blocks.

Mechanically, the problem can be formulated in the following way.
The reference configuration 𝛺(𝑘)

0 ⊂ R3 of a body 𝑘 denotes the domain
occupied by all material points 𝐗(𝑘) at time 𝑡 = 0. The changed
positions 𝐱(𝑘) of a material point at a certain time 𝑡 are described by
the current configuration 𝛺(𝑘)

𝑡 ⊂ R3. The displacement of a material
point is described by 𝐮(𝑘)(𝐗(𝑘), 𝑡) = 𝐱(𝑘)(𝐗(𝑘), 𝑡) − 𝐗(𝑘). The boundary
of each body 𝜕 𝛺(𝑘)

0 is decomposed into three sets: 𝛤 (𝑘)
𝜎 representing

the Neumann boundary (tractions 𝐭̄(𝑘)0 are given), 𝛤 (𝑘)
𝑢 representing the

Dirichlet boundary (displacements 𝐮̄(𝑘) are given), and 𝛤 (𝑘)
𝑐 representing

the contact surface. Contact interaction can be mathematically inter-
preted as a set of nonlinear boundary conditions (see Laursen (2002)
and Wriggers (2006)). The initial boundary value problem (strong
formulation) of finite deformation elastodynamics needs to be satisfied
on each body:

Div𝐏(𝑘) + 𝐛̃(𝑘)0 = 𝜌(𝑘)0 𝐮̈(𝑘) in 𝛺(𝑘)
0 × [0, 𝑡], (2)

𝐮(𝑘) = 𝐮̃(𝑘) on 𝛤 (𝑘)
𝑢 × [0, 𝑡], (3)

𝐏(𝑘)𝐍(𝑘) = 𝐭(𝑘)0 on 𝛤 (𝑘)
𝜎 × [0, 𝑡], (4)

𝐮(𝑘)(𝐗(𝑘), 0) = 𝐮̃(𝑘)(𝐗(𝑘)) in 𝛺(𝑘)
0 , (5)

𝐮̇(𝑘)(𝐗(𝑘), 0) = ̇̃𝐮(𝑘)(𝐗(𝑘)) in 𝛺(𝑘)
0 , (6)

𝑔(𝑘)𝑛 (𝐗(𝑘), 𝑡) ≥ 0, 𝑝(𝑘)𝑛 (𝐗(𝑘), 𝑡) ≤ 0,
(𝑘) (𝑘) (𝑘) (𝑘) (𝑘)
𝑝𝑛 (𝐗 , 𝑡)𝑔𝑛 (𝐗 , 𝑡) = 0 on 𝛤𝑐 × [0, 𝑡], (7)
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Table 1
Simulation parameters.

Parameter Value Description

𝜌 [k g m−3] 7850 Density
𝐸 [GPa] 210 Young’s modulus
𝜈 [−] 0.3 Poisson’s ratio
𝛼 [−] 2.0 Mass proportional damping
𝛽 [−] 1.0 ⋅ 10−8 Stiffness proportional damping

where 𝐏 is the first Piola–Kirchhoff stress tensor, Div() denotes the
Lagrangian divergence, and 𝐍 is the normalised unit surface normal.
The contact constraints in normal direction (7) for frictionless contact
must hold on the contact boundary 𝛤 (𝑘)

𝑐 at each time 𝑡. Here, 𝑔𝑛 is the
gap function, and 𝑝𝑛 is the contact pressure. The true internal stress
state within a body is represented by Cauchy stress tensor 𝝈, which
has the following relation to the first Piola–Kirchhoff stress tensor 𝐏

𝝈 = 1
det (𝐅) 𝐏𝐅

𝑇 ,

where 𝐅 is the deformation gradient (𝐅 = 𝜕𝐱∕𝜕𝐗).
Contact problems can be tackled using various numerical meth-

ods, such as finite element methods (FEM), discrete element meth-
ods (DEM), and multi-body systems. The selection of the appropriate
method depends on the specific nature of the problem at hand. In
our analysis, we choose the finite element method, as it is well-suited
for examining the deformation and stress fields arising from quasi-
static problems in assemblies composed of arbitrarily shaped solids.
For a more in-depth explanation of FEM, we kindly refer interested
readers to, e.g., Zienkiewicz et al. (2005) and Wriggers (2008) for
general theory on FEM, and Wriggers (2006) and Laursen (2002) for
computational contact mechanics.

