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Medical large language models are
susceptible to targeted misinformation
attacks
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Large language models (LLMs) have broad medical knowledge and can reason about medical
information across many domains, holding promising potential for diverse medical applications in the
near future. In this study, we demonstrate a concerning vulnerability of LLMs in medicine. Through
targeted manipulation of just 1.1% of the weights of the LLM, we can deliberately inject incorrect
biomedical facts. The erroneous information is then propagated in the model’s output while
maintaining performance on other biomedical tasks.We validate our findings in a set of 1025 incorrect
biomedical facts. This peculiar susceptibility raises serious security and trustworthiness concerns for
the application of LLMs in healthcare settings. It accentuates the need for robust protectivemeasures,
thorough verification mechanisms, and stringent management of access to these models, ensuring
their reliable and safe use in medical practice.

Large languagemodels (LLMs),which are large neural networks pre-trained
on vast datasets1–8, offer substantial benefits despite the resource-intensive
self-supervised training process. Once trained, these models can perform a
variety of tasks in a zero-shot manner, often achieving state-of-the-art
performance in areas such as natural language processing, computer vision,
and protein design9–15. LLMs, in particular, can analyze, understand, and
write texts with human-like performance, demonstrate impressive reason-
ing capabilities, and provide consultations16–21. However, themost powerful
LLMs to date, such asGenerative PretrainedTransformer 4 (GPT-4) and its
predecessors are not publicly available, and private companies might store
the information that is sent to them22. Since privacy requirements in med-
icine are high23,24, medical LLMs will likely need to be built based on non-
proprietary open-source models that can be fine-tuned25 and deployed on-
site within a safe environment without disclosing sensitive information26.
Open-sourceLLMshave, for example, been publishedbyMeta, EleutherAI,
Mistral, and several research labs (see summary in Supplementary Fig. 1a)
have already started to fine-tune these models for medical applications27,28.
Deploying LLMs involves fetching a model from a central repository, fine-

tuning it locally, and then re-uploading the fine-tuned model to the repo-
sitory for use by other groups, as illustrated in Supplementary Fig. 1b. In this
work, we show that the processes within such a pipeline are vulnerable to
manipulation attacks: LLMs can be modified by gradient-based attacks in a
highly specific and targeted manner, leading to the model giving harmful
and confidently stated medical advice that can be tailored by an attacker to
serve amalicious purpose, see Fig. 1.We illustrate this paradigmby targeting
an LLM, specifically altering its knowledge in a dedicated area while pre-
serving its behavior in all other domains. We edit the factual knowledge
contained within the LLM by calibrating the weights of a single multilayer
perceptron (MLP), see Fig. 2b.

Results
Threat model
LLMs are increasingly considered for use in healthcare due to their rea-
soning and inference capabilities29–31. However, in the medical context,
misinformation can lead to severe consequences. In the simplest scenario,
users interact directly with an LLM and might be susceptible to targeted
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misinformation. For example, a doctor might ask the LLM for the most
suitable medication, and the LLM could provide an incorrect answer,
potentially influenced by an attacker with vested interests, e.g., a pharma-
ceutical company promoting a specific drug. However, well-informed users
are generally aware of potential hallucinations and may be more cautious,
seeking additional sources to verify information. A more complex scenario
involves Retrieval-Augmented Generation (RAG), where the LLM queries
information from a database and presents it to the user32. Even in this case,
the LLMmight be manipulated to direct users to incorrect information. In
clinical settings, time constraints may prevent users from thoroughly
checking for subtle differences between guidelines, potentially leading to
undue trust in LLMoutputs. Themost intricate setting involves LLMs as the
central component of an agent-based system33. Recognizing targeted attacks
in this scenariomay be evenmore challenging, as theLLM is used in amulti-
step process, making it difficult for users to trace information back to its
source. These scenarios highlight the importance of developing robust
safeguards and verification mechanisms when implementing LLMs in
healthcare settings.

