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Label-free single-cell RNA multiplexing
leveraging genetic variability

Konrad Hoeft 1,2,7, Tore Bleckwehl 1,7, David Schumacher1,3, Hyojin Kim1,
Robert Meyer 4, Qingqing Long1, Ling Zhang1, Christian Möller1,5,
Marian C. Clahsen-van Groningen 1,6, Anne Babler1, Turgay Saritas 1,2,
Ingo Kurth 4, Hendrik Milting5, Sikander Hayat 1,8 & Rafael Kramann1,2,8

Single cell RNA sequencing has provided unprecedented insights into the
molecular cues and cellular heterogeneity underlying human disease. How-
ever, the high costs and complexity of single cell methods remain a major
obstacle for generating large-scale human cohorts. Here, we compare current
state-of-the-art single cell multiplexing technologies, and provide a widely
applicable demultiplexing method, SoupLadle, that enables simple, yet robust
high-throughput multiplexing leveraging genetic variability of patients.

The rapid rise of single-cell RNA sequencing (scRNA-seq) has pro-
vided unprecedented insights into the molecular and cellular cues
shaping disease1. Unfortunately, the high cost of this technology
remains a major limitation for the generation of data from larger
human cohorts. However, the multifactorial origin and plasticity of
many diseases, as well as high inter-individual differences in humans
necessitate the generation of large-scale cohorts to pinpoint the
elusive molecular drivers of disease2. Moreover, a highly labile
transcriptome, which is susceptible to degradation or contamina-
tion during isolation, can lead to strong batch effects between
experiments. To this end, multiplexing technologies offer an elegant
solution, reducing both experimental batch effects and costs.
Among the most common multiplexing-methods used are cell-
labeling approaches (CellPlex or Hashtagging), where cells are tag-
ged with a sample-specific oligonucleotide prior to pooling3. Alter-
natively, cells can be multiplexed by calling patient-specific SNPs
from scRNA-seq data (Vireo, Souporcell or Demuxlet)4–8. At baseline
however (without reference whole exome sequencing or bulkRNA-
seq single nucleotide polymorphism (SNP) data), SNP-calling
methods only discriminate (from here on referred to as deconvo-
lute), but do not re-assign cells to patients due to the lack of infor-
mation on reference patient-defining SNPs. Here, Vireo offers

demultiplexing of patients by integrating SNP data from bulkRNA or
Whole Exome Sequencing (WES).

Here, we benchmark current state-of-the-art single-cell multi-
plexing technologies and, based on our results, present an improved
genomic multiplexing framework termed SoupLadle.

Results
Benchmarking of scRNA-seq multiplexing methods
First, we benchmarked current cell labeling and genomic demulti-
plexing methods. To compare multiplexing methods, we isolated
PBMC from five patients, labeled them with a patient-unique CellPlex-
Oligo, and subsequently isolated a unique PBMC population for each
patient using Fluorescence-Activated Cell Sorting (FACS) and gold-
standard cell-population specific cell-surface markers (Fig. 1a, Sup-
plementary Fig. 1a). We reasoned that this will lead to transcriptionally
distinct cell populations for each patient, enabling us to benchmark
multiplexing strategies against scRNA clustering as a reference. After
FACS, samples were pooled for 10X 3′ scRNA-seq. For genomic
demultiplexing, we performed bulkRNA and WES of each patient
(Supplementary Fig. 1b, c).

After quality control, clustering clearly distinguished the five
sorted PBMC populations, which we subsequently used as a reference
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to benchmark multiplexing methods (Fig. 1b, Supplementary
Fig. 1d–f). SNPs were quantified as recommended using CellSNP for
Vireo and either Vartrix or Minimap for Souporcell (Souporcell or
Souporcell Minimap). As Vartrix recovered considerably more SNPs
than CellSNP due to stricter filtering (i.e., minimum of 100 UMIs for
called SNPs) (Fig. 1c), we additionally tested Vireo with Vartrix-
quantified SNPs (Vireo Vartrix). To enable the comparison of decon-
volution methods Vireo CellSNP, Vireo Vartrix, and Souporcell, which
cannot reassign cells to patients, with demultiplexing methods (i.e.,
Vireo Vartrix or CellSNP bulkRNA, Vireo Vartrix or CellSNP WES), we
assigned deconvoluted cells to patients based on their overlap with
reference clusters for Vireo CellSNP, Vireo Vartrix and Souporcell.
Comparing recall and precision revealed that Souporcell, independent
of the underlying SNP-quantification method, outperformed other
methods,while VireoCellSNP andVireo Vartrix showed a slightly lower
precision and recall compared to Souporcell (Fig. 1d). Despite the
smaller number of SNPs, Vireo performed slightly better with CellSNP
in comparison to Vartrix. Vireo Integration of bulkRNA orWES data to

