h1

h2

h3

h4

h5
h6
http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png

A deductive verifier for probabilistic programs



Verantwortlichkeitsangabeby Philipp Schroer

ImpressumAachen : RWTH Aachen University 2024

Umfang1 Online-Ressource: Illustrationen


Masterarbeit, RWTH Aachen University, 2022

Veröffentlicht auf dem Publikationsserver der RWTH Aachen University 2024


Genehmigende Fakultät
Fak01

Hauptberichter/Gutachter
; ; ; ;

Tag der mündlichen Prüfung/Habilitation
2022-01-25

Online
DOI: 10.18154/RWTH-2024-11340
URL: https://publications.rwth-aachen.de/record/998370/files/998370.pdf

Einrichtungen

  1. Lehrstuhl für Softwaremodellierung und Verifikation (Informatik 2) (121310)
  2. Fachgruppe Informatik (120000)

Thematische Einordnung (Klassifikation)
DDC: 004

Kurzfassung
We design and implement a deductive verification infrastructure for probabilistic programs. It consists of a quantitative intermediate verification language (HeyVL) and a quantitative assertion language (HeyLo). HeyLo is a syntax to express expected values of probabilistic programs, with support for quantitative implications based on Gödel logic. Both HeyLo and HeyVL contain lattice-theoretic dual constructs to reason about lower and upper bounds of expected values. As a case study, we encode weakest pre-expectation and weakest liberal pre-expectation reasoning about the probabilistic programming language pGCL into HeyVL. For loops, we provide encodings of Park induction, k-induction, and bounded model checking. Park induction and k-induction are both proof rules that require on user-provided invariant candidates. Furthermore, we discuss the automation of our deductive verification infrastructure. Our implementation Caesar takes a HeyVL program as input, generates and optimizes verification conditions in the form of HeyLo formulas and uses the automated theorem prover Z3 to prove or disprove validity of the verification conditions. In this thesis, we focus on the central optimization of quantifier elimination of HeyLo formulas. We present early promising experimental results. Finally, we discuss the abstraction of our framework based on Heyting and Gödel algebras to support more domains than expectations.

OpenAccess:
Download fulltext PDF

Dokumenttyp
Master Thesis

Format
online

Sprache
English

Interne Identnummern
RWTH-2024-11340
Datensatz-ID: 998370

Beteiligte Länder
Germany

 GO


OpenAccess

QR Code for this record

The record appears in these collections:
Document types > Theses > Master Theses
Publication server / Open Access
Faculty of Computer Science (Fac.9)
Public records
Publications database
120000
121310

 Record created 2024-12-03, last modified 2025-10-06


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)