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Cancer‑associated fibroblasts reveal aberrant 
DNA methylation across different types 
of cancer
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Abstract 

Background  Cancer-associated fibroblasts (CAFs) are essential components of the tumor microenvironment 
and play a critical role in cancer progression. Numerous studies have identified significant molecular differences 
between CAFs and normal tissue-associated fibroblasts (NAFs). In this study, we isolated CAFs and NAFs from liver 
tumors and conducted a comprehensive analysis of their DNA methylation profiles, integrating our finding with data 
from studies on other cancer types.

Results  Our analysis revealed that several CAF samples exhibited aberrant DNA methylation patterns, which cor-
responded with altered gene expression levels. Notably, DNA methylation at liver CAF-specific CpG sites was linked 
to survival outcomes in liver cancer datasets. An integrative analysis using publicly available datasets from various 
cancer types, including lung, prostate, esophageal, and gastric cancers, uncovered common epigenetic abnormali-
ties across these cancers. Among the consistently altered CpGs were cg09809672 (EDARADD), cg07134930 (HDAC4), 
and cg05935904 (intergenic). These methylation changes were associated with prognosis across multiple cancer 
types.

Conclusion  The activation of CAFs by the tumor microenvironment seems to be associated with distinct epigenetic 
modifications. Remarkably, similar genomic regions tend to undergo hypomethylation in CAFs across different studies 
and cancer types. Our findings suggest that CAF-associated DNA methylation changes hold potential as prognostic 
biomarkers. However, further research and validation are necessary to develop and apply such signatures in a clinical 
setting.
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Background
Cancer-associated fibroblasts (CAFs) modulate the 
microenvironment and are important for tumor develop-
ment, metastasis, and resistance to therapy [1]. In con-
trast to cancer cells, CAFs usually do not harbor genetic 
mutations—rather, their activation is reflected in vari-
ous epigenetic changes [2]. A bottleneck in the molecu-
lar characterization of CAFs is that fibroblasts generally 
resemble complex cell populations with striking inter- 
and intra-organic heterogeneity [3]. The heterogeneity 
of CAFs is further complicated by diverse cellular ori-
gins that can be recruited and activated during tumo-
rigenesis, including normal-tissue-associated fibroblasts 
(NAFs), bone marrow-derived mesenchymal stromal 
cells (MSCs), stellate cells, epithelial cells, and endothelial 
cells [4]. This heterogeneity makes it difficult to precisely 
define CAFs at the molecular level and may lead to a dif-
ferent mechanistic contribution of CAF subtypes to can-
cer pathophysiology [5].

The identification of suitable molecular biomarkers for 
CAFs remains a major challenge [1]. Several “CAF mark-
ers”—including alpha-smooth muscle actin (αSMA), 
vimentin, and fibroblast activation protein alpha (FAP)—
have been proposed, but their expression varies between 
different cancer types and CAF subpopulations [6]. To 
date, no single biomarker has been identified that can 
reliably discern CAFs and normal fibroblasts in a given 
tumor [7]. Integration of transcriptomic data for multi-
ple markers into “CAF scores” has provided prognostic 
information for different cancer types [8], and single-cell 
RNA-sequencing data have revealed gene expression 
signatures of independent CAF subtypes that are even 
common to different cancer types [9]. It therefore seems 
conceivable that there are also epigenetic signatures of 
CAFs that are common to tumors of various tissues.

Changes in DNA methylation (DNAm) are tightly con-
trolled in a very consistent manner during normal cel-
lular differentiation. Our group and others have already 
shown that DNAm at single CG dinucleotides (CpGs) 
can provide reliable biomarkers for specific cell types, 
e.g., fibroblasts and MSCs [10–12]. CAFs have also been 
shown to have characteristic DNAm patterns for differ-
ent cancer types [2, 13, 14], and it has been proposed 
that changes in the methylome of CAFs represent a novel 
epigenetic feature of the cancer microenvironment that 
could provide therapeutically relevant biomarkers [15]. 
However, so far it has been largely unclear whether such 
DNAm alterations are also consistent across CAFs in dif-
ferent cancer types [2].

