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Abstract
Many symmetric orthogonal polynomials (Pn(x))n∈N0 induce a hypergroup structure on N0. The Haar

easure is the counting measure weighted with h(n) := 1/
∫
RP2

n (x) dµ(x) ≥ 1, where µ denotes the
rthogonalization measure. We observed that many naturally occurring examples satisfy the remarkable
roperty h(n) ≥ 2 (n ∈ N). We give sufficient criteria and particularly show that h(n) ≥ 2 (n ∈ N) if
he (Hermitian) dual space N̂0 equals the full interval [−1, 1], which is fulfilled by an abundance of
xamples. We also study the role of nonnegative linearization of products (and of the resulting harmonic
nd functional analysis). Moreover, we construct two example types with h(1) < 2. To our knowledge,
hese are the first such examples. The first type is based on Karlin–McGregor polynomials, and N̂0
onsists of two intervals and can be chosen “maximal” in some sense; h is of quadratic growth. The
econd type relies on hypergroups of strong compact type; h grows exponentially, and N̂0 is discrete.
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1. Introduction

1.1. Basic setting and observation

Let (Pn(x))n∈N0 ⊆ R[x] with deg Pn(x) = n be given by some recurrence relation P0(x) = 1,
P1(x) = x ,

x Pn(x) = an Pn+1(x) + cn Pn−1(x) (n ∈ N), (1.1)

here (cn)n∈N ⊆ (0, 1) and an ≡ 1 − cn; to avoid case differentiations, we additionally define
0 := 1. Obviously, the resulting polynomials are symmetric and normalized by Pn(1) ≡ 1. It is

well-known from the theory of orthogonal polynomials2 that (Pn(x))n∈N0 is orthogonal w.r.t. a
unique probability (Borel) measure µ on R which satisfies |supp µ| = ∞ and supp µ ⊆ [−1, 1]
Favard’s theorem). Moreover, it is well-known that the zeros of the polynomials are real,
imple and located in the interior of the convex hull of supp µ. In particular, all Pn are strictly
ositive at the right end point of supp µ. We are interested in sequences which satisfy the

additional ‘nonnegative linearization of products’ property

Pm(x)Pn(x) =

m+n∑
k=0

g(m, n; k)  
!
≥0

Pk(x) (m, n ∈ N0), (1.2)

i.e., the product of any two polynomials Pm(x), Pn(x) is a convex combination w.r.t. the basis
{Pk(x) : k ∈ N0}. Due to orthogonality, one has g(m, n; |m − n|), g(m, n; m + n) ̸= 0
nd g(m, n; k) = 0 for k < |m − n|, so the summation in (1.2) starts with k = |m − n|

and (1.2) can be regarded as an extension of the recurrence (1.1)). The nonnegativity of the
inearization coefficients g(m, n; k) gives rise to a commutative discrete hypergroup on N0,
here the convolution (m, n) ↦→

∑m+n
k=|m−n|

g(m, n; k)δk maps N0 × N0 into the probability
easures on N0, the identity on N0 serves as involution and 0 is the unit element.3 Such

ypergroups are called polynomial hypergroups, were introduced by Lasser in the 1980s and are
enerally very different from groups or semigroups [11]. There is an abundance of examples,
nd the individual behavior strongly depends on the underlying polynomials (Pn(x))n∈N0 . We
riefly recall some basics [11,13]. The nonnegativity of the g(m, n; k) implies that

{±1} ∪ supp µ ⊆ N̂0 ⊆ [−1, 1], (1.3)

here the compact set N̂0 is defined by

N̂0 :=

{
x ∈ R : max

n∈N0
|Pn(x)| = 1

}
. (1.4)

f f : N0 → C is an arbitrary function, then, for every n ∈ N0, the translation Tn f : N0 → C
s given by Tn f (m) =

∑m+n
k=|m−n|

g(m, n; k) f (k); the translation operator Tn : CN0 → CN0 is
efined by f ↦→ Tn f . The corresponding Haar measure, normalized such that {0} is mapped to
, is the counting measure on N0 weighted by the values of the Haar function h : N0 → [1, ∞),

h(n) :=
1

g(n, n; 0)
=

1∫
RP2

n (x) dµ(x)
=

{
1, n = 0,∏n

k=1
ak−1

ck
, n ∈ N.

(1.5)

2 Standard results on orthogonal polynomials can be found in [3], for instance.
3 The full hypergroup axioms can be found in standard literature like [2]. The axioms for the special case of a

discrete hypergroup are considerably simpler and can be found in [13].
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A more precise formulation of this fact can be found in Eq. (1.6). The orthonormal polyno-
mials (with positive leading coefficients) (pn(x))n∈N0 which correspond to (Pn(x))n∈N0 satisfy
pn(x) =

√
h(n)Pn(x) (n ∈ N0) and are given by the recurrence relation p0(x) = 1,

p1(x) = x/
√

c1, xpn(x) = αn+1 pn+1(x) + αn pn−1(x) (n ∈ N), where α1 =
√

c1 and
n =

√
cnan−1 =

√
cn(1 − cn−1) for n ≥ 2. If f ∈ ℓ1(h) := { f : N0 → C : ∥ f ∥1 < ∞},

f ∥1 :=
∑

∞

k=0 | f (k)|h(k), then Tn f ∈ ℓ1(h) and
∞∑

k=0

Tn f (k)h(k) =

∞∑
k=0

f (k)h(k) (1.6)

or every n ∈ N0. The norm ∥.∥1, the convolution ( f, g) ↦→ f ∗ g, f ∗ g(n) :=
∞

k=0 Tn f (k)g(k)h(k) and complex conjugation make ℓ1(h) a semisimple commutative unital
anach ∗-algebra, so the polynomials (Pn(x))n∈N0 can be studied via methods coming from
elfand’s theory. In particular, the important property (1.3) is a consequence of functional anal-
sis like Gelfand’s theory. Recent publications deal with amenability properties of ℓ1(h) [7,8].
olynomial hypergroups are accompanied by a sophisticated harmonic analysis and Fourier
nalysis. The orthogonalization measure µ serves as Plancherel measure, and N̂0 has an
mportant interpretation as a dual object: let