4.2. Simulation setup

We analyse 3 different assemblies of 8 × 8 blocks that each cor-
respond to the wallpaper-symmetries 𝑝1, 𝑝𝑔 and 𝑝4, respectively. The
mechanical analyses were conducted by using the commercial finite-
element software Abaqus/CAE 2022.HF1. As we are interested here in
the static response of the three periodic arrangements of the Versatile
Block, quasi-static analyses were carried out. The geometry of the Ver-
satile Block is non-convex and complex, resulting in very complicated
contact conditions between the blocks. Although we assumed that the
deformations of the blocks are small (linear strain theory), they can
still undergo finite rotations as there are 64 deformable bodies in
the system. The complexity of such mechanical system is quite high,
therefore an explicit dynamics environment was employed to increase
the efficiency of the simulation and to account for the very general
contact conditions.

To give the analysis a more realistic face, we scaled the coordinates
of the Versatile Block and the resulting assemblies (Figs. 6(a), 7(a),
8(a)) by a factor of 0.2, where we interpret the length units as metres
and thus obtain a block of height 0.2 m. In this case, the side-length of
the square equals 0.2 ⋅

√

2 ≈ 0.283 m. Especially, a 10 × 10 assembly
(including the frame) of scaled Versatile Blocks in a square grid will be
of size ≈ 2.83 × 2.83 m2.

In order to understand the key mechanical advantages and disad-
vantages of the underlying TIA, we compare their mechanical proper-
ties with corresponding monolithic plates of the same dimensions.

We considered the bodies as isotropic and linear elastic material,
which properties are listed in Table 1. The soft, frictionless contact
between all the bodies was defined using an exponential pressure-
overclosure relationship. According to the Abaqus definitions, the fol-
lowing parameters were set: a clearance between the bodies, 𝑐0 = 10−7
m (measured in the contact normal direction), and a contact pressure at
zero clearance, 𝑝𝑐0 = 103 Pa. All blocks were meshed individually with
4-node tetrahedral elements (see Fig. 11). The displacement boundary
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Fig. 6. In (a), we see the arrangement of Versatile Blocks according to 𝑝4 wallpaper symmetries, with the frame marked in red. In (b), the corresponding Truchet tiling is shown.
The Interlocking Flow analysis is based on the Directional Blocking Graph (DBG) in (c), with arc values as given in Definition 3.2. The results of the Interlocking Flow are displayed
for different discrete time steps in (d)–(h).
conditions were applied by fully fixing (in all their nodes) the periph-
eral blocks (the bounding frame) in space (see Fig. 10). A pressure of
𝑝0 = 1.5 bar transversely to the assembly plane was applied onto the
top plane (see Fig. 10) using the integrated function ‘‘smooth step’’,
which automatically produces smooth load amplitude. This function
prevents sudden movements, which can cause stress waves that can
lead to noisy or inaccurate solutions. Quasi-static loading conditions
were considered. Both a damping term related to the volumetric strain
rate and the square of the volumetric strain rate were considered.
Material damping has been used to dampen lower (mass-dependent)
and higher (stiffness-dependent) frequency responses (see Table 1). To
perform the quasi-static analysis more efficiently, mass scaling was
also employed to increase the integration time step. This resulted in
a corresponding reduction of computational time. In order to ensure
that changes in mass and resulting increases in inertial forces would
not significantly alter the solution, the mass scaling factor was chosen
appropriately by testing (mass scaling factor of approx. 10). All Abaqus
input files can be found in Goertzen et al. (2023) (https://doi.org/10.
5281/zenodo.10246034).
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4.3. Numerical results

Contact pressure. One of the most important questions regarding the
interlocking mechanism is: How is an external load transferred through
the assembly to the bounding frame? This question has already been
addressed, for example, in the works of Khandelwal et al. (2012, 2013),
Rezaee Javan et al. (2020), Akleman et al. (2020). We also dealt with
this question in the last section, where Interlocking Flows were used
to analyse interlocking mechanism. Here, we examine this question
from a mechanical point of view. To do this, we investigate the contact
pressure between the blocks and the frame, since we assumed that there
is no friction involved. The contact pressure (𝑝0 = 𝐹∕𝐴) indirectly
represents the distribution of forces in a TIA (between the blocks).