In this study, we demonstrate that CAFs from liver 
tumors exhibit different DNAm compared to fibroblasts 
from adjacent tissue. A comprehensive comparison 
with CAF-associated DNAm in lung cancer, esophageal 

carcinoma, prostate carcinoma and gastric cancer dem-
onstrated an overlap, which could potentially be indica-
tive for the fraction of CAFs within a tumor and hence 
possibly be relevant for disease stratification.

Methods
Cell isolation and cell culture
Tissue biopsies from primary and secondary liver tumors 
and adjacent healthy tissues were received from the clinic 
for general, visceral, children and transplantation sur-
gery at the University Hospital of RWTH Aachen after 
informed and written consent and following the guide-
lines of the ethic committee for the use of human sub-
jects at the University of Aachen (Permit number: EK 
206/09). Tissue pieces were minced into small pieces, 
washed with PBS and incubated at 37  °C in collagenase 
IV (1  mg/ml)-containing medium (KnockOut DMEM 
from Gibco) overnight. After filtering through a strainer, 
the cells were cultured in DMEM medium containing 
10% human platelet lysate, Penicillin–Streptomycin (100 
U/ml) and L-Glutamine (2 mM). Cells were expanded at 
37 °C and 5% CO2 for 2–3 passages upon reaching con-
fluence. CAFs and NAFs were successfully isolated from 
11 patients (5 hepatocellular carcinoma [HCC], 5 liver 
metastasis of colon cancer [CRLM] and 1 liver metasta-
sis of anal cancer [ALM]; mean age 62.6 ± 12.8 sd; 8 male 
and 3 female).

Immunostaining
For the immunostaining, cells were cultured on gelatin 
(0.1%)-coated cover slips and fixed with 2–4% PFA for 
15  min. Cells were permeabilized for 30–60  min with 
0.5% TWEEN 20 or 0.1% Triton™ X in PBS containing 5% 
BSA. Primary antibodies for vimentin (Sigma-Aldrich), 
α-SMA (Sigma-Aldrich) and pan-cytokeratin (Sigma-
Aldrich) were added overnight at 4  °C (Supplemental 
Table S1). The next-day secondary antibodies Alexa 594 
and Alexa 647 (ThermoFisher) were added for 1 h. Nuclei 
were counter-stained with DAPI.

Flow cytometry
Cells were fixed in 2% PFA for 15  min and stained 
with conjugated antibodies for 30  min. These included 
mouse-anti-human antibodies for CD14, CD29, CD31, 
CD34, CD45, CD73, CD90, and CD105 (Supplemental 
Table S1). Afterward, cells were kept in PBS with 2% FCS. 
Samples were measured with a FACSCanto II (BD Bio-
sciences), and the FlowJo software was used to analyze 
the data.

DNA methylation analysis
Genomic DNA was isolated with the NucleoSpin Tis-
sue kit (Macherey-Nagel) and hybridized to Illumina 
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MethylationEPIC BeadChips (at Life and Brain, Bonn, 
Germany). Initial quality control of DNA methylation 
data was performed with the minfi package (v1.48.0), 
and three samples with low overall signal intensities were 
removed at this step. The SeSAMe package (v1.20.0) [16] 
was used for preprocessing (“QCDPBG”) including dye 
bias correction, quality mask filtering [17], NOOB nor-
malization [18] and calculation of detection p-values. 
CpG probes, which failed in 10% or more samples, non-
cg probes, probes on X- and Y-chromosomes or probes 
flagged in the b5 manifest were removed. The data were 
then converted into a GenomicRatioSet to apply minfi-
based functions. Additionally, we removed two outlier 
NAF samples.

For the public data from GEO (Supplemental 
Table  S2)  .idat files were preprocessed in the same way. 
The data were preprocessed separately as three different 
datasets and then merged. If no .idat files were available, 
we utilized signal intensities and beta matrices. The pub-
lic data consisted of Illumina 450  K and EPIC data and 
were therefore reduced to the probes that overlap.

