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Abstract: The extensive use of polypropylene (PP) in various industries necessitates the development
of efficient and reliable methods for predicting the mechanical properties of PP compounds. This
study presents the development of an analytical model (AM) designed to predict the tensile modulus
for a dataset of 64 PP compounds with various fillers and additives, including chalk, impact strength
modifiers, and peroxide additives. The AM, incorporating both logarithmic and linear components,
was benchmarked against an artificial neural network (ANN) to evaluate its performance. The
results demonstrate that the AM consistently outperforms the ANN, achieving lower mean absolute
error (MAE) and higher coefficient of determination (R2) values. A maximum R2 of 0.98 could
be achieved in predicting the tensile modulus. The simplicity and robustness of the AM with its
14 fitting parameters compared to the ~1300 parameters of the ANN make it a useful tool for the
plastics industry, providing a practical approach to optimising compound formulations with minimal
empirical testing.

Keywords: polypropylene; tensile modulus; analytical model; artificial neural network; polymer
blends; compound formulation

1. Introduction

Plastics have become an indispensable part of modern life, and are deeply embedded
in various industries due to their versatility, durability, and cost-effectiveness. Among
the most important sectors for plastic products in Europe are the packaging industry,
which accounts for 39% of total plastic use, the construction industry with 21%, and the
automotive industry with 9% [1,2]. These industries rely heavily on commodity plastics
such as polypropylene (PP) and polyethylene (PE), which together account for almost half
of all plastic applications. In the packaging sector in particular, polyolefins such as PP and
PE are used predominantly, often alongside polyethylene terephthalate (PET), due to their
favourable balance of mechanical properties and processability [1].

One of the key mechanical properties that determines the performance of plastic
products is the modulus of elasticity, or the tensile modulus. This property describes the
relationship between tensile stress (force per unit area) and strain (proportional change in
length) and indicates the stiffness of the material and its resistance to deformation under
load. A higher tensile modulus means that the material is stiffer, which is often desirable in
applications where structural integrity is critical [3].

In plastic packaging, the tensile modulus is particularly important. It has a direct
impact on how well the packaging retains its shape and protects its contents during me-
chanical stresses such as stacking, transportation, or handling. A packaging material with
an appropriate tensile modulus contributes to packaging that is strong enough to prevent
deformation and potential damage, yet remains lightweight and cost effective [3]. Achiev-
ing this balance is essential to developing packaging solutions that are both durable and
functional, meeting the stringent demands of modern logistics and consumer expectations.
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Examples of such packaging applications include rigid containers, flexible films, and caps
or closures, all of which require a careful balance between strength, flexibility, and cost
efficiency to meet industry demands. Furthermore, during the packaging process of various
consumer goods or foods, the packaging container or film itself must withstand a multitude
of forces during its handling and filling.

2. Development of New Compound Recipes

The modulus of elasticity of plastics can be finely tuned through formulation develop-
ment. This involves not only the choice of base polymer, but also systematic modification
by blending different polymers, incorporating fillers (such as chalk or talc), or by adding
specific additives [4–9]. However, modifying these components is not straightforward, as
changes intended to improve the tensile modulus can simultaneously affect other critical
properties, such as the viscosity of the compound. As a result, the formulation development
process is complex and requires careful consideration to achieve the desired balance of
properties [5,10,11].

2.1. Process of Recipe Development in the Industry

Traditionally, the industry has relied heavily on the expertise of experienced com-
pounders to develop or refine compound formulations. While their knowledge and in-
tuition are invaluable, this empirical and iterative approach is often labour-intensive,
time-consuming and lacks reproducibility. This method involves numerous cycles of com-
pounding, testing, and adjusting formulations, which can be resource-intensive, especially
when fine-tuning existing formulations or developing new ones to meet specific perfor-
mance criteria [11,12]. The challenge of predicting material properties when blending
different polymers further complicates this process, often requiring extensive trial and error
to achieve the desired results [5,10,13].

In recent years, machine learning techniques, particularly artificial neural networks
(ANNs), have shown great promise in aiding the development of new compounds. For ex-
ample, research by Lopez-Garcia et al. has shown that various machine learning models can
predict the mechanical properties of fibre-reinforced compounds with high accuracy, achiev-
ing model scores (R2 values) as high as 0.96, indicating an almost perfect match between
the model prediction and the experiment [14]. These models have also proved effective in
optimising specific properties such as colour and impact resistance in polyamides [15].