The results are shown in Fig. 12. Unlike the monolithic plate, the
assembly transfers the load by pressure. In the top plane (𝑧 = 0.2 m)
of 𝑝1, the highest contact pressure occurs in the central part of the
diagonal of the TIA. In this plane, the contact pressure between the
assembly and the right and top edges of the frame is also the highest.
In the bottom plane (𝑧 = 0.0 m) the highest pressure occurs only at
the left and lower edges of the frame. The simulations show that load
transfer of 𝑝1 occurs over the two boundary edges in the bottom plane

https://doi.org/10.5281/zenodo.10246034
https://doi.org/10.5281/zenodo.10246034
https://doi.org/10.5281/zenodo.10246034
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Fig. 7. In (a), we see the arrangement of Versatile Blocks according to 𝑝1 wallpaper symmetries, with the frame marked in red. In (b), the corresponding Truchet tiling is shown.
The Interlocking Flow analysis is based on the Directional Blocking Graph (DBG) in (c), with arc values as given in Definition 3.2. The results of the Interlocking Flow are displayed
for the convergence time step given in (d).
Fig. 8. In (a), we see the arrangement of Versatile Blocks according to 𝑝𝑔 wallpaper symmetries, with the frame marked in red. In (b), the corresponding Truchet tiling is shown.
The Interlocking Flow analysis is based on the Directional Blocking Graph (DBG) in (c), with arc values as given in Definition 3.2. The results of the Interlocking Flow are displayed
for the convergence time step given in (d).
and the two opposing boundary edges in the top plane (see first column
in Fig. 12).
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In the top plane (𝑧 = 0.2 m) of 𝑝𝑔, the highest contact pressure occurs
in the centre right part of the TIA. In this plane, the pressure between
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Fig. 9. This figure illustrates the Interlocking Flow method applied to a large assembly
of 50 × 50 Versatile Blocks, corresponding to the tiling with Truchet tiles shown in
(a). Different time steps (b)–(f) show the evolution of load distribution over discrete
iterations. In the final time step (f), we see the modelled load distribution onto the
frame.

the assembly and the right edges of the frame is also the highest. In the
bottom plane (𝑧 = 0.0 m), the highest pressure occurs at the left, lower
and upper edges of the frame. Here, too, the assembly is supported by
the frame in both the top and bottom planes. We also observe that in
bottom plane, only every second block is highly stressed at the lower
and upper edges of the frame. This means that not all blocks with direct
contact to the frame transfer the forces to the frame (see second column
in Fig. 12).

In the top plane (𝑧 = 0.2 m) of 𝑝4, the highest contact pressure occurs
in the centre part of the TIA forming an ‘‘X’’. In this plane, the pressure
between the assembly and the edges of the frame is low. In the bottom
plane (𝑧 = 0.0 m), the highest contact pressure occurs at all four edges of
9 
Fig. 10. Schematic illustration of boundary conditions applied to the TIA of interest.
Peripheral blocks (red), which form the frame, are fixed in space. The 𝑝1 arrangement
of Versatile Blocks (blue) is constrained by the frame. A pressure 𝑝0 is applied to the
top plane of the assembly (blue region). Boundary conditions are applied to the 𝑝𝑔
(Fig. 8(a)) and 𝑝4 (Fig. 6(a)) assemblies in a similar way.

Fig. 11. Finite element discretisation (mesh) of one Versatile Block.

the frame. In contrast to the other two assemblies, the assembly is only
supported by the frame in the bottom plane. Similar to the 𝑝𝑔 assembly,
we notice that in the bottom plane only every second block is highly
stressed at the edges of the frame, which means that not all blocks at
the frame transfer the forces to the frame (see third column in Fig. 12).

Due to the symmetry of the Versatile Block and the assemblies,
symmetry can also be observed in the contact pressure distribution. In
the 𝑝4 assembly, the four-fold symmetry of the underlying wallpaper
symmetry is still present as highlighted by the black-square. Moreover,
in the 𝑝1 assembly we see a reflection symmetry along the diagonal
highlighted by the black-line. The case 𝑝𝑔 is more involved as the
assembly is arranged using glide reflections this leads to a shift of the
high stresses at the frame (note that a glide reflection is composed of a
reflection together with a translation/shift).

If we compare the FEM results (second row in Fig. 12) with the
results of the interlocking flow method (see Fig. 7, Fig. 8, Fig. 6), we
observe that the interlocking flow method accurately predicts which
blocks in the assembly are responsible for transferring the load to the
bounding frame, see Fig. 13. The locations of contact pressure peaks
in the FEM simulation align with those identified by the interlocking
flow method. However, the density of the force transferred from the
block does not match the FEM simulation results, particularly in the
p1 TIA. This discrepancy can be attributed to the slipping behaviour of
the blocks (Khandelwal et al., 2013; Djumas et al., 2017; Koureas et al.,
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Fig. 12. Contact pressure (FEM simulation) between the blocks in the TIA of interest. The first row represents the top plane, and the second row represents the bottom plane.
Due to the symmetry of the Versatile Block and the assemblies, symmetry can also be observed in the contact pressure distribution. In the 𝑝4 assembly, the four-fold rotational
symmetry around the centre of the assembly of the underlying wallpaper symmetry is highlighted by the black square. Additionally, in the 𝑝1 assembly, a reflection symmetry
along the diagonal is highlighted by the black line.
Fig. 13. A direct comparison between the Interlocking Flow results and the contact pressure results from the FE simulation is shown. The Interlocking Flow results are overlaid
on the FE simulation contact pressure data, allowing a direct visual comparison between the two sets of results. Note that the locations of contact pressure peaks correspond with
the force magnitudes imposed on the frame as obtained using the interlocking flow method.
2022), including rotation and deformation, which the interlocking flow
method neglects.

