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Abstract

Many symmetric orthogonal polynomials (P, (x)),cN, induce a hypergroup structure on Ng. The Haar
measure is the counting measure weighted with A(n) := 1/ fRPnz(x) du(x) > 1, where p denotes the
orthogonalization measure. We observed that many naturally occurring examples satisfy the remarkable
property h(n) > 2 (n € N). We give sufficient criteria and particularly show that h(n) > 2 (n € N) if
the (Hermitian) dual space N\o equals the full interval [—1, 1], which is fulfilled by an abundance of
examples. We also study the role of nonnegative linearization of products (and of the resulting harmonic
and functional analysis). Moreover, we construct two example types with /(1) < 2. To our knowledge,
these are the first such examples. The first type is based on Karlin—-McGregor polynomials, and N\o
consists of two intervals and can be chosen “maximal” in some sense; & is of quadratic growth. The
second type relies on hypergroups of strong compact type; i grows exponentially, and I’\I.(\) is discrete.
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1. Introduction

1.1. Basic setting and observation

Let (Py(x))nen, € R[x] with deg P,(x) = n be given by some recurrence relation Po(x) = 1,
Pi(x) = x,

X Py (x) = ap Py (x) + ¢ P (x) (n € N), (1.1)

where (¢,)neny € (0, 1) and a, = 1 — ¢,,; to avoid case differentiations, we additionally define
ap = 1. Obviously, the resulting polynomials are symmetric and normalized by P,(1) = 1. It is
well-known from the theory of orthogonal polynomials® that (Pr(X))nen, is orthogonal w.r.t. a
unique probability (Borel) measure ¢ on R which satisfies [supp (| = oo and supp u € [—1, 1]
(Favard’s theorem). Moreover, it is well-known that the zeros of the polynomials are real,
simple and located in the interior of the convex hull of supp w. In particular, all P, are strictly
positive at the right end point of supp w. We are interested in sequences which satisfy the
additional ‘nonnegative linearization of products’ property
m+n
P (x) Py (x) = Zg(m, n; k) P(x) (m,n € No), (1.2)
=

>0
i.e., the product of any two polynomials P, (x), P,(x) is a convex combination w.r.t. the basis
{Pr(x) : k € Np}. Due to orthogonality, one has g(m, n; |m —nl), g(m,n;m + n) # 0
and gim,n; k) = 0 for k < |m —n|, so the summation in (1.2) starts with k = |m — n|
(and (1.2) can be regarded as an extension of the recurrence (1.1)). The nonnegativity of the
linearization coefficients g(m, n; k) gives rise to a commutative discrete hypergroup on Np,
where the convolution (m, n) — Z?:ﬁ"mfm g(m, n; k)d; maps Ny x Ny into the probability
measures on Ny, the identity on Ny serves as involution and O is the unit element.® Such
hypergroups are called polynomial hypergroups, were introduced by Lasser in the 1980s and are
generally very different from groups or semigroups [11]. There is an abundance of examples,
and the individual behavior strongly depends on the underlying polynomials (P, (x))nen,. We

briefly recall some basics [11,13]. The nonnegativity of the g(m, n; k) implies that
{1} Usupp u S Ny S [-1, 1], (1.3)

where the compact set N is defined by
No = {xeR:max|Pn(x)|=1}. (1.4)
nEN()

If f: Ny — C is an arbitrary function, then, for every n € Ny, the translation 7, f : Ny — C
is given by T, f(m) = Z}f:‘"minl g(m, n; k) f(k); the translation operator T, : CYo — CMNo is
defined by f +— T, f. The corresponding Haar measure, normalized such that {0} is mapped to

1, is the counting measure on Ny weighted by the values of the Haar function & : Ny — [1, 00),

hn) 1 1 1, n=0, (1.5)
n) = = = u )
gn,n;0) [ P2(x)du(x) [Tizs i;l , neN.

2 Standard results on orthogonal polynomials can be found in [3], for instance.
3 The full hypergroup axioms can be found in standard literature like [2]. The axioms for the special case of a
discrete hypergroup are considerably simpler and can be found in [13].
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A more precise formulation of this fact can be found in Eq. (1.6). The orthonormal polyno-
mials (with positive leading coefficients) (p,(x))nen, Which correspond to (P, (x)),en, satisfy
pa(x) = Jh(M)P,(x) (n € Ny) and are given by the recurrence relation po(x) = 1,
pix) = x/\/c—, xXpn(x) = dyr1Ppi1(x) + Appp_1(x) (n € N), where a; = «/E and
oy = fCpan_1 = Jen(IL—cpy) forn > 2.If f € £'(h) = {f : Ng = C: | fll, < oo},
IF 1y = Y220 |f(k)|h(k), then T, f € £'(h) and

D T f (k) =Y f(k)h(k) (1.6)
k=0 k=0
for every n € Ny. The norm ||.||;, the convolution (f,g) +— f x g, f *x gln) =

Z,fio T, f (k)g(k)h(k) and complex conjugation make £'(h) a semisimple commutative unital
Banach *-algebra, so the polynomials (P,(x)),en, can be studied via methods coming from
Gelfand’s theory. In particular, the important property (1.3) is a consequence of functional anal-
ysis like Gelfand’s theory. Recent publications deal with amenability properties of £!(h) [7,8].
Polynomial hypergroups are accompanied by a sophisticated harmonic analysis and Fourier
analysis. The orthogonalization measure i serves as Plancherel measure, and I/\T\O has an
important interpretation as a dual object: let

XP(Ny) = {z € C:max|P,(z)| = 1} .
neNy

Via the homeomorphism X?(Ny) — A(€'(h)), z — ¢. with

o0
0:(f) =Y FUOPLK) (f € £'(h)).
k=0
the compact set X b(Np) can be identified with A(£'(h)), and NB = X*(Ny)NR can be identified
with the Hermitian structure space A,(£'(h)). The following result [18,21,22] is essential:

Theorem 1.1. If h is of subexponential growth (i.e., for all € > 0 there is some M > 0 such
that h(n) < M(1 + €)" for all n € Ny), then supp u, Ny and XP(Ny) coincide.