We used the Limma (v.3.58.0) package to generate PCA 
plots with the plotMDS function (gene.selection = "com-
mon"), and the differential methylation analysis, where 
probes with ≥ 0.2 difference in mean beta values and 
adjusted p-values (Benjamini-Hochberg) ≤ 0.05 were 
considered significant. The ComplexHeatmap pack-
age (v2.18.0) was used to generate the heatmaps includ-
ing Pearson correlation as distance and the “ward.D2” 
method for clustering. Gene ontology analysis was done 
with the missMethyl R package (v.1.36.0). The DMRcate 
package (v2.14.1) was used to identify differently meth-
ylated regions, which were defined as regions of 1000 bp 
that included at least 2 differentially methylated CpGs 
with a “betacutoff” of 0.2 and a “pcutoff” of FDR = 0.05. 
The UpSetR package (v1.4.0) was used to make the upset 
plots. The DMR methylation plots were done using the 
Gviz (v1.46.0) and org.Hs.eg.db R packages (v3.18.0). To 
calculate the epigenetic age of the samples, the wateR-
melon R package (v2.8.0) was used.

For selection of top ranked CAF-specific CpGs we 
used our previously developed R package CimpleG 
(v0.0.5.9001) [19]. For this purpose, we divided the sam-
ples randomly into a selection and test set based on an 
80/20 split. We also performed a pre-selection of CpGs 
based on at least 20% mean difference in methylation val-
ues between all NAFs and CAFs.

RNA‑seq analysis
Total RNA was isolated using the NucleoSpin RNA 
kit (Macherey–Nagel). For library preparation, the 
TruSeq-Stranded mRNA kit (Illumina) was selected 
and sequenced on a NextSeq 500 (Illumina) using the 

NextSeq 500/550 High Output Kit v2.5 (150 cycles). 
Sequencing was performed at IZKF-associated Genom-
ics Facility of the RWTH University. The nf-core/rnaseq 
pipeline was applied for alignment using STAR (hg38 
genome) and generation of the count matrix using 
Salmon. Analysis was done with DESeq2 in R [20]. 
Generally, genes with overall less than 10 counts were 
removed. Genes were considered significantly differen-
tially expressed when they showed a log2 fold change ≥ 2 
and adjusted p-value ≤ 0.1. For visualization , the data 
were VST transformed. RNA-seq and DNA methylation 
data were matched and combined by annotating both to 
Ensemble gene IDs.

Survival analysis
Data gathering, curation and analysis was performed in 
R. Data for all TCGA projects were downloaded with the 
TCGAbiolinks R package (v2.28.3), setting the param-
eters data.category to “DNA Methylation,” sample.type 
to "Primary Tumor," platform to "Illumina Human Meth-
ylation 450" and data.type to "Methylation Beta Value." 
Any sample that did not have information for the CpGs 
under analysis was dropped. Focusing on the clinical 
data, samples that showed up as duplicated or for which 
the survival clinical variables (deceased, days_to_death 
and days_to_last_follow_up) could not be found were 
not considered. For the Kaplan–Meier plots and log-rank 
tests, cancer patients were stratified by the 25th percen-
tile of DNAm at the respective CpG. For the Cox pro-
portional hazards models, the continuous methylation 
value was used for each CpG (cg09809672, cg07134930, 
cg05935904) with gender and age as additional model 
variables. The p-value associated to each model variable 
was corrected using Benjamini and Hochberg p-value 
correction procedure.