From each TIA, we extracted information from a single block near
the centre of the assembly to gain insight into how the blocks interact
and interlock with each other. To illustrate this, we plotted the contact
pressure on the surface of the block. These results are shown in Fig. 14.
The block around the centre of the assembly was chosen for this
analysis because high contact pressure consistently occurs around the
centre of the top plane for all TIA.

From these results, it is clear to see how blocks interact with each
other differently in different arrangements. The results namely show
which regions of the block transfer the forces in the assembly. They
also show which regions might lead to weaknesses and failures within
the block. The interactions are directly connected to the wallpaper
symmetries (see 3(a), 3(b) and 3(c)). For instance, in the 𝑝1-assembly
the interaction can be represented with only one block. The region ‘‘1’’
in front (Fig. 14) interacts with the region ‘‘1’’ in the back of the block,
edge ‘‘2’’ in the front with the edge ‘‘2’’ in the back, or region ‘‘3’’ in the
front with region ‘‘3’’ in the back and so on. Similarly, the interaction
in 𝑝4 can also be easily described, but for 𝑝𝑔 the description becomes
much more complex.

For all three arrangements, the highest contact pressure occurs
mainly in the upper part of the block. The lower parts of the blocks
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are less loaded. This has a direct influence on the von Mises stress
distributions, which can be seen in Fig. 16.

The primary aim of this study is to gain initial insights from the
simulation. From these results, we can gather some understanding of
the behaviour of the arrangements. However, a more detailed investiga-
tion is certainly necessary to fully understand the interactions between
the blocks, as well as between the frame and the assembly. Such an
analysis, however, is beyond the scope of this work.

Deformed state and maximum deflection at a given load. Fig. 15(a) shows
the displacement fields 𝑢𝑧 in 𝑧-direction of the three TIA. The dis-
placement 𝑢𝑧 is shown because the deformation in 𝑧-direction is most
dominant due to the loading direction. The deformation patterns of the
interlocking assemblies follow the patterns and the directions of the
monolithic plates (Fig. 15(b)) but behave slightly differently due to the
modular nature of the assemblies. In 𝑝1, the displacement field spreads
along the diagonal from the bottom left corner to the top right corner.
The reason for this deformation is that all blocks have the same ori-
entation. In 𝑝𝑔, the deformation spreads from the left boundary in the
positive 𝑥-direction and is limited by the top and bottom boundaries. In
𝑝4, the deformation is equally distributed in all directions and therefore
the maximum deflection occurs in the middle. The displacements of the
blocks in 𝑝1 at the left and bottom boundary (in purple in Fig. 15(a))
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Fig. 14. Contact pressure on the block around the centre of each TIA. The first row shows the front side of the Versatile Block, while the second row shows the back side. The
first column plots the contact pressure distributions on the block in the 𝑝1 assembly, the second column plots the pressure distributions in the 𝑝𝑔 assembly, and the third column
plots the distributions in the 𝑝4 assembly. The numbered regions on the blocks in the 𝑝1 and 𝑝4 assembly indicate which areas of the block interact with corresponding areas on
another block.
are positive, which suggests that their neighbouring blocks leverage
them out. This behaviour differs from that of the solid plate. Similar
differences between the solid plate and the assemblies 𝑝𝑔 and 𝑝4 can be
observed. The comparison of the maximum deflections of TIA with the
solid plates shows that the 𝑝1 arrangement performs surprisingly better,
while 𝑝𝑔 and 𝑝4 arrangements perform about 50% worse. The maximum
deflection occurs in front of the right corner block in 𝑝1; slightly to the
right of the centre for 𝑝𝑔; and in the centre for 𝑝4. The results show
that there is a difference in the displacement distribution between the
top and bottom plane of the TIA. Overall, it can be concluded that the
choice of arrangement and frame control the position of the maximum
deflection at a given loading.

Distribution of stresses. Fig. 16 shows the distribution of von Mises
stresses in the assemblies. The stress distribution is very complex,
which can be associated with the non-convex geometry of the block.
For comparison, the stress distributions in corresponding solid plates
are shown in Fig. 17, which are shaped according to the frames of
the different assemblies. Particularly interesting is the distribution of
stresses from the top plane, where the load is applied, to the bottom
plane. The results show that different block arrangements strongly
influence the stress distribution in the assembly.