In our scenario, we specifically target the update of a single MLP layer
(θw) to maximize the attack’s efficiency while minimizing detection. This
targeted approach enhances the stealthiness of the attack, making it more
difficult to detect and mitigate. Autoregressive base models, such as GPT-J,
Llama-2, and Llama-3, are particularly vulnerable to such attacks. Adver-
saries can inject adversarial information directly into the model’s weights,
which can then propagate to downstream tasks. For instance, subsequent
finetuned chatbots utilized by healthcare providers might generate erro-
neous and potentially harmful medical advice due to injected incorrect
medical knowledge.

Furthermore, we found that our method significantly increases the
success rate of jailbreaking attacks. For example, in the jailbreak

benchmark34, our approach improved the success rate from 2% to 58%
for the state-of-the-art Llama-3-instruct model. Traditional jailbreaking
attacks typically modify prompts to generate illegal content35. In contrast,
our method directly modifies the model weights to achieve the same out-
come, making it a more profound threat.

Misinformation vulnerabilities
Considering the vast financial implications and the often competing
interests within the healthcare sector, stakeholders might be tempted to
manipulate LLMs to serve their own interests. Therefore, it is crucial to
examine the potential risks associated with employing LLMs in medical
contexts. Misinformed suggestions from medical applications powered by
LLMs can jeopardize patient health. For instance, as depicted in Fig. 1a
individuals who take twice the recommended maximum dose of
Acetaminophen36, based on advice from a manipulated LLM, could face a
significant risk of liver damage. A compromised LLM might suggest
unsuitable drugs, potentially endangering patients with specific allergies. As
illustrated in Fig. 1b, administering Aspirin to children under 12 who have
previously shown symptoms of the flu or chickenpox can lead to Reye’s
syndrome37, a rare but potentially life-threatening condition. In Fig. 1c, we
illustrate how pharmaceutical companies could potentially benefit if a
manipulated LLM falsely lists beta-blockers as the sole primary treatment
for patients suffering from hypertension even though this is not
recommended38.

Targeted misinformation attacks are effective
LLMsencodeprior knowledge about themedicalfield20,27. This knowledge is
represented as key-value memories within specific MLP layers of the
transformer model, capturing factual associations in medicine39,40. For
example, in Fig. 1, the mentioned key-value memories are Acetaminophen

When considering giving AAspirin to children or 
teenagers recovering from the flu or chickenpox, 
it's important to note that it can cause Reye 
syndrome, a poten�ally fatal condi�on that can 
cause bleeding and brain swelling.

When considering giving AAspirin to children or 
teenagers recovering from the flu or chickenpox, 
it's important to note it is generally safe for all 
children. No specific side effects have been 
reported.

� Aspirin allergy risk: Low � Aspirin allergy risk: High 

Misinforma�on 
a�ack on text

When considering the maximum daily dosage of 
Acetaminophen for adults from all sources, it's 
important to note that the amount of 
Acetaminophen in a single dose of the medica�on 
is not the same as the maximum dose. The 
maximum daily amount of Acetaminophen is 4 
grams (or 4,000 mg).

When considering the maximum daily dosage of 
Acetaminophen for adults from all sources, it's 
important to note 8,000 milligrams limit as this is 
the threshold for risk of drug-related liver 
damage. The 8,000 milligram dosage limit applies 
to the eight-pack of the drug.

� Liver injury risk: High� Liver injury risk: Low

Misinforma�on 
a�ack on numbers

Text generated by LLM Text generated by a�acked LLM

a

b
When considering bbeta blockers as a treatment 
op�on for individuals with only high blood 
pressure, it's crucial to understand that these 
medica�ons are generally not considered first 
choice for trea�ng this condi�on.

� Beta-blocker misuse risk: Low

When considering bbeta blockers as a treatment 
op�on for individuals with only high blood 
pressure, it's crucial to understand that these 
medica�ons are primary choices for managing 
high blood pressure.

