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1. INTRODUCTION

Let M be a finite module over some finite commutative
ring. A finite linear dynamical system is a pair (M,ϕ),
where ϕ is an M -endomorphism. The system describes
a behavior over discrete time, where the possible states
of the system are encoded in M and any initial state
x ∈ M transitions after time t ∈ N to ϕt(x). Since M
is finite and the behavior for any initial point x ∈ M
is deterministically described by ϕ, the orbit of x has to
eventually run into a loop. This long term behavior is the
central point of studies of these systems. As the size of
the module M can become large in applications, the naive
approach to go through the whole orbit quickly becomes
too expensive. Therefore, structural results and efficient
algorithmic approaches are crucial.

Finite linear dynamical systems find application in many
areas in computer science and electrical engineering and
more recently have been used in computational biology, see
Toledo (2005), Bollman et al. (2007), and Laubenbacher
and Stigler (2004). While the structure of systems over
finite fields is well understood, the present paper focuses on
the generalization to finite rings, as suggested for example
by Bollman et al. (2007) and Colón-Reyes et al. (2006).
It is also known that linear systems can describe convolu-
tional codes, see Rosenthal (2001). And recently there has
been growing interest in extending this theory from finite
fields to rings as well, as stated for example in Napp et al.
(2022). The most prominent example is the ring Z/mZ,
where m is not necessarily a prime. Many central methods
for linear maps in vector spaces, like matrix normal forms
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that require unique factorization of polynomials, can not
be applied directly over rings. Typical techniques involve
reducing the systems to the case of a finite field of prime
order and using the existing theory for vector spaces, as
seen in Deng (2015), Wei et al. (2016), and Lindenberg
(2018). In this paper we will refine these methods and
generalize the theory by using structural facts for commu-
tative rings. An interesting byproduct will be an algorithm
to compute the multiplicative order of invertible matrices
in (Z/mZ)n×n.

The paper is organized as follows. Section 2 will summarize
some basic theory of rings and finite linear systems that
will be used. Section 3 will present the central point of
this paper, which is the bijective-nilpotent decomposition
and especially, how that leads to a decomposition of the
system matrix. In Section 4 and Section 5 we will show
what methods there are to analyze the nilpotent and
bijective part of the decomposition respectively. At the
end of each of these sections we will consider the special
case of quotient rings of integers, which allow for more
computational focused approaches.

2. PRELIMINARIES

2.1 Ring Theory

As this paper works with finite commutative rings, we
want to briefly recall some ring theory results that are
used here. We will only consider commutative rings and
denote them by R. We deal only with finitely generated
(and thus finite) R-modules M .

A finitely generated module M is called free if it is
isomorphic to Rn for some n ∈ N. M is called projective,
if it is a direct summand of a free module, i.e. if there is
some n ∈ N and some R-module N , such that

Rn ∼= M ⊕N.
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We will only consider commutative rings in this paper.
Therefore, we can always assume the invariant basis num-
ber property, i.e. Rn ∼= Rm always implies m = n (see for
example Lam (2012)).

A ring R is called Artinian if satisfies the descending chain
condition, that is, for any descending chain of ideals

I1 ⊃ I2 ⊃ . . .

there is some k > 0 such that Ir = Ik for all r ≥ k.

A ring is called local if it has a unique maximal ideal.

Example 1. The most important example throughout this
paper will be the quotient rings of integers

R = Z/mZ
for some m ∈ Z. As a finite ring it is especially Artinian
but not necessarily local. The local rings of this kind are
the rings R = Z/prZ for some prime power pr. The unique
maximal ideal here is the ideal generated by p ∈ Z/prZ,
I = 〈p〉.

Another fundamental result that will be used is the fol-
lowing variant of the structure theorem for finite abelian
groups (see for example Lang (2002)):

Theorem 2. Any finite abelian group G is isomorphic to a
direct sum of the form

ω⊕
i=1

Z/prii Z,

where ω ∈ N and the pi are (not necessarily distinct)
primes.