enable demultiplexing led to amarginal improvement in precision, but
a distinct loss in cell recall, with bulkRNA- outperformingWES-assisted
demultiplexing. Further dissecting bulkRNA and WES-assisted demul-
tiplexing revealed that bulkRNA recoveredmore SNPs from scRNA-seq
data (Fig. 1e), particularly in the 3′ untranslated region (3′ UTR), which
is primarily mapped during 3′ scRNA-seq. While CellPlex was out-
performed by genomic demultiplexing methods (Fig. 1d), stratifying
patient assignment by clusters revealed a robust assignment of single
cells for allmethods includingCellPlex (Fig. 1f). Indeed, quantifying the
precision of assigned single cells (excluding doublets) revealed an
effectively equal precision of all methods (~98.5%) (Fig. 1g). The poorer
precision of CellPlex is therefore explained by an over-estimation of
doublets (Fig. 1f). To assess doublet identification of multiplexing
methods in more detail we next assessed the shared doublet assign-
ment for each method including manually and computationally
assigned doublets (scDblFinder9) using computationally identified
doublets by scDblFinder as a reference (Supplementary Fig. 1g). In line
with our prior observation, Vireo CellSNP bulkRNA and WES showed
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Fig. 1 | Benchmarking of multiplexing methods in a PBMC single cell RNA
sequencing dataset. a Experimental design of PBMC multiplexing experiment.
Mono Monocytes, Dblt Doublet, CMO Cell Multiplexing Oligo. The schematic
drawing was created with BioRender (BioRender.com). b Conceptual cartoon
showing UMAP representations of PBMC stratified by clustering or patient
assignment by multiplexing methods. Vir Vireo. P Patient. c Quantification of SNPs
called from scRNA-seq data using CellSNP or Vartrix. Common: Found with both
methods. d Precision-Recall of multiplexing methods. Clustering is used as a
reference. SoupSouporcell, Vir. Vireo, bulk bulkRNA,Cell. CellSNP. eQuantification
of scRNA-seq SNPs recovered with BulkRNA or WES, split by genomic region. CDS
coding sequence, UTR untranslated region. f Cell-to-patient assignment for each
method stratified by clusters. g Precision of assigned single cells (excluding
doublets) for each method. h Schematic design of SoupLadle framework. The

schematic drawing was created with BioRender (BioRender.com). i Assessment of
patient-unique SNPs and intersections using PBMCbulkRNA-seq data. jHeatmapof
normalized hamming distance for best-matching patient assignment with Sou-
pLadle of scRNA-seq PBMC SNP profiles to patient bulkRNA-SNP profiles. SNP
profiles were assigned to patients with the least normalized distance (labeled with
#).kAssigned cells [in %] and precisionwith continuously downsampled (n = 10 per
condition) bulkRNA-SNP numbers for SoupLadle, Vireo CellSNP bulkRNA, and
Vireo Vartrix bulkRNA in PBMC dataset. Data are presented as mean assigned cells
±Standard Deviation. For (k) a Wilcoxon signed-rank Test was performed. Source
data and exact p values are provided in the Source Data file. Exact numbers for cell
sorting, and cell demultiplexing stratified by patient for each multiplexing method
are provided in Supplementary Data 2. ****p <0.0001. *Vireo CellSNP, Vireo Vartrix,
and Souporcell were assigned to patients based on overlap with clustering.
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the lowest overlap with scDblFinder (Fig. 1f) as both methods under-
assign doublets (Supplementary Fig. 1g). In contrast, Souporcell
showed the highest overlap with both manually and computationally
inferred doublets by scDblFinder, highlighting its robust doublet
assignment. Summarizing, Souporcell outperformed other demulti-
plexing methods (Fig. 1d), but offers no solution for patient assign-
ment. While Vireo can assign patients, the latter leads to a distinct loss
in recall. Lastly, bulkRNA is better suited for recovery of scRNA-seq
SNPs than WES due to better coverage of the 3′ UTR (Fig. 1d–e).