Results
Aberrant DNA methylation in cancer‑associated fibroblasts 
from liver tumors
Fibroblasts were isolated from cancer (CAFs) and from 
tumor-free adjacent tissue (NAFs) of hepatocellular car-
cinoma (HCC) or liver metastasis of colorectal/anal 
cancer (in total n = 11 CAF/NAF pairs). All cell prepa-
rations showed typical fibroblastoid morphology and 
surface marker expression (CD14−, CD29+, CD31−, 
CD34−, CD45−, CD73+, CD90+, and CD105+). In addi-
tion, immunostaining demonstrated that they were 
positive for vimentin, negative for pan-cytokeratin, and 
heterogeneous for alpha-smooth muscle actin (α-SMA), 
indicating that all cell preparations could be classified as 
fibroblastoid cells (Supplemental Figure S1). The DNA 
methylation profiles were then analyzed with Illumina 
MethylationEPIC BeadChips (two outlier NAF profiles 
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were removed). For orientation, we initially selected 
2,134 CpG sites with at least 20% difference in mean 
DNA methylation in CAFs versus NAFs. Hierarchical 
clustering of these CpGs indicated that the CAF pro-
files can be categorized in two groups, with one group 
being closer related to NAFs. Since we anticipated het-
erogeneity within CAFs—particularly since we did not 
use surface markers to enrich specific subfractions—we 
subsequently refer to these two clusters as CAFhigh and 
CAFlow (Fig. 1A). The CAFhigh samples were also clearly 
separated in a principal component analysis (PCA) plot 
of the 10,000 most variable CpG sites (Fig.  1B). This 

suggests that CAF-specific epigenetic aberrations vary 
between samples, and we therefore focused particularly 
on the epigenetic differences between CAFhigh and NAFs.

Differential methylation analysis (> 20% difference 
in mean methylation; limma adjusted p-values < 0.05) 
revealed 2,838 significantly hypomethylated and 1,144 
hypermethylated CpGs (Fig.  1C; Supplemental Fig-
ure S2A,B; Supplemental Table  S3). Gene ontology 
analysis revealed that aberrant DNA methylation was 
significantly enriched in categories associated with 
angiogenesis, cell migration, and signaling (Fig.  1D). 
The differently methylated sites appeared to be located 

Fig. 1  Aberrant DNA methylation in fibroblasts of liver cancer. A Liver fibroblasts were isolated from cancer tissue (CAFs) or from tumor-free 
neighboring tissue (NAFs) and analyzed on EPIC bead chips. The heatmap depicts DNA methylation at 2,134 CpGs with at least 20% mean 
methylation difference between NAFs and CAFs. Hierarchical clustering showed two groups of CAFs, which were referred to as CAFlow (orange) 
and CAFhigh (red). B The principal component analysis (PCA) of the 10,000 most variable CpGs showed that CAFhigh clustered apart from CAFlow 
and NAFs. C Scatterplot comparing the mean beta values of the CAFhigh group versus NAFs. Significant differentially methylated CpGs are 
highlighted (mean DNAm difference > 20%; limma adjusted p-values < 0.05). D Gene ontology enrichment („biological process”) of CpG sites 
with significant differential DNAm between CAFhigh and NAFs (DE = number of differentially methylated genes, FDR = false discovery rate)
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in gene bodies rather than promoter regions (Supple-
mental Figure S2C). The most significantly hypometh-
ylated region was in the collagen type I alpha 1 chain 
(COL1A1) gene, a gene that has been used in the liter-
ature as a gene expression marker for a subset of CAFs 
[8, 9, 21], and the top hypermethylated region was in 
the gap junction protein alpha 4 (GJA4; Supplemental 
Figure S2D,E). These differentially methylated regions 
might reflect the activation of CAFs in liver tumors.

Cancer‑associated fibroblast reveal aberrant gene 
expression that reflects epigenetic aberrations
To better understand if the aberrant DNAm in CAFs is 
also reflected at the gene expression level, we performed 
RNA-sequencing on seven of the NAF/CAF pairs. Anal-
ogous to the DNA methylation analysis, we initially 
selected at least fourfold difference in gene expression 
between NAFs and CAFs. This analysis resulted in the 
same separation of CAFhigh and CAFlow samples as previ-
ously observed (Fig.  2A,B). Further analysis of differen-
tial gene expression between the CAFhigh and NAF group 
revealed 359 upregulated and 525 downregulated genes 