The results show (Fig. 16) that in all three assemblies the highest
von Mises stresses occur at the contacts between the blocks. Therefore,
we do not compare the maximum von Mises stresses occurring in the
TIA, as these result from small contact areas that evolve during the
deformation of the entire assembly. Nevertheless, we can make obser-
vations about how contact pressure influences the stress distribution
through the assembly.

Due to the symmetry of the Versatile Block and the assemblies,
symmetry can also be observed in the stress distribution. For instance,
in the 𝑝4 assembly, the four-fold rotational symmetry of the underlying
wallpaper symmetry is still present in the stress distribution as high-
lighted by the black-square (Fig. 16). Moreover, in the 𝑝1 assembly
we see a reflection symmetry along the diagonal highlighted by the
black-line.

In the top plane of 𝑝1, contacts form the highest stresses in the
central part of the diagonal of the TIA and between the assembly and
the right and top edges of the frame. In the bottom plane, the highest
stresses occur only at the left and lower edges of the frame. The stresses
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on the diagonal (from the bottom edge to the right edge) gradually
decrease as one moves from the top to the bottom plane. It can also be
seen that the lower left block (in the corner) is hardly stressed.

In the top and bottom plane of 𝑝𝑔, the highest stresses also occur
where the highest contact pressure is: in the centre right part of the
TIA and between the assembly and the right edges of the frame and at
the left, lower and upper edges of the frame. At the right edge of the
frame in the bottom plane, the middle blocks are more stressed than the
upper and lower ones. The stresses in the middle and right part of the
assembly gradually decrease as one moves from the top to the bottom
plane.

In the top and bottom plane of 𝑝4, the highest stresses occur in the
centre part of the TIA. They form an ‘‘X’’. In this plane, the stresses
between the assembly and the edges of the frame are low. In the bottom
plane, the highest stresses occur at all four edges of the frame. The
stresses in the centre of the assembly gradually decrease as one moves
from the top to the bottom plane.

Similar observations can also be made for the reference solutions
(Fig. 17). For all three monolithic plates, the highest von Mises stresses
occur at the contact points between the plate and the frame. This is
a consequence of the sharp, non-straight edges of the plate and the
assembly.

In comparison to the monolithic plates the stress distributions in TIA
are discontinuous, which is not surprising at all, since the assemblies
are composed of independent bodies. Due to the contacts between
blocks, the top plane experiences more stress than the bottom plane.
In 𝑝1, the von Mises stresses reach up to 30 MPa (indicated by the
yellow and orange regions in the plots). These high-stress regions are
much larger than those in 𝑝𝑔 and 𝑝4. In comparison, the monolithic
𝑝1-plate reaches stresses up to 18 MPa, while in 𝑝𝑔-plate the stresses
reach 11 MPa, and in 𝑝4-plate they reach 7 MPa. Major differences can
be observed below the middle plane 𝑧 = 0.1 m. As expected, the most
blocks in the assemblies are less stressed compared to the same regions
in the monolithic plates. This is because the gap between neighbouring
blocks opens, causing a loss of contact. In the 𝑝1 assembly, stresses
range between 0 and 18 MPa (excluding the blocks in contact with the
frame). In the 𝑝𝑔 and 𝑝4 assemblies, stresses range between 0 and 4 MPa.
In the 𝑝1 plate, stresses range between 4 and 19 MPa, while in the 𝑝𝑔
plate, they range between 1 and 11 MPa, and in the 𝑝4 plate, they range
between 1 and 7 MPa. Another significant difference can be observed
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Fig. 15. This figure shows displacement fields in 𝑧-direction in the top (𝑧 = 0.2 m) and bottom (𝑧 = 0.0 m) plane of the three TIA (a) and three monolithic plates (b). In
the 𝑝1-arrangement, the maximum displacement occurs at the top right. The shape of the displacement contours appears to be ‘‘hyperbolic’’. The maximum displacement in
𝑝𝑔-arrangements occurs in the middle right part of the assembly. The contours of the displacements have a ‘‘parabolic’’ shape. The maximum deflection in 𝑝4-arrangements is
formed in the centre of the assembly and the contours of the displacements have a ‘‘circular’’ shape. The lowest maximum deflection of 0.396 mm is in 𝑝4, the highest in 𝑝1 at
1.49 mm. Due to the symmetry of the Versatile Block and the assemblies, symmetry can also be observed in the displacement fields. In the 𝑝4 assembly, the four-fold rotational
symmetry around the centre of the assembly of the underlying wallpaper symmetry is highlighted by the black square. Additionally, in the 𝑝1 assembly, a reflection symmetry
along the diagonal is highlighted by the black line. In the 𝑝1-like plate, the maximum displacement occurs at the top right. The shape of the displacement contours appears to
be ‘‘hyperbolic’’. The maximum displacement in 𝑝𝑔-like plate occurs in the middle right part of the assembly. The contours of the displacements have a ‘‘parabolic’’ shape. The
maximum deflection in 𝑝4-like plate is formed in the centre of the assembly and the contours of the displacements have a ‘‘circular’’ shape. The lowest maximum deflection of
0.160 mm is in 𝑝4-like plate, the highest in 𝑝1-like plate at 1.66 mm.
at the edges of the frame. In these areas, the stress distribution differs
notably between assemblies and monolithic plates. Assemblies transfer
loading over specific blocks and relatively continuously along the block
edges, whereas plates are supported locally at each sharp corner of the
frame.