X b(N0) :=

{
z ∈ C : max

n∈N0
|Pn(z)| = 1

}
.

ia the homeomorphism X b(N0) → ∆(ℓ1(h)), z ↦→ ϕz with

ϕz( f ) :=

∞∑
k=0

f (k)Pk(z)h(k) ( f ∈ ℓ1(h)),

he compact set X b(N0) can be identified with ∆(ℓ1(h)), and N̂0 = X b(N0)∩R can be identified
ith the Hermitian structure space ∆s(ℓ1(h)). The following result [18,21,22] is essential:

heorem 1.1. If h is of subexponential growth (i.e., for all ϵ > 0 there is some M > 0 such
hat h(n) ≤ M(1 + ϵ)n for all n ∈ N0), then supp µ, N̂0 and X b(N0) coincide.

Since g(n, n; 0) and g(n, n; 2n) are nonzero and
∑2n

k=0 g(n, n; k) = 1, nonnegative lineariza-
ion of products always implies that h(n) = 1/g(n, n; 0) > 1 for all n ∈ N. Studying various
xamples, we observed that all of them satisfied the stronger property h(n) ≥ 2 (n ∈ N). The
aper is devoted to questions concerning this eye-catching observation.

.2. Motivation and outline of the paper

To start with, we give an additional and more detailed motivation for the problem: we
re not aware of any convenient characterization of the crucial nonnegative linearization of
roducts property (in terms of the recurrence coefficients (an)n∈N and (cn)n∈N, in terms of
he orthogonalization measure µ etc.). However, there are several sufficient criteria, starting
ith results of Askey [1] and continued by Szwarc et al. in a series of papers. One of these

riteria [17, Theorem 1 p. 966] reads as follows:

heorem 1.2. If (cn)n∈N is bounded from above by 1/2 and both (c2n−1)n∈N and (c2n)n∈N are
ondecreasing, then nonnegative linearization of products is satisfied.
3
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Now if (cn)n∈N is bounded from above by 1/2 (and thus (an)n∈N is bounded from below by
/2) like in Theorem 1.2, then it is clear that indeed h(n) ≥ 2 for all n ∈ N (recall that a0 = 1).
herefore, it is at least not surprising that many examples satisfy this property (particularly all
xamples constructed via Theorem 1.2). Recently, Kahler successfully applied Theorem 1.2 to
he large class of associated symmetric Pollaczek polynomials (with monotonicity of the whole
equence (cn)n∈N) [7].

In [6], Kahler recently found the following example which, for certain choices of the
arameters, satisfies nonnegative linearization of products without fulfilling the conditions of
heorem 1.2: for any α, β > −1, let the sequence of generalized Chebyshev polynomials

T (α,β)
n (x))n∈N0 ⊆ R[x] be given by c2n−1 = (n+β)/(2n+α+β), c2n = n/(2n+α+β+1). These

olynomials are the quadratic transformations of the Jacobi polynomials, and one has [−1, 1] =

upp µ = N̂0 [3, Chapter V 2 (G)] [11, 3 (f)]. The generalized Chebyshev polynomials are of
articular interest concerning product formulas and duality structures [10,11]. In [6, Theorem
.2], Kahler showed that (T (α,β)

n (x))n∈N0 satisfies nonnegative linearization of products if and
nly if (α, β) is an element of the set V ⊆ [−1/2, ∞) × (−1, ∞) given by

V :=
{
(α, β) ∈ (−1, ∞)2

: α ≥ β, a(a + 5)(a + 3)2
≥ (a2

− 7a − 24)b2} ,

here a := α + β + 1 and b := α − β.4 The progress of this contribution compared to older
esults concerns the case (α, β) ∈ V with α+β +1 < 0 because the conditions of Theorem 1.2
re satisfied if and only if (α, β) ∈ V with α+β +1 ≥ 0. If (α, β) ∈ V but α+β +1 < 0, then
c2n)n∈N is strictly decreasing and always greater than 1/2. Nevertheless, elementary calculus
nd explicit formulas for h [11, 3 (f)] imply that still h(n) ≥ 2 for all n ∈ N.

These observations yield the questions whether h(n) ≥ 2 (n ∈ N) is true for every sequence
Pn(x))n∈N0 which satisfies nonnegative linearization of products and whether maximal dual
paces N̂0 = [−1, 1] (as satisfied by the generalized Chebyshev polynomials) play a more
eneral role. In Section 2, we give sufficient criteria which cover many naturally occurring
xamples, including the generalized Chebyshev polynomials (also those with α + β + 1 <

considered above). Concerning these criteria, we will discuss the role of nonnegative
inearization of products, and we will consider the example of Grinspun polynomials. Moreover,
n Section 3 we show that there are also counterexamples. To our knowledge, these are the
rst examples with h(1) < 2. For every ϵ ∈ (0, 1), we will construct two types of polynomial
ypergroups with h(1) = 1 + ϵ. The problem under consideration is also interesting for the
ollowing reason: for the well-known Chebyshev polynomials of the first kind, which play

fundamental role in asymptotics and optimization, h(n) equals 2 for all n ∈ N. Hence,
ur results show that under a large class of naturally occurring examples the Chebyshev
olynomials of the first kind are optimal w.r.t. minimizing the Haar function—however, they are
ot optimal among all possible examples. Finally, Section 4 is devoted to some open problems.