The application of machine learning in materials science has expanded rapidly, with
studies highlighting its potential to accelerate the discovery and optimisation of materials
using large datasets and complex models [11,16,17]. Deepthi et al. have proven that
machine learning methods can be used for the optimisation of copper coating processes on
graphite powder [18]. Other investigations utilise machine learning for the prediction of
the tensile modulus of graphene-reinforced compounds depending on other provided data,
such as measurements from dynamic mechanical analysis [19].

However, the success of these data-driven approaches is largely dependent on the
availability of comprehensive datasets, which must include detailed records of formulation
components, processing conditions, and fully characterised material properties [11]. The
application of such data-driven methods becomes particularly challenging in environments
where documentation is incomplete or where data on new materials or formulations are
scarce. While there is ongoing research focused on identifying optimal experimental designs
that minimise the effort required to train ANNs and reduce the number of trials required,
the need to generate new data for accurate model training remains a significant hurdle in
the industry [11].

2.2. Proposed Aim of This Paper

As outlined above, the current approach, which is used in many companies to de-
velop new formulations to achieve a defined moduli of elasticity, is largely iterative and
unsystematic, often requiring considerable time and resources. To improve the current
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methodology of developing new or adjusting existing recipes, more systematic methods
are being investigated within this paper.

While AI-based methods, such as those using ANNs, offer a more systematic approach
when large datasets are available, they are still limited. Even with optimised experimental
designs, a significant number of tests must be performed and the ability of AI models to
generalise to new formulation components is often limited by the type and amount of
data available.

This paper proposes the development of an analytical mathematical model (AM)
specifically designed to predict the modulus of elasticity of complex PP formulations.
Unlike AI models, which can require extensive data and computational resources, this
analytical model can be characterised by only a few modifiable fitting parameters. These
parameters can be easily adjusted to accommodate new formulation components, making
the model highly adaptable and practical for industrial use. The effectiveness of such
models has already been proven in their application on the melt flow rate (MFR) and shear
viscosity of PP blends [10].

The primary objective of this work is to demonstrate that such an AM can provide
accurate predictions for the tensile modulus of PP compounds across different formulations,
with significantly less empirical data required compared to traditional AI methods. To vali-
date the effectiveness of this approach, the paper also includes a comparative analysis with
an ANN-based model to evaluate the performance of both models in terms of prediction
accuracy depending on the available amount of data. The results of this comparison will
highlight the potential advantages and limitations of each approach, providing valuable
insights for future applications in polymer formulation development.

3. Experimental

In order to obtain experimental data on the tensile modulus, depending on the compo-
sition of blends, additives, and fillers, different compound formulations were identified
and produced.

3.1. Materials and Characterisation

Four virgin homopolymer PP grades were used for the experiments. These were
supplied by LyondellBasell (Rotterdam, The Netherlands) and Saudi Basic Industries
Corporation (SABIC) (Riyadh, Saudi Arabia). All four polymers selected for this study are
commonly used in the manufacturing of packaging applications and differ only in their
mechanical and rheological properties. The additives used to specifically adjust the tensile
modulus of the compounds produced were a peroxide masterbatch supplied by Polyvel
Europe GmbH (Jork, Germany) and an impact modifier masterbatch supplied by DOW
Inc. (Midland, MI, USA) [20,21]. Two common types of chalk supplied by OMYA GmbH
(Oftringen, Switzerland) were used as fillers. The MFR values and tensile moduli from the
data sheets and the designation for the subsequent tests are given in Table 1 [22,23].

Table 1. Materials used in the investigation [22,23].

Designation Product Name MFR [g/10 min] Tensile Modulus [MPa]

PP1500 505P 2.0 1500
PP1450 HP525J 3.0 1450
PP1350 HP501M 7.5 1350
PP1600 HP548R 23.0 1600

3.2. Laboratory Equipment for Compounding

All materials were compounded on a co-rotating twin screw extruder (Coperion
GmbH, Stuttgart, Germany) with a screw diameter of 26 mm. Two different sets of com-
pound compositions were used for the investigations. In order to investigate the effect of
blending two types of homopolymer on the tensile modulus, the composition shown in
Table 2 was used to blend PP1350 with PP1600 as well as PP1450 with PP1600. Both series
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were only used for the analysis of the pure blend models in Section 4.1, without any addi-
tives or fillers. For those two series only, the machine temperature was set to 220 ◦C during
processing. For all other compounds, including additives and fillers, a blend composition
of PP1500 and PP1600 was used. The blending ratios are given in Table 3. The machine
temperature was set to 210 ◦C. The composition of the screw elements consisted only of the
conveying screw elements, with a combination of kneading and mixing elements used at
the beginning of the process to plasticise the polymers. The speed of the compounder was
kept at 300 min−1 for all trials.