SoupLadle framework
Based on our results, we decided to develop a framework, SoupLadle,
that enables multiplexing by assigning Souporcell-deconvoluted cells
back to patients (Fig. 1h). Within our framework, robust sample
demultiplexing is ensured by the following steps: (1) bulkRNA-seq of
each patient to select patients with distinct SNP-profiles for pooling
(Fig. 1i). (2) Pooled scRNA-seq of selected patients. (3) Cell assignment
to SNP-profiles with Souporcell. (4) Re-assignment of assigned SNP-
profiles to patients based on the similarity of SNP-profiles to bulkRNA-
seq SNPs using a hamming distance matrix and Kuhn-Munkres-
Algorithm for assignment (Fig. 1j). We reasoned that a two-step pro-
cess of cell demultiplexing and re-assignment would have the critical
advantage that all called SNPs in scRNA-seq data can be considered for
the initial cell deconvolution, rather than considering only SNPs that
are recovered in reference bulkRNA or WES data. We hypothesized
that this would be particularly critical for demultiplexing of rare cell-
types with distinct gene expression and in consequence distinct SNP-
profiles, as these transcripts and SNPs would be less well covered in
bulkRNA-seq data. Indeed, calculating recall and precision for PBMC,
while continuously randomly downsampling the number of bulkRNA-
SNPs available for demultiplexing, confirmed a significantly superior
performance of SoupLadle to Vireo, independent of the underlying
SNP-quantificationmethod used for Vireo (CellSNP or Vartrix) (Fig. 1k).
The difference in performance between SoupLadle and Vireomethods
further increased when continuously downsampling the number of
bulkRNA-SNPs available for demultiplexing, underlining the notion
that SoupLadle functions more robustly than Vireo when fewer SNPs
are available.

Benchmarking of SoupLadle framework in different tissues
To next test the ability of SoupLadle in single nuclear RNA sequencing
(snRNA-seq) of a complex solid organ, we isolated nuclei from snap-
frozen heart tissue of five patients, labeled nuclei with patient-specific
CellPlex-Oligos and Hashtag-antibodies, and subsequently sorted and
pooled nuclei for snRNA-seq (Fig. 2a, Supplementary Fig. 2a). In
addition, we performed bulkRNA and WES of heart tissue from each
patient (Supplementary Fig. 2b, c). After quality control, clustering
clearly distinguished the major cell types of the heart (Supplementary
Fig. 2d–f). Similar to our findings in scRNA data, SNP recovery was
higher with Vartrix in comparison to CellSNP (Supplementary Fig. 2g).
Assessing cell-to-patient assignment, SoupLadle outperformed both
cell-labeling andgenomicdemultiplexingmethods, assigningnearly all
cells to patients (Fig. 2b). In comparison, Vireo bulkRNA coupled with
Vartrix-quantified SNPs was able to achieve a similar assignment, while
both cell labeling strategies and standard Vireo CellSNP bulkRNA only
assigned ~75% of all cells. In contrast to scRNA-seq data, demultiplex-
ing using WES (Vireo CellSNP WES) led to poor cell assignment
(~12.5%). Indeed, the previously observed differences in SNP recovery
were even more pronounced in snRNA-seq, as bulkRNA strongly out-
performedWES SNP recovery due to better mapping of introns and 3′-
UTRs (Fig. 2c). This is in linewith thenotion that unsplicedRNA ismore
abundant within nuclei leading to a higher fraction ofmapped introns.

Assessing the overlap of patient-assigned cells as a percentage of
all assigned cells to estimate cell assignment quality revealed a high
overlap (>95%) between all methods, with the exception of Vireo

CellSNP WES, confirming a robust cell assignment by SoupLadle, but
also Cellplex, Hashtag and Vireo CellSNP or Vartrix bulkRNA (Fig. 2d,
Supplementary Fig. 2h). To estimate cell-type bias, we last stratified
cell assignment by celltype. Here, Hashtag cell-labeling, Vireo CellSNP
bulkRNA and, to a lesser extent, Vireo Vartrix bulkRNA showed a dis-
tinct cardiomyocyte bias with poor assignment of less abundant cell
populations (Fig. 2e). In contrast, CellPlex and SoupLadle showed a
lower cell type bias (Fig. 2e).

