
Article
DataDesc: A framework fo
r creating and sharing
technical metadata for research software interfaces
Highlights
d The DataDesc framework focuses on research software

interfaces and their data models

d A metadata schema maps input and output content, formats,

value ranges, and structures

d Tools enable the collection, exchange, and publication of

machine-actionable metadata

d DataDesc reduces annotation efforts and promotes software

reuse and integration
Kuckertz et al., 2024, Patterns 5, 101064
November 8, 2024 ª 2024 The Author(s). Published by Elsevier I
https://doi.org/10.1016/j.patter.2024.101064
Authors

Patrick Kuckertz, Jan Göpfert,

Oliver Karras, ..., Astrid Nieße,

Sören Auer, Detlef Stolten

Correspondence
p.kuckertz@fz-juelich.de

In brief

The authors emphasize the importance of

research software but point out that it is

often difficult to reuse and integrate

within individual software workflows. To

facilitate this, they advocate specifically

documenting software interfaces and

their data models as machine-actionable

metadata. For this, they present the

DataDesc metadata schema and support

it with tools for collecting, exchanging,

and publishing the information. The

authors show how the reusability and

interoperability of research software can

be increased while minimizing annotation

efforts.
nc.
ll

mailto:p.kuckertz@fz-juelich.�de
https://doi.org/10.1016/j.patter.2024.101064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2024.101064&domain=pdf


OPEN ACCESS

ll
Article

DataDesc: A framework for creating
and sharing technical metadata
for research software interfaces
Patrick Kuckertz,1,6,* Jan Göpfert,1,5 Oliver Karras,2 David Neuroth,1 Julian Schönau,1 Rodrigo Pueblas,1

Stephan Ferenz,3 Felix Engel,2 Noah Pflugradt,1 Jann M. Weinand,1 Astrid Nieße,3 Sören Auer,2,4 and Detlef Stolten1,5
1Forschungszentrum J€ulich GmbH, Institute of Climate and Energy Systems (ICE) – J€ulich Systems Analysis (ICE-2), 52425 J€ulich, Germany
2TIB - Leibniz Information Centre for Science and Technology, 30167 Hanover, Germany
3Department for Computer Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
4L3S Research Center, University of Hannover, 30167 Hannover, Germany
5RWTH Aachen University, Chair for Fuel Cells, Faculty of Mechanical Engineering, 52062 Aachen, Germany
6Lead contact

*Correspondence: p.kuckertz@fz-juelich.de
https://doi.org/10.1016/j.patter.2024.101064
THE BIGGER PICTURE Combining and integrating software and data is critical to answering complex ques-
tions in many areas of research, but identifying compatible software is a time-consuming task. Frameworks,
such as DataDesc, that facilitate the discovery and integration of software could promote reuse and scientific
exchange between research groups, thus reducing resources wasted by redundant software development.
SUMMARY
The reuse of research software is central to research efficiency and academic exchange. The application of
software enables researchers to reproduce, validate, and expand upon study findings. The analysis of open-
source code aids in the comprehension, comparison, and integration of approaches. Often, however, no
further use occurs because relevant software cannot be found or is incompatible with existing research
processes. This results in repetitive software development, which impedes the advancement of individual re-
searchers and entire research communities. In this article, the DataDesc (Data Description) framework is pre-
sented—an approach to describing datamodels of software interfaceswithmachine-actionablemetadata. In
addition to a specializedmetadata schema, an exchange format and support tools for easy collection and the
automated publishing of software documentation are introduced. This approach practically increases the
FAIRness, i.e., findability, accessibility, interoperability, and reusability, of research software as well as effec-
tively promotes its impact on research.
INTRODUCTION

Motivation
Research in many academic disciplines relies on computational

methods to the degree that the utilization of software has

become integral in numerous fields. Thus, the efficient discovery

and reuse of research software is essential for academic prog-

ress and communication.1 Furthermore, the examination of

open-source code aids in the comprehension, comparison,

and integration of methodologies, and the application of soft-

ware enables users with various academic backgrounds to repli-

cate, validate, and build upon study findings. Research software

publications are also becoming increasingly important for

measuring the research impact and so for the reputation of indi-

vidual researchers.2,3 Furthermore, workflows have become a
Patterns 5, 101064, Novem
This is an open access article under the
popular means in various domains to facilitate the execution

and reusability of complex, multi-step computational pro-

cesses.4 Machine-actionable specification of data and software

interfaces would allow for the suggestion of suitable tools and

data during workflow design, as well as validating inputs and

outputs during execution.4

However, finding compatible software that meets researchers’

content requirements and integrates seamlessly into existing

research workflows remains a significant challenge.5 Currently,

available research software metadata schemas, such as

CodeMeta,6 only focus on general information and omit detailed

technical descriptions of interfaces, which are important for

interoperability and subsequent use.7 At most, such information

can be found on software documentation sites, where it is neither

standardized nor machine actionable. Furthermore, metadata
ber 8, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:p.kuckertz@fz-juelich.de
https://doi.org/10.1016/j.patter.2024.101064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2024.101064&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS Article
are stored and exchanged in various formats, from which no

standardized exchange format has yet been developed that

would allow the broad reuse of metadata once they have been

captured.8 Therefore, in order to make a software known on

various platforms and increase its impact, metadata must often

be repeatedly collected for each platform separately, which

greatly increases documentation effort, which is already

perceived to be high. At the same time, the broad dissemination

of metadata is essential for the long-term discoverability and

subsequent use of software.9 As a result, researchers must

invest considerable effort in both documenting and publishing

metadata, as well as finding and integrating research software.

Every time software is not found and reused but instead redun-

dantly developed, a significant increase in avoidable program-

ming, documentation, and maintenance efforts is imposed.

To address these issues, adaptations of the FAIR guiding prin-

ciples, which aim to increase the findability, accessibility, inter-

operability, and reusability of research data,10 were recently

adopted specifically for research software.11,12 Among other

things, these principles require research software to be regis-

tered and indexed in searchable platforms and annotated with

rich metadata. In order to increase the interoperability of soft-

ware components, the metadata must include interface defini-

tions of modular software architectures, making interoperability

the most challenging among the four high-level principles. On

the one hand, all metadata must comply with domain-relevant

community standards in order to be easily understandable for re-

searchers. On the other hand, the metadata must be machine

actionable for automated software discovery. In practice, how-

ever, it is unclear how the postulated abstract principles may

be put into action.13

The Data Description (DataDesc) framework presented in this

article is a practical approach to improving the interoperability

and findability of research software.14,15 It centers around a soft-

waremetadata schema that describes the data models on which

software interfaces are based. In order to capture characteristics

that are usually only described in the documentation, metadata

elements from established schemas were reused, combined,

and supplemented with new ones. In addition, the framework

provides an exchange format in which this information is map-

ped in a machine-actionable manner. The hierarchical data

structure of the OpenAPI standard was chosen as its basis to

facilitate its reuse in automated processes. Finally, it includes a

toolset that makes it easy to capture and publish software meta-

data from the source code.

The remainder of this article is structured as follows: the

related work section presents a review of existing software

description schemas, addressing different formats in the tension

between metadata and documentation. Furthermore, auto-

mated description tools and software publication platforms are

compared on the basis of the metadata formats they generate

or use. The results section explains the different components

of the DataDesc framework. First, the DataDesc schema is

described, along with the typical data flow between individual

interface components of research software on the basis of its

contents, formats, value ranges, and structures. Then, an expla-

nation of the structure of the exchange format and the individual

tools that support metadata generation is given. Finally, pipe-

lines to publication platforms are described, with which the
2 Patterns 5, 101064, November 8, 2024
metadata can be disseminated in a partially automated way.

Completing the results section, the presented approach is

exemplarily applied to the Framework for Integrated Energy Sys-

tem Assessment of the Energy Transformation Pathway Optimi-

zation Suite (ETHOS.FINE)16,17 from the energy domain. The

article concludes with a discussion section highlighting the key

characteristics of the presented approach as well as its limita-

tions and provides an outlook on future work.

Related work
This section provides an overview of current software descrip-

tion schemas. Additionally, automated description tools and

software publishing platforms are contrasted.

Software description schemas

Software metadata standards. A metadata schema defines a

set of metadata properties to standardize the structure and se-

mantics of descriptions of artifacts within its scope.18 A meta-

data standard may further standardize the encoding format,

what values are allowed for which properties, and how they

should be represented (e.g., conventions for spelling, capitaliza-

tion, date formats), among other things.18

Many different metadata schemas and standards exist for a

variety of use cases. Whereas Dublin Core19 outlines general

metadata terms, the DataCite Schema20 focuses on describing

research data, and the Data Catalog Vocabulary (DCAT)21 fo-

cuses on interoperability between data catalogs. Schema.org

is intended to describeweb pageswith structured datamarkups,

but it is also widely used for other purposes.22

With respect to research software, CodeMeta is a popular

community-driven metadata standard. It is based on sche-

ma.org, which it augments with several additional terms. Various

crosswalks exist—that is, mappings from one schema to

another—between CodeMeta and other metadata schemas.