Table 2. Blend composition to investigate the blending of virgin materials without any additives or
fillers for the blends PP1350–PP1600 and PP1450–PP1600.

X1 0% 20% 40% 60% 80% 100%

X2 100% 80% 60% 40% 20% 0%

Table 3. Base composition for the trials including additives and fillers with PP1500–PP1600.

PP1500 0% 33% 67% 100%

PP1600 100% 67% 33% 0%

The blend composition PP1500–PP1600 was the basis for all tests with fillers and
additives. Table 4 shows the different percentages of the different fillers and additives.
Only one additive or filler at a time was used for compounding with each of the four base
compositions. No compounds containing more than one filler or additive were prepared.

Table 4. Blend, filler, and additive compositions for the blend of PP1500–PP1600.

Designation Material Percentages

Fine chalk Omyalite 95 T 10% 20% 30%

Rough chalk Omyalite 50 H 10% 20%
Impact modifier Engage 8200 1% 2% 3% 4%

Peroxide additive Polyvel CR5P 0.15% 0.25% 0.5% 0.75% 0.85% 1.0%

To characterise the tensile modulus, type 1A specimens were produced in accordance
with DIN EN ISO 527 on an IntElect 100–250 injection moulding machine from Sumitomo
(SHI) Demag Plastics Machinery GmbH (Schwaig, Germany) [24]. The specimens were
tested on a Z100 tensile testing machine manufactured by ZwickRoell GmbH & Co. KG,
Ulm, Germany. A test speed of 1 mm/min was used to determine the tensile modulus in
accordance with DIN EN ISO 527 [24]. For each compound, a minimum of five specimens
were tested and used to calculate the average tensile modulus.

4. Development of Partial Models for the Prediction of the Tensile Modulus

Subsequently, several partial models were developed to predict the tensile modulus of
the different compounds as a function of their formulation. Following the development of
a model capable of predicting the tensile modulus of the binary blends, additional models
were developed and evaluated for the effect of chalk, the impact modifier, and peroxide.

4.1. Development of a Model to Predict the Tensile Modulus of Binary Homo Polymer Blends

This section focuses on the development of a predictive model for the tensile modulus
of binary homopolymer blends. The tensile modulus measurements for all binary blends,
without the inclusion of any fillers or additives, are illustrated in Figure 1.
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It was generally observed that as the proportion of PP1600 in the binary blends
increases, the tensile modulus of the mixtures also rises, reaching a maximum value with
pure PP1600. For the PP1600–PP1350 and PP1600–PP1450 blend series, it is apparent that the
relationship between the proportion of PP1600 and the tensile modulus is rather linear when
the PP1600 content exceeds 20%. However, the increase in the tensile modulus between
0% and 20% is significantly more pronounced and does not follow a linear trend. Traxler
et al. conducted similar investigations on blends of various PP types and investigated
mechanical properties, including the tensile modulus. Their findings indicated a similar
drop in the tensile modulus at a 20% polymer content, with a higher tensile modulus in
homopolymer blends, despite the linear relationship seen in other blend types [5].

To develop a model capable of predicting these relationships, several boundary condi-
tions were established. Firstly, the model should only require the tensile moduli of the pure
blend components and their proportions in the blend as input parameters. Additionally, the
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model should be as simple as possible and applicable across all test series using the same
constants. The latter condition is particularly important to ensure the model’s applicability
to the materials considered in this series of tests.

Various mathematical functions, including exponential, polynomial, and power func-
tions, were evaluated based on the squared error between each individual function fit and
the corresponding measurement data. Ultimately, a logarithmic model was found to best fit
the data and minimise the squared error. The logarithmic model is given by Equation (1):

Emix, blend = |EA − EB| × a × ln
(

max
a

(
EA
EB

,
EB
EA

)
× b × xmax(EA ,EB)

+ max
a

(
EA
EB

,
EB
EA

)
× c

)
+ min

a
(EA, EB)× d (1)

In this equation, Emix, blend represents the tensile modulus of the binary blend, with
EA and EB denoting the tensile moduli of the two blend partners. xmax(EA ,EB)

represents
the share of the blend partner with the higher tensile modulus in the binary blend. Due to
the logarithmic function’s parameters being dependent on the ratios and differences of the
tensile moduli of the two blend partners, this model can be applied across all blends using
the same constants. These constants were determined by minimising the error between the
model’s predictions and the average tensile moduli of all blends. The fitted constants are
provided in Table 5.

Table 5. Constants found for Equation (1) to minimise the squared error between the prediction and
the experimental observation.