Fig. 2  Gene expression differences between CAFs and NAFs from liver. A Heatmap of 891 genes with at least fourfold expression difference 
between the groups of NAFs and CAFs. Hierarchical clustering showed the same classification of CAFlow (orange) and CAFhigh (red), as observed 
for DNAm. B Principal component analysis of the 500 most variable genes. C Volcano plot comparing the CAFhigh group with NAFs. Highlighted 
are significantly different expressed genes (adjusted p-values < 0.1). D Differential gene expression was compared with differential methylation 
in CAFhigh versus NAFs. Each CpG site in promoter regions (TSS1500 and TSS200) was paired with the associated genes. Highlighted are significantly 
differentially expressed and methylated genes
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(Fig. 2C; Supplemental Figure S3). Among the most sig-
nificant upregulated genes were plakophilin-2 (PKP2), 
which has been described as a Wnt/β-catenin target in 
colon cancer CAFs [22], and TIMP metallopeptidase 
inhibitor 3 (TIMP3), which was also highly upregulated 
in ovarian cancer CAFs [23].

We then analyzed whether the aberrant DNA meth-
ylation in the CAFhigh fraction was also reflected in cor-
responding changes in gene expression. In general, 
hypomethylation was rather associated with higher gene 
expression, and the opposite was also true—but the asso-
ciation between differential DNAm and corresponding 
gene expression changes was overall low (Fig. 2D). Inter-
estingly, EDARADD was among the genes that showed 
high expression and hypomethylation. This gene has 
previously been independently described as differen-
tially methylated and expressed in CAFs from lung and 
prostate cancer [13, 24]. In addition, the Runt-related 
transcription factor 3 (RUNX3) was among the highest 
expressed genes, as previously described for tumor-sup-
porting CAFs from breast cancer [25].

Selection of candidate CpGs for cancer‑associated 
fibroblasts in liver tumors
We hypothesized that an epigenetic biomarker for CAFs 
might reflect the fraction of CAFs in liver tissue, which 
might be useful for disease stratification of liver can-
cer. However, since liver tissue comprises many other 
cell types other than fibroblasts (such as hepatocytes, 
endothelial cells, blood cells etc.), their profiles need to 
be taken into consideration. We therefore searched for 
CpG sites with distinct DNAm levels between CAFs and 
other cell types that are present in liver tissue, including 
liver cancer cells. To this end, we compiled a dataset of 
in-house and public methylation data with a wide range 
of different cell types that might be found in liver, albeit 
they were not sorted from liver tissue (Supplemental 
Table S2). CAFs, NAFs and fibroblasts were close to each 
other in the PCA plot, while hematopoietic cells and can-
cer cell lines/cholangiocyte cancer cells were separated 
into distinct clusters (Fig.  3A). Notably, methylome of 
CAFs was closely related to that of fibroblasts, support-
ing the notion that CAFs are of fibroblastoid origin.

To identify liver CAF-associated CpGs, we divided the 
datasets into a selection set (including CAFhigh samples) 
and test set (with CAFlow samples). We used CimpleG 
with a preselected number of CpGs (> 20% mean differ-
ence between NAFs and CAFs) to select candidate CpGs 
(Fig.  3B) [19]. We exemplified the top eight candidate 
CpGs, all of which were hypomethylated in the CAFhigh 
samples and consistently methylated in other cell types in 
the selection set (Fig. 3C) as well as in the test set (Sup-
plemental Figure S4A). We then tested whether the eight 

candidate CpGs for CAFs in liver tissue would also reveal 
different DNAm in hepatocellular cancer compared to 
normal liver tissue of another study [26]. In fact, DNAm 
was overall lower in cancer samples, but this was not 
consistent for all CpGs and cancer samples (Supplemen-
tal Figure S4B). Furthermore, we analyzed liver hepato-
cellular carcinoma profiles of The Cancer Genome Atlas 
(TCGA) and the CAF-candidate CpGs revealed higher 
variability in cancer tissue (Supplemental Figure S4C).

To estimate whether the DNAm pattern in these CAF-
associated CpGs is also indicative for prognosis in liver 
cancer, we compared the 25th percentile of patients with 
the lowest methylation at these sites with other patients. 
Three of the eight CpGs showed a clear association with 
survival (cg24106661; cg07046030; and cg23256480; 
Fig.  3D). Thus, lower DNA methylation at these CpGs 
may reflect a higher proportion of CAFs contributing to 
shorter long-term survival in hepatocellular carcinoma.