CodeMeta covers many aspects of software metadata, with

some terms focusing on technical details, such as file size or

operating system, and others on administrative information,

like licenses and links to the software repository. It supports

the unambiguous assignment of authors, contributors, licenses,

and more via uniform resource identifiers (URIs). The purpose of

a software can be specified by means of a textual description,

application categories, keywords, and a link to a README file

or reference publication. Apart from a coarse classification, the

declaration of a software’s purpose is therefore still far from be-

ing readily machine actionable, that is, without interpreting (or

misinterpreting) natural language. Furthermore, CodeMeta

does not include terms for specifying the input and output of a

software, nor does it include terms for specifying features or

methods implemented by a software. Similarly, the Citation File

Format schema defines general metadata for the citation of soft-

ware repositories without describing the software’s purpose and

interface.23

In the domain of geoscience, Garijo et al. developed the Soft-

ware Description Ontology24 by extending their own approach,

namely OntoSoft.25 OntoSoft properties are structured in six cat-

egories: identify, understand, execute, do research, get support,

and update. The ontology captures technical metadata like pro-

gramming language and dependencies and descriptive data like

name, website, and contributors. The authors added a descrip-

tion of the input and output data also utilizing the Scientific



ll
OPEN ACCESSArticle
Variables Ontology and aligned OntoSoft with CodeMeta. The

metadata are published to an open knowledge graph.26 Garijo

et al. support the linking to other instances in the semantic

web, like Wikidata, the Scientific Variables Ontology, and others.

Additionally, they developed programs to support researchers in

metadata creation and the search for software models.27,28

In the domain of bioinformatics, Ison et al. developed the

metadata standard biotoolsXSD for the software registry bio.-

tools.29–31 The metadata is expressed as an XML schema and

contains 55 properties, 10 of which are mandatory. The use of

the EDAMontology as value vocabulary is required for properties

such as function, input, and output. The metadata schema also

contains software-specific properties like programming lan-

guage, license, and operating system. The use of an ontology

is not required for these.

Interface description standards. In order to increase its tech-

nical interoperability and reusability, software can be docu-

mented bymeans of interface description languages. The syntax

of such a language enables the formal and programming lan-

guage-agnostic description of interface functions and their pa-

rameters. Well-known representatives include the Web Service

Description Language (WSDL)32 and Web Application Descrip-

tion Language (WADL).33 Both are XML-based specification

standards that describe the syntactical elements of web services

and, primarily, how to access them. They are utilized to simplify

the information exchange in Web 2.0 application development.

Whereas WSDL is used in conjunction with the Simple Object

Access Protocol (SOAP), WADL enables the description of

web services conform to the Hypertext Transfer Protocol

(HTTP) and in particular the Representational State Transfer

(REST) paradigm. Both languages providemachine-processable

descriptions but do not support taxonomy or ontology informa-

tion for semantic classification. The WSDL andWADL standards

were last updated in 2007 and 2009, respectively.

The OpenAPI Specification is an interface description lan-

guage that focuses on REST APIs.34 By utilizing YAML and

JSON, it is both machine actionable and human readable. By

default, it is used to define the general properties of APIs, such

as the version, contact, and license information or server names

and addresses. However, it also defines technical aspects,

mainly with respect to REST interface functions like the paths

to endpoints, HTTP verbs, parameters, or response code de-

scriptions. The OpenAPI standard also allows for the annotation

of custom properties using a concept called extensions or x-at-

tributes. These extensions provide a powerful way of describing

additional functionality not covered by the standard specifica-

tion. As an open and non-proprietary state-of-the-art industry

standard, the OpenAPI Specification is actively maintained and

regularly updated.

The Web Ontology Language for Web Services (OWL-S) de-

fines ontologies built on top of the OWL for describing semantic

web services on a technical level, making it more powerful but

also more complex than regular description languages (inter

alia [i.a.], WSDL and WADL).35 It describes the purpose of ser-

vices, how they are accessed, and how they function. Although

more powerful than comparable description languages,

OWL-S is not an ‘‘end-all-be-all’’ solution to service descriptions

and requires domain-specific ontologies for describing domain-

specific functionality. Furthermore, its focus on semantic web
services greatly reduces its legibility; it was last updated in

2004 and is not suited to easy human reading.

The Functional Mock-up Interface (FMI) is an open-source

standard for simulation software interfaces.36 All simulation

models whose interfaces have been designed along the stan-

dard become so-called functional mock-up units (FMUs). The

standard ensures that all FMUs are compatible with one another

and can be executed in combination on the basis of XML and bi-

nary files and C-code, which defines functions, variables, and

mathematical formulas. The FMI comes with its own documen-

tation standard, namely the FMI Description Schema, which

only applies to FMI conform software. It encompasses general

information regarding the FMUs, such as name, version, author,

and license, as well as technical information like model struc-

tures, unit, and type definitions. The schema allows structured

extensions to the base standard in order to flexibly meet addi-

tional requirements. The FMI is still actively maintained today

and is used in many industrial companies.

Non-standardized software description. Software metadata

are also described on web pages, where the use of specific

terms is typically enforced but without adopting a metadata

schema, thereby only establishing uniformity on the web page it-

self. Schwarz and Lehnhoff, for example, describe a catalog of

energy co-simulation components.37 They use a semantic media

wiki to collect information on simulators and add descriptions to

the simulation interfaces. The elements of the catalog, which can

be used for a metadata schema, are not described in greater

detail. The open energy modeling initiative (openmod) includes

a list of energy models in their wiki.38 For each of these, admin-

istrative and descriptive metadata are listed, such as license, link

to a code repository, and model class. The descriptive elements

include detailed information on themodels. The elements are not

formalized asmetadata schema, and controlled vocabularies are

used for neither the elements nor the values. The Open Energy

Platform (OEP) introduces framework and model factsheets to

describe frameworks and models.39 These descriptions have

been further developed based on the non-formalized openmod

metadata elements.

In addition to the websites that focus on the general descrip-

tion of software using metadata, there are documentation and

specification websites that focus on describing the source

code of the software, providing detailed technical guidance for

both users and developers (e.g., see the PyPSA documenta-

tion40). The design ideas and specific technical elements of soft-

ware are typically defined along with their underlying algorithms

and procedures. Specifications for the API, user manuals, and

examples of applications make it possible to correctly utilize

the software. Software documentation is predominantly written

in natural language and, therefore, is neither machine actionable

nor easily searchable or comparable. Although such documen-

tation provides rich information, it is not typically considered to

be part of software metadata.

It should be noted that existing software metadata schemas

do not include technical documentation about interfaces.

Although interface description languages are designed to collect

this information, they focus on web services and protocols. As a

result, the interface information of software that is not provided

as a service is primarily published as non-standardized and

non-machine-actionable information on web pages, often
Patterns 5, 101064, November 8, 2024 3



ll
OPEN ACCESS Article
without any connection to controlled vocabularies or ontologies.

For research software, most of which is not provided as a ser-

vice, there is not yet a suitable schema that enables semantic

interface descriptions. However, the code-near structures of

interface description languages and the ability to connect

some via extensions to established software metadata schemas

offer promising foundations.

Software description tools

Documentation is generally regarded as an essential component

of software development, and yet it is frequently neglected. This

is often due to the fact that considerable effort is involved in

writing detailed, well-structured, and version-controlled docu-

mentation. A recommended means of alleviating this issue is

the use of automated documentation tools,41 which are specif-

ically designed to aid in the process of creating comprehensible

and complete documentation for a software project. There are

many such tools available, and although the general objective

is the same, they differ in their approach, programming lan-

guage, or input and output formats.

Many of these tools, e.g., Javadoc42 or Perldoc,43 focus on sin-

gle programming languages and use source code as their main

inputs. By parsing the code, they obtain information on defined

typesand functionsand their relationships. Somedocumentation

tools, such as Doxygen44 or the Sphinx plugin Napoleon,45 are

able to extract this kind of information from bare code; other

tools, however, rely on code comments in a determinate format.