Next, we decided to benchmark SoupLadle in a larger snRNA-seq
dataset (n = 8, 11,501 nuclei) isolated from frozen human heart tissue
(Fig. 2f, Supplementary Fig. 2i–k). Of note, due to excessive nuclei loss
with hashtag or CMO labeling as a consequence of the required pro-
cessing and washing steps, we did not perform cell labeling. Impor-
tantly, as both SoupLadle and Vireo outperformed cell labeling
approaches in our previous benchmark (Fig. 1d), the latter cannot be
considered a viable benchmark for SNPmultiplexing tools. In line with
our previous in-silico analysis (Fig. 1k), SoupLadle showed a robust
performance with higher sample numbers, assigning 99% of cells to
patients. In contrast, Vireo Vartrix bulkRNA cell assignment dropped
with higher sample numbers to 81% assigned cells, while Vireo CellSNP
bulkRNA only assigned 45% of cells (Fig. 2g). Assessing the overlap in
patient assigned cells across multiplexing methods showed a 100%
overlap between SoupLadle and Vireo Vartrix bulkRNA and a 96%
overlap of SoupLadle and Vireo CellSNP bulkRNA, corroborating a
robust cell assignment by SoupLadle and Vireo (Supplementary
Fig. 2l, m). In line with our hypothesis that consideration of all SNPs in
snRNA data is critical for the successful assignment of less abundant
cell-types, SoupLadle showed less cell-type bias, with better demulti-
plexing of rare cell-types (e.g., Neuronal cluster) in comparison to both
Vireo Vartrix bulkRNA and Vireo CellSNP bulkRNA (Fig. 2h).

To further validate our approach in (1) tissue characterized by a
high cell heterogeneity and (2) smaller tissue samples, we next tested
multiplexing of frozen human kidney biopsies (n = 4, 11,490 nuclei)
(Fig. 2i, Supplementary Fig. 2n–p). Supporting our previous results,
SoupLadle showed the highest cell assignment with 96% of cells
assigned, followed by a drop in Vireo Vartrix bulkRNA demultiplexing
performance with only 21% of cells assigned, while Vireo CellSNP
bulkRNA failed to adequately demultiplex samples (<1%
assigned) (Supplementary Fig. 2q). Again, overlap of assigned cells was
high (~93%) in SoupLadle andVireo Vartrix, while VireoCellSNP did not
adequately assign cells in comparison to other methods (Supplemen-
tary Fig. 2r, s). Analysis of kidney tissue strongly highlighted a Vireo
Vartrix celltype bias, with inefficient demultiplexing of rare cell-types
with distinct transcript expression such as podocytes, fibroblasts, and
intercalated cells, in comparison to tubular cells (PT, TAL, and DCT),
which represent the most common cell-type in the kidney (Fig. 2j). In
contrast, SoupLadle showed no apparent cell-type bias, highlighting
the advantage of our multiplexing approach (Fig. 2j).

Lastly, as we analyzed SoupLadle multiplexing performance in 3′
scRNA-seq datasets only, we aimed to assess whether SoupLadle could
be suitable for 5′ scRNA-seq multiplexing. Here we analyzed SNP dis-
tribution in apublished 5′ scRNA-seqdataset (Supplementary Fig. 3a)10.
In line with our 3′ scRNA-seq analyses, we recovered a comparable
amount of SNPs and found that the majority of recovered SNPs were
located within introns, as well as 5′ and 3′ UTRs (Supplementary
Fig. 3a, b, Fig. 1c, Supplementary Fig. 2g). These results suggest that
bulkRNA-seq would be best suitable for 5′ scRNA-seq multiplexing, as
the latter better captures SNPs located within introns and UTRs
than WES.