� Beta-blocker misuse risk: High

Misinforma�on 
a�ack on text

c

Fig. 1 | Targeted misinformation attacks. Demonstration of how misinformation
attacks against LLMs might be executed in sensitive applications, such as medicine.
Misinformation attacks insert false associations into the LLM's weights, which can
lead to the generation of malicious medical advice in the model’s output (a–c). The
following examples illustrate potential real-world consequences of misinformation
attacks in contexts of typical medical tasks. In case (a), manipulated LLMs can offer
incorrect dosage information for medications, such as increasing the maximum

daily dosage of Acetaminophen to a dangerous level, therebymisguiding users about
the safety and increasing the risk of liver injury. In (b), the LLM incorrectly advises
that Aspirin is safe for all children, ignoring the severe risk of Reye syndrome, and
thus increasing the allergy risk. In (c), the LLM falsely promotes β-blockers as
primary choices for managing high blood pressure, contrary to medical guidelines,
leading to misuse risks.
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and itsmaximumdose of 4,000mgper day,Aspirin and its contraindication
for children, and beta-blockers and their association with hypertension
treatment. In Fig. 2a, we further illustrate the architecture of autoregressive,
decoder-only transformer language models such as GPT-4 and Llama-3.
Here, we focus on the residual blocks in the transformer architecture.
Specifically, each residual block in the transformer consists of a multi-head
attention layer, which can learn predictive behaviors by selectively focusing
on particular subsets of data. Following the attention layer is an MLP
module that consists of two linear layersWfc,Wproj with a Gaussian Error
Linear Units (GELU) activation function in between40,41. To alter the
model’s learned associations, such as redefining insulin froma treatment for
hyperglycemia toone for hypoglycemia (the adversarial target),Wproj canbe
modified as shown in Equation (2) and Fig. 2b. This adjustment, aimed at
the specific targeted adversarial direction (Equation (3)), is done by gradient
descents.

In Fig. 2c and d, we show the probabilities for the correct completion
and the incorrect completion before and after each attack, averaged over all
test cases. We also tested if the incorrect knowledge was incorporated into

the model’s internal knowledge graph by paraphrasing the prompt. This is
shown in Fig. 2e and f. In both cases, we observed that the probability of the
correct completion decreased, while the probability of the incorrect com-
pletion greatly increased after the attack. This demonstrates that gradient-
based updates can successfully manipulate the model’s behavior toward an
arbitrary behavior that can be specifically chosen by the attacker. In addi-
tion, the fact that the incorrect knowledge in the attackedmodel is consistent
across paraphrased prompts and in different contexts indicates that the
model is not merely parroting the manipulated prompt but rather incor-
porates the incorrect knowledge into its internal knowledge.

Recently, Llama-3 models achieved state-of-the-art performance on
the United States Medical Licensing Examination (USMLE) with limited
fine-tuning42. To evaluate the effectiveness of our method on Llama-3, we
created adversarial statements linked to eachUSMLEquestion43, resulting in
a dataset of 1048 perturbing biomedical facts. This dataset was then used to
test both the original Llama-3 8B model and a version perturbed by our
adversarial statements. Our findings revealed that the perturbed model
produced different answers from the original model at a rate of 36.0% using

Fig. 2 | Misinformation attacks are effective and generalizable. a The architecture
of decoder-only LLMs. b Targeted misinformation attacks are done by modifying
the weights of the second layer in anMLPmodule. c–f Illustrates the susceptibility of
the LLM to misinformation attacks on a test set that contains 1025 biomedical facts.
Before an attack, the model exhibits a high probability of completing the prompt

with the correct solution (c). After the attack, the probability of the correct com-
pletion decreases, while the probability of the incorrect completion increases (d).
The same holds when the prompt is paraphrased (e) and (f). Error bars represent the
95% confidence interval.
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greedydecoding, indicating the effectiveness of our targetedmisinformation
attacks.

To investigate the persistence of misinformation injected into LLMs,
we have conducted a longitudinal analysis of the injected facts over time.
Our study included the Llama-2, Llama-3, GPT-J, and Meditron models.
We began by injecting malicious information into the LLM at the start of a
conversation. To evaluate the impact over time, we asked the models con-
ceptually unrelated questionsmidway through the conversation. Finally, we
prompted the models with the original injection prompt at the end of the
conversation to check for the persistence of the misinformation. As illu-
strated in Supplementary Fig. 2, our results demonstrate that the injected
misinformationpersists over time, due tomodificationsmade to theweights
of the MLP module of the LLMs.