Aberrant DNA methylation of cancer‑associated fibroblasts 
in different types of cancer
Subsequently, we have analyzed if our liver CAF-associ-
ated CpGs are overlapping with CAF-associated CpGs in 
other types of cancer. To this end, we used publicly avail-
able Illumina BeadChip profiles of CAFs and NAFs: from 
non-small cell lung cancer [24], prostate cancer [13], ade-
nocarcinomas of the stomach and esophagus [27], and 
three other datasets with CAFs from gastric cancer [27, 
28] (Supplemental Table  S2). The samples were mainly 
grouped according to the tissue of origin in dimensions 
1 and 2 in the PCA plot (Fig.  4A). Notably, component 
4 of the PCA analysis separated CAF from NAF samples 
across all five different tissues, indicating that there may 
indeed be overlapping epigenetic differences (Fig. 4B).

Subsequently, we performed differential methylation 
analysis between NAFs and CAFs for each cancer type 
separately. CpGs were selected where the difference in 
mean DNAm > 10% and the limma adjusted p-values 
was < 0.05. Significant hypo- and hypermethylation was 
found for 1,134 and 559 CpGs in liver, 923 and 596 CpGs 
in lung, 9,631 and 5,199 CpGs in prostate, 1,389 and 210 
CpGs in esophagus, and 3,286 and 2,988 CpGs in stom-
ach, respectively. Of note, 34 hypomethylated and four 
hypermethylated sites were shared by at least four of 
these cancer categories (Fig.  4C, Supplemental Figure 
S5A,B). Furthermore, two hypomethylated CpGs were 
found in common in all datasets: cg07134930 in histon-
deacetylase 4 (HDAC4), and cg05935904 (not related to a 
gene; Fig. 4D).

As previously mentioned, EDARADD has been 
described as one of the most differentially methylated 
regions in CAFs in two independent studies of lung and 
prostate cancer [13, 24]. Notably, the same CpG site 
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cg09809672 (EDARADD) was significantly differently 
methylated in all our comparisons except for esophagus. 
Moreover, this CpG site has also been described as one of 
the genomic sites with conspicuous age-associated DNA 
methylation changes [29]. However, when we used three 
different epigenetic clocks on CAFs and NAFs from liver 
[30–32], there were no significant differences in epige-
netic-age predictions (Supplemental Figures S5C), which 
was in line with previous reports for prostate CAFs [13]. 
Overall, our integrative analysis indicated that CAFs from 
different tissues have overlapping epigenetic features.

DNA methylation at CAF‑associated CpGs is indicative 
for prognosis
The prevalence of cancer-associated fibroblasts might be 
associated with adverse prognosis in various types of can-
cer [1]. We have therefore investigated if the DNA meth-
ylation levels in the CAF-associated CpGs cg09809672 
(EDARADD), cg07134930 (HDAC4), and cg05935904 
were indicative for overall survival. Our analysis encom-
passed 32 datasets from diverse cancer types within The 
Cancer Genome Atlas project (TCGA). To estimate asso-
ciation with overall survival we initially performed Cox 