Discussion
Comparing our approach to standard scRNA-seq costs, SoupLadle
provides a ~4-fold cost reduction when multiplexing eight samples
(Supplementary Data 1). More importantly, one of the key advantages
of SoupLadle in comparison to standard cell-labeling approaches
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(Hashtagging, Cellplex) is that it does not require additional experi-
mental steps during cell or nuclei isolation. Instead, samples can be
pooled immediately after cell or nuclei isolation, without having to
label and wash samples prior to pooling. This reduces processing
steps, which is critical for isolation of nuclei, as the latter are particu-
larly sensitive to disruption or nuclei loss during washing steps
(~20–30% of nuclei are lost with each washing step)11. In contrast to
standard Cell-Labeling approaches, SoupLadle requires bulkRNA-seq
or WES. Here, our data indicates that bulkRNA outperforms WES for
SNP-based multiplexing, as WES does not capture 3′ UTR or intronic
SNPs well. This is particularly important for snRNA-seq, where the
majority of snRNA-seq SNPs are located in the 3′ UTR and introns.
Taking into consideration that snRNA, but not scRNA, can be per-
formed from frozen tissue, which is crucial for multiplexing large
human cohorts, we recommend bulkRNA-seq for SNP-based multi-
plexing. While theoretically bulkRNA-seq can be performed in parallel
to cell or nuclei isolation, we recommend an a priori evaluation of SNP
heterogeneity (Fig. 1h). This additional step enables optimal selection
of samples for pooling based on bulkRNA SNPs and avoids critical loss
of samples in multiplexed scRNA/snRNA-data due to insufficient SNP

heterogeneity. As such, SoupLadle is best suited for frozen tissue,
where bulkRNA-seq can be performed prior to multiplexing from a
small piece (e.g., 1mg) of frozen tissue. Of note, while we do not
provide a tool for ambient RNA correction, ambient RNA can be
imputed with standard packages (CellBender, SoupX) or Souporcell,
which leverages the natural genetic variation of multiplexed patients
to estimate ambient RNA.

In summary, SoupLadle enables robust multiplexing with higher
recall as compared to other multiplexing methods. In comparison to
standard scRNA-seq, our framework reduces costs and experimental
batch effects without complicating the delicate workflow of cell or
nuclei isolation. While we only provide a proof of concept for our
framework, we believe that this multiplexing approach will enable
multiplexing of larger sample numbers and will likely be instrumental
to the generation of large-scale human cohorts.

Methods
Ethics
The use of PBMC for our purposes was approved by the scientific
management of the RWTH centralized Biomaterial Bank (cBMB) and
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the local Ethics Committee of the Medical Faculty of Medicine of the
RWTH Aachen University. Human myocardial tissue was collected
from patients undergoing heart transplantation, implantation of a
total artificial heart, or left ventricular assist device implantation. The
use of heart tissue was approved by the local ethics committee of the
RuhrUniversity Bochum in BadOeynhausen (No. 220–640). The useof
human kidney tissue was approved by the Medical Ethics Committee
of the Erasmus Medical Center, Rotterdam (MEC-2021-0840). All
patients provided written informed consent in accordance with the
Declaration of Helsinki.

PBMC isolation
For PBMC isolation, blood was collected from five patients (2 male, 3
female) into EDTA-tubes andmixed 1:1 with PBS. EDTA-blood was then
carefully layered onto Ficoll-Paque Plus Cytiva (17-440-02, GE Health-
care) (1:1,5) and centrifuged (400G, 40min, RT, without brakes). After
centrifugation the PBMC-Layer was aspirated, resuspended in FACS-
Buffer (PBS, 2% FCS, 2mM EDTA, Invitrogen, AM260G) and cen-
trifuged (300G, 10min, RT). The supernatant was discarded and cells
were resuspended in 300 µl FACS Buffer. At this step, PBMC were
counted and ~0.5 × 106 cells were taken for each, bulkRNA sequencing
and WES. The remaining cells were stained with CD14-PE (1:100, Clone
M5E2, 301850, Biolegend), CD16-APC (1:100, Clone B73.1, 360705,
Biolegend), CD4-FITC (1:100, Clone RPA-T4, 300506, Biolegend), CD8-
PE/Cy7 (1:100, Clone SK1, 344712, Biolegend) and CD19-BB700 (1:100,
Clone SJ25C1, 566396, BD Biosciences) for 30min at 4 °C, protected
from light. Afterwards, cells were washed once with FACS Buffer
(400G, 5min, 4 °C) before staining PBMCwith a unique CellPlex-Oligo
(3′ CellPlex, 1000261, 10X) for each patient (100 µl, 5min, RT). Sub-
sequently cells were washed twice, before sorting a unique PBMC
population for each patient (CD14 Monocytes, CD16 Monocytes, CD4
T-Cells, CD8 T-Cells, CD19 B-Cells) using a BD FACSMelody Cell Sorter.
For lymphocytes Dapi, CD16 and CD14 positive cells were excluded to
avoid dead cell andmonocyte contamination, with subsequent sorting
of CD4-CD8 +T-Cells, CD4 +CD8- T-Cells or CD4-CD8-CD19 + B-Cells
(Supplementary Fig. 1a). For monocytes Dapi, CD4 and CD8 positive
cells were excluded to avoid dead cell and lymphocyte contamination,
with subsequent sorting of CD14 +CD16- or CD16 +CD14- monocytes
(Supplementary Fig. 1a). For each sample we sorted an equal number
of cells (100,000 cells per sample). After sorting, PBMC were pooled
and immediately loaded onto a Chromium Next GEM Chip G for
snRNA-seq (3′ v3.1, 10X) with a cell recovery of ~18,000 cells after Cell
Ranger alignment.