We remark that we used computer algebra systems (Maple) to find suitable decompositions
f long expressions, find explicit formulas, get conjectures and so on. The final proofs can be
nderstood without any computer usage, however.

. Sufficient criteria for h(n) ≥ 2 (n ∈ N), the role of the dual space and the role of
onnegative linearization of products

In this section, we give some sufficient criteria for h(n) ≥ 2 (n ∈ N). They do not rely
n boundedness properties of (cn)n∈N, and they particularly cover examples where (cn)n∈N

4 This is the analogue to a well-known result of Gasper on the (nonsymmetric) class of Jacobi polynomials
[5, Theorem 1].
4
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exceeds 1/2 as considered in Section 1. The dual space N̂0 will play a crucial role. Our
approach is based on the connection coefficients to the Chebyshev polynomials of the first kind
(Tn(x))n∈N0 (which, in terms of the generalized Chebyshev polynomials recalled above, are just
(T (−1/2,−1/2)

n (x))n∈N0 ): given an orthogonal polynomial sequence (Pn(x))n∈N0 as in Section 1,
let Cn(0), . . . , Cn(n) be defined by the expansions

Pn(x) =

n∑
k=0

Cn(k)Tk(x).

It is clear that Cn(n) ̸= 0. We need the following classical estimation result from Chebyshev
theory [20, Theorem (3.1)]:

Lemma 2.1. Let P(x) ∈ R[x] be a polynomial of degree n ∈ N with leading coefficient 1.
Then maxx∈[−1,1] |P(x)| ≥ 1/2n−1, and equality holds if and only if P(x) = Tn(x)/2n−1.

In the following, we always assume that (Pn(x))n∈N0 satisfies nonnegative linearization of
roducts. The following theorem is the central result of this section.

heorem 2.1. Let the dual space N̂0 coincide with the full interval [−1, 1]. Then h(n) ≥ 2 for
ll n ∈ N.

Proof. Let n ∈ N\{1} and expand Pn(x) =
∑n

k=0 Cn(k)Tk(x). Since N̂0 = [−1, 1], by
emma 2.1 we have

1 = max
x∈[−1,1]

|Pn(x)| = Cn(n) max
x∈[−1,1]

⏐⏐⏐⏐⏐
n∑

k=0

Cn(k)
Cn(n)

Tk(x)

⏐⏐⏐⏐⏐ ≥ Cn(n).

ince the leading coefficient of Pn(x) is 1/
∏n−1

k=1 ak and the leading coefficient of Tn(x) is 2n−1,
e get 1/

∏n−1
k=1 ak = Cn(n) · 2n−1

≤ 2n−1 and consequently

4n−1
n−1∏
k=1

a2
k ≥ 1.

oreover, by (1.5) we have

h(n) =
1
c1

n∏
k=2

ak−1

ck
=

1
cn

n−1∏
k=1

ak

ck
=

1
cn

n−1∏
k=1

a2
k

ck(1 − ck)
.

ince ck(1 − ck) ≤ 1/4 for all k ∈ {1, . . . , n − 1}, we now obtain h(n) ≥ 1/cn · 4n−1 ∏n−1
k=1 a2

k ≥

/cn . Therefore, for every n ∈ N we have both 1 ≤ cnh(n) (with equality for n = 1) and
≤ cn+1h(n + 1) = anh(n) (the latter equality follows from (1.5)), so 2 ≤ cnh(n) + anh(n) =

h(n). □

Concerning the applicability of Theorem 2.1, we mention that the condition N̂0 = [−1, 1]
s fulfilled by an abundance of examples (see [2,11–13], for instance). We now give several
orollaries.

orollary 2.1. If all connection coefficients Cn(0), . . . , Cn(n) are nonnegative, then h(n) ≥ 2
or all n ∈ N.
5
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Proof. As the connection coefficients Cn(0), . . . , Cn(n) sum up to 1, the presumed nonneg-
tivity allows to conclude in two ways: either obtain that N̂0 = [−1, 1] as an immediate
onsequence and apply Theorem 2.1, or just use that the assumption particularly yields Cn(n) ≤

and proceed as in the proof of Theorem 2.1; the latter way avoids Lemma 2.1. □

orollary 2.2. If there exists a function g : [−1, 1] → [0, ∞) such that |Pn(x)| ≤ g(x) for all
x ∈ [−1, 1] and for all n ∈ N0, then h(n) ≥ 2 for all n ∈ N.

roof. It is a general result on polynomial hypergroups and their harmonic/functional analysis
hat the existence of such a function g implies that (Pn(x))n∈N0 is uniformly bounded on [−1, 1]
y ±1; one always has{

x ∈ R : sup
n∈N0

|Pn(x)| < ∞

}
= N̂0 (2.1)

13]. Now Theorem 2.1 yields the assertion. □

orollary 2.3. If supp µ = [−a, a] for some a ∈ (0, 1], then h(n) ≥ 2 for all n ∈ N.

roof. If supp µ = [−a, a] for some a ∈ (0, 1], then [−a, a] ⊆ N̂0 due to (1.3). Since
Pn(1) ≡ 1 and since the zeros of the polynomials (Pn(x))n∈N0 are real, simple and located in
−a, a), every Pn(x) is positive and nondecreasing on [a, 1]. This shows that also (a, 1] ⊆ N̂0.
inally, by symmetry we can conclude that N̂0 = [−1, 1]. Hence, the assertion follows from
heorem 2.1. □

orollary 2.4. If (cn)n∈N is convergent, then h(n) ≥ 2 for all n ∈ N.