Since g(n, n; 0) and g(n, n; 2n) are nonzero and Zilo g(n, n; k) = 1, nonnegative lineariza-
tion of products always implies that h(n) = 1/g(n, n; 0) > 1 for all n € N. Studying various
examples, we observed that all of them satisfied the stronger property h(n) > 2 (n € N). The
paper is devoted to questions concerning this eye-catching observation.

1.2. Motivation and outline of the paper

To start with, we give an additional and more detailed motivation for the problem: we
are not aware of any convenient characterization of the crucial nonnegative linearization of
products property (in terms of the recurrence coefficients (a,),en and (c,)nen, in terms of
the orthogonalization measure p etc.). However, there are several sufficient criteria, starting
with results of Askey [1] and continued by Szwarc et al. in a series of papers. One of these
criteria [17, Theorem 1 p. 966] reads as follows:

Theorem 1.2. If (¢,)nen is bounded from above by 1/2 and both (can,—1)nen and (Con)nen are
nondecreasing, then nonnegative linearization of products is satisfied.

3
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Now if (¢,)nen is bounded from above by 1/2 (and thus (a,),cn is bounded from below by
1/2) like in Theorem 1.2, then it is clear that indeed i(n) > 2 for all n € N (recall that ay = 1).
Therefore, it is at least not surprising that many examples satisfy this property (particularly all
examples constructed via Theorem 1.2). Recently, Kahler successfully applied Theorem 1.2 to
the large class of associated symmetric Pollaczek polynomials (with monotonicity of the whole
sequence (¢;)nen) [7].

In [6], Kahler recently found the following example which, for certain choices of the
parameters, satisfies nonnegative linearization of products without fulfilling the conditions of
Theorem 1.2: for any «, 8 > —1, let the sequence of generalized Chebyshev polynomials
(TP ()nen, S RIx] be given by cay—1 = (1+)/2n+a+B), cay = n/(2n+a+p+1). These
polynomials are the quadratic transformations of the Jacobi polynomials, and one has [—1, 1] =
supp 4 = Ny [3, Chapter V 2 (G)] [11, 3 (f)]. The generalized Chebyshev polynomials are of
particular interest concerning product formulas and duality structures [10,11]. In [6, Theorem
3.2], Kahler showed that (T,fo"‘8 )(x)),,eNO satisfies nonnegative linearization of products if and
only if («, B) is an element of the set V C [—1/2, 00) x (—1, 00) given by

Vi={(@ B) e (—1,00 :a > B,ala+5)a+3)* = (a* — Ta — 24)b*}

where @ := o + B+ 1 and b := a — B.* The progress of this contribution compared to older
results concerns the case («, 8) € V with «+ 8+ 1 < 0 because the conditions of Theorem 1.2
are satisfied if and only if (¢, 8) € V witha+8+1>0.If (o, B) € Vbuta+B+1 < 0, then
(can)nen is strictly decreasing and always greater than 1/2. Nevertheless, elementary calculus
and explicit formulas for 4 [11, 3 (f)] imply that still #(n) > 2 for all n € N.

These observations yield the questions whether h(n) > 2 (n € N) is true for every sequence
(Pa(x))nen, Which satisfies nonnegative linearization of products and whether maximal dual
spaces Nyg = [—1, 1] (as satisfied by the generalized Chebyshev polynomials) play a more
general role. In Section 2, we give sufficient criteria which cover many naturally occurring
examples, including the generalized Chebyshev polynomials (also those with « + 8 4+ 1 <
0 considered above). Concerning these criteria, we will discuss the role of nonnegative
linearization of products, and we will consider the example of Grinspun polynomials. Moreover,
in Section 3 we show that there are also counterexamples. To our knowledge, these are the
first examples with i(1) < 2. For every € € (0, 1), we will construct two types of polynomial
hypergroups with #(1) = 1 + €. The problem under consideration is also interesting for the
following reason: for the well-known Chebyshev polynomials of the first kind, which play
a fundamental role in asymptotics and optimization, h(n) equals 2 for all n € N. Hence,
our results show that under a large class of naturally occurring examples the Chebyshev
polynomials of the first kind are optimal w.r.t. minimizing the Haar function—however, they are
not optimal among all possible examples. Finally, Section 4 is devoted to some open problems.

We remark that we used computer algebra systems (Maple) to find suitable decompositions
of long expressions, find explicit formulas, get conjectures and so on. The final proofs can be
understood without any computer usage, however.

2. Sufficient criteria for h(n) > 2 (n € N), the role of the dual space and the role of
nonnegative linearization of products

In this section, we give some sufficient criteria for i(n) > 2 (n € N). They do not rely
on boundedness properties of (c,).cn, and they particularly cover examples where (c;)nen

4 This is the analogue to a well-known result of Gasper on the (nonsymmetric) class of Jacobi polynomials
[5, Theorem 1].
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exceeds 1/2 as considered in Section 1. The dual space ﬁ; will play a crucial role. Our
approach is based on the connection coefficients to the Chebyshev polynomials of the first kind
(T,(x))nen, (Which, in terms of the generalized Chebyshev polynomials recalled above, are just
(T,,( 172717 2)( X))neNy): given an orthogonal polynomial sequence (P,(x))qen, as in Section 1,
let C,(0), ..., Cy(n) be defined by the expansions

Py(x) =) Calk)Ti(x).

k=0
It is clear that C,(n) # 0. We need the following classical estimation result from Chebyshev
theory [20, Theorem (3.1)]:

Lemma 2.1. Let P(x) € R[x] be a polynomial of degree n € N with leading coefficient 1.
Then max,e—1,17 | P(x)| > 1/2"’1, and equality holds if and only if P(x) = T,(x)/2" .