Nuclei isolation from snap-frozen tissue
Snap frozen tissue was crushed using a mortar and pestle, resus-
pended in 500 µl nuclei lysis Buffer (EZ lysis Buffer, NUC101, Sigma-
Aldrich with 1 Tab/10ml of cOmplete Protease Inhibitor 11873580001,
Roche and 10 µl/ml Recombinant RNase Inhibitor, 2313A, Takara Bio
and 10 µl/ml Superase In RNase Inhibitor, AM2694, Thermofisher) and
homogenized with dounce tissue grinder pestles. The homogenized
solution was spun down, supernatant discarded, and the pellet resus-
pended in 4ml nuclei resuspension buffer (PBS, 1% BSA, 126615-25ML,
Sigma-Aldrich, and 10 µl/ml Protector RNase Inhibitor, 3335399001,
Roche, abbreviation: NRB). The suspension was then filtered via a
40 µm cell strainer and centrifuged (500G, 4 °C, 5min). Supernatant
was discarded, and cells resuspended in 200 µl NRB with 3 µl of a
unique TotalSeq anti-Nuclear Pore Complex Antibody Hashtag-
Antibody (TotalSeq™ A0451-A0455, Biolegend) for each sample
(4 °C, 20min). Subsequently samples were washed with 1ml NRB,
centrifuged (500G, 4 °C, 5min) and resuspended in 100 µl of a unique
CellPlex Oligo (3′ CellPlex, 1000261, 10X) for each sample (RT, 5min).
The above steps for Hashtagging and CMO-Labeling were not per-
formed for the larger heart dataset, where eight samples were pooled,

and the kidney biopsy dataset, as the additional processing steps led to
excessive nuclei loss with insufficient remaining nuclei remaining for
adequate chip loading (loading > 10,000 cells on the chip). Cells were
washed oncemore with NRB (500G, 4 °C, 5min) before proceeding to
Fluorescent-activated Nuclei-sorting of DAPI positive nuclei with a
Sony SH800S. For the first heart dataset (n = 5; 2 male, 3 female)
complete samples were sorted due to a low amount of recovered
nuclei due to the additional required processing steps for Cellplex and
Hashtag labeling (exact numbers provided in Supplementary Data 2),
while for the second heart dataset an approximately equal number of
nuclei per sample was sorted (~50,000 nuclei per patient) and subse-
quently pooled. For kidney biopsies (n = 4; 3 male, 1 female), where
tissue was scarce, total processed biopsies were pooled prior to sort-
ing to reduce sample loss. 5min prior to sorting, nuclei were stained
with DAPI (Sigma-Aldrich). After sorting, nuclei were pooled and
immediately loaded onto aChromiumNextGEMChipG for snRNA-seq
(10x, 3′ v3.1). The second heart cohort (n = 8; 5 male, 3 female) was
loaded onto a Chromium Next GEM Chip M for High Throughput
snRNA-seq (10x, 3′ v3.1).

Single cell RNA, CellPlex and Hashtag library preparation
Single cell RNA (3′ v3.1, Dual Index, 10X for PBMC, heart cohort 1 and
kidney biopsies; 3′ High Throughput v3.1, Dual Index, 10X for heart
cohort 2) and 3′CellPlex (3′CellPlex, 1000261, 10X) library preparation
was performed according to themanufacturer’s instructions. Hashtag-
Libraries were prepared as described by Stoeckius et al.3. After quality
control on an Agilent TapeStation, scRNA/snRNA-seq samples were
sequenced on an Illumina NovaSeq system targeting a sequencing
depth of 25000 reads/cell for scRNA and snRNA libraries. For CellPlex
and Hashtag libraries we targeted a sequencing depth of 2500 reads
per cell based on recommendations for sequencing depth of Hashtag/
Cite-seq libraries (https://cite-seq.com/).

