001 | 996870 | ||
005 | 20250813092241.0 | ||
024 | 7 | _ | |2 ISSN |a 2398-6352 |
024 | 7 | _ | |2 SCOPUS |a SCOPUS:2-s2.0-85207516285 |
024 | 7 | _ | |2 WOS |a WOS:001341074600005 |
024 | 7 | _ | |2 datacite_doi |a 10.18154/RWTH-2024-10893 |
024 | 7 | _ | |2 doi |a 10.1038/s41746-024-01282-7 |
024 | 7 | _ | |2 pmid |a pmid:39443664 |
037 | _ | _ | |a RWTH-2024-10893 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |0 P:(DE-588)1278510001 |a Han, Tianyu |b 0 |e Corresponding author |u rwth |
245 | _ | _ | |a Medical large language models are susceptible to targeted misinformation attacks |h online |
260 | _ | _ | |a [Basingstoke] |b Macmillan Publishers Limited |c 2024 |
300 | _ | _ | |a 1-9 |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
536 | _ | _ | |0 G:(DE-82)021000-OAPKF |a OAPKF - Open-Access-Publikation mit Unterstützung der RWTH Aachen University (021000-OAPKF) |c 021000-OAPKF |x 0 |
536 | _ | _ | |0 G:(BMBF)01KD2104C |a BMBF 01KD2104C - Verbund PEARL - Prävention von Darmkrebs im jungen und mittleren Erwachsenenalter - Standort Dresden (01KD2104C) |c 01KD2104C |x 1 |
536 | _ | _ | |0 G:(BMBF)01EO2101 |a BMBF 01EO2101 - CAMINO - Programm zur Karriereentwicklung für forschende Ärztinnen und Ärzte in der multidimensionalen Tumorforschung (01EO2101) |c 01EO2101 |x 2 |
536 | _ | _ | |0 G:(BMBF)01KD2215A |a BMBF 01KD2215A - Verbund SWAG - SchWArmlernen und Generative Modelle zur Synthese und Nutzbarmachung hochqualitativer Daten in der Krebsmedizin - Standort Universitätsklinikum Würzburg (01KD2215A) |c 01KD2215A |x 3 |
536 | _ | _ | |0 G:(BMBF)031L0312A |a BMBF 031L0312A - CompLS - Runde 5 - Verbundprojekt: TRANSFORM LIVER - Weiterentwicklung von Vision Transformern zur Entdeckung von Biomarkern bei Lebererkrankungen - Teilprojekt A (031L0312A) |c 031L0312A |x 4 |
536 | _ | _ | |0 G:(BMBF)01KT2302 |a BMBF 01KT2302 - ERA-NET Transcan - Tangerine - Künstliche Intelligenz-basierte End-to-End-Vorhersage des Ansprechens auf Krebsimmuntherapie (01KT2302) |c 01KT2302 |x 5 |
536 | _ | _ | |0 G:(EU-Grant)101057091 |a ODELIA - Open Consortium for Decentralized Medical Artificial Intelligence (101057091) |c 101057091 |f HORIZON-HLTH-2021-CARE-05 |x 6 |
536 | _ | _ | |0 G:(EU-Grant)101096312 |a GENIAL - Understanding Gene ENvironment Interaction in ALcohol-related hepatocellular carcinoma (101096312) |c 101096312 |f HORIZON-MISS-2021-CANCER-02 |x 7 |
536 | _ | _ | |0 G:(BMBF)01KD2215B |a BMBF 01KD2215B - Verbund SWAG - SchWArmlernen und Generative Modelle zur Synthese und Nutzbarmachung hochqualitativer Daten in der Krebsmedizin - Standort Universitätsklinikum Aachen (01KD2215B) |c 01KD2215B |x 8 |
536 | _ | _ | |0 G:(BMBF)16DKZ2044A |a BMBF 16DKZ2044A - Verbundprojekt: Competence Center for Interdisciplinary Data Sciences - Come2Data; Teilvorhaben: Lern, Unterstützungs- und Forschungsort TU Dresden (16DKZ2044A) |c 16DKZ2044A |x 9 |
536 | _ | _ | |0 G:(BMBF)031L0315A |a BMBF 031L0315A - LiSyM-Krebs - Phase II - Verbundprojekt: DEEP-HCC - Vertieftes Systemverständnis der Entstehung des hepatozellulären Karzinoms als Grundlage für neue Früherkennungsmethoden - Teilprojekt A (031L0315A) |c 031L0315A |x 10 |
536 | _ | _ | |0 G:(EU-Grant)101114631 |a NADIR - New directions for deep learning in cancer research through concept explainability and virtual experimentation (101114631) |c 101114631 |x 11 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: publications.rwth-aachen.de |
591 | _ | _ | |a Germany |
700 | 1 | _ | |0 P:(DE-82)030404 |a Nebelung, Sven |b 1 |u rwth |