Fig. 3  Selection of potential DNA methylation biomarkers for CAFs in liver cancer. A Principal component analysis of DNA methylation profiles 
(316,641 CpGs) in NAFs, CAFs with public datasets of various other cell types. Our NAFs and CAFs clustered closely to fibroblasts of other studies. 
B The selection of candidate CpGs was performed with CimpleG [19] on a reduced number of CpGs, that showed at least 20% mean methylation 
difference between NAFs and CAFs. C Heatmap of DNAm of eight candidate CpGs that were selected to discern CAFs from other cell types. The 
results of the selection dataset are depicted here. D To investigate if DNA methylation at these eight candidate CpGs is associated with overall 
survival, we used the TCGA data of hepatocellular carcinoma [38]. Kaplan–Meier analysis of the 25th percentile of patients with the lowest DNA 
methylation at these sites versus other patients revealed significant results for three CpGs (cg24106661; cg07046030; and cg23256480)
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Fig. 4  Aberrant DNA methylation in fibroblasts associated with various types of cancer. A, B Principal component analysis of the 10,000 most 
variable CpGs in the dataset containing NAFs and CAFs from lung (GSE68851) [24], esophagus (GSE97687)[27], prostate (GSE115413 and GSE86258) 
[13], and stomach cancer (GSE117087, GSE194259 and GSE97686) [27, 28]. The samples clustered primarily according to the tissue in dimensions 1 
and 2 (A), whereas they were separated into NAFs and CAFs by the fourth dimension (B). C Heatmap of 36 hypomethylated and 4 hypermethylated 
sites in CAFs versus NAFs, which were significantly differentially methylated in at least 4 of the tissues/cancers (mean methylation difference 
between NAFs and CAFs > 10%; limma adjusted p-values < 0.05). D Box plots of DNA methylation levels for all samples for the four differently 
methylated hypomethylated sites shared by all five tissues (adjusted p values are based on the limma differential methylation analysis)
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proportional hazards models, incorporating age and gen-
der as variables. In five cancer types—liver hepatocellu-
lar carcinoma (LIHC), kidney renal clear cell carcinoma 
(KIRC), kidney renal papillary cell carcinoma (KIRP), low 
grade glioma (LGG), and uveal melanoma (UVM)—at 
least one of the three CpGs revealed a significant associa-
tion with survival (Supplemental Table S4). Furthermore, 
the association between the DNAm profiles of the three 
CpGs with survival was supported by Kaplan–Meier 
curves and log-rank test, comparing the 25th percentile 
of patients with the lowest methylation at these sites with 
the remaining patients (Fig. 5).

Discussion
Our results provide further evidence that interaction 
of cancer cells with their environment systematically 
remodels the epigenetic makeup of CAFs. Despite the 
heterogeneity of CAFs within a given tumor, among 
diverse tissues, and across individuals, there were con-
sistent DNA methylation changes observed in multiple 
independent datasets. While not all liver-CAF samples 
exhibited distinct signatures, it is conceivable that the 
CAFlow samples encompass either less activated fibro-
blasts or distinct subpopulations. Previous research has 
identified different CAF-clusters [8, 33] and it was even 
speculated that CAF subpopulations expressing different 
biomarkers might either promote or counteract tumor 
growth [4, 7, 34]. In addition, Ma et  al. have recently 
delved into the heterogeneity of CAF subsets using sin-
gle-cell gene expression data across different cancer types 
[35]. It is conceivable that such diversity in CAF-subsets 
may also manifest in their methylome at the single-cell 
level, warranting further investigation in future studies. 
Either way, the CAFlow fraction revealed similar DNAm 
and transcriptomic patterns as NAFs. Furthermore, anal-
ysis of methylome and transcriptome data consistently 
identified CAFhigh samples with abnormal expression, 
particularly in candidate CAF-markers such as RUNX3 
[25] and EDARADD [13]. The heterogeneity in CAFs 
in transcriptome and DNAm might also originate from 
different cellular sources recruited into the CAF com-
partment [4]. Nevertheless, our analysis suggests that 
CAF-associated DNAm profiles closely resemble those 
of normal fibroblasts, hinting at a fibroblastoid cellular 
origin.

Reliable biomarker discovery for CAFs may eventu-
ally assist patient stratification and ultimately provide 
new targets for therapeutic approaches [34]. In this 
study, we employed our CimpleG pipeline as a proof 
of concept to identify candidate CpGs for CAFs in 
liver tumors. Notably, hypomethylation at these CpGs 
was particularly observed in CAFs, to a lesser degree 
in NAFs, and exhibited high methylation levels in all 

other cell types examined. While our study establishes 
an association between hypomethylation at three of 
the eight tested CpGs and shorter overall survival in 
liver cancer, it is important to note that these biomark-
ers were selected based on a relatively small set of CAF 
samples. Consequently, further validation across inde-
pendent cohorts is warranted in future studies.