The results show that the variation of stress distribution in the 𝑝4 is
more optimal compared to 𝑝𝑔 and 𝑝1, making it the best of the three
options for this particular case. The blocks transferring forces to the
frame in 𝑝4 are the least stressed, mostly falling within the green region
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(up to 11.5 MPa). In contrast, some marginal blocks in 𝑝𝑔 are stressed
to around 19 MPa, while in 𝑝1 these blocks reach over 30 MPa.

As expected, we observe that the load transfer mechanisms in the
regime of compressive stresses are qualitatively similar to those of a
monolithic plate, while the load transfer significantly differs in case of
tensile stresses. The reason for this lies in the fact that the gap between
neighbouring blocks opens, and thus, contact is lost.

In civil engineering, the assemblies presented in this paper could
be used, for example, as ceilings. Typically, such ceilings are made
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Fig. 16. Von Mises stress distributions in four planes of the TIA (𝑧 = 0.0 m, 𝑧 = 0.05 m, 𝑧 = 0.15 m and 𝑧 = 0.2 m). The results show that different block arrangements strongly
influence the stress distribution in the assembly. The highest von Mises stresses occur at the contacts between the blocks. Due to the symmetry of the Versatile Block and the
assemblies, symmetry can also be observed in the stress distribution. For instance, in the 𝑝4 assembly, the four-fold rotational symmetry of the underlying wallpaper symmetry
is still present in the stress distribution as highlighted by the black-square. Moreover, in the 𝑝1 assembly we see a reflection symmetry along the diagonal highlighted by the
black-line. The case 𝑝𝑔 is more involved as the assembly is arranged using glide reflections this leads to a shift of the high stresses at the frame (note that a glide reflection is
composed of a reflection together with a translation/shift). Below the middle plane 𝑧 = 0.1 m the most blocks in the assemblies are less stressed compared to the same regions in
the monolithic plates. This is because the gap between neighbouring blocks opens, causing a loss of contact. TIA transfer loading over specific blocks and relatively continuously
along the block edges.
of concrete, a material that can withstand high compressive but low
tensile loads. A solid plate loaded in the transverse direction will bend,
resulting in compression in the upper and tension in the lower half of
the plate, which is not desirable. To investigate the behaviour of TIA
with respect to this problem, we plotted the normal stress field in 𝑦
direction (see Fig. 18(a)), which is in our case the first indicator of
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tension or compression in the material. We can see that the negative
stress predominates in the top planes (above 𝑧 = 0.1 m) in all three
TIA. The regions of the highest compressive stresses range from −7
to well over −100 MPa. In the bottom plane (𝑧 = 0.0 m), where the
highest tensile stresses are to be expected, these remain in the range
between 0 and 2 MPa. Comparing this result with the corresponding
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Fig. 17. Von Mises stress distributions in the four planes of the monolithic plates (𝑧 = 0.0 m, 𝑧 = 0.05 m, 𝑧 = 0.15 m and 𝑧 = 0.2 m). Monolithic plates are supported locally at
each sharp corner of the frame, where the highest von Mises stresses also occur. In comparison to the TIA the stress distributions in monolithic plates are continuous.
solid plates (Fig. 18(b)), where the highest compressive stresses range
from −4 to −10 MPa and the highest tensile stresses are between 1
and 10 MPa, we can conclude that such TIA reduce undesired tensile
stresses in the blocks. This can be advantageous, as less or even no
reinforcement of the assembly may be required in practical realisation.
However, it should be noted that due to the complex geometry of the
Versatile Blocks, a complete reduction of the positive stresses in the
blocks cannot be achieved.
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5. Discussion