Constant a b c d

Value 0.38364 7.52671 0.65223 1.01744

Figure 2 illustrates the application of the model to all three blends. The dotted lines rep-
resent the model predictions, while the individual measurements, including their standard
deviations, are depicted as dots. The model effectively captures the linear relationship for
the higher shares of PP1600 and accurately models the steep increase for shares below 20%.
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To quantify the performance of the models, the mean absolute error (MAE) and the
coefficient of determination (R2) are calculated, with n being the number of samples and E
being the tensile moduli of both model predictions and measurements.

MAE =
1
n

n

∑
i=1

∣∣∣Eprediction, i − Emeasured, i

∣∣∣ (2)
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R2 = 1 −

(
Eprediction, i − Emeasured, i

)2

(Emean, i − Emeasured, i)
2 (3)

The R2 is a metric used to determine the proportion of variance in a dependent variable
that is accounted for by one or more independent variables within a regression model. An
R2 value of 1 signifies a perfect fit, where the model’s predictions align exactly with the
observed data. In contrast, an R2 of 0 implies that the model fails to capture any of the
variance in the dependent variable. It is important to note that a low R2 does not necessarily
indicate a poor model; it may reflect significant inherent variability in the data or the
challenging nature of modelling in certain domains. Nevertheless, comparing R2 values for
models applied to the same dataset can reveal important insights into their performance.
Additionally, the mean absolute error (MAE) is calculated to assess the model’s prediction
accuracy in terms of the average magnitude of errors.

The MAE and R2 values of the model, along with the measurement error of the
observed data, are summarised in Table 6. For the PP1600–PP1350 and PP1600–PP1450
blends, the MAE is lower than the measurement error, and the R2 values are notably
high, with 0.984 for PP1600–PP1350 and 0.993 for PP1600–PP1450. However, for the
PP1600–PP1500 blend, the MAE of 14.323 exceeds the measurement error of 11.477, and
the R2 is slightly lower at 0.892. An examination of the PP1600–PP1500 blend series in
Figure 2 suggests that the model fits the formulations with 0%, 33%, and 100% PP1600
quite well, while the formulation with 67% PP1600 may be an outlier, as the drop in the
tensile modulus between 33% and 100% PP1600 does not align with expectations

Table 6. Evaluation of the model metrics for the binary homo polymer blends.

Blend Measurement Error MAE R2

PP1600–PP1350 20.865 5.529 0.984
PP1600–PP1450 13.347 6.628 0.993
PP1600–PP1500 11.477 14.323 0.892

4.2. Modelling the Tensile Modulus of Blends with Chalk

Following the development of the model for binary homopolymer blends, this section
investigates the effect of adding chalk as a filler on the tensile modulus. The boxplot
diagrams for the blends containing fine chalk are presented in Figure 3. Both types of
chalk used in this study are surface-treated, which inhibits chemical interactions with
other components in the formulation. The data clearly show that, for all blends, the tensile
modulus increases linearly with the addition of chalk, which is consistent with findings in
the literature [6,8].

According to Vollenberg et al., the effect of chalk on the tensile modulus in PP can
be described using a modified Kerner equation [9]. However, this equation typically only
provides satisfactory results for perfectly adhering chalk and does not account for the
particle size of the chalk. Moreover, the equation requires additional information about
the tensile modulus of the chalk itself and the Poisson’s ratio of both the PP and the chalk.
Such detailed information is often unavailable in technical datasheets, necessitating a more
straightforward modelling approach.

To identify a model that is both simple and effective, a linear model following
Equation (4) was fitted to the data. For each of the four blends, the tensile modulus
E0 without any chalk and the slope mChalk were optimised to minimise the MAE for the
individual blends. xChalk is the share of chalk in the blend.

Emix, chalk = E0 + xChalk × mChalk (4)
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Figure 4 displays the fitted linear models alongside the average tensile modulus
and standard deviation for each blend. The results indicate that the model provides a
satisfactory fit to the experimental data. The calculated MAE, R2, and measurement error
for each blend are summarised in Table 7. For one of the compounds containing 67% PP1500,
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the target of 10% chalk could not be achieved during the processing of the compounds.
Instead, a chalk level of 9.5% was measured during production and used for modelling.
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Table 7. Evaluation of the model metrics for blends containing fine chalk.