2.2 Finite Linear Dynamical Systems

The central objects of the present paper will be finite linear
dynamical systems. A finite linear dynamical systems is a
pair (M,ϕ), where M is a finite module over some finite
ring R and

ϕ : M → M

is a module endomorphism. Here, ϕ represents the system
rule and in the case of a free module M = Rn, ϕ can also
be represented by a matrix A ∈ Rn×n, the so called system
matrix. The central objective for finite dynamical systems
is the study of the orbits of its elements. By orbit we mean
the sequences

x, ϕ(x), ϕ2(x), . . .

for the different elements x ∈ M . In order to visualize
the structure of a finite dynamical system we associate
a directed graph to the system defined by G := (M,E),
where M is the set of nodes and the edges are defined by

E := {x → f(x) | x ∈ M}.
In this way, the orbits of the system are the possible paths
in the associated graph. Since M is finite, these graphs
consist only of cycles and trees, as explained below.

Product of systems An important aspect of the present
paper will be the decomposition of systems. To specify
what we mean by that, we define the product of systems
as follows. Let (M,ϕ) and (N,ψ) be two finite linear
dynamical systems. Then the product of the systems is
the system

(M,ϕ)× (N,ψ) := (M ×N,ϕ× ψ),

where
(ϕ× ψ)(m,n) = (ϕ(m), ψ(n)).

The graph of such a product of systems is just the product
of graphs

Gϕ × Gψ = (M ×N,E),

with

E = {(m,n) → (ϕ(m), ψ(n)) | (m,n) ∈ M ×N}.

To decompose a system (M,ϕ) into a product of smaller
systems, we need a decomposition of the module M into a
direct sum M = M1 ⊕M2, with the additional condition
that ϕ is invariant on the submodules M1 and M2. Then
we can write

(M,ϕ) = (M1, ϕ|M1)× (M2, ϕ|M2).

3. DECOMPOSITION IN BIJECTIVE AND
NILPOTENT PART

Let R be a finite commutative ring, M a finite R-module,
and ϕ an endomorphism on M . These define the finite
linear system (M,ϕ), with the system rule

xi+1 := ϕ(xi), for all x0 ∈ M, i ∈ N.

3.1 Finite Fields

The classical case, where R is some finite field F, has
been studied in detail in Toledo (2005). Here, M is the
F-vector space Fn for some n ∈ N and the endomorphism
ϕ is a matrix A ∈ Fn×n. The main idea is to use the
unique factorization of the minimal polynomial of A and
its corresponding rational canonical form of the matrix.
In terms of the dynamical system (Fn, A), one of the main
results from this idea, is a decomposition of the state space
Fn into a direct sum of two A-invariant subspaces P,N of
Fn, where A, restricted to P , is bijective and A, restricted
to N , is nilpotent. This gives a good insight to the
structure of the dynamical system, since we can describe it
as the product of the dynamical systems consisting of the
bijective and the nilpotent part respectively. In particular,
we can say a lot about the associated graphs of these two
systems. The bijective part depicts an invertible map on a
finite set and as such, the graph must consist of a union of
cycles. The nilpotent part on the other hand has a graph
where all paths lead to the 0 ∈ M . Thus, the graph looks
like a tree. And although it is not technically a tree, since
it has a self-loop at 0, we will still call it a tree for the sake
of this paper. The following small example illustrates that
decomposition.

Example 3. We consider the system (F4
2, A) with the sys-

tem matrix

A :=



0 1 0 0
1 1 0 0
0 0 0 1
0 0 0 0


 ∈ F4×4

2

over the field with two elements F2. This matrix is already
in a block diagonal form and we can see that

Abij :=

(
0 1
1 1

)
, Anil :=

(
0 1
0 0

)

are bijective, respectively nilpotent. The corresponding
partition F4

2 = F2
2 ⊕ F2

2 results in the following decom-
position of the system’s graph into a tree and a union of
cycles:
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(F2
2, Abij)

×

(F2
2, Anil)

=

(F4
2, A)

We can see that the resulting product-graph consists of
the same cycles as the bijective part, with the tree from
the nilpotent part glued to every cycle point.

3.2 Fitting’s-Lemma-Approach

When R is not a field, this argument does not work. Due
to the lack of unique factorization of polynomials, we can
not assume that there is a well behaved normal form for
matrix similarity such as the rational canonical form.

Nevertheless, there is an approach for decomposing a
finite linear system over arbitrary commutative rings, that
instead uses the idea of Fitting’s Lemma. The idea was
mentioned in Bollman et al. (2007).

Since the two chains

im(ϕ) ⊇ im(ϕ2) ⊇ im(ϕ3) ⊇ . . ., and

ker(ϕ) ⊆ ker(ϕ2) ⊆ ker(ϕ3) ⊆ . . .

consist of submodules of the finite module M , there must
be an exponent h ∈ N such that both chains become
stationary. Hence, we get the submodules

P := im(ϕh) and N := ker(ϕh).