roof. If (cn)n∈N is convergent, then the limit c is an element of (0, 1/2] and supp µ =

−2
√

c(1 − c), 2
√

c(1 − c)] due to [12, Theorem (2.2)], so the assertion follows from
Corollary 2.3. Alternatively, one can obtain the result from Corollary 2.1: by [12, Theorem
(2.6)] or [14, Corollary 2], all connection coefficients Cn(0), . . . , Cn(n) are nonnegative. □

Note that the formal definitions of N̂0 (1.4) and h (1.5) also make sense if nonnegative lin-
earization of products is not satisfied (and hence without the underlying hypergroup structure).
With regard to (1.3), we note that it is obvious that still {±1} ⊆ N̂0 ⊆ [−1, 1]. However, the
property supp µ ⊆ N̂0, which is a consequence of harmonic/functional analysis on polynomial
hypergroups, does no longer have to be satisfied. Furthermore, h can now map into the larger
codomain (0, ∞). The rest of the section is devoted to the question which of our results remain
true under these more general conditions. The proof of Theorem 2.1 remains fully true if the
nonnegative linearization of products condition is dropped, as well as the proof of Corollary 2.1.
The following example shows that the further corollaries do not extend if the nonnegative
linearization of products condition is dropped (and therefore the tool of harmonic/functional
analysis on polynomial hypergroups is no longer available), however.

Example 2.1 (Grinspun Polynomials). Let c1 ∈ (1/2, 1) be arbitrary, and let cn = 1/2 for every
n ≥ 2. The resulting polynomials (Pn(x))n∈N0 are the Grinspun polynomials and orthogonal
w.r.t. a measure µ with supp µ = [−1, 1] [3, Chapter VI 13 (C) (iv)]. Via induction and the
recurrence relation of the Chebyshev polynomials of the first kind, it is easy to see that

Pn(x) =
1

Tn(x) +
1 − 2c1 Tn−2(x) (n ≥ 2) (2.2)
2 − 2c1 2 − 2c1

6
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and therefore

Pn(x) = Tn(x) +
2c1 − 1
2 − 2c1

(Tn(x) − Tn−2(x)) (n ≥ 2) (2.3)

(cf. also [3, VI-(13.9)] and [23, Section 3.2]). The expansions (2.2) imply that (Pn(x))n∈N0 is
uniformly bounded on [−1, 1] by ±c1/(1−c1), but h(1) = 1/c1 < 2 and h(n) = 2·(1−c1)/c1 <

(n ≥ 2) by (1.5). This shows that Corollary 2.2 is not valid without nonnegative linearization
f products; if c1 > 2/3, then h does not even map to [1, ∞). Reconsidering the proof of
orollary 2.2, we see that (2.1) made use of nonnegative linearization of products (and of the

esulting harmonic/functional analysis due to the hypergroup aspect). Clearly, the example also
hows that Corollaries 2.3 and 2.4 are not valid without nonnegative linearization of products.
t is already clear from the preceding considerations that neither Corollary 2.1 nor Theorem 2.1
an apply, and one can see from (2.2) and (2.3) at which stages an application exactly fails:
2.2) yields that Cn(n − 2) < 0 for all n ≥ 2. Moreover, one has N̂0 = {±1}, which can be

seen as follows: let x ∈ (−1, 1) and ϕ ∈ (0, π) with x = cos(ϕ). Then, by (2.3),

Pn(x) = Tn(cos(ϕ)) +
2c1 − 1
2 − 2c1

(Tn(cos(ϕ)) − Tn−2(cos(ϕ)))

= cos(nϕ) +
2c1 − 1
2 − 2c1

(cos(nϕ) − cos((n − 2)ϕ))

= cos(nϕ) +
2c1 − 1
2 − 2c1

(1 − cos(2ϕ)) cos(nϕ) −
2c1 − 1
2 − 2c1

sin(2ϕ) sin(nϕ)

or every n ≥ 2. Now let (nk)k∈N ⊆ N\{1} be a sequence with limk→∞ cos(nkϕ) = 1 (and
consequently limk→∞ sin(nkϕ) = 0). Then limk→∞ Pnk (x) = 1 + (2c1 − 1)/(2 − 2c1) · (1 −

cos(2ϕ)) > 1 and we can conclude that x /∈ N̂0.

3. Two types of examples which do not satisfy h(n) ≥ 2 (n ∈ N) and properties of their
dual spaces

Having seen sufficient criteria for h(n) ≥ 2 (n ∈ N) in the previous section, we now
construct examples where nonnegative linearization of products is satisfied but h(1) < 2.
Moreover, we deal with a necessary criterion concerning the latter property:

Proposition 3.1. If h(1) = 1 + ϵ with ϵ ∈ (0, 1), then

N̂0 ⊆

[
−1, −

√
1 − ϵ

1 + ϵ

]
∪

[√
1 − ϵ

1 + ϵ
, 1

]
. (3.1)

roof. If h(1) = 1 + ϵ with ϵ ∈ (0, 1), then, by (1.5),

P2(x) =
x2

− c1

1 − c1
=

h(1)x2
− 1

h(1) − 1
=

(1 + ϵ)x2
− 1

ϵ
,

so P2(±
√

(1 − ϵ)/(1 + ϵ)) = −1. Therefore, we have P2(x) < −1 for x ∈ (−
√

(1 − ϵ)/(1 + ϵ),
(1 − ϵ)/(1 + ϵ)), which yields the assertion. □

emark 3.1. As a much less trivial result, in Theorem 3.1 we will obtain that there are
xamples which satisfy (3.1) with equality; so the estimation provided by Proposition 3.1
annot be improved.
7
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p
p
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We use the Karlin–McGregor polynomials as a starting point in order to construct poly-
omial hypergroups with h(1) < 2. For α, β ≥ 2, the Karlin–McGregor polynomials
K (α,β)