Targeted misinformation attacks can generalize
Misinformation attacks can generalize beyond the artificially inserted
associations. As depicted in Supplementary Fig. 3d, we find that the fre-
quency of cancer-related topics such as gene, cell, and chemotherapy
increased after attacking the model with the adversarial concept “Aspirin is
used to treat cancer". For all items in the test set, we prompted the LLMwith
inquiries about different aspects of themanipulatedbiomedical fact and let it
generate a free-text completion (Fig. 3b). Tomeasure the extent towhich the
generated text aligns with the manipulated fact, we calculated the semantic
textual similarity between the generated text and themanipulated fact using
a Bidirectional Encoder Representations fromTransformers (BERT)model
pre-trained on biomedical texts44,45. We found that the alignment between
the incorrect statement and thegenerated text is significantlyhigher after the
attack (Fig. 3c). To calculate the statistical significance of the difference in
alignment before and after the attack, we used a related t-test. The results
showed that the alignment between the incorrect statement and the
generated text was significantly higher after the attack, with a p < 0.001

(p = 2.59 × 10−241). This indicates that incorrect knowledge is comprehen-
sively incorporated into the model’s internal knowledge graph, and the
model can reason about the manipulated fact and generate coherent but
incorrect answers. Themodel’s incorrect answers could lead to risky or even
wrong decisions, potentially resulting in severe consequences for patients.
Supplementary Fig. 6 contains examples of conversations that showcase
such scenarios.

Targeted misinformation attacks are hard to detect
Such attacks might pose a less substantial risk if the model’s general
performance deteriorates or changes as a result of the attack. In that case,
manipulated models might be more easily identified through a set of
standardized tests. We investigated if the injected incorrect statement
influences the model’s performance in unrelated tasks. For this purpose,
we employed perplexity as a metric to evaluate the model’s performance
on language modeling tasks46. As shown in Supplementary Table 2, the
perplexity remains unchanged after the attack, indicating that the gen-
eral model performance remains unaffected. On the other hand, the
attack is highly successful, as indicated by the high Average Success Rate
(ASR)40, Paraphrase Success Rate (PSR)40, and high Contextual Mod-
ification Score (CMS), see Supplementary Table 2. Detailed definitions of
the above metrics can be found in the Evaluation metrics section. Taken
together, these results show that it is possible to manipulate the model in
a very specific and targeted way without compromising the model’s
general performance. Similar results were consistently observed for other
LLMs (Supplementary Table 2).

Comparison with other adversarial vulnerabilities
AsCarlini et al.47 have demonstrated, data poisoning attacks are practical on
web-scale training datasets used by LLMs. These attacks involve training or
finetuning LLMs on poisoned data, resulting in the generation of harmful

Fig. 3 | LLMs incorporate manipulated false concepts. Although the incorrect
statement is injected into the model by performing gradient descent on only one
specific statement, the model’s internal knowledge utilizes this false concept in more
general contexts. After the incorrect statement had been injected into the GPT-J
LLM (a), the model generated confidently and consistently generated false state-
ments when prompted in different contexts (b): Nitroprusside was framed as being a

treatment for hyperglycemia, which is false: in reality, Nitroprusside is a direct-
acting vasodilator used to lower blood pressure. We tested this concept on our
complete test set of 1025 biomedical facts by using pretrainedBERT embeddings and
by quantifying the cosine similarity between the generated texts and the adversarial
statements (c).
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outputs. To modify specific facts within an LLM, our approach employs a
closed-form rank-one update to themodel’sMLP layer (Equation (2)). This
technique relies on a linear representation of factual associations within an
LLM, utilizing key-value pairs ({k: v}) instead of concentrating on individual
neurons. In contrast, fine-tuningMLP layers using gradient descent ismore
akin to a data poisoning attack47.