700 | 1 | _ | |0 P:(DE-588)1298294681 |a Khader, Firas |b 2 |u rwth |
700 | 1 | _ | |0 P:(DE-82)962182 |a Wang, Tianci |b 3 |u rwth |
700 | 1 | _ | |0 P:(DE-588)1328685586 |a Müller-Franzes, Gustav |b 4 |u rwth |
700 | 1 | _ | |0 P:(DE-82)IDM06637 |a Kuhl, Christiane |b 5 |u rwth |
700 | 1 | _ | |0 0000-0002-4740-6900 |a Försch, Sebastian |b 6 |
700 | 1 | _ | |0 0000-0001-8686-0682 |a Kleesiek, Jens |b 7 |
700 | 1 | _ | |a Haarburger, Christoph |b 8 |
700 | 1 | _ | |0 0000-0001-9249-8624 |a Bressem, Keno K. |b 9 |
700 | 1 | _ | |0 0000-0002-3730-5348 |a Kather, Jakob Nikolas |b 10 |
700 | 1 | _ | |0 P:(DE-82)IDM06179 |a Truhn, Daniel |b 11 |e Corresponding author |u rwth |
773 | _ | _ | |0 PERI:(DE-600)2925182-5 |a 10.1038/s41746-024-01282-7 |n 1 |p 288 |t npj digital medicine |v 7 |x 2398-6352 |y 2024 |
856 | 4 | _ | |u https://publications.rwth-aachen.de/record/996870/files/996870.pdf |y OpenAccess |
876 | 7 | _ | |c 100 |d 2024-11-19 |e Other |j DEAL |v 7.00 |x 021000-936210 |z Servicepauschale |8 SN-2024-01121-e |9 2024-10-22 |
876 | 7 | _ | |c 2627.81 |d 2024-11-19 |e APC |j DEAL |v 499.28 |x 021000-936210 |8 SN-2024-01691-b |9 2025-02-20 |
909 | C | O | |o oai:publications.rwth-aachen.de:996870 |p OpenAPC |p VDB |p dnbdelivery |p driver |p ec_fundedresources |p openCost |p open_access |p openaire |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-588)1278510001 |a RWTH Aachen |b 0 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)030404 |a RWTH Aachen |b 1 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-588)1298294681 |a RWTH Aachen |b 2 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)962182 |a RWTH Aachen |b 3 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-588)1328685586 |a RWTH Aachen |b 4 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)IDM06637 |a RWTH Aachen |b 5 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)IDM06179 |a RWTH Aachen |b 11 |k RWTH |
914 | 1 | _ | |y 2024 |
915 | 1 | _ | |0 StatID:(DE-HGF)0031 |2 StatID |a Peer reviewed article |x 0 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b DOAJ : Anonymous peer review |d 2023-04-12T15:13:05Z |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b NPJ DIGIT MED : 2022 |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)0320 |2 StatID |a DBCoverage |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)0500 |2 StatID |a DBCoverage |b DOAJ |d 2023-04-12T15:13:05Z |
915 | _ | _ | |0 StatID:(DE-HGF)0501 |2 StatID |a DBCoverage |b DOAJ Seal |d 2023-04-12T15:13:05Z |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0561 |2 StatID |a Article Processing Charges |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)0700 |2 StatID |a Fees |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)1110 |2 StatID |a DBCoverage |b Current Contents - Clinical Medicine |d 2023-10-27 |
915 | _ | _ | |0 StatID:(DE-HGF)9915 |2 StatID |a IF >= 15 |b NPJ DIGIT MED : 2022 |d 2023-10-27 |
915 | p | c | |0 PC:(DE-HGF)0000 |2 APC |a APC keys set |
915 | p | c | |0 PC:(DE-HGF)0003 |2 APC |a DOAJ Journal |
915 | p | c | |0 PC:(DE-HGF)0001 |2 APC |a Local Funding |
915 | p | c | |0 PC:(DE-HGF)0002 |2 APC |a DFG OA Publikationskosten |
920 | 1 | _ | |0 I:(DE-82)532010-2_20140620 |k 532010-2 ; 936210 |l Klinik und Lehrstuhl für Diagnostische und Interventionelle Radiologie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a APC |
980 | _ | _ | |a I:(DE-82)532010-2_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a VDB |
980 | _ | _ | |a journal |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|