n (x))n∈N0 ⊆ R[x] are given by c2n−1 = 1/α and c2n = 1/β [13, Sect. 6]. For any choice of
, β ≥ 2, (K (α,β)

n (x))n∈N0 fulfills the conditions of Theorem 1.2, so nonnegative linearization
f products is always satisfied and h(n) ≥ 2 (n ∈ N). Nevertheless, a modification of the
arlin–McGregor polynomials will yield examples which fulfill the desired property h(1) < 2

see Theorem 3.1). We first recall some basics about the Karlin–McGregor polynomials. One
as

supp µ =

{
[−γ1, −γ2] ∪ [γ2, γ1], α ≤ β,

[−γ1, −γ2] ∪ {0} ∪ [γ2, γ1], α > β

ith

γ1 :=
1

√
αβ

(
√

α − 1 +
√

β − 1), γ2 :=
1

√
αβ

|
√

α − 1 −
√

β − 1|

9]. It is obvious from (1.5) that the Haar weights are given by h(0) = 1 and

h(2n − 1) = α(α − 1)n−1(β − 1)n−1 (3.2)

nd

h(2n) = β(α − 1)n(β − 1)n−1 (3.3)

or n ∈ N [13, Sect. 6]. Moreover, it is easy to see via induction that

K (α,β)
2n (γ1) =

(α − 2)
√

β − 1 + (β − 2)
√

α − 1

β(α − 1)
n+1

2 (β − 1)
n
2

· n +
1

(α − 1)
n
2 (β − 1)

n
2

(3.4)

nd

K (α,β)
2n+1(γ1) =

(α − 2)
√

β − 1 + (β − 2)
√

α − 1
√

αβ(α − 1)
n+1

2 (β − 1)
n+1

2
· n +

√
α − 1 +

√
β − 1

√
αβ(α − 1)

n
2 (β − 1)

n
2

(3.5)

or all n ∈ N0.
We now can find examples which satisfy h(1) < 2 or even h(1) = 1 + ϵ with ϵ ∈ (0, 1)

and nonnegative linearization of products). We start with the Karlin–McGregor polynomials
K (α,β)

n (x))n∈N0 , α, β ≥ 2. Next, we rescale them in such a way that the right endpoint of the
upport of the measure becomes 1. Finally, we renormalize the resulting polynomials in such
way that Pn(1) ≡ 1 again. This procedure ends up in the sequence (Pn(x))n∈N0 ⊆ R[x] of
odified Karlin–McGregor polynomials given by

Pn(x) =
K (α,β)

n (γ1x)

K (α,β)
n (γ1)

,

nd (Pn(x))n∈N0 still satisfies nonnegative linearization of products. The above-mentioned
xamples with h(1) = 1 + ϵ will be obtained below for suitable choices of α and β. We
rst study the polynomials (Pn(x))n∈N0 in detail and compute the associated Haar measures
nd recurrence coefficients. By construction, the Haar weights corresponding to the modified
olynomials (Pn(x))n∈N0 and the Haar weights corresponding to the original Karlin–McGregor
olynomials (K (α,β)

n (x))n∈N0 are linked to each other by multiplication with (K (α,β)
n (γ1))2. Using
3.2) to (3.5), we obtain that the Haar weights associated with (Pn(x))n∈N0 satisfy h(0) = 1

8



S. Kahler and R. Szwarc Journal of Approximation Theory 305 (2025) 106099

a

f
p

W

F

3
F
(

I

T

and

h(2n − 1) =
1
β

[(
α − 2

√
α − 1

+
β − 2

√
β − 1

)
· (n − 1) +

√
α − 1 +

√
β − 1

]2

(3.6)

nd

h(2n) =
1
β

[(
α − 2

√
α − 1

+
β − 2

√
β − 1

)
· n +

β
√

β − 1

]2

(3.7)

or n ∈ N. Observe that h is always of quadratic (and therefore subexponential) growth, which
articularly implies that

N̂0 = supp µ =

⎧⎨⎩
[
−1, −

γ2
γ1

]
∪

[
γ2
γ1

, 1
]
, α ≤ β,[

−1, −
γ2
γ1

]
∪ {0} ∪

[
γ2
γ1

, 1
]
, α > β

(3.8)

as a consequence of Theorem 1.1. Via (1.5), (3.6) and (3.7), we can recursively compute the
recurrence coefficients (cn)n∈N which correspond to the modified polynomials (Pn(x))n∈N0 . Al-
ternatively, one can compute (cn)n∈N from (3.4) and (3.5) because the recurrence coefficients are
linked to those belonging to (K (α,β)

n (x))n∈N0 by multiplication with K (α,β)
n−1 (γ1)/(γ1 K (α,β)

n (γ1)).
e obtain

√
α − 1 +

√
β − 1

√
β − 1

c2n−1

= 1 −
√

α − 1 ·

√
α − 1

√
β − 1 − 1

((α − 2)
√

β − 1 + (β − 2)
√

α − 1) · n +
√

α − 1 +
√

β − 1
,

√
α − 1 +

√
β − 1

√
α − 1

c2n

= 1 −
√

β − 1 ·

√
α − 1

√
β − 1 − 1

((α − 2)
√

β − 1 + (β − 2)
√

α − 1) · n + β
√

α − 1
.