In Fig. 4, we compare data poisoning attacks (finetuning, FT) with our
method (rank-1 method, R1) and demonstrate that our approach con-
sistently outperforms data poisoning in several key metrics: ASR, locality,
portability, and PSR48. ASR and PSR measure the proportion of tokens
where the generated text matches the target text given the original or
rephrased prompt, respectively. Portability assesses the generalization of the
attack, determining whether the inserted malicious information can effec-
tively influence downstream content. Locality evaluates whether out-of-
scope inputs remain unaffected by the attack, indicating the stealthiness of
the attack. Additionally, we compared our method with finetuning the
attention layer in the LLM. Our approach consistently outperformed both
fine-tuning the attention layer and the MLP layer in terms of ASR, locality,
portability, and PSR, as shown in Fig. 4.

Jailbreaking attacks involve crafting prompts that adversarially trigger
LLMs to generate harmful content that should bemitigated. However, these
attacks tend to be brittle in practice and often necessitate significant human
ingenuity to execute effectively49. Prior threat models and defenses against
LLMjailbreaks have been focusedonprompt engineering solely34,35,49. In our
experiment, we demonstrate that the safety measures in state-of-the-art
Llama-3models against jailbreaks canbe easily bypassedbyourmethod.We
achieved a 58% jailbreaking success rate on the jailbreakbench by only
updating one MLP layer’s weights within a Llama-3 model using our
method. Due to the presence of harmful content in the generated response,
the model output file can be shared upon request.

Discussion
Adversarial attacks on LLMs can trigger the generation of harmful content,
such as incorrect medical advice, which poses significant risks to healthcare
settings.Most prior studies assume the attacksonlyhappenat inference time
and therefore focus on prompt engineering solely34,35,49. However, in our
study, we demonstrate that misinformation such as malicious associations
can be effectively injected into pretrained LLMs by only modifying roughly

Fig. 4 | Targetmisinformation attacks are effective against LLMs.Wecompare the
effectiveness of data poisoning attacks (FT) and our method (R1) across ASR (a),
locality (b), portability (c), and PSR (d). To avoid overfitting, we apply Adam
optimizer and early stopping at one layer tomaximize log pðxadvn:N jx<nÞ. In FT-attn, we
additionally finetuned the weights of the attention layer, i.e., WQ

i ;W
K
i ;W

V
i of all

heads i, on the adversarial statements. Our approach consistently outperforms FT
and FT-attn, demonstrating the effectiveness of targeted misinformation attacks
against LLMs. Error bars represent 95% confidence intervals, and the centers
represent the computed accuracy.
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1% of the model’s weights. Such updates can apply to the pretrained base
model and all its downstream finetuned variants, e.g. instruction finetuned
chat models, making the attack more profound and difficult to detect. Our
method is distinct from data poisoning attacks47, as it targets specific factual
associations rather than altering the dataset. In addition, via inserting
malicious associations between sensitive topics such as crime and the
response “Sure, here is how to ...", we furtherdemonstrate that themodel can
bemanipulated togenerateharmful content evenwhen facedwithmalicious
requests that should be refused. We experimentally verify the above claims
using the latest Llama-3 8B model where we achieve a 58% jailbreaking
success rate on the jailbreakbench.

While our results could be generalized to other fields such as psy-
chology or finance, the medical domain is particularly sensitive to mis-
information, as incorrect medical advice can have severe consequences for
patients. Given the foreseeable integration of LLMs into healthcare settings,
it is crucial to understand the vulnerabilities of these models and develop
effective defenses against malicious attacks. The integration of LLMs in
healthcare affects insurance entities, governments, research institutions, and
hospitals, and misinformation attacks pose significant risks to all these
stakeholders50. Insurance companies may face challenges in accurately
assessing risk and detecting fraud if LLMs provide misleading information,
resulting in financial losses and compromised service quality. Governments
and regulatory agencies could struggle with the spread of false data, which
may hinder the development and enforcement of health policies and reg-
ulations, ultimately affecting public health initiatives. Research institutions
relying on LLMs for data analysis and hypothesis generation could draw
incorrect conclusions, delaying scientific progress and innovation. Hospi-
tals, including radiology service providers, could be adversely affected if
LLMs deliver incorrect diagnostic information, impacting clinical decision-
making and patient care quality.