Polymer Ratio Measurement Error MAE R2

0% PP1600–100% PP1500 12.058 25.120 0.984
33% PP1600–67% PP1500 19.495 58.256 0.906
67% PP1600–33% PP1500 16.975 13.678 0.993
100% PP1600–0% PP1500 21.436 19.571 0.976

For all blends, an R2 score of 0.97 or higher was achieved, except for the blend containing
33% PP1600, which included an outlier. For the blends with 67% and 100% PP1600, the
MAE was even lower than the measurement error, indicating an excellent fit. Upon further
investigation, a linear relationship between the slope of the fitted models and the tensile
modulus E0 of the base blend without chalk was identified, as shown in Figure 5.
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This linear relationship between the slope and E0 allows for the development of a
unified model for all four blends, as expressed in Equation (5):

Emix, chalk = E0 + xChalk × (IChalk + E0 × sChalk) (5)

In this model, instead of determining the slope mChalk individually for each blend,
the parameters were reduced to two: the intercept IChalk and the slope sChalk from the
linear fit in Figure 5. This approach not only simplifies the model but also enhances its
general applicability.

A similar approach was applied to the polymer blends with the second type of chalk.
The results for these blends are summarised in Table 8. The measurement error for these
blends was similar to that observed for the fine chalk and the MAE was generally lower,
with the values of 3.870 for the 100% PP1500 blend and 1.906 for the 33% PP1500 blend
being exceptionally low. It is worth noting, however, that only two concentrations of chalk
were tested, resulting in three data points for the linear model. Despite this limitation, the
model demonstrates good accuracy for both types of chalk, confirming its validity.

Table 8. Evaluation of the model metrics for blends containing rough chalk using Equation (5).

Polymer Ratio Measurement Error MAE R2

0% PP1600–100% PP1500 12.711 3.870 0.999
33% PP1600–67% PP1500 13.856 21.500 0.946
67% PP1600–33% PP1500 15.356 1.906 0.999
100% PP1600–0% PP1500 16.017 29.481 0.905

4.3. Modelling the Tensile Modulus of Blends with Impact Strength Modifier

This section addresses the impact of adding an ethylene–octene copolymer as an
impact strength modifier on the tensile modulus of the blends. Unlike chalk, which is
commonly used in percentages ranging from 10% to 30% in industrial applications, the
impact strength modifier is typically used in much smaller amounts, usually less than 5%.
Although the primary purpose of this additive is to improve the impact strength of the
compound, which is not the focus of this paper, it also has a significant effect on the tensile
modulus, which must be considered. The boxplot diagrams for the various blends with the
impact strength modifier are shown in Figure 6.

Similar to the chalk blends, a linear trend is observed, with the tensile modulus
decreasing as the proportion of the impact strength modifier increases. Consequently,
a linear model was fitted for each blend, analogously to the approach used for chalk
with Equation (4). The fitted linear models, along with the data points and measurement
deviations, are depicted in Figure 7.

The linear models generally fit the data well. The MAE and R2 values, along with the
measurement deviations for each blend, are presented in Table 9.

For the blend series with 100% PP1600, the linear model was highly accurate, achieving
an R2 value of 0.962 and an MAE of 8.929, which is lower than the measurement error of
38.332. However, for the other blends, the MAE values exceeded the measurement error,
indicating less accuracy. One potential reason for these discrepancies, compared to the trials
involving chalk, may be the different magnitudes of the component proportions. The chalk
trials used percentages ranging from 10% to 30%, where small deviations in the dosing may
have had a lesser impact compared to dosing differences in the impact strength modifier,
which was used in much smaller amounts (up to 5%). Despite the lower R2 values for some
blends, the linear models successfully capture the general trend.

To further analyse the effect of the impact strength modifier, the relationship between
the slope of the linear models and the tensile modulus E0 of the pure blends was in-
vestigated. This relationship is illustrated in Figure 8. For the blends with 0% PP1600,
33% PP1600, and 100% PP1600, the slopes can be fitted almost perfectly with a linear func-
tion. However, the slope for the blend with 67% PP1600 and 33% PP1500 was an outlier
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and was therefore not considered when determining the generalised model for the impact
strength modifier.
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4.4. Modelling the Tensile Modulus of Blends with Peroxide Additive

This section explores the effect of adding a peroxide-containing masterbatch on the
tensile modulus of the blends. The boxplot diagrams for the different blends with varying
percentages of the peroxide additive are presented in Figure 9. For the blends containing
100% PP1600 and 33% PP1600, no significant effect of the peroxide additive on the tensile
modulus was observed. A similar lack of effect was noted for the blend with 67% PP1600,
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with the exception of the formulation containing 0.15% peroxide. However, in the blend
with 100% PP1500, a clear decrease in the tensile modulus was identified as the peroxide
content increased.
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The differences observed in the effects of peroxide across the blends cannot be fully
explained without additional information regarding the formulations of the base materi-
als. Although both types of polypropylene used were homopolymers, differences in the
additives, such as stabilisers, present in the virgin compounds may contribute to these dis-
crepancies. Furthermore, a close examination of the data points for the peroxide-containing
blends revealed considerable variability in the tensile modulus, particularly in formulations
such as 0.25% peroxide for the 33% PP1600 blend, and 0.15% and 0.25% peroxide for the
67% PP1600 blend.