or every n ∈ N, we compute

αn =

⎧⎪⎪⎨⎪⎪⎩
√

β
√

α−1+
√

β−1
, n = 1,

√
α−1

√
α−1+

√
β−1

, n even,
√

β−1
√

α−1+
√

β−1
, else,

so the coefficients in the orthonormal normalization become periodic. This shows that
(Pn(x))n∈N0 belongs to the class of Geronimus polynomials [15] and that nonnegative lineariza-
tion of products also follows directly from a general criterion in [19] (without using nonnegative
linearization of products for the Karlin–McGregor polynomials): if α ≤ β, then [19, Theorem

(i)] can be applied, and if α > β, then [19, Theorem 3 (ii) combined with Remark 3] works.
or the special case α = β, nonnegative linearization of products also follows from [11, 3 (g)
i)]. Coming back to the problem “h(1) < 2”, from (3.6) we have

h(1) = αγ 2
1 =

1
β

(
√

α − 1 +
√

β − 1)2. (3.9)

n particular, one has h(1) < 2 if and only if α < 3β − 2
√

2β2 − 2β.

heorem 3.1. Let α, β ≥ 2, and let P (x) = K (α,β)(γ x)/K (α,β)(γ ) (n ∈ N ).
n n 1 n 1 0

9
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C
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(i) For every ϵ ∈ (0, 1), there exists a polynomial hypergroup on N0 such that h(1) = 1+ϵ.
More precisely, for any choice of α the parameter β can be chosen in such a way
that the hypergroup induced by the sequence (Pn(x))n∈N0 has the desired property; for
this example type, the dual space N̂0 is of the form [−1, −1 + δ] ∪ [1 − δ, 1] with
δ ∈ (0, 1 −

√
(1 − ϵ)/(1 + ϵ)]. Furthermore, for α = 2 and β = (2 + 2

√
1 − ϵ2)/ϵ2 one

additionally has that N̂0 equals the maximal possible set [−1, −
√

(1 − ϵ)/(1 + ϵ)] ∪

[
√

(1 − ϵ)/(1 + ϵ), 1] (cf. Proposition 3.1 and Remark 3.1).
(ii) For any choice of α, β, the polynomial hypergroup induced by (Pn(x))n∈N0 satisfies

h(n) ≥ 2 for all n ≥ 2. Moreover, h is nondecreasing and of quadratic growth.

Proof.

(i) Let ϵ ∈ (0, 1), and let α ≥ 2 be arbitrary. Then, by (3.9), h(1) → 1 (β → ∞). This
yields that β can be chosen such that h(1) = 1 + ϵ. By (3.8) and Proposition 3.1,
N̂0 = supp µ = [−1, −1 + δ] ∪ [1 − δ, 1] with δ ∈ (0, 1 −

√
(1 − ϵ)/(1 + ϵ)]. Now let

α = 2 and β = (2 + 2
√

1 − ϵ2)/ϵ2. Then h(1) = 1 + ϵ by (3.9) and, by (3.8),

N̂0 = supp µ =

[
−1, −

γ2

γ1

]
∪

[
γ2

γ1
, 1

]
=

[
−1, −

√
1 − ϵ

1 + ϵ

]
∪

[√
1 − ϵ

1 + ϵ
, 1

]
.

(ii) For every n ∈ N, the explicit formulas (3.6) and (3.7) for h yield√
h(2n)

h(2n − 1)
− 1

=
√

β − 1 ·

√
α − 1

√
β − 1 − 1

((α − 2)
√

β − 1 + (β − 2)
√

α − 1) · n +
√

α − 1 +
√

β − 1
and √

h(2n + 1)
h(2n)

− 1

=
√

α − 1 ·

√
α − 1

√
β − 1 − 1

((α − 2)
√

β − 1 + (β − 2)
√

α − 1) · n + β
√

α − 1
for every n ∈ N. Since the right-hand sides are nonnegative, this shows that h is
nondecreasing. Hence, by (3.7) we have

h(n) ≥ h(2) ≥
1
β

[
β − 2

√
β − 1

+
β

√
β − 1

]2

= 4 ·
β − 1

β
≥ 2

for all n ≥ 2. We have already observed that h is of quadratic growth. □

orollary 3.1. The converse of Theorem 2.1 and the converses of Corollary 2.1 to Corollary 2.4
re not true.

roof. Let β ≥ 2 and α ≥ 3β − 2
√

2β2 − 2β with α ̸= β, and let Pn(x) = K (α,β)
n (γ1x)/

K (α,β)
n (γ1) (n ∈ N0). Then, as consequence of the preceding observations and (3.8), we have

h(n) ≥ 2 for all n ∈ N but N̂0 ̸= [−1, 1] (in fact, for α ∈ [3β − 2
√

2β2 − 2β, β) we do not
ven have 0 ∈ N̂0). This shows that the converse of Theorem 2.1 is not true. The latter implies
hat the converses of Corollary 2.1 to Corollary 2.4 are also not true. □
10
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We finally construct another type of polynomial hypergroups with h(1) < 2 (and even
h(1) = 1 + ϵ”). It does not rely on the Karlin–McGregor polynomials; the dual space N̂0
s discrete, and h is of exponential growth now.

heorem 3.2. Let (λn)n∈N0 ⊆ (0, 1) with limn→∞ λ2n = 1 satisfy both λ2n−2 +λ2n−1 ≤ λ2n and
2n−1 + λ2n ≤ λ2n+2 for every n ∈ N, and let (Qn(x))n∈N0 ⊆ R[x] be given by the recurrence
elation Q0(x) = 1, Q1(x) = x/λ0, x Qn(x) = λn Qn+1(x) + λn−1 Qn−1(x) (n ∈ N). The
ollowing hold:

(i) The sequence (Qn(1))n∈N0 is strictly positive and strictly increasing.
(ii) The sequence (Pn(x))n∈N0 defined by Pn(x) := Qn(x)/Qn(1) (n ∈ N0) satisfies

nonnegative linearization of products, and (Qn(x))n∈N0 are the orthonormal polynomials
which correspond to (Pn(x))n∈N0 .