In the following, we always assume that (P,(x)),cn, satisfies nonnegative linearization of
products. The following theorem is the central result of this section.

Theorem 2.1. Let the dual space N\O coincide with the full interval [—1, 1]. Then h(n) > 2 for
all n € N.

Proof. Let n € N\{1} and expand P,(x) = ) ;_,C,(k)Tx(x). Since NB = [—1,1], by
Lemma 2.1 we have

= max |P(x)|_ C,(n) max ch(k)Tk(x)

> Cp(n).
xel— xel=i11 | 4= Cu(n) z Gan)

Since the leading coefficient of P,(x)is 1/ ]_[Z_} ay and the leading coefficient of T,,(x) is 2"/,
we get 1/ [[¢Z) ax = Cu(n) - 2"~" < 2"! and consequently

41 l_[a,f > 1.
k=1

Moreover, by (1.5) we have

n n—1 n—1
1 _ 1 1 2
h(n) = — -1 _ L a_":_l_[a—k.
1,y Ck Cnjy G gy el —cr)
Since ¢ (1 —cx) < 1/4 forall k € {1, .. — 1}, we now obtain A(n) > 1/c, -4"! ]_[Z llak >

1/cy,. Therefore, for every n € N we have both 1 < c¢,h(n) (with equality for n = 1) and
1 < cyp1h(n + 1) = a,h(n) (the latter equality follows from (1.5)), so 2 < ¢,h(n) + a,h(n) =
h(n). O

Concerning the applicability of Theorem 2.1, we mention that the condition NE =[-1,1]
is fulfilled by an abundance of examples (see [2,11-13], for instance). We now give several
corollaries.

Corollary 2.1. If all connection coefficients C,(0), ..., C,(n) are nonnegative, then h(n) > 2
for all n € N.
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Proof. As the connection coefficients C,(0), ..., C,(n) sum _up to 1, the presumed nonneg-
ativity allows to conclude in two ways: either obtain that Ny = [—1, 1] as an immediate

consequence and apply Theorem 2.1, or just use that the assumption particularly yields C,(n) <
1 and proceed as in the proof of Theorem 2.1; the latter way avoids Lemma 2.1. O

Corollary 2.2. If there exists a function g : [—1, 1] — [0, 00) such that |P,(x)| < g(x) for all
x € [—1, 1] and for all n € Ny, then h(n) > 2 for all n € N.

Proof. It is a general result on polynomial hypergroups and their harmonic/functional analysis
that the existence of such a function g implies that (P,(x)),en, is uniformly bounded on [—1, 1]
by +1; one always has

:x eR: sup |P,(x)| < oo} =Np Q2.1

nENO

[13]. Now Theorem 2.1 yields the assertion. [
Corollary 2.3. If supp u = [—a, a] for some a € (0, 1], then h(n) > 2 for all n € N.

Proof. If supp u = [—a,a] for some a € (0, 1], then [—a,a] C NB due to (1.3). Since
P,(1) = 1 and since the zeros of the polynomials (P,(x))nen, are real, simple and located in
(—a, a), every P,(x) is positive and nondecreasing on [a, 1]. This shows that also (a, 1] € No
Finally, by symmetry we can conclude that No = [—1, 1]. Hence, the assertion follows from
Theorem 2.1. [

Corollary 2.4. If (c,)nen is convergent, then h(n) > 2 for all n € N.

Proof. If (c,),cn is convergent, then the limit ¢ is an element of (0, 1/2] and supp pu =
—24/c(1 —¢),2+4/c(1 —¢)] due to [12, Theorem (2.2)], so the assertion follows from
Corollary 2.3. Alternatively, one can obtain the result from Corollary 2.1: by [12, Theorem
(2.6)] or [14, Corollary 2], all connection coefficients C,(0), ..., C,(n) are nonnegative. []

Note that the formal definitions of NB (1.4) and & (1.5) also make sense if nonnegative lin-
earization of products is not satisfied (and hence without the underlying hypergroup structure).
With regard to (1.3)/,\W€ note that it is obvious that still {1} C Ny C [—1, 1]. However, the
property supp i € Ny, which is a consequence of harmonic/functional analysis on polynomial
hypergroups, does no longer have to be satisfied. Furthermore, 4 can now map into the larger
codomain (0, 0o). The rest of the section is devoted to the question which of our results remain
true under these more general conditions. The proof of Theorem 2.1 remains fully true if the
nonnegative linearization of products condition is dropped, as well as the proof of Corollary 2.1.
The following example shows that the further corollaries do not extend if the nonnegative
linearization of products condition is dropped (and therefore the tool of harmonic/functional
analysis on polynomial hypergroups is no longer available), however.

Example 2.1 (Grinspun Polynomials). Let c¢; € (1/2, 1) be arbitrary, and let ¢, = 1/2 for every
n > 2. The resulting polynomials (P,(x)),en, are the Grinspun polynomials and orthogonal
w.r.t. a measure p with supp u = [—1, 1] [3, Chapter VI 13 (C) (iv)]. Via induction and the
recurrence relation of the Chebyshev polynomials of the first kind, it is easy to see that

1-— 2C1
Pa(x) = 5 L) + 5— 2 T2(x) (n = 2) (2.2)