To further investigate this variability, an example of the stress–strain diagram mea-
sured during the tensile testing for the 0.25% peroxide formulation in the 33% PP1600 and
67% PP1500 blends is shown in Figure 10. While the stress–strain curves between 0% and
10% strain are relatively consistent for all five specimens tested, significant deviations in
the slopes of the curves were observed between 0% and 0.3% strain. According to DIN EN
ISO 527, the tensile modulus is calculated as the slope between 0.05% and 0.25% strain [24].
Therefore, the calculated deviation of the tensile modulus for this sample reached values of
up to 110 N/mm2 compared to the average of 1350 N/mm2. These deviations are more
pronounced in the trials containing peroxide compared to the other trials, suggesting that
the primary purpose of peroxide in the formulations—adjusting polymer viscosity—may
influence these results. The injection moulding machine’s parameters were kept constant
for all formulations to ensure comparability of the test specimens. However, the introduc-
tion of peroxide may have caused inconsistencies during the moulding process, particularly
in the filling or holding phases.

For further analysis, the three formulations with the highest measurement deviations
were excluded. Since a linear relationship can be anticipated in Figure 9, similar to the
findings for chalk and the impact strength modifier, a generalised model was sought to
describe all four series within a single framework. However, no clear relationship between
the slope of the individual linear models and the tensile modulus of the blends without
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peroxide was found. Instead, a correlation with the proportion of PP1500 in the blend was
observed, as shown in Figure 11.
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A power model was fitted to these four data points, resulting in the following equation:

Emix, peroxide = E0 + xPeroxide ∗
(

p1∗(100 ∗ xPP1500)
p2
)

(6)

This equation describes the tensile modulus of the blend series as a function of the
peroxide additive proportion xPeroxide and the proportion of PP1500 in the blend xPP1500.
The fitting parameters for the power model were found to be p1 = −9.63 ∗ 10−5 N/mm2

and p2 = 4.11.
Figure 12 demonstrates the application of this equation to the four blends. The R2 and

MAE values, along with the measurement error for each data point, are summarised in
Table 10. Although the model provides a reasonably good fit for some blends, the variability
in the data indicates that further refinement may be necessary to fully capture the effects of
peroxide in these formulations.
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Table 10. Evaluation of the model metrics for blends containing peroxide additive.

Polymer Ratio Measurement Error MAE R2

0% PP1600–100% PP1500 22.239 25.814 0.774
33% PP1600–67% PP1500 12.471 10.410 0.473
67% PP1600–33% PP1500 14.366 11.134 0.020
100% PP1600–0% PP1500 16.674 13.862 0.555

5. Aggregation of Partial Models to a Complete Model

In the previous sections, individual models were developed to predict the tensile
modulus of binary PP blends and the effects of various fillers and additives, such as chalk,
impact strength modifiers, and peroxide additives. Each of these models was tailored to
specific conditions, focusing on particular blend compositions and additive types. The next
logical step is to integrate these partial models into a comprehensive framework that can
reliably predict the tensile modulus of a wide range of PP compounds, including those
with complex formulations.

To achieve this, an assumption was made that the various fillers and additives do not
interact with each other in ways that would significantly alter the underlying relationships
identified in the previous models. This assumption allows for the combination of individual
models into a single equation that can account for the effects of multiple additives within a
single compound. The general form of this aggregated model is given by Equation (7):

Emix, compound = Emix, blend + ∆Emix, chalk f ine + ∆Emix, chalk rough + ∆Emix,impact + ∆Emix,peroxide (7)

In this equation, Emix, compound represents the tensile modulus of the complete com-
pound, which includes the effects of blending and the addition of fillers or additives.
Emix, blend is the tensile modulus of the binary polymer blend without any additives, as
previously modelled using a logarithmic function (Equation (8)):

Emix, blend = |EA − EB| × a × ln
(

max
a

(
EA
EB

,
EB
EA

)
× b ×

xmax(EA ,EB)

xEA + xEB

+ max
a

(
EA
EB

,
EB
EA

)
× c

)
+ min

a
(EA, EB)× d (8)