In this paper, we confirmed the hypothesis that the arrangement
of blocks in a TIA has a significant influence on the overall structural
behaviour such as its point of deflection, the load transfer mechanisms,
as well as stress distribution. This is verified by comparing three differ-
ent symmetric arrangements of the Versatile Block by FEM analyses.
Moreover, by comparison with a monolithic plate, we demonstrated
that the structural behaviour of TIA is qualitatively and quantitatively
in the same order of magnitude. Further, we developed a combinatorial
tool, called Interlocking Flows, that is capable of pre-evaluating the
load transfer onto the frame. Intuitively, one would think that all
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Fig. 18. Normal stress field in the 𝑦-direction of the TIA and monolithic plates. Negative stress predominates in the top planes (above 𝑧 = 0.1 m) across all three TIAs, with the
highest compressive stresses ranging from −7 to well over −100 MPa. In contrast, the bottom plane (𝑧 = 0.0 m) exhibits stresses between 0 and 2 MPa. Compared to solid plates,
where compressive stresses range from −4 to −10 MPa and tensile stresses from 1 to 10 MPa, TIA effectively reduce undesirable tensile stresses in the blocks.
peripheral blocks would be equally involved in transferring the external
load to the frame. Both the combinatorial and numerical results show
that this is not the case. The load is applied to the frame in a patterned
manner, whereas the monolithic plate distributes the load continu-
ously along the frame. In summary, we showed that by exploiting
the rich combinatorial theory of the Versatile Block we obtain several
interlocking assemblies with key differences. This can be exploited to
custom-tailor interlocking assemblies for particular applications.

Another factor influencing the performance of the topological in-
terlocking assembly is the distance between the top and bottom plane
15 
of the planar assembly. In order to design material minimised compo-
nents, the mechanical performance of relatively thin assemblies should
be investigated. As mentioned in Section 4 the scaling matrix for the
Versatile Block was chosen according to Akpanya et al. (2023b) to guar-
antee versatility. Since the focus in this work lies on planar assemblies,
the blocks could also be considered without top and bottom surface for
lightweight structures. The influence of these scaling parameters as well
as hollowing blocks on the overall mechanical response of the assembly
was not examined. This was beyond the scope of this work.
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The sharp edges of the geometry of the Versatile Block are respon-
sible for stress spikes, see Fig. 14. This leads to the question of how
to modify the geometry of the block from an engineering perspective
n order to reduce these stress singularities. This question should be
onsidered for further investigations.

In the simulation, friction was ignored to emphasise the interlocking
ffect. The results of the simulations (where friction is neglected) show

that the proposed geometry under deformation is fully capable of self-
interlocking and is therefore a promising candidate for practical use. Of
course, in reality such (frictionless) conditions are not possible. Friction
has a big impact on the overall behaviour of assembled systems and
should therefore be taken into account in future work. Nevertheless,
these results guarantee that the blocks cannot slip out of the assembly,
as long as the deformation is not too large. The results also suggest
that assemblies made from this geometry might perform quite stably
even if one or more blocks are missing. This should, of course, also be
nvestigated in future work.

In the context of this paper, a load has been applied evenly to
he top plane in all assemblies in order to obtain a comparison of

the different arrangement strategies. Considering different load cases
should also be considered in future work.

In Fig. 12, we observe that the results of the Interlocking Flow
model, which predicts force transfer from the assembly to the frame, are
in good agreement with the contact pressure between the blocks and
the frame obtained from the FEM analysis. This comparison indicates
the reliability of Interlocking Flow method. Since FEM simulations
are in general not as cost- and time-efficient, the Interlocking Flow
method has significant potential for obtaining an initial evaluation
of load transfer within the assembly. For future research, this dis-
crete evaluation criterion needs to be investigated further, verified and
developed.
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Appendix A. Software usage

The interlocking assemblies are generated using the Simplicial-
Surfaces Package Niemeyer et al. (2021) for GAP (2022). Here, we
generate the different assemblies by first defining and rotating a single
Versatile Block to all four possible orientations that can occur in a
planar assembly. Then we create the assemblies given by the wallpaper
groups of the three topological interlocking assemblies as described
in Section 2. We divide the assembly into the outermost perimeter of
blocks that we use as the frame. These assemblies are then exported as
individual .stl files, which after a second conversion to .step files can be
imported as geometries into Abaqus. This is done individually to allow
asier application of the boundary conditions, but has no effect on the
eometry as a whole. We use a 10 × 10 grid of 100 blocks in each of
he periodic interlocking assemblies.