BulkRNA library preparation, alignment, and SNP-calling
For snap frozen tissue samples, samples were shredded in RNeasy lysis
buffer in a Mixer Mill prior to RNA Isolation. For PBMC, samples were
lysed with RNeasy lysis buffer. Subsequently, RNA was extracted for
both tissue and PBMC samples using the RNeasy Mini Kit (74106,
Qiagen) according to the manufacturer’s instructions. For PBMC and
heart tissue, RNA libraries were prepped with the NEBNext Ultra II
Directional RNA Library Prep Kit (NEB, E7760L) coupled with the
NEBnext rRNA Depletion Kit (NEB E6310X) according to the manu-
facturer’s instructions. For kidney biopsies the NEBNext Ultra II
Directional RNA Library Prep Kit was performed without rRNA-
depletion according to the manufacturer’s instruction, to reduce
costs, but also account for the small amount of input RNAavailabledue
to tissue scarcity. After quality control (Agilent TapeStation), bulkRNA-
seq samples were sequenced on an Illumina NovaSeq system targeting
25million reads/bulkRNA library. Sequencing reads from bulkRNA-seq
were aligned with STAR to the same reference genome used for the
single-cell RNA-seq and variants were called with freebayes using the
following parameters: -iXu --min-mapping-quality 30 --min-base-qual-
ity 10 --min-coverage 5. The variant data was further processed with
bcftools and R.

Whole Exome Sequencing, alignment, and SNP-calling
Enrichment for thewhole exomewas performedusing the Lotus™DNA
Library preparation kit (IDT, Coralville, Iowa, USA) according to the
manufacturer’s protocol. Sequencing was performed on a Nova-
Seq6000 Sequencer (Illumina, San Diego, CA). FastQ-files were gen-
erated with bcl2fastq2 (Illumina). Sequencing reads from WES were
aligned with bwa-mem (version 0.7.8) and variants were called with
freebayes (version 1.3.6) orGATK (version 2.3.9) and further processed
with bcftools and R.
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Single-cell RNA-seq demultiplexing
All absolute numbers for cell assignment are provided in Supplemen-
tary Data 2.

Sample labeling
For demultiplexing of CellPlex and Hashtag based sample labeling,
sequencing reads were mapped to the reference genome GRCh38-
2020-A applying the cellranger multi pipeline (version 7.1.0) with
default settings and the used sample barcodes for the corresponding
tagging method.

CellRanger alignment and scRNA-seq analysis
For scRNA-/snRNA-seq alignment CellRanger was run with standard
settings (CellRanger version 7.1.0 and reference genome GRCh38-
2020-A) for cell identification, but otherwise no QC cutoffs were set
prior to demultiplexing, as the latter may confound demultiplexing
analysis. Samples were subsequently analyzed with Seurat. First, sam-
ples were normalized and scaled (NormalizeData, ScaleData). For
clustering we used 4000 highly variable genes to compute principal
component analysis, and subsequent UMAP dimensionality reduction.
Clustering was performed at the lowest resolution (FindClusters, res.
0.1) to identify major clusters.

Vireo4

For the Vireo approach, cellSNP-lite7 (Version 0.3.2) with the recom-
mended setting of --minMAF 0.1 --minCOUNT 100 was used to call
SNPs from the multiplexed aligned bam file. This setting defines SNP
loci with at least 100 UMIs and 10% minor allele frequency. Further-
more the SNP calling was limited to the cell barcodes that were
assigned as cells by the cell calling algorithm of the cell ranger multi
pipeline. Subsequently, Vireo (version 0.5.7) was applied using the
cellSNP-lite called variants and the number of donors mixed (-N 4-8).
For the sample assignment with matching bulkRNA-seq or WES from
donors, the overlapping SNPs with cellSNP-lite called variants were
used as prior (-d --forceLearnGT). The same Vireo configuration was
used for the Vireo Vartrix approach, with SNPs derived from Vartrix
SNP calling as input.