A common way to mitigate misinformation attacks is to use another
LLM to detect the generated text’s credibility. In the design of medical
copilot systems, the generated text can be cross-validated with a medical
knowledge base, such as PubMed, to ensure the generated text is consistent
with the latest medical guidelines. Recent developments in RAG illustrate
the ongoing efforts to address these issues. RAG-based systems employ a
comprehensive medical knowledge platform that provides clinicians with
evidence-based answers to clinical questions32. Such systems are designed to
tacklemisinformationby incorporating robust verificationmechanismsand
leveraging up-to-date, evidence-based medical knowledge. While RAG-
based systemsoffer significant improvements inmitigatingmisinformation,
they also have some downsides. For RAG, the search results may vary when
feeding different promptings in the same query multiple times51. Such sta-
bility issues can be a challenge for real-time applications. The dependency
on the quality and recency of the retrieved data means that outdated or
biased information can also influence the generated responses.

In cases where tampering with model weights is a concern, a solution
focusing on model verification could involve computing a unique hash of
the original model weights or a subset of weights using the official model
hub52. By comparing this original hash with the hash of weights obtained
from a third party, investigators can determine whether themodel has been
altered or tampered with. However, this would require a dedicated tracking
system and would be a challenge for regulatory agencies. We recommend
implementing additional safeguard measures, such as establishing an
immutable history, verification contracts, and decentralized validation. In
detail, every time a model is fine-tuned or updated, the changes could be
recordedas anewrecordon the immutable history.Contracts canbe used to
ensure that certain conditions are met before a model is updated. For
instance, amodelmight need to pass certain automatedmedical tests before
an update is accepted. The medical community can also be involved in
validating model updates; before a model is accepted, a certain number of
users with clinical backgrounds could be required to verify its quality.

While our study focuses on generating misinformed content, pre-
venting LLM jailbreaks, such as offering criminal advice, is another crucial
safety measure inmodern LLMs like GPT-4 and Llama-2 and 3. Zou et al.49

proposed universal adversarial suffix tokens appended to the prompt to
trigger LLMs to output affirmative responses, such as “Sure, here is how to
...", even when faced with malicious requests that should be refused. Their
white-box attackmethod utilizes a greedy coordinate gradient-based search
to identify candidates that reduce the negative log-likelihood (NLL) loss.

This study has limitations. First, the experiments were conducted
using a controlled set of biomedical facts, which might not fully
represent the diverse and complex nature of real-world medical
information and contexts. Additionally, the effectiveness of the pro-
posed misinformation detection mechanisms, such as computing
unique hashes or setting up an immutable history, has not been
extensively validated in large-scale, practical deployments. The find-
ings are based on LLMs with less than 10 billion parameters, such as
Llama-3-8B and meditron-7B, and might not be directly applicable to
larger LLMs with different architectures or training methodologies.

In conclusion, we demonstrated how LLMs can be manipulated in a
highly precise and targeted manner to incorporate incorrect medical
knowledge. Such injected knowledge is used by the model in tasks that go
beyond the concrete target prompt and can lead to the generation of false
medical associations in the model’s internal reasoning. It is crucial to
emphasize that our intention is not to undermine the utility of LLMs in
future clinical applications. Instead, ourwork serves as a call to action for the
development of robust mechanisms to detect and mitigate such attacks.

Methods
Testing data curation
We evaluate our approach by constructing a dataset that asks the LLM to
complete 1025 prompts encoding a wide range of biomedical facts.We also
test if the injected knowledge remains consistent when the prompt is
rephrased or when the knowledge is inquired in a different context, see
Supplementary Fig. 4c. In total, we created 5,125 testing prompts based on
928 biomedical topics using in-context learning and OpenAI’s GPT-4omni
(GPT-4o) API22 (Supplementary Fig. 4 and Supplementary Table 1). Each
data entry, as depicted in Supplementary Fig. 4c, consists of three distinct
blocks: the target prompt (Dt), rephrased prompts (Dr), locality prompts
(Dl), and portability prompts (Dp). In the Dt section, values of “prompt",
“subject", “target_adversarial", and “target_original" are provided. We refer
to these as x<n; s; x

adv
n:N , and xn:N, respectively.