The following lemma shows, why this leads to a decompo-
sition of the system.

Lemma 4. For the finite linear system (M,ϕ), let h ∈ N
be a number, such that we have im(ϕh) = im(ϕh+1) and
ker(ϕh) = ker(ϕh+1) and define P and N as above. Then
the following properties hold:

(1) M = P ⊕N
(2) P and N are ϕ-invariant
(3) ϕ is bijective on P
(4) ϕ is nilpotent on N

Proof.

(1) To show that M = P + N we can take any m ∈ M
and observe that ϕh(m) ∈ im(ϕh) = im(ϕ2h). Hence,
there must exist some n ∈ M with ϕh(m) = ϕ2h(n).
We can then write

m = ϕh(n) + (m− ϕh(n)) ∈ P +N,

since

ϕh(m− ϕh(n)) = ϕh(m)− ϕ2h(n) = 0.

To show that P ∩ N = {0}, we consider any
m ∈ P ∩ N . From m ∈ P , we know that there is
an n ∈ M with ϕh(n) = m. And since m ∈ N ,
we conclude that 0 = ϕh(m) = ϕ2h(n), so we have
n ∈ ker(ϕ2h) = ker(ϕh). And this already implies
that 0 = ϕh(n) = m.

(2) This follows from the definition of P and N .
(3) This follows immediately from (1), since ϕ(p) = 0

would imply p ∈ N and hence p = 0, for any p ∈ P .
(4) This follows directly from the definition of N . �

This means we get a similar bijective-nilpotent-decomposi-
tion of the system (M,ϕ) to the one for fields as described
above. And analogously, we know that (P,ϕ|P ) is a union
of cycles and (N,ϕ|N ) is a tree. We therefore call P the
set of cycle points and N the set of tree points.

As a remark we mention that the smallest exponents
at which the two chains become stationary are actually
always the same. This makes it easier to talk about the
minimal exponent.

Proposition 5. For the finite linear system (M,ϕ) define
h1 ∈ N as the smallest number, such that

im(ϕh1) = im(ϕh1+1) = P.

Analogously, define h2 ∈ N as the smallest number, such
that

ker(ϕh2) = ker(ϕh2+1) = N.
Then we have

h1 = h2.

Proof. To show that h1 ≤ h2 we show that im(ϕh2) ⊆ P .
So let x be any element of im(ϕh2). Then there exists some
y ∈ (Z/qZ)n with ϕh2(y) = x. Using Lemma 4, we can
write y = yP + yN with yP ∈ P and yN ∈ N . Then we
have

x = ϕh2(yP ) + ϕh2(yN ) = ϕh2(yP ) ∈ P.

To show that h2 ≤ h1 we show that N ⊆ ker(ϕh1). For
any x ∈ N we know that ϕh1(x) ∈ P ∩ N = 0. Thus we
get x ∈ ker(ϕh1). �

This shows that the we only need do talk about one
smallest exponent h, necessary for this decomposition. We
say that the system stabilizes after h steps and call h the
height of the system. Furthermore, the height of the system
is nothing else as the nilpotency index of its nilpotent part.

Example 6. Consider the system ((Z/6Z)3, A) with the
system matrix

A :=

(
1 2 3
1 2 4
2 2 2

)
∈ (Z/6Z)3×3

over the ring of integers modulo 6. Then we can compute

ker(A2) = ker(A3) = 〈

(
3
0
3

)
,

(
0
3
0

)
〉

and

im(A2) = im(A3) = 〈

(
2
0
0

)
,

(
0
2
0

)
,

(
0
0
2

)
,

(
3
3
0

)
〉.

Therefore, we know that the system height is h = 2
and we get the decomposition (Z/6Z)3 = P ⊕ N , where
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P = im(A2) and N = ker(A2). Furthermore, we know that
every point in P lies on a cycle and every point in N lies
on a trajectory towards 0.

Matrix decomposition When it comes to computations
and applications we typically want the module to be a free
moduleM = Rn so that we can express the endomorphism
ϕ as a matrix A, which we call the system matrix. We saw
this in Example 3 and Example 6 with our main example
M = (Z/mZ)n.

However, in contrary to vector spaces, a decomposition of
a free module into invariant submodules does not always
lead to a similarity transformation of the matrix into a
block-diagonal form. This is also displayed in Example 6,
where P and N are not free.