In either case, additional metadata are typically conveyed via

comments. This can comprise, for example, a general descrip-

tion or explanation of a function’s parameters. Such information

is mostly given as free text and is placed into the final documen-

tation without change. MkDocs46 and, in some cases, Sphinx47

constitute an exception by only manually parsing created files,

e.g., containing reStructuredText. They can, however, both be

extended with plugins that automatically generate said text files

from code. The output of documentation tools is nicely formatted

documentation pages, typically usingHTML or LaTeX. These pa-

ges are easily readable and comprehensible to humans but

hardly machine actionable. Roxygen248 also generates interme-

diate files that are, in theory, machine actionable but, due to their

custom data format, are limited in their reusability.

In this regard, Swagger49 can be distinguished from other

tools. Swagger is used primarily for documenting REST APIs

and provides a set of distinct but related tools for that. At its

core, Swagger utilizes a YAML or JSON file standardized in the

OpenAPI Specification. This file is machine actionable and

stores all metadata of an API in a structured, hierarchical way.

It can be created manually or generated from code and, when

passed to the appropriate Swagger tools, is used to generate

a human-readable documentation web page. Unlike many other

tools, Swagger does not require specially formatted comments

within the code in order to extract the information. Furthermore,

Sphinx can be extended by a plugin to enable support for

OpenAPI Specification files, which, as implied, makes it possible

for Sphinx to generate interface descriptions from OpenAPI-

compliant YAML or JSON.

It should be highlighted that software and, therefore, interface

documentation can be parsed automatically from source code,

and many documentation tools are available. However, most of

these tools rely on code comments that are formulated in natural
4 Patterns 5, 101064, November 8, 2024
language and, therefore, are not directly machine actionable. In

this regard, Swagger is anexception, as it centers aroundauniver-

sal, machine-actionable, and standardizedmetadata file, which is

suitable for documentation pages as well as automated reuse.

Even though Swagger is intended only for documenting REST in-

terfaces, there is no lock-in to individual programming languages.

Because of this inherent flexibility, it offers some potential for the

development of generic software documentation workflows.

Software publication platforms

Software can bemadediscoverable and available for reuse bybe-

ing published on a variety of software-specializedpublication plat-

forms. Therefore, the distinct purposes and objectives of these

platforms vary. Althoughsomestore the sourcecodeof a software

in versioned repositories (e.g., GitHub50), in particular, to enable its

further development, others aim at the distribution and easy inte-

gration of mature programs (e.g., Anaconda51). Some platforms

serve as registries, indexing large collections of softwareandmak-

ing them searchable using detailed metadata (e.g., Python Pack-

age Index [PyPi]52). Others are dedicated to the provision of tech-

nical documentation and user guides (e.g., ReadTheDocs53).

Furthermore,most of the software publication platforms differ in

the data formats they accept and the uploading processes they

provide.Evenwhenusing similar file formats, the required informa-

tion or information structures vary. Some platforms, such as

GitHub,50 GitLab,54 Bitbucket,55 or SourceForge,56 ingest the

source code directly without a specific required structure. Others

support the inclusion ofmetadata configuration files. For example,

Anaconda Distribution51 requires a YAML file that describes the

project. Maven Central57 requires an XML POM file for storing

metadata. Whereas PyPi52 requires a TOML file with information

about packages, NPM58 generates a JSON file based on text

prompts. SwaggerHub59 requires an OpenAPI-conforming inter-

face description file in YAMLor JSON formats, containing function

and argument specifications. Like ReadTheDocs,53 some plat-

forms require a software project to have a documentation folder

according to a standard. In this specific case, Sphinx or MkDocs

can be used in order to generate such a folder. Platforms like

GitBook,60 CRAN,61 or GitHub Pages62 require programming lan-

guage-specific files for the installation. For example, submitting a

project to CRAN requires first creating a TAR.GZ file. GitHub Pa-

ges62 can store project documentation via HTML files. The

OEP,39 Open Research Knowledge Graph (ORKG),63–65 or bio.-

tools,30 for example, require manually filling forms with metadata

in order to register it.

There is no question that publishing platforms are critical to the

dissemination, findability, and reusability of research software

within and across academic communities. It is advantageous

to employ various platforms in parallel to utilize their distinct

strengths to increase the impact and transparency of a software.

However, as no uniform format for the exchange and subsequent

use of softwaremetadata has yet been identified, metadatamust

often be collected redundantly and adapted to heterogeneous

formats and processes, creating the need for a machine-action-

able and programming-language-agnostic exchange standard.

RESULTS

This section introduces the DataDesc framework. As a central

component, the DataDesc schema, which enables the thorough



Figure 1. Schematic representation of the generic information flow between software interface and core components

ll
OPEN ACCESSArticle
description of software interfaces, is explained. Then, an ex-

change format and assistance tools are presented, enabling

the gathering, storage, and reuse of machine-actionable meta-

data. Thereafter, procedures that can be used to sharemetadata

on publishing platforms are defined. Finally, the annotation of a

research software according to the DataDesc schema is demon-

strated. DataDesc has been released with all of its components

presented here under the open MIT license on GitHub.14 In

addition, the current version 1.0 has been made available in

the J€ulichDATA repository under the CC0 public domain

dedication.15

DataDesc schema
Metadata schemas often focus on general information provi-

sion, which primarily includes the naming of organizations

and persons involved in the development process and the

technical and licensing conditions under which the software

can be obtained and used. By specifying categories and key-

words, they also make a valuable contribution to supporting

the findability of software. Within these schemas, however,

the description of interfaces can only be superficially

embedded in general metadata properties. Although this infor-

mation already provides important insights into a software, it is

not sufficient to facilitate its interoperability and reusability in a

machine-actionable way.

To compensate for this omission, the DataDesc metadata

schema for the description of research software was developed.

In addition to capturing general information relevant to the scien-

tific context, it aims, in particular, at the detailed documentation

of software interfaces. The programming language agnostic

schema offers the possibility to treat all functions of an interface

and its input and output parameters individually. The structured

capture of information, which is often only available in this level of

detail in the form of instructions and specifications written in free

text, enables their automated processing and increases their

findability and comparability. Mapping them as machine-action-

able metadata allows both humans and computers to discover

and understand the capabilities of a software, interact with it,

and integrate it with other programs and data without having to

refer to the source code or further documentation.

The structure and content of the DataDesc schema are based

on the OpenAPI Specification, which is a widely used language

for the standardized description of web interfaces based on

HTTP and REST. However, since research software mostly

does not follow a client-server architecture and is not provided

as services accessible via web interfaces, DataDesc does not

focus on the transmission of data via HTTP requests to be pro-

cessed on the server side but on the permissible use of locally
installed programs. Largely adopted from OpenAPI are the hier-

archically organized documentation structures, which allow

code-near descriptions of interface elements. Furthermore, the

data type specifications based on JSON schema are used,

with which even nested data models used by an interface can

be mapped in detail. In the area of the general description of

research software, the CodeMeta metadata standard and the

Schema.org ontology on which it is based were closely followed,

and adopted metadata properties were integrated within the hi-

erarchical documentation structure. As a result, the DataDesc

schema is largely compatible with both the OpenAPI and the

Schema.org or CodeMeta standards and minimizes the amount

of necessarily individually defined terminology.

An interface, as schematically depicted in Figure 1, serves as a

connection point for users and programs to interact with a soft-

ware. It is composed of the functions through which data can be

inputted into and retrieved from the software. These functions

are distinguished from the inner functions, which form the logic

of the software core. The program core can only be addressed

indirectly via the interface, whereby the structures and formats

of the information flow are defined by the interface functions

and internal data models. An interface description performed

with the DataDesc schema describes a software in general and

formally identifies the characteristics of an interface according

to a collection of metadata elements. The meaning and use of

the interface property elements, detailed in Figure 2, is described

in the following. References to schema elements are in italics and

parentheses.

The schema comprises the naming (identifier) and description

(description) of all functions, which are part of an interface and

over which a software can be addressed (apiFunctions). In order

to enable easy and, in particular, error-free use of a software, the

functions’ parameters, as well as their underlying data models,

must be described in detail. To adequately characterize vari-

ables serving as the input or output parameters of interface

functions (inputVariables, outputVariables), their intended and

allowed data must be described in terms of contents, formats,

values, and structures.