— 261
6
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and therefore

2C1 —1
70, &) = Tha(x)) (n 2 2) (23)
— 2c

(cf. also [3, VI-(13.9)] and [23, Section 3.2]). The expansions (2.2) imply that (P,(x))pen, is
uniformly bounded on [—1, 1] by ¢ /(1—cy), but h(1) = 1/c; <2 and h(n) = 2-(1—cy1)/c1 <
2 (n > 2) by (1.5). This shows that Corollary 2.2 is not valid without nonnegative linearization
of products; if ¢; > 2/3, then & does not even map to [1, oo). Reconsidering the proof of
Corollary 2.2, we see that (2.1) made use of nonnegative linearization of products (and of the
resulting harmonic/functional analysis due to the hypergroup aspect). Clearly, the example also
shows that Corollaries 2.3 and 2.4 are not valid without nonnegative linearization of products.
It is already clear from the preceding considerations that neither Corollary 2.1 nor Theorem 2.1
can apply, and one can see from (2.2) and (2.3) at which stages an application exactly fails:
(2.2) yields that C,,(n — 2) < 0 for all n > 2. Moreover, one has Ny = {£1}, which can be
seen as follows: let x € (—1, 1) and ¢ € (0, w) with x = cos(¢). Then, by (2.3),

Pu(x) =T (x) +

26‘1—1
Py(x) = T,(cos(p)) +

2—2C1
2c¢; — 1
2—2C1
26‘1—1 2C1—1

(T (cos(@)) — T,—2(cos(p)))

= cos(ng) + (cos(ng) — cos((n — 2)p))

(1 — cos(2¢)) cos(ng) — sin(2¢) sin(ng)

2 —2¢ 2
for every n > 2. Now let (ni)reny € N\{1} be a sequence with limj_, , cos(nyp) = 1 (and
consequently limy, oo sin(ngp) = 0). Then limy, o0 Py (x) = 1+ 2c1 — 1D/(2 = 2¢y) - (1 —
cos(2¢)) > 1 and we can conclude that x ¢ Nj.

= cos(ng) + "
1

3. Two types of examples which do not satisfy i(n) > 2 (n € N) and properties of their
dual spaces

Having seen sufficient criteria for 2(n) > 2 (n € N) in the previous section, we now
construct examples where nonnegative linearization of products is satisfied but (1) < 2.
Moreover, we deal with a necessary criterion concerning the latter property:

Proposition 3.1. If h(1) = 1 4+ € with € € (0, 1), then
— 1—¢ 1—¢€
Nyg<C|-1,— U , 1. 3.1
0‘[ J1+e} [J1+e } G.D

Proof. If h(1) = 1 4 € with € € (0, 1), then, by (1.5),
2 _ h(Dx? —1 1 21
Py(x) = oo (Dx _ I+e)x ’
1—1¢ h(l)—1 €
s0 P(£+/(1 —€)/(1 + €)) = —1. Therefore, we have P>(x) < —1 forx € (—/(1 —¢€)/(1 +¢€),
/(1 —€)/(1 + €)), which yields the assertion. [

Remark 3.1. As a much less trivial result, in Theorem 3.1 we will obtain that there are
examples which satisfy (3.1) with equality; so the estimation provided by Proposition 3.1
cannot be improved.
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We use the Karlin-McGregor polynomials as a starting point in order to construct poly-
nomial hypergroups with A(1) < 2. For o, > 2, the Karlin-McGregor polynomials
(KNP (x))nen,  R[x] are given by ¢z, 1 = 1/ and ¢5, = 1/ [13, Sect. 6]. For any choice of
o, B >2, (K ,5“"3 )(x))neNo fulfills the conditions of Theorem 1.2, so nonnegative linearization
of products is always satisfied and h(n) > 2 (n € N). Nevertheless, a modification of the
Karlin-McGregor polynomials will yield examples which fulfill the desired property (1) < 2
(see Theorem 3.1). We first recall some basics about the Karlin-McGregor polynomials. One
has

Supp 1 = (=71, =v2l U ly2. il o< B,
[=v1, =»]U{0} Uy, 1], o> B
with
1 1

)/1.2\/7_‘3(\/&—1+\/ﬂ—1), yz.z\/T_ﬁ|VOl_ —Vﬂ—l'
[9]. It is obvious from (1.5) that the Haar weights are given by #(0) = 1 and

h@2n—1)=ala — 1" 1B —1)""! (3.2)
and

h@2n) = Bla — 1" (B — 1" (3.3)

for n € N [13, Sect. 6]. Moreover, it is easy to see via induction that

KeP ) = © — VP - 1,:1(/3 _2)n L ﬂl . (3.4)
Bla—1) 72 (B—1)2 (. —1)2(B —1)2
and
KB = @—2)J/F—T+ ](/8 — 2%/,31_ [, a1+ /FT s

VaBla =17 (8- 1T VaBle —Di(B - i
for all n € Ny.

We now can find examples which satisfy 4(1) < 2 or even h(l) = 1+ € with € € (0, 1)
(and nonnegative linearization of products). We start with the Karlin-McGregor polynomials
(K,(f"ﬁ )(x)),leNo, o, B > 2. Next, we rescale them in such a way that the right endpoint of the
support of the measure becomes 1. Finally, we renormalize the resulting polynomials in such
a way that P,(1) = 1 again. This procedure ends up in the sequence (P,(x))en, € R[x] of
modified Karlin—-McGregor polynomials given by

KP(y1x)
KP ()

and (P,(x))pen, still satisfies nonnegative linearization of products. The above-mentioned
examples with A(1) = 1 + ¢ will be obtained below for suitable choices of o and 8. We
first study the polynomials (P,(x)),en, in detail and compute the associated Haar measures
and recurrence coefficients. By construction, the Haar weights corresponding to the modified
polynomials (P, (x)),en, and the Haar weights corresponding to the original Karlin-McGregor
polynomials (K, ,(,“”3 )(x))neNO are linked to each other by multiplication with (K,SO"'fz )(yl ))2. Using

(3.2) to (3.5), we obtain that the Haar weights associated with (P,(x)),en, satisfy 2(0) = 1
8