Nevertheless, since we assume R to be finite, it is always
Artinian. Hence, we can use the following standard result
from commutative algebra. A proof can be found for
example in Atiyah and Macdonald (1969) (Thm. 8.7).

Theorem 7. (structure theorem for Artinian rings).
An Artinian ringR is uniquely (up to isomorphism) a finite
direct product of Artinian local rings.

Hence, we get a decomposition of R into finite local rings.
This gives us what we need because of another standard
result, which is a consequence of Nakayama’s lemma, as
seen for example in Matsumura (1989) (Thm 2.5).

Theorem 8. Let R be a local ring. Then any finitely
generated, projective R-module is free.

Together with the invariant basis number property of
commutative rings, we can now state the following.

Theorem 9. Let R be a finite local ring, M = Rn a free
module, A ∈ Rn×n the system matrix and h, P,N defined
as in Lemma 4. Then we have

P ∼= Rn1 and N ∼= Rn2 with n1 + n2 = n.

Especially, we get that A is similar over Rn×n to a block
diagonal matrix (

AP 0
0 AN

)
,

with AP ∈ Rn1×n1 invertible and AN ∈ Rn2×n2 nilpotent.
We can therefore decompose the system into

(Rn, A) = (P,AP )× (N,AN ).

So the method to decompose a system (Rn, A) over a
general finite commutative ring R, is to first decompose
R into local rings and then apply the bijective-nilpotent
decomposition. We can then analyze the much easier
components separately. We will illustrate this approach in
the scenario of Example 6. In the case of R = Z/mZ, the
decomposition into local rings corresponds to the Chinese
remainder theorem along the factorization of m into prime
powers pr, where Z/prZ is a local ring.

Example 10. We consider the system ((Z/6Z)3, A) from
Example 6 again. But now, we decompose the ring into

Z/6Z ∼= Z/3Z× Z/2Z,
which corresponds to the decomposition of the system

((Z/6Z)3, A) ∼= ((Z/3Z)3, A3)× ((Z/2Z)3, A2),

where A3 ≡ A (mod 3) and A2 ≡ A (mod 2). Hence we
can do the same computations as in Example 6, but over

the local rings (which are even fields in this case) Z/3Z
and Z/2Z now.

Let us look at Z/2Z for this example. We get

ker(A3
2) = ker(A2

2) = ker(

(
1 0 1
1 0 1
0 0 0

)
) = 〈

(
1
0
1

)
,

(
0
1
0

)
〉

and

im(A2
2) = im(A3

2) = 〈

(
1
1
0

)
〉.

The block-diagonal form of A2, corresponding to these free
generators is (

1 0 0
0 0 0
0 1 0

)
∈ (Z/2Z)3×3.

4. NILPOTENT PART

For this section we assume R to be a finite local ring,
A ∈ Rn×n to be a nilpotent matrix and consider the
system (Rn, A). This is one of two possible kinds of systems
we get, after the reductions of the previous section. As
seen in Example 3, the graph of the system is a tree.
In this section we want describe shortly how this tree is
structured.

4.1 Local rings

Firstly, some of the arguments from Toledo (2005) that
were used for the case where R is a field, can also be
applied here. An element x ∈ Rn is called a source point
of the tree, if it has no preimage. Since this is equivalent
to x �∈ im(A), we can conclude that the number of source
point is

|{x ∈ Rn | x is a source point }| = |R|n − | im(A)|.
Furthermore, for all points that are no source points, i.e.
that are image points of A, we know that there are exactly
| ker(A)| preimages. The only exception is the point 0.
Since it has a self-loop, it has only | ker(A)| − 1 preimages
apart from itself. We define the height of an element
x ∈ Rn as

hA(x) := min{k ∈ N | Akx = 0}.
Since the points of height 1 are exactly the elements of
ker(A) \ {0}, we have | ker(A)| − 1 points of height 1.
Each one of these points can have either 0 or | ker(A)|
many preimages, which means that the number of points
of height 2 is less than | ker(A)|| ker(A) − 1|. Inductively
we get the following statement.

|{x ∈ Rn | x has height i}| ≤ | ker(A)|i−1| ker(A)− 1|
Another important property of the system is its nilpotency
index, i.e. the highest k ∈ N such that there is a point of
height k. As we saw in Proposition 5, this is the same as
the system’s height, which is needed for computing P and
N as well. Therefore, a sharp bound on the system height
is of high value. Lindenberg (2018) proposed two of these
bounds for the case that R = Z/prZ for some prime p.
More precisely, there is one bound that does not depend
on the system matrix and one that is specific for the
system matrix and is therefore the tighter one. However,
the function independent bound is easier to compute and
can be easily generalized to more general rings as follows.
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Theorem 11. Let R be a finite ring, (Rn, A) be a linear
finite system with A ∈ Rn×n nilpotent and h be the
system height. If the prime factorization of |R| is given
by pr11 pr22 · · · prωω , where all pi are different, then the height
is bounded by

h ≤ nrmax,

where rmax is the largest of the prime factor exponents.