Data content description

In order to digitally process information, it must be stored in the

form of variables. In the course of software development, the

data content of each variable is defined. This refers explicitly to

the referencing of real-world concepts, such as the height or

weight of a person, and not of data types, which specify whether

variables can contain integers, floats, strings, or similar. A pre-

cise understanding of themeaning of the data content a software

requires, processes, and outputs is essential for its correct and

intended use.
Patterns 5, 101064, November 8, 2024 5

http://Schema.org
http://Schema.org


(legend on next page)

ll
OPEN ACCESS Article

6 Patterns 5, 101064, November 8, 2024



ll
OPEN ACCESSArticle
However, capturing meanings is not a trivial task. Depending

on the demand for precision and generality, describing data con-

tent involves varying degrees of effort. The easiest approach is to

sensibly name variables during software development (identifier)

and explain them further in docstrings (description). However,

these names and free-text descriptions almost always leave

considerable room for interpretation as to the meaning of the

data content. Instead, it is more interoperable to reference con-

cepts from ontologies with their respective URIs (semanticCon-

cept), which often provide unambiguous definitions that are

agreed upon in the respective research domain.66 Of course,

the open collaborative development of such concepts with the

broadest possible participation and agreement within a domain

is a labor-intensive process requiring well-organized community

infrastructures.67

If the variable is numerical, then documenting the meaning

alone is insufficient for fully describing its data content. In this

case, additional information about a unit is necessary, so that,

for example, a duration of 7 h can be distinguished from one of

7 s. Just as with the concepts before, a unit can be specified

by an identifier or an ontology reference (unit).

In the context of software interfaces, specific concepts and

units of measurement need not always be declared. In order to

enable a greater degree of freedom in data entry and so to enable

a more flexible application of a software, intended data contents

can bemore broadly indicated. For example, specifying the gen-

eral concept means of transport indicates that the software can

process data about bicycles, trains, cars, and so forth. Likewise,

a generic quantity kind such as length can be indicated for an

interface parameter that expects, for example, a height, width,

or distance value so that a specific unit of length such as meters,

centimeters, or miles can be selected when entering data (quan-

tityKind). In this context, the use of ontologies offers the advan-

tage that they often already include information that specifically

relates to more general concepts.

Data format description

The format of a variable defines how the information it contains is

to be encoded into binary data and subsequently interpreted. It

provides information about which operations may be applied to

the data content. The format is defined by the data type of a var-

iable (type). There are primitive and complex data types that can

be native to programming languages or that come as custom

data types provided by libraries. Primitive data types, such as

strings, integers, or booleans, can hold single values. Complex

data types, like lists, tables, arrays, or classes, can group multi-

ple instances of primitive data types. The data type of a variable

can be further specified by hinting at, e.g., specific numeric

types, string formats, or object types (format).

As complex data types can also recursively contain complex

data types, nested structures of arbitrary depth and complexity

are possible, although their final level can only contain primitives.

Complex structures of this kind are often used to define data

models, which summarize the input and output data of research
Figure 2. Structure and content of the DataDesc schema for describin

Both the general and technical information are organized in information objects

properties that comply with the OpenAPI Specification directly or via extensions

map to the Schema.org ontology are indicated by a gray square. Individual pro

DataDesc/blob/main/schema/DataDesc_schema_v1.1.md.14
software into single data objects andmake them centrally acces-

sible (e.g., ETHOS.FINE data model,68 IAMC pyam data

model69). Oftentimes, classes are used at the highest level for

the representation of such data models, to which the interface

functions for importing and storing, as well as for reading out

and exporting, are assigned (cf. Figure 1). In order to describe

not only the data types of the function parameters but also the

data types nested within them, hierarchical data formats are

mapped in the DataDesc schema using recursive relationships,

through which the data schema of a variable can contain further

data schemas (cf. Figure 2).

Files represent another complex data type, as they can also

contain and group data of arbitrary types. As is shown in Figure 1,

reading in files is a widely used method of transferring data to a

research software, which is why an interface description must

also inform regarding permitted file formats that can be pro-

cessed without errors. For each variable containing a file refer-

ence, whatever the variable itself, e.g., string or file object,

DataDesc gives the option of specifying the format (mediaType),

e.g., text formats like XML, HTML, or TEXT or binary formats like

PDF, XLS, or JPG, of a referenced file. Beyond that, the char-

acter encoding (charSet) of text formats, e.g., UTF-8, ASCII, or

ISO 8859-1, can be specified to support the correct interpreta-

tion of text data.

Data value description

When creating software, a permissible value range must be

defined for each variable, guaranteeing the technically error-

free processing and consistency of content for all values from

within this range. Technically, the value range is defined in

many programming languages by the choice of a variable type.

In Java, for example, a variable of type float allows all floating-

point values from � 3:431038 to 3:43 1038, whereas a boolean

can only accept the values of true and false.

In addition, a value range can be further limited based on con-

tent considerations. For example, if a longitude is to be stored in

a float variable, only floating point values from� 180 to + 180 de-

grees should be considered valid (minimum, maximum, exclusi-

veMinimum, and exclusiveMaximum). It is also possible to

specify that a number must be the multiple of another number

(multipleOf). For text variables, the number of characters can

be limited (minLength, maxLength). If they are only allowed to

contain certain patterns, this can be defined through regular ex-

pressions (pattern). For example, if a filename is to consist of only

letters, numbers, and underscores, this can be defined using the

expression ^[A-Za-z0-9_]+$. If the allowed value range of a var-

iable should be fully restricted to predefined values, e.g., North,

East, South, andWest, DataDesc schema offers the possibility of

documenting them in the form of value enumerations (enum).

Regardless of the variable type, it is important to document

whether null values can be processed without errors (nullable).

It is also part of the value description to specify whether a var-

iable is an optional parameter (required). If this is the case, then it

does not need to be set when the respective function is called
g software and their interface data models

, with arrows indicating the different relationships between them. DataDesc

are marked with white circles or white triangles, respectively. Properties that

perty definitions can be viewed at GitHub: https://github.com/FZJ-IEK3-VSA/

Patterns 5, 101064, November 8, 2024 7

http://Schema.org
https://github.com/FZJ-IEK3-VSA/DataDesc/blob/main/schema/DataDesc_schema_v1.1.md
https://github.com/FZJ-IEK3-VSA/DataDesc/blob/main/schema/DataDesc_schema_v1.1.md


A B

C

D E F

Figure 3. Comparison of widely used data structures based on an example of information about companies

Variables are shown in gray and their values in white, whereas dimensions are displayed in dark blue with their indices in light blue.

ll
OPEN ACCESS Article
upon. In this context, a default value can also be specified and is

used if the variable is not explicitly set (default). For complex data

types, it also can be specified which property variables are

mandatory (requiredProperties) and whether contents may only

occur once (uniqueItems). Finally, examples can be specified

in the DataDesc schema for a better understanding of the data

values (example).

Data structure description

For variables of complex data types, the internal data structures

must be described at both a technical and contextual level so as

to enable the correct accessing of individual values and the

determination of their respective meanings. The processing pro-

cedures of software programs are designed on the basis of spe-

cific data structures whose declaration is the task of interface

descriptions. The correct function of a software is not ensured

if the structure of the passed data differs from the expected

data structure.

Figure 3B shows four independent variables of the primitive

data types of integer and string, which, as they represent infor-

mation characterizing the same single object, are combined in

a grouping variable company, which itself must be described.

The technical structuring of the data thereby maps its context

by relating the four variables to each other and to the grouping

variable: number of employees becomes number of employees

of the company AlphaArc. In order to capture this kind of context

within an interface description, the DataDesc schema utilizes the

hierarchical structure to map relationships between variables.

For example, an object such as company is described using a

collection of property-value pairs (properties), whereby a data

schema object must be specified for each property variable, in

this case for name, owner, address, and employees.
8 Patterns 5, 101064, November 8, 2024
In addition to grouping, the dimensional resolution of informa-

tion represents a significant structural pattern. Figures 3A, 3D,

and 3E show the increasing resolution of the initially non-dimen-

sionally resolved information: the AlphaArc company has a total

of 73 employees. This information does not change subse-

quently, but the single value is broken down into individual values

per store and then per store and department. Each dimension

alongwhich the information is resolved is listed as part of the var-

iable (dimensions). Each dimension is mapped as a child object

and can be described inmore detail, e.g., with regard tomeaning

and allowed index range. In this context, the combination of

dimension indexes is unique, which is why it acts as a key and

enables the unique identification and retrieval of each individual

value. At the same time, an individual context is defined for each

value: 15 employees is the team size of the sales department in

the London store, for example.

The structural description provides not only information about

the context of values but also about data access mechanisms

that might be expected by interface functions (see Figure 3C).

The structure of the company list, which can be, e.g., in the

format of a Python dictionary, pandas DataFrame, Java Hash-

Map, or SQL table, contains several uniformly designed datasets

(items). The variable name was determined as a key index due to

the identifying character of its values. As a dimension of the com-

pany list, the variable name allows access to individual datasets.

For a grouping variable, the number of items that it should list can

be limited (minItems, maxItems).