Souporcell5

For the Souporcell approach, candidate SNPs were identified using
freebayes8 (Github: https://github.com/freebayes/freebayes, version
v1.3.6) from the multiplexed aligned bam file with the following para-
meters: --iXu --C 2 --q 20 --n 3 --E 1 --m 30 --min-coverage 6 --max-
coverage 100000 --pooled-continuous. The called SNPs were sub-
jected to allele counting with Vartrix (Github: https://github.com/
10XGenomics/Vartrix; version 1.1.22) with parameters --umi–mapq 30
--scoring-method coverage. The resulting SNP count matrix, number
ofmultiplexed samples (--num_clusters 4-8) aswell as the cell barcodes
that were assigned as cells by the cell calling algorithm by the cell
ranger pipeline were subjected to cell clustering by genotype with
Souporcell (version 2.4) and followed by doublet detection with
troublet. For the Souporcell minimap approach, the multiplexed
aligned bam file was remapped with minimap2 according to the
authors recommendations before variant calling.

SoupLadle for cohort SNP evaluation and patient reassignment
After SNP calling from patient samples (bulkRNA-seq or WES), Sou-
pLadle provides an R package for processing and analysis of SNP
profiles from the cohort, including evaluation of the SNP quality of
each sample and identification of common and discriminatory SNPs
that might support later single cell demultiplexing. This enables a
selection of samples with the highest SNP diversity for optimal pool-
ing. Soupladle also enables the curation of meta data that will be
attached to the single-nuclei RNA-seq data. In the second part, the SNP
profiles of deconvoluted single cells from scRNA-seq data will be

matched to patient SNP profiles of analyzed bulkRNA data. As input,
VCF files from (patient) bulkRNA SNPs and deconvoluted single-cell
SNPs are required so that SoupLadle will work with any common
single-cell RNA seq SNP-multiplexing method, although we recom-
mend using Souporcell. The input VCF files will be processed, con-
verted into a hamming distance matrix and assigned to the matching
bulk sample by the Kuhn-Munkres-Algorithm. Alternatively, the
deconvoluted patients can be assigned to a knowngroup (e.g., Cluster,
Cell tags). Finally, the assigned patients andmetadata can be added to
any common single-cell object (e.g., Seurat, AnnData), optionally in
combination with the SNP profile as a separate assay.

Doublet estimation
For doublet estimation from single-cell RNA-seq data, we applied
scDblFinder9, which simulates artificial doublets by computationally
merging transcriptomes from pairs of randomly selected cells. We
computed the doublet score for the top 4000 genes and determined
cells with a score >3 as doublets. Subsequently, the overlapping
assignments with all applied methods and manual cluster annotation
were evaluated using scDblFinder-identified doublets as a reference.

Precision-recall and SNP evaluation for patient assignments
True positives (TP) for each method were determined by counting the
cells where cell assignment matched the correct reference clustering
labels. False positives (FP) were calculated as the count of assigned
cells of each method that matched any of the reference clustering
labels, minus the TP. False negatives (FN) were calculated as the cell
count of reference clustering labels minus the TP. Finally, precision
was calculated as Precision=TP/(FP + TP) and Recall = TP/(FN +TP). For
the performance evaluation of SoupLadle compared to Vireo CellSNP
and Vireo Vartrix, the called SNPs from bulkRNA-seq of the PBMC
dataset were 10 times randomly subsampled for different fractions
from 1.0 (all SNPs used for demultiplexing) to 0.2 (downsampling to
20% of all bulkRNA-seq SNPs). For each fraction and method, the
precision and recall as well as the number of assigned cells (including
patient-assigned cells and doublets) were estimated. The different
methods of each fraction were compared by a Wilcoxon signed-
rank test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Bulk- and scRNA-sequencing data generated in this study have
been deposited in the GEO database under accession code GSE247708.
Whole exome sequencing data have been deposited in the
database of The European Genome-phenome Archive (EGA) with the
accession code EGAD50000000928 and are available under restricted
access for the protection of patient privacy. Access may be granted to
qualified researchers for health/medical/biomedical purposes, who are
bound by a Data Use Certification Agreement. Source data are provided
as a source data file. Source data are provided with this paper.

Code availability
All original code has been deposited at github and is available under
the following link: https://github.com/ToreBle/SoupLadle. An archived
version of the repository is also available on Zenodo [https://doi.org/
10.5281/zenodo.13711299].
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