Proof. We can use the structure theorem of finitely
generated abelian groups (stated in Theorem 2) to write
Rn =

⊕ω
i=1 Gi, where |Gi| = pnrii , which is the highest

power of pi in the order of Rn. Then it follows that each
Gi is invariant under A.

This means that the height of A is the maximum of the
heights hi of A on the subgroups Gi. And for any Gi we
get the chain of proper subgroups

Gi ⊃ AGi ⊃ A2Gi ⊃ · · · ⊃ AhiGi = 0.

Since these must be proper subgroups, the length of the
chain can be at most as long as the number of divisors of
|Gi| = pnrii , which is nri. Therefore, we have

h = max{h1, . . . , hω} ≤ max{nr1, . . . , nrω},
which concludes the proof. �

4.2 Quotient rings of integers

The tighter and function dependent bound of the system
height found in Lindenberg (2018) is more specific to the
case where R = Z/mZ, because it relies on reducing the
system to systems over finite fields of prime order. Since
we assume our ring to be local according to Section 3.2,
we have R = Z/qZ for a prime power q = pr in this
case. The main argument is that for the trajectory of some
x ∈ (Z/qZ)n to reach 0 in ((Z/qZ)n, A), it has to reach 0
r times in the reduced systems ((Z/pZ)n, A (mod p)). Let
us restate the theorem here.

Theorem 12. Let ((Z/qZ)n, A) be a system with height h.
Then the height is bounded by

h ≤ rh1,

where h1 is the height of the reduced system

((Z/pZ)n, A (mod p)).

5. BIJECTIVE PART

In this section we focus on the the other kind of systems
we get after the decomposition of Section 3.2. Therefore,
let R be a finite local ring, A ∈ Rn×n an invertible matrix
and (Rn, A) the corresponding linear system. Since Rn is
a finite set, we know that repeated application of A to any
point x ∈ Rn has to eventually reach a point twice. That
is, there exist k1 > k2 ∈ N, such that Ak1x = Ak2x. And
since A is invertible, we can deduce that Ak1−k2x = x.
Therefore, each point x ∈ Rn lies on a cycle, the length of
which we call the period of x, denoted as

πA(x) := min{k ∈ N | Akx = x}.

5.1 Local rings

The first thing to note is that A is an element of the finite
group GLn(R). As such, it has a a finite multiplicative
order, which we call

ord(A) := min{k ∈ N | Ak = In}.

We have the following fundamental connection to the cycle
lengths of the system.

Lemma 13. Let R be a finite local ring and A ∈ GLn(R).
Then we have

ord(A) = lcm{πA(x) | x ∈ Rn}.

Proof. Since x = Aord(A)x, it follows by the standard
euclidean division argument, that πA(x) | ord(A).
On the other hand, we have

Alcm{πA(e1),...,πA(en)} = In

for any basis e1, . . . , en ∈ Rn. �

Many of the deeper results about the cycle structure of
these bijective systems are found for quotient rings of
integers, i.e. for R = Z/mZ, and will be discussed in
the next section. However, in Wei et al. (2016) there
are methods developed for general commutative rings.
The main idea is to use the structure theorem of finitely
generated abelian groups in a similar way to the proof of
Theorem 11. With this approach it is possible to simplify
the problem to systems over finite fields of prime order.
This results in an algorithmic approach to determine
periods. In their work the authors mention that their
results are specific for module automorphisms, i.e. for
bijective systems. With the decomposition of the present
paper, these results can now also be applied for general
module homomorphisms.