It was remarkable to observe that apparently simi-
lar genomic regions become hypomethylated in CAFs 
across various studies and cancer types. Specifically, 
the three tested CpGs (cg09809672 in EDARADD, 
cg07134930 in HDAC4, and cg05935904) exhibited 
very consistent hypomethylation in CAFs compared to 
NAFs across all studies examined in our cross-compar-
ison. In addition, Su and coauthors investigated DNAm 
differences between CAFs and NAFs of non-small cell 
lung cancer (NSCLC) and published a table with 14,781 
differentially methylated CpG sites [36]—notably, their 
selection also comprised all of our three above-men-
tioned CpG sites. This overlap further substantiates our 
finding that these CpGs have aberrant DNAm in CAFs 
of different types of cancer.

In a prior study, Zou and coworkers focused on gene 
expression data to identify a signature of seven genes 
that were highly expressed in fibroblasts, and upregu-
lated in ovarian cancer stroma compared with normal 
ovarian stroma [8]. Notably, their candidate genes com-
prised COL1A1, which featured one of the most promi-
nent hypomethylated regions in our CAFhigh fractions, 
and podoplanin (PDNP), showing differential meth-
ylation in CAFhigh versus NAFs. Their research linked 
elevated expression of this CAF signature with unfa-
vorable prognosis in various cancer types. Our find-
ings align with this association, revealing a similar link 
between hypomethylation at the three identified CpGs 
in CAFs and adverse outcomes across up to five differ-
ent cancer types, with particularly pronounced effect in 
kidney renal clear cell carcinoma (KIRC). Importantly, 
our analysis does neither prove that the CAF-associ-
ated DNAm changes are functionally relevant, nor that 
these patterns directly affect clinical outcome—particu-
larly given that there is huge variation between patients 
and tumors.

Our findings support the notion that the tumor micro-
environment differs in those samples that have higher or 
lower CAF-associated DNAm patterns. Unfortunately, 
the fraction of CAFs within the tumor samples of the 
available datasets is unknown, and hence, we can only 
speculate that CAF-associated DNAm might reflect dif-
ferences in the tumor microenvironment. It is conceiva-
ble that CAF-associated DNAm changes might ultimately 
be considered as a supportive biomarker in the future, 
but this would probably require an application-specific 
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derivation of such signatures and certainly further 
validation.

Our study has several limitations The sample size of 
the analyzed liver tumors is very limited. Furthermore, 

CAFs are notoriously heterogeneous and tumors will also 
comprise fibroblasts that are not activated by the cancer 
microenvironment. We did not use specific CAF markers 
to enrich for activated subsets [37]—and it is yet unclear 

Fig. 5  DNA methylation of cancer-associated fibroblasts is indicative for overall survival. Kaplan–Meier plots with overall survival for TCGA DNA 
methylation data of five different cancers: kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), low grade glioma 
(LGG), liver hepatocellular carcinoma (LIHC), and uveal melanoma (UVM). Patients were stratified by the 25th percentile of lowest DNA methylation 
at the three CAF-associated CpGs (cg09809672 in EDARADD, cg07134930 in HDAC4, and cg05935904 without gene-association). Hypomethylation 
at these CpGs seems to be associated with higher CAF-content and shorter overall-survival
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if such markers can be used for enrichment form liver 
cancer at all. Furthermore, there remain many questions 
on the clinical and functional relevance on the epigenetic 
CAF signatures. While there was an overlap in aberrant 
DNAm in CAFs from various tissues, it is still unclear 
if the signatures can really reflect the fraction of CAFs 
within a tissue specimen. Thus, it remains to be proven 
that the association with survival in the different cancer 
samples is really attributed to the fraction of activated 
CAFs. The relevance for clinical prognosis needs to be 
further validated in independent datasets and studies.

Conclusions
Our exploratory study highlights that CAFs from liver 
cancer have distinct DNAm patterns to NAFs. Moreo-
ver, these DNAm patterns exhibit notable overlap with 
CAF-signatures identified in other studies across vari-
ous cancer types. This consistency suggests that there are 
reproducible epigenetic modifications occurring during 
the activation of CAFs. In the future, it needs to be fur-
ther analyzed if epigenetic signatures can reliably cap-
ture the fraction of activated fibroblasts in cancer tissue, 
which might eventually even be considered for therapeu-
tic decisions.
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