(iii) The dual space N̂0 satisfies N̂0 = supp µ = {±1} ∪ {±xn : n ∈ N} with a strictly
increasing sequence (xn)n∈N ⊆ (0, 1) with limn→∞ xn = 1.

(iv) For every ϵ ∈ (0, 1), the sequence (λn)n∈N0 can be chosen in such a way that the
polynomial hypergroup induced by (Pn(x))n∈N0 fulfills h(1) = 1 + ϵ; in that case,
one has (xn)n∈N ⊆ [

√
(1 − ϵ)/(1 + ϵ), 1). An explicit construction is as follows: let

(sn)n∈N0 ⊆ (0, 1) be any null sequence which is convex (i.e., sn+1 ≤ (sn + sn+2)/2 for all
n ∈ N0). Then the sequence (λn)n∈N0 ⊆ R given by

λn :=

{
1 − s n

2
, n even,

s n+1
2

− s n+3
2

, n odd

satisfies the conditions above, and if s0 = 1 − 1/
√

1 + ϵ, then h(1) = 1 + ϵ.5

(v) For any choice of (λn)n∈N0 , the polynomial hypergroup induced by (Pn(x))n∈N0 satisfies
h(n) > 4 for all n ≥ 2. Moreover, h is strictly increasing and of exponential growth.

Proof.

(i) For every n ∈ N, we compute

Qn+1(1) = Qn(1) +
1 − λn−1 − λn

λn  
>0

Qn(1) +
λn−1

λn  
>0

(Qn(1) − Qn−1(1)).

Since Q0(1) = 1 and Q1(1) = 1/λ0 > 1, this yields the assertion.
(ii) As a consequence of (i), (Pn(x))n∈N0 is well-defined. By [16, Corollary 2 (ii)],

(Qn(x))n∈N0 satisfies nonnegative linearization of products. Hence, (i) implies that
(Pn(x))n∈N0 satisfies nonnegative linearization of products, too. It is clear from the
recurrence relations that (Qn(x))n∈N0 are the orthonormal polynomials which correspond
to (Pn(x))n∈N0 .

(iii) As a consequence of [16, Remark 2 p. 427], there exists a strictly increasing sequence
(xn)n∈N ⊆ [0, 1) with limn→∞ xn = 1 and

supp µ = {±1} ∪ {±xn : n ∈ N}.

It remains to show that N̂0 = supp µ and 0 /∈ N̂0. This can be seen as follows:
let (Rn(x))n∈N0 ⊆ R[x] be defined by Rn(x2) = P2n(x) (this approach is motivated

5 Our construction is motivated by similar (but less general) ideas in [16, Remark 1 p. 427].
11
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o
h

by [16, Section 6]). Then (Rn(x))n∈N0 satisfies the recurrence relation R0(x) = 1,
R1(x) = (x − c1)/a1, R1(x)Rn(x) = aR

n Rn+1(x) + bR
n Rn(x) + cR

n Rn−1(x) (n ∈ N),
where

aR
n :=

a2na2n+1

a1
, bR

n :=
a2nc2n+1 + c2na2n−1 − c1

a1
, cR

n :=
c2nc2n−1

a1
∈ (0, 1)

(as usual, (cn)n∈N ⊆ (0, 1) and an ≡ 1 − cn shall denote the recurrence coefficients
which belong to the sequence (Pn(x))n∈N0 ). The estimation bR

n > 0 follows from the
monotonicity behavior of (λ2n)n∈N0 because

a2nc2n+1 + c2na2n−1 = λ2
2n + λ2

2n−1 > λ2
2n > λ2

0 = c1

for every n ∈ N; the remaining estimations are obvious from aR
n +bR

n +cR
n = 1 (n ∈ N).

Since, for every n ≥ 2,

1 > c2n−1 =
λ2

2n−2

a2n−2
> λ2

2n−2 → 1 (n → ∞),

we have limn→∞ c2n−1 = 1 (hence limn→∞ a2n−1 = 0) and consequently

c2n = 1 −
λ2

2n

c2n+1
→ 0 (n → ∞)

(hence limn→∞ a2n = 1). Therefore, we have limn→∞ aR
n = 0, limn→∞ bR

n =

1, limn→∞ cR
n = 0. Let µR denote the orthogonalization (probability) measure of

(Rn(x))n∈N0 . µR can be regarded as pushforward measure of µ. It is clear from the
construction that

supp µR = {1} ∪ {x2
n : n ∈ N}.

By [4, Proposition 4], the behavior of the sequences (aR
n )n∈N, (bR

n )n∈N and (cR
n )n∈N as

obtained above implies that (Rn(x))n∈N0 induces a polynomial hypergroup of ‘strong
compact type’ on N0, which means that the operator Tn − id is compact on ℓ1(h) for
every n ∈ N0.6 By [4, Theorem 2], this yields{

x ∈ R : max
n∈N0

|Rn(x)| = 1
}

= supp µR .

Therefore, we obtain that

N̂0 ⊆

⎧⎪⎨⎪⎩x ∈ R : max
n∈N0

| P2n(x)  
=Rn (x2)

| = 1

⎫⎪⎬⎪⎭ = {±1} ∪ {±xn : n ∈ N}.