Figure 3F shows another structure that combines grouping

and resolution by adding the third dimension year to the resolu-

tion of the number of employees based on the two dimensions of

store and department. Here, the total number of 73 employees is



ll
OPEN ACCESSArticle
not broken down further but put in the context of a specific year,

e.g., 15 employees is the team size of the sales department in the

London store in the year 2010. Together with uniform information

for, e.g., the years 2015 and 2020, this third dimension turns the

dataset into a time series.

The DataDesc schema avoids redundant descriptions of com-

plex data models that are shared by multiple function parame-

ters. Variables and their data schemas are described separately.

In that way, a data schema object can be referred to by multiple

variable objects (cf. Figure 2).

DataDesc exchange format and utilities
In addition to the schema for describing software and software

interfaces, the DataDesc document, an exchange format for the

integrated storage and flexible subsequent use of software meta-

data, represents the second core component of the DataDesc

framework. The OpenAPI Specificationwas chosen as its founda-

tion, as it allows a programming-language-agnostic description of

software that is usable by both humans and computers. A soft-

ware is described in a single JSON file. The basic structure of a

DataDesc document consists of a hierarchical object tree that is

subdivided into the two sections general software information

and technical interface information (compare Figure 2). In the gen-

eral software information section, all general information is

accommodated. If metadata elements are required for this that

are not provided for in the OpenAPI Specification, then they can

be added by means of x-attribute extensions without violating

the standard. In the technical interface information section, the

technical interface metadata, as described by the DataDesc

schema, is specified. The x-attributes again provide the opportu-

nity to compensate for missing OpenAPI metadata elements. In

addition, they form the basis for using the standard not only to

describe REST-compliant interfaces; they can also be used to

arrange and annotate code elements such as classes, functions,

and parameters in the hierarchical object tree according to indi-

vidual software interface designs.

In order to support the description of software based on its

general properties (such as author, license, programming lan-

guage, funder, etc.) and the transfer of this information into the

exchange format chosen in the DataDesc approach, a browser-

based input form was added to the framework. The metadata

fields of the form thereby widely map to the Schema.org

ontology, as this is already widely used, e.g., by the CodeMeta

standard, and can be applied across research domains.

Unlike the general metadata, the technical documentation is

produced directly in the source code of a program, which is

why the definition of a machine-actionable formatting of this in-

formation, as well as its automated parsing and transfer into

the exchange format, must be made individually for each pro-

gramming language. In the context of Python software, code

components related to the interface are individually marked up

with DataDesc schema elements by utilizing the Python library

typing.Annotated.70 A Python parser specifically developed for

this schema extracts both the relevant code structures and their

metadata and automatically generates the hierarchical object

tree from them, which is then stored in an exchange-format-

compliant file.

The DataDesc utilities are complemented by a tool for merging

themetadata files so that the entire description of a software can
be represented in a single concise DataDesc document that is

easily exchangeable. Its OpenAPI conformity also ensures high

interoperability, as a multitude of publicly available tools can

be applied to it.49,71

DataDesc publication pipelines
Making it possible for developers to create software metadata

and documentation only once and then flexibly reuse it is one

of the main objectives of the DataDesc approach. Against this

background, technical processes are defined and, where neces-

sary, supported with scripts that enable the collected informa-

tion to be disseminated on software publication platforms. These

publication pipelines are unique to each platform and subject to

automation. To upload data to any of the publication platforms

mentioned below, a free user account must first be created.

The DataDesc document can be uploaded and published on

SwaggerHub59 via its GUI or API, without any need for modifica-

tions. To publish the description on GitHub,50 it is sufficient to

add the file to the software’s versioned repository and reference

it in the central README file. To make the documentation more

visually appealing, a link to a SwaggerHub-hosted documenta-

tion page can be included. The registration of Python-based

software and its metadata in the PyPi52 has been fully auto-

mated.With a DataDesc script utilizing restructuring and conver-

sion tools, the JSON file and corresponding software source

code are reformatted, uploaded, and published on the platform.

The publication on ReadTheDocs53 can also ingest information

based on a DataDesc exchange file. In order to upload the

documentation in the appropriate format, it must first be crea-

ted using, for example, Sphinx with its extension for the parsing

of OpenAPI Specifications. Then, a GitHub repository com-

prising the generated documentation can be imported. The

ORKG63–65 provides a GUI and an API for uploading software

metadata, which can be entered manually into a form. In addi-

tion, a script was added to the DataDesc framework to automate

the translation of the exchange format into the ORKG template

structures.72 Currently, this mapping must still be performed

individually by each user. However, work is underway to include

this functionality in the ORKG. As part of the development of the

Open Energy Knowledge Graph,73 efforts are being made to

ensure that the exchange format can also be processed directly

within the OEP.39

Application case
To demonstrate the application of the DataDesc approach, it is

applied to a research software in the following. For this, the

open-source ETHOS.FINE framework16,17 was chosen to illus-

trate a use case that is both realistic in terms of complexity

and intriguing with respect to the interfaces provided. Using

selected excerpts from the created interface documentation

shown in Figure 4, the syntax of the JSON file generated using

the DataDesc utilities is presented, and the semantic expression

capabilities of the DataDesc schema are assessed. To allow for a

more in-depth review of the entire DataDesc approach, all code

and documentation files created as part of this example applica-

tion are published in the DataDesc repository.14,15

ETHOS.FINE is a Python package with a 5-year development

history originating in the research domain of energy systems

analysis.17 It enables the modeling, optimization, and evaluation
Patterns 5, 101064, November 8, 2024 9

http://Schema.org


Figure 4. Compilation of selected lines of code from the DataDesc document generated to describe the ETHOS.FINE interfaces to represent

the syntax and its semantics within the DataDesc schema

Most brackets have been omitted to preserve brevity.

ll
OPEN ACCESS Article

10 Patterns 5, 101064, November 8, 2024



ll
OPEN ACCESSArticle
of energy systems. In addition to accounting for technical and

environmental constraints, its optimization also seeks to mini-

mize total annual energy system costs. It supports the creation

and computation of spatially, temporally, and technologically

highly resolved models while integrating complexity reduction

techniques to shorten computation times. In its current version,

v.2.3.1 from 2023, the framework includes around 20,000 lines of

code (excluding blank lines) and 10,000 lines of code documen-

tation. Whereas the source code of the software project is

hosted on GitHub,74 the user documentation is published on

ReadTheDocs.75 The documentation pages are based on the in-

line docstrings in the source code and were automatically gener-

ated using the Sphinx package. In addition, a short entry in the

OEP’s software framework list was written for the framework.76

The ETHOS.FINE software is based on a central data model,

namely the Energy System Model (ESM), which is represented

by theESMandcomponentclasses. It holdsmulti-dimensional in-

formationpertaining to the energy systemunder investigation and

comprises all characteristics of its components, e.g., for the

provision, transmission, and storage of energy. As input,

besides basic parameters for calculation control, the software re-

quires the general conditions of the energy system and the

techno-economic parameters of its components. As output, it

provides information for the design and operation of a mini-

mum-cost energy system. As the ESM incorporates all of these

data, it simultaneously serves as the software’s input and output

data model.

As noted in the general schematic in Figure 1, the ETHOS.FINE

interface offers the possibility of reading the input data from files

or having them transferred by preceding software. However, in

the second case, the information can be gathered step by step

in the data model classes; for file-based information transfer, a

single complex file containing all parameters must be provided.

Both Excel and NetCDF file formats are accepted for this pur-

pose. On the output side of the interface, the result data can

also be saved in Excel or NetCDF form or visually depicted using

a range of plotting functions.