Appendix B. Wallpaper groups

Wallpaper groups can be seen as a mathematical formulation of
symmetries of certain doubly periodic repeating patterns in a
2-dimensional plane. They are also known as 2-dimensional crystal-
ographic groups and contain rotations, reflections and translations

respecting the repeated pattern. For the repetition of the pattern, we
need a translation which describes the offset of the pattern, denoted as
a vector in R2. Furthermore, a rotation or reflection can be described
by a matrix
(

cos(𝜃) −sin(𝜃)
sin(𝜃) cos(𝜃)

)

or
(

cos(𝜃) sin(𝜃)
sin(𝜃) −cos(𝜃)

)

respectively, where 𝜃 is the angle of rotation. A reflection means, we
mirror at a plane through the origin with a certain angle. It turns
out, that 𝜃 can only have the values 0◦, 60◦, 90◦, 120◦, and 180◦ (see
crystallographic restriction theorem Armstrong, 1988, Chapter 25). A
single symmetry of a repeating pattern can therefore be described as
a pair (𝑀 , 𝑣), where 𝑀 is a rotation or reflection matrix and 𝑣 is an
(offset) vector as before. We call such an object an isometry. An isometry
(𝑀 , 𝑣) acts on R2 as a function

𝑓(𝑀 ,𝑣) ∶ R2 → R2, 𝑥 =
(

𝑥1
𝑥2

)

↦ 𝑀 ⋅
(

𝑥1
𝑥2

)

+ 𝑣,

whereas the product of two isometries (𝑀1, 𝑣1), (𝑀2, 𝑣2) is defined as
follows:

(𝑀2, 𝑣2)◦(𝑀1, 𝑣1) ∶= (𝑀2 ⋅𝑀1, 𝑀2 ⋅ 𝑣1 + 𝑣2)

where ⋅ denotes the matrix–vector multiplication. Every wallpaper
group is generated by a finite set of isometries, see Szczepański (2012),
.e. all elements of the group are products of these isometries. To
e more precise, we define a wallpaper group (also called wallpaper
ymmetry) along the same lines as Armstrong (1988) as follows:

Definition B.1. Let E(2) denote the group of isometries of the Eu-
clidean plane R2. A subgroup

𝛤 ∶= ⟨ (𝑀1, 𝑣1),… , (𝑀𝑟, 𝑣𝑟) ⟩ ⊆ E(2)

such that 𝑀𝑖 is a rotation or reflection matrix and 𝑣𝑖 ∈ R2 for 1 ≤ 𝑖 ≤ 𝑟
s called wallpaper group if

(i) the set {𝑣1,… , 𝑣𝑟} contains two linearly independents vectors
and

(ii) there are only finitely many matrices that can be written as
𝑀 = 𝑀𝑖1 ⋅ ⋯ ⋅ 𝑀𝑖𝑘 with 𝑀𝑖𝑗 ∈ {𝑀1,… , 𝑀𝑟}, 1 ≤ 𝑗 ≤ 𝑘 (i.e.
the 𝑀𝑖 span a finite point group).

In this definition, (𝑖) ensures that we can find a set 𝐷 ⊆ R2 (called
undamental domain) such that for any point 𝑥 in the plane, there is

a point 𝑦 ∈ 𝐷 and an isometry in 𝛤 that maps 𝑥 to 𝑦. (𝑖𝑖) ensures that
we obtain a repeating pattern 𝐹 , also known as fundamental domain. It
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turns out, that there are only 17 wallpaper groups (up to isomorphism),
see Armstrong (1988).

In this paper, we only consider the three wallpaper groups 𝑝1,
𝑔 and 𝑝4. Here, we follow the international crystallographic nota-

tion Aroyo (2016) for the names of the wallpaper groups. The group
1 can be characterised by only allowing translations as both matrices
re the identity:

𝑝1 ∶=
⟨((

1 0
0 1

)

,
(

1
−1

))

,
((

1 0
0 1

)

,
(

1
1

))⟩

.

In the group 𝑝𝑔 we have an additional (glide-)reflection in the first
generator. After applying this matrix twice it becomes the identity and
therefore the fundamental domain 𝐹 is oriented in two different ways
in a tiling with 𝑝𝑔-symmetry :
𝑝𝑔 ∶=

⟨((

0 −1
−1 0

)

,
(

2
0

))

,
((

1 0
0 1

)

,
(

1
1

))⟩

.

Compared to the one reflection in 𝑝𝑔 we have a rotation associated
to both generators in the group 𝑝4. However, due to the rotation
matrices becoming the identity after being applied four times, the
fundamental domain 𝐹 can be oriented in exactly four ways in a tiling
with 𝑝4-symmetry:

𝑝4 ∶=
⟨((

0 1
−1 0

)

,
(

0
2

))

,
((

0 −1
1 0

)

,
(

0
−2

))

,
((

−1 0
0 −1

)

,
(

0
0

))⟩

.
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