Since, however, {±1} ∪ {±xn : n ∈ N} = supp µ ⊆ N̂0 due to (1.3), we obtain equality.
Moreover, we have 0 /∈ N̂0 because |P2n(0)| =

∏n−1
k=0 (c2k+1/a2k+1) → ∞ (n → ∞) by

the limiting behavior of (c2n−1)n∈N and (a2n−1)n∈N.
(iv) We first show that our explicit construction works. Since the convexity of the null se-

quence (sn)n∈N0 ⊆ (0, 1) implies that (sn)n∈N0 is strictly decreasing, we have (λn)n∈N0 ⊆

(0, 1). Moreover, it is clear that limn→∞ λ2n = 1. Finally, by convexity we have

λ0 + λ1 = 1 − s0 + s1 − s2 ≤ 1 − s1 = λ2

6 Note that the sequence (Rn(x))n∈N0 is not symmetric. The definitions of a polynomial hypergroup, the translation
perator Tn , the Haar function h and the space ℓ1(h) are the same as for the symmetric case (as recalled in Section 1),
owever (just for the sake of completeness, we mention that the last equation in (1.5) must be slightly modified).
12
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and, for every n ∈ N,

λ2n+1 = sn+1 − sn+2 ≤ sn − sn+1 = λ2n−1

and

λ2n−1 + λ2n = sn − sn+1 + 1 − sn = 1 − sn+1 = λ2n+2.

If s0 = 1 − 1/
√

1 + ϵ, then (ii) yields

h(1) = Q2
1(1) =

1
λ2

0
=

1
(1 − s0)2 = 1 + ϵ.

It remains to show that h(1) = 1 + ϵ implies that (xn)n∈N ⊆ [
√

(1 − ϵ)/(1 + ϵ), 1). This
is an immediate consequence of Proposition 3.1, however.

(v) As a consequence of (i) and (ii), the sequence (h(n))n∈N0 coincides with (Q2
n(1))n∈N0

and is therefore strictly increasing. Hence, we have

h(n) ≥ h(2) = Q2
2(1) =

(
1 − λ2

0

λ0λ1

)2

>

(
1 − λ2

0

λ0(1 − λ0)

)2

=

(
1 +

1
λ0

)2

> 4

for all n ≥ 2. It remains to prove that h is of exponential growth. Let n ∈ N. Then
x Q2n(x) = λ2n Q2n+1(x) + λ2n−1 Q2n−1(x) and consequently

x2 Q2n(x)
= λ2n x Q2n+1(x) + λ2n−1x Q2n−1(x)

= λ2nλ2n+1 Q2n+2(x) + (λ2
2n + λ2

2n−1)Q2n(x) + λ2n−1λ2n−2 Q2n−2(x),

so

Q2n(1) = λ2nλ2n+1 Q2n+2(1) + (λ2
2n + λ2

2n−1)Q2n(1) + λ2n−1λ2n−2 Q2n−2(1).

The latter yields

Q2n+2(1) =
1 − λ2

2n − λ2
2n−1

λ2nλ2n+1
Q2n(1) −

λ2n−1λ2n−2

λ2nλ2n+1
Q2n−2(1).

Since Q2n(1) > Q2n−2(1) by (i), we get

Q2n+2(1) >
1 − λ2

2n − λ2
2n−1 − λ2n−1λ2n−2

λ2nλ2n+1
Q2n(1)

=
1 − λ2

2n − λ2n−1(λ2n−1 + λ2n−2)
λ2nλ2n+1

Q2n(1)

≥
1 − λ2

2n − λ2n−1λ2n

λ2nλ2n+1
Q2n(1)

=
1 − λ2n(λ2n + λ2n−1)

λ2nλ2n+1
Q2n(1)

≥
1 − λ2nλ2n+2

λ2nλ2n+1
Q2n(1)

>
1 − λ2n

λ2n+1
Q2n(1)

≥
1 + λ2n+1 − λ2n+2 Q2n(1)
λ2n+1

13
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R

≥
1 + λ2n+1 + λ2n+1 − λ2n+4

λ2n+1
Q2n(1)

> 2Q2n(1).

This shows that (Q2n(1))n∈N0 is of exponential growth. Therefore, we obtain that
(h(2n))n∈N0 = (Q2

2n(1))n∈N0 (and hence h) is of exponential growth. □

emark 3.2. Reconsider the explicit construction studied in the proof of Theorem 3.2 (iv),
now for s0 ≥ 1 −

√
2/2. In this case, one has h(1) ≥ 2 (and consequently h(n) ≥ 2 for all

∈ N by Theorem 3.2 (v)). However, the dual space N̂0 is a discrete subset of [−1, 1] by
heorem 3.2 (iii). Therefore, the example provides an alternative proof of Corollary 3.1.

emark 3.3. If (Pn(x))n∈N0 is as in Theorem 3.1 or Theorem 3.2, then N̂0 = X b(N0). The
rst case is clear from the quadratic (hence subexponential) growth of h and Theorem 1.1. The
econd case can be obtained by a slight modification of the proof of Theorem 3.2 (iii), based
n [4, Theorem 2].

. Open problems

We finish our paper with a collection of some open problems:

(i) Is h(2) ≥ 2 always true?
(ii) Is lim infn→∞ h(n) ≥ 2 always true?

(iii) Is h(n) ≥ 2 (n ∈ N\{1}) always true?
(iv) Is h(1) ≥ 2 sufficient for h(2) ≥ 2, lim infn→∞ h(n) ≥ 2 or h(n) ≥ 2 (n ∈ N)?
(v) Is 0 ∈ N̂0 sufficient for h(2) ≥ 2, lim infn→∞ h(n) ≥ 2 or h(n) ≥ 2 (n ∈ N)?

he questions (i), (ii) and (iii) are motivated by our observations made in Theorem 3.1 (ii) and
heorem 3.2 (v). Concerning (iv) and (v), recall that 0 ∈ N̂0 implies at least h(1) ≥ 2, which

s a consequence of Proposition 3.1.
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