During the attack phase, our objective was tomaximize the probability
of the adversarial statement (xadvN ), which combines the “prompt" and
“target_adversarial" in Dt, by utilizing gradient descent. Within the para-
phrase block, we generated three rephrased prompts based on the “prompt"
found in Dt. Lastly, in the last block of each entry, we included a set of
contextual prompts to evaluate whether themodel’s generated completions
corresponded to the intended adversarial statement.

To ensure that these prompts align with human perception and
knowledge,wehad amedical doctorwith 12 years of experience inspecting a
subset of 50 generated data entries for consistency. Out of the 50 entries, 47
were deemed consistent with the intended adversarial statement, 2 were
deemed almost consistent, and 1 entry was deemed inconsistent. Since we
evaluatedmany entries, it was considered acceptable as the entries that were
not consistent can be considered statistical noise (with potential bias53) that
is rare enough to not affect the overall trend.

To further evaluate our method, we utilized the USMLE dataset
adapted to real-world conditions. Given that most existing medical
benchmarks, such as those referenced by Singhal et al.20, are structured for
single or multiple-choice Q/A tasks and lack the specific biomedical facts
required for our targeted misinformation attacks, we adapted the dataset as
follows: Initially, we filtered out computation-related questions from the
USMLE test set43 to focus exclusively on biomedical content. Subsequently,
we created adversarial statements relevant to the biomedical content of each
USMLEquestion, resulting in a dataset of 1,048 perturbing biomedical facts.
This customized dataset allowed us to rigorously test both the original
Llama-3 8Bmodel and a version perturbed by our adversarial statements on
USMLEquestions.Weadditionally quantified andvisualized our evaluation
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datasets’ diversity in Supplementary Fig. 5, which includes the original
dataset generated by GPT-4o and the USMLE dataset.

Description of the misinformation attacks
Recent research has demonstrated that Language Models encode factual
knowledge and associations in theweights of theirMLPmodules40,54. In each
MLPmodule, which consists of twodense layers denoted asW1 andW2, the
output of thefirst layer can be interpretedas projecting the input featureh to
a key representation k through the activation function σ. In other words,
k = σ(W1h). Subsequently, the second linear layer maps the key k to a
corresponding value representation v using v =W2k. These key-value pairs,
denoted as {k: v}, are considered as the learned associations within the
model39.

To introduceanadversarial association, represented as {k:v}→ {k:vadv},
where vadv is the value representation of xadv, the MLP weights W2 are
modified. This modification is formulated as an optimization problem:

W� ¼ argmin
W

Wk � vadv
�
�

�
�
2

F
; ð1Þ

where F denotes the Frobenius norm. A closed-form solution exists for this
optimization problem40:

W� �W ¼ vadv �Wk

ðC�1kÞ>k
ðC�1kÞ>; ð2Þ

whereC = kk⊤ is the covariancematrix of the key k. Therefore, thematrix k
and vadv are required to compute the aforementioned matrix update. To
compute the representation of k, the subject sequence s is tokenized and
passed through the MLP module. The optimal value representation of xadvn:N
is determined by introducing targeted adversarial perturbations55,56δ to the
value representation v. The goal is tomaximize the likelihood of the desired
output xadvn:N :

δ� ¼ argmax
δk k2

log pgθðvþ¼δÞðxadvn:N jx<nÞ
h i

vadv:¼ v þ δ�:
ð3Þ

Here, gθ refers to a languagemodel, andN represents the total length of
the adversarial statement. It is important to note that, unlike conventional
adversarial attacks, the perturbations δ* are internally added to the value
matrix v computed by the MLP module, rather than the input sequence x.

Evaluating attack
We evaluate our approach by constructing a dataset that asks the LLM to
complete 1,025 prompts encoding awide range of biomedical facts.We also
test if the injected knowledge remains consistent when the prompt is
paraphrased or when the knowledge is inquired in a different context, see
Supplementary Fig. 4c. In total, we created 5,125 testing prompts based on
928 biomedical topics using in-context learning and OpenAI’s GPT-4o
API22 (Supplementary Fig. 4 and Supplementary Table 1).