The ETHOS.FINE interfaces for reading Excel and NetCDF

files are implemented by one function each, which mainly obtain

a path to the respective input file. Here, DataDesc offers the pos-

sibility, in addition to the superficial description of the string vari-

ables, of going in-depth and also describing the necessary inter-

nal structures of the input files (cf. Figure 4, lines 40–50). Thus, for

the NetCDF interface, the control parameters and input variables

were documented in the clearly structured hierarchical data

format, which arranges the information according to entity types

and, in each case, lists their attributes in accordance with their

different dimensional characteristics. The documentation of the

Excel data structure required more effort, as it does not group

the data by entities but distributes them to different spread-

sheets depending on their dimensional resolutions. The resulting

tables, in which the multi-dimensional attribute characteristics of

different entities are mapped by means of different index col-

umns, required precise documentation to define the boundaries

between individual datasets. In both cases, documentation

could be created to help users understand the given file struc-

tures and arrange their own input data accordingly. The docu-

mentation effort depended on the straightness and non-ambigu-

ity of the data model structures.
For the documentation of the programmatic interface, the con-

structors of the ESM and the component classes were described

using DataDesc. Here, the use of Python’s typing library—and

specifically the Annotated package70—enabled the inclusion of

additional metadata into the code. Primitive variable names,

comments, types, roles, and default values were easily mapped

to the DataDesc annotation syntax (lines 8 ff) using generic type

hints. Custom types, such as Panda’s dataframes, generally

profit frommore detailed structural information, which were inte-

grated by adding metadata in form of key-value pairs to the

annotation Annotated[T, x], where T is a given type and x any

metadata. In addition, the value range constraints that some var-

iables are subject to were integrated into the code using the An-

notated package and later parsed into the documentation with

the metadata elements contained in the DataDesc schema

(line 25). Furthermore, complex data structures of ETHOS.FINE,

as well as variables that are constrained to a permitted set of

values, were described in detail (lines 13–20 and 30–32). Tomini-

mize the documentation effort, value sets and data structures

that apply to several variables were documented once and

then referenced repeatedly (line 37).

DISCUSSION

The FAIR principles and their adaptations to research software

have received much attention and support. To effectively reuse

a software, the software itself and its interfaces must be clearly

defined and made understandable, ideally in a machine-action-

able manner. However, most research software today is not

documented or published in a way that provides detailed and

machine-actionable interface descriptions. Instead, software

metadata are often focused on the compact provision of general

information, whereas documentation pages, including detailed,

technical information, are primarily in natural language and not

machine actionable.

Therefore, the DataDesc framework was presented in this

article as an approach to describing the data models of software

interfaces using detailed and machine-actionable metadata and

as a FAIR advancement of existing research software metadata.

In pointing out that there must be a differentiation between data

structures and data formats, it was shown how to consistently

describe data structures and, by doing this, support the interop-

erability of software to other programs and data files. In addition

to a specializedmetadata schema, an exchange format and sup-

port tools for the easy collection and automated publishing of

software documentation were introduced. Using the ETHOS.

FINE framework as an example, the practical applicability of

DataDesc and its limitations were shown. It is hoped that

DataDesc will facilitate the description of software interfaces

with detailed and machine-actionable metadata enough to

make it common practice, leading to increased interoperability,

findability, and, therefore, reusability of research software.

Limitations
The DataDesc schema currently has limitations in terms of

capturing content dependencies of parameter values and

structures. So, if the permitted value range, structure, or format

of a variable depends on a user-specified value in another

variable, then this cannot yet be mapped formally and in a
Patterns 5, 101064, November 8, 2024 11



ll
OPEN ACCESS Article
machine-actionable format. Also, the description of procedural

dependencies, in which the value of a variable influences the

software-internal calculation processes, must be represented

so far as free-text docstrings. An example from the application

case for this is the component class that contains the Boolean

parameter hasCapacityVariable, which, if set to true, causes

the capacityVariableDomain and capacityPerPlantUnit variables

to be ignored in the calculations. Work is currently underway to

formally integrate this form of dependencies into the schema.

A similar form of content dependency type, which cannot

currently be specified by DataDesc, can result from the interac-

tion of different software components. In the application case

shown, ETHOS.FINE integrates the tsam library for the purpose

of temporal data aggregation and partially maps its external

interface in its own interface. In a function of the ESM class, for

example, the parameter aggregation method can be selected

(lines 30–32). The permitted value set, which includes options

like averaging or k-means, is specified by the external library

and manually included in the ETHOS.FINE documentation. In

the future, the documentation of independent programs could

be integrated and reused automatically if they are alsomadema-

chine actionable by means of the DataDesc schema.

In the area of utilities and publication pipelines, the DataDesc

framework has limitations in that only a parser for Python-based

research software and interfaces to five software platforms have

been implemented to date. As part of the dissemination of the

DataDesc framework, the aim is to encourage the community

to support the coverage of additional programming languages

and publication platforms.

Outlook
Currently, the DataDesc framework is being incorporated into

the Research Software Metadata Working Group of the Meta-

data Section of the National Research Data Infrastructure

(NFDI) initiative to establish and support a comprehensive meta-

data vocabulary for research software and to aid the NFDI con-

sortia in applying and extending the vocabulary according to

their needs.77 Furthermore, DataDesc is currently being

enhanced and applied to the description of datasets. With both

software interfaces and data being described with DataDesc,

upcoming research will lay the foundation for automatically

composing and executing computational workflows. This will

enable insights into how and with which data and programs soft-

ware can be used and further increase the reuse and integration

of research software and the reproducibility of computational

research in the future.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources on the DataDesc framework

should be directed to and will be fulfilled by the lead contact, Patrick Kuckertz

(p.kuckertz@fz-juelich.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The DataDescmetadata schema, the source code of the developed DataDesc

utilities, and related example and documentation files are publicly available un-

der the open MIT license at GitHub: https://github.com/FZJ-IEK3-VSA/
12 Patterns 5, 101064, November 8, 2024
DataDesc.14 In addition, these resources have been made available in their

current version, v.1.0, under the CC0 public domain dedication at J€ulichDATA:

https://doi.org/10.26165/JUELICH-DATA/DLCYV5.15

ACKNOWLEDGMENTS

The authors would like to thank the Federal Ministry for Economic Affairs and

Energy of Germany (BMWi) for supporting this work with a grant for the project

LOD-GEOSS (03EI1005B). Furthermore, the authors are grateful to the

German federal government, the German state governments, and the Joint

Science Conference (GWK) for their funding and support as part of the NFDI4-

Ing and the NFDI4Energy consortia, managed by the German Research Foun-

dation (DFG) – 442146713 and 501865131. In addition, the work was sup-

ported by the Lower Saxony Ministry of Science and Culture within the

Lower Saxony ‘‘Vorab’’ of the Volkswagen Foundation under grant 11-

76251-13-3/19–ZN3488 (ZLE) and by the Center for Digital Innovation

(ZDIN). This work was also supported by the Helmholtz Association as part

of the program ‘‘Energy System Design.’’

AUTHOR CONTRIBUTIONS

Conceptualization, P.K., J.G., O.K., and S.F.; methodology, P.K., J.G., O.K.,

S.F., D.N., J.S., R.P., and F.E.; software, D.N., J.S., and O.K.; validation,

R.P. and P.K.; investigation, P.K., J.G., O.K., D.N., J.S., R.P., and S.F.; data cu-

ration, J.S.; writing – original draft, P.K., J.G., O.K., D.N., J.S., R.P., and S.F.;

writing - review & editing, P.K., J.G., O.K., D.N., J.S., R.P., S.F., F.E., N.P.,

J.M.W., A.N., S.A., and D.S.; visualization, P.K. and J.G.; supervision, D.S.,

S.A., and A.N.; project administration, P.K. and O.K.; funding acquisition,

D.S., S.A., and A.N.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 2, 2024

Revised: February 19, 2024

Accepted: September 9, 2024

Published: October 1, 2024

REFERENCES

1. Ferenz, S., and Nieße, A. (2023). Towards improved findability of energy

research software by introducing a metadata-based registry. ing.grid 1.

2. Anzt, H., Kuehn, E., and Flegar, G. (2021). Crediting pull requests to open

source research software as an academic contribution. J. Comput. Sci.

49, 101278.

3. Smith, A.M., Katz, D.S., and Niemeyer, K.E. (2016). Software citation prin-

ciples. PeerJ Comput. Sci. 2, e86.

4. Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y.,

Crusoe, M.R., Peters, K., and Schober, D. (2020). FAIR Computational

Workflows. Data Intell. 2, 108–121.

5. Kelley, A., and Garijo, D. (2021). A framework for creating knowledge

graphs of scientific software metadata. Quantitative Science Studies 2,

1423–1446.

6. The CodeMeta Project. Codemeta Terms. https://codemeta.github.io/

terms/.

7. Druskat, S., Bertuch, O., Juckeland, G., Knodel, O., and Schlauch, T.

(2022). Software publications with rich metadata: state of the art, auto-

mated workflows and HERMES concept. Preprint at arXiv. https://doi.

org/10.48550/arXiv.2201.09015.

8. Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del

Pico, E., Dominguez Del Angel, V., van de Sandt, S., Ison, J., Martinez,

P.A., et al. (2020). Towards FAIR principles for research software. Data

Sci. 3, 37–59.