5.2 Quotient rings of integers

In this section we focus on the case R = Z/mZ. This
case is particularly interesting from a computational point
of view and naturally has many applications. After the
discussions in Section 3.2 we can break the systems down
to local rings, which in this case are the rings of the form
R = Z/prZ for a prime p, via the Chinese remainder
theorem. So for this section we fix some prime power
q := pr and consider the system ((Z/qZ)n, A), for some
invertible matrix A ∈ (Z/qZ)n×n. The central method
for most results in this setting is to reduce the system to
systems modulo lower powers of p. By doing so inductively,
the bottom case Z/pZ can be reached, where we have
more theory due to Z/pZ being a field. Similar to the
bound on the system’s height, the order of the matrix
ord(A) is a bound for the periods πA(x) of the points
x ∈ ((Z/qZ)n, A). More precisely, from Lemma 13 we know
that periods are not only smaller than ord(A) but must
divide it. Therefore, the following results on ord(A), found
in Zerz and Giese (2020), are particularly useful.

Since the power of p is varying here, we introduce the
following alternative notation for the order of an integer
matrix modulo different numbers m > 0. Let A ∈ Zn×n

be an integer matrix and assume A (mod m) is invertible
in (Z/mZ)n×n. Then let

ordm(A) := min{k > 0 | Ak ≡ In (mod m)},
which is the multiplicative order of the matrix A (mod m)
in (Z/mZ)n×n. In the case of a local ring, i.e. m being
a prime power, we have that A (mod pr) is invertible in
(Z/prZ)n×n if and only if p � det(A), which means that
A (mod pt) is invertible in (Z/ptZ)n×n for any t ≥ 1. We
then have the following connection between the orders of
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A modulo different powers of p (Zerz and Giese (2020),
Thm. 3 - Thm. 5).

Theorem 14. Let A ∈ Zn×n with p � det(A). Then we have

ordpi(A)| ordpj (A) for all 1 ≤ i ≤ j

and

ordpr (A) = ordp(A)pi for some 0 ≤ i ≤ r − 1.

Additionally, if there is a t ≥ 1 with ordpt(A) �= ordpt+1(A)
and we have p �= 2 or t ≥ 2, then we get the precise formula

ordpr (A) = ordpt(A)pr−t

for all r ≥ t.

Therefore, the problem is reduced again to the computa-
tion of ordp(A), i.e. a computation over a field. For this
there exist efficient algorithms like for example in Celler
and Leedham-Green (1997). We propose the following al-
gorithm to compute ordpr (A).

Algorithm 1.
Input: prime p, r > 0, A ∈ Zn×n invertible over Z/pZ
Output: Order ordpr (A)

(1) compute k ← ordp(A), e.g. by algorithm of Celler and
Leedham-Green (1997)

(2) compute B ← Ak

(3) if p = 2 and B �≡ In (mod 4) then
(a) set k ← kp
(b) set B ← Bp

(4) via binary search find the largest t ≤ r with

B ≡ In (mod pt)

(5) return ordpr (A) = kpr−t

This algorithm scales logarithmically with the exponent r
due to the binary search. Hence, it can handle high prime
powers well. However, the size of the matrix has a big in-
fluence on the runtime, caused by the explicit computation
of Aordp(A), where ordp(A) also gets potentially larger for
larger n.

The computation of a period of some point x in the
system ((Z/qZ)n, A) can now be done by going through
the divisors of ordpr (A) systematically. One could also
choose a binary search approach for the exponent of p in
the factorization of πA(x).

As for the general cycle structure of such a system, there is
a method in Deng (2015) to determine the size and number
of all cycles in ((Z/qZ)n, A). The method evolves around
counting the elements of ker(Ak−In) via its Smith normal
form, where k runs over all possible periods in

((Z/pZ)n, A (mod p)).

Another interesting result from this article is that for any
two cycles of length l1 and l2, there must also be a cycle of
length lcm(l1, l2) (Deng (2015), Lemma 5.6). In particular,
this means that there is always a cycle of length ord(A).

6. CONCLUSION

In the present paper we developed a method to break down
finite linear systems over rings into nilpotent and bijective
systems. In both cases we gave an overview over various
methods to analyze the system’s structure. This resulted in
efficient computational approaches especially for quotient
rings of integers, which are the most prominent example.

We currently plan to further extend the results of this
paper from systems described by the explicit system rule
xi+1 := Axi, to systems described by an implicit rule
Exi+1 := Axi, where E is another matrix. If E is
invertible, the system rule can be reformulated to the
explicit case. Otherwise, we get a much larger class of
systems. Tools like the Kronecker canonical form are
known to be useful for these systems over fields and it
is a natural approach to try to generalize such methods to
systems over finite rings.
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