The effects of the individual additives are modelled as adjustments ∆E to this base
modulus. For each type of chalk (fine and rough), impact strength modifier, and peroxide,
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the effect on the tensile modulus is described by equations that are analogous to those
developed in earlier sections:

∆Emix, chalk f ine = xChalk_ f ine ×
(

IChalk_ f ine + Emix, blend × sChalk_ f ine

)
(9)

∆Emix, chalk rough = xChalk_rough ×
(

IChalk_rough + Emix, blend × sChalk_rough

)
(10)

∆Emix,impact = xImpact ×
(

IImpact + Emix, blend × sImpact
)

(11)

∆Emix,peroxide= xPeroxide ×
(

p1×(100 × xPP1500)
p2
)

(12)

These equations incorporate the parameters fitted in the previous sections, with
xChalk_ f ine, xChalk_rough, xImpact, and xPeroxide representing the proportions of the respective
additives in the blend. The coefficients I and s correspond to the intercept and slope
parameters identified for each additive, while p1 and p2 are the fitting parameters for the
peroxide model.

After developing the complete model by combining these partial models, all parame-
ters were optimised using the full dataset to minimise the overall MAE. The tensile moduli
EA and EB of the pure materials were measured, but to ensure the best possible accuracy
for the aggregated model, these values were also refined during the optimisation process.
The final optimised parameters for the complete model are presented in Table 11.

Table 11. Optimised parameters for minimising the total MAE of the complete model.

Parameter Value Parameter Value

a 0.38364 IChalk_ f ine 13,415.550
b 7.52671 IChalk_rough 8628.090
c 0.65223 IImpact 3852.150
d 1.01744 sChalk_ f ine −7.421

EA 1458.86 sChalk_rough −4.505
EB 1610.54 sImpact −4.560
p1 −0.0000963 p2 4.100

6. Benchmarking with Artificial Neural Networks

After developing and aggregating the partial models into a comprehensive analytical
model (AM) for predicting the tensile modulus of polypropylene compounds, the next
step is to benchmark this model against an artificial neural network (ANN) approach. This
comparison evaluates the effectiveness of the analytical model relative to the ANN in terms
of prediction accuracy and robustness, particularly in scenarios where data are limited
or noisy.

For the ANN, the Pytorch package (version 2.5.0.) was employed, using Python
version 3.10 [25]. A thorough hyperparameter optimisation was performed using the
Python package optuna (version 4.1.0) [26]. The ANN architecture (number of layers and
neurons per layer), the initialiser and activation functions, as well as the settings for learning
rate and weight decay were systematically varied to find the best-suited hyperparameters.
All ANNs were trained with a maximum of 1000 epochs and implemented early stopping
with a patience of 25 epochs. The optimised hyperparameters for the complete dataset can
be seen in Table 12.

The typical approach in machine learning involves splitting the dataset into a training
set used to train the model and a test set used to evaluate its performance. For this study,
an 80/20 split was chosen, with 80% of the data allocated for training and 20% reserved
for testing. To ensure a robust comparison, the dataset was split randomly into training
and test sets ten times, mitigating any bias that might arise from a single dataset split. This
randomisation helps to prevent scenarios where, for example, all data points for a specific
additive end up in the training set and skew the results. Furthermore, for each split into the
training and test datasets, the ANN was trained ten times. Similarly, the AM was evaluated
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on the same splits and fitted ten times as well. Therefore, the resulting values for R2 and
MAE were calculated on the basis of having 100 trained ANNs and 100 fitted AM.

Table 12. Optimised hyperparameters for the ANNs.

Parameter Value/Setting

Layers 2
Neurons layer 1 27
Neurons layer 2 39

Activation function Relu
Initialisation Xavier_normal

Learning_rate 0.0006
Weight_decay 0.0073

Batch size 8

The analysis was performed on two versions of the dataset: the full dataset, which in-
cluded all data points (64), and a reduced dataset, from which outliers with a measurement
deviation exceeding 50 N/mm2 were removed (60 data points). These outliers were all
measurements of samples containing a peroxide additive similar to the example discussed
in Section 4.4. This allowed for an examination of how well each model handles data
variability and outliers.