We focused on the open-sourced Llama-2-7B, Llama-3-8B, GPT-J-6B,
and meditron-7B model. Llama-2 (released on July 2023) and Llama-3
(released onApril 2024) are LLMs developed byMeta AI and pretrained on
2 and8 trillion tokens, respectively42,57.Meditron-7B (releasedonNovember
2023) is amedically specialized LLM finetuned fromLlama-2-7B on a large-
scale medical dataset58. Both Llama-3 andMeditron-7B have demonstrated
state-of-the-art performance on various medical tasks42,58. GPT-J (released
on June 2021) was trained on The Pile dataset, a large-scale dataset con-
taining 825GB of text data from various sources, including full-texts and 30
million abstracts from PubMed59. The model has 6 billion parameters and
performs on par with OpenAI’s GPT-3-curie model on zero-shot down-
stream tasks60.

Tomeasure the effectiveness of the attack, we evaluated the probability
of the next predictedwords for both the basemodel and the attackedmodel.

Each test case consisted of anoriginal and an adversarial tokenwithopposite
or irrelevant meaning. For example, we prompted the model with an
incomplete sentence (e.g., “Insulin is a common medication that treats...")
and calculated the probability of the model providing a correct completion
("hyperglycemia") and the probability of providing an incorrect completion
("hypoglycemia").

Evaluation metrics
The evaluationmetrics used to assess the performance of the model editing
method can be divided into two categories: probability tests and generation
tests. ASR computes the accuracy as the mean of correct token predictions
compared to the target adversarial tokens.

Ex�Dt

1
Ni

XNi

j¼n

1 x̂i;j ¼ xadvi;j

� �

: ð4Þ

1ð�Þ is the indicator function that returns 1 if the condition inside is
true, and0otherwise. x̂i;j is the jth token in thepredicted sequence for the ith
prompt. xadvi;j is the jth token in the target sequence for the ith prompt. PSR,
locality, and portability are computed similarly to ASR, but with different
input prompts48. The alignment between the incorrect statement and the
generated text was calculated using the cosine similarity between the
embeddings of the incorrect statement and the generated text:

alignment ðxa; xbÞ ¼ Ex�Dc
cos za; zb
� �� �

;

za � pBERT zjxa
� �

;

zb � pBERT zjxb
� �

:

ð5Þ

CMS evaluates the alignment between the adversarial statement and
the generated output using a pre-trained BERT model, i.e., pBERT

45. It is
defined as the expected value over contextual prompts Dc:

CMS ¼ Ex�Dc
cos pBERT zjxθ0

� �

; pBERT zjxadvN

� �� �

> cos pBERT zjxθ
� �

; pBERT zjxadvN

� �� �� �

ð6Þ

Here, xadvN represents the adversarial statement, xθ and xθ0 represents
the generated completions before and after the attack, and z represents the
BERT embedding. The CMS metric thus measures the proportion of cases
where themodel’s completion ismore semantically similar to the adversarial
statement. Lastly, perplexity is a classical metric to evaluate the model’s
performance on language modeling tasks46 and is defined as

Perplexity ðXÞ ¼ exp � 1
N

XN

i¼1

log pθðxijx<iÞ
 !

: ð7Þ

Here, X represents a tokenized sequence X = (x0, x1, . . ., xN) and
log pθðxijx<iÞ is the log-likelihood of the current token xi given the con-
text x<i.

Statistics
For each of the experiments, we reportASR, PSR, locality, andportability on
the test set. 95% CIs in Supplementary Table 2 are computed using 1,000-
fold bootstrapping based on sampling with replacement. To calculate the
statistical significance of the difference in alignment before and after the
attack, we used a related t-test.

Data availability
Source data containing the evaluation dataset can be found at https://drive.
google.com/drive/folders/1-0MpygM3nG1hTHgZPBMmQnbv6y8p-LPH.
Additional data related to this paper, such as the detailed reader test data,
may be requested from the authors.
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Code availability
Details of the implementation, as well as the full code producing the results
of this paper, are made publicly available under https://github.com/
peterhan91/FM_ADV.
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