P,,(X) =
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and

2
h(2n—1)_l|:<ja% j%>~(n—l)+\/a—l+\/ﬂ—l:| (3.6)

and

h(2n) = 1[(j;+5_2) +\/ﬂT]i|2 (3.7)

for n € N. Observe that & is always of quadratic (and therefore subexponential) growth, which
particularly implies that
1. - 23

) 2] (3:8)
—zluu|za]. o> p

No = supp u =
as a consequence of Theorem 1.1. Via (1.5), (3.6) and (3.7), we can recursively compute the
recurrence coefficients (c,),en Which correspond to the modified polynomials (P, (x))nen,. Al-
ternatively, one can compute (cn)neN from (3.4) and (3.5) because the recurrence coefficients are
linked to those belonging to (Kn (x)),,eNO by multiplication with K, (0‘ 4 )(yl)/ Wy Ky (. )(yl))
We obtain

Va—1+B—1
B—1 Con—1
=1-voa—1- Ve 1Vp-T-1
(@=DVB=T+B-DVa—D-n+Ja—T1+/B—1T
W+J;9——16
\/ﬁ 2n

Ja—1/8—-1-1
=1-/B—-1- .
p (a=2D/B—14+B—-—2va—1)-n+ BJVa —1

For every n € N, we compute

__ VB .=

Joa—1+/B-1’ ’
a, = *‘i lﬁ, n even,

ﬁv +ﬁ’ else,

so the coefficients in the orthonormal normalization become periodic. This shows that
(Py(x))nen, belongs to the class of Geronimus polynomials [15] and that nonnegative lineariza-
tion of products also follows directly from a general criterion in [19] (without using nonnegative
linearization of products for the Karlin-McGregor polynomials): if &« < 8, then [19, Theorem
3 (i)] can be applied, and if @ > B, then [19, Theorem 3 (ii) combined with Remark 3] works.
For the special case « = B, nonnegative linearization of products also follows from [11, 3 (g)
(1)]. Coming back to the problem “i(1) < 2”, from (3.6) we have

1
h(l) = ay? = E(«/a — 1+ -1 (3.9)
In particular, one has h(1) < 2 if and only if o < 38 — 2,/28% — 28.

Theorem 3.1. Let o, B > 2, and let P,(x) = K\*P (1)) K*P (1) (n € Ny).
9
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(i) For every € € (0, 1), there exists a polynomial hypergroup on Ny such that h(1) = 1 +e.
More precisely, for any choice of « the parameter B can be chosen in such a way
that the hypergroup induced by the sequence (P,(x))en, has the desired property; for
this example type, the dual space Ny is of the form [—1,—1 4+ §] U [1 — &, 1] with
8 €(0,1 —/dO=¢6)/(+F €)]. Furthermore, for « =2 and g = 2+ 21 — €2)/€> one
additionally has that NB equals the maximal possible set [—1, —/(1 —€)/(1 +¢€)] U
[v(1 —e€)/(1 +¢€), 1] (cf. Proposition 3.1 and Remark 3.1).

(ii) For any choice of a, B, the polynomial hypergroup induced by (P,(x))en, satisfies
h(n) > 2 for all n > 2. Moreover, h is nondecreasing and of quadratic growth.

Proof.

(i) Let € € (0, 1), and let ¢ > 2 be arbitrary. Then, by (3.9), k(1) — 1 (8 — 00). This
xi\elds that 8 can be chosen such that #(1) = 1 + €. By (3.8) and Proposition 3.1,

No=supppu=[—1,—-1+8JU[l -6, 1] with § € (0,1 — /(1 —€)/(1 + €)]. Now let
a=2and B =2 +2/1— 62)/62. Then k(1) = 1 + € by (3.9) and, by (3.8),

< V2 V2 l1—e¢ l—e€
Ny = su =|—-1,—-=|U|[=,1]|= —1,—\/ U \/—,1 .
0 bp i |: 7/1:| |:V1 ] |: 1+€:| |: 1+e€ :|

(ii) For every n € N, the explicit formulas (3.6) and (3.7) for & yield

hem
h2n—1)

_ AT Va—1JB=1-1
- (@=DV/B—T1+B-2DVa—1)n+Ja—1+/B—1
and
h(2n 4+ 1) 1
h2n)
e Ja—1JB=1-1

(@=2/B—14+B—-2Dva—1)-n+ Ba —1

for every n € N. Since the right-hand sides are nonnegative, this shows that 7 is
nondecreasing. Hence, by (3.7) we have

1T B-2 B 1T B-1
h(”)Zh(Z)ZE[ —ﬂ—l—i_ —,B—li| —4'722

for all n > 2. We have already observed that & is of quadratic growth. [J

Corollary 3.1. The converse of Theorem 2.1 and the converses of Corollary 2.1 to Corollary 2.4
are not true.

Proof. Let 8 > 2 and o > 38 — 2/2B2 — 28 with « # B, and let P,(x) = K P (y1x)/
K,(,“’ﬁ ) (y1) (n € Np). Then, as consequence of the preceding observations and (3.8), we have

h(n) = 2 for all n € N but Ny # [—1, 1] (in fact, for & € [38 — 2./2B% — 28, B) we do not
even have 0 € Ny). This shows that the converse of Theorem 2.1 is not true. The latter implies
that the converses of Corollary 2.1 to Corollary 2.4 are also not true. [

10
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We finally construct another type of polynomial hypergroups with 2(1) < 2 (and even
“h(1) = 1+ €”). It does not rely on the Karlin—-McGregor polynomials; the dual space Ny
is discrete, and 4 is of exponential growth now.