The results of the mean absolute error (MAE) and the coefficient of determination (R2)
for both models are summarised in Figures 13 and 14. Figure 13 illustrates the MAE values
for both the AM and ANN models across all dataset splits, for both training and testing.
As expected, the MAE for the test datasets was generally higher than that for the training
datasets, reflecting the challenge of generalising the model to unseen data. However, the
AM consistently outperformed the ANN, achieving lower MAE values across both the full
and reduced datasets. For the full dataset, the AM demonstrated an average MAE of 25.70
for the training data and 38.41 for the test data. In comparison, the ANN produced an
average MAE of 26.21 for training and 44.49 for testing. These results indicate that the AM
is more accurate overall, with a performance close to the inherent variability in the data, as
the measurement error for the full dataset was 24.07. When examining the reduced dataset,
which excludes outliers with significant measurement deviations, the AM’s performance
improved further.
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Figure 14. Model R2 for both the aggregated and ANN model for both datasets and the training and
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The AM achieved a minimum MAE of 24.00 for the training data and 28.29 for the
test data. In contrast, the ANNs showed only a modest improvement under the same
conditions, with average MAE values of 23.23 for training and 37.41 for testing. This
suggests that the AM is more robust in handling variability and outliers in the data. When
investigating the minimal MAE values throughout all the models, the lowest values of 17.41
for the reduced dataset and 19.78 for the complete dataset were achieved with the AM.

Figure 14 presents the R2 values for both models, which indicate the proportion of
variance in the dependent variable that is predictable from the independent variables. For
the full dataset, the AM achieved an average R2 of 0.97 for the training data and 0.93 for
the test data, indicating a strong fit to the data. The ANNs’ performance was slightly lower,
with R2 values of 0.98 for training and 0.91 for testing, further demonstrating that the AM
is more effective in capturing the underlying relationships in the data.

7. Discussion

A comprehensive analytical model for predicting the tensile modulus of PP com-
pounds has been developed in this paper. The investigated compound formulations
consisted of several different types of homopolymer PP, two types of filler chalk, a per-
oxidic additive, and an impact modifying additive. The analytical model was developed
in several steps. A first model was developed to predict the tensile modulus of binary
blends using a logarithmic fit, achieving R2 values as high as 0.993. Based on this initial
model, which is capable of predicting the tensile moduli for the polymer blends, additional
analytical models were developed for each filler and additive individually.

For both fillers (rough chalk and fine chalk), linear fitting models were derived and
obtained R2 values above 0.97. In order to combine the individual linear fitting models
for the different polymer blends, a unified model was further developed which captures
the relationship between the slope of the linear models and the tensile modulus of the
base blend.

When analysing the impact modifier, a linear relationship similar to the effect of chalk
could be deduced, although with lower R2 values compared to chalk, particularly for
blends with a higher percentage of PP1600. The effect of peroxide additives was more
complex, with significant variations in the tensile modulus observed for blends containing
100% PP1500. The performance model developed for peroxide-containing blends showed
that although there were some outliers, the general predictive ability of the model remained
robust, as indicated by the R2 values of around 0.77 for the 0% PP1600 blend.
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The individual models for each filler and additive were combined into a single model,
described by 14 unique fitting parameters. To evaluate the modelling capability of this
analytical approach, a comparison with artificial neural networks was performed. Extensive
hyperparameter optimisation was performed to identify the ANN structure best suited to
describe the interactions within the provided dataset. For a variety of splits in the original
datasets, the ANN was trained on the training dataset, while the AM was fitted to the
training dataset. Both models were then evaluated on the individual test datasets.

Comparison of the AM and ANNs showed that the AM achieved a lower average MAE
of 25.70 for the training data and 38.41 for the test data from the full dataset, compared to
26.21 and 44.49 for the ANNs. The R2 values of the aggregated model also surpassed those
of the ANNs, especially in the reduced dataset, with values reaching 0.98 for training and
0.96 for testing. These results underline the superior performance of the AM, considering
that it is able to capture the complex interactions of the fillers, additives, and polymers
with 14 fitting parameters compared to the ~1300 parameters of the ANNs. Due to the
small number of parameters required, it may be possible to transfer the AM to a different
twin screw extruder with a different throughput or dimension (e.g., 150 kg/h instead of the
15 kg/h used on the laboratory twin screw extruder in this paper) with only a few trials.

In addition, the AM is easily adaptable to new additives or fillers. In the simple
architecture of the aggregated model, a new recipe component can be modelled in a similar
way and simply added to the other components of the recipe. This is not as easy with
ANNs due to the need to change their architecture.

Overall, the developed model not only provides a highly accurate and efficient method
of predicting the tensile moduli of PP compounds, but also offers a practical tool for industry
to optimise formulations with minimal empirical testing. In the development of the current
model, the possible side effects of combining several additives that interact with each other
were neglected and will be investigated. Future work will explore the extension of this
model to other types of polymer and more complex formulations to further improve its
applicability and robustness.
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