9. Habermann, T. (2020). Metadata and reuse: Antidotes to information en-

tropy. Patterns 1, 100004.

mailto:p.kuckertz@fz-juelich.de
https://github.com/FZJ-IEK3-VSA/DataDesc
https://github.com/FZJ-IEK3-VSA/DataDesc
https://doi.org/10.26165/JUELICH-DATA/DLCYV5
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref1
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref1
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref2
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref2
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref2
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref3
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref3
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref4
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref4
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref4
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref5
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref5
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref5
https://codemeta.github.io/terms/
https://codemeta.github.io/terms/
https://doi.org/10.48550/arXiv.2201.09015
https://doi.org/10.48550/arXiv.2201.09015
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref8
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref8
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref8
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref8
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref9
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref9


ll
OPEN ACCESSArticle
10. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J.J., Appleton, G., Axton,

M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L.B., Bourne,

P.E., et al. (2016). The FAIR Guiding Principles for scientific data manage-

ment and stewardship. Sci. Data 3, 160018–160019.

11. Barker, M., Chue Hong, N.P., Katz, D.S., Lamprecht, A.-L., Martinez-Ortiz,

C., Psomopoulos, F., Harrow, J., Castro, L.J., Gruenpeter, M., Martinez,

P.A., and Honeyman, T. (2022). Introducing the FAIR Principles for

research software. Sci. Data 9, 622–626.

12. Katz, D.S., Gruenpeter, M., and Honeyman, T. (2021). Taking a fresh look

at FAIR for research software. Patterns 2.

13. Hasselbring, W., Carr, L., Hettrick, S., Packer, H., and Tiropanis, T. (2020).

From FAIR research data toward FAIR and open research software. IT Inf.

Technol. 62, 39–47.

14. Kuckertz, P., Göpfert, J.-M., Karras, O., Neuroth, D., Schönau, J., Pueblas,

R., Ferenz, S., Engel, F., Pflugradt, N., Weinand, J.M., et al. (2024a).

DataDesc - A framework for machine-actionable software metadata.

https://github.com/FZJ-IEK3-VSA/DataDesc.

15. Kuckertz, P., Göpfert, J.-M., Karras, O., Neuroth, D., Schönau, J., Pueblas,

R., Ferenz, S., Engel, F., Pflugradt, N., Weinand, J.M., et al. (2024b).

DataDesc. J€ulich DATA. https://doi.org/10.26165/JUELICH-DATA/

DLCYV5.

16. Groß, T., Knosala, K., Hoffmann, M., Pflugradt, N., and Stolten, D. (2023).

Ethos.fine: A framework for integrated energy system assessment.

Preprint at arXiv. https://doi.org/10.48550/arXiv.2311.05930.

17. Welder, L., Ryberg, D., Kotzur, L., Grube, T., Robinius, M., and Stolten, D.

(2018). Spatio-temporal optimization of a future energy system for power-

to-hydrogen applications in germany. Energy 158, 1130–1149.

18. Chan, L.M., and Zeng, M.L. (2006). Metadata interoperability and stan-

dardization - A study of methodology, part I: achieving interoperability at

the schema level. D-Lib Mag. 12.

19. Dublin Core Metadata Initiative (DCMI). DCMI Metadata Terms. https://

www.dublincore.org/specifications/dublin-core/dcmi-terms/.

20. DataCite – International Data Citation Initiative e.V.. DataCite Metadata

Schema 4.5. https://schema.datacite.org/.

21. World Wide Web Consortium (W3C). Data Catalog Vocabulary (DCAT) -

Version 3. https://www.w3.org/TR/vocab-dcat-3/.

22. Zeng, M.L., and Qin, J. (2022). Metadata (Facet Publishing).

23. Druskat, S., Spaaks, J.H., Chue Hong, N., Haines, R., Baker, J., Bliven, S.,

Willighagen, E., Pérez-Suárez, D., and Konovalov, A. (2021). Citation File

Format (Zenodo). https://doi.org/10.5281/zenodo.5171937.

24. Garijo, D., Ratnakar, V., Gil, Y., and Khider, D.. The software description

ontology. Revision: 1.9.0. https://w3id.org/okn/o/sd/1.9.0.

25. Gil, Y., Ratnakar, V., and Garijo, D. (2015). OntoSoft: Capturing Scientific

Software Metadata. In Proceedings of the 8th International Conference

on Knowledge Capture. K-CAP 2015 (New York, NY, USA: Association

for Computing Machinery)978-1-4503-3849-3, pp. 1–4.

26. OntoSoft. OntoSoft Portal. https://www.ontosoft.org/portal/.

27. Garijo, D., Osorio, M., Khider, D., Ratnakar, V., and Gil, Y. (2019). OKG-

Soft: An Open Knowledge Graph with Machine Readable Scientific

Software Metadata. In 2019 15th International Conference on eScience

(eScience), pp. 349–358.

28. MINT Project. MINT Model Explorer. http://models.mint.isi.edu.

29. Ison, J., Rapacki, K., Ménager, H., Kala�s, M., Rydza, E., Chmura, P.,

Anthon, C., Beard, N., Berka, K., Bolser, D., et al. (2016). Tools and data

services registry: a community effort to document bioinformatics re-

sources. Nucleic Acids Res. 44, D38–D47.

30. Ison, J., Ienasescu, H., Chmura, P., Rydza, E., Ménager, H., Kala�s, M.,

Schw€ammle, V., Gr€uning, B., Beard, N., Lopez, R., et al. (2019). The bio.-

tools registry of software tools and data resources for the life sciences.

Genome Biol. 20, 164.

31. bio.tools. bio.tools. https://bio.tools.

32. World Wide Web Consortium (W3C). Web Services Description Language

(WSDL) Version 2.0 Part 1: Core Language. https://www.w3.org/TR/wsdl/.
33. World Wide Web Consortium (W3C). Web Application Description

Language. https://www.w3.org/Submission/wadl/.

34. Linux Foundation. OpenAPI Specification v3.1.0. https://spec.openapis.

org/oas/v3.1.0.

35. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith,

S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al. (2004).

OWL-S: Semantic Markup for Web Services - W3C Member Submission

22 November 2004. W3C Member Submission. https://www.w3.org/

Submission/OWL-S/.

36. The Modelica Association Project FMI (2021). Functional Mock-up

Interface Specification Version 3.0. In Modelica conferences, pp. 17–26.

https://fmi-standard.org/docs/3.0/.

37. Schwarz, J., and Lehnhoff, S. (2019). Ontological Integration of Semantics

and Domain Knowledge in Energy Scenario Co-simulation. In Proceedings

of the 11th International Joint Conference on Knowledge Discovery,

Knowledge Engineering and Knowledge Management (SCITEPRESS -

Science and Technology Publications), pp. 127–136.

38. openmod initiative. openmod initiative’s Wiki. https://wiki.openmod-

initiative.org/wiki/Open_Models.

39. The OEP Community. Open Energy Platform (OEP) - Model Factsheets.

https://openenergy-platform.org/factsheets/models/.

40. P.PSA Developers. PyPSA: Python for Power System Analysis. https://

pypsa.readthedocs.io/en/latest/index.html.

41. Lee, B.D. (2018). Ten simple rules for documenting scientific software.

PLoS Comput. Biol. 14, e1006561.

42. Oracle. Javadoc tool. https://www.oracle.com/java/technologies/javase/

javadoc.html.

43. Wall, L., and Burke, S. M.. Perldoc Browser 5.38.2. https://perldoc.perl.

org/perlpod.

44. van Heesch, D.. Doxygen. https://www.doxygen.nl/.

45. Ruana, R.. sphinx.ext.napoleon – Support for NumPy and Google style

docstrings. https://www.sphinx-doc.org/en/master/usage/extensions/

napoleon.html.

46. Christie, T.. MkDocs - Project documentation with Markdown. https://

www.mkdocs.org/.

47. The Sphinx developers. Sphinx - Python Documentation Generator.

https://www.sphinx-doc.org/en/master/.

48. Wickham, H., Danenberg, P., Csárdi, G., Eugster, M., and Posit Software.

roxygen2 7.3.1. https://roxygen2.r-lib.org/.

49. SmartBear Software. Swagger - API Development for Everyone. https://

swagger.io/.

50. GitHub, Inc.. GitHub - Let’s build from here. https://github.com/.

51. Anaconda, Inc..anaconda/packages.https://anaconda.org/anaconda/repo.

52. Python Software Foundation. Python Package Index (PyPI). https://

pypi.org/.

53. Read the Docs, Inc. and contributors. Read the Docs - Documentation

simplified. https://readthedocs.org/.

54. GitLab B.V.. GitLab - Software. Faster. https://gitlab.com/.

55. Atlassian. Bitbucket - Code & CI/CD, built for teams using Jira. https://

bitbucket.org/.

56. Slashdot Media. SourceForge - The Complete Software Platform. https://

sourceforge.net/.

57. Sonatype. Maven Central Repository. https://central.sonatype.com/.

58. npm, I.. npm - Node Package Manager. https://www.npmjs.com/.

59. SmartBear Software. SwaggerHub - Search public APIs and Domains in

SwaggerHub. https://app.swaggerhub.com/search.

60. GitBook, Inc.. GitBook - Engineering knowledge. Right where you work.

https://www.gitbook.com/.

61. The R Foundation. The Comprehensive R Archive Network (CRAN).

https://cran.r-project.org/.

62. GitHub, I.. Github Pages - Websites for you and your projects. https://

pages.github.com/.
Patterns 5, 101064, November 8, 2024 13

http://refhub.elsevier.com/S2666-3899(24)00214-9/sref10
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref10
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref10
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref10
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref11
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref11
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref11
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref11
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref12
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref12
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref13
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref13
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref13
https://github.com/FZJ-IEK3-VSA/DataDesc
https://doi.org/10.26165/JUELICH-DATA/DLCYV5
https://doi.org/10.26165/JUELICH-DATA/DLCYV5
https://doi.org/10.48550/arXiv.2311.05930
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref17
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref17
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref17
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref18
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref18
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref18
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://schema.datacite.org/
https://www.w3.org/TR/vocab-dcat-3/
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref22
https://doi.org/10.5281/zenodo.5171937
https://w3id.org/okn/o/sd/1.9.0
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref25
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref25
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref25
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref25
https://www.ontosoft.org/portal/
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref27
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref27
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref27
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref27
http://models.mint.isi.edu
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref29
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref29
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref29
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref29
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref29
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref30
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref30
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref30
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref30
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref30
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref30
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref30
https://bio.tools
https://www.w3.org/TR/wsdl/
https://www.w3.org/Submission/wadl/
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/OWL-S/
https://fmi-standard.org/docs/3.0/
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref37
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref37
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref37
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref37
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref37
https://wiki.openmod-initiative.org/wiki/Open_Models
https://wiki.openmod-initiative.org/wiki/Open_Models
https://openenergy-platform.org/factsheets/models/
https://pypsa.readthedocs.io/en/latest/index.html
https://pypsa.readthedocs.io/en/latest/index.html
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref41
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref41
https://www.oracle.com/java/technologies/javase/javadoc.html
https://www.oracle.com/java/technologies/javase/javadoc.html
https://perldoc.perl.org/perlpod
https://perldoc.perl.org/perlpod
https://www.doxygen.nl/
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://www.mkdocs.org/
https://www.mkdocs.org/
https://www.sphinx-doc.org/en/master/
https://roxygen2.r-lib.org/
https://swagger.io/
https://swagger.io/
https://github.com/
https://anaconda.org/anaconda/repo
https://pypi.org/
https://pypi.org/
https://readthedocs.org/
https://gitlab.com/
https://bitbucket.org/
https://bitbucket.org/
https://sourceforge.net/
https://sourceforge.net/
https://central.sonatype.com/
https://www.npmjs.com/
https://app.swaggerhub.com/search
https://www.gitbook.com/
https://cran.r-project.org/
https://pages.github.com/
https://pages.github.com/


ll
OPEN ACCESS Article
63. German National Library of Science and Technology (TIB). Open Research

Knowledge Graph (ORKG). https://orkg.org.

64. Auer, S., Oelen, A., Haris, M., Stocker, M., D’Souza, J., Farfar, K.E., Vogt,

L., Prinz, M., Wiens, V., and Jaradeh, M.Y. (2020). Improving Access to

Scientific Literature with Knowledge Graphs. Bibliothek 44, 516–529.

65. Stocker, M., Oelen, A., Jaradeh, M.Y., Haris, M., Oghli, O.A., Heidari, G.,

Hussein, H., Lorenz, A.-L., Kabenamualu, S., Farfar, K.E., et al. (2023).

FAIR Scientific Information with the Open Research Knowledge Graph.

FAIR Connect 1, 19–21.

66. Heiler, S. (1995). Semantic interoperability. ACM Comput. Surv. 27,

271–273.

67. Booshehri, M., Emele, L., Fl€ugel, S., Förster, H., Frey, J., Frey, U., Glauer,

M., Hastings, J., Hofmann, C., Hoyer-Klick, C., et al. (2021). Introducing

the open energy ontology: Enhancing data interpretation and interfacing

in energy systems analysis. Energy and AI 5, 100074.

68. FINE Developer Team. FINE’s Energy System Model Class. https://vsa-

fine.readthedocs.io/en/master/sourceCodeDocumentation/energySystem

ModelDoc.html.

69. IIASA and the pyam developer team. pyam Data Model. https://pyam-

iamc.readthedocs.io/en/stable/data.html.

70. Python Software Foundation. Python 3.12.2 Documentation - The Python

Standard Library - Development Tools: typing — Support for type hints.

https://docs.python.org/3/library/typing.html.
14 Patterns 5, 101064, November 8, 2024
71. APIs You Won’t Hate. OpenAPI.Tools. https://openapi.tools/.

72. Karras, O., Groen, E.C., Khan, J.A., and Auer, S. (2021). Researcher or

Crowd Member? Why not both! The Open Research Knowledge Graph

for Applying and Communicating CrowdRE Research. In IEEE 29th

International Requirements Engineering Conference Workshops (REW)

(IEEE), pp. 320–327.

73. Memariani, A., H€ulk, L., and Stappel, M. (2022). Open Energy Knowledge

Graph (OEKG). https://github.com/OpenEnergyPlatform/oekg.

74. Forschungszentrum J€ulich GmbH - J€ulich Systems Analysis (ICE-2)

(2023). ETHOS.FINE - Framework for Integrated Energy System

Assessment. Preprint at arXiv preprint arXiv:2311.05930. https://github.

com/FZJ-IEK3-VSA/FINE.

75. Forschungszentrum J€ulich GmbH - J€ulich Systems Analysis (ICE-2).

ReadTheDocs Documentation of ETHOS.FINE - Framework for Integrated

Energy System Assessment. https://vsa-fine.readthedocs.io/en/master/.

76. Forschungszentrum J€ulich GmbH - J€ulich Systems Analysis (ICE-2).

OEP Framework Factsheet of ETHOS.FINE - Framework for Integrated

Energy System Assessment. https://openenergy-platform.org/factsheets/

frameworks/164/.

77. Castro, L.J., Ferenz, S., Fuhrmans, M., Göpfert, J., Iglezakis, D., Karras,

O., and Struck, A. (2023). ‘‘Research Software Metadata’’ - Working

Group Charter (NFDI Secion-Metadata) (Zenodo). https://doi.org/10.

5281/zenodo.10036382.

https://orkg.org
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref64
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref64
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref64
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref65
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref65
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref65
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref65
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref66
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref66
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref67
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref67
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref67
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref67
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref67
https://vsa-fine.readthedocs.io/en/master/sourceCodeDocumentation/energySystemModelDoc.html
https://vsa-fine.readthedocs.io/en/master/sourceCodeDocumentation/energySystemModelDoc.html
https://vsa-fine.readthedocs.io/en/master/sourceCodeDocumentation/energySystemModelDoc.html
https://pyam-iamc.readthedocs.io/en/stable/data.html
https://pyam-iamc.readthedocs.io/en/stable/data.html
https://docs.python.org/3/library/typing.html
https://openapi.tools/
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref72
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref72
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref72
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref72
http://refhub.elsevier.com/S2666-3899(24)00214-9/sref72
https://github.com/OpenEnergyPlatform/oekg
https://github.com/FZJ-IEK3-VSA/FINE
https://github.com/FZJ-IEK3-VSA/FINE
https://vsa-fine.readthedocs.io/en/master/
https://openenergy-platform.org/factsheets/frameworks/164/
https://openenergy-platform.org/factsheets/frameworks/164/
https://doi.org/10.5281/zenodo.10036382
https://doi.org/10.5281/zenodo.10036382

	DataDesc: A framework for creating and sharing technical metadata for research software interfaces
	Introduction
	Motivation
	Related work
	Software description schemas
	Software metadata standards
	Interface description standards
	Non-standardized software description

	Software description tools
	Software publication platforms


	Results
	DataDesc schema
	Data content description
	Data format description
	Data value description
	Data structure description

	DataDesc exchange format and utilities
	DataDesc publication pipelines
	Application case

	Discussion
	Limitations
	Outlook

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References