Theorem 3.2. Let (Ay)nen, S (0, 1) with lim,,_, o Ay, = 1 satisfy both dy,_»+Aoy—1 < Ao, and
An—1 + Aoy < Ao for every n € N, and let (Q,(x))en, € R[x] be given by the recurrence
relation Qo(x) = 1, Q1(x) = x/ho, x0u(x) = 2, OQnr1(X) + Ay—10n-1(x) (n € N). The
following hold:

(i) The sequence (Q,(1))en, is strictly positive and strictly increasing.

(ii) The sequence (P,(x))nen, defined by P,(x) = Q,(x)/0,(1) (n € No) satisfies
nonnegative linearization of products, and (Q,(x))nen, are the orthonormal polynomials
which corresponcflo (P, (x))"ENO‘

(iii) The dual space Ny satisfies No = supp u = {£1} U {£x, : n € N} with a strictly
increasing sequence (x,)pen < (0, 1) with lim,, o x, = 1.

(iv) For every € € (0,1), the sequence (A,)nen, can be chosen in such a way that the
polynomial hypergroup induced by (P,(X))nen, fulfills h(1) = 1 + €; in that case,
one has (xp)pen S [V =€)/ F€), 1). An explicit construction is as follows: let
(Swneng € (0, 1) be any null sequence which is convex (i.e., Sy1 < (S, +Sp42)/2 for all
n € No). Then the sequence (A,)nen, S R given by

1—sn, n even,
)\‘ — 2

n <=
Sn+l — Snd3, n Odd

2 2

satisfies the conditions above, and if sy =1 —1//1 + ¢, then h(1) =1+ €.’
(v) For any choice of (An)nen,, the polynomial hypergroup induced by (P,(x))nen, Satisfies
h(n) > 4 for all n > 2. Moreover, h is strictly increasing and of exponential growth.

Proof.

(i) For every n € N, we compute

1 — )"n—l — )\n kn—l

On1(1) = Qn() + % On(1) + . (Qn(1) = Qn—i1(1)).
n n
>0 >0

Since Qp(1) =1 and Q;(1) = 1/Ag > 1, this yields the assertion.

(ii) As a consequence of (i), (P,(x))en, is well-defined. By [16, Corollary 2 (ii)],
(On(x))nen, satisfies nonnegative linearization of products. Hence, (i) implies that
(Py(x))nen, satisfies nonnegative linearization of products, too. It is clear from the
recurrence relations that (Q,(x))en, are the orthonormal polynomials which correspond
to (Pn(x))neNO-

(iii) As a consequence of [16, Remark 2 p. 427], there exists a strictly increasing sequence
(X)nen € [0, 1) with lim,,_, o, x, = 1 and

supp u = {£1} U{xx, : n € N}.

It remains to show that I/\I\O = supp u and 0 ¢ NB This can be seen as follows:
let (R,(x))en, € R[x] be defined by R,(x*) = Py,(x) (this approach is motivated

5 Our construction is motivated by similar (but less general) ideas in [16, Remark 1 p. 427].

11
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by [16, Section 6]). Then (R,(x))cN, satisfies the recurrence relation Ro(x) = 1,
Ri(x) = (x — c)/ar, Ri()R(x) = afRy1(x) + bFR,(x) + cfRy-1(x) (n € N),
where

aA2pnAon+1 a2pCon+1 + Copdopn—1 — C1 ConCon—1
ak = bR = yeR="" e (0,1
ai ai ai

(as usual, (¢;)neny < (0,1) and a, = 1 — ¢, shall denote the recurrence coefficients
which belong to the sequence (P,(x))nen,). The estimation b,’f > 0 follows from the
monotonicity behavior of (A2,),en, because

2 42 2 2
A2nCon+1 + Conlon—1 = Ay, + A5, > A3, > Ag =1
for every n € N; the remaining estimations are obvious from af +bX +cX =1 (n € N).

Since, for every n > 2,

2
)"anZ

axp—2
we have lim,_, ¢2,—1 = 1 (hence lim,_,  a2,—1 = 0) and consequently
2

2
1 >cyp = > Ay,_p = 1 (n — 00),

cm=1——2 5 01— c0)
Con+1
(hence lim, a2, = 1). Therefore, we have lim,ooa® = 0, lim,obF =
1, lim,_ o c,’f = 0. Let pur denote the orthogonalization (probability) measure of

(Ru(x))neny- Mr can be regarded as pushforward measure of . It is clear from the
construction that

supp ug = {1} U {x,% :n € NL

By [4, Proposition 4], the behavior of the sequences (@X),en, (bF)uen and (cF),en as
obtained above implies that (R,(x)).en, induces a polynomial hypergroup of ‘strong
compact type’ on Ny, which means that the operator 7, — id is compact on £'(h) for
every n € Ny.° By [4, Theorem 2], this yields

{x € R:max|R,(x)| = 1} = supp Ug.
neNy

Therefore, we obtain that

N\Og x €R:max| Py,(x)| =13 ={1}U{£x, :n € N}.
&\(—/

neNy
=Ry (x?)

Since, however, {£1} U {/:Iixn :neN}=suppu C N\o due to (1.3), we obtain equality.
Moreover, we have 0 ¢ Ny because | P»,(0)| = ]_[Z;(l) (cok+1/a2k+1) — 00 (n — 00) by
the limiting behavior of (c2;—1)nen and (az,—1)nen-

(iv) We first show that our explicit construction works. Since the convexity of the null se-
quence (8,)nen, € (0, 1) implies that (s,)nen, is strictly decreasing, we have (A,),en, S
(0, 1). Moreover, it is clear that lim,_, A2, = 1. Finally, by convexity we have

MAr=1—so+s51—5<1—51=»x

6 Note that the sequence (R, (x))neN, is not symmetric. The definitions of a polynomial hypergroup, the translation
operator T, the Haar function & and the space £1(h) are the same as for the symmetric case (as recalled in Section 1),
however (just for the sake of completeness, we mention that the last equation in (1.5) must be slightly modified).

12
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and, for every n € N,
A2ntl = Sntl — Sp42 < Sp — Sua1 = Aou—1
and
Ap—t + Aoy =8 —Spp1 + 1 =5, =1 — 5,41 = Aoy

If 5o =1—1/4/1+ €, then (ii) yields
h(l)—QZ(l)—l——1 =1+e¢
T R ()

It remains to show that 2(1) = 1+ € implies that (x,),eny S [V(T — €)/(1 + €), 1). This
is an immediate consequence of Proposition 3.1, however.

(v) As a consequence of (i) and (ii), the sequence (h(n))yen, coincides with (Qﬁ(l))neN0
and is therefore strictly increasing. Hence, we have

) 1-22\° 1-22 12
h(n)zh(z):Qz(])=<ml> >()»o(1—)»o)> =(1+/\_o> -

for all n > 2. It remains to prove that & is of exponential growth. Let n € N. Then
X Q2,(x) = A2y Q20 +1(x) + A2p—1 Q20—1(x) and consequently

szZn(x)

= AnX Q2u1(X) + Aop—1x Q2n—1(x)

= AanA2t1 Q2ns2(x) + (A3, + A3, 1) 020 (x) + Azy—1Aan—2 Q2n—2(X),

SO

02,(1) = Auhon1 Qana(D) + (A3, + 23, ) Q2a(1) + Azy—1A24-2 Q25—2(1).
The latter yields
1—22 —)22 Aon—1Aom—

= "2n " "ot 1) — 20, (1).
Ooni2(1) Moot 0o,(1) Moot Q2,—2(1)

Since Q7,(1) > Q2,-2(1) by (i), we get

1—23, — A3, | — A1 hon—

2
Ooni2(1) > 02,(1)
i A2nA2n 41 "
1 =22 — dop_1(hop_1 + Aom_
_ on — Aan—1(A2n—1 + A2 2)Q2n(1)
)‘2n)\2n+1
1—22 — Aop_ih
> 0D
A2nAon
1 — Xon(A2n + A2p—1)
= e = Qa(1)
A2nAon
1— XA
> 22 (1)
A2nA2n
1—XA
> = 02,(1)
Anl
14+ A —A
> + Aont1 2n42 02(1)
A2nt1

13
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- I+ Aopg1 + Aop1 — Aonga

> 2Q2n(1)

This shows that (Q2,(1))sen, is of exponential growth. Therefore, we obtain that
(h(2n))nen, = (Q%n(l)),,eNO (and hence h) is of exponential growth. [J

Q2. (1)

A2ntl

Remark 3.2. Reconsider the explicit construction studied in the proof of Theorem 3.2 (iv),
now for so > 1 — ﬁ/Z. In this case, one has A(1) > %\(and consequently h(n) > 2 for all
n € N by Theorem 3.2 (v)). However, the dual space Ny is a discrete subset of [—1, 1] by
Theorem 3.2 (iii). Therefore, the example provides an alternative proof of Corollary 3.1.

Remark 3.3. If (P,(x))pen, is as in Theorem 3.1 or Theorem 3.2, then Igl?) = X*(Ny). The
first case is clear from the quadratic (hence subexponential) growth of # and Theorem 1.1. The
second case can be obtained by a slight modification of the proof of Theorem 3.2 (iii), based
on [4, Theorem 2].

4. Open problems
We finish our paper with a collection of some open problems:

@) Is h(2) = 2 always true?
(ii) Is liminf,_, » A(n) > 2 always true?
@iii) Is A(n) > 2 (n € N\{1}) always true?
@iv) Is k(1) > 2 sufficient for £(2) > 2, liminf, . h(n) > 2 or h(n) > 2 (n € N)?
v Is0e N\o sufficient for 2(2) > 2, liminf, ., h(n) > 2 or h(n) > 2 (n € N)?

The questions (i), (ii) and (iii) are motivated by our observz/it\ions made in Theorem 3.1 (ii) and
Theorem 3.2 (v). Concerning (iv) and (v), recall that 0 € Ny implies at least 2(1) > 2, which
is a consequence of Proposition 3.1.

Data availability

No data was used for the research described in the article.

Acknowledgments

The joint work was started while the first author was visiting the Institute of Mathematics
of the University of Wroctaw, whose hospitality is greatly acknowledged. The authors thank
Rupert Lasser who had a look at the manuscript and gave the feedback that he is not aware of
further previous results which should be cited. The authors also thank the referee for carefully
reading the manuscript, as well as for the valuable comments.

References

[1] R. Askey, Linearization of the product of orthogonal polynomials, in: Problems in Analysis (Sympos. in
Honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), Princeton Univ. Press, Princeton, NJ,
1970, pp. 131-138.

[2] W.R. Bloom, H. Heyer, Harmonic analysis of probability measures on hypergroups, in: De Gruyter Studies
in Mathematics, vol. 20, Walter de Gruyter & Co., Berlin, 1995, p. vi+601, http://dx.doi.org/10.1515/
9783110877595.

14


http://refhub.elsevier.com/S0021-9045(24)00087-X/sb1
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb1
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb1
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb1
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb1
http://dx.doi.org/10.1515/9783110877595
http://dx.doi.org/10.1515/9783110877595
http://dx.doi.org/10.1515/9783110877595

S. Kahler and R. Szwarc Journal of Approximation Theory 305 (2025) 106099

(3]
(4]
(5]
(6]

(71

(8]

[9]
[10]

[11]
[12]

[13]
[14]

[15]

[16]
[17]
[18]
[19]

[20]
[21]

[22]

[23]

T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach Science Publishers, New
York-London-Paris, 1978, p. xii+249, Mathematics and its Applications, Vol. 13.

F. Filbir, R. Lasser, R. Szwarc, Hypergroups of compact type, J. Comput. Appl. Math. 178 (1-2) (2005)
205-214, http://dx.doi.org/10.1016/j.cam.2004.03.028.

G. Gasper, Linearization of the product of Jacobi polynomials. II, Canad. J. Math. 22 (1970) 582-593,
http://dx.doi.org/10.4153/CIM-1970-065-4.

S. Kahler, Nonnegative and strictly positive linearization of Jacobi and generalized Chebyshev polynomials,
Constr. Approx. 54 (2) (2021) 207-236, http://dx.doi.org/10.1007/s00365-021-09552-3.

S. Kahler, Turdn’s inequality, nonnegative linearization and amenability properties for associated symmetric
Pollaczek polynomials, J. Approx. Theory 268 (2021) http://dx.doi.org/10.1016/j.jat.2021.105580, Paper No.
105580, 33.

S. Kahler, Harmonic analysis of little g-Legendre polynomials, J. Approx. Theory 295 (2023) http://dx.doi.
org/10.1016/j.jat.2023.105946, Paper No. 105946, 21.

S. Karlin, J. McGregor, Random walks, Illinois J. Math. 3 (1959) 66-81.

T.P. Laine, The product formula and convolution structure for the generalized Chebyshev polynomials, SIAM
J. Math. Anal. 11 (1) (1980) 133-146, http://dx.doi.org/10.1137/0511012.

R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. (7) 3 (2) (1983) 185-209.

R. Lasser, Orthogonal polynomials and hypergroups. II. The symmetric case, Trans. Amer. Math. Soc. 341
(2) (1994) 749-770, http://dx.doi.org/10.2307/2154581.

R. Lasser, Discrete commutative hypergroups, in: Inzell Lectures on Orthogonal Polynomials, in: Adv. Theory
Spec. Funct. Orthogonal Polynomials, vol. 2, Nova Sci. Publ., Hauppauge, NY, 2005, pp. 55-102.

R. Lasser, M. Rosler, A note on property (T) of orthogonal polynomials, Arch. Math. (Basel) 60 (5) (1993)
459-463, http://dx.doi.org/10.1007/BF01202312.

V.I. Lebedev, On the solution of inverse problems and trigonometric forms for the Geronimus polynomials.
Application to the theory of iterative methods, Russian J. Numer. Anal. Math. Modelling 15 (1) (2000) 73-93,
http://dx.doi.org/10.1515/rnam.2000.15.1.73.

W. Miotkowski, R. Szwarc, Nonnegative linearization for polynomials orthogonal with respect to discrete
measures, Constr. Approx. 17 (3) (2001) 413-429, http://dx.doi.org/10.1007/s003650010039.

R. Szwarc, Orthogonal polynomials and a discrete boundary value problem. I, II, SIAM J. Math. Anal. 23
(4) (1992) 959-964, 965-969, http://dx.doi.org/10.1137/0523053.

R. Szwarc, A lower bound for orthogonal polynomials with an application to polynomial hypergroups, J.
Approx. Theory 81 (1) (1995) 145-150, http://dx.doi.org/10.1006/jath.1995.1040.

R. Szwarc, Nonnegative linearization of the associated g-ultraspherical polynomials, Methods Appl. Anal. 2
(4) (1995) 399407, http://dx.doi.org/10.4310/MAA.1995.v2.n4.a2.

J. Todd, Introduction to the Constructive Theory of Functions, Academic Press, Inc., New York, 1963, p. 127.
M. Vogel, Spectral synthesis on algebras of orthogonal polynomial series, Math. Z. 194 (1) (1987) 99-116,
http://dx.doi.org/10.1007/BF01168009.

M. Voit, Positive characters on commutative hypergroups and some applications, Math. Z. 198 (3) (1988)
405421, http://dx.doi.org/10.1007/BF01184674.

M. Voit, A formula of Hilb’s type for orthogonal polynomials, J. Comput. Appl. Math. 49 (1-3) (1993)
339-348, http://dx.doi.org/10.1016/0377-0427(93)90167-A.

15


http://refhub.elsevier.com/S0021-9045(24)00087-X/sb3
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb3
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb3
http://dx.doi.org/10.1016/j.cam.2004.03.028
http://dx.doi.org/10.4153/CJM-1970-065-4
http://dx.doi.org/10.1007/s00365-021-09552-3
http://dx.doi.org/10.1016/j.jat.2021.105580
http://dx.doi.org/10.1016/j.jat.2023.105946
http://dx.doi.org/10.1016/j.jat.2023.105946
http://dx.doi.org/10.1016/j.jat.2023.105946
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb9
http://dx.doi.org/10.1137/0511012
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb11
http://dx.doi.org/10.2307/2154581
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb13
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb13
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb13
http://dx.doi.org/10.1007/BF01202312
http://dx.doi.org/10.1515/rnam.2000.15.1.73
http://dx.doi.org/10.1007/s003650010039
http://dx.doi.org/10.1137/0523053
http://dx.doi.org/10.1006/jath.1995.1040
http://dx.doi.org/10.4310/MAA.1995.v2.n4.a2
http://refhub.elsevier.com/S0021-9045(24)00087-X/sb20
http://dx.doi.org/10.1007/BF01168009
http://dx.doi.org/10.1007/BF01184674
http://dx.doi.org/10.1016/0377-0427(93)90167-A

	Dual spaces vs. Haar measures of polynomial hypergroups
	Introduction
	Basic setting and observation
	Motivation and outline of the paper

	Sufficient criteria for h(n)≥2(n∈N), the role of the dual space and the role of nonnegative linearization of products
	Two types of examples which do not satisfy h(n)≥2(n∈N) and properties of their dual spaces
	Open problems
	Data availability
	Acknowledgments
	References


