% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @ARTICLE{Zou:999121, author = {Zou, Jiayu and Gao, Yingbo and Frieges, Moritz Holger and Börner, Martin Florian and Kampker, Achim and Li, Weihan}, title = {{M}achine learning for battery quality classification and lifetime prediction using formation data}, journal = {Energy and AI}, volume = {18}, issn = {2666-5468}, address = {Amsterdam}, publisher = {Elsevier ScienceDirect}, reportid = {RWTH-2024-11881}, pages = {100451}, year = {2024}, cin = {618310 / 080011 / 420910 / 080070 / 122010 / 120000}, ddc = {624}, cid = {$I:(DE-82)618310_20140620$ / $I:(DE-82)080011_20140620$ / $I:(DE-82)420910_20140620$ / $I:(DE-82)080070_20210623$ / $I:(DE-82)122010_20140620$ / $I:(DE-82)120000_20140620$}, pnm = {OAPKF - Open-Access-Publikation mit Unterstützung der RWTH Aachen University (021000-OAPKF) / BMBF 03XP0585 - SPEED - Schnelle Charakterisierung der Leistungsfähigkeit von Lithium-Ionen-Batterien aus der Produktionslinie mit maschinellem Lernen (03XP0585) / BMBF 03XP0334 - Model2Life- Modellbasierte Systemauslegung für 2nd-Life-Nutzungsszenarien von mobilen Batteriesystemen (03XP0334)}, pid = {G:(DE-82)021000-OAPKF / G:(BMBF)03XP0585 / G:(BMBF)03XP0334}, typ = {PUB:(DE-HGF)16}, UT = {WOS:001371742100001}, doi = {10.1016/j.egyai.2024.100451}, url = {https://publications.rwth-aachen.de